WorldWideScience

Sample records for potassium channel blockers

  1. Clofilium inhibits Slick and Slack potassium channels.

    Science.gov (United States)

    de Los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na(+) and Cl(-), and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels.

  2. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  3. Effects of Potassium Channel Blockers on the Negative Inotropic Responses Induced by Cromakalim and Pinacidil in Guinea Pig Atrium

    Science.gov (United States)

    1992-01-01

    RD-A2•4 875 EFFECTS OF POTASSIUM CHANNEL BLOCKERS ON THE NEGATIVE 1/1 INOTROPIC RESPONSES INDUCED BY CRONAKALIM RND PINACIDIL IN GUINEA PIG ATRIUM(U...INOTROPICTRSPONSES INDUCED BY CROMAKAUM AND PINACIDILIN GUINEA PIG ATRIUM a AUTHOR WAI-MAN LAU 7 FORMING ORG NAMES/ADDRESSES DEFENCE SCIENCE AND a...and Technology Organisaio Aot Val. Negative Inotropic Responses Victoria. Australia Induced by Cromakalim and Pinacidil in Guinea Pig Atrium Key

  4. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    Science.gov (United States)

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  5. Mechanism of Proarrhythmic Effects of Potassium Channel Blockers

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Ravens, Ursula

    2016-01-01

    Any disturbance of electrical impulse formation in the heart and of impulse conduction or action potential (AP) repolarization can lead to rhythm disorders. Potassium (K(+)) channels play a prominent role in the AP repolarization process. In this review we describe the causes and mechanisms...

  6. Effect of Potassium Channel Modulators on Morphine Withdrawal in Mice

    Directory of Open Access Journals (Sweden)

    Vikas Seth

    2010-01-01

    Full Text Available The present study was conducted to investigate the effect of potassium channel openers and blockers on morphine withdrawal syndrome. Mice were rendered dependent on morphine by subcutaneous injection of morphine; four hours later, withdrawal was induced by using an opioid antagonist, naloxone. Mice were observed for 30 minutes for the withdrawal signs ie, the characteristic jumping, hyperactivity, urination and diarrhea. ATP-dependent potassium (K + ATP channel modulators were injected intraperitoneally (i.p. 30 minutes before the naloxone. It was found that a K + ATP channel opener, minoxidil (12.5–50 mg/kg i.p., suppressed the morphine withdrawal significantly. On the other hand, the K + ATP channel blocker glibenclamide (12.5–50 mg/kg i.p. caused a significant facilitation of the withdrawal. Glibenclamide was also found to abolish the minoxidil's inhibitory effect on morphine withdrawal. The study concludes that K + ATP channels play an important role in the genesis of morphine withdrawal and K + ATP channel openers could be useful in the management of opioid withdrawal. As morphine opens K + ATP channels in neurons, the channel openers possibly act by mimicking the effects of morphine on neuronal K + currents.

  7. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used ...

  8. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    Science.gov (United States)

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Potassium channels as drugs targets in therapy of cardiovascular diseases: 25 years later

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-03-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  10. POTASSIUM CHANNELS AS DRUGS TARGETS IN THERAPY OF CARDIOVASCULAR DESEASES: 25 YEARS LATER

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-01-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/ openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  11. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  12. The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Schmitt, Nicole; Calloe, Kirstine

    2006-01-01

    The family of Kv7 (KCNQ) potassium channels consists of five members. Kv7.2 and 3 are the primary molecular correlates of the M-current, but also Kv7.4 and Kv7.5 display M-current characteristics. M-channel modulators include blockers (e.g., linopirdine) for cognition enhancement and openers (e.g...

  13. Expression and isotopic labelling of the potassium channel blocker ShK toxin as a thioredoxin fusion protein in bacteria.

    Science.gov (United States)

    Chang, Shih Chieh; Galea, Charles A; Leung, Eleanor W W; Tajhya, Rajeev B; Beeton, Christine; Pennington, Michael W; Norton, Raymond S

    2012-10-01

    The polypeptide toxin ShK is a potent blocker of Kv1.3 potassium channels, which play a crucial role in the activation of human effector memory T-cells (T(EM)). Selective blockers constitute valuable therapeutic leads for the treatment of autoimmune diseases mediated by T(EM) cells, such as multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. We have established a recombinant peptide expression system in order to generate isotopically-labelled ShK and various ShK analogues for in-depth biophysical and pharmacological studies. ShK was expressed as a thioredoxin fusion protein in Escherichia coli BL21 (DE3) cells and purified initially by Ni²⁺ iminodiacetic acid affinity chromatography. The fusion protein was cleaved with enterokinase and purified to homogeneity by reverse-phase HPLC. NMR spectra of ¹⁵N-labelled ShK were similar to those reported previously for the unlabelled synthetic peptide, confirming that recombinant ShK was correctly folded. Recombinant ShK blocked Kv1.3 channels with a K(d) of 25 pM and inhibited the proliferation of human and rat T lymphocytes with a preference for T(EM) cells, with similar potency to synthetic ShK in all assays. This expression system also enables the efficient production of ¹⁵N-labelled ShK for NMR studies of peptide dynamics and of the interaction of ShK with Kv1.3 channels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block

    Science.gov (United States)

    Fujiwara, Yuichiro; Arrigoni, Cristina; Domigan, Courtney; Ferrara, Giuseppina; Pantoja, Carlos; Thiel, Gerhard; Moroni, Anna; Minor, Daniel L.

    2009-01-01

    Background Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. Methodology/Principal Findings We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T→S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. Conclusions/Significance The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features. PMID:19834614

  15. Protonated form: the potent form of potassium-competitive acid blockers.

    Directory of Open Access Journals (Sweden)

    Hua-Jun Luo

    Full Text Available Potassium-competitive acid blockers (P-CABs are highly safe and active drugs targeting H+,K+-ATPase to cure acid-related gastric diseases. In this study, we for the first time investigate the interaction mechanism between the protonated form of P-CABs and human H+,K+-ATPase using homology modeling, molecular docking, molecular dynamics and binding free energy calculation methods. The results explain why P-CABs have higher activities with higher pKa values or at lower pH. With positive charge, the protonated forms of P-CABs have more competitive advantage to block potassium ion into luminal channel and to bind with H+,K+-ATPase via electrostatic interactions. The binding affinity of the protonated form is more favorable than that of the neutral P-CABs. In particular, Asp139 should be a very important binding site for the protonated form of P-CABs through hydrogen bonds and electrostatic interactions. These findings could promote the rational design of novel P-CABs.

  16. Protonated form: the potent form of potassium-competitive acid blockers.

    Science.gov (United States)

    Luo, Hua-Jun; Deng, Wei-Qiao; Zou, Kun

    2014-01-01

    Potassium-competitive acid blockers (P-CABs) are highly safe and active drugs targeting H+,K+-ATPase to cure acid-related gastric diseases. In this study, we for the first time investigate the interaction mechanism between the protonated form of P-CABs and human H+,K+-ATPase using homology modeling, molecular docking, molecular dynamics and binding free energy calculation methods. The results explain why P-CABs have higher activities with higher pKa values or at lower pH. With positive charge, the protonated forms of P-CABs have more competitive advantage to block potassium ion into luminal channel and to bind with H+,K+-ATPase via electrostatic interactions. The binding affinity of the protonated form is more favorable than that of the neutral P-CABs. In particular, Asp139 should be a very important binding site for the protonated form of P-CABs through hydrogen bonds and electrostatic interactions. These findings could promote the rational design of novel P-CABs.

  17. Calcium Channel Blockers

    Science.gov (United States)

    ... Certain calcium channel blockers interact with grapefruit products. Kaplan NM, et al. Treatment of hypertension: Drug therapy. In: Kaplan's Clinical Hypertension. 11th ed. Philadelphia, Pa.: Wolters Kluwer ...

  18. Microelectrode array measurement of potassium ion channel remodeling on the field action potential duration in rapid atrial pacing rabbits model.

    Science.gov (United States)

    Sun, Juan; Yan, Huang; Wugeti, Najina; Guo, Yujun; Zhang, Ling; Ma, Mei; Guo, Xingui; Jiao, Changan; Xu, Wenli; Li, Tianqi

    2015-01-01

    Atrial fibrillation (AF) arises from abnormalities in atrial structure and electrical activity. Microelectrode arrays (MEA) is a real-time, nondestructive measurement of the resting and action potential signal, from myocardial cells, to the peripheral circuit of electrophysiological activity. This study examined the field action potential duration (fAPD) of the right atrial appendage (RAA) by MEA in rapid atrial pacing (RAP) in the right atrium of rabbits. In addition, this study also investigated the effect of potassium ion channel blockers on fAPD. 40 New Zealand white rabbits of either sex were randomly divided into 3 groups: 1) the control, 2) potassium ion channel blocker (TEA, 4-Ap and BaCl2), and 3) amiodarone groups. The hearts were quickly removed and right atrial appendage sectioned (slice thickness 500 μm). Each slice was perfused with Tyrode's solution and continuously stimulated for 30 minutes. Sections from the control group were superfused with Tyrode's solution for 10 minutes, while the blocker groups and amiodarone were both treated with their respective compounds for 10 minutes each. The fAPD of RAA and action field action potential morphology were measured using MEA. In non-pace (control) groups, fAPD was 188.33 ± 18.29 ms after Tyrode's solution superfusion, and 173.91 ± 6.83 ms after RAP. In pace/potassium ion channel groups, TEA and BaCl2 superfusion prolonged atrial field action potential (fAPD) (control vs blocker: 176.67 ± 8.66 ms vs 196.11 ± 10.76 ms, 182.22 ± 12.87 ms vs 191.11 ± 13.09 ms with TEA and BaCl2 superfusion, respectively, P action potential in animal heart slices. After superfusing potassium ion channel blockers, fAPD was prolonged. These results suggest that Ito, IKur and IK1 remodel and mediate RAP-induced atrial electrical remodeling. Amiodarone alter potassium ion channel activity (Ito, IKur, IK1 and IKs), shortening fAPD.

  19. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  20. Effect of beta-adrenoceptor blockers on human ether-a-go-go-related gene (HERG) potassium channels

    DEFF Research Database (Denmark)

    Dupuis, Delphine S; Klaerke, Dan A; Olesen, Søren-Peter

    2005-01-01

    Patients with congenital long QT syndrome may develop arrhythmias under conditions of increased sympathetic tone. We have addressed whether some of the beta-adrenoceptor blockers commonly used to prevent the development of these arrhythmias could per se block the cardiac HERG (Human Ether....... These data showed that HERG blockade by beta-adrenoceptor blockers occurred only at high micromolar concentrations, which are significantly above the recently established safe margin of 100 (Redfern et al., 2003).......-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride) blocked the HERG channel with similar affinity, whereas the beta1-receptor antagonists metoprolol and atenolol showed weak effects. Further, the four compounds blocked HERG channels expressed in a mammalian HEK293 cell line...

  1. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility

    Directory of Open Access Journals (Sweden)

    Abel Peter W

    2007-11-01

    Full Text Available Abstract Background Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv channels and large-conductance, calcium-activated potassium (BK channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. Methods Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. Results The Kv channel blocker 4-aminopyridine (4-AP caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were

  2. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  3. Calcium channel blockers and Alzheimer's disease★

    Science.gov (United States)

    Tan, Yi; Deng, Yulin; Qing, Hong

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofibrillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers involved in Alzheimer's disease therapy. PMID:25767489

  4. Molecular modeling and structural analysis of two-pore domain potassium channels TASK1 interactions with the blocker A1899

    Directory of Open Access Journals (Sweden)

    David Mauricio Ramirez

    2015-03-01

    Full Text Available A1899 is a potent and highly selective blocker of the Two-pore domain potassium (K2P channel TASK-1, it acts as an antagonist blocking the K+ flux and binds to TASK-1 in the inner cavity and shows an activity in nanomolar order. This drug travels through the central cavity and finally binds in the bottom of the selectivity filter with some threonines and waters molecules forming a H-bond network and several hydrophobic interactions. Using alanine mutagenesis screens the binding site was identify involving residues in the P1 and P2 pore loops, the M2 and M4 transmembrane segments, and the halothane response element; mutations were introduced in the human TASK-1 (KCNK3, NM_002246 expressed in Oocytes from anesthetized Xenopus laevis frogs. Based in molecular modeling and structural analysis as such as molecular docking and binding free energy calculations a pose was suggested using a TASK-1 homology models. Recently, various K2P crystal structures have been obtained. We want redefined – from a structural point of view – the binding mode of A1899 in TASK-1 homology models using as a template the K2P crystal structures. By computational structural analysis we describe the molecular basis of the A1899 binding mode, how A1899 travel to its binding site and suggest an interacting pose (Figure 1. after 100 ns of molecular dynamics simulation (MDs we found an intra H-Bond (80% of the total MDs, a H-Bond whit Thr93 (42% of the total MDs, a pi-pi stacking interaction between a ring and Phe125 (88% of the total MDs and several water bridges. Our experimental and computational results allow the molecular understanding of the structural binding mechanism of the selective blocker A1899 to TASK-1 channels. We identified the structural common and divergent features of TASK-1 channel through our theoretical and experimental studies of A1899 drug action.

  5. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se [Department of Pharmaceutical Biosciences, Uppsala University (Sweden); Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma [AstraZeneca R and D Södertälje (Sweden); Cebers, Gvido [AstraZeneca R and D, iMed, 141 Portland Street, Cambridge, MA 02139 (United States); Hellmold, Heike; Gustafson, Anne-Lee [AstraZeneca R and D Södertälje (Sweden); Webster, William S [Department of Anatomy and Histology, University of Sydney (Australia)

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.

  6. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    International Nuclear Information System (INIS)

    Nilsson, Mats F; Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma; Cebers, Gvido; Hellmold, Heike; Gustafson, Anne-Lee; Webster, William S

    2013-01-01

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development

  7. A novel hypothesis for the binding mode of HERG channel blockers

    International Nuclear Information System (INIS)

    Choe, Han; Nah, Kwang Hoon; Lee, Soo Nam; Lee, Han Sam; Lee, Hui Sun; Jo, Su Hyun; Leem, Chae Hun; Jang, Yeon Jin

    2006-01-01

    We present a new docking model for HERG channel blockade. Our new model suggests three key interactions such that (1) a protonated nitrogen of the channel blocker forms a hydrogen bond with the carbonyl oxygen of HERG residue T623; (2) an aromatic moiety of the channel blocker makes a π-π interaction with the aromatic ring of HERG residue Y652; and (3) a hydrophobic group of the channel blocker forms a hydrophobic interaction with the benzene ring of HERG residue F656. The previous model assumes two interactions such that (1) a protonated nitrogen of the channel blocker forms a cation-π interaction with the aromatic ring of HERG residue Y652; and (2) a hydrophobic group of the channel blocker forms a hydrophobic interaction with the benzene ring of HERG residue F656. To test these models, we classified 69 known HERG channel blockers into eight binding types based on their plausible binding modes, and further categorized them into two groups based on the number of interactions our model would predict with the HERG channel (two or three). We then compared the pIC 5 value distributions between these two groups. If the old hypothesis is correct, the distributions should not differ between the two groups (i.e., both groups show only two binding interactions). If our novel hypothesis is correct, the distributions should differ between Groups 1 and 2. Consistent with our hypothesis, the two groups differed with regard to pIC 5 , and the group having more predicted interactions with the HERG channel had a higher mean pIC 5 value. Although additional work will be required to further validate our hypothesis, this improved understanding of the HERG channel blocker binding mode may help promote the development of in silico predictions methods for identifying potential HERG channel blockers

  8. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  9. Mitochondria from rat uterine smooth muscle possess ATP-sensitive potassium channel

    Directory of Open Access Journals (Sweden)

    Olga B. Vadzyuk

    2018-03-01

    Full Text Available The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate. Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane. Keywords: ATP-sensitive potassium channel, Diazoxide, 5-hydroxydecanoate, Myometrium, Mitochondria, Mitochondrial swelling, Mitochondrial membrane potential, ROS

  10. Isolation of proflavine as a blocker of G protein-gated inward rectifier potassium channels by a cell growth-based screening system.

    Science.gov (United States)

    Kawada, Hitoshi; Inanobe, Atsushi; Kurachi, Yoshihisa

    2016-10-01

    The overexpression of Kir3.2, a subunit of the G protein-gated inwardly rectifying K(+) channel, is implicated in some of the neurological phenotypes of Down syndrome (DS). Chemical compounds that block Kir3.2 are expected to improve the symptoms of DS. The purpose of this study is to develop a cell-based screening system to identify Kir3.2 blockers and then investigate the mode of action of the blocker. Chemical screening was carried out using a K(+) transporter-deficient yeast strain that expressed a constitutively active Kir3.2 mutant. The mode of action of an effective blocker was electrophysiologically analyzed using Kir channels expressed in Xenopus oocytes. Proflavine was identified to inhibit the growth of Kir3.2-transformant cells and Kir3.2 activity in a concentration-dependent manner. The current inhibition was strong when membrane potentials (Vm) was above equilibrium potential of K(+) (EK). When Vm was below EK, the blockage apparently depended on the difference between Vm and [K(+)]. Furthermore, the inhibition became stronger by lowering extracellular [K(+)]. These results indicated that the yeast strain serves as a screening system to isolate Kir3.2 blockers and proflavine is a prototype of a pore blocker of Kir3.2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Metaflumizone is a novel sodium channel blocker insecticide.

    Science.gov (United States)

    Salgado, V L; Hayashi, J H

    2007-12-15

    Metaflumizone is a novel semicarbazone insecticide, derived chemically from the pyrazoline sodium channel blocker insecticides (SCBIs) discovered at Philips-Duphar in the early 1970s, but with greatly improved mammalian safety. This paper describes studies confirming that the insecticidal action of metaflumizone is due to the state-dependent blockage of sodium channels. Larvae of the moth Spodoptera eridania injected with metaflumizone became paralyzed, concomitant with blockage of all nerve activity. Furthermore, tonic firing of abdominal stretch receptor organs from Spodoptera frugiperda was blocked by metaflumizone applied in the bath, consistent with the block of voltage-dependent sodium channels. Studies on native sodium channels, in primary-cultured neurons isolated from the CNS of the larvae of the moth Manduca sexta and on Para/TipE sodium channels heterologously expressed in Xenopus (African clawed frog) oocytes, confirmed that metaflumizone blocks sodium channels by binding selectively to the slow-inactivated state, which is characteristic of the SCBIs. The results confirm that metaflumizone is a novel sodium channel blocker insecticide.

  12. Effect of potassium channel modulators in mouse forced swimming test

    Science.gov (United States)

    Galeotti, Nicoletta; Ghelardini, Carla; Caldari, Bernardetta; Bartolini, Alessandro

    1999-01-01

    The effect of intracerebroventricular (i.c.v.) administration of different potassium channel blockers (tetraethylammonium, apamin, charybdotoxin, gliquidone), potassium channel openers (pinacidil, minoxidil, cromakalim) and aODN to mKv1.1 on immobility time was evaluated in the mouse forced swimming test, an animal model of depression. Tetraethylammonium (TEA; 5 μg per mouse i.c.v.), apamin (3 ng per mouse i.c.v.), charybdotoxin (1 μg per mouse i.c.v.) and gliquidone (6 μg per mouse i.c.v.) administered 20 min before the test produced anti-immobility comparable to that induced by the tricyclic antidepressants amitriptyline (15 mg kg−1 s.c.) and imipramine (30 mg kg−1 s.c.). By contrast pinacidil (10–20 μg per mouse i.c.v.), minoxidil (10–20 μg per mouse i.c.v.) and cromakalim (20–30 μg per mouse i.c.v.) increased immobility time when administered in the same experimental conditions. Repeated administration of an antisense oligonucleotide (aODN) to the mKv1.1 gene (1 and 3 nmol per single i.c.v. injection) produced a dose-dependent increase in immobility time of mice 72 h after the last injection. At day 7, the increasing effect produced by aODN disappeared. A degenerate mKv1.1 oligonucleotide (dODN), used as control, did not produce any effect in comparison with saline- and vector-treated mice. At the highest effective dose, potassium channels modulators and the mKv1.1 aODN did not impair motor coordination, as revealed by the rota rod test, nor did they modify spontaneous motility as revealed by the Animex apparatus. These results suggest that modulation of potassium channels plays an important role in the regulation of immobility time in the mouse forced swimming test. PMID:10323599

  13. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Science.gov (United States)

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  14. SENSITIVE EFFECTS OF POTASSIUM AND CALCIUM CHANNEL BLOCKING AND ATP-SENSITIVE POTASSIUM CHANNEL ACTIVATORS ON SEMINAL VESICLE SMOOTH MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    H SADRAEI

    2000-12-01

    Full Text Available Background. Seminal vesicle smooth muscle contraction is mediated through sympathetic and parasympathetic neurons activity. Although seminal vesicle plays an important role in male fertility, but little attention is given to mechanism involved in contraction of this organ.
    Methods. In this study effects of drugs which activate ATP - sensitive K channels and blockers of K and Ca channels were examined on contraction of guinea - pig isolated seminal vesicle due to electrical filled stimulation (EFS, noradrenaline, carbachol and KCI.
    Results. The K channel blocker tetraethyl ammonium potentate the EFS responses at all frequencies, while, the ATP - sensitive K channel inhibitor glibenclamide and the K channel opener levcromakalim, diazoxide, minoxidil and Ca channel blocker nifedipine all had relaxant effect on guinea - pig seminal vesicle.
    Discussion. This study indicate that activities of K and Ca channels is important in regulation of seminal vesicle contraction due to nerve stimulation, noradrenaline or carbachol.

  15. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation.

    Science.gov (United States)

    Lin, C S; Boltz, R C; Blake, J T; Nguyen, M; Talento, A; Fischer, P A; Springer, M S; Sigal, N H; Slaughter, R S; Garcia, M L

    1993-03-01

    The role that potassium channels play in human T lymphocyte activation has been investigated by using specific potassium channel probes. Charybdotoxin (ChTX), a blocker of small conductance Ca(2+)-activated potassium channels (PK,Ca) and voltage-gated potassium channels (PK,V) that are present in human T cells, inhibits the activation of these cells. ChTX blocks T cell activation induced by signals (e.g., anti-CD2, anti-CD3, ionomycin) that elicit a rise in intracellular calcium ([Ca2+]i) by preventing the elevation of [Ca2+]i in a dose-dependent manner. However, ChTX has no effect on the activation pathways (e.g., anti-CD28, interleukin 2 [IL-2]) that are independent of a rise in [Ca2+]i. In the former case, both proliferative response and lymphokine production (IL-2 and interferon gamma) are inhibited by ChTX. The inhibitory effect of ChTX can be demonstrated when added simultaneously, or up to 4 h after the addition of the stimulants. Since ChTX inhibits both PK,Ca and PK,V, we investigated which channel is responsible for these immunosuppressive effects with the use of two other peptides, noxiustoxin (NxTX) and margatoxin (MgTX), which are specific for PK,V. These studies demonstrate that, similar to ChTX, both NxTX and MgTX inhibit lymphokine production and the rise in [Ca2+]i. Taken together, these data provide evidence that blockade of PK,V affects the Ca(2+)-dependent pathways involved in T lymphocyte proliferation and lymphokine production by diminishing the rise in [Ca2+]i that occurs upon T cell activation.

  16. Effects of cisplatin on potassium currents in CT26 cells

    Directory of Open Access Journals (Sweden)

    Naveen Sharma

    2016-01-01

    Conclusion: Potassium currents were detected in CT26 cells and the currents were reduced by the application of tetraethylammonium (TEA chloride, iberiotoxin, a big conductance calcium-activated potassium channel blocker and barium. The potassium currents were enhanced to 192< by the application of cisplatin (0.5 mM. Moreover, the increase of potassium currents by cisplatin was further inhibited by the application of TEA confirming the action of cisplatin on potassium channels. In addition, relative current induced by cisplatin in CT26 cells was bit larger than in normal IEC-6 cells.

  17. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Directory of Open Access Journals (Sweden)

    Dong-Hai Liu

    Full Text Available Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  18. On the mechanism of TBA block of the TRPV1 channel.

    Science.gov (United States)

    Oseguera, Andrés Jara; Islas, León D; García-Villegas, Refugio; Rosenbaum, Tamara

    2007-06-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is a nonselective cation channel activated by capsaicin and responsible for thermosensation. To date, little is known about the gating characteristics of these channels. Here we used tetrabutylammonium (TBA) to determine whether this molecule behaves as an ion conduction blocker in TRPV1 channels and to gain insight into the nature of the activation gate of this protein. TBA belongs to a family of classic potassium channel blockers that have been widely used as tools for determining the localization of the activation gate and the properties of the pore of several ion channels. We found TBA to be a voltage-dependent pore blocker and that the properties of block are consistent with an open-state blocker, with the TBA molecule binding to multiple open states, each with different blocker affinities. Kinetics of channel closure and burst-length analysis in the presence of blocker are consistent with a state-dependent blocking mechanism, with TBA interfering with closing of an activation gate. This activation gate may be located cytoplasmically with respect to the binding site of TBA ions, similar to what has been observed in potassium channels. We propose an allosteric model for TRPV1 activation and block by TBA, which explains our experimental data.

  19. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Science.gov (United States)

    Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

    2012-01-01

    M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

  20. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Directory of Open Access Journals (Sweden)

    Gayle M. Passmore

    2012-05-01

    Full Text Available M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 µM XE991 sensitised Adelta- but not C-fibres to noxious heat stimulation and induced spontaneous, ongoing activity at 32ºC in many Adelta-fibres. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Adelta-fibre peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Adelta-fibre responses and provide a rationale for the nocifensive behaviours that arise following intraplantar injection of the M-channel blocker XE991.

  1. Calcium channel blockers inhibit endogenous pyrogen fever in rats and rabbits.

    Science.gov (United States)

    Stitt, J T; Shimada, S G

    1991-09-01

    We have previously shown that febrile responses in both rats and rabbits are elicited by the intravenous injection of a semipurified endogenous pyrogen (EP) prepared from human monocytes. We are now presenting evidence that these febrile responses are mediated via activation of Ca2+ channels by EP. The febrile responses of male New Zealand White rabbits and Sprague-Dawley rats to a standard dose of EP were determined at their respective thermoneutral ambient temperatures. The animals were then treated with Ca2+ channel blocker verapamil (7.5 mg/kg iv) 30-60 min before the EP challenge. In every case the febrile response to EP was markedly attenuated after verapamil pretreatment, while administration of verapamil by itself had no detectable effect on body temperature. Another Ca2+ channel blocker, nifedipine (5 mg/kg iv), was shown to possess antipyretic activity in rats also. To localize where in the fever pathway these Ca2+ channel blockers were acting, we investigated the effect of verapamil at the same dose on fevers that were produced by microinjection of prostaglandin E (PGE) directly into the brain. These PGE fevers were unaffected by verapamil pretreatment, indicating that the antipyretic action of Ca2+ channel blockers occurs before the formation of PGE in response to EP stimulation. The most likely locus of action is the activation of the enzyme phospholipase A2, which regulates the production of arachidonic acid from cellular phospholipids in the prostanoid cascade.

  2. A combined role of calcium channel blockers and angiotensin receptor blockers in stroke prevention

    Directory of Open Access Journals (Sweden)

    Ji-Guang Wang

    2009-07-01

    Full Text Available Ji-Guang WangCentre for Epidemiological Studies and Clinical Trials, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, ChinaAbstract: Stroke is a leading cause of death and disability worldwide. The importance of lowering blood pressure for reducing the risk of stroke is well established. However, not all the benefits of antihypertensive treatments in stroke can be accounted for by reductions in BP and there may be differences between antihypertensive classes as to which provides optimal protection. Dihydropyridine calcium channel blockers, such as amlodipine, and angiotensin receptor blockers, such as valsartan, represent the two antihypertensive drug classes with the strongest supportive data for the prevention of stroke. Therefore, when combination therapy is required, a combination of these two antihypertensive classes represents a logical approach.Keywords: stroke, angiotensin, calcium channel, cerebrovascular, hypertension, blood pressure

  3. Functional diversity of potassium channel voltage-sensing domains.

    Science.gov (United States)

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  4. A novel potassium channel in photosynthetic cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Manuela Zanetti

    Full Text Available Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+ channel family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.

  5. Comparative effect of angiotensin II type I receptor blockers and calcium channel blockers on laboratory parameters in hypertensive patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Nishida Yayoi

    2012-05-01

    Full Text Available Abstract Background Both angiotensin II type I receptor blockers (ARBs and calcium channel blockers (CCBs are widely used antihypertensive drugs. Many clinical studies have demonstrated and compared the organ-protection effects and adverse events of these drugs. However, few large-scale studies have focused on the effect of these drugs as monotherapy on laboratory parameters. We evaluated and compared the effects of ARB and CCB monotherapy on clinical laboratory parameters in patients with concomitant hypertension and type 2 diabetes mellitus. Methods We used data from the Clinical Data Warehouse of Nihon University School of Medicine obtained between Nov 1, 2004 and July 31, 2011, to identify cohorts of new ARB users (n = 601 and propensity-score matched new CCB users (n = 601, with concomitant mild to moderate hypertension and type 2 diabetes mellitus. We used a multivariate-adjusted regression model to adjust for differences between ARB and CCB users, and compared laboratory parameters including serum levels of triglyceride (TG, total cholesterol (TC, non-fasting blood glucose, hemoglobin A1c (HbA1c, sodium, potassium, creatinine, alanine aminotransferase (ALT, aspartate aminotransferase (AST, gamma-glutamyltransferase (GGT, hemoglobin and hematocrit, and white blood cell (WBC, red blood cell (RBC and platelet (PLT counts up to 12 months after the start of ARB or CCB monotherapy. Results We found a significant reduction of serum TC, HbA1c, hemoglobin and hematocrit and RBC count and a significant increase of serum potassium in ARB users, and a reduction of serum TC and hemoglobin in CCB users, from the baseline period to the exposure period. The reductions of RBC count, hemoglobin and hematocrit in ARB users were significantly greater than those in CCB users. The increase of serum potassium in ARB users was significantly greater than that in CCB users. Conclusions Our study suggested that hematological adverse effects and

  6. Intracellular mediators of potassium-induced aldosterone secretion

    International Nuclear Information System (INIS)

    Ganguly, A.; Chiou, S.; Davis, J.S.

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) in 3 H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium

  7. Slack, Slick, and Sodium-Activated Potassium Channels

    Science.gov (United States)

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  8. Long-pore Electrostatics in Inward-rectifier Potassium Channels

    Science.gov (United States)

    Robertson, Janice L.; Palmer, Lawrence G.; Roux, Benoît

    2008-01-01

    Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (∼85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores. PMID:19001143

  9. Calcium channel blockers as the treatment of choice for hypertension in renal transplant recipients: fact or fiction.

    Science.gov (United States)

    Baroletti, Steven A; Gabardi, Steven; Magee, Colm C; Milford, Edgar L

    2003-06-01

    Posttransplantation hypertension has been identified as an independent risk factor for chronic allograft dysfunction and loss. Based on available morbidity and mortality data, posttransplantation hypertension must be identified and managed appropriately. During the past decade, calcium channel blockers have been recommended by some as the antihypertensive agents of choice in this population, because it was theorized that their vasodilatory effects would counteract the vasoconstrictive effects of the calcineurin inhibitors. With increasing data becoming available, reexamining the use of traditional antihypertensive agents, including diuretics and beta-blockers, or the newer agents, angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers, may be beneficial. Transplant clinicians must choose antihypertensive agents that will provide their patients with maximum benefit, from both a renal and a cardiovascular perspective. Beta-blockers, diuretics, and ACE inhibitors have all demonstrated significant benefit on morbidity and mortality in patients with cardiovascular disease. Calcium channel blockers have been shown to possess the ability to counteract cyclosporine-induced nephrotoxicity. When compared with beta-blockers, diuretics, and ACE inhibitors, however, the relative risk of cardiovascular events is increased with calcium channel blockers. With the long-term benefits of calcium channel blockers on the kidney unknown and a negative cardiovascular profile, these agents are best reserved as adjunctive therapy to beta-blockers, diuretics, and ACE inhibitors.

  10. The Ketogenic Diet and Potassium Channel Function

    Science.gov (United States)

    2015-11-01

    1 AWARD NUMBER: W81XWH-13-1-0463 TITLE: The Ketogenic Diet and Potassium Channel Function PRINCIPAL INVESTIGATOR: Dr. Geoffrey Murphy...NUMBER The Ketogenic Diet and Potassium Channel Function 5b. GRANT NUMBER W81XWH-13-1-0463 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Geoffrey Murphy...The overall objective of this Discovery Award was to explore the hypothesis the ketogenic diet (KD) regulates neuronal excitability by influencing

  11. Vitamin K3 inhibits mouse uterine contraction in vitro via interference with the calcium transfer and the potassium channels.

    Science.gov (United States)

    Zhang, Xian-Xia; Lu, Li-Min; Wang, Li

    2016-08-05

    Previous studies have demonstrated vitamin K3 had a great relief to smooth muscle spastic disorders, but no researches have yet pinpointed its possible anti-contractile activity in the uterus. Here, we evaluated the effect of vitamin K3 on myometrial contractility and explored the possible mechanisms of vitamin K3 action. Myograph apparatus were used to record the changes in contractility of isolated mouse uterine strips in a tissue bath. Uterine strips were exposed to vitamin K3 or vehicle. Vitamin K3 suppressed spontaneous contractions in a concentration dependent manner. It significantly decreased the contractile frequency induced by PGF2ɑ but not their amplitude (expect 58.0 μM). Prior incubation with vitamin K3 reduced the effectiveness of PGF2ɑ-induced contraction. The antispasmodic effect of vitamin K3 was also sensitive to potassium channel blockers, such as tetraethylammonium, 4-aminopyridine, iberiotoxin) but not to the nitric oxide related pathway blockers. High concentrations (29.0, 58.0 μM) of vitamin K3 weakened the Ca(2+) dose response and inhibited phase 1 contraction (intracellular stored calcium release). These dates suggest that vitamin K3 specifically suppresses myometrial contractility by affecting calcium and potassium channels; thus, this approach has potential therapy for uterine contractile activity related disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Expression, purification and functional reconstitution of slack sodium-activated potassium channels.

    Science.gov (United States)

    Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J

    2012-11-01

    The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.

  13. Strontium and barium in aqueous solution and a potassium channel binding site

    Science.gov (United States)

    Chaudhari, Mangesh I.; Rempe, Susan B.

    2018-06-01

    Ion hydration structure and free energy establish criteria for understanding selective ion binding in potassium (K+) ion channels and may be significant to understanding blocking mechanisms as well. Recently, we investigated the hydration properties of Ba2+, the most potent blocker of K+ channels among the simple metal ions. Here, we use a similar method of combining ab initio molecular dynamics simulations, statistical mechanical theory, and electronic structure calculations to probe the fundamental hydration properties of Sr2+, which does not block bacterial K+ channels. The radial distribution of water around Sr2+ suggests a stable 8-fold geometry in the local hydration environment, similar to Ba2+. While the predicted hydration free energy of -331.8 kcal/mol is comparable with the experimental result of -334 kcal/mol, the value is significantly more favorable than the -305 kcal/mol hydration free energy of Ba2+. When placed in the innermost K+ channel blocking site, the solvation free energies and lowest energy structures of both Sr2+ and Ba2+ are nearly unchanged compared with their respective hydration properties. This result suggests that the block is not attributable to ion trapping due to +2 charge, and differences in blocking behavior arise due to free energies associated with the exchange of water ligands for channel ligands instead of free energies of transfer from water to the binding site.

  14. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  15. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.

    Science.gov (United States)

    Sonkusare, Swapnil K; Dalsgaard, Thomas; Bonev, Adrian D; Nelson, Mark T

    2016-06-15

    inhibitors (Ba(2+) , ML-133) or in the arteries from EC-Kir2.1(-/-) mice. Potassium-induced dilatations were unaffected by inhibitors of TRPV4, IK and SK channels. The Kir channel blocker, Ba(2+) , did not affect currents through TRPV4, IK or SK channels. Endothelial cell-dependent vasodilatations in response to activation of muscarinic receptors, TRPV4 channels or IK/SK channels were reduced, but not eliminated, by Kir channel inhibitors or EC-Kir2.1(-/-) . In angiotensin II-induced hypertension, the Kir channel function was not altered, although the endothelium-dependent vasodilatation was severely impaired. Our results support the concept that EC Kir2 channels boost vasodilatory signals that are generated by Ca(2+) -dependent activation of IK and SK channels. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  16. Safety and efficacy of a Nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia

    DEFF Research Database (Denmark)

    Zakrzewska, Joanna M; Palmer, Joanne; Morisset, Valerie

    2017-01-01

    BACKGROUND: Current standard of care for trigeminal neuralgia is treatment with the sodium channel blockers carbamazepine and oxcarbazepine, which although effective are associated with poor tolerability and the need for titration. BIIB074, a Nav1.7-selective, state-dependent sodium-channel blocker...

  17. The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation.

    Science.gov (United States)

    Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan

    2016-03-01

    Ion channels are crucially important for the activation and proliferation of T lymphocytes, and thus, for the function of the immune system. Previous studies on the effects of channel blockers on T cell proliferation reported variable effectiveness due to differing experimental systems. Therefore our aim was to investigate how the strength of the mitogenic stimulation influences the efficiency of cation channel blockers in inhibiting activation, cytokine secretion and proliferation of T cells under standardized conditions. Human peripheral blood lymphocytes were activated via monoclonal antibodies targeting the TCR-CD3 complex and the co-stimulator CD28. We applied the blockers of Kv1.3 (Anuroctoxin), KCa3.1 (TRAM-34) and CRAC (2-Apb) channels of T cells either alone or in combination with rapamycin, the inhibitor of the mammalian target of rapamycin (mTOR). Five days after the stimulation ELISA and flow cytometric measurements were performed to determine IL-10 and IFN-γ secretion, cellular viability and proliferation. Our results showed that ion channel blockers and rapamycin inhibit IL-10 and IFN-γ secretion and cell division in a dose-dependent manner. Simultaneous application of the blockers for each channel along with rapamycin was the most effective, indicating synergy among the various activation pathways. Upon increasing the extent of mitogenic stimulation the anti-proliferative effect of the ion channel blockers diminished. This phenomenon may be important in understanding the fine-tuning of T cell activation. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  18. L-Carnitine for the treatment of a calcium channel blocker and metformin poisoning.

    Science.gov (United States)

    St-Onge, Maude; Ajmo, Ian; Poirier, Diane; Laliberté, Martin

    2013-09-01

    The object of the current communication is to discuss the theory and the evidence for the use of L-carnitine in calcium channel blocker and metformin poisonings. A 68-year-old male known for hypertension and type II diabetes was admitted to the critical care unit of a community hospital following an overdose of amlodipine and metformin. The patient was intubated, ventilated, and hemodynamically supported with vasopressors. Despite calcium, glucagon, high-dose insulin (HDI), and lipid emulsion for calcium channel blocker and bicarbonate for metabolic acidosis, the patient remained hemodynamically unstable. The patient was considered too unstable to initiate continuous renal replacement therapy; and without access to extracorporeal life support, the administration of L-carnitine was administered as a last resort. One hour after L-carnitine, the norepinephrine requirements started to decrease, the patient began to improve and was subsequently extubated successfully without apparent sequelae in less than 4 days. L-Carnitine combined with HDI may have helped with the calcium channel blocker (CCB) poisoning by decreasing insulin resistance, promoting intracellular glucose transport, facilitating the metabolism of free fatty acids, and increasing calcium channel sensitivity. It may have also stimulated oxidative utilization of glucose instead of converting pyruvate into lactate and contributed to decrease lactate production with metformin poisoning.

  19. Cardiac Delayed Rectifier Potassium Channels in Health and Disease

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J.; Kass, Robert S.

    2016-01-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this chapter, we will review the molecular identities and biophysical properties of these channels. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the possibility and prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823

  20. Use of calcium channel blockers in hypertension.

    Science.gov (United States)

    Conlin, P R; Williams, G H

    1998-01-01

    During the past 20 years the number of subclasses of calcium channel blockers has increased from one to four. Three classes have only a single clinically approved compound: verapamil, diltiazem, and mibefradil. The fourth class, dihydropyridines, contains numerous compounds. All agents are effective in lowering blood pressure in short-term studies, and side effects that trouble the patient are infrequent. Long-term studies in hypertensive patients are limited. Short-acting agents such as nifedipine have been associated with an increased cardiovascular risk in some, but not all studies. These agents also probably create a compliance problem for hypertensive patients because of the need for multiple daily doses and their unpleasant side effects, e.g., ankle edema, palpitations, and flushing. Therefore, they are not useful or indicated for the treatment of hypertensive patients. No data have suggested that long-acting dihydropyridines or nondihydropyridine calcium channel blockers share the same fate. Indeed, several lines of evidence suggest the opposite: they have a cardioprotective effect. However, definitive information will require the completion of several long-term trials, including ALLHAT, CONVINCE, HOT, INSIGHT and NORDIL. Finally, it is important to reflect on the lessons learned from the controversy associated with the potential risks of calcium channel blockers. First, disagreements are common when one uses case-controlled studies and are reflective of the poor precision of the methods used. What is statistically relevant in one study may not hold true for another and may have no clinical relevance, particularly if the relative risk is less than 2. Investigators need to temper their enthusiasm to reflect this reality. Second, at the cutting edge of science there is probably relatively little agreement about what is correct among equally competent scientists. All have bias in their positions and should both recognize and admit so to themselves and their

  1. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    Science.gov (United States)

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The relationship between functional inhibition and binding for K(Ca2 channel blockers.

    Directory of Open Access Journals (Sweden)

    David Charles Hammond Benton

    Full Text Available Small conductance calcium-activated potassium channels (KCa2.1,2.2,2.3 are blocked with high affinity by both peptide toxins (e.g. apamin and small molecule blockers (e.g. UCL 1848. In electrophysiological experiments, apamin shows subtype selectivity with IC50s of ∼100 pM and ∼1 nM for block KCa2.2 and KCa2.3 respectively. In binding studies, however, apamin appears not to discriminate between KCa2.2 and 2.3 and is reported to have a significantly higher (∼20-200-fold affinity (∼5 pM. This discrepancy between binding and block has been suggested to reflect an unusual mode of action of apamin. However, these binding and electrophysiological block experiments have not been conducted in the same ionic conditions, so it is also possible that the discrepancy arises simply because of differences in experimental conditions. We have now examined this latter possibility. Thus, we measured (125I-apamin binding to intact HEK 293 cells expressing KCa2 channels under the same ionic conditions (i.e. normal physiological conditions that we also used for current block measurements. We find that binding and block experiments agree well if the same ionic conditions are used. Further, the binding of apamin and other blockers showed subtype selectivity when measured in normal physiological solutions (e.g.(125I-apamin bound to KCa2.2 with K L 91±40 pM and to KCa2.3 with K L 711±126 pM, while inhibiting KCa2.2 current at IC50 103±2 pM. We also examined KCa2 channel block in Ca(2+ and Mg(2+ free solutions that mimic conditions reported in the literature for binding experiments. Under these (non-physiological conditions the IC50 for apamin block of KCa2.2 was reduced to 20±3 pM. Our results therefore suggest that the apparent discrepancy between blocking and binding reported in the literature can be largely accounted for by the use of non-physiological ionic conditions in binding experiments.

  3. Effects of calcium antagonists on isolated bovine cerebral arteries: inhibition of constriction and calcium-45 uptake induced by potassium or serotonin

    International Nuclear Information System (INIS)

    Wendling, W.W.; Harakal, C.

    1987-01-01

    The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium ( 45 Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased 45 Ca uptake into cerebral artery strips during 5 minutes of 45 Ca loading; for potassium 45 Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal 45 Ca uptake but significantly blocked the increase in 45 Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of 45 Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated 45 Ca efflux. The results demonstrate that verapamil and nifedipine block 45 Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries

  4. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  5. Mutagenesis in mammalian cells can be modulated by radiation-induced voltage-dependent potassium channels

    International Nuclear Information System (INIS)

    Saad, A.H.; Zhou, L.Y.; Lambe, E.K.; Hahn, G.M.

    1994-01-01

    In mammalian cells, little is known about the initial events whose ultimate consequence is mutagenesis or DNA repair. The role the plasma membrane may play as an initiator of such a pathway is not understood. We show, for the first time, that membrane voltage-dependent potassium (K + ) currents, activated by ionizing radiation play a significant role in radiation mutagenesis. Specifically, we show that the frequency of mutation at the HGPRT locus is increased as expected to 37.6±4.0 mutations per 100,000 survivors by 800 cGy of ionizing radiation from a spontaneous frequency of 1.5±1.5. This increase, however, is abolished if either K + channel blocker, CsCl or BaCl 2 , is present for 2h following irradiation of the cells. RbCl, chemically similar to CsCl but known not to block K + channels, is ineffective in reducing the mutation frequency. Treatment of cells with CsCl or BaCl 2 had no effect on radiation-induced cell killing

  6. Increased serum potassium affects renal outcomes

    DEFF Research Database (Denmark)

    Miao, Y; Dobre, D; Heerspink, H J Lambers

    2011-01-01

    To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy.......To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy....

  7. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    International Nuclear Information System (INIS)

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun; Yarishkin, Oleg V.; Bae, Young Min; Kim, Jae Gon; O'Grady, Scott M.; Yoon, Kyong-Ah; Kang, Kyung-Sun; Ryu, Pan Dong; Lee, So Yeong

    2009-01-01

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.

  8. Acrolein-mediated conduction loss is partially restored by K+ channel blockers

    Science.gov (United States)

    Yan, Rui; Page, Jessica C.

    2015-01-01

    Acrolein-mediated myelin damage is thought to be a critical mechanism leading to conduction failure following neurotrauma and neurodegenerative diseases. The exposure and activation of juxtaparanodal voltage-gated K+ channels due to myelin damage leads to conduction block, and K+ channel blockers have long been studied as a means for restoring axonal conduction in spinal cord injury (SCI) and multiple sclerosis (MS). In this study, we have found that 100 μM K+ channel blockers 4-aminopyridine-3-methanol (4-AP-3-MeOH), and to a lesser degree 4-aminopyridine (4-AP), can significantly restore compound action potential (CAP) conduction in spinal cord tissue following acrolein-mediated myelin damage using a well-established ex vivo SCI model. In addition, 4-AP-3-MeOH can effectively restore CAP conduction in acrolein-damaged axons with a range of concentrations from 0.1 to 100 μM. We have also shown that while both compounds at 100 μM showed no preference of small- and large-caliber axons when restoring CAP conduction, 4-AP-3-MeOH, unlike 4-AP, is able to augment CAP amplitude while causing little change in axonal responsiveness measured in refractory periods and response to repetitive stimuli. In a prior study, we show that 4-AP-3-MeOH was able to functionally rescue mechanically injured axons. In this investigation, we conclude that 4-AP-3-MeOH is an effective K+ channel blocker in restoring axonal conduction following both primary (physical) and secondary (chemical) insults. These findings also suggest that 4-AP-3-MeOH is a viable alternative of 4-AP for treating myelin damage and improving function following central nervous system trauma and neurodegenerative diseases. PMID:26581866

  9. Discovery and Development of Calcium Channel Blockers

    Directory of Open Access Journals (Sweden)

    Théophile Godfraind

    2017-05-01

    Full Text Available In the mid 1960s, experimental work on molecules under screening as coronary dilators allowed the discovery of the mechanism of calcium entry blockade by drugs later named calcium channel blockers. This paper summarizes scientific research on these small molecules interacting directly with L-type voltage-operated calcium channels. It also reports on experimental approaches translated into understanding of their therapeutic actions. The importance of calcium in muscle contraction was discovered by Sidney Ringer who reported this fact in 1883. Interest in the intracellular role of calcium arose 60 years later out of Kamada (Japan and Heibrunn (USA experiments in the early 1940s. Studies on pharmacology of calcium function were initiated in the mid 1960s and their therapeutic applications globally occurred in the the 1980s. The first part of this report deals with basic pharmacology in the cardiovascular system particularly in isolated arteries. In the section entitled from calcium antagonists to calcium channel blockers, it is recalled that drugs of a series of diphenylpiperazines screened in vivo on coronary bed precontracted by angiotensin were initially named calcium antagonists on the basis of their effect in depolarized arteries contracted by calcium. Studies on arteries contracted by catecholamines showed that the vasorelaxation resulted from blockade of calcium entry. Radiochemical and electrophysiological studies performed with dihydropyridines allowed their cellular targets to be identified with L-type voltage-operated calcium channels. The modulated receptor theory helped the understanding of their variation in affinity dependent on arterial cell membrane potential and promoted the terminology calcium channel blocker (CCB of which the various chemical families are introduced in the paper. In the section entitled tissue selectivity of CCBs, it is shown that characteristics of the drug, properties of the tissue, and of the stimuli are

  10. Cardiac Delayed Rectifier Potassium Channels in Health and Disease.

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J; Kass, Robert S

    2016-06-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Modulation of ERG channels by XE991

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Calloe, Kirstine; Schmitt, Nicole

    2007-01-01

    In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be stan......In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known...... to be standard KCNQ potassium channel blockers. These compounds have been used in many different tissues as specific pharmacological tools to discern native currents conducted by KCNQ channels from other potassium currents. In this article, we demonstrate that ERG1-2 channels are also reversibly inhibited by XE......991 in the micromolar range (EC(50) 107 microM for ERG1). The effect has been characterized in Xenopus laevis oocytes expressing ERG1-2 and in the mammalian HEK293 cell line stably expressing ERG1 channels. The IC(50) values for block of KCNQ channels by XE991 range 1-65 microM. In conclusion, great...

  12. Inward rectifier potassium (Kir2.1) channels as end‐stage boosters of endothelium‐dependent vasodilators

    Science.gov (United States)

    Dalsgaard, Thomas; Bonev, Adrian D.; Nelson, Mark T.

    2016-01-01

    Key points Increase in endothelial cell (EC) calcium activates calcium‐sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium‐dependent vasodilatation.Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium‐dependent vasodilatation is not clear.In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform.Endothelium‐dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown.These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Abstract Endothelium‐dependent vasodilators, such as acetylcholine, increase intracellular Ca2+ through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca2+‐sensitive intermediate and small conductance K+ (IK and SK, respectively) channels. Although strong inward rectifier K+ (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC‐dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC‐dependent vasodilatation of resistance‐sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC‐specific Kir2.1 knockdown (EC‐Kir2.1 −/−) mice. Elevation of extracellular K+ to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial

  13. Discovery of talatisamine as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons.

    Science.gov (United States)

    Song, M-K; Liu, H; Jiang, H-L; Yue, J-M; Hu, G-Y; Chen, H-Z

    2008-08-13

    Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.

  14. Effects of a K+ channel blocker on glomerular filtration rate and electrolyte excretion in conscious rats.

    Science.gov (United States)

    Ludens, J H; Clark, M A; Lawson, J A

    1995-06-01

    Effects of a K+ channel blocker on glomerular filtration rate and electrolyte excretion in conscious rats were observed. Effects of K+ channel modulation on glomerular filtration rate and electrolyte excretion were studied using the adenosine-triphosphate- (ATP)-sensitive K+ channel blocker 4-morpholinecarboximidine-N-1-adamantyl-N'-cyclohexylhydr ochloride (U-37883A) in conscious rats previously equipped with catheters for clearance studies. In saline-loaded rats, i.v. doses of U-37883A of 1.7, 5.0 and 15 mg/kg increased absolute and fractional Na+ excretion dose-dependently without changing K+ excretion. The glomerular filtration rate remained constant during diuresis. In water-loaded (hypotonic dextrose) rats, free-water clearance studies revealed that the ATP-sensitive K+ channel blocker significantly decreased an index of solute reabsorption (free-water clearance adjusted for chloride clearance) in the diluting segment during peak natriuretic activity. In addition, U-37883A significantly decreased the osmolality of renal papillary interstitial fluid, indicative of an effect in the medullary portion of the diluting segment. Together, these findings suggest that ATP-sensitive K+ channels, possibly those located at the apical boarder, play a pivotal role in Na+ reabsorption in the thick ascending limb of the loop of Henle.

  15. Recombinant expression of margatoxin and agitoxin-2 in Pichia pastoris: an efficient method for production of KV1.3 channel blockers.

    Directory of Open Access Journals (Sweden)

    Raveendra Anangi

    Full Text Available The K(v1.3 voltage-gated potassium channel regulates membrane potential and calcium signaling in human effector memory T cells that are key mediators of autoimmune diseases such as multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Thus, subtype-specific K(v1.3 blockers have potential for treatment of autoimmune diseases. Several K(v1.3 channel blockers have been characterized from scorpion venom, all of which have an α/β scaffold stabilized by 3-4 intramolecular disulfide bridges. Chemical synthesis is commonly used for producing these disulfide-rich peptides but this approach is time consuming and not cost effective for production of mutants, fusion proteins, fluorescently tagged toxins, or isotopically labelled peptides for NMR studies. Recombinant production of K(v1.3 blockers in the cytoplasm of E. coli generally necessitates oxidative refolding of the peptides in order to form their native disulfide architecture. An alternative approach that avoids the need for refolding is expression of peptides in the periplasm of E. coli but this often produces low yields. Thus, we developed an efficient Pichia pastoris expression system for production of K(v1.3 blockers using margatoxin (MgTx and agitoxin-2 (AgTx2 as prototypic examples. The Pichia system enabled these toxins to be obtained in high yield (12-18 mg/L. NMR experiments revealed that the recombinant toxins adopt their native fold without the need for refolding, and electrophysiological recordings demonstrated that they are almost equipotent with the native toxins in blocking K(V1.3 (IC(50 values of 201±39 pM and 97 ± 3 pM for recombinant AgTx2 and MgTx, respectively. Furthermore, both recombinant toxins inhibited T-lymphocyte proliferation. A MgTx mutant in which the key pharmacophore residue K28 was mutated to alanine was ineffective at blocking K(V1.3 and it failed to inhibit T-lymphocyte proliferation. Thus, the approach described here provides an efficient method of

  16. Calcium channel blockers, angiotensin receptor blockers, and angiotensin-converting enzyme inhibitors: Effectiveness in combination with diuretics or β-blockers for treating hypertension

    Directory of Open Access Journals (Sweden)

    John D Bisognano

    2007-11-01

    Full Text Available John D Bisognano1, Trent McLaughlin2, Craig S Roberts3, Simon SK Tang31Internal Medicine Department, Cardiology Division, the University of Rochester Medical Center, Rochester, NY, USA; 2NDC Health, Phoenix, Arizona, USA; 3Pfizer Inc, New York, NY, USAAbstract: This retrospective database analysis compared the effectiveness of dihydropyridine calcium channel blockers (DHPs, angiotensin-converting enzyme (ACE inhibitors, and angiotensin receptor blockers (ARBs added to diuretics or β-blockers. Adults with hypertension treated with diuretic or β-blocker monotherapy between 1998 and 2001 were identified from a large US electronic medical records database of primary care practices. Patients were required to have a baseline blood pressure (BP ≥140/90 mmHg (≥130/80 mmHg for diabetes mellitus and recorded BP measurements within 6 months before and 1–12 months following index date. Patients were matched 1:1:1 by propensity score to correct for differences in baseline characteristics. 1875 patients met study criteria and 660 (220 in each cohort were matched based on propensity scores. Matched cohorts had no significant differences in baseline characteristics. Mean changes in systolic/diastolic BP were –17.5/–8.8, –15.7/–6.3, and –13.0/–8.0 mmHg with DHPs, ACE inhibitors, and ARBs, respectively. Joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High BP 6/7 goal attainment for each regimen was 47.3%, 40.0%, and 32.2%, respectively. DHPs, ACE inhibitors, and ARBs improved BP when added to patients’ β-blocker or diuretic therapy. The greatest benefits were observed with DHPs, followed by ACE inhibitors, then ARBs.Keywords: hypertension, amlodipine besylate, lisinopril, valsartan, Joint National Committee (JNC 6 and 7

  17. Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains.

    Science.gov (United States)

    Hong, Liang; Pathak, Medha M; Kim, Iris H; Ta, Dennis; Tombola, Francesco

    2013-01-23

    Voltage-gated sodium, potassium, and calcium channels are made of a pore domain (PD) controlled by four voltage-sensing domains (VSDs). The PD contains the ion permeation pathway and the activation gate located on the intracellular side of the membrane. A large number of small molecules are known to inhibit the PD by acting as open channel blockers. The voltage-gated proton channel Hv1 is made of two VSDs and lacks the PD. The location of the activation gate in the VSD is unknown and open channel blockers for VSDs have not yet been identified. Here, we describe a class of small molecules which act as open channel blockers on the Hv1 VSD and find that a highly conserved phenylalanine in the charge transfer center of the VSD plays a key role in blocker binding. We then use one of the blockers to show that Hv1 contains two intracellular and allosterically coupled gates. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Fatty acids and related Kv2 channel blockers: electrophysiology and toxicity on mosquitoes

    Science.gov (United States)

    Ligand-gated ion channels form an important superfamily of proteins involved in many biological processes. Among them, the potassium channels constitute a very diverse group involved in neural signaling, neuronal activity and action potential. Among the different types of channel activation, voltage...

  19. Expression of inwardly rectifying potassium channels (GIRKs) and beta-adrenergic regulation of breast cancer cell lines

    International Nuclear Information System (INIS)

    Plummer, Howard K III; Yu, Qiang; Cakir, Yavuz; Schuller, Hildegard M

    2004-01-01

    Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. We wished to determine if this regulation exists in breast adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying potassium channel (GIRK1) has been shown in tissue samples from approximately 40% of primary human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic signaling. Breast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene expression were determined by both relative competitive and real time PCR. Potassium flux was determined by flow cytometry and cell signaling was determined by western blotting. Breast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed mRNA for the GIRK1 channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (1 μM) increased the GIRK1 mRNA levels and decreased beta 2 -adrenergic mRNA levels, while treatment for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol hemifumarate, led to increases in K + flux into MDA-MB-453 cells, and this increase was inhibited by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a high affinity agonist for beta-adrenergic receptors stimulated activation of Erk 1/2 in MDA-MB-453 cells. Our data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer

  20. Structural Determinants of Specific Lipid Binding to Potassium Channels

    NARCIS (Netherlands)

    Weingarth, M.H.|info:eu-repo/dai/nl/330985655; Prokofyev, A.; van der Cruijsen, E.A.W.|info:eu-repo/dai/nl/330826743; Nand, D.|info:eu-repo/dai/nl/337731403; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Pongs, O.; Baldus, M.|info:eu-repo/dai/nl/314410864

    2013-01-01

    We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsAKv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while

  1. In Vitro Contractile Response of Rabbit Myometrium to BKCa and KATP Potassium Channel Openers

    Directory of Open Access Journals (Sweden)

    Soňa Fraňová

    2009-01-01

    Full Text Available The aim of the study was to evaluate the participation of ligand-sensitive potassium large conductance calcium-activated channels (BKCa and ATP-sensitive potassium channels in uterine smooth muscle reactivity during different stages of the experimentally induced proliferatory and secretory phase in the sexual cycle in ovariectomised rabbits in vitro. The myometrial reactivity to oxytocin (10-6 mol l-1 was investigated by an in vitro method in female rabbits 14 days after ovariectomy treated with 17β-estradiol - 1 mg/kg/day i.m. for 7 days, or with a combination of progesterone 2 mg/kg/day s.c. for 7 days and 17β-estradiol - 0.2 mg/ kg/day (day 3–7. The strips of myometrial smooth muscle were incubated with a specific opener (NS 1619 and an antagonist (TEA of potassium large conductance calcium-activated channel, or with a specific opener (pinacidil and an antagonist (glybenclamide of ATP-sensitive potassium channels before the administration of oxytocin. NS1619 produced more potent inhibition of the oxytocin-induced contraction during the gestagen dominance (experimental secretory phase than the one observed during the oestrogen dominance (experimental proliferatory phase. TEA antagonized the NS1619 induced inhibition of the myometrial contraction. In the matter of KATP potassium channels, after the administration of pinacidil we observed a similar situation in the changes of myometrial contractility. Pinacidil produced more pronounced inhibition of oxytocin-induced contraction during the secretory phase, and its effect was abolished by the selective inhibitor glybenclamide. Our experimental results indicate that both potassium large conductance calcium-activated channels and ATP-sensitive potassium channels significantly participate in the regulation of myometrial oxytocin-induced contractions and the activity of these channels is probably influenced by the levels of oestrogens and gestagens.

  2. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, Trine Meldgaard; Belhage, B

    2001-01-01

    The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... channels were differentially distributed in somata, neurites and nerve terminals. omega-conotoxin MVIIC (omega-CgTx MVIIC) inhibited approximately 40% of the Ca(2+)-rise in both somata and neurites and 60% of the potassium induced [3H]GABA release, indicating that the Q-type channel is the quantitatively...... most important voltage dependent calcium channel in all parts of the neuron. After treatment with thapsigargin the increase in cytosolic calcium was halved, indicating that calcium release from thapsigargin sensitive intracellular calcium stores is an important component of the potassium induced rise...

  3. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    Science.gov (United States)

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  4. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...... and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K channels may be of importance....

  5. KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel

    DEFF Research Database (Denmark)

    Lundby, Alicia; Olesen, Søren-Peter

    2006-01-01

    The mammalian Kv4.3 potassium channel is a fast activating and inactivating K+ channel widely distributed in mammalian tissues. Kv4.3 is the major component of various physiologically important currents ranging from A-type currents in the CNS to the transient outward potassium conductance in the ...

  6. Modeling removal of accumulated potassium from T-tubules by inward rectifier potassium channels

    NARCIS (Netherlands)

    Wallinga, W.; Vliek, M.; Wienk, E.D.; Alberink, M.J.; Ypey, D.L.; Ypey, D.L.

    1996-01-01

    The membrane models of Cannon et al. (1993) and Alberink et al. (1995) for mammalian skeletal muscle fibers are based upon Hodgkin-Huxley descriptions of sodium, potassium delayed rectifier and leak conductances and the capacitive current taking into account fast inactivation of sodium channels. Now

  7. Protective roles for potassium SK/KCa2 channels in microglia and neurons

    Directory of Open Access Journals (Sweden)

    Amalia M Dolga

    2012-11-01

    Full Text Available New concepts on potassium channel function in neuroinflammation suggest that they regulate mechanisms of microglial activation, including intracellular calcium homeostasis, morphological alterations, pro-inflammatory cytokine release, antigen presentation, and phagocytosis. Although little is known about voltage independent potassium channels in microglia, special attention emerges on small (SK/KCNN1-3/KCa2 and intermediate (IK/KCNN4/KCa3.1-conductance calcium-activated potassium channels as regulators of microglial activation in the field of research on neuroinflammation and neurodegeneration. In particular, recent findings suggested that SK/KCa2 channels, by regulating calcium homeostasis, may elicit a dual mechanism of action with protective properties in neurons and inhibition of inflammatory responses in microglia. Thus, modulating SK/KCa2 channels and calcium signaling may provide novel therapeutic strategies in neurological disorders, where neuronal cell death and inflammatory responses concomitantly contribute to disease progression. Here, we review the particular role of SK/KCa2 channels for [Ca2+]i regulation in microglia and neurons, and we discuss the potential impact for further experimental approaches addressing novel therapeutic strategies in neurological diseases, where neuronal cell death and neuroinflammatory processes are prominent.

  8. Synthesis and biological evaluation of pyrrolidine derivatives as novel and potent sodium channel blockers for the treatment of ischemic stroke.

    Science.gov (United States)

    Seki, Maki; Tsuruta, Osamu; Tatsumi, Ryo; Soejima, Aki

    2013-07-15

    A novel series of pyrrolidine derivatives as Na(+) channel blockers was synthesized and evaluated for their inhibitory effects on neuronal Na(+) channels. Structure-activity relationship (SAR) studies of a pyrrolidine analogue 2 led to the discovery of 5e as a potent Na(+) channel blocker with a low inhibitory action against human ether-a-go-go-related gene (hERG) channels. Compound 5e showed remarkably neuroprotective activity in a rat transient middle cerebral artery occlusion (MCAO) model, suggesting that 5e would act as a neuroprotectant for ischemic stroke. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel.

    Science.gov (United States)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na + /K + -ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K + -battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  10. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel

    Science.gov (United States)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na+/K+-ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K+-battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  11. Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Niciforovic, Ana P

    2013-01-01

    Voltage-gated potassium (Kv) channels enable potassium efflux and membrane repolarization in excitable tissues. Many Kv channels undergo a progressive loss of ion conductance in the presence of a prolonged voltage stimulus, termed slow inactivation, but the atomic determinants that regulate the k...... subunit(s). DOI: http://dx.doi.org/10.7554/eLife.01289.001....

  12. Regulation of voltage-gated potassium channels attenuates resistance of side-population cells to gefitinib in the human lung cancer cell line NCI-H460.

    Science.gov (United States)

    Choi, Seon Young; Kim, Hang-Rae; Ryu, Pan Dong; Lee, So Yeong

    2017-02-21

    Side-population (SP) cells that exclude anti-cancer drugs have been found in various tumor cell lines. Moreover, SP cells have a higher proliferative potential and drug resistance than main population cells (Non-SP cells). Also, several ion channels are responsible for the drug resistance and proliferation of SP cells in cancer. To confirm the expression and function of voltage-gated potassium (Kv) channels of SP cells, these cells, as well as highly expressed ATP-binding cassette (ABC) transporters and stemness genes, were isolated from a gefitinib-resistant human lung adenocarcinoma cell line (NCI-H460), using Hoechst 33342 efflux. In the present study, we found that mRNA expression of Kv channels in SP cells was different compared to Non-SP cells, and the resistance of SP cells to gefitinib was weakened with a combination treatment of gefitinib and Kv channel blockers or a Kv7 opener, compared to single-treatment gefitinib, through inhibition of the Ras-Raf signaling pathway. The findings indicate that Kv channels in SP cells could be new targets for reducing the resistance to gefitinib.

  13. Coulomb interaction rules timescales in potassium ion channel tunneling

    Science.gov (United States)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  14. Atrial fibrillation: Therapeutic potential of atrial K+ channel blockers.

    Science.gov (United States)

    Ravens, Ursula; Odening, Katja E

    2017-08-01

    Despite the epidemiological scale of atrial fibrillation, current treatment strategies are of limited efficacy and safety. Ideally, novel drugs should specifically correct the pathophysiological mechanisms responsible for atrial fibrillation with no other cardiac or extracardiac actions. Atrial-selective drugs are directed toward cellular targets with sufficiently different characteristics in atria and ventricles to modify only atrial function. Several potassium (K + ) channels with either predominant expression in atria or distinct electrophysiological properties in atria and ventricles can serve as atrial-selective drug targets. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two pore domain K + (K2P) channels TWIK-1, TASK-1 and TASK-3 that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Here, we briefly review the characteristics of these K + channels and their roles in atrial fibrillation. The antiarrhythmic potential of drugs targeting the described channels is discussed as well as their putative value in treatment of atrial fibrillation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer.

    Science.gov (United States)

    Innamaa, A; Jackson, L; Asher, V; van Schalkwyk, G; Warren, A; Keightley, A; Hay, D; Bali, A; Sowter, H; Khan, R

    2013-11-01

    Aberrant expression of potassium (K(+)) channels contributes to cancer cell proliferation and apoptosis, and K(+) channel blockers can inhibit cell proliferation. TREK-1 and -2 belong to the two-pore domain (K2P) superfamily. We report TREK-1 and -2 expression in ovarian cancer and normal ovaries, and the effects of TREK-1 modulators on cell proliferation and apoptosis. The cellular localisation of TREK-1 and -2 was investigated by immunofluorescence in SKOV-3 and OVCAR-3 cell lines and in cultured ovarian surface epithelium and cancer. Channel expression in normal ovaries and cancer was quantified by western blotting. Immunohistochemical analysis demonstrated the association between channel expression and disease prognosis, stage, and grade. TREK-1 modulation of cell proliferation in the cell lines was investigated with the MTS-assay and the effect on apoptosis determined using flow cytometry. Expression was identified in both cell lines, ovarian cancer (n = 22) and normal ovaries (n = 6). IHC demonstrated positive staining for TREK-1 and -2 in 95.7 % of tumours (n = 69) and 100 % of normal ovaries (n = 9). A reduction in cell proliferation (P ovaries and ovarian cancer. TREK-1 modulators have a significant effect on cell proliferation and apoptosis. We propose investigation of the therapeutic potential of TREK-1 blockers is warranted.

  16. Gambierol, a toxin produced by the dinoflagellate Gambierdiscus toxicus, is a potent blocker of voltage-gated potassium channels☆

    Science.gov (United States)

    Cuypers, Eva; Abdel-Mottaleb, Yousra; Kopljar, Ivan; Rainier, Jon D.; Raes, Adam L.; Snyders, Dirk J.; Tytgat, Jan

    2008-01-01

    In this study, we pharmacologically characterized gambierol, a marine polycyclic ether toxin which is produced by the dinoflagellate Gambierdiscus toxicus. Besides several other polycyclic ether toxins like ciguatoxins, this scarcely studied toxin is one of the compounds that may be responsible for ciguatera fish poisoning (CFP). Unfortunately, the biological target(s) that underlies CFP is still partly unknown. Today, ciguatoxins are described to specifically activate voltage-gated sodium channels by interacting with their receptor site 5. But some dispute about the role of gambierol in the CFP story shows up: some describe voltage-gated sodium channels as the target, while others pinpoint voltage-gated potassium channels as targets. Since gambierol was never tested on isolated ion channels before, it was subjected in this work to extensive screening on a panel of 17 ion channels: nine cloned voltage-gated ion channels (mammalian Nav1.1–Nav1.8 and insect Para) and eight cloned voltage-gated potassium channels (mammalian Kv1.1–Kv1.6, hERG and insect ShakerIR) expressed in Xenopus laevis oocytes using two-electrode voltage-clamp technique. All tested sodium channel subtypes are insensitive to gambierol concentrations up to 10 μM. In contrast, Kv1.2 is the most sensitive voltage-gated potassium channel subtype with almost full block (>97%) and an half maximal inhibitory concentration (IC50) of 34.5 nM. To the best of our knowledge, this is the first study where the selectivity of gambierol is tested on isolated voltage-gated ion channels. Therefore, these results lead to a better understanding of gambierol and its possible role in CFP and they may also be useful in the development of more effective treatments. PMID:18313714

  17. The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels.

    Science.gov (United States)

    Ozoe, Yoshihisa; Asahi, Miho; Ozoe, Fumiyo; Nakahira, Kunimitsu; Mita, Takeshi

    2010-01-01

    A structurally unique isoxazoline class compound, A1443, exhibits antiparasitic activity against cat fleas and dog ticks comparable to that of the commercial ectoparasiticide fipronil. This isoxazoline compound inhibits specific binding of the gamma-aminobutyric acid (GABA) receptor channel blocker [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) to housefly-head membranes, with an IC(50) value of 455pM. In contrast, the IC(50) value in rat-brain membranes is>10muM. To study the mode of action of this isoxazoline, we utilized MdGBCl and MdGluCl cDNAs, which encode the subunits of housefly GABA- and glutamate-gated chloride channels, respectively. Two-electrode voltage clamp electrophysiology was used to confirm that A1443 blocks GABA- and glutamate-induced chloride currents in Xenopus oocytes expressing MdGBCl or MdGluCl channels, with IC(50) values of 5.32 and 79.9 nM, respectively. Blockade by A1443 was observed in A2'S-MdGBCl and S2'A-MdGluCl mutant channels at levels similar to those of the respective wild-types, and houseflies expressing A2'S-MdGBCl channels were as susceptible to A1443 as standard houseflies. These findings indicate that A1443 is a novel and specific blocker of insect ligand-gated chloride channels. Copyright 2009 Elsevier Inc. All rights reserved.

  18. Influence of antihypertensive therapy, sodium intake and the concentration of potassium in plasma on concentration of aldosterone and plasma renin activity

    Directory of Open Access Journals (Sweden)

    Lalić Tijana

    2013-01-01

    Full Text Available Introduction: Primary aldosteronism (PA is a group of disorders which are characterized by inadequate and non-suppressible production of aldosterone. The prevalence of PA is increasing in hypertensive population. The golden standard of screening for primary aldosteronism, determination of aldosterone/plasma renin activity (ARR, is influenced by numerous exogenous and endogenous factors. Testing cannot always be conducted under optimal conditions. Objective: To determine influence of antihypertensive drugs and concentrations of potassium and sodium in blood and urine on values of aldosterone and plasma renin activity. Methods: In this retrospective study, we analyzed medical reports of patients admitted to Department of thyroid gland disease in the period from 2009 to 2011, with increased risk for primary aldosteronism. Body weight and height, sodium and potassium in serum and urine, plasma aldosterone concentrations and plasma renin activity, data on medicines and comorbidity were analyzed in all patients. In processing data, statistical methods descriptive analysis, Student T test and univariate linear regression were applied. Result: Of 137 patients, there were more patients with resistant hypertension (53,28% than with adrenal tumors (46,72%. Most patients used calcium channel blockers. Treatment with alpha blockers and calcium channel blockers does not influence ARR. Beta blockers and ACE inhibitors can influence ARR and diuretics and vasodilatators have definite influence. Diabetes mellitus can have higher risk of false negative results. Urine sodium excretion is significantly correlated with plasma aldosteron and serum potassium. Plasma aldosteron and PRA are significantly correlated with concentrations of electrolites in urine. Conclusion: Increased prevalence of primary aldosteronism necessitates need for accurate and better diagnostics.

  19. In Silico Predictions of hERG Channel Blockers in Drug Discovery

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Sørensen, Flemming Steen

    2011-01-01

    The risk for cardiotoxic side effects represents a major problem in clinical studies of drug candidates and regulatory agencies have explicitly recommended that all new drug candidates should be tested for blockage of the human Ether-a-go-go Related-Gene (hERG) potassium channel. Indeed, several ...

  20. Dielectrophoretic analysis of changes in cytoplasmic ion levels due to ion channel blocker action reveals underlying differences between drug-sensitive and multidrug-resistant leukaemic cells

    International Nuclear Information System (INIS)

    Duncan, L; Shelmerdine, H; Hughes, M P; Coley, H M; Huebner, Y; Labeed, F H

    2008-01-01

    Dielectrophoresis (DEP)-the motion of particles in non-uniform AC fields-has been used in the investigation of cell electrophysiology. The technique offers the advantages of rapid determination of the conductance and capacitance of membrane and cytoplasm. However, it is unable to directly determine the ionic strengths of individual cytoplasmic ions, which has potentially limited its application in assessing cell composition. In this paper, we demonstrate how dielectrophoresis can be used to investigate the cytoplasmic ion composition by using ion channel blocking agents. By blocking key ion transporters individually, it is possible to determine their overall contribution to the free ions in the cytoplasm. We use this technique to evaluate the relative contributions of chloride, potassium and calcium ions to the cytoplasmic conductivities of drug sensitive and resistant myelogenous leukaemic (K562) cells in order to determine the contributions of individual ion channel activity in mediating multi-drug resistance in cancer. Results indicate that whilst K + and Ca 2+ levels were extremely similar between sensitive and resistant lines, levels of Cl - were elevated by three times to that in the resistant line, implying increased chloride channel activity. This result is in line with current theories of MDR, and validates the use of ion channel blockers with DEP to investigate ion channel function. (note)

  1. Involvement of ATP-sensitive potassium channels and the opioid system in the anticonvulsive effect of zolpidem in mice.

    Science.gov (United States)

    Sheikhi, Mehdi; Shirzadian, Armin; Dehdashtian, Amir; Amiri, Shayan; Ostadhadi, Sattar; Ghasemi, Mehdi; Dehpour, Ahmad Reza

    2016-09-01

    Zolpidem is a hypnotic medication that mainly exerts its function through activating γ-aminobutyric acid (GABA)A receptors. There is some evidence that zolpidem may have anticonvulsive effects. However, the mechanisms underlying this effect have not been elucidated yet. In the present study, we used the pentylentetrazole (PTZ)-induced generalized seizure model in mice to investigate whether zolpidem can affect seizure threshold. We also further evaluated the roles of ATP-sensitive potassium (KATP) channels as well as μ-opioid receptors in the effects of zolpidem on seizure threshold. Our data showed that zolpidem in a dose-dependent manner increased the PTZ-induced seizure threshold. The noneffective (i.e., did not significantly alter the PTZ-induced seizure threshold by itself) doses of KATP channel blocker (glibenclamide) and nonselective opioid receptor antagonist (naloxone) were able to inhibit the anticonvulsive effect of zolpidem. Additionally, noneffective doses of either KATP channel opener (cromakalim) or nonselective μ-opioid receptor agonist (morphine) in combination with a noneffective dose of zolpidem exerted a significant anticonvulsive effect on PTZ-induced seizures in mice. A combination of noneffective doses of naloxone and glibenclamide, which separately did not affect zolpidem effect on seizure threshold, inhibited the anticonvulsive effects of zolpidem. These results suggest a role for KATP channels and the opioid system, alone or in combination, in the anticonvulsive effects of zolpidem. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release.

    Science.gov (United States)

    Dahal, Giri Raj; Pradhan, Sarala Joshi; Bates, Emily Anne

    2017-08-01

    Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing. © 2017. Published by The Company of Biologists Ltd.

  3. Calcium channel blockers inhibit retinal degeneration in the retinal-degeneration-B mutant of Drosophila.

    Science.gov (United States)

    Sahly, I; Bar Nachum, S; Suss-Toby, E; Rom, A; Peretz, A; Kleiman, J; Byk, T; Selinger, Z; Minke, B

    1992-01-01

    Light accelerates degeneration of photoreceptor cells of the retinal degeneration B (rdgB) mutant of Drosophila. During early stages of degeneration, light stimuli evoke spikes from photoreceptors of the mutant fly; no spikes can be recorded from photoreceptors of the wild-type fly. Production of spike potentials from mutant photoreceptors was blocked by diltiazem, verapamil hydrochloride, and cadmium. Little, if any, effect of the (-)-cis isomer or (+)-cis isomer of diltiazem on the light response was seen. Further, the (+)-cis isomer was approximately 50 times more effective than the (-)-cis isomer in blocking the Ca2+ spikes, indicating that diltiazem action on the rdgB eye is mediated by means of blocking voltage-sensitive Ca2+ channels, rather than by blocking the light-sensitive channels. Application of the Ca(2+)-channel blockers (+)-cis-diltiazem and verapamil hydrochloride to the eyes of rdgB flies over a 7-day period largely inhibited light-dependent degeneration of the photoreceptor cells. Pulse labeling with [32P]phosphate showed much greater incorporation into eye proteins of [32P]phosphate in rdgB flies than in wild-type flies. Retarding the light-induced photoreceptor degeneration in the mutant by Ca(2+)-channel blockers, thus, suggests that toxic increase in intracellular Ca2+ by means of voltage-gated Ca2+ channels, possibly secondary to excessive phosphorylation, leads to photoreceptor degeneration in the rdgB mutant. Images PMID:1309615

  4. Effects of Calcium Channel Blockers on Antidepressant Action of Alprazolam and Imipramine

    Directory of Open Access Journals (Sweden)

    Gorash ZM

    2007-01-01

    Full Text Available Alprazolam is effective as an anxiolytic and in the adjunct treatment of depression. In this study, the effects of calcium channel antagonists on the antidepressant action of alprazolam and imipramine were investigated. A forced swimming maze was used to study behavioral despair in albino mice. Mice were divided into nine groups (n = 7 per group. One group received a single dose of 1% Tween 80; two groups each received a single dose of the antidepressant alone (alprazolam or imipramine; two groups each received a single dose of the calcium channel blocker (nifedipine or verapamil; four groups each received a single dose of the calcium channel blocker followed by a single dose of the antidepressant (with same doses used for either in the previous four groups. Drug administration was performed concurrently on the nine groups. Our data confirmed the antidepressant action of alprazolam and imipramine. Both nifedipine and verapamil produced a significant antidepressant effect (delay the onset of immobility when administered separately. Verapamil augmented the antidepressant effects of alprazolam and imipramine (additive antidepressant effect. This may be due to the possibility that verapamil might have antidepressant-like effect through different mechanism. Nifedipine and imipramine combined led to a delay in the onset of immobility greater than their single use but less than the sum of their independent administration. This may be due to the fact that nifedipine on its own might act as an antidepressant but blocks one imipramine mechanism that depends on L-type calcium channel activation. Combining nifedipine with alprazolam produced additional antidepressant effects, which indicates that they exert antidepressant effects through different mechanisms.

  5. The KCNQ5 potassium channel from mouse: a broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes

    DEFF Research Database (Denmark)

    Jensen, Henrik Sindal; Callø, Kirstine; Jespersen, Thomas

    2005-01-01

    H-dependent potentiation by Zn2+ (EC50 = 21.8 microM at pH 7.4), inhibition by acidification (IC50 = 0.75 microM; pKa = 6.1), and regulation by small changes in cell volume. Furthermore, the channels are activated by the anti-convulsant drug retigabine (EC50 = 2.0 microM) and inhibited by the M-current blockers...... and hippocampus. This study shows that murine KCNQ5 channels, in addition to sharing biophysical and pharmacological characteristics with the human ortholog, are tightly regulated by physiological stimuli such as changes in extracellular Zn2+, pH, and tonicity, thus adding to the complex regulation...

  6. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat

    DEFF Research Database (Denmark)

    Stankevicius, Edgaras; Dalsgaard, Thomas; Kroigaard, Christel

    2011-01-01

    This study was designed to investigate whether calcium-activated potassium channels of small (SK(Ca) or K(Ca)2) and intermediate (IK(Ca) or K(Ca)3.1) conductance activated by 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) are involved in both nitric oxide (NO) and endothelium-derived hyperpolar......This study was designed to investigate whether calcium-activated potassium channels of small (SK(Ca) or K(Ca)2) and intermediate (IK(Ca) or K(Ca)3.1) conductance activated by 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) are involved in both nitric oxide (NO) and endothelium...... in human umbilical vein endothelial cells (HUVECs), and calcium concentrations were investigated in both HUVECs and mesenteric arterial endothelial cells. In both superior (∼1093 μm) and small mesenteric (∼300 μm) arteries, NS309 evoked endothelium- and concentration-dependent relaxations. In superior....... In small mesenteric arteries, NS309 relaxations were reduced slightly by ADMA, whereas apamin plus an IK(Ca) channel blocker almost abolished relaxation. Iberiotoxin did not change NS309 relaxation. HUVECs expressed mRNA for SK(Ca) and IK(Ca) channels, and NS309 induced increases in calcium, outward...

  7. Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning.

    Science.gov (United States)

    Peigneur, Steve; Yamaguchi, Yoko; Kawano, Chihiro; Nose, Takeru; Nirthanan, Selvanayagam; Gopalakrishnakone, Ponnampalam; Tytgat, Jan; Sato, Kazuki

    2016-05-31

    Peptide toxins from scorpion venoms constitute the largest group of toxins that target the voltage-gated potassium channel (Kv). Spinoxin (SPX) isolated from the venom of scorpion Heterometrus spinifer is a 34-residue peptide neurotoxin cross-linked by four disulfide bridges. SPX is a potent inhibitor of Kv1.3 potassium channels (IC50 = 63 nM), which are considered to be valid molecular targets in the diagnostics and therapy of various autoimmune disorders and cancers. Here we synthesized 25 analogues of SPX and analyzed the role of each amino acid in SPX using alanine scanning to study its structure-function relationships. All synthetic analogues showed similar disulfide bond pairings and secondary structures as native SPX. Alanine replacements at Lys(23), Asn(26), and Lys(30) resulted in loss of activity against Kv1.3 potassium channels, whereas replacements at Arg(7), Met(14), Lys(27), and Tyr(32) also largely reduced inhibitory activity. These results suggest that the side chains of these amino acids in SPX play an important role in its interaction with Kv1.3 channels. In particular, Lys(23) appears to be a key residue that underpins Kv1.3 channel inhibition. Of these seven amino acid residues, four are basic amino acids, suggesting that the positive electrostatic potential on the surface of SPX is likely required for high affinity interaction with Kv1.3 channels. This study provides insight into the structure-function relationships of SPX with implications for the rational design of new lead compounds targeting potassium channels with high potency.

  8. Homogeneous distribution of large-conductance calcium-dependent potassium channels on soma and apical dendrite of rat neocortical layer 5 pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2005-02-01

    Voltage-gated conductances on dendrites of layer 5 pyramidal neurons participate in synaptic integration and output generation. We investigated the properties and the distribution of large-conductance calcium-activated potassium channels (BK channels) in this cell type using excised patches in acute slice preparations of rat somatosensory cortex. BK channels were characterized by their large conductance and sensitivity to the specific blockers paxilline and iberiotoxin. BK channels showed a pronounced calcium-dependence with a maximal opening probability of 0.69 at 10 microm and 0.42 at 3 microm free calcium. Their opening probability and transition time constants between open and closed states are voltage-dependent. At depolarized potentials, BK channel gating is described by two open and one closed states. Depolarization increases the opening probability due to a prolongation of the open time constant and a shortening of the closed time constant. Calcium-dependence and biophysical properties of somatic and dendritic BK channels were identical. The presence of BK channels on the apical dendrite of layer 5 pyramidal neurons was shown by immunofluorescence. Patch-clamp recordings revealed a homogeneous density of BK channels on the soma and along the apical dendrite up to 850 microm with a mean density of 1.9 channels per microm(2). BK channels are expressed either isolated or in clusters containing up to four channels. This study shows the presence of BK channels on dendrites. Their activation might modulate the shape of sodium and calcium action potentials, their propagation along the dendrite, and thereby the electrotonic distance between the somatic and dendritic action potential initiation zones.

  9. Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium.

    Science.gov (United States)

    Pattnaik, Bikash R; Hughes, Bret A

    2012-03-01

    Recently, we demonstrated the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in monkey retinal pigment epithelium (RPE) and showed that the M-type current in RPE cells is blocked by the specific KCNQ channel blocker XE991. Using patch-clamp electrophysiology, we investigated the pharmacological sensitivity of the M-type current in isolated monkey RPE cells to elucidate the subunit composition of the channel. Most RPE cells exhibited an M-type current with a voltage for half-maximal activation of approximately -35 mV. The M-type current activation followed a double-exponential time course and was essentially complete within 1 s. The M-type current was inhibited by micromolar concentrations of the nonselective KCNQ channel blockers linopirdine and XE991 but was relatively insensitive to block by 10 μM chromanol 293B or 135 mM tetraethylammonium (TEA), two KCNQ1 channel blockers. The M-type current was activated by 1) 10 μM retigabine, an opener of all KCNQ channels except KCNQ1, 2) 10 μM zinc pyrithione, which augments all KCNQ channels except KCNQ3, and 3) 50 μM N-ethylmaleimide, which activates KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3, channels. Application of cAMP, which activates KCNQ1 and KCNQ4 channels, had no significant effect on the M-type current. Finally, diclofenac, which activates KCNQ2/3 and KCNQ4 channels but inhibits KCNQ5 channels, inhibited the M-type current in the majority of RPE cells but activated it in others. The results indicate that the M-type current in monkey RPE is likely mediated by channels encoded by KCNQ4 and KCNQ5 subunits.

  10. Ligand-based design and synthesis of novel sodium channel blockers from a combined phenytoin–lidocaine pharmacophore

    OpenAIRE

    Wang, Yuesheng; Jones, Paulianda J.; Batts, Timothy W.; Landry, Victoria; Patel, Manoj K.; Brown, Milton L.

    2008-01-01

    The voltage-gated sodium channel remains a rich area for the development of novel blockers. In this study we used comparative molecular field analysis (CoMFA), a ligand-based design strategy, to generate a 3D model based upon local anesthetics, hydantoins, and α-hydroxyphenylamides to elucidate a SAR for their binding site in the neuronal sodium channel. Correlation by partial least squares (PLS) analysis of in vitro sodium channel binding activity (expressed as pIC50) and the CoMFA descripto...

  11. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hanne B; Hay-Schmidt, Anders

    2003-01-01

    The Shaker-type voltage-gated potassium channel, Kv1.3, is believed to be restricted in distribution to lymphocytes and neurons. In lymphocytes, this channel has gained intense attention since it has been proven that inhibition of Kv1.3 channels compromise T lymphocyte activation. To investigate...

  12. Slick (Kcnt2 Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia

    Directory of Open Access Journals (Sweden)

    Danielle L Tomasello

    2017-09-01

    Full Text Available The Slick (Kcnt2 sodium-activated potassium (K Na channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs, we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene–related peptide (CGRP-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs, and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

  13. Evaluation Effects of Verapamil as a Calcium Channel Blocker on Acquisition, Consolidation and Retrieval of Memory in Mice

    OpenAIRE

    Nooshin Masoudian; Nahid Masoudian; Ali Rashidy Pour; Abbas Ali Vafaiee; Sasan Andalib; Golnaz Vaseghi

    2015-01-01

    Many factors are involved in learning and memory processes including brain nuclei, neurotransmitter systems, and the activity of ion channels. Studies showed inconsistent effects of calcium channel blockers on learning process, especially memory consolidation; however, little is known about their effect on memory acquisition and retrieval. Accordingly, the present study aimed to determine the effects of verapamil calcium channel antagonist as a representative of the phenylalkylamine group on ...

  14. An ERG channel inhibitor from the scorpion Buthus eupeus

    DEFF Research Database (Denmark)

    Korolkova, Y.V.; Kozlov, S.A.; Lipkin, A.V.

    2001-01-01

    and the three mutants partly inhibited the native M-like current in NG108-15 at 100 nm. The effect of the recombinant BeKm-1 on different K(+) channels was also studied. BeKm-1 inhibited hERG1 channels with an IC(50) of 3.3 nm, but had no effect at 100 nm on hEAG, hSK1, rSK2, hIK, hBK, KCNQ1/KCNE1, KCNQ2/KCNQ3......, KCNQ4 channels, and minimal effect on rELK1. Thus, BeKm-1 was shown to be a novel specific blocker of hERG1 potassium channels....

  15. Diadenosine pentaphosphate affects electrical activity in guinea pig atrium via activation of potassium acetylcholine-dependent inward rectifier.

    Science.gov (United States)

    Abramochkin, Denis V; Karimova, Viktoria M; Filatova, Tatiana S; Kamkin, Andre

    2017-07-01

    Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10 -4  M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10 -7  M) or selective GIRK channels blocker tertiapin (10 -6  M) completely abolished all Ap5A effects, while P2 blocker PPADS (10 -4  M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh ). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.

  16. The inhibitor of volume-regulated anion channels DCPIB activates TREK potassium channels in cultured astrocytes

    Czech Academy of Sciences Publication Activity Database

    Minieri, L.; Pivoňková, Helena; Caprini, M.; Harantová, Lenka; Anděrová, Miroslava; Ferroni, S.

    2013-01-01

    Roč. 168, č. 5 (2013), s. 1240-1254 ISSN 0007-1188 R&D Projects: GA ČR GAP303/10/1338 Institutional support: RVO:68378041 Keywords : two-pore-domain potassium channels * patch clamp * neuroprotection Subject RIV: FH - Neurology Impact factor: 4.990, year: 2013

  17. T Cell Subset and Stimulation Strength-Dependent Modulation of T Cell Activation by Kv1.3 Blockers.

    Directory of Open Access Journals (Sweden)

    Wai-Ping Fung-Leung

    Full Text Available Kv1.3 is a voltage-gated potassium channel expressed on T cells that plays an important role in T cell activation. Previous studies have shown that blocking Kv1.3 channels in human T cells during activation results in reduced calcium entry, cytokine production, and proliferation. The aim of the present study was to further explore the effects of Kv1.3 blockers on the response of different human T cell subsets under various stimulation conditions. Our studies show that, unlike the immune suppressor cyclosporine A, the inhibitory effect of Kv1.3 blockers was partial and stimulation strength dependent, with reduced inhibitory efficacy on T cells under strengthened anti-CD3/CD28 stimulations. T cell responses to allergens including house dust mites and ragweed were partially reduced by Kv1.3 blockers. The effect of Kv1.3 inhibition was dependent on T cell subsets, with stronger effects on CCR7- effector memory compared to CCR7+ central memory CD4 T cells. Calcium entry studies also revealed a population of CD4 T cells resistant to Kv1.3 blockade. Activation of CD4 T cells was accompanied with an increase in Kv1.3 currents but Kv1.3 transcripts were found to be reduced, suggesting a posttranscriptional mechanism in the regulation of Kv1.3 activities. In summary, Kv1.3 blockers inhibit T cell activation in a manner that is highly dependent on the T cell identity and stimulation strength, These findings suggest that Kv1.3 blockers inhibit T cells in a unique, conditional manner, further refining our understanding of the therapeutic potential of Kv1.3 blockers.

  18. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    International Nuclear Information System (INIS)

    Long, Yan; Lin, Zuoxian; Xia, Menghang; Zheng, Wei; Li, Zhiyuan

    2013-01-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC 50 values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds

  19. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yan; Lin, Zuoxian [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Xia, Menghang; Zheng, Wei [National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892 (United States); Li, Zhiyuan, E-mail: li_zhiyuan@gibh.ac.cn [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China)

    2013-03-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC{sub 50} values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds.

  20. Severe iatrogenic bradycardia related to the combined use of beta-blocking agents and sodium channel blockers

    Directory of Open Access Journals (Sweden)

    Kawabata M

    2015-02-01

    Full Text Available Mihoko Kawabata,1 Yasuhiro Yokoyama,1 Takeshi Sasaki,1 Susumu Tao,1 Kensuke Ihara,1 Yasuhiro Shirai,1 Tetsuo Sasano,2 Masahiko Goya,1 Tetsushi Furukawa,3 Mitsuaki Isobe,4 Kenzo Hirao1 1Heart Rhythm Center, Tokyo Medical and Dental University, Tokyo, Japan; 2Department of Biofunctional Informatics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan; 3Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; 4Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan Purpose: Drug-induced bradycardia is common during antiarrhythmic therapy; the major culprits are beta-blockers. However, whether other antiarrhythmic drugs are also a significant cause of this, alone or in combination with beta-blockers, is not well known. Methods: We retrospectively investigated the records of all patients hospitalized at our institution for drug-related bradycardia from the years 2004 to 2012. Patients with cardiac disease and electrolytic or hormonal abnormalities that could cause bradyarrhythmias were excluded. Results: Eight patients were identified (mean age, 79±5 years; range, 71–85 years; 6 women. Three patients were taking only beta-blockers (hereafter referred to as the BB group, while five patients were on both beta-blockers and Na channel blockers (hereafter referred to as the BB + Na group. Heart rates ranged from 20~49 beats/minute on arrival. The initial electrocardiogram showed sinus bradycardia (n=6 or sinus arrest with escape beats (n=2. QRS duration was 80–100 ms. The clinical presentation of the BB + Na group was considerably worse than that of the BB group, and included cardiogenic shock and heart failure. Four of the BB + Na patients had been on their medications for over 300 days. The BB group recovered solely with drug discontinuation, while 4 of the 5 patients in the BB + Na group needed additional

  1. POSITIONS OF CALCIUM CHANNEL BLOCKER LERCANIDIPINE ACCORDING TO EVIDENCE BASED CARDIOLOGY

    Directory of Open Access Journals (Sweden)

    Yu. V. Lukina

    2010-01-01

    Full Text Available Data of evidence based cardiology including results of international clinical trials on efficacy and safety of the modern calcium channel blocker (CCB, lercanidipine, are presented. Results of these trials show the firm position of lercanidipine in the modern cardiology and confirm that treatment with lercanidipine leads to significant reduction of systolic and diastolic blood pressure (BP with no effect on heart rate (HR. Peripheral edema (the common side effect of CCBs occurs rarer with lercanidipine treatment than this with any other CCB treatment. Lercanidipine can be recommended to patients with concomitant diseases due to its additional features.

  2. Adrenaline reveals the torsadogenic effect of combined blockade of potassium channels in anaesthetized guinea pigs.

    Science.gov (United States)

    Michael, G; Kane, K A; Coker, S J

    2008-08-01

    Torsade de pointes (TdP) can be induced in several species by a reduction in cardiac repolarizing capacity. The aim of this study was to assess whether combined I(Kr) and I(Ks) blockade could induce TdP in anaesthetized guinea pigs and whether short-term variability (STV) or triangulation of action potentials could predict TdP. Experiments were performed in open-chest, pentobarbital-anaesthetized, adrenaline-stimulated male Dunkin Hartley guinea pigs, which received three consecutive i.v. infusions of either vehicle, the I(Kr) blocker E-4031 (3, 10 and 30 nmol kg(-1) min(-1)), the I(Ks) blocker HMR1556 (75, 250, 750 nmol kg(-1) min(-1)) or E-4031 and HMR1556 combined. Phenylephrine-stimulated guinea pigs were also treated with the K(+) channel blockers in combination. Arterial blood pressure, ECGs and epicardial monophasic action potential (MAP) were recorded. TdP was observed in 75% of adrenaline-stimulated guinea pigs given the K(+) channel blockers in combination, but was not observed in guinea pigs treated with either I(K) blocker alone, or in phenylephrine-stimulated guinea pigs. Salvos and ventricular tachycardia occurred with adrenaline but not with phenylephrine. No changes in STV or triangulation of the MAP signals were observed before TdP. Combined blockade of both I(Kr) and I(Ks) plus the addition of adrenaline were required to induce TdP in anaesthetized guinea pigs. This suggests that there must be sufficient depletion of repolarization reserve and an appropriate trigger for TdP to occur.

  3. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    Science.gov (United States)

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  4. 1,4,2-Benzo/pyridodithiazine 1,1-dioxides structurally related to the ATP-sensitive potassium channel openers 1,2,4-Benzo/pyridothiadiazine 1,1-dioxides exert a myorelaxant activity linked to a distinct mechanism of action.

    Science.gov (United States)

    Pirotte, Bernard; de Tullio, Pascal; Florence, Xavier; Goffin, Eric; Somers, Fabian; Boverie, Stéphane; Lebrun, Philippe

    2013-04-25

    The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.

  5. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  6. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium

    DEFF Research Database (Denmark)

    Rosenbaum, Sofia T; Svalø, Julie; Nielsen, Karsten

    2012-01-01

    Small-conductance calcium-activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 m....... This is the first report to provide evidence for a possible role of SK3 channels in human uterine telocytes....

  7. Misperceptions About β-Blockers and Diuretics

    Science.gov (United States)

    Ubel, Peter A; Jepson, Christopher; Asch, David A

    2003-01-01

    BACKGROUND Based on a series of clinical trials showing no difference in the effectiveness or tolerability of most major classes of antihypertensive medications, the Joint National Commission on High Blood Pressure Treatment recommends that physicians prescribe β-blockers or diuretics as initial hypertensive therapy unless there are compelling indications for another type of medication. Nevertheless, many physicians continue to favor more expensive medications like angiotensin-converting enzyme (ACE) inhibitors and calcium channel blockers as first line agents. The persistent use of these agents raises questions as to whether physicians perceive ACE inhibitors and calcium channel blockers to be better than β-blockers and diuretics. METHODS We surveyed 1,200 primary care physicians in 1997, and another 500 primary care physicians in 2000, and asked them to estimate the relative effectiveness and side effects of 4 classes of medication in treating a hypothetical patient with uncomplicated hypertension: ACE inhibitors, β-blockers, calcium channel blockers, and diuretics. In addition, we asked them to indicate whether they ever provided free samples of hypertension medications to their patients. RESULTS Perceptions of the relative effectiveness and side effects of the 4 classes of hypertension medications did not significantly change over the 3 years, nor did prescription recommendations. Physicians perceive that diuretics are less effective at lowering blood pressure than the other 3 classes (P diuretics were less effective and β-blockers were less tolerated than other medications. Moreover, their prescription practices were associated with their provision of free samples provided by pharmaceutical representatives, even after adjusting for other demographic characteristics. Efforts to increase physicians' prescribing of β-blockers and diuretics may need to be directed at overcoming misunderstandings about the effectiveness and tolerability of these medicines

  8. Milrinone-Induced Postconditioning Requires Activation of Mitochondrial Ca2+-sensitive Potassium (mBKCa) Channels

    NARCIS (Netherlands)

    Behmenburg, Friederike; Trefz, Lara; Dorsch, Marianne; Ströthoff, Martin; Mathes, Alexander; Raupach, Annika; Heinen, André; Hollmann, Markus W.; Berger, Marc M.; Huhn, Ragnar

    2017-01-01

    Cardioprotection by postconditioning requires activation of mitochondrial large-conductance Ca2+-sensitive potassium (mBKCa) channels. The involvement of these channels in milrinone-induced postconditioning is unknown. The authors determined whether cardioprotection by milrinone-induced

  9. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    Science.gov (United States)

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  10. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    Science.gov (United States)

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  11. The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K.

    Science.gov (United States)

    Lam, Yee Ling; Zeng, Weizhong; Sauer, David Bryant; Jiang, Youxing

    2014-08-01

    Potassium channels are highly selective for K(+) over the smaller Na(+). Intriguingly, they are permeable to larger monovalent cations such as Rb(+) and Cs(+) but are specifically blocked by the similarly sized Ba(2+). In this study, we used structural analysis to determine the binding profiles for these permeant and blocking ions in the selectivity filter of the potassium-selective NaK channel mutant NaK2K and also performed permeation experiments using single-channel recordings. Our data revealed that some ion binding properties of NaK2K are distinct from those of the canonical K(+) channels KcsA and MthK. Rb(+) bound at sites 1, 3, and 4 in NaK2K, as it does in KcsA. Cs(+), however, bound predominantly at sites 1 and 3 in NaK2K, whereas it binds at sites 1, 3, and 4 in KcsA. Moreover, Ba(2+) binding in NaK2K was distinct from that which has been observed in KcsA and MthK, even though all of these channels show similar Ba(2+) block. In the presence of K(+), Ba(2+) bound to the NaK2K channel at site 3 in conjunction with a K(+) at site 1; this led to a prolonged block of the channel (the external K(+)-dependent Ba(2+) lock-in state). In the absence of K(+), however, Ba(2+) acts as a permeating blocker. We found that, under these conditions, Ba(2+) bound at sites 1 or 0 as well as site 3, allowing it to enter the filter from the intracellular side and exit from the extracellular side. The difference in the Ba(2+) binding profile in the presence and absence of K(+) thus provides a structural explanation for the short and prolonged Ba(2+) block observed in NaK2K. © 2014 Lam et al.

  12. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2013-01-01

    Full Text Available This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, the neuronal NOS inhibitor Nω-propyl-L-arginine hydrochloride, the inducible NOS inhibitor 1400W dihydrochloride, the nitric oxide-sensitive guanylyl cyclase (GC inhibitor ODQ, the NOS and GC inhibitor methylene blue, the phosphoinositide-3 kinase inhibitor wortmannin, the cytochrome p450 epoxygenase inhibitor fluconazole, the voltage-dependent potassium channel inhibitor 4-aminopyridine (4-AP, the calcium-activated potassium channel inhibitor tetraethylammonium (TEA, the inward-rectifying potassium channel inhibitor barium chloride, and the ATP-sensitive potassium channel inhibitor glibenclamide. The effect of ropivacaine on endothelial nitric oxide synthase (eNOS phosphorylation in human umbilical vein endothelial cells was examined by western blotting. Ropivacaine-induced contraction was weaker in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, and methylene blue enhanced ropivacaine-induced contraction, whereas wortmannin, Nω-propyl-L-arginine hydrochloride, 1400W dihydrochloride, and fluconazole had no effect. 4-AP and TEA enhanced ropivacaine-induced contraction; however, barium chloride and glibenclamide had no effect. eNOS phosphorylation was induced by ropivacaine. These results suggest that ropivacaine-induced contraction is attenuated primarily by both endothelial nitric oxide and voltage-dependent potassium channels.

  13. PKC and AMPK regulation of Kv1.5 potassium channels

    DEFF Research Database (Denmark)

    Andersen, Martin Nybo; Skibsbye, Lasse; Tang, Chuyi

    2015-01-01

    The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K(+) current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells....

  14. Inhibition of SK4 Potassium Channels Suppresses Cell Proliferation, Migration and the Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Panshi Zhang

    Full Text Available Treatments for triple-negative breast cancer (TNBC are limited; intermediate-conductance calcium-activated potassium (SK4 channels are closely involved in tumor progression, but little is known about these channels in TNBC. We aimed to investigate whether SK4 channels affect TNBC. First, by immunohistochemistry (IHC and western blotting (WB, increased SK4 protein expression in breast tumor tissues was detected relative to that in non-tumor breast tissues, but there was no apparent expression difference between various subtypes of breast cancer (p>0.05. Next, functional SK4 channels were detected in the TNBC cell line MDA-MB-231 using WB, real-time PCR, immunofluorescence and patch-clamp recording. By employing SK4 specific siRNAs and blockers, including TRAM-34 and clotrimazole, in combination with an MTT assay, a colony-formation assay, flow cytometry and a cell motility assay, we found that the suppression of SK4 channels significantly inhibited cell proliferation and migration and promoted apoptosis in MDA-MB-231 cells (p<0.05. Further investigation revealed that treatment with epidermal growth factor (EGF/basic fibroblast growth factor (bFGF caused MDA-MB-231 cells to undergo the epithelial-mesenchymal transition (EMT and to show increased SK4 mRNA expression. In addition, the down-regulation of SK4 expression inhibited the EMT markers Vimentin and Snail1. Collectively, our findings suggest that SK4 channels are expressed in TNBC and are involved in the proliferation, apoptosis, migration and EMT processes of TNBC cells.

  15. The effect of long-term administered CRAC channels blocker on the functions of respiratory epithelium in guinea pig allergic asthma model.

    Science.gov (United States)

    Sutovska, Martina; Kocmalova, Michaela; Joskova, Marta; Adamkov, Marian; Franova, Sona

    2015-04-01

    Previously, therapeutic potency of CRAC channels blocker was evidenced as a significant decrease in airway smooth muscle hyperreactivity, antitussive and anti-inflammatory effects. The major role of the respiratory epithelium in asthma pathogenesis was highlighted only recently and CRAC channels were proposed as the most significant route of Ca2+ entry into epithelial cells. The aim of the study was to analyse the impact of long-term administered CRAC channels blocker on airway epithelium, e.g. cytokine production and ciliary beat frequency (CBF) using an animal model of allergic asthma. Ovalbumin-induced allergic airway inflammation of guinea pigs was followed by long-term (14 days lasted) therapy by CRAC blocker (3-fluoropyridine-4-carboxylic acid, FPCA). The influence of long-term therapy on cytokines (IL-4, IL-5 and IL-13) in BALF and in plasma, immunohistochemical staining of pulmonary tissue (c-Fos positivity) and CBF in vitro were used for analysis. Decrease in cytokine levels and in c-Fos positivity confirmed an anti-inflammatory effect of long-term administered FPCA. Cytokine levels in BALF and distribution of c-Fos positivity suggested that FPCA was a more potent inhibitor of respiratory epithelium secretory functions than budesonide. FPCA and budesonide reduced CBF only insignificantly. All findings supported CRAC channels as promising target in the new strategy of antiasthmatic treatment.

  16. Altered expression of two-pore domain potassium (K2P channels in cancer.

    Directory of Open Access Journals (Sweden)

    Sarah Williams

    Full Text Available Potassium channels have become a focus in cancer biology as they play roles in cell behaviours associated with cancer progression, including proliferation, migration and apoptosis. Two-pore domain (K2P potassium channels are background channels which enable the leak of potassium ions from cells. As these channels are open at rest they have a profound effect on cellular membrane potential and subsequently the electrical activity and behaviour of cells in which they are expressed. The K2P family of channels has 15 mammalian members and already 4 members of this family (K2P2.1, K2P3.1, K2P9.1, K2P5.1 have been implicated in cancer. Here we examine the expression of all 15 members of the K2P family of channels in a range of cancer types. This was achieved using the online cancer microarray database, Oncomine (www.oncomine.org. Each gene was examined across 20 cancer types, comparing mRNA expression in cancer to normal tissue. This analysis revealed all but 3 K2P family members (K2P4.1, K2P16.1, K2P18.1 show altered expression in cancer. Overexpression of K2P channels was observed in a range of cancers including breast, leukaemia and lung while more cancers (brain, colorectal, gastrointestinal, kidney, lung, melanoma, oesophageal showed underexpression of one or more channels. K2P1.1, K2P3.1, K2P12.1, were overexpressed in a range of cancers. While K2P1.1, K2P3.1, K2P5.1, K2P6.1, K2P7.1 and K2P10.1 showed significant underexpression across the cancer types examined. This analysis supports the view that specific K2P channels may play a role in cancer biology. Their altered expression together with their ability to impact the function of other ion channels and their sensitivity to environmental stimuli (pO2, pH, glucose, stretch makes understanding the role these channels play in cancer of key importance.

  17. Atrial-selective K+ channel blockers: potential antiarrhythmic drugs in atrial fibrillation?

    Science.gov (United States)

    Ravens, Ursula

    2017-11-01

    In the wake of demographic change in Western countries, atrial fibrillation has reached an epidemiological scale, yet current strategies for drug treatment of the arrhythmia lack sufficient efficacy and safety. In search of novel medications, atrial-selective drugs that specifically target atrial over other cardiac functions have been developed. Here, I will address drugs acting on potassium (K + ) channels that are either predominantly expressed in atria or possess electrophysiological properties distinct in atria from ventricles. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two-pore domain K + (K2P) channels (tandem of P domains, weak inward-rectifying K + channels (TWIK-1), TWIK-related acid-sensitive K + channels (TASK-1 and TASK-3)) that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Direct drug effects on these channels are described and their putative value in treatment of atrial fibrillation is discussed. Although many potential drug targets have emerged in the process of unravelling details of the pathophysiological mechanisms responsible for atrial fibrillation, we do not know whether novel antiarrhythmic drugs will be more successful when modulating many targets or a single specific one. The answer to this riddle can only be solved in a clinical context.

  18. Inhibitory effect of calcium channel blockers on proliferation of human glioma cells in vitro

    International Nuclear Information System (INIS)

    Kunert-Radek, J.; Stepien, H.; Lyson, K.; Pawlikowski, M.; Radek, A.

    1989-01-01

    The effects of 2 specific calcium channel blockers, verapamil and nimodipine, on the proliferation of human glioma tumour cells were investigated in vitro. Tumour tissues for primary cell cultures were obtained bioptically from 3 patients with the histopathological diagnosis of glioblastoma. The [ 3 H]-thymidine incorporation into glioma tumour cells DNA was used as a sensitive index of the cell proliferation. It was found that varapamil (10 4 -10 5 M) and nimodipine (10 4 -10 6 M) significantly inhibited the [ 3 H]-thymidine uptake in a dose-related manner. The inhibitory effect of both calcium channel antagonists was reversed by stimultancous addition of calcium chloride (5x10 3 M). These results indicate that verapamil and nimodipine may exert an antiproliferative effect on glioma cells growth acting through a blokade of specific voltage-dependent calcium channels. (author)

  19. Circadian rhythm of urinary potassium excretion during treatment with an angiotensin receptor blocker.

    Science.gov (United States)

    Ogiyama, Yoshiaki; Miura, Toshiyuki; Watanabe, Shuichi; Fuwa, Daisuke; Tomonari, Tatsuya; Ota, Keisuke; Kato, Yoko; Ichikawa, Tadashi; Shirasawa, Yuichi; Ito, Akinori; Yoshida, Atsuhiro; Fukuda, Michio; Kimura, Genjiro

    2014-12-01

    We have reported that the circadian rhythm of urinary potassium excretion (U(K)V) is determined by the rhythm of urinary sodium excretion (U(Na)V) in patients with chronic kidney disease (CKD). We also reported that treatment with an angiotensin receptor blocker (ARB) increased the U(Na)V during the daytime, and restored the non-dipper blood pressure (BP) rhythm into a dipper pattern. However, the circadian rhythm of U(K)V during ARB treatment has not been reported. Circadian rhythms of U(Na)V and U(K)V were examined in 44 patients with CKD undergoing treatment with ARB. Whole-day U(Na)V was not altered by ARB whereas whole-day U(K)V decreased. Even during the ARB treatment, the significant relationship persisted between the night/day ratios of U(Na)V and U(K)V (r=0.56, pcircadian rhythm of U(K)V was determined by the rhythm of UNaV even during ARB treatment. Changes in the circadian U(K)V rhythm were not determined by aldosterone but by U(Na)V. © The Author(s) 2013.

  20. THE ROLE OF S-AMLODIPINE IN ARTERIAL HYPERTENSION THERAPY WITH COMBINATION OF CALCIUM CHANNEL BLOCKERS AND BETA-BLOCKERS

    Directory of Open Access Journals (Sweden)

    M. A. Maksimova

    2013-01-01

    Full Text Available Aim. To study efficacy and safety of calcium channel blocker, S-amlodipine, in combination with β-blocker, atenolol, in patients with arterial hypertension (HT 1-2 degree com- pared to fixed combination of racemic amlodipine and atenolol.Material and methods. Patients (n=31, 7 men and 24 women with HT 1–2 degree were included into the study. The patients were randomized into two groups by the com- binations sequence. Treatment with each combination lasted 4 weeks. Office blood pressure (BP was assessed at baseline and at the end of the treatment periods, possible side effects were registered.Results. All patients completed the study. Both combination of S-amlodipine+atenolol and fixed combination of racemic amlodipine+atenolol reduced systolic (in average, -15.9 and -12.7 mm Hg, respectively and diastolic (in average, -7.3 and -5.3 mmHg, respectively BP significantly. Heart rate also decreased during therapy (in average, -3 and -4 bt/min, respectively. The differences between combinations BP and heart rate effects were not significant. 8 and 16 adverse events were registered during S-amlodipine+atenolol and racemic amlodipine+atenolol therapies, respectively Conclusion. Combination of S-amlodipine+atenolol, as well as combination of racemic amlodipine+atenolol are effective in the treatment of patients with HT 1-2 degree, however combination with S-amlodipine has less number of adverse events.

  1. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effect of baclofen in mouse forced swimming test.

    Science.gov (United States)

    Nazari, Seyedeh Khadijeh; Nikoui, Vahid; Ostadhadi, Sattar; Chegini, Zahra Hadi; Oryan, Shahrbanoo; Bakhtiarian, Azam

    2016-12-01

    Previous study confirmed that the acute treatment with baclofen by inhibition of the l-arginine-nitric oxide (NO) pathway diminished the immobility behavior in the forced swimming test (FST) of mice. Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (K ATP ), in the present study we investigated the involvement of K ATP channels in antidepressant-like effect of baclofen in the forced swimming test (FST). After assessment of locomotor behavior in the open-field test (OFT), FST was applied for evaluation of the antidepressant-like activity of baclofen in mice. Baclofen at different doses (0.1, 0.3, and 1mg/kg) and fluoxetine (20mg/kg) were administrated by intraperitoneal (ip) route, 30min before the FST or OFT. To clarify the probable involvement of K ATP channels, after determination of sub-effective doses of glibenclamide as a K ATP channel blocker and cromakalim, as an opener of these channels, they were co-administrated with the sub-effective and effective doses of baclofen, respectively. Baclofen at dose 1mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20mg/kg). Co-administration of gelibenclamide sub-effective dose (1mg/kg) with baclofen (0.1mg/kg) showed a synergistic antidepressant-like effect in the FST. Also, sub-effective dose of cromakalim (0.1mg/kg) inhibited the antidepressant-like effect of baclofen (1mg/kg) in the FST. All aforementioned treatments had not any impact on the locomotor movement of mice in OFT. Our study for the first time revealed that antidepressant-like effect of baclofen on mice is K ATP -dependent, and baclofen seems that exert this effect by blocking the K ATP channels. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels.

    Science.gov (United States)

    Wu, Jing-Xiang; Ding, Dian; Wang, Mengmeng; Kang, Yunlu; Zeng, Xin; Chen, Lei

    2018-06-01

    ATP-sensitive potassium channels (K ATP ) are energy sensors on the plasma membrane. By sensing the intracellular ADP/ATP ratio of β-cells, pancreatic K ATP channels control insulin release and regulate metabolism at the whole body level. They are implicated in many metabolic disorders and diseases and are therefore important drug targets. Here, we present three structures of pancreatic K ATP channels solved by cryo-electron microscopy (cryo-EM), at resolutions ranging from 4.1 to 4.5 Å. These structures depict the binding site of the antidiabetic drug glibenclamide, indicate how Kir6.2 (inward-rectifying potassium channel 6.2) N-terminus participates in the coupling between the peripheral SUR1 (sulfonylurea receptor 1) subunit and the central Kir6.2 channel, reveal the binding mode of activating nucleotides, and suggest the mechanism of how Mg-ADP binding on nucleotide binding domains (NBDs) drives a conformational change of the SUR1 subunit.

  3. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels

    OpenAIRE

    Shang, Lijun; Tucker, Stephen J.

    2007-01-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K+ channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the ?helix-bundle crossing?. However, in the inwardly rectifying (Kir) potassium channel family, the role of this ?hinge? residue in the second transmembrane domain (TM2) and t...

  4. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.

    Science.gov (United States)

    Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike

    2017-01-01

    A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Activation of ERG2 potassium channels by the diphenylurea NS1643

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Olesen, Søren-Peter; Grunnet, Morten

    2007-01-01

    Three members of the ERG potassium channel family have been described (ERG1-3 or Kv 11.1-3). ERG1 is by far the best characterized subtype and it constitutes the molecular component of the cardiac I(Kr) current. All three channel subtypes are expressed in neurons but their function remains unclear....... The lack of functional information is at least partly due to the lack of specific pharmacological tools. The compound NS1643 has earlier been reported as an ERG1 channel activator. We found that NS1643 also activates the ERG2 channel; however, the molecular mechanism of the activation differs between...... the ERG1 and ERG2 channels. This is surprising since ERG1 and ERG2 channels have very similar biophysical and structural characteristics. For ERG2, NS1643 causes a left-ward shift of the activation curve, a faster time-constant of activation and a slower time-constant of inactivation as well...

  6. Pre-injury beta blocker use does not affect the hyperdynamic response in older trauma patients

    Directory of Open Access Journals (Sweden)

    David C Evans

    2014-01-01

    Full Text Available Purpose: Trauma dogma dictates that the physiologic response to injury is blunted by beta-blockers and other cardiac medications. We sought to determine how the pre-injury cardiac medication profile influences admission physiology and post-injury outcomes. Materials and Methods: Trauma patients older than 45 evaluated at our center were retrospectively studied. Pre-injury medication profiles were evaluated for angiotensin-converting enzyme inhibitors / angiotensin receptor blockers (ACE-I/ARB, beta-blockers, calcium channel blockers, amiodarone, or a combination of the above mentioned agents. Multivariable logistic regression or linear regression analyses were used to identify relationships between pre-injury medications, vital signs on presentation, post-injury complications, length of hospital stay, and mortality. Results: Records of 645 patients were reviewed (mean age 62.9 years, Injury Severity Score >10, 23%. Our analysis demonstrated no effect on systolic and diastolic blood pressures from beta-blocker, ACE-I/ARB, calcium channel blocker, and amiodarone use. The triple therapy (combined beta-blocker, calcium channel blocker, and ACE-I/ARB patient group had significantly lower heart rate than the no cardiac medication group. No other groups were statistically different for heart rate, systolic, and diastolic blood pressure. Conclusions: Pre-injury use of cardiac medication lowered heart rate in the triple-agent group (beta-blocker, calcium channel blocker, and ACEi/ARB when compared the no cardiac medication group. While most combinations of cardiac medications do not blunt the hyperdynamic response in trauma cases, patients on combined beta-blocker, calcium channel blocker, and ACE-I/ARB therapy had higher mortality and more in-hospital complications despite only mild attenuation of the hyperdynamic response.

  7. Voltage-Dependent Gating of hERG Potassium Channels

    Science.gov (United States)

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  8. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  9. Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain

    Science.gov (United States)

    Knaus, Hans‐Günther; Schwarzer, Christoph

    2015-01-01

    ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  10. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  11. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Nielsen, Jonas Bille; Bentzen, Bo Hjorth; Olesen, Morten Salling

    2014-01-01

    Aims: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Disturbances in cardiac potassium conductance are considered as one of the disease mechanisms in AF. We aimed to investigate if mutations in potassium-channel β-subunits KCNE2 and KCNE3 are associated with early-onset lone AF. ...

  12. Modulation of the transient outward current (Ito) in rat cardiac myocytes and human Kv4.3 channels by mefloquine

    International Nuclear Information System (INIS)

    Perez-Cortes, E.J.; Islas, A.A.; Arevalo, J.P.; Mancilla, C.; Monjaraz, E.; Salinas-Stefanon, E.M.

    2015-01-01

    The antimalarial drug mefloquine, is known to be a potassium channel blocker, although its mechanism of action has not being elucidated and its effects on the transient outward current (I to ) and the molecular correlate, the K v 4.3 channel has not being studied. Here, we describe the mefloquine-induced inhibition of the rat ventricular I to and of CHO cells co-transfected with human K v 4.3 and its accessory subunit hKChIP2C by whole-cell voltage-clamp. Mefloquine inhibited rat I to and hK v 4.3 + KChIP2C currents in a concentration-dependent manner with a limited voltage dependence and similar potencies (IC 50 = 8.9 μM and 10.5 μM for cardiac myocytes and K v 4.3 channels, respectively). In addition, mefloquine did not affect the activation of either current but significantly modified the hK v 4.3 steady-state inactivation and recovery from inactivation. The effects of this drug was compared with that of 4-aminopyridine (4-AP), a well-known potassium channel blocker and its binding site does not seem to overlap with that of 4-AP. - Highlights: • Mefloquine inhibited ventricular I to and hK v 4.3 channels. IC 50 = 8.9 and 10.5 μM. • Inactivation and recovery from inactivation in the hK v 4.3 channels were modified by mefloquine. • Mefloquine displayed a higher affinity for the inactivated state. • The binding site for mefloquine may be located in the extracellular side of the channel.

  13. Digging into Lipid Membrane Permeation for Cardiac Ion Channel Blocker d-Sotalol with All-Atom Simulations.

    Science.gov (United States)

    DeMarco, Kevin R; Bekker, Slava; Clancy, Colleen E; Noskov, Sergei Y; Vorobyov, Igor

    2018-01-01

    Interactions of drug molecules with lipid membranes play crucial role in their accessibility of cellular targets and can be an important predictor of their therapeutic and safety profiles. Very little is known about spatial localization of various drugs in the lipid bilayers, their active form (ionization state) or translocation rates and therefore potency to bind to different sites in membrane proteins. All-atom molecular simulations may help to map drug partitioning kinetics and thermodynamics, thus providing in-depth assessment of drug lipophilicity. As a proof of principle, we evaluated extensively lipid membrane partitioning of d-sotalol, well-known blocker of a cardiac potassium channel K v 11.1 encoded by the hERG gene, with reported substantial proclivity for arrhythmogenesis. We developed the positively charged (cationic) and neutral d-sotalol models, compatible with the biomolecular CHARMM force field, and subjected them to all-atom molecular dynamics (MD) simulations of drug partitioning through hydrated lipid membranes, aiming to elucidate thermodynamics and kinetics of their translocation and thus putative propensities for hydrophobic and aqueous hERG access. We found that only a neutral form of d-sotalol accumulates in the membrane interior and can move across the bilayer within millisecond time scale, and can be relevant to a lipophilic channel access. The computed water-membrane partitioning coefficient for this form is in good agreement with experiment. There is a large energetic barrier for a cationic form of the drug, dominant in water, to cross the membrane, resulting in slow membrane translocation kinetics. However, this form of the drug can be important for an aqueous access pathway through the intracellular gate of hERG. This route will likely occur after a neutral form of a drug crosses the membrane and subsequently re-protonates. Our study serves to demonstrate a first step toward a framework for multi-scale in silico safety pharmacology

  14. Digging into Lipid Membrane Permeation for Cardiac Ion Channel Blocker d-Sotalol with All-Atom Simulations

    Directory of Open Access Journals (Sweden)

    Kevin R. DeMarco

    2018-02-01

    Full Text Available Interactions of drug molecules with lipid membranes play crucial role in their accessibility of cellular targets and can be an important predictor of their therapeutic and safety profiles. Very little is known about spatial localization of various drugs in the lipid bilayers, their active form (ionization state or translocation rates and therefore potency to bind to different sites in membrane proteins. All-atom molecular simulations may help to map drug partitioning kinetics and thermodynamics, thus providing in-depth assessment of drug lipophilicity. As a proof of principle, we evaluated extensively lipid membrane partitioning of d-sotalol, well-known blocker of a cardiac potassium channel Kv11.1 encoded by the hERG gene, with reported substantial proclivity for arrhythmogenesis. We developed the positively charged (cationic and neutral d-sotalol models, compatible with the biomolecular CHARMM force field, and subjected them to all-atom molecular dynamics (MD simulations of drug partitioning through hydrated lipid membranes, aiming to elucidate thermodynamics and kinetics of their translocation and thus putative propensities for hydrophobic and aqueous hERG access. We found that only a neutral form of d-sotalol accumulates in the membrane interior and can move across the bilayer within millisecond time scale, and can be relevant to a lipophilic channel access. The computed water-membrane partitioning coefficient for this form is in good agreement with experiment. There is a large energetic barrier for a cationic form of the drug, dominant in water, to cross the membrane, resulting in slow membrane translocation kinetics. However, this form of the drug can be important for an aqueous access pathway through the intracellular gate of hERG. This route will likely occur after a neutral form of a drug crosses the membrane and subsequently re-protonates. Our study serves to demonstrate a first step toward a framework for multi-scale in silico safety

  15. The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr) and human ether-a-go-go-related gene (hERG) expression.

    Science.gov (United States)

    Teah, Yi Fan; Abduraman, Muhammad Asyraf; Amanah, Azimah; Adenan, Mohd Ilham; Sulaiman, Shaida Fariza; Tan, Mei Lan

    2017-09-01

    Elephantopus scaber Linn and its major bioactive component, deoxyelephantopin are known for their medicinal properties and are often reported to have various cytotoxic and antitumor activities. This plant is widely used as folk medicine for a plethora of indications although its safety profile remains unknown. Human ether-a-go-go-related gene (hERG) encodes the cardiac I Kr current which is a determinant of the duration of ventricular action potentials and QT interval. The hERG potassium channel is an important antitarget in cardiotoxicity evaluation. This study investigated the effects of deoxyelephantopin on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells. The hERG tail currents following depolarization pulses were insignificantly affected by deoxyelephantopin in the transfected cell line. Current reduction was less than 40% as compared with baseline at the highest concentration of 50 μM. The results were consistent with the molecular docking simulation and hERG surface protein expression. Interestingly, it does not affect the hERG expression at both transcriptional and translational level at most concentrations, although higher concentration at 10 μM caused protein accumulation. In conclusion, deoxyelephantopin is unlikely a clinically significant hERG channel and I kr blocker. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The effects of prior calcium channel blocker therapy on creatine kinase-MB levels after percutaneous coronary interventions

    OpenAIRE

    Oyku Gulmez; Ilyas Atar; Bülent Ozin; Mehmet Emin Korkmaz; Asli Atar; et al

    2008-01-01

    Oyku Gulmez, Ilyas Atar, Bülent Ozin, Mehmet Emin Korkmaz, Asli Atar, Alp Aydinalp, Aylin Yildirir, Haldun MuderrisogluBaskent University Faculty of Medicine, Department of Cardiology, Ankara, TurkeyBackground: Use of intracoronary calcium channel blockers (CCBs) during percutaneous coronary intervention (PCI) has been shown to have favorable effects on coronary blood flow. We aimed to investigate the effects of CCBs administrated perorally on creatine kinase-MB (CK-MB) levels in pat...

  17. Crystallization and preliminary crystallographic characterization of the PAS domains of EAG and ELK potassium channels

    International Nuclear Information System (INIS)

    Adaixo, Ricardo; Morais-Cabral, João Henrique

    2010-01-01

    The N-terminal PAS domains from the eukaryotic EAG potassium channels are thought to have a regulatory function. Here the expression, purification, crystallization and preliminary crystallographic characterization of two of these domains are described. Per–Arnt–Sim (PAS) domains are ubiquitous in nature; they are ∼130-amino-acid protein domains that adopt a fairly conserved three-dimensional structure despite their low degree of sequence homology. These domains constitute the N-terminus or, less frequently, the C-terminus of a number of proteins, where they exert regulatory functions. PAS-containing proteins generally display two or more copies of this motif. In this work, the crystallization and preliminary analysis of the PAS domains of two eukaryotic potassium channels from the ether-à-go-go (EAG) family are reported

  18. Calcium channel blockers, more than diuretics, enhance vascular protective effects of angiotensin receptor blockers in salt-loaded hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Eiichiro Yamamoto

    Full Text Available The combination therapy of an angiotensin receptor blocker (ARB with a calcium channel blocker (CCB or with a diuretic is favorably recommended for the treatment of hypertension. However, the difference between these two combination therapies is unclear. The present work was undertaken to examine the possible difference between the two combination therapies in vascular protection. Salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP were divided into 6 groups, and they were orally administered (1 vehicle, (2 olmesartan, an ARB, (3 azelnidipine, a CCB, (4 hydrochlorothiazide, a diuretic, (5 olmesartan combined with azelnidipine, or (6 olmesartan combined with hydrochlorothiazide. Olmesartan combined with either azelnidipine or hydrochlorothiazide ameliorated vascular endothelial dysfunction and remodeling in SHRSP more than did monotherapy with either agent. However, despite a comparable blood pressure lowering effect between the two treatments, azelnidipine enhanced the amelioration of vascular endothelial dysfunction and remodeling by olmesartan to a greater extent than did hydrochlorothiazide in salt-loaded SHRSP. The increased enhancement by azelnidipine of olmesartan-induced vascular protection than by hydrochlorothiazide was associated with a greater amelioration of vascular nicotinamide adenine dinucleotide phosphate (NADPH oxidase activation, superoxide, mitogen-activated protein kinase activation, and with a greater activation of the Akt/endothelial nitric oxide synthase (eNOS pathway. These results provided the first evidence that a CCB potentiates the vascular protective effects of an ARB in salt-sensitive hypertension, compared with a diuretic, and provided a novel rationale explaining the benefit of the combination therapy with an ARB and a CCB.

  19. Study of the interaction of potassium ion channel protein with micelle by molecular dynamics simulation

    Science.gov (United States)

    Shantappa, Anil; Talukdar, Keka

    2018-04-01

    Ion channels are proteins forming pore inside the body of all living organisms. This potassium ion channel known as KcsA channel and it is found in the each cell and nervous system. Flow of various ions is regulated by the function of the ion channels. The nerve ion channel protein with protein data bank entry 1BL8, which is basically an ion channel protein in Streptomyces Lividans and which is taken up to form micelle-protein system and the system is analyzed by using molecular dynamics simulation. Firstly, ion channel pore is engineered by CHARMM potential and then Micelle-protein system is subjected to molecular dynamics simulation. For some specific micelle concentration, the protein unfolding is observed.

  20. Functional identification of a GORK potassium channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f.

    Science.gov (United States)

    Li, Junlin; Zhang, Huanchao; Lei, Han; Jin, Man; Yue, Guangzhen; Su, Yanhua

    2016-04-01

    A GORK homologue K(+) channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. shows the functional conservation of the GORK channels among plant species. Guard cell K(+) release through the outward potassium channels eventually enables the closure of stomata which consequently prevents plant water loss from severe transpiration. Early patch-clamp studies with the guard cells have revealed many details of such outward potassium currents. However, genes coding for these potassium-release channels have not been sufficiently characterized from species other than the model plant Arabidopsis thaliana. We report here the functional identification of a GORK (for Gated or Guard cell Outward Rectifying K(+) channels) homologue from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. AmGORK was primary expressed in shoots, where the transcripts were regulated by stress factors simulated by PEG, NaCl or ABA treatments. Patch-clamp measurements on isolated guard cell protoplasts revealed typical depolarization voltage gated outward K(+) currents sensitive to the extracelluar K(+) concentration and pH, resembling the fundamental properties previously described in other species. Two-electrode voltage-clamp analysis in Xenopus lavies oocytes with AmGORK reconstituted highly similar characteristics as assessed in the guard cells, supporting that the function of AmGORK is consistent with a crucial role in mediating stomatal closure in Ammopiptanthus mongolicus. Furthermore, a single amino acid mutation D297N of AmGORK eventually abolishes both the voltage-gating and its outward rectification and converts the channel into a leak-like channel, indicating strong involvement of this residue in the gating and voltage dependence of AmGORK. Our results obtained from this anciently originated plant support a strong functional conservation of the GORK channels among plant species and maybe also along the progress of revolution.

  1. The effects of prior calcium channel blocker therapy on creatine kinase-MB levels after percutaneous coronary interventions

    OpenAIRE

    Gulmez, Oyku

    2008-01-01

    Oyku Gulmez, Ilyas Atar, Bülent Ozin, Mehmet Emin Korkmaz, Aslı Atar, Alp Aydinalp, Aylin Yildirir, Haldun MuderrisogluBaskent University Faculty of Medicine, Department of Cardiology, Ankara, TurkeyBackground: Use of intracoronary calcium channel blockers (CCBs) during percutaneous coronary intervention (PCI) has been shown to have favorable effects on coronary blood flow. We aimed to investigate the effects of CCBs administrated perorally on creatine kinase-MB (CK-MB) levels in pa...

  2. Role of inward rectifier potassium channels in salivary gland function and sugar feeding of the fruit fly, Drosophila melanogaster

    Science.gov (United States)

    The arthropod salivary gland is of critical importance for horizontal transmission of pathogens, yet a detailed understanding of the ion conductance pathways responsible for saliva production and excretion is lacking. A superfamily of potassium ion channels, known as inward rectifying potassium (Ki...

  3. Rearrangement of potassium ions and Kv1.1/Kv1.2 potassium channels in regenerating axons following end-to-end neurorrhaphy: ionic images from TOF-SIMS.

    Science.gov (United States)

    Liu, Chiung-Hui; Chang, Hung-Ming; Wu, Tsung-Huan; Chen, Li-You; Yang, Yin-Shuo; Tseng, To-Jung; Liao, Wen-Chieh

    2017-10-01

    The voltage-gated potassium channels Kv1.1 and Kv1.2 that cluster at juxtaparanodal (JXP) regions are essential in the regulation of nerve excitability and play a critical role in axonal conduction. When demyelination occurs, Kv1.1/Kv1.2 activity increases, suppressing the membrane potential nearly to the equilibrium potential of K + , which results in an axonal conduction blockade. The recovery of K + -dependent communication signals and proper clustering of Kv1.1/Kv1.2 channels at JXP regions may directly reflect nerve regeneration following peripheral nerve injury. However, little is known about potassium channel expression and its relationship with the dynamic potassium ion distribution at the node of Ranvier during the regenerative process of peripheral nerve injury (PNI). In the present study, end-to-end neurorrhaphy (EEN) was performed using an in vivo model of PNI. The distribution of K + at regenerating axons following EEN was detected by time-of-flight secondary-ion mass spectrometry. The specific localization and expression of Kv1.1/Kv1.2 channels were examined by confocal microscopy and western blotting. Our data showed that the re-establishment of K + distribution and intensity was correlated with the functional recovery of compound muscle action potential morphology in EEN rats. Furthermore, the re-clustering of Kv1.1/1.2 channels 1 and 3 months after EEN at the nodal region of the regenerating nerve corresponded to changes in the K + distribution. This study provided direct evidence of K + distribution in regenerating axons for the first time. We proposed that the Kv1.1/Kv1.2 channels re-clustered at the JXP regions of regenerating axons are essential for modulating the proper patterns of K + distribution in axons for maintaining membrane potential stability after EEN.

  4. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3.

    Science.gov (United States)

    Wright, Paul D; Veale, Emma L; McCoull, David; Tickle, David C; Large, Jonathan M; Ococks, Emma; Gothard, Gemma; Kettleborough, Catherine; Mathie, Alistair; Jerman, Jeffrey

    2017-11-04

    Two-pore domain potassium channels (K2Ps) are characterized by their four transmembrane domain and two-pore topology. They carry background (or leak) potassium current in a variety of cell types. Despite a number of important roles there is currently a lack of pharmacological tools with which to further probe K2P function. We have developed a cell-based thallium flux assay, using baculovirus delivered TASK3 (TWIK-related acid-sensitive K + channel 3, KCNK9, K2P9.1) with the aim of identifying novel, selective TASK3 activators. After screening a library of 1000 compounds, including drug-like and FDA approved molecules, we identified Terbinafine as an activator of TASK3. In a thallium flux assay a pEC50 of 6.2 ( ±0.12) was observed. When Terbinafine was screened against TASK2, TREK2, THIK1, TWIK1 and TRESK no activation was observed in thallium flux assays. Several analogues of Terbinafine were also purchased and structure activity relationships examined. To confirm Terbinafine's activation of TASK3 whole cell patch clamp electrophysiology was carried out and clear potentiation observed in both the wild type channel and the pathophysiological, Birk-Barel syndrome associated, G236R TASK3 mutant. No activity at TASK1 was observed in electrophysiology studies. In conclusion, we have identified the first selective activator of the two-pore domain potassium channel TASK3. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [G-protein potentiates the activation of TNF-alpha on calcium-activated potassium channel in ECV304].

    Science.gov (United States)

    Lin, L; Zheng, Y; Qu, J; Bao, G

    2000-06-01

    Observe the effect of tumor necrosis factor-alpha (TNF-alpha) on calcium-activated potassium channel in ECV304 and the possible involvement of G-protein mediation in the action of TNF-alpha. Using the cell-attached configuration of patch clamp technique. (1) the activity of high-conductance calcium-activated potassium channel (BKca) was recorded. Its conductance is (202.54 +/- 16.62) pS; (2) the activity of BKca was potentiated by 200 U/ml TNF-alpha; (3) G-protein would intensify this TNF-alpha activation. TNF-alpha acted on vascular endothelial cell ECV304 could rapidly activate the activity of BKca. Opening of BKca resulted in membrane hyper-polarization which could increase electro-chemical gradient for the resting Ca2+ influx and open leakage calcium channel, thus resting cytoplasmic free Ca2+ concentration could be elevated. G-protein may exert an important regulation in this process.

  6. Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel.

    Science.gov (United States)

    Sesti, Federico; Rajan, Sindhu; Gonzalez-Colaso, Rosana; Nikolaeva, Natalia; Goldstein, Steve A N

    2003-04-01

    MVP, a Methanococcus jannaschii voltage-gated potassium channel, was cloned and shown to operate in eukaryotic and prokaryotic cells. Like pacemaker channels, MVP opens on hyperpolarization using S4 voltage sensors like those in classical channels activated by depolarization. The MVP S4 span resembles classical sensors in sequence, charge, topology and movement, traveling inward on hyperpolarization and outward on depolarization (via canaliculi in the protein that bring the extracellular and internal solutions into proximity across a short barrier). Thus, MVP opens with sensors inward indicating a reversal of S4 position and pore state compared to classical channels. Homologous channels in mammals and plants are expected to function similarly.

  7. d-Tubocurarine and Berbamine: Alkaloids That Are Permeant Blockers of the Hair Cell's Mechano-Electrical Transducer Channel and Protect from Aminoglycoside Toxicity

    Directory of Open Access Journals (Sweden)

    Nerissa K. Kirkwood

    2017-09-01

    Full Text Available Aminoglycoside antibiotics are widely used for the treatment of life-threatening bacterial infections, but cause permanent hearing loss in a substantial proportion of treated patients. The sensory hair cells of the inner ear are damaged following entry of these antibiotics via the mechano-electrical transducer (MET channels located at the tips of the hair cell's stereocilia. d-Tubocurarine (dTC is a MET channel blocker that reduces the loading of gentamicin-Texas Red (GTTR into rat cochlear hair cells and protects them from gentamicin treatment. Berbamine is a structurally related alkaloid that reduces GTTR labeling of zebrafish lateral-line hair cells and protects them from aminoglycoside-induced cell death. Both compounds are thought to reduce aminoglycoside entry into hair cells through the MET channels. Here we show that dTC (≥6.25 μM or berbamine (≥1.55 μM protect zebrafish hair cells in vivo from neomycin (6.25 μM, 1 h. Protection of zebrafish hair cells against gentamicin (10 μM, 6 h was provided by ≥25 μM dTC or ≥12.5 μM berbamine. Hair cells in mouse cochlear cultures are protected from longer-term exposure to gentamicin (5 μM, 48 h by 20 μM berbamine or 25 μM dTC. Berbamine is, however, highly toxic to mouse cochlear hair cells at higher concentrations (≥30 μM whilst dTC is not. The absence of toxicity in the zebrafish assays prompts caution in extrapolating results from zebrafish neuromasts to mammalian cochlear hair cells. MET current recordings from mouse outer hair cells (OHCs show that both compounds are permeant open-channel blockers, rapidly and reversibly blocking the MET channel with half-blocking concentrations of 2.2 μM (dTC and 2.8 μM (berbamine in the presence of 1.3 mM Ca2+ at −104 mV. Berbamine, but not dTC, also blocks the hair cell's basolateral K+ current, IK,neo, and modeling studies indicate that berbamine permeates the MET channel more readily than dTC. These studies reveal key properties of

  8. Reduction in renal blood flow following administration of norepinephrine and phenylephrine in septic rats treated with Kir6.1 ATP-sensitive and KCa1.1 calcium-activated K+ channel blockers.

    Science.gov (United States)

    da Rosa Maggi Sant'Helena, Bruna; Guarido, Karla L; de Souza, Priscila; Crestani, Sandra; da Silva-Santos, J Eduardo

    2015-10-15

    We evaluated the effects of K+ channel blockers in the vascular reactivity of in vitro perfused kidneys, as well as on the influence of vasoactive agents in the renal blood flow of rats subjected to the cecal ligation and puncture (CLP) model of sepsis. Both norepinephrine and phenylephrine had the ability to increase the vascular perfusion pressure reduced in kidneys of rats subjected to CLP at 18 h and 36 h before the experiments. The non-selective K+ channel blocker tetraethylammonium, but not the Kir6.1 blocker glibenclamide, normalized the effects of phenylephrine in kidneys from the CLP 18 h group. Systemic administration of tetraethylammonium, glibenclamide, or the KCa1.1 blocker iberiotoxin, did not change the renal blood flow in control or septic rats. Norepinephrine or phenylephrine also had no influence on the renal blood flow of septic animals, but its injection in rats from the CLP 18 h group previously treated with either glibenclamide or iberiotoxin resulted in an exacerbated reduction in the renal blood flow. These results suggest an abnormal functionality of K+ channels in the renal vascular bed in sepsis, and that the blockage of different subtypes of K+ channels may be deleterious for blood perfusion in kidneys, mainly when associated with vasoactive drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Additive effects of cilnidipine, an L-/N-type calcium channel blocker, and an angiotensin II receptor blocker on reducing cardiorenal damage in Otsuka Long-Evans Tokushima Fatty rats with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Mori Y

    2014-06-01

    Full Text Available Yutaka Mori,1,2 Shizuka Aritomi,3 Kazumi Niinuma,3 Tarou Nakamura,3 Kenichi Matsuura,1 Junichi Yokoyama,1 Kazunori Utsunomiya1 1Division of Diabetes and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan; 2Department of Clinical Research, National Hospital Organization, Utsunomiya National Hospital, Utsunomiya, Japan; 3Research Center, Ajinomoto Pharmaceuticals Co, Ltd, Kanagawa, Japan Abstract: Cilnidipine (Cil, which is an L-/N-type calcium channel blocker (CCB, has been known to provide renal protection by decreasing the activity of the sympathetic nervous system (SNS and the renin–angiotensin system. In this study, we compared the effects of the combination of Cil and amlodipine (Aml, which is an L-type CCB, with an angiotensin (Ang II receptor blocker on diabetic cardiorenal damage in spontaneously type 2 diabetic rats. Seventeen-week-old Otsuka Long-Evans Tokushima Fatty rats were randomly assigned to receive Cil, Aml, valsartan (Val, Cil + Val, Aml + Val, or a vehicle (eight rats per group for 22 weeks. Antihypertensive potencies were nearly equal among the CCB monotherapy groups and the combination therapy groups. The lowering of blood pressure by either treatment did not significantly affect the glycemic variables. However, exacerbations of renal and heart failure were significantly suppressed in rats administered Cil or Val, and additional suppression was observed in those administered Cil + Val. Although Val increased the renin–Ang system, Aml + Val treatment resulted in additional increases in these parameters, while Cil + Val did not show such effects. Furthermore, Cil increased the ratio of Ang-(1–7 to Ang-I, despite the fact that Val and Aml + Val decreased the Ang-(1–7 levels. These actions of Cil + Val might be due to their synergistic inhibitory effect on the activity of the SNS, and on aldosterone secretion through N-type calcium channel antagonism and Ang II

  10. [Mechanism of potassium channel in hypoxia-ischemic brain edema: experiment with neonatal rat astrocyte].

    Science.gov (United States)

    Fu, Xue-mei; Xiang, Long; Liao, Da-qing; Feng, Zhi-chun; Mu, De-zhi

    2008-11-04

    To investigate the mechanism of potassium channel in brain edema caused by hypoxia-ischemia (HI). Astrocytes were obtained from 3-day-old SD rats, cultured, and randomly divided into 2 groups: normoxia group, cultured under normoxic condition, and hypoxic-ischemic group, cultured under hypoxic-ischemic condition. The cell volume was measured by radiologic method. Patch-clamp technique was used to observe the electric physiological properties of the voltage-gated potassium channels (Kv) in a whole cell configuration, and the change of voltage-gated potassium channel current (IKv) was recorded in cultured neonatal rat astrocyte during HI. Aquaporin 4 (AQP4) expression vector was constructed from pSUPER vector and transfected into the astrocytes (AQP4 RNAi) to construct AQP4 knockdown (AQP4-/-) cells. cellular volume was determined using [3H]-3-O-methyl-D-glucose uptake in both AQP4-/- and AQP4+/+ cells under the condition of HI. Real time PCR and Western blotting were used to detect the mRNA and protein expression of AQP4. The percentages of the AQP4+/+ and AQP4-/- astrocyte volumes in the condition of HI for 0.5, 1, 2, and 4 h were 104+/-7, 109+/-6, 126+/-12, and 152+/-9 times, and 97+/-7, 105+/-9, 109+/-7, and 132+/-6 times as those of their corresponding control groups (all Pastrocytes significantly increased during HI and the degrees of edema mediated by AQP4 knockdown at different time points were all significantly milder (all Pastrocytes via aquaporin-4 and then cell swelling.

  11. Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Schwarzer, Christoph; Kremser, Leopold; Lindner, Herbert H; Knaus, Hans-Günther

    2015-12-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.

  12. Effects of beta-blockers and nicardipine on oxotremorine-induced tremor in common marmosets.

    Science.gov (United States)

    Mitsuda, M; Nomoto, M; Iwata, S

    1999-10-01

    Effects of beta-blockers (propranolol, arotinolol and nipradilol) and a Ca2+ channel blocker (nicardipine) on oxotremorine-induced tremor were studied in common marmosets. Generalized tremor was elicited by an intraperitoneal administration of 0.25 mg/kg oxotremorine. Intensity of the tremor was classified into 7 degrees, and it was evaluated every 10 min. The total intensity of oxotremorine-induced tremor for each drug was expressed as "points", which were the sum of tremor intensity scores evaluated every 10 min up to 190 min following the administration of oxotremorine. Beta-blockers significantly suppressed the tremor. On the other hand, the Ca2+ channel blocker exacerbated the tremor.

  13. Effectiveness of copper sulfate and potassium permanganate on channel catfish infected with Flavobacterium columnare

    Science.gov (United States)

    Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were evaluated for their effectiveness to curtail mortality and decrease bacterial load in fish tissues and water in channel catfish Ictalurus punctatus naturally infected with Flavobacterium columnare, the causative agent of columnaris. Fis...

  14. The effects of prior calcium channel blocker therapy on creatine kinase-MB levels after percutaneous coronary interventions

    OpenAIRE

    Gulmez, Oyku; Atar, Ilyas; Ozin, B?lent; Korkmaz, Mehmet Emin; Atar, Asli; Aydinalp, Alp; Yildirir, Aylin; Muderrisoglu, Haldun

    2008-01-01

    Background: Use of intracoronary calcium channel blockers (CCBs) during percutaneous coronary intervention (PCI) has been shown to have favorable effects on coronary blood flow. We aimed to investigate the effects of CCBs administrated perorally on creatine kinase-MB (CK-MB) levels in patients undergoing elective PCI. Methods: A total of 570 patients who underwent PCI were evaluated for CK-MB elevation. Patients who were on CCB therapy when admitted to the hospital constituted the CCB group. ...

  15. Proapoptotic Role of Potassium Ions in Liver Cells

    Directory of Open Access Journals (Sweden)

    Zhenglin Xia

    2016-01-01

    Full Text Available Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1.

  16. Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2009-03-01

    Large-conductance calcium-dependent potassium channels (BK channels) are homogeneously distributed along the somatodendritic axis of layer 5 pyramidal neurons of the rat somatosensory cortex. The relevance of this conductance for dendritic calcium electrogenesis was studied in acute brain slices using somatodendritic patch clamp recordings and calcium imaging. BK channel activation reduces the occurrence of dendritic calcium spikes. This is reflected in an increased critical frequency of somatic spikes necessary to activate the distal initiation zone. Whilst BK channels repolarise the somatic spike, they dampen it only in the distal dendrite. Their activation reduces dendritic calcium influx via glutamate receptors. Furthermore, they prevent dendritic calcium electrogenesis and subsequent somatic burst discharges. However, the time window for coincident somatic action potential and dendritic input to elicit dendritic calcium events is not influenced by BK channels. Thus, BK channel activation in layer 5 pyramidal neurons affects cellular excitability primarily by establishing a high threshold at the distal action potential initiation zone.

  17. The heart and potassium: a banana republic.

    Science.gov (United States)

    Khan, Ehsan; Spiers, Christine; Khan, Maria

    2013-03-01

    The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium.

  18. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  19. Ionic channels in plants: potassium transport Canais iônicos em plantas: o transporte de potássio

    Directory of Open Access Journals (Sweden)

    Antonio Costa de Oliveira

    1995-01-01

    Full Text Available The discovery of potassium channels on the plasma membrane has helped to elucidate important mechanisms in animal and plant physiology. Plant growth and development associated mechanisms, such as germination, leaf movements, stomatal action, ion uptake in roots, phloem transport and nutrient storage are linked to potassium transport. Studies describing potassium transport regulation by abscisic acid (ABA, Ca++, light and other factors are presented here. Also the types of channels that regulate potassium uptake and efflux in the cell, and the interaction of these channels with external signals, are discussed.A descoberta de canais iônicos presentes na membrana plasmática tem ajudado a elucidar importantes mecanismos fisiológicos em animais e plantas. Mecanismos associados ao crescimento e desenvolvimento das plantas, tais como germinação, movimento foliar, abertura e fechamento de estômatos, absorção de íons pelas raízes e armazenamento de nutrientes estão ligados ao transporte de potássio. Estudos descrevendo a regulação do transporte deste nutriente por ácido abscísico (ABA, Ca++, luz e outros fatores são apresentados. Os tipos de canais que regulam a saída e entrada de potássio na célula, e as interações destes com os sinais externos, são discutidos.

  20. Fluoxetine protection in decompression sickness in mice is enhanced by blocking TREK-1 potassium channel with the spadin antidepressant.

    Directory of Open Access Journals (Sweden)

    Nicolas eVallée

    2016-02-01

    Full Text Available In mice, disseminated coagulation, inflammation and ischemia induce neurological damages that can lead to the death. These symptoms result from circulating bubbles generated by a pathogenic decompression. An acute fluoxetine treatment or the presence of the TREK-1 potassium channel increased the survival rate when mice are subjected to an experimental dive/decompression protocol. This is a paradox because fluoxetine is a blocker of TREK-1 channels. First, we studied the effects of an acute dose of fluoxetine (50mg/kg in wild-type (WT and TREK-1 deficient mice (Knockout homozygous KO and heterozygous HET. Then, we combined the same fluoxetine treatment with a five-day treatment by spadin, in order to specifically block TREK-1 activity (KO-like mice. KO and KO-like mice could be regarded as antidepressed models.167 mice (45 WTcont 46 WTflux 30 HETflux and 46 KOflux constituting the flux-pool and 113 supplementary mice (27 KO-like 24 WTflux2 24 KO-likeflux 21 WTcont2 17 WTno dive constituting the spad-pool were included in this study. Only 7% of KO-TREK-1 treated with fluoxetine (KOflux and 4% of mice treated with both spadin and fluoxetine (KO-likeflux died from decompression sickness (DCS symptoms. These values are much lower than those of WT control (62% or KO-like mice (41%. After the decompression protocol, mice showed a significant consumption of their circulating platelets and leukocytes.Spadin antidepressed mice were more likely to declare DCS. Nevertheless, which had both blocked TREK-1 channel and were treated with fluoxetine were better protected against DCS. We conclude that the protective effect of such an acute dose of fluoxetine is enhanced when TREK-1 is inhibited. We confirmed that antidepressed models may have worse DCS outcomes, but a concomitant fluoxetine treatment not only decreases DCS severity but increases the survival rate.

  1. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    Science.gov (United States)

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  2. Crystallization and preliminary X-ray crystallographic characterization of a cyclic nucleotide-binding homology domain from the mouse EAG potassium channel

    International Nuclear Information System (INIS)

    Marques-Carvalho, Maria João; Morais-Cabral, João Henrique

    2012-01-01

    The crystallization conditions and preliminary crystal characterization of the cytoplasmic cyclic nucleotide-binding homology domain from the mouse EAG potassium channel are reported. The members of the family of voltage-gated KCNH potassium channels play important roles in cardiac and neuronal repolarization, tumour proliferation and hormone secretion. These channels have a C-terminal cytoplasmic domain which is homologous to cyclic nucleotide-binding domains (CNB-homology domains), but it has been demonstrated that channel function is not affected by cyclic nucleotides and that the domain does not bind nucleotides in vitro. Here, the crystallization and preliminary crystallographic analysis of a CNB-homology domain from a member of the KCNH family, the mouse EAG channel, is reported. X-ray diffraction data were collected to 2.2 Å resolution and the crystal belonged to the hexagonal space group P3 1 21

  3. Reversible Dementia: Two Nursing Home Patients With Voltage-Gated Potassium Channel Antibody-Associated Limbic Encephalitis

    NARCIS (Netherlands)

    Reintjes, W.; Romijn, M.D.M.; den Hollander, D.; ter Bruggen, J.P.; van Marum, R.J.

    2015-01-01

    Voltage-gated potassium channel antibody-associated limbic encephalitis (VGKC-LE) is a rare disease that is a diagnostic and therapeutic challenge for medical practitioners. Two patients with VGKC-LE, both developing dementia are presented. Following treatment, both patients showed remarkable

  4. Modification of sodium and potassium channel kinetics by diethyl ether and studies on sodium channel inactivation in the crayfish giant axon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Bruce Palmer [Univ. of Rochester, NY (United States)

    1979-01-01

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in the hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.

  5. Vonoprazan fumarate, a novel potassium-competitive acid blocker, in the management of gastroesophageal reflux disease: safety and clinical evidence to date

    Science.gov (United States)

    Sugano, Kentaro

    2018-01-01

    Potassium-competitive acid blocker (P-CAB) is a class of drug that competitively blocks the potassium-binding site of H+, K+-adenosine triphosphate (ATP)ase. Although the history of this class of drugs started over 30 years ago, clinical use of two P-CABs, revaprazan and vonoprazan, were only recently approved in Korea and Japan, respectively. Among them, vonoprazan has several advantages over conventional proton-pump inhibitors (PPIs), including rapid onset of action, long duration of acid suppression, fewer interindividual variations in terms of acid suppression, and minimum dietary influence on its action. These advantages of vonoprazan have been proved in clinical trials conducted for license approvals for several acid-related diseases. In this review article, current evidence of vonoprazan in the management of gastroesophageal reflux disease (GERD) will be summarized. Since the clinical trial data, as well as postmarketed clinical data, have consistently demonstrated superiority of vonoprazan over conventional PPIs in terms of achieving healing of mucosal breaks and maintaining the healing, it may provide an excellent, if not complete, option for fulfilling some of the unmet needs for current GERD therapy. The safety problem of vonoprazan is also discussed, as more pronounced hypergastrinemia inevitably ensues with its use. PMID:29383028

  6. Voltage-Gated Potassium Channels Kv1.3--Potentially New Molecular Target in Cancer Diagnostics and Therapy.

    Science.gov (United States)

    Teisseyre, Andrzej; Gąsiorowska, Justyna; Michalak, Krystyna

    2015-01-01

    Voltage-gated potassium channels, Kv1.3, which were discovered in 1984, are integral membrane proteins which are activated ("open") upon change of the cell membrane potential, enabling a passive flux of potassium ions across the cell membrane. The channels are expressed in many different tissues, both normal and cancer. Since 2005 it has been known that the channels are expressed not only in the plasma membrane, but also in the inner mitochondrial membrane. The activity of Kv1.3 channels plays an important role, among others, in setting the cell resting membrane potential, cell proliferation, apoptosis and volume regulation. For some years, these channels have been considered a potentially new molecular target in both the diagnostics and therapy of some cancer diseases. This review article focuses on: 1) changes of expression of the channels in cancer disorders with special regard to correlations between the channels' expression and stage of the disease, 2) influence of inhibitors of Kv1.3 channels on proliferation and apoptosis of cancer cells, 3) possible future applications of Kv1.3 channels' inhibitors in therapy of some cancer diseases. In the last section, the results of studies performed in our Laboratory of Bioelectricity on the influence of selected biologically active plant-derived compounds from the groups of flavonoids and stilbenes and their natural and synthetic derivatives on the activity of Kv1.3 channels in normal and cancer cells are reviewed. A possible application of some compounds from these groups to support therapy of cancer diseases, such as breast, colon and lymph node cancer, and melanoma or chronic lymphocytic leukemia (B-CLL), is announced.

  7. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors

    Science.gov (United States)

    Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel

    2017-01-01

    Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461

  8. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies

    OpenAIRE

    Lang, Bethan; Makuch, Mateusz; Moloney, Teresa; Dettmann, Inga; Mindorf, Swantje; Probst, Christian; Stoecker, Winfried; Buckley, Camilla; Newton, Charles R; Leite, M Isabel; Maddison, Paul; Komorowski, Lars; Adcock, Jane; Vincent, Angela; Waters, Patrick

    2017-01-01

    Objectives Autoantibodies against the extracellular domains of the voltage-gated potassium channel (VGKC) complex proteins, leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-2 (CASPR2), are found in patients with limbic encephalitis, faciobrachial dystonic seizures, Morvan's syndrome and neuromyotonia. However, in routine testing, VGKC complex antibodies without LGI1 or CASPR2 reactivities (double-negative) are more common than LGI1 or CASPR2 specificities. Therefore, ...

  9. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans.

    Science.gov (United States)

    Liu, Shuyuan; Yue, Longtao; Gu, Wenrui; Li, Xiuyun; Zhang, Liuping; Sun, Shujuan

    2016-01-01

    Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane).

  10. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel.

    Science.gov (United States)

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  11. Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms.

    Directory of Open Access Journals (Sweden)

    Rebecca E Haddock

    Full Text Available BACKGROUND: The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH mechanism; which predominates in smaller resistance vessels and is characterized in this study. METHODOLOGY/PRINCIPAL FINDINGS: Membrane potential, vessel diameter and luminal pressure were recorded in 4(th order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat over 16-20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat. Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SK(Ca/IK(Ca inhibition; with such activity being impaired in obesity. SK(Ca-IK(Ca activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl-6-methyl-pyrimidin-4-yl]-amine (CyPPA and 1-ethyl-2-benzimidazolinone (1-EBIO, respectively, hyperpolarized and relaxed vessels from control and obese rats. IK(Ca-mediated EDH contribution was increased in obesity, and associated with altered IK(Ca distribution and elevated expression. In contrast, the SK(Ca-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (K(ir and Na(+/K(+-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential K

  12. Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel.

    Science.gov (United States)

    Nozaki, Tomohiro; Ozawa, Shin-Ichiro; Harada, Hitomi; Kimura, Tomomi; Osawa, Masanori; Shimada, Ichio

    2016-11-17

    Voltage-dependent potassium (Kv) channels allow for the selective permeability of potassium ions in a membrane potential dependent manner, playing crucial roles in neurotransmission and muscle contraction. Kv channel is a tetramer, in which each subunit possesses a voltage-sensing domain (VSD) and a pore domain (PD). Although several lines of evidence indicated that membrane depolarization is sensed as the movement of helix S4 of the VSD, the detailed voltage-sensing mechanism remained elusive, due to the difficulty of structural analyses at resting potential. In this study, we conducted a comprehensive disulfide locking analysis of the VSD using 36 double Cys mutants, in order to identify the proximal residue pairs of the VSD in the presence or absence of a membrane potential. An intramolecular SS-bond was formed between 6 Cys pairs under both polarized and depolarized environment, and one pair only under depolarized environment. The multiple conformations captured by the SS-bond can be divided by two states, up and down, where S4 lies on the extracellular and intracellular sides of the membrane, respectively, with axial rotation of 180°. The transition between these two states is caused by the S4 translocation of 12 Å, enabling allosteric regulation of the gating at the PD.

  13. Protein self-assembly and lipid binding in the folding of the potassium channel KcsA

    NARCIS (Netherlands)

    Barrera, F.N.; Renard, M.L.; Poveda, J.A.; de Kruijff, B.; Killian, J.A.; González-Ros, J.M.

    2008-01-01

    Moderate concentrations of the alcohol 2,2,2-trifluoroethanol (TFE) cause the coupled unfolding and dissociation into subunits of the homotetrameric potassium channel KcsA, in a process that is partially irreversible when the protein is solubilized in plain dodecyl â-D-maltoside (DDM) micelles

  14. Altered Potassium Ion Channel Function as a Possible Mechanism of Increased Blood Pressure in Rats Fed Thermally Oxidized Palm Oil Diets.

    Science.gov (United States)

    Nkanu, Etah E; Owu, Daniel U; Osim, Eme E

    2017-12-27

    Intake of thermally oxidized palm oil leads to cytotoxicity and alteration of the potassium ion channel function. This study investigated the effects of fresh and thermally oxidized palm oil diets on blood pressure and potassium ion channel function in blood pressure regulation. Male Wistar rats were randomly divided into three groups of eight rats. Control group received normal feed; fresh palm oil (FPO) and thermally oxidized palm oil (TPO) groups were fed a diet mixed with 15% (weight/weight) fresh palm oil and five times heated palm oil, respectively, for 16 weeks. Blood pressure was measured; blood samples, hearts, and aortas were collected for biochemical and histological analyses. Thermally oxidized palm oil significantly elevated basal mean arterial pressure (MAP). Glibenclamide (10 -5 mmol/L) and tetraethylammonium (TEA; 10 -3 mmol/L) significantly raised blood pressure in TPO compared with FPO and control groups. Levcromakalim (10 -6 mmol/L) significantly (p palm oil increases MAP probably due to the attenuation of adenosine triphosphate-sensitive potassium (K ATP ) and large-conductance calcium-dependent potassium (BK Ca ) channels, tissue peroxidation, and altered histological structures of the heart and blood vessels.

  15. Lipid Rescue Therapy and High-Dose insulin Euglycemic Therapy are Effective for Severe Refractory Calcium Channel Blocker Overdose: Case Report and Review of Literature

    Directory of Open Access Journals (Sweden)

    Niko Bekjarovski

    2013-09-01

    How to cite this article: Bekjarovski NG. Lipid Rescue Therapy and High-Dose insulin Euglycemic Therapy are Effective for Severe Refractory Calcium Channel Blocker Overdose: Case Report and Review of Literature. Asia Pac J Med Toxicol 2013;2:114-6.

  16. Pharmacological Treatment for Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Kaoru Sugi, MD PhD

    2005-01-01

    Full Text Available Pharmacological treatment for atrial fibrillation has a variety of purposes, such as pharmacological defibrillation, maintenance of sinus rhythm, heart rate control to prevent congestive heart failure and prevention of both cerebral infarction and atrial remodeling. Sodium channel blockers are superior to potassium channel blockers for atrial defibrillation, while both sodium and potassium channel blockers are effective in the maintenance of sinus rhythm. In general, digitalis or Ca antagonists are used to control heart rate during atrial fibrillation to prevent congestive heart failure, while amiodarone or bepridil also reduce heart rates during atrial fibrillation. Anticoagulant therapy with warfarin is recommended to prevent cerebral infarction and angiotensin converting enzyme antagonists or angiotensin II receptor blockers are also used to prevent atrial remodeling. One should select appropriate drugs for treatment of atrial fibrillation according to the patient's condition.

  17. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1

    Science.gov (United States)

    Renigunta, Vijay; Fischer, Thomas; Zuzarte, Marylou; Kling, Stefan; Zou, Xinle; Siebert, Kai; Limberg, Maren M.; Rinné, Susanne; Decher, Niels; Schlichthörl, Günter; Daut, Jürgen

    2014-01-01

    The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion. PMID:24743596

  18. Current concepts in combination therapy for the treatment of hypertension: combined calcium channel blockers and RAAS inhibitors

    Directory of Open Access Journals (Sweden)

    Alberto F Rubio-Guerra

    2009-11-01

    Full Text Available Alberto F Rubio-Guerra1, David Castro-Serna2, Cesar I Elizalde Barrera2, Luz M Ramos-Brizuela21Metabolic and Research Clinic, 2Internal Medicine Department, Hospital General de Ticomán SS DF, MéxicoAbstract: Recent guidelines for the management of hypertension recommend target blood pressures <140/90 mmHg in hypertensive patients, or <130/80 mmHg in subjects with diabetes, chronic kidney disease, or coronary artery disease. Despite the availability and efficacy of antihypertensive drugs, most hypertensive patients do not reach the recommended treatment targets with monotherapy, making combination therapy necessary to achieve the therapeutic goal. Combination therapy with 2 or more agents is the most effective method for achieving strict blood pressure goals. Fixed-dose combination simplifies treatment, reduces costs, and improves adherence. There are many drug choices for combination therapy, but few data are available about the efficacy and safety of some specific combinations. Combination therapy of calcium antagonists and inhibitors of the renin-angiotensin-aldosterone system (RAAS are efficacious and safe, and have been considered rational by both the JNC 7 and the 2007 European Society of Hypertension – European Society of Cardiology guidelines for the management of arterial hypertension. The aim of this review is to discuss some relevant issues about the use of combinations with calcium channel blockers and RAAS inhibitors in the treatment of hypertension.Keywords: hypertension, calcium channel blockers, renin-angiotensin-aldosterone system inhibitors, fixed-dose combination, adherence

  19. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050200, Hebei (China); Zhao, Xin [Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei (China); Chang, Yanzhong [Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei (China); Zhang, Yuanyuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Xi [Department of Pharmacy, The Forth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei (China); Zhang, Xuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Liu, Zhenyi; Guo, Hui [Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Wang, Na [Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Gao, Yonggang [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Zhang, Jianping, E-mail: zhangjianping14@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Li, E-mail: chuli0614@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei (China)

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport and

  20. Treating a natural outbreak of columnaris in channel catfish with copper sulfate and potassium permanganate

    Science.gov (United States)

    An F. Columnare-exclusive epizootic occurred in fingerling channel catfish (Ictalurus punctatus) during normal tank culture practices at SNARC. Fish were transferred to the ultra low-flow system and 2.1 mg/L copper sulfate or 3 mg/L potassium permanganate was administered; an untreated control was ...

  1. A computational design approach for virtual screening of peptide interactions across K+ channel families

    Directory of Open Access Journals (Sweden)

    Craig A. Doupnik

    2015-01-01

    Full Text Available Ion channels represent a large family of membrane proteins with many being well established targets in pharmacotherapy. The ‘druggability’ of heteromeric channels comprised of different subunits remains obscure, due largely to a lack of channel-specific probes necessary to delineate their therapeutic potential in vivo. Our initial studies reported here, investigated the family of inwardly rectifying potassium (Kir channels given the availability of high resolution crystal structures for the eukaryotic constitutively active Kir2.2 channel. We describe a ‘limited’ homology modeling approach that can yield chimeric Kir channels having an outer vestibule structure representing nearly any known vertebrate or invertebrate channel. These computationally-derived channel structures were tested in silico for ‘docking’ to NMR structures of tertiapin (TPN, a 21 amino acid peptide found in bee venom. TPN is a highly selective and potent blocker for the epithelial rat Kir1.1 channel, but does not block human or zebrafish Kir1.1 channel isoforms. Our Kir1.1 channel-TPN docking experiments recapitulated published in vitro findings for TPN-sensitive and TPN-insensitive channels. Additionally, in silico site-directed mutagenesis identified ‘hot spots’ within the channel outer vestibule that mediate energetically favorable docking scores and correlate with sites previously identified with in vitro thermodynamic mutant-cycle analysis. These ‘proof-of-principle’ results establish a framework for virtual screening of re-engineered peptide toxins for interactions with computationally derived Kir channels that currently lack channel-specific blockers. When coupled with electrophysiological validation, this virtual screening approach may accelerate the drug discovery process, and can be readily applied to other ion channels families where high resolution structures are available.

  2. Mechanism of resveratrol-induced relaxation of the guinea pig fundus.

    Science.gov (United States)

    Tsai, Ching-Chung; Tey, Shu-Leei; Lee, Ming-Che; Liu, Ching-Wen; Su, Yu-Tsun; Huang, Shih-Che

    2018-04-01

    Resveratrol is a polyphenolic compound that can be isolated from plants and also is a constituent of red wine. Resveratrol induces relaxation of vascular smooth muscle and may prevent cardiovascular diseases. Impaired gastric accommodation plays an important role in functional dyspepsia and fundic relaxation and is a therapeutic target of functional dyspepsia. Although drugs for fundic relaxation have been developed, these types of drugs are still rare. The purpose of this study was to investigate the relaxant effects of resveratrol in the guinea pig fundus. We studied the relaxant effects of resveratrol in the guinea pig fundus. In addition, we investigated the mechanism of resveratrol-induced relaxation on the guinea pig fundus by using tetraethylammonium (a non-selective potassium channel blocker), apamine (a selective inhibitor of the small conductance calcium-activated potassium channel), iberiotoxin (an inhibitor of large conductance calcium-activated potassium channels), glibenclamide (an ATP-sensitive potassium channel blocker), KT 5720 (a cAMP-dependent protein kinase A inhibitor), KT 5823 (a cGMP-dependent protein kinase G inhibitor), NG-nitro-L-arginine (a competitive inhibitor of nitric oxide synthase), tetrodotoxin (a selective neuronal Na + channel blocker), ω-conotoxin GVIA (a selective neuronal Ca 2+ channel blocker) and G-15 (a G-protein coupled estrogen receptor antagonist). The results of this study showed that resveratrol has potent and dose-dependent relaxant effects on the guinea pig fundic muscle. In addition, the results showed that resveratrol-induced relaxation of the guinea pig fundus occurs through nitric oxide and ATP-sensitive potassium channels. This study provides the first evidence concerning the relaxant effects of resveratrol in the guinea pig fundic muscle strips. Furthermore, resveratrol may be a potential drug to relieve gastrointestinal dyspepsia. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria - An amazing defence tool against hyperosmotic stress

    Directory of Open Access Journals (Sweden)

    Daniela eTrono

    2015-12-01

    Full Text Available In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about fifteen years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP. Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous and tissues/organs (etiolated and green have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane towards the matrix, so collapsing membrane potential (ΔΨ, the main component of the protonmotive force (Δp in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate

  4. Investigation of the role of non-selective calcium channel blocker (flunarizine) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice.

    Science.gov (United States)

    Gulati, Puja; Muthuraman, Arunachalam; Kaur, Parneet

    2015-04-01

    The present study was designed to investigate the role of flunarizine (a non-selective calcium channel blocker) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice. Bilateral carotid artery occlusion of 12min followed by reperfusion for 24h was given to induce cerebral injury in male Swiss mice. The assessment of learning & memory was performed by Morris water maze test; motor in-coordination was evaluated by rota rod, lateral push and inclined beam walking tests; cerebral infarct size was quantified by triphenyltetrazolium chloride staining. In addition, reduced glutathione (GSH), total calcium and acetylcholinesterase (AChE) activity were also estimated in aged brain tissue. Donepezil treated group served as a positive control in this study. Ischemia reperfusion (I/R) injury produced significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Further, I/R injury also produced significant increase in levels of total calcium, AChE activity and decrease in GSH levels. Pretreatment of flunarizine significantly attenuated I/R induced infarct size, behavioral and biochemical changes. Hence, it may be concluded that, a non-selective calcium channel blocker can be useful in I/R associated cognitive dysfunction due to its anti-oxidant, anti-infarct and modulatory actions of neurotransmitters & calcium channels. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Kv10.1 potassium channel: from the brain to the tumors.

    Science.gov (United States)

    Cázares-Ordoñez, V; Pardo, L A

    2017-10-01

    The KCNH1 gene encodes the Kv10.1 (Eag1) ion channel, a member of the EAG (ether-à-go-go) family of voltage-gated potassium channels. Recent studies have demonstrated that KCHN1 mutations are implicated in Temple-Baraitser and Zimmermann-Laband syndromes and other forms of developmental deficits that all present with mental retardation and epilepsy, suggesting that Kv10.1 might be important for cognitive development in humans. Although the Kv10.1 channel is mainly expressed in the mammalian brain, its ectopic expression occurs in 70% of human cancers. Cancer cells and tumors expressing Kv10.1 acquire selective advantages that favor cancer progression through molecular mechanisms that involve several cellular pathways, indicating that protein-protein interactions may be important for Kv10.1 influence in cell proliferation and tumorigenesis. Several studies on transcriptional and post-transcriptional regulation of Kv10.1 expression have shown interesting mechanistic insights about Kv10.1 role in oncogenesis, increasing the importance of identifying the cellular factors that regulate Kv10.1 expression in tumors.

  6. Is Shock Index a Valid Predictor of Mortality in Emergency Department Patients With Hypertension, Diabetes, High Age, or Receipt of β- or Calcium Channel Blockers?

    DEFF Research Database (Denmark)

    Kristensen, Anders K B; Holler, Jon G; Hallas, Jesper

    2016-01-01

    STUDY OBJECTIVE: Shock index is a widely reported tool to identify patients at risk for circulatory collapse. We hypothesize that old age, diabetes, hypertension, and β- or calcium channel blockers weaken the association between shock index and mortality. METHODS: This was a cohort study of all...... first-time emergency department (ED) visits between 1995 and 2011 (n=111,019). We examined whether age 65 years or older, diabetes, hypertension, and use of β- or calcium channel blockers modified the association between shock index and 30-day mortality. RESULTS: The 30-day mortality was 3.0%. For all...... than or equal to 1 in patients aged 65 years or older was 8.2 (95% CI 7.2 to 9.4) compared with 18.9 (95% CI 15.6 to 23.0) in younger patients. β- Or calcium channel-blocked patients had an OR of 6.4 (95% CI 4.9 to 8.3) versus 12.3 (95% CI 11.0 to 13.8) in nonusers and hypertensive patients had...

  7. Voltage-gated potassium channel-complex autoimmunity and associated clinical syndromes.

    Science.gov (United States)

    Irani, Sarosh R; Vincent, Angela

    2016-01-01

    Voltage-gated potassium channel (VGKC)-complex antibodies are defined by the radioimmunoprecipitation of Kv1 potassium channel subunits from brain tissue extracts and were initially discovered in patients with peripheral nerve hyperexcitability (PNH). Subsequently, they were found in patients with PNH plus psychosis, insomnia, and dysautonomia, collectively termed Morvan's syndrome (MoS), and in a limbic encephalopathy (LE) with prominent amnesia and frequent seizures. Most recently, they have been described in patients with pure epilepsies, especially in patients with the novel and distinctive semiology termed faciobrachial dystonic seizures (FBDS). In each of these conditions, there is a close correlation between clinical measures and antibody levels. The VGKC-complex is a group of proteins that are strongly associated in situ and after extraction in mild detergent. Two major targets of the autoantibodies are leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein 2 (CASPR2). The patients with PNH or MoS are most likely to have CASPR2 antibodies, whereas LGI1 antibodies are found characteristically in patients with FBDS and LE. Crucially, each of these conditions has a good response to immunotherapies, often corticosteroids and plasma exchange, although optimal regimes require further study. VGKC-complex antibodies have also been described in neuropathic pain syndromes, chronic epilepsies, a polyradiculopathy in porcine abattoir workers, and some children with status epilepticus. Increasingly, however, the antigenic targets in these patients are not defined and in some cases the antibodies may be secondary rather than the primary cause. Future serologic studies should define all the antigenic components of the VGKC-complex, and further inform mechanisms of antibody pathogenicity and related inflammation. © 2016 Elsevier B.V. All rights reserved.

  8. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans.

    Directory of Open Access Journals (Sweden)

    Shuyuan Liu

    Full Text Available Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers, amlodipine (AML, nifedipine (NIF, benidipine (BEN and flunarizine (FNZ with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1 expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2. The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin and YVC1 (encoding calcium channel protein in vacuole membrane.

  9. Pharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.

    Science.gov (United States)

    Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A

    2016-09-01

    Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Inhibition of protein kinase A and GIRK channel reverses fentanyl-induced respiratory depression.

    Science.gov (United States)

    Liang, Xiaonan; Yong, Zheng; Su, Ruibin

    2018-06-11

    Opioid-induced respiratory depression is a major obstacle to improving the clinical management of moderate to severe chronic pain. Opioids inhibit neuronal activity via various pathways, including calcium channels, adenylyl cyclase, and potassium channels. Currently, the underlying molecular pathway of opioid-induced respiratory depression is only partially understood. This study aimed to investigate the mechanisms of opioid-induced respiratory depression in vivo by examining the effects of different pharmacological agents on fentanyl-induced respiratory depression. Respiratory parameters were detected using whole body plethysmography in conscious rats. We show that pre-treatment with the protein kinase A (PKA) inhibitor H89 reversed the fentanyl-related effects on respiratory rate, inspiratory time, and expiratory time. Pre-treatment with the G protein-gated inwardly rectifying potassium (GIRK) channel blocker Tertiapin-Q dose-dependently reversed the fentanyl-related effects on respiratory rate and inspiratory time. A phosphodiesterase 4 (PDE4) inhibitor and cyclic adenosine monophosphate (cAMP) analogs did not affect fentanyl-induced respiratory depression. These findings suggest that PKA and GIRK may be involved in fentanyl-induced respiratory depression and could represent useful therapeutic targets for the treatment of fentanyl-induced ventilatory depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The effect of copper sulfate, potassium permanganate, and peracetic acid on Ichthyobodo necator in channel catfish

    Science.gov (United States)

    Ichthyobodo necator is a single celled biflagellate that can cause significant mortalities in fish, particularly young, tank-reared fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against Ichthybodosis in juvenile channel catfis...

  12. Differential Activity of Voltage- and Ca2+-Dependent Potassium Channels in Leukemic T Cell Lines: Jurkat Cells Represent an Exceptional Case

    Directory of Open Access Journals (Sweden)

    Salvador Valle-Reyes

    2018-05-01

    Full Text Available Activation of resting T cells relies on sustained Ca2+ influx across the plasma membrane, which in turn depends on the functional expression of potassium channels, whose activity repolarizes the membrane potential. Depending on the T-cells subset, upon activation the expression of Ca2+- or voltage-activated K+ channels, KCa or Kv, is up-regulated. In this study, by means of patch-clamp technique in the whole cell mode, we have studied in detail the characteristics of Kv and KCa currents in resting and activated human T cells, the only well explored human T-leukemic cell line Jurkat, and two additional human leukemic T cell lines, CEM and MOLT-3. Voltage dependence of activation and inactivation of Kv1.3 current were shifted up to by 15 mV to more negative potentials upon a prolonged incubation in the whole cell mode and displayed little difference at a stable state in all cell lines but CEM, where the activation curve was biphasic, with a high and low potential components. In Jurkat, KCa currents were dominated by apamine-sensitive KCa2.2 channels, whereas only KCa3.1 current was detected in healthy T and leukemic CEM and MOLT-3 cells. Despite a high proliferation potential of Jurkat cells, Kv and KCa currents were unexpectedly small, more than 10-fold lesser as compared to activated healthy human T cells, CEM and MOLT-3, which displayed characteristic Kv1.3high:KCa3.1high phenotype. Our results suggest that Jurkat cells represent perhaps a singular case and call for more extensive studies on primary leukemic T cell lines as well as a verification of the therapeutic potential of specific KCa3.1 blockers to combat acute lymphoblastic T leukemias.

  13. Scorpion Toxins Specific for Potassium (K+ Channels: A Historical Overview of Peptide Bioengineering

    Directory of Open Access Journals (Sweden)

    Zachary L. Bergeron

    2012-11-01

    Full Text Available Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+ channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics.

  14. The selective A-type K+ current blocker Tx3-1 isolated from the Phoneutria nigriventer venom enhances memory of naïve and Aβ(25-35)-treated mice.

    Science.gov (United States)

    Gomes, Guilherme M; Dalmolin, Gerusa D; Cordeiro, Marta do Nascimento; Gomez, Marcus V; Ferreira, Juliano; Rubin, Maribel A

    2013-12-15

    Potassium channels regulate many neuronal functions, including neuronal excitability and synaptic plasticity, contributing, by these means, to mnemonic processes. In particular, A-type K(+) currents (IA) play a key role in hippocampal synaptic plasticity. Therefore, we evaluated the effect of the peptidic toxin Tx3-1, a selective blocker of IA currents, extracted from the venom of the spider Phoneutria nigriventer, on memory of mice. Administration of Tx3-1 (i.c.v., 300 pmol/site) enhanced both short- and long-term memory consolidation of mice tested in the novel object recognition task. In comparison, 4-aminopyridine (4-AP; i.c.v., 30-300 pmol/site), a non-selective K(+) channel blocker did not alter long-term memory and caused toxic side effects such as circling, freezing and tonic-clonic seizures. Moreover, Tx3-1 (i.c.v., 10-100 pmol/site) restored memory of Aβ25-35-injected mice, and exhibited a higher potency to improve memory of Aβ25-35-injected mice when compared to control group. These results show the effect of the selective blocker of IA currents Tx3-1 in both short- and long-term memory retention and in memory impairment caused by Aβ25-35, reinforcing the role of IA in physiological and pathological memory processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium.

    Science.gov (United States)

    Wrighton, David C; Muench, Stephen P; Lippiat, Jonathan D

    2015-09-01

    The Slo3 (KCa 5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Mouse (m) Slo3 (KCa 5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  16. The effects of prior calcium channel blocker therapy on creatine kinase-MB levels after percutaneous coronary interventions

    Directory of Open Access Journals (Sweden)

    Oyku Gulmez

    2008-12-01

    Full Text Available Oyku Gulmez, Ilyas Atar, Bülent Ozin, Mehmet Emin Korkmaz, Aslı Atar, Alp Aydinalp, Aylin Yildirir, Haldun MuderrisogluBaskent University Faculty of Medicine, Department of Cardiology, Ankara, TurkeyBackground: Use of intracoronary calcium channel blockers (CCBs during percutaneous coronary intervention (PCI has been shown to have favorable effects on coronary blood flow. We aimed to investigate the effects of CCBs administrated perorally on creatine kinase-MB (CK-MB levels in patients undergoing elective PCI.Methods: A total of 570 patients who underwent PCI were evaluated for CK-MB elevation. Patients who were on CCB therapy when admitted to the hospital constituted the CCB group. No CCBs were given to the rest of the patients during the periprocedural period and these patients served as the control group. Blood samples for CK-MB were obtained before and at 6 h, 24 h, and 36 h after the procedure.Results: 217 patients were in the CCB group (mean age 60.2 ± 9.3 years, 162 males, and 353 were in the control group (mean age 60.0 ± 10.1 years, 262 males. CK-MB levels increased above the normal values in 41 patients (18.9% of the CCBs group and in 97 patients (27.5% of the control group (p = 0.02. Median CK-MB levels were significantly higher in the control group for all studied hours (for all p < 0.05.Conclusions: Prior oral CCB therapy may have favorable effects in preventing myocyte necrosis after elective PCI.Keywords: calcium channel blockers, myonecrosis, percutaneous coronary interventions

  17. A novel mechanism for fine-tuning open-state stability in a voltage-gated potassium channel

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Niciforovic, Ana P; Galpin, Jason D

    2013-01-01

    stabilization is the consequence of the amelioration of an inherently repulsive open-state interaction between the partial negative charge on the face of Phe481 and a highly co-evolved acidic side chain, Glu395, and this interaction is potentially modulated through the Tyr485 hydroxyl. We propose...... fluorinated derivatives of aromatic residues previously implicated in the gating of Shaker potassium channels. Here we show that stepwise dispersion of the negative electrostatic surface potential of only one site, Phe481, stabilizes the channel open state. Furthermore, these data suggest that this apparent...

  18. Effect of voltage-gated sodium channels blockers on motility and viability of human sperm in vitro

    Directory of Open Access Journals (Sweden)

    Hammad Ahmad Gakhar

    2018-01-01

    Full Text Available Objective: To test the effect of voltage-gated sodium channels (VGSCs blockers on the motility and viability of human sperm in-vitro and to evaluate the tested compounds as potential contact spermicidal.Methods: Sperm samples were obtained from healthy nonsmoking volunteers of age 25-30 years who had not taken any drug 3 months before and during the course of the study. The effect of VGSCs blockers evaluated from two pharmacological classes including antiarrhythmic (amiodarone, procainamide and disopyramide and antiepileptic (carbamazepine, oxcarbazepine, phenytoin, and lamotrigine drugs. They were tested on the in-vitro motility and viability of human sperm using Computer Assisted Semen Analyzer.Results: All tested drugs except oxcarbazepine showed dose dependent inhibition of total motility with significant reduction (P<0.05 at the maximum concentration of 200 μΜ when compared with the control. The concentrations of drugs that reduced total sperm motility to 50% of control (half maximal inhibitory concentration were 2.76, 14.16 and 20.29 μΜ for phenytoin, lamotrigine and carbamazepine, respectively; and 2.53, 5.32 and 0.37 μΜ for amiodarone, procainamide and disopyramide, respectively. The anti-motility effects were reversible to various degrees. There was statistically insignificant difference in the inhibition of sperm viability among amiodarone, procainamide and disopyramide. Phenytoin demonstrated the most potent spermicidal action.Conclusions: VGSCs blockers have significant adverse effects on in-vitro motility of human spermatozoa. So in-vivo studies are required to determine their potential toxicological effects on human semen quality, which is an important factor regarding fertility. Moreover, these drugs have the potential to be developed into contact spermicidal.

  19. Effect of Topical Calcium Channel Blockers on Intraocular Pressure in Steroid-induced Glaucoma.

    Science.gov (United States)

    Ganekal, Sunil; Dorairaj, Syril; Jhanji, Vishal; Kudlu, Krishnaprasad

    2014-01-01

    To evaluate the effect of 0.125% verapamil and 0.5% diltiazem eye drops on intraocular pressure (IOP) in steroid-induced glaucoma in rabbit eyes. A total of 18 rabbits with steroid-induced glaucoma were divided into three groups (A, B and C; n = 6 each). Right eyes in groups A, B and C received 0.5% diltiazem, 0.125% verapamil and 0.5% timolol eye drops twice daily for 12 days, respectively; whereas, left eyes received distilled water. IOP was measured with Tono-pen XL at baseline, day 4, day 8, and day 12 of treatment. Both 0.5% diltiazem and 0.125% verapamil eye drops significantly reduced IOP compared to control eyes (p cite this article: Ganekal S, Dorairaj S, Jhanji V, Kudlu K. Effect of Topical Calcium Channel Blockers on Intraocular Pressure in Steroid-induced Glaucoma. J Current Glau Prac 2014;8(1):15-19.

  20. Discovery of a Potent, Selective T-type Calcium Channel Blocker as a Drug Candidate for the Treatment of Generalized Epilepsies.

    Science.gov (United States)

    Bezençon, Olivier; Heidmann, Bibia; Siegrist, Romain; Stamm, Simon; Richard, Sylvia; Pozzi, Davide; Corminboeuf, Olivier; Roch, Catherine; Kessler, Melanie; Ertel, Eric A; Reymond, Isabelle; Pfeifer, Thomas; de Kanter, Ruben; Toeroek-Schafroth, Michael; Moccia, Luca G; Mawet, Jacques; Moon, Richard; Rey, Markus; Capeleto, Bruno; Fournier, Elvire

    2017-12-14

    We report here the discovery and pharmacological characterization of N-(1-benzyl-1H-pyrazol-3-yl)-2-phenylacetamide derivatives as potent, selective, brain-penetrating T-type calcium channel blockers. Optimization focused mainly on solubility, brain penetration, and the search for an aminopyrazole metabolite that would be negative in an Ames test. This resulted in the preparation and complete characterization of compound 66b (ACT-709478), which has been selected as a clinical candidate.

  1. Evaluation of potassium permanganate against an experimental subacute infection of Flavobacterium columnare in channel catfish, Icatlurus punctatus

    Science.gov (United States)

    The efficacy of potassium permanganate (KMnO4) as a prophylactic and therapeutic treatment for subacute infection of Flavobacterium columnare was demonstrated in experimentally infected channel catfish, Ictalurus punctatus. Catfish experimentally infected with F. columnare to mimic a subacute infec...

  2. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Bek, Toke

    2009-01-01

    PURPOSE: Endothelial dysfunction and impaired vasodilation may be involved in the pathogenesis of retinal vascular diseases. In the present study, the mechanisms underlying bradykinin vasodilation were examined and whether calcium-activated potassium channels of small (SK(Ca)) and intermediate (IK...

  3. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33.

    Science.gov (United States)

    Corratgé-Faillie, Claire; Ronzier, Elsa; Sanchez, Frédéric; Prado, Karine; Kim, Jeong-Hyeon; Lanciano, Sophie; Leonhardt, Nathalie; Lacombe, Benoît; Xiong, Tou Cheu

    2017-07-01

    A complex signaling network involving voltage-gated potassium channels from the Shaker family contributes to the regulation of stomatal aperture. Several kinases and phosphatases have been shown to be crucial for ABA-dependent regulation of the ion transporters. To date, the Ca 2+ -dependent regulation of Shaker channels by Ca 2+ -dependent protein kinases (CPKs) is still elusive. A functional screen in Xenopus oocytes was launched to identify such CPKs able to regulate the three main guard cell Shaker channels KAT1, KAT2, and GORK. Seven guard cell CPKs were tested and multiple CPK/Shaker couples were identified. Further work on CPK33 indicates that GORK activity is enhanced by CPK33 and unaffected by a nonfunctional CPK33 (CPK33-K102M). Furthermore, Ca 2+ -induced stomatal closure is impaired in two cpk33 mutant plants. © 2017 Federation of European Biochemical Societies.

  4. Moderate hypoxia influences potassium outward currents in adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Mayuri Prasad

    Full Text Available Moderate hypoxic preconditioning of adipose-derived stem cells (ASCs enhances properties such as proliferation and secretion of growth factors, representing a valuable strategy to increase the efficiency of cell-based therapies. In a wide variety of cells potassium (K+ channels are key elements involved in the cellular responses to hypoxia, suggesting that ASCs cultured under low oxygen conditions may display altered electrophysiological properties. Here, the effects of moderate hypoxic culture on proliferation, whole-cell currents, and ion channel expression were investigated using human ASCs cultured at 5% and 20% oxygen. Although cell proliferation was greatly enhanced, the dose-dependent growth inhibition by the K+ channel blocker tetraethylammonium (TEA was not significantly affected by hypoxia. Under both normoxic and hypoxic conditions, ASCs displayed outward K+ currents composed by Ca2+-activated, delayed rectifier, and transient components. Hypoxic culture reduced the slope of the current-voltage curves and caused a negative shift in the voltage activation threshold of the whole-cell currents. However, the TEA-mediated shift of voltage activation threshold was not affected by hypoxia. Semiquantitative real-time RT-PCR revealed that expression of genes encoding for various ion channels subunits related to oxygen sensing and proliferation remained unchanged after hypoxic culture. In conclusion, outward currents are influenced by moderate hypoxia in ASCs through a mechanism that is not likely the result of modulation of TEA-sensitive K+ channels.

  5. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    Science.gov (United States)

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  6. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration.

    Science.gov (United States)

    Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin

    2013-11-01

    All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.

  7. Aberrant modulation of a delayed rectifier potassium channel by glutamate in Alzheimer's disease.

    Science.gov (United States)

    Poulopoulou, Cornelia; Markakis, Ioannis; Davaki, Panagiota; Tsaltas, Eleftheria; Rombos, Antonis; Hatzimanolis, Alexandros; Vassilopoulos, Dimitrios

    2010-02-01

    In Alzheimer's disease (AD), potassium channel abnormalities have been reported in both neural and peripheral tissues. Herein, using whole-cell patch-clamp, we demonstrate an aberrant glutamate-dependent modulation of K(V)1.3 channels in T lymphocytes of AD patients. Although intrinsic K(V)1.3 properties in patients were similar to healthy individuals, glutamate (1-1000 microM) failed to yield the hyperpolarizing shift normally observed in K(V)1.3 steady-state inactivation (-4.4+/-2.7 mV in AD vs. -14.3+/-2.5 mV in controls, 10 microM glutamate), resulting in a 4-fold increase of resting channel activity. Specific agonist and antagonist data indicate that this abnormality is due to dysfunction of cognate group II mGluRs. Given that glutamate is present in plasma and that both mGluRs and K(V)1.3 channels regulate T-lymphocyte responsiveness, our finding may account for the presence of immune-associated alterations in AD. Furthermore, if this aberration reflects a corresponding one in neural tissue, it could provide a potential target in AD pathogenesis.

  8. Cloning and characterization of BmK86, a novel K+-channel blocker from scorpion venom

    International Nuclear Information System (INIS)

    Mao, Xin; Cao, Zhijian; Yin, Shijin; Ma, Yibao; Wu, Yingliang; Li, Wenxin

    2007-01-01

    Scorpion venom represents a tremendous hitherto unexplored resource for understanding ion channels. BmK86 is a novel K + -channel toxin gene isolated from a cDNA library of Mesobuthus martensii Karsch, which encodes a signal peptide of 22 amino acid residues and a mature toxin of 35 residues with three disulfide bridges. The genomic sequence of BmK86 consists of two exons disrupted by an intron of 72 bp. Comparison with the other scorpion toxins BmK86 shows low sequence similarity. The GST-BmK86 fusion protein was successfully expressed in Escherichia coli. The fusion protein was cleaved by enterokinase and the recombinant BmK86 was purified by HPLC. Using whole-cell patch-clamp recording, the recombinant BmK86 was found to inhibit the potassium current of mKv1.3 channel expressed in COS7 cells. These results indicated that BmK86 belongs to a representative member of a novel subfamily of α-KTxs. The systematic number assigned to BmK86 is α-KTx26.1

  9. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    Science.gov (United States)

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  10. Minoxidil opens mitochondrial KATP channels and confers cardioprotection

    Science.gov (United States)

    Sato, Toshiaki; Li, Yulong; Saito, Tomoaki; Nakaya, Haruaki

    2003-01-01

    ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoKATP channel) rather than in the sarcolemma (sarcKATP channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcKATP and mitoKATP channels in guinea-pig ventricular myocytes. Minoxidil activated a glybenclamide-sensitive sarcKATP channel current in the whole-cell recording mode with an EC50 of 182.6 μM. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoKATP channel activity, in a concentration-dependent manner. The EC50 for mitoKATP channel activation was estimated to be 7.3 μM; this value was notably ≈25-fold lower than that for sarcKATP channel activation. Minoxidil (10 μM) significantly attenuated the ouabain-induced increase of mitochondrial Ca2+ concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 μM) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoKATP channel blocker 5-hydroxydecanoate (500 μM). Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoKATP channels. PMID:14691056

  11. Potassium channel and NKCC cotransporter involvement in ocular refractive control mechanisms.

    Directory of Open Access Journals (Sweden)

    Sheila G Crewther

    Full Text Available Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were raised with +/-10D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were made, targeting fluid control mechanisms. Comparison of refractive compensation to 5 mM Ba(2+ and 10(-5 M bumetanide compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba(2+ but significant change only for negative lens defocus with bumetanide (Rx(SAL(-10D = -8.6 +/- .9 D; Rx(Ba2+(-10D = -2.9 +/- .9 D; Rx(Bum(-10D = -2.9 +/- .9 D; Rx(SAL(+10D = +8.2 +/- .9 D; Rx(Ba2+(+10D = +2.8 +/- 1.3 D; Rx(Bum(+10D = +8.0 +/- .7 D. Vitreous chamber depths showed a main effect for drug conditions with less depth change in response to defocus shown for Ba(2+ relative to Saline, while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus. The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse. The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON response, suggest a

  12. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat

    Science.gov (United States)

    Meiri, Noam; Ghelardini, Carla; Tesco, Giuseppina; Galeotti, Nicoletta; Dahl, Dennis; Tomsic, Daniel; Cavallaro, Sebastiano; Quattrone, Alessandro; Capaccioli, Sergio; Bartolini, Alessandro; Alkon, Daniel L.

    1997-01-01

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic “knockouts”. PMID:9114006

  13. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat.

    Science.gov (United States)

    Meiri, N; Ghelardini, C; Tesco, G; Galeotti, N; Dahl, D; Tomsic, D; Cavallaro, S; Quattrone, A; Capaccioli, S; Bartolini, A; Alkon, D L

    1997-04-29

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic "knockouts".

  14. Polyaniline-graphene oxide nanocomposite sensor for quantification of calcium channel blocker levamlodipine.

    Science.gov (United States)

    Jain, Rajeev; Sinha, Ankita; Khan, Ab Lateef

    2016-08-01

    A novel polyaniline-graphene oxide nanocomposite (PANI/GO/GCE) sensor has been fabricated for quantification of a calcium channel blocker drug levamlodipine (LAMP). Fabricated sensor has been characterized by electrochemical impedance spectroscopy, square wave and cyclic voltammetry, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The developed PANI/GO/GCE sensor has excellent analytical performance towards electrocatalytic oxidation as compared to PANI/GCE, GO/GCE and bare GCE. Under optimized experimental conditions, the fabricated sensor exhibits a linear response for LAMP for its oxidation over a concentration range from 1.25μgmL(-1) to 13.25μgmL(-1) with correlation coefficient of 0.9950 (r(2)), detection limit of 1.07ngmL(-1) and quantification limit of 3.57ngmL(-1). The sensor shows an excellent performance for detecting LAMP with reproducibility of 2.78% relative standard deviation (RSD). The proposed method has been successfully applied for LAMP determination in pharmaceutical formulation with a recovery from 99.88% to 101.75%. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Diuretics in the treatment of hypertension. Part 2: loop diuretics and potassium-sparing agents.

    Science.gov (United States)

    Tamargo, Juan; Segura, Julian; Ruilope, Luis M

    2014-04-01

    Diuretics enhance the renal excretion of Na(+) and water due to a direct action at different tubular sites of the nephron where solute re-absorption occurs. This paper focuses on the mechanism of action, pharmacodynamics, antihypertensive effects, adverse effects, interactions and contraindications of loop diuretics and potassium-sparing agents (including mineralocorticoid receptor antagonists (MRAs) and epithelial Na(+) channel blockers). Loop diuretics are less effective than thiazide diuretics in lowering blood pressure, so that their major use is in edematous patients with congestive heart failure (HF), cirrhosis with ascites and nephritic edema. MRAs represent a major advance in the treatment of resistant hypertension, primary and secondary hyperaldosteronism and in patients with systolic HF to reduce the risks of hospitalization and of premature death. Potassium-sparing diuretics when coadministered with diuretics (thiazides and loop diuretics) working at more proximal nephron locations reduce the risk of hypokalemia and hypomagnesemia and the risk of cardiac arrhythmias. At the end of the article, the basis for the combination of diuretics with other antihypertensive drugs to achieve blood pressure targets is presented.

  16. Delayed LGI1 seropositivity in voltage-gated potassium channel (VGKC)-complex antibody limbic encephalitis

    OpenAIRE

    Sweeney, Michael; Galli, Jonathan; McNally, Scott; Tebo, Anne; Haven, Thomas; Thulin, Perla; Clardy, Stacey L

    2017-01-01

    We utilise a clinical case to highlight why exclusion of voltage-gated potassium channel (VGKC)-complex autoantibody testing in serological evaluation of patients may delay or miss the diagnosis. A 68-year-old man presented with increasing involuntary movements consistent with faciobrachial dystonic seizures (FBDS). Initial evaluation demonstrated VGKC antibody seropositivity with leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) seronegativity. Aggress...

  17. Effects of different components of serum after radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of myocardial cells

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianmin; Xiao Jiasi

    1997-01-01

    Objective: To study the effects of different components of serum in rats inflicted with radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of cultured myocardial cells. Method: Using patch clamp method to study the action of single ion channel. Results: The low molecular and lipid components of serum after different injuries models could all activate the inward rectifier potassium channel in cultured myocardial cells. The components of serum after combined radiation-burn injury showed the most significant effect, and the way of this effect was different from that from single injury. Conclusion: The serum components post injury altered the electric characteristic of myocardial cells, which may play a role in the combined effect of depressed cardiac function after combined radiation-burn injury

  18. Inhibition of Inwardly Rectifying Potassium (Kir 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF Expression in Astrocytes

    Directory of Open Access Journals (Sweden)

    Masato Kinboshi

    2017-12-01

    Full Text Available Inwardly rectifying potassium (Kir 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown on expression of brain-derived neurotrophic factor (BDNF, a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.

  19. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.

    Science.gov (United States)

    Shang, Lijun; Tucker, Stephen J

    2008-02-01

    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K(+) channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the "helix-bundle crossing". However, in the inwardly rectifying (Kir) potassium channel family, the role of this "hinge" residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper "hinge" residues are in close contact with the base of the pore alpha-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the "lower" gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.

  20. Comparison of the efficacy of dihydropyridine calcium channel blockers in African American patients with hypertension. ISHIB Investigators Group. International Society on Hypertension in Blacks.

    Science.gov (United States)

    Hall, W D; Reed, J W; Flack, J M; Yunis, C; Preisser, J

    1998-10-12

    Hypertension is a prevalent disease among African Americans, and successful treatment rates are low. Since calcium channel blockers are well-tolerated and efficacious in African Americans, we undertook this study to compare the efficacy, safety, and tolerability of 3 commonly prescribed calcium channel blockers: amlodipine besylate (Norvasc), nifedipine coat core (CC) (Adalat CC), and nifedipine gastrointestinal therapeutic system (GITS) (Procardia XL). One hundred ninety-two hypertensive patients across 10 study centers were randomly assigned to double-blind monotherapy with amlodipine besylate (5 mg/d), nifedipine CC (30 mg/d), or nifedipine GITS (30 mg/d) for 8 weeks. Patients not achieving therapeutic response after 4 weeks had their dose doubled for the next 4 weeks. The primary end point was a comparison of the average reduction (week 8 minus baseline) in 24-hour ambulatory diastolic blood pressure (DBP). Secondary end points included a comparison of average 24-hour ambulatory systolic blood pressure (SBP), office SBP or DBP reduction, responder rates, safety, and tolerability. One hundred sixty-three patients were evaluable for efficacy after 8 weeks. There was no significant difference in the average 24-hour ambulatory DBP (-8.5, -9.0, and -6.1 mm Hg, respectively) or SBP (-14.3, -15.7, and -11.8 mm Hg, respectively) reduction. Average office SBP and DBP were reduced to a comparable degree (19-22 mm Hg [P =.50] and 12-14 mm Hg [P =.51], respectively). Responder rates (DBP or = 10 mm Hg) were similar (P = .38). Discontinuation rates and adverse event frequency were distributed similarly across the 3 treatment groups. The efficacy, safety, and tolerability of the 3 dihydropyridine calcium channel blockers are equivalent in African Americans with stages 1 and 2 hypertension.

  1. Involvement of BKCa and KV potassium channels in cAMP-induced vasodilation: their insufficient function in genetic hypertension

    Czech Academy of Sciences Publication Activity Database

    Pintérová, Mária; Behuliak, Michal; Kuneš, Jaroslav; Zicha, Josef

    2014-01-01

    Roč. 63, č. 3 (2014), s. 275-285 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/09/0336; GA ČR(CZ) GAP304/12/0259; GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : isoprenaline * cAMP * potassium channels * calcium channels Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.293, year: 2014

  2. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    Science.gov (United States)

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  3. Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643)

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Diness, Thomas Goldin; Christ, Torsten

    2005-01-01

    The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolari......The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased......M. Application of NS1643 also resulted in a prolonged postrepolarization refractory time. Finally, cardiomyocytes exposed to NS1643 resisted reactivation by small depolarizing currents mimicking early afterdepolarizations. In conclusion, HERG channel activation by small molecules such as NS1643 increases...

  4. The potassium channel KCa3.1 as new therapeutic target for the prevention of obliterative airway disease

    DEFF Research Database (Denmark)

    Hua, Xiaoqin; Deuse, Tobias; Chen, Yi-Je

    2013-01-01

    The calcium-activated potassium channel KCa3.1 is critically involved in T-cell activation as well as in the proliferation of smooth muscle cells and fibroblasts. We sought to investigate whether KCa3.1 contributes to the pathogenesis of obliterative airway disease (OAD) and whether knockout or p...

  5. When lithium does not help: the use of anticonvulsants and calcium channel blockers in the treatment of bipolar disorder in the older person.

    Science.gov (United States)

    Masters, J C

    1996-01-01

    Although anticonvulsant agents and calcium channel blockers do not have any clear advantages over lithium, they do offer patients who cannot (or will not) take lithium another treatment option. It is not yet clear from the literature who will respond best to which drug or combination of drugs. The nurse should be supportive to the patients and family, in what may be a drawn out process, to find the best treatment. Optimism is justified because a lack of response to one drug is not indicative of nonresponse to other drugs. It is important to actively treat bipolar disorder because each episode of mania increases the risk of progression of the illness, with increasingly severe episodes occurring closer together. Bipolar disorder has high social costs (legal, financial, and relationship problems) that make improvements in treatment important for the patient and society. Anticonvulsant agents and calcium channel blockers may also be useful in treating depression. The number of people whose depressive symptoms respond is far less (25% to 30%) than the number who respond to the anti-manic effects, but this is an option when antidepressants and electroconvulsive therapy are not effective.

  6. A deleterious gene-by-environment interaction imposed by calcium channel blockers in Marfan syndrome.

    Science.gov (United States)

    Doyle, Jefferson J; Doyle, Alexander J; Wilson, Nicole K; Habashi, Jennifer P; Bedja, Djahida; Whitworth, Ryan E; Lindsay, Mark E; Schoenhoff, Florian; Myers, Loretha; Huso, Nick; Bachir, Suha; Squires, Oliver; Rusholme, Benjamin; Ehsan, Hamid; Huso, David; Thomas, Craig J; Caulfield, Mark J; Van Eyk, Jennifer E; Judge, Daniel P; Dietz, Harry C

    2015-10-27

    Calcium channel blockers (CCBs) are prescribed to patients with Marfan syndrome for prophylaxis against aortic aneurysm progression, despite limited evidence for their efficacy and safety in the disorder. Unexpectedly, Marfan mice treated with CCBs show accelerated aneurysm expansion, rupture, and premature lethality. This effect is both extracellular signal-regulated kinase (ERK1/2) dependent and angiotensin-II type 1 receptor (AT1R) dependent. We have identified protein kinase C beta (PKCβ) as a critical mediator of this pathway and demonstrate that the PKCβ inhibitor enzastaurin, and the clinically available anti-hypertensive agent hydralazine, both normalize aortic growth in Marfan mice, in association with reduced PKCβ and ERK1/2 activation. Furthermore, patients with Marfan syndrome and other forms of inherited thoracic aortic aneurysm taking CCBs display increased risk of aortic dissection and need for aortic surgery, compared to patients on other antihypertensive agents.

  7. The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C.

    Science.gov (United States)

    Schiekel, Julia; Lindner, Moritz; Hetzel, Andrea; Wemhöner, Konstantin; Renigunta, Vijay; Schlichthörl, Günter; Decher, Niels; Oliver, Dominik; Daut, Jürgen

    2013-01-01

    The two-pore-domain potassium channel TASK-1 is robustly inhibited by the activation of receptors coupled to the Gα(q) subgroup of G-proteins, but the signal transduction pathway is still unclear. We have studied the mechanisms by which endothelin receptors inhibit the current carried by TASK-1 channels (I(TASK)) in cardiomyocytes. Patch-clamp measurements were carried out in isolated rat cardiomyocytes. I(TASK) was identified by extracellular acidification to pH 6.0 and by the application of the TASK-1 blockers A293 and A1899. Endothelin-1 completely inhibited I(TASK) with an EC(50) of Application of 20 nM endothelin-1 caused a significant increase in action potential duration under control conditions; this was significantly reduced after pre-incubation of the cardiomyocytes with 200 nM A1899. The inhibition of I(TASK) by endothelin-1 was not affected by inhibitors of protein kinase C or rho kinase, but was strongly reduced by U73122, an inhibitor of phospholipase C (PLC). The ability of endothelin-1 to activate PLC-mediated signalling pathways was examined in mammalian cells transfected with TASK-1 and the endothelin-A receptor using patch-clamp measurements and total internal reflection microscopy. U73122 prevented the inhibition of I(TASK) by endothelin-1 and blocked PLC-mediated signalling, as verified with a fluorescent probe for phosphatidylinositol-(4,5)-bisphosphate hydrolysis. Our results show that I(TASK) in rat cardiomyocytes is controlled by endothelin-1 and suggest that the inhibition of TASK-1 via endothelin receptors is mediated by the activation of PLC. The prolongation of the action potential observed with 20 nM endothelin-1 was mainly due to the inhibition of I(TASK).

  8. Mitragynine and its potential blocking effects on specific cardiac potassium channels

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Yea Lu; Teah, Yi Fan; Chong, Yoong Min [Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Science, Technology & Innovation (MOSTI), Pulau Pinang (Malaysia); Jamil, Mohd Fadzly Amar [Clinical Research Center, Hospital Seberang Jaya, Kementerian Kesihatan Malaysia, Pulau Pinang (Malaysia); Kollert, Sina [Institute of Physiology, University of Wurzburg, Wurzburg (Germany); Adenan, Mohd Ilham [Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan (Malaysia); Wahab, Habibah Abdul [Pharmaceutical Design & Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang (Malaysia); Döring, Frank; Wischmeyer, Erhard [Institute of Physiology, University of Wurzburg, Wurzburg (Germany); Tan, Mei Lan, E-mail: tanml@usm.my [Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Science, Technology & Innovation (MOSTI), Pulau Pinang (Malaysia); Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang (Malaysia)

    2016-08-15

    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac I{sub Kr} current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, I{sub K1}, a Kir current mediated by Kir2.1 channel and I{sub KACh}, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC{sub 50} value of 1.62 μM and 1.15 μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit I{sub KACh} current with an IC{sub 50} value of 3.32 μM but has no significant effects on I{sub K1}. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks. - Highlights: • The potential cardiac potassium channel blocking properties of mitragynine were investigated. • Mitragynine blocks hERG channel and I{sub Kr} in hERG-transfected HEK293 cells and hERG cRNA-injected Xenopus oocytes. • Mitragynine inhibits the hERG protein but not the mRNA expression. • Mitragynine

  9. Mitragynine and its potential blocking effects on specific cardiac potassium channels

    International Nuclear Information System (INIS)

    Tay, Yea Lu; Teah, Yi Fan; Chong, Yoong Min; Jamil, Mohd Fadzly Amar; Kollert, Sina; Adenan, Mohd Ilham; Wahab, Habibah Abdul; Döring, Frank; Wischmeyer, Erhard; Tan, Mei Lan

    2016-01-01

    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac I Kr current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, I K1 , a Kir current mediated by Kir2.1 channel and I KACh , a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC 50 value of 1.62 μM and 1.15 μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit I KACh current with an IC 50 value of 3.32 μM but has no significant effects on I K1 . Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks. - Highlights: • The potential cardiac potassium channel blocking properties of mitragynine were investigated. • Mitragynine blocks hERG channel and I Kr in hERG-transfected HEK293 cells and hERG cRNA-injected Xenopus oocytes. • Mitragynine inhibits the hERG protein but not the mRNA expression. • Mitragynine inhibits GIRK channel. • Simultaneous

  10. Importance of glycosylation on function of a potassium channel in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    M K Hall

    Full Text Available The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type, partially glycosylated (N220Q and N229Q, and unglycosylated (N220Q/N229Q Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel.

  11. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migrai...

  12. Emerging psychiatric syndromes associated with antivoltage-gated potassium channel complex antibodies.

    Science.gov (United States)

    Prüss, Harald; Lennox, Belinda R

    2016-11-01

    Antibodies against the voltage-gated potassium channel (VGKC) were first recognised as having a potential pathogenic role in disorders of the central nervous system in 2001, with VGKC antibodies described in patients with limbic encephalitis, and the subsequent seminal paper describing the clinical phenotype and immunotherapy treatment responsiveness in 13 patients with VGKC antibodies and limbic encephalitis in 2004. These initial case descriptions were of a progressive neuropsychiatric syndrome with abnormalities of mood, sleep and cognition recognised alongside the neurological symptoms of seizures and autonomic instability. The clinical syndromes associated with VGKC complex (VGKCC) antibodies have broadened considerably over the last 15 years, with multiple cases of more restricted 'formes fruste' presentations associated with VGKCC antibodies being described. However, the relevance of antibodies in these cases has remained controversial. The understanding of the pathogenic nature of VGKC antibodies has further advanced since 2010 with the discovery that VGKC antibodies are not usually antibodies against the VGKC subunits themselves, but instead to proteins that are complexed with the potassium channel, in particular leucine-rich, glioma-inactivated protein 1 (LGI1) and contactin-associated protein 2 (Caspr2). Antibodies against these proteins have been associated with particular, although overlapping, clinical phenotypes, each also including neuropsychiatric features. Our aim is to critically review the association between VGKCC, LGI1 and Caspr2 antibodies with isolated psychiatric presentations-with a focus on cognitive impairment, mood disorders and psychosis. We recommend that screening for VGKCC, LGI1 and Caspr2 antibodies be considered for those with neuropsychiatric presentations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Sleep disturbances in voltage-gated potassium channel antibody syndrome.

    Science.gov (United States)

    Barone, Daniel A; Krieger, Ana C

    2016-05-01

    Voltage-gated potassium channels (VGKCs) are a family of membrane proteins responsible for controlling cell membrane potential. The presence of antibodies (Ab) against neuronal VGKC complexes aids in the diagnosis of idiopathic and paraneoplastic autoimmune neurologic disorders. The diagnosis of VGKC Ab-associated encephalopathy (VCKC Ab syndrome) should be suspected in patients with subacute onset of disorientation, confusion, and memory loss in the presence of seizures or a movement disorder. VGKC Ab syndrome may present with sleep-related symptoms, and the purpose of this communication is to alert sleep and neurology clinicians of this still-under-recognized condition. In this case, we are presenting the VGKC Ab syndrome which improved after treatment with solumedrol. The prompt recognition and treatment of this condition may prevent the morbidity associated with cerebral atrophy and the mortality associated with intractable seizures and electrolyte disturbances. Copyright © 2016. Published by Elsevier B.V.

  14. Molecular interactions involved in proton-dependent gating in KcsA potassium channels

    Science.gov (United States)

    Posson, David J.; Thompson, Ameer N.; McCoy, Jason G.

    2013-01-01

    The bacterial potassium channel KcsA is gated open by the binding of protons to amino acids on the intracellular side of the channel. We have identified, via channel mutagenesis and x-ray crystallography, two pH-sensing amino acids and a set of nearby residues involved in molecular interactions that influence gating. We found that the minimal mutation of one histidine (H25) and one glutamate (E118) near the cytoplasmic gate completely abolished pH-dependent gating. Mutation of nearby residues either alone or in pairs altered the channel’s response to pH. In addition, mutations of certain pairs of residues dramatically increased the energy barriers between the closed and open states. We proposed a Monod–Wyman–Changeux model for proton binding and pH-dependent gating in KcsA, where H25 is a “strong” sensor displaying a large shift in pKa between closed and open states, and E118 is a “weak” pH sensor. Modifying model parameters that are involved in either the intrinsic gating equilibrium or the pKa values of the pH-sensing residues was sufficient to capture the effects of all mutations. PMID:24218397

  15. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana.

    Science.gov (United States)

    Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.

  16. Quantitative autoradiography of the binding sites for [125I] iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    International Nuclear Information System (INIS)

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.; Robertson, D.W.

    1991-01-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with [ 125 I]iodoglyburide (N-[2-[[[(cyclohexylamino)carbonyl]amino]sulfonyl]ethyl]-5- 125 I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific [ 125 I]iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of [ 125 I]iodoglyburide binding indicated a broad distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels

  17. Place of Mitochondrial Potassium-ATP Channels in The Mechanism of Effect of Ischemic Conditionings

    Directory of Open Access Journals (Sweden)

    İlker Şengül

    2012-07-01

    Full Text Available Ischemia-reperfusion episodes in a short interval “just before” ischemia performed experimentally have been called preconditioning, where as “just after” ischemia have been called postconditioning and tissue protective effects of these endogenous mechanisms have been shown in various organs via various studies. Although multipl mechanisms have been being propounded about these phenomenons which have been found area of usage from hearth surgery to organ transplantation, mitochondrial potassium ATP-channels have been maintaining its importance.

  18. Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Nirmal; Jindal, Seema

    2007-12-01

    The present study has been designed to investigate the effect of piracetam on morphine/ buprenorphine-induced antinociception in rats and effect of piracetam on morphine or minoxidil induced relaxation in KCl-precontracted isolated rat aortic ring preparation. Nociceptive threshold was measured by the tail flick test in rats. The cumulative dose responses of morphine or minoxidil were recorded in KCl-precontracted isolated rat aortic ring preparation. Piracetam attenuated buprenorphine-induced antinociception in rats. Piracetam significantly reduced the morphine and minoxidil induced relaxation in KCl precontracted isolated rat aortic ring preparation suggesting that piracetam interferes with opioid receptor and ATP-sensitive potassium channel (KATP) opener mediated responses in vitro. Thus, it may be suggested that piracetam attenuates opioid effects by an opioid receptor-KATP channel linked mechanism.

  19. Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels

    Science.gov (United States)

    Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang

    2012-01-01

    Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778

  20. H2 blockers

    Science.gov (United States)

    Peptic ulcer disease - H2 blockers; PUD - H2 blockers; Gastroesophageal reflux - H2 blockers; GERD - H2 blockers ... H2 blockers are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  1. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  2. Discovery and characterization of cnidarian peptide toxins that affect neuronal potassium ion channels.

    Science.gov (United States)

    Castañeda, Olga; Harvey, Alan L

    2009-12-15

    Peptides have been isolated from several species of sea anemones and shown to block currents through various potassium ion channels, particularly in excitable cells. The toxins can be grouped into four structural classes: type 1 with 35-37 amino acid residues and three disulphide bridges; type 2 with 58-59 residues and three disulphide bridges; type 3 with 41-42 residues and three disulphide bridges; and type 4 with 28 residues and two disulphide bridges. Examples from the first class are BgK from Bunodosoma granulifera, ShK from Stichodactyla helianthus and AsKS (or kaliseptine) from Anemonia sulcata (now A. viridis). These interfere with binding of radiolabelled dendrotoxin to synaptosomal membranes and block currents through channels with various Kv1 subunits and also intermediate conductance K(Ca) channels. Toxins in the second class are homologous to Kunitz-type inhibitors of serine proteases; these toxins include kalicludines (AsKC 1-3) from A. sulcata and SHTXIII from S. haddoni; they block Kv1.2 channels. The third structural group includes BDS-I, BDS-II (from A. sulcata) and APETx 1 (from Anthropleura elegantissima). Their pharmacological specificity differs: BDS-I and -II block currents involving Kv3 subunits, while APETx1 blocks ERG channels. The fourth group comprises the more recently discovered SHTX I and II from S. haddoni. Their channel blocking specificity is not yet known but they displace dendrotoxin binding from synaptosomal membranes. Sea anemones can be predicted to be a continued source of new toxins that will serve as molecular probes of various K(+) channels.

  3. Estrogen modulates potassium currents and expression of the Kv4.2 subunit in GT1-7 cells.

    Science.gov (United States)

    Farkas, Imre; Varju, Patricia; Liposits, Zsolt

    2007-03-01

    The proper maintenance of reproduction requires the pulsatile secretion of gonadotropin-releasing hormone (GnRH), which is ensured by synchronized periodic firing of multiple GnRH neurons. Both hormone secretion and electrophysiological properties of GnRH cells are influenced by estrogen. The impact of 17beta-estradiol treatment on the function of voltage gated A- and K-type potassium channels, known modulators of firing rate, was therefore examined in our experiments using immortalized GnRH-producing GT1-7 neurons. Whole cell patch clamp recordings showed the absence of the A-type current in GT1-7 cells cultured in estrogen-free medium and after 8h 17beta-estradiol treatment. Exposure of the cells to 17beta-estradiol for 24 and 48 h, respectively, resulted in the appearance of the A-type current. The induction of the A-type current by 17beta-estradiol was dose-related (50 pM to 15 nM range). In contrast, the K-type potassium current was apparent in the estrogen-free environment and 17beta-estradiol administration significantly decreased its amplitude. Co-administration of 17beta-estradiol and estrogen receptor blocker, Faslodex (ICI 182,780; 1 microM) abolished the occurrence of the A-type current. Real-time PCR data demonstrated that expression of the Kv4.2 subunit of the A-type channel was low at 0, 0.5, 2 and 8h, peaked at 24h and diminished at 48 h 17beta-estradiol treatment (15 nM). These data indicate that potassium channels of GT1-7 neurons are regulated by estrogen a mechanism that might contribute to modulation of firing rate and hormone secretion in GnRH neurons.

  4. Testosterone-mediated upregulation of delayed rectifier potassium channel in cardiomyocytes causes abbreviation of QT intervals in rats.

    Science.gov (United States)

    Masuda, Kimiko; Takanari, Hiroki; Morishima, Masaki; Ma, FangFang; Wang, Yan; Takahashi, Naohiko; Ono, Katsushige

    2018-01-13

    Men have shorter rate-corrected QT intervals (QTc) than women, especially at the period of adolescence or later. The aim of this study was to elucidate the long-term effects of testosterone on cardiac excitability parameters including electrocardiogram (ECG) and potassium channel current. Testosterone shortened QT intervals in ECG in castrated male rats, not immediately after, but on day 2 or later. Expression of Kv7.1 (KCNQ1) mRNA was significantly upregulated by testosterone in cardiomyocytes of male and female rats. Short-term application of testosterone was without effect on delayed rectifier potassium channel current (I Ks ), whereas I Ks was significantly increased in cardiomyocytes treated with dihydrotestosterone for 24 h, which was mimicked by isoproterenol (24 h). Gene-selective inhibitors of a transcription factor SP1, mithramycin, abolished the effects of testosterone on Kv7.1. Testosterone increases Kv7.1-I Ks possibly through a pathway related to a transcription factor SP1, suggesting a genomic effect of testosterone as an active factor for cardiac excitability.

  5. Angiotensin Converting-Enzyme Inhibitors, Angiotensin Receptor Blockers, and Calcium Channel Blockers Are Associated with Prolonged Vascular Access Patency in Uremic Patients Undergoing Hemodialysis.

    Directory of Open Access Journals (Sweden)

    Fu-An Chen

    Full Text Available Vascular access failure is a huge burden for patients undergoing hemodialysis. Many efforts have been made to maintain vascular access patency, including pharmacotherapy. Angiotensin converting enzyme inhibitor (ACE-I, angiotensin receptor blocker (ARB, and calcium channel blocker (CCB are known for their antihypertensive and cardio-protective effects, however, their effects on long-term vascular access patency are still inconclusive.We retrospectively enrolled patients commencing maintenance hemodialysis between January 1, 2000, and December 31, 2006 by using National Health Insurance Research Database in Taiwan. Primary patency was defined as the date of first arteriovenous fistula (AVF or arteriovenous graft (AVG creation to the time of access thrombosis or any intervention aimed to maintain or re-establish vascular access patency. Cox proportional hazards models were used to adjust the influences of patient characteristics, co-morbidities and medications.Total 42244 patients were enrolled in this study, 37771 (89.4% used AVF, 4473 (10.6% used AVG as their first long term dialysis access. ACE-I, ARB, and CCB use were all associated with prolonged primary patency of AVF [hazard ratio (HR 0.586, 95% confidence interval (CI 0.557-0.616 for ACE-I use; HR 0.532, CI 0.508-0.556 for ARB use; HR 0.485, CI 0.470-0.501 for CCB use] and AVG (HR 0.557, CI 0.482-0.643 for ACE-I use, HR 0.536, CI 0.467-0.614 for ARB use, HR 0.482, CI 0.442-0.526 for CCB use.In our analysis, ACE-I, ARB, and CCB were strongly associated with prolonged primary patency of both AVF and AVG. Further prospective randomized studies are still warranted to prove the causality.

  6. Excessive blinking and ataxia in a child with occult neuroblastoma and voltage-gated potassium channel antibodies.

    LENUS (Irish Health Repository)

    Allen, Nicholas M

    2012-05-01

    A previously healthy 9-year-old girl presented with a 10-day history of slowly progressive unsteadiness, slurred speech, and behavior change. On examination there was cerebellar ataxia and dysarthria, excessive blinking, subtle perioral myoclonus, and labile mood. The finding of oligoclonal bands in the cerebrospinal fluid prompted paraneoplastic serological evaluation and search for an occult neural crest tumor. Antineuronal nuclear autoantibody type 1 (anti-Hu) and voltage-gated potassium channel complex antibodies were detected in serum. Metaiodobenzylguanidine scan and computed tomography scan of the abdomen showed a localized abdominal mass in the region of the porta hepatis. A diagnosis of occult neuroblastoma was made. Resection of the stage 1 neuroblastoma and treatment with pulsed corticosteroids resulted in resolution of all symptoms and signs. Excessive blinking has rarely been described with neuroblastoma, and, when it is not an isolated finding, it may be a useful clue to this paraneoplastic syndrome. Although voltage-gated potassium channel complex autoimmunity has not been described previously in the setting of neuroblastoma, it is associated with a spectrum of paraneoplastic neurologic manifestations in adults, including peripheral nerve hyperexcitability disorders.

  7. Killing of Candida albicans by Human Salivary Histatin 5 Is Modulated, but Not Determined, by the Potassium Channel TOK1

    OpenAIRE

    Baev, Didi; Rivetta, Alberto; Li, Xuewei S.; Vylkova, Slavena; Bashi, Esther; Slayman, Clifford L.; Edgerton, Mira

    2003-01-01

    Salivary histatin 5 (Hst 5), a potent toxin for the human fungal pathogen Candida albicans, induces noncytolytic efflux of cellular ATP, potassium, and magnesium in the absence of cytolysis, implicating these ion movements in the toxin's fungicidal activity. Hst 5 action on Candida resembles, in many respects, the action of the K1 killer toxin on Saccharomyces cerevisiae, and in that system the yeast plasma membrane potassium channel, Tok1p, has recently been reported to be a primary target o...

  8. Comparative effects of copper sulfate or potassium permanganate on channel catfish concurrently infected with Flavobacterium columnare and Ichthyobodo necator

    Science.gov (United States)

    An opportunistic study was conducted to determine the effects of two chemical therapeutants on channel catfish (CCF) Ictalurus punctatus concurrently infected Flavobacterium columnare and Ichthyobodo necator. Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were investigated for their abil...

  9. Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge

    Science.gov (United States)

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…

  10. Efficacy and safety of a therapeutic interchange from high-dose calcium channel blockers to a fixed-dose combination of amlodipine/benazepril in patients with moderate-to-severe hypertension.

    Science.gov (United States)

    Hilleman, D E; Reyes, A P; Wurdeman, R L; Faulkner, M

    2001-08-01

    Recent hypertension trials have demonstrated the importance of achieving goal blood pressures to reduce the risk of target organ damage. In patients with moderate to severe hypertension, the use of high-dose monotherapy and/or combinations of drugs are necessary to achieve these goals. Fixed-dose combination products may be useful in these patients by reducing the number of daily doses required to control blood pressure. The objective of the present study was to evaluate the efficacy and safety of a therapeutic interchange between high-dose calcium channel blocker therapy and a fixed-dose combination of amlodipine/ benazepril (Lotrel; Novartis Pharmaceuticals, USA) in patients with moderate to severe hypertension. A total of 75 patients were switched from amlodipine (n = 25), felodipine (n = 25), and nifedipine-GITS (n = 25) to amlodipine/benazepril. Twenty-eight of the 75 patients (37%) were taking either a beta-blocker or a diuretic in addition to the high-dose calcium channel blocker prior to the switch. Blood pressure control, side effects and the cost of the therapeutic interchange were evaluated in the year following the therapeutic interchange. Sixty-six of the 75 (88%) patients were successfully switched with maintenance of blood pressure control and without the development of new dose-limiting side effects. Reasons for treatment failure after the therapeutic interchange included loss of blood pressure control in five patients and the development of new dose-limiting side effects in four patients. These side effects included cough in three patients and rash in one patient. After accounting for differences in drug acquisition cost and costs related to the switch (clinic and emergency room and laboratory tests), a cost savings of $16030 for all 75 patients was realised in the first year. The per patient-per year cost savings was $214. Our data indicate that a therapeutic interchange from selected high-dose calcium channel blockers to a fixed-dose combination

  11. MiRNA-135a regulates the expression of small conductance calcium-activated potassium (SK3) channels in epilepsy-like conditions

    NARCIS (Netherlands)

    Honrath, Birgit; Norwood, Braxton; Tanrioever, Gaye; Kuter, Katarzyna; Henshall, David C; Aksel-Aksoy, Ayla; Schratt, Gerhard; Pasterkamp, Jeroen; Dencher, Norbert A.; Nieweg, Katja; Culmsee, Carsten; Dolga, Amalia Mihalea

    2017-01-01

    Background Excessive and hypersynchronous neuronal discharges are key characteristics in the pathophysiology of neurological disorders such as epilepsy. Owing to their ability of regulating neuronal excitability, small conductance calcium-activated potassium (SK) channels have been implicated in

  12. Current role of beta-blockers in the treatment of hypertension.

    Science.gov (United States)

    Aronow, Wilbert S

    2010-11-01

    It is important to know which patients with hypertension will benefit from beta-blocker therapy and which beta-blockers should be used in the treatment of hypertension to reduce cardiovascular events and mortality. Studies between 1981 and 2009 using a Medline search are reported. Beta-blockers should be used to treat hypertension in patients with previous myocardial infarction, acute coronary syndromes, angina pectoris, congestive heart failure, ventricular arrhythmias, supraventricular tachyarrhythmias, diabetes mellitus, after coronary artery bypass graft surgery, and in patients who are pregnant, have thyrotoxicosis, glaucoma, migraine, essential tremor, perioperative hypertension, or an excessive blood pressure response after exercise. The use of beta-blockers as first-line therapy in patients with primary hypertension has been controversial. However, the 2009 guidelines of the European Society of Hypertension state that large-scale meta-analyses of available data confirm that diuretics, beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and calcium channel blockers do not significantly differ in their ability to lower blood pressure and to exert cardiovascular protection both in elderly and in younger patients. The key message of this paper is that atenolol should not be used as an antihypertensive drug and that the degree of reduction of mortality, myocardial infarction, stroke and congestive heart failure by antihypertensive therapy is dependent on the degree of lowering of aortic blood pressure. Newer vasodilator beta-blockers such as carvedilol and nebivolol may be more effective in reducing cardiovascular events than traditional beta-blockers, but this needs to be investigated by controlled clinical trials.

  13. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  14. Effect of phosphodiesterase inhibitors on human arteries in vitro

    NARCIS (Netherlands)

    Vroom, M. B.; Pfaffendorf, M.; van Wezel, H. B.; van Zwieten, P. A.

    1996-01-01

    In the present study, we investigated if the relaxant effects of phosphodiesterase (PDE) III inhibitors on human vessels could be inhibited by a nitric oxide synthase blocker, L-NAME, or by a blocker of ATP-sensitive potassium channels (KATP), glibenclamide. The experiments were performed using an

  15. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains

    Science.gov (United States)

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de La Peña, Pilar; Tomczak, Adam P.; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A.

    2015-03-01

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4-S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4-S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules.

  16. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium.

    Science.gov (United States)

    Noble, Karen; Floyd, Rachel; Shmygol, Andre; Shmygol, Anatoly; Mobasheri, A; Wray, Susan

    2010-01-01

    Calcium-activated potassium channels are important in a variety of smooth muscles, contributing to excitability and contractility. In the myometrium previous work has focussed on the large conductance channels (BK), and the role of small conductance channels (SK) has received scant attention, despite the finding that over-expression of an SK channel isoform (SK3) results in uterine dysfunction and delayed parturition. This study therefore characterises the expression of the three SK channel isoforms (SK1-3) in rat myometrium throughout pregnancy and investigates their effect on cytosolic [Ca] and force and compares this with that of BK channels. Consistent expression of all SK isoform transcripts and clear immunostaining of SK1-3 was found. Inhibition of SK1-3 channels (apamin, scyllatoxin) significantly inhibited outward current, caused membrane depolarisation and elicited action potentials in previously quiescent cells. Apamin or scyllatoxin increased the amplitude of [Ca] and force in spontaneously contracting myometrial strips throughout gestation. The functional effect of SK inhibition was larger than that of BK channel inhibition. Thus we show for the first time that SK1-3 channels are expressed and translated throughout pregnancy and contribute to outward current, regulate membrane potential and hence Ca signals in pregnant rat myometrium. They contribute more to quiescence that BK channels. 2009 Elsevier Ltd. All rights reserved.

  17. Randomised clinical trial: vonoprazan, a novel potassium-competitive acid blocker, vs. lansoprazole for the healing of erosive oesophagitis.

    Science.gov (United States)

    Ashida, K; Sakurai, Y; Hori, T; Kudou, K; Nishimura, A; Hiramatsu, N; Umegaki, E; Iwakiri, K

    2016-01-01

    Vonoprazan is a novel potassium-competitive acid blocker which may provide clinical benefit in acid-related disorders. To verify the non-inferiority of vonoprazan vs. lansoprazole in patients with erosive oesophagitis (EE), and to establish its long-term safety and efficacy as maintenance therapy. In this multicentre, randomised, double-blind, parallel-group comparison study, patients with endoscopically confirmed EE (LA Classification Grades A-D) were randomly allocated to receive vonoprazan 20 mg or lansoprazole 30 mg once daily after breakfast. The primary endpoint was the proportion of patients with healed EE confirmed by endoscopy up to week 8. In addition, subjects who achieved healed EE in the comparison study were re-randomised into a long-term study to investigate the safety and efficacy of vonoprazan 10 or 20 mg as maintenance therapy for 52 weeks. Of the 409 eligible subjects randomised, 401 completed the comparison study, and 305 entered the long-term maintenance study. The proportion of patients with healed EE up to week 8 was 99.0% for vonoprazan (203/205) and 95.5% for lansoprazole (190/199), thus verifying the non-inferiority of vonoprazan (P lansoprazole in EE was verified in the comparison study, and vonoprazan was well-tolerated and effective during the long-term maintenance study. © 2015 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.

  18. Beta-blockers

    DEFF Research Database (Denmark)

    Arboe, Bente; Ulrik, Charlotte Suppli

    2013-01-01

    Recently, β-blockers have been suggested as a potential maintenance treatment option for asthma. The aim of this review is to provide an overview of the current knowledge of the potential benefits and risks of β-blocker therapy for asthma.......Recently, β-blockers have been suggested as a potential maintenance treatment option for asthma. The aim of this review is to provide an overview of the current knowledge of the potential benefits and risks of β-blocker therapy for asthma....

  19. The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels.

    Science.gov (United States)

    Chen, Haijun; Kronengold, Jack; Yan, Yangyang; Gazula, Valeswara-Rao; Brown, Maile R; Ma, Liqun; Ferreira, Gonzalo; Yang, Youshan; Bhattacharjee, Arin; Sigworth, Fred J; Salkoff, Larry; Kaczmarek, Leonard K

    2009-04-29

    Potassium channels activated by intracellular Na(+) ions (K(Na)) play several distinct roles in regulating the firing patterns of neurons, and, at the single channel level, their properties are quite diverse. Two known genes, Slick and Slack, encode K(Na) channels. We have now found that Slick and Slack subunits coassemble to form heteromeric channels that differ from the homomers in their unitary conductance, kinetic behavior, subcellular localization, and response to activation of protein kinase C. Heteromer formation requires the N-terminal domain of Slack-B, one of the alternative splice variants of the Slack channel. This cytoplasmic N-terminal domain of Slack-B also facilitates the localization of heteromeric K(Na) channels to the plasma membrane. Immunocytochemical studies indicate that Slick and Slack-B subunits are coexpressed in many central neurons. Our findings provide a molecular explanation for some of the diversity in reported properties of neuronal K(Na) channels.

  20. Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder

    OpenAIRE

    Cyrus S.H. Ho; Roger C.M. Ho; Amy M.L. Quek

    2018-01-01

    Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn) toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC) complex limbic ence...

  1. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager

    OpenAIRE

    Langille, Megan M.; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum ...

  2. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures.

    Science.gov (United States)

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2016-01-01

    There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes.

  3. Loss of Sodium-Activated Potassium Channel Slack and FMRP Differentially Affect Social Behavior in Mice.

    Science.gov (United States)

    Bausch, Anne E; Ehinger, Rebekka; Straubinger, Julia; Zerfass, Patrick; Nann, Yvette; Lukowski, Robert

    2018-05-31

    The sodium-activated potassium channel Slack (Slo2.2) is widely expressed in central and peripheral neurons where it is supposed to shape firing properties important for neuronal excitability. Slack activity is enhanced by interaction with the Fragile-X-Mental-Retardation-Protein (FMRP) and loss of FMRP leads to decreased sodium-activated potassium currents in medial nucleus of the trapezoid body neurons of the Fmr1-knockout (KO) mouse representing a mouse model of the human Fragile-X-Syndrome (FXS) and autism. Autism is a frequent comorbidity of FXS, but it is unclear whether Slack is involved in autistic or related conditions of FXS in vivo. By applying a wide range of behavioral tests, we compared social and autism-related behaviors in Slack- and FMRP-deficient mice. In our hands, as expected, FMRP-deficiency causes autism-related behavioral changes in nesting and in a marble-burying test. In contrast, Slack-deficient males exhibited specific abnormalities in sociability in direct and indirect social interaction tests. Hence, we show for the first time that a proper Slack channel function is mandatory for normal social behavior in mice. Nevertheless, as deficits in social behaviors seem to occur independently from each other in FMRP and Slack null mutants, we conclude that Slack is not involved in the autistic phenotype of FMRP KO mice. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Bickerstaff's encephalitis and Miller Fisher syndrome associated with voltage-gated potassium channel and novel anti-neuronal antibodies.

    Science.gov (United States)

    Tüzün, E; Kürtüncü, M; Lang, B; Içöz, S; Akman-Demir, G; Eraksoy, M; Vincent, A

    2010-10-01

    GQ1b antibody (GQ1b-Ab) is detected in approximately two-thirds of sera of patients with Bickerstaffs encephalitis (BE). Whilst some of the remaining patients have antibodies to other gangliosides, many patients with BE are reported to be seronegative. Voltage-gated potassium channel antibody (VGKC-Ab) at high titer was detected during the diagnostic work-up of one patient with BE. Sera of an additional patient with BE and nine patients with Miller Fisher syndrome (MF) (all GQ1b-Ab positive) were investigated for VGKC-Ab and other anti-neuronal antibodies by radioimmunoprecipitation using 125I-dendrotoxin-VGKC and immunohistochemistry, respectively. Two patients with MF exhibited moderate titer VGKC-Abs. Regardless of positivity for VGKC or GQ1b antibodies, serum IgG of all patients with BE and MF reacted with the molecular layer and Purkinje cells of the cerebellum in a distinctive pattern. Voltage-gated potassium channel antibodies might be involved in some cases of BE or MF. The common staining pattern despite different antibody results suggests that there might be other, as yet unidentified, antibodies associated with BE and MF.

  5. Effects of potassium channel opener on the kinetics of thallium-201 in in-vitro and in-vivo

    International Nuclear Information System (INIS)

    Lee, J.; Kim, E. J.; Ahn, B. C.; Chae, S. C.; Lee, K. B.; Kim, C. K.

    1997-01-01

    Potassium channel opener (K-opener) opens membrane ATP-sensitive K + -channel and induces and increase in potassium efflux from cells. K-openers are powerful smooth muscle relaxants and currently used as antihypertensive, antianginal drugs or bronchodilators in clinic. Pharmacologic potency of newly synthesized K-opener is being evaluated with efflux capacity of preincubated Rb-83 from the isolated aortic vascular tissue preparation. Thallium has similar characteristics to those of rubidium and potassium in vivo. To evaluate the effect of pinacidil (a potent K-opener) on Tl-201 biokinetics, we have performed uptake/washout studies in cultured myocytes, and mice biodistribution study. Primary culture of spontaneous contracting myocytes was undertake from hearts of newborn Sprague-Dawley rat. Different concentration of pinacidil (100nM or 10uM) was co-incubated with Tl-201 in HBSS buffer to evaluate its effect on cellular uptake, or challenged to myocyte preparations pre-incubated with Tl-201 for washout study. Pinacidil was injected into mice simultaneous or 10-min after Tl-201 injection, and organ uptake and whole body retention ratio was measured using gamma counter or dose calibrator. Co-incubation of pinacidil with Tl-201 resulted in a decrease in Tl uptake into myocytes by 1.6 - 2.5 times, and an increase in washout by 1.6 - 3.1 times. Pinacidil injection resulted in mild decrease in blood, heart and liver uptake in mice, bur renal uptake was markedly decreased in a dose dependent manner. These results suggest that the pinacidil Tl-201 kinetics and may potentially affect the interpretation of Tl-201 myocardial imaging

  6. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.

    Science.gov (United States)

    Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G

    2000-01-18

    ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.

  7. The use of microelectrode array (MEA) to study the protective effects of potassium channel openers on metabolically compromised HL-1 cardiomyocytes

    International Nuclear Information System (INIS)

    Law, J K Y; Chan, M; Yeung, C K; Rudd, J A; Hofmann, B; Ingebrandt, S; Offenhäusser, A

    2009-01-01

    The microelectrode array (MEA) was used to evaluate the cardioprotective effects of adenosine triphosphate sensitive potassium (K ATP ) channel activation using potassium channel openers (KCOs) on HL-1 cardiomyocytes subjected to acute chemically induced metabolic inhibition. Beat frequency and extracellular action potential (exAP) amplitude were measured in the presence of metabolic inhibitors (sodium azide (NaN 3 ) or 2-deoxyglucose (2-DG)) or KCOs (pinacidil (PIN, a cyanoguanidine derivative, activates sarcolemmal K ATP channels) or SDZ PCO400 (SDZ, a benzopyran derivative, activates mitochondrial K ATP channels)). The protective effects of these KCOs on metabolically inhibited HL-1 cells were subsequently investigated. Signal shapes indicated that NaN 3 and 2-DG reduced the rate of the sodium (Na + ) influx signal as reflected by a reduction in beat frequency. PIN and SDZ appeared to reduce both rate of depolarization and extent of the Na + influx signals. Pre-treating cardiomyocytes with PIN (0.1 mM), but not SDZ, prevented the reduction of beat frequency associated with NaN 3 - or 2-DG-induced metabolic inhibition. The exAP amplitude was not affected by either KCO. The cardioprotective effect of PIN relative to SDZ may be due to the opening of different K ATP channels. This metabolic inhibition model on the MEA may provide a stable platform for the study of cardiac pathophysiology in the future

  8. Increase of ATP-sensitive potassium (KATP channels in the heart of type-1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Chen Zhih-Cherng

    2012-01-01

    Full Text Available Abstract Background An impairment of cardiovascular function in streptozotocin (STZ-diabetic rats has been mentioned within 5 days-to-3 months of induction. ATP-sensitive potassium (KATP channels are expressed on cardiac sarcolemmal membranes. It is highly responsive to metabolic fluctuations and can have effects on cardiac contractility. The present study attempted to clarify the changes of cardiac KATP channels in diabetic disorders. Methods Streptozotocin-induced diabetic rats and neonatal rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr were used to examine the effect of hyperglycemia on cardiac function and the expression of KATP channels. KATP channels expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of KATP channels by Western blot and Northern blot analysis. Results The result shows diazoxide produced a marked reduction of heart rate in control group. Furthermore, the methods of Northern blotting and Western blotting were employed to identify the gene expression of KATP channel. Two subunits of cardiac KATP channel (SUR2A and kir 6.2 were purchased as indicators and showed significantly decreased in both diabetic rats and high glucose treated rat cardiac myocytes. Correction of hyperglycemia by insulin or phlorizin restored the gene expression of cardiac KATP in these diabetic rats. Conclusions Both mRNA and protein expression of cardiac KATP channels are decreased in diabetic rats induced by STZ for 8 weeks. This phenomenon leads to result in desensitization of some KATP channel drugs.

  9. Encephalitis due to antibodies to voltage gated potassium channel (VGKC) with cerebellar involvement in a teenager.

    Science.gov (United States)

    Langille, Megan M; Desai, Jay

    2015-01-01

    Encephalitis due to antibodies to voltage gated potassium channel (VGKC) typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  10. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit.

    Directory of Open Access Journals (Sweden)

    John P Cavaretta

    Full Text Available KCNQ potassium channels composed of KCNQ2 and KCNQ3 subunits give rise to the M-current, a slow-activating and non-inactivating voltage-dependent potassium current that limits repetitive firing of action potentials. KCNQ channels are enriched at the surface of axons and axonal initial segments, the sites for action potential generation and modulation. Their enrichment at the axonal surface is impaired by mutations in KCNQ2 carboxy-terminal tail that cause benign familial neonatal convulsion and myokymia, suggesting that their correct surface distribution and density at the axon is crucial for control of neuronal excitability. However, the molecular mechanisms responsible for regulating enrichment of KCNQ channels at the neuronal axon remain elusive. Here, we show that enrichment of KCNQ channels at the axonal surface of dissociated rat hippocampal cultured neurons is regulated by ubiquitous calcium sensor calmodulin. Using immunocytochemistry and the cluster of differentiation 4 (CD4 membrane protein as a trafficking reporter, we demonstrate that fusion of KCNQ2 carboxy-terminal tail is sufficient to target CD4 protein to the axonal surface whereas inhibition of calmodulin binding to KCNQ2 abolishes axonal surface expression of CD4 fusion proteins by retaining them in the endoplasmic reticulum. Disruption of calmodulin binding to KCNQ2 also impairs enrichment of heteromeric KCNQ2/KCNQ3 channels at the axonal surface by blocking their trafficking from the endoplasmic reticulum to the axon. Consistently, hippocampal neuronal excitability is dampened by transient expression of wild-type KCNQ2 but not mutant KCNQ2 deficient in calmodulin binding. Furthermore, coexpression of mutant calmodulin, which can interact with KCNQ2/KCNQ3 channels but not calcium, reduces but does not abolish their enrichment at the axonal surface, suggesting that apo calmodulin but not calcium-bound calmodulin is necessary for their preferential targeting to the axonal

  11. Structural implications of hERG K+ channel block by a high-affinity minimally structured blocker

    Science.gov (United States)

    Helliwell, Matthew V.; Zhang, Yihong; El Harchi, Aziza; Du, Chunyun; Hancox, Jules C.; Dempsey, Christopher E.

    2018-01-01

    Cardiac potassium channels encoded by human ether-à-go-go–related gene (hERG) are major targets for structurally diverse drugs associated with acquired long QT syndrome. This study characterized hERG channel inhibition by a minimally structured high-affinity hERG inhibitor, Cavalli-2, composed of three phenyl groups linked by polymethylene spacers around a central amino group, chosen to probe the spatial arrangement of side chain groups in the high-affinity drug-binding site of the hERG pore. hERG current (IhERG) recorded at physiological temperature from HEK293 cells was inhibited with an IC50 of 35.6 nm with time and voltage dependence characteristic of blockade contingent upon channel gating. Potency of Cavalli-2 action was markedly reduced for attenuated inactivation mutants located near (S620T; 54-fold) and remote from (N588K; 15-fold) the channel pore. The S6 Y652A and F656A mutations decreased inhibitory potency 17- and 75-fold, respectively, whereas T623A and S624A at the base of the selectivity filter also decreased potency (16- and 7-fold, respectively). The S5 helix F557L mutation decreased potency 10-fold, and both F557L and Y652A mutations eliminated voltage dependence of inhibition. Computational docking using the recent cryo-EM structure of an open channel hERG construct could only partially recapitulate experimental data, and the high dependence of Cavalli-2 block on Phe-656 is not readily explainable in that structure. A small clockwise rotation of the inner (S6) helix of the hERG pore from its configuration in the cryo-EM structure may be required to optimize Phe-656 side chain orientations compatible with high-affinity block. PMID:29545312

  12. Dioxin-induced acute cardiac mitochondrial oxidative damage and increased activity of ATP-sensitive potassium channels in Wistar rats

    International Nuclear Information System (INIS)

    Pereira, Susana P.; Pereira, Gonçalo C.; Pereira, Cláudia V.; Carvalho, Filipa S.; Cordeiro, Marília H.; Mota, Paula C.; Ramalho-Santos, João; Moreno, António J.; Oliveira, Paulo J.

    2013-01-01

    The environmental dioxin 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a Group 1 human carcinogen and teratogenic agent. We hypothesize that TCDD-induced oxidative stress may also interfere with mitochondrial ATP-sensitive potassium channels (mitoKATP), which are known to regulate and to be regulated by mitochondrial redox state. We investigated the effects of an acute treatment of male Wistar rats with TCDD (50 μg/kg i.p.) and measured the regulation of cardiac mitoKATP. While the function of cardiac mitochondria was slightly depressed, mitoKATP activity was 52% higher in animals treated with TCDD. The same effects were not observed in liver mitochondria isolated from the same animals. Our data also shows that regulation of mitochondrial ROS production by mitoKATP activity is different in both groups. To our knowledge, this is the first report to show that TCDD increases mitoKATP activity in the heart, which may counteract the increased oxidative stress caused by the dioxin during acute exposure. -- Highlights: •Acute TCDD treatment of Wistar rats causes cardiac oxidative stress. •Acute TCDD treatment causes cardiac mitochondrial alterations. •Mitochondrial liver vs. heart alterations are distinct. •TCDD treatment resulted in altered activity of cardiac mitochondrial K-ATP channels. -- Dioxin alters the regulation of cardiac mitochondrial ATP-sensitive potassium channels and disturbs mitochondrial physiology

  13. A meta-analysis of the effect of angiotensin receptor blockers and calcium channel blockers on blood pressure, glycemia and the HOMA-IR index in non-diabetic patients.

    Science.gov (United States)

    Yang, Yue; Wei, Ri-bao; Xing, Yue; Tang, Lu; Zheng, Xiao-yong; Wang, Zi-cheng; Gao, Yu-wei; Li, Min-xia; Chen, Xiang-mei

    2013-12-01

    This study compared the efficacy of angiotensin receptor blockers (ARBs) and calcium channel blockers (CCBs) in the effect of insulin resistance (IR) as assessed using the homeostasis model assessment of insulin resistance (HOMA-IR) in non-diabetic patients. The MEDLINE, EMBASE, and Cochrane Library databases were searched to identify studies published before December 2012 that investigated the use of ARBs and CCBs to determine the effect on the HOMA-IR index in non-diabetics. Parameters on IR and blood pressure were collected. Review Manager 5.2 and Stata 12.0 were used to perform the meta-analysis. Fixed and random effects models were applied to various aspects of the meta-analysis, which assessed the therapeutic effects of the two types of drug using the HOMA-IR index in non-diabetic patients. The meta-analysis included five clinical trials. Patient comparisons before and after treatment with ARBs and CCBs revealed that ARBs reduced the HOMA-IR index (weighted mean difference (WMD) -0.65, 95% confidence interval (CI) -0.93 to -0.38) and fasting plasma insulin (FPI) (WMD -2.01, 95% CI -3.27 to -0.74) significantly more than CCBs. No significant differences in the therapeutic effects of these two types of drug on blood pressure were observed. Given that there are no significant differences in the therapeutic effects of ARBs and CCBs on blood pressure, as ARBs are superior to CCBs in their effect on the HOMA-IR index in non-diabetics, they might be a better choice in hypertension patients without diabetes. © 2013.

  14. The Methanolic Extract from Murraya koenigii L. Inhibits Glutamate-Induced Pain and Involves ATP-Sensitive K+ Channel as Antinociceptive Mechanism

    Directory of Open Access Journals (Sweden)

    Nushrat Sharmin Ani

    2016-01-01

    Full Text Available Murraya koenigii L. is a perennial shrub, belonging to the family Rutaceae. Traditionally, the leaves of this plant are extensively used in treatment of a wide range of diseases and disorders including pain and inflammation. Although researchers have revealed the antinociceptive effects of this plant’s leaves during past few years, the mechanisms underlying these effects are still unknown. Therefore, the present study evaluated some antinociceptive mechanisms of the methanolic extract of M. koenigii (MEMK leaves along with its antinociceptive potential using several animal models. The antinociceptive effects of MEMK were evaluated using formalin-induced licking and acetic acid-induced writhing tests at the doses of 50, 100, and 200 mg/kg. In addition, we also justified the possible participations of glutamatergic system and ATP-sensitive potassium channels in the observed activities. Our results demonstrated that MEMK significantly (p<0.01 inhibited the pain thresholds induced by formalin and acetic acid in a dose-dependent manner. MEMK also significantly (p<0.01 suppressed glutamate-induced pain. Moreover, pretreatment with glibenclamide (an ATP-sensitive potassium channel blocker at 10 mg/kg significantly (p<0.05 reversed the MEMK-mediated antinociception. These revealed that MEMK might have the potential to interact with glutamatergic system and the ATP-sensitive potassium channels to exhibit its antinociceptive activities. Therefore, our results strongly support the antinociceptive effects of M. koenigii leaves and provide scientific basis of their analgesic uses in the traditional medicine.

  15. Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Izumi Maezawa

    2012-01-01

    Full Text Available There exists an urgent need for new target discovery to treat Alzheimer’s disease (AD; however, recent clinical trials based on anti-Aβ and anti-inflammatory strategies have yielded disappointing results. To expedite new drug discovery, we propose reposition targets which have been previously pursued by both industry and academia for indications other than AD. One such target is the calcium-activated potassium channel KCa3.1 (KCNN4, which in the brain is primarily expressed in microglia and is significantly upregulated when microglia are activated. We here review the existing evidence supporting that KCa3.1 inhibition could block microglial neurotoxicity without affecting their neuroprotective phagocytosis activity and without being broadly immunosuppressive. The anti-inflammatory and neuroprotective effects of KCa3.1 blockade would be suitable for treating AD as well as cerebrovascular and traumatic brain injuries, two well-known risk factors contributing to the dementia in AD patients presenting with mixed pathologies. Importantly, the pharmacokinetics and pharmacodynamics of several KCa3.1 blockers are well known, and a KCa3.1 blocker has been proven safe in clinical trials. It is therefore promising to reposition old or new KCa3.1 blockers for AD preclinical and clinical trials.

  16. Identification of the functional binding pocket for compounds targeting small-conductance Ca²⁺-activated potassium channels.

    Science.gov (United States)

    Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang

    2012-01-01

    Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.

  17. Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage.

    Science.gov (United States)

    Zaika, Oleg; Palygin, Oleg; Tomilin, Viktor; Mamenko, Mykola; Staruschenko, Alexander; Pochynyuk, Oleh

    2016-02-15

    Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD. Copyright © 2016 the American Physiological Society.

  18. Inhibitory effects of telmisartan on culture and proliferation of and Kv1.3 potassium channel expression in peripheral blood CD4+ T lymphocytes from Xinjiang Kazakh patients with hypertension

    Directory of Open Access Journals (Sweden)

    Sha-Sha Huang

    2016-10-01

    Full Text Available Introduction: Activation of T lymphocytes, for which potassium channels are essential, is involved in the development of hypertension. In this study, we explored the inhibitory effects of telmisartan on the culture and proliferation of and Kv1.3 potassium channel expression in peripheral blood CD4+ T lymphocytes derived from Xinjiang Kazakh patients with hypertension. Methods: CD4+ T-cell samples from hypertensive Kazakh patients and healthy Kazakh people were divided into healthy control, case control, telmisartan, and 4-aminopytidine groups. Changes in the expression levels of interleukin (IL-6 and IL-17 in the blood of the healthy control and case control subjects were detected by enzyme-linked immunosorbent assay. Peripheral blood CD4+ T lymphocytes were first activated and proliferated in vitro and then incubated for 0, 24, and 48 h under various treatment conditions. Thereafter, changes in CD4+ T-lymphocytic proliferation were determined using Cell Counting Kit-8 and microscope photography. Changes in messenger RNA (mRNA and protein expression of the Kv1.3 potassium channel in CD4+ T lymphocytes were detected using real-time quantitative polymerase chain reaction and Western blots, respectively. Results: The IL-6 and IL-17 expression levels were significantly higher in the blood of the hypertensive Kazakh patients than in the healthy Kazakh people. Telmisartan inhibited T-lymphocytic proliferation, as well as the mRNA and protein expression of the Kv1.3 potassium channel in CD4+ T lymphocytes, and the inhibitory effects were time-dependent, with the strongest inhibition observed after 48 h and significantly weaker inhibition observed after 24 h of treatment. Conclusions: Telmisartan may potentially regulate hypertensive inflammatory responses by inhibiting T-lymphocytic proliferation and Kv1.3 potassium channel expression in CD4+ T lymphocytes.

  19. Encephalitis due to antibodies to voltage gated potassium channel (VGKC with cerebellar involvement in a teenager

    Directory of Open Access Journals (Sweden)

    Megan M Langille

    2015-01-01

    Full Text Available Encephalitis due to antibodies to voltage gated potassium channel (VGKC typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  20. Clinical usefulness of a dual L/N-type Ca2+ channel blocker, cilnidipine, in patients with chronic heart failure. Assessment with 123I-MIBG myocardial scintigraphy

    International Nuclear Information System (INIS)

    Ito, Kazuki; Nishikawa, Susumu; Adachi, Yoshihiko; Kato, Shuuji; Azuma, Akihiro; Matsubara, Hiroaki

    2003-01-01

    Sympathetic nerve system is activated as a compensatory mechanism in heart failure. However excessive activation of sympathetic nerve system deteriorates disease state. Sympathetic nerve system can be suppressed with N-type Ca 2+ channel blocker. An antihypertensive drug, cilnidipine, is a dual L/N-type Ca 2+ channel blocker. We studies usefulness of cilnidipine in treating with chronic heart failure with 123 I-MIBG myocardial scintigraphy. We enrolled 24 patients with stable chronic heart failure. Twelve patients were treated with angiotensin converting enzyme (ACE)-inhibitors, diuretics and cardiotonics (control group), and the other 12 patients were treated with ACE-inhibitors, diuretics, cardiotonics and cilnidipine (cilnidipine group). We examined blood pressure, heart rate, norepinephrine level, brain natriuretic peptide (BNP) level, cardiothoracic ratio on chest X-ray, ejection fraction of left ventricle on two-dimensional echocardiography, count rate of heart to mediastinum (H/M) and washout rate (WOR) on 123 I-MIBG myocardial scintigraphy before and six months after medication. Symptom was improved in 8 patients in the control group and 10 patients in the cilnidipine group after medication. And another parameters were also improved in the both groups after medication. However the degree of change in blood pressure (mmHg) was 21.2±8.0 in the cilnidipine group and 10.8±9.1 in the control group, that in heart rate (/min) was 24.1±6.8 and 16.2±11.0, that in BNP level (pg/ml) was 65.2±12.0 and 42.8±11.1, that in H/M was 0.30±0.08 and 0.19±0.09, that in WOR was 19.4±5.6 and 12.2±7.0, respectively. And the degree of these changes were larger in the cilnidipine group (p 2+ channel blocker, might be useful in treating with chronic heart failure. (author)

  1. Antibodies to voltage-gated potassium and calcium channels in epilepsy.

    Science.gov (United States)

    Majoie, H J Marian; de Baets, Mark; Renier, Willy; Lang, Bethan; Vincent, Angela

    2006-10-01

    To determine the prevalence of antibodies to ion channels in patients with long standing epilepsy. Although the CNS is thought to be protected from circulating antibodies by the blood brain barrier, glutamate receptor antibodies have been reported in Rasmussen's encephalitis, glutamic acid decarboxylase (GAD) antibodies have been found in a few patients with epilepsy, and antibodies to voltage-gated potassium channels (VGKC) have been found in a non-paraneoplastic form of limbic encephalitis (with amnesia and seizures) that responds to immunosuppressive therapy. We retrospectively screened sera from female epilepsy patients (n=106) for autoantibodies to VGKC (Kv 1.1, 1.2 or 1.6), voltage-gated calcium channels (VGCC) (P/Q-type), and GAD. All positive results, based on the values of control data [McKnight, K., Jiang, Y., et al. (2005). Serum antibodies in epilepsy and seizure-associated disorders. Neurology 65, 1730-1735], were retested at lower serum concentrations, and results compared with previously published control data. Demographics, medical history, and epilepsy related information was gathered. The studied group consisted predominantly of patients with long standing drug resistant epilepsy. VGKC antibodies were raised (>100 pM) in six patients. VGCC antibodies (>45 pM) were slightly raised in only one patient. GAD antibodies were VGKC antibodies differed from previously described patients with limbic encephalitis-like syndrome, and were not different with respect to seizure type, age at first seizure, duration of epilepsy, or use of anti-epileptic drugs from the VGKC antibody negative patients. The results demonstrate that antibodies to VGKC are present in 6% of patients with typical long-standing epilepsy, but whether these antibodies are pathogenic or secondary to the primary disease process needs to be determined.

  2. The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2).

    Science.gov (United States)

    Biton, B; Sethuramanujam, S; Picchione, Kelly E; Bhattacharjee, A; Khessibi, N; Chesney, F; Lanneau, C; Curet, O; Avenet, P

    2012-03-01

    Sodium-activated potassium (K(Na)) channels have been suggested to set the resting potential, to modulate slow after-hyperpolarizations, and to control bursting behavior or spike frequency adaptation (Trends Neurosci 28:422-428, 2005). One of the genes that encodes K(Na) channels is called Slack (Kcnt1, Slo2.2). Studies found that Slack channels were highly expressed in nociceptive dorsal root ganglion neurons and modulated their firing frequency (J Neurosci 30:14165-14172, 2010). Therefore, Slack channel openers are of significant interest as putative analgesic drugs. We screened the library of pharmacologically active compounds with recombinant human Slack channels expressed in Chinese hamster ovary cells, by using rubidium efflux measurements with atomic absorption spectrometry. Riluzole at 500 μM was used as a reference agonist. The antipsychotic drug loxapine and the anthelmintic drug niclosamide were both found to activate Slack channels, which was confirmed by using manual patch-clamp analyses (EC(50) = 4.4 μM and EC(50) = 2.9 μM, respectively). Psychotropic drugs structurally related to loxapine were also evaluated in patch-clamp experiments, but none was found to be as active as loxapine. Loxapine properties were confirmed at the single-channel level with recombinant rat Slack channels. In dorsal root ganglion neurons, loxapine was found to behave as an opener of native K(Na) channels and to increase the rheobase of action potential. This study identifies new K(Na) channel pharmacological tools, which will be useful for further Slack channel investigations.

  3. Kir 4.1 inward rectifier potassium channel is upregulated in astrocytes in a murine multiple sclerosis model.

    Science.gov (United States)

    Mercado, Francisco; Almanza, Angélica; Rubio, Nazario; Soto, Enrique

    2018-06-11

    Multiple sclerosis (MS) is a high prevalence degenerative disease characterized at the cellular level by glial and neuronal cell death. The causes of cell death during the disease course are not fully understood. In this work we demonstrate that in a MS model induced by Theiler's murine encephalomyelitis virus (TMEV) infection, the inward rectifier (Kir) 4.1 potassium channel subunit is overexpressed in astrocytes. In voltage clamp experiments the inward current density from TMEV-infected astrocytes was significantly larger than in mock-infected ones. The cRNA hybridization analysis from mock- and TMEV-infected cells showed an upregulation of a potassium transport channel coding sequence. We validated this mRNA increase by RT-PCR and quantitative PCR using Kir 4.1 specific primers. Western blotting experiments confirmed the upregulation of Kir 4.1, and alignment between sequences provided the demonstration that the over-expressed gene encodes for a Kir family member. Flow cytometry showed that the Kir 4.1 protein is located mainly in the cell membrane in mock and TMEV-infected astrocytes. Our results demonstrate an increase in K + inward current in TMEV-infected glial cells, this increment may reduce the neuronal depolarization, contributing to cell resilience mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel.

    Directory of Open Access Journals (Sweden)

    Samira Yazdi

    2016-01-01

    Full Text Available Voltage-gated potassium (KV channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD, the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins.

  5. Chronic electroconvulsive stimulation but not chronic restraint stress modulates mRNA expression of voltage-dependent potassium channels Kv7.2 and Kv11.1 in the rat piriform cortex

    DEFF Research Database (Denmark)

    Hjæresen, Marie-Louise; Hageman, Ida; Wörtwein, Gitta

    2008-01-01

    The mechanisms by which stress and electroconvulsive therapy exert opposite effects on the course of major depression are not known. Potential candidates might include the voltage-dependent potassium channels. Potassium channels play an important role in maintaining the resting membrane potential...... and controlling neuronal excitability. To explore this hypothesis, we examined the effects of one or several electroconvulsive stimulations and chronic restraint stress (6 h/day for 21 days) on the expression of voltage-dependent potassium channel Kv7.2, Kv11.1, and Kv11.3 mRNA in the rat brain using in situ...... hybridization. Repeated, but not acute, electroconvulsive stimulation increased Kv7.2 and Kv11.1 mRNA levels in the piriform cortex. In contrast, restraint stress had no significant effect on mRNA expression of Kv7.2, Kv11.1, or Kv11.3 in any of the brain regions examined. Thus, it appears that the investigated...

  6. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to 10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs.

  7. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons

    International Nuclear Information System (INIS)

    Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.; Nicholson, Graham M.

    2005-01-01

    The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na v ) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na v channel gating, observed clinically in response to ciguatera poisoning

  8. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury.

    Science.gov (United States)

    Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal

    2013-03-01

    The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.

  9. Influence of calcium-dependent potassium channel blockade and nitric oxide inhibition on norepinephrine-induced contractions in two forms of genetic hypertension

    Czech Academy of Sciences Publication Activity Database

    Líšková, Silvia; Petrová, M.; Karen, Petr; Kuneš, Jaroslav; Zicha, Josef

    2010-01-01

    Roč. 4, č. 3 (2010), s. 128-134 ISSN 1933-1711 R&D Projects: GA AV ČR(CZ) IAA500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : potassium channels * nitric oxide * norepinephrine Subject RIV: ED - Physiology Impact factor: 0.931, year: 2010

  10. G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization

    DEFF Research Database (Denmark)

    Liang, Bo; Nissen, Jakob D; Laursen, Morten

    2014-01-01

    The purpose of this study was to investigate the functional role of G-protein-coupled inward rectifier potassium (GIRK) channels in the cardiac ventricle.......The purpose of this study was to investigate the functional role of G-protein-coupled inward rectifier potassium (GIRK) channels in the cardiac ventricle....

  11. Inwardly Rectifying Potassium (Kir) Channels Represent a Critical Ion Conductance Pathway in the Nervous Systems of Insects.

    Science.gov (United States)

    Chen, Rui; Swale, Daniel R

    2018-01-25

    A complete understanding of the physiological pathways critical for proper function of the insect nervous system is still lacking. The recent development of potent and selective small-molecule modulators of insect inward rectifier potassium (Kir) channels has enabled the interrogation of the physiological role and toxicological potential of Kir channels within various insect tissue systems. Therefore, we aimed to highlight the physiological and functional role of neural Kir channels the central nervous system, muscular system, and neuromuscular system through pharmacological and genetic manipulations. Our data provide significant evidence that Drosophila neural systems rely on the inward conductance of K + ions for proper function since pharmacological inhibition and genetic ablation of neural Kir channels yielded dramatic alterations of the CNS spike discharge frequency and broadening and reduced amplitude of the evoked EPSP at the neuromuscular junction. Based on these data, we conclude that neural Kir channels in insects (1) are critical for proper function of the insect nervous system, (2) represents an unexplored physiological pathway that is likely to shape the understanding of neuronal signaling, maintenance of membrane potentials, and maintenance of the ionic balance of insects, and (3) are capable of inducing acute toxicity to insects through neurological poisoning.

  12. Role of diuretics, β blockers, and statins in increasing the risk of diabetes in patients with impaired glucose tolerance: reanalysis of data from the NAVIGATOR study.

    Science.gov (United States)

    Shen, Lan; Shah, Bimal R; Reyes, Eric M; Thomas, Laine; Wojdyla, Daniel; Diem, Peter; Leiter, Lawrence A; Charbonnel, Bernard; Mareev, Viacheslav; Horton, Edward S; Haffner, Steven M; Soska, Vladimir; Holman, Rury; Bethel, M Angelyn; Schaper, Frank; Sun, Jie-Lena; McMurray, John J V; Califf, Robert M; Krum, Henry

    2013-12-09

    To examine the degree to which use of β blockers, statins, and diuretics in patients with impaired glucose tolerance and other cardiovascular risk factors is associated with new onset diabetes. Reanalysis of data from the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) trial. NAVIGATOR trial. Patients who at baseline (enrolment) were treatment naïve to β blockers (n=5640), diuretics (n=6346), statins (n=6146), and calcium channel blockers (n=6294). Use of calcium channel blocker was used as a metabolically neutral control. Development of new onset diabetes diagnosed by standard plasma glucose level in all participants and confirmed with glucose tolerance testing within 12 weeks after the increased glucose value was recorded. The relation between each treatment and new onset diabetes was evaluated using marginal structural models for causal inference, to account for time dependent confounding in treatment assignment. During the median five years of follow-up, β blockers were started in 915 (16.2%) patients, diuretics in 1316 (20.7%), statins in 1353 (22.0%), and calcium channel blockers in 1171 (18.6%). After adjusting for baseline characteristics and time varying confounders, diuretics and statins were both associated with an increased risk of new onset diabetes (hazard ratio 1.23, 95% confidence interval 1.06 to 1.44, and 1.32, 1.14 to 1.48, respectively), whereas β blockers and calcium channel blockers were not associated with new onset diabetes (1.10, 0.92 to 1.31, and 0.95, 0.79 to 1.13, respectively). Among people with impaired glucose tolerance and other cardiovascular risk factors and with serial glucose measurements, diuretics and statins were associated with an increased risk of new onset diabetes, whereas the effect of β blockers was non-significant. ClinicalTrials.gov NCT00097786.

  13. Diclofenac distinguishes among homomeric and heteromeric potassium channels composed of KCNQ4 and KCNQ5 subunits.

    Science.gov (United States)

    Brueggemann, Lioubov I; Mackie, Alexander R; Martin, Jody L; Cribbs, Leanne L; Byron, Kenneth L

    2011-01-01

    KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 rat aortic smooth muscle cells. The conductance curves of the overexpressed channels were fitted by a single Boltzmann function in each case (V(0.5) values: -31, -44, and -38 mV for KCNQ4, KCNQ5, and KCNQ4/5, respectively). Diclofenac (100 μM) inhibited KCNQ5 channels, reducing maximum conductance by 53%, but increased maximum conductance of KCNQ4 channels by 38%. The opposite effects of diclofenac on KCNQ4 and KCNQ5 could not be attributed to the presence of a basic residue (lysine) in the voltage-sensing domain of KCNQ5, because mutation of this residue to neutral glycine (the residue present in KCNQ4) resulted in a more effective block of the channel. Differences in deactivation rates and distinct voltage-dependent effects of diclofenac on channel activation and deactivation observed with each of the subunit combinations (KCNQ4, KCNQ5, and KCNQ4/5) were used as diagnostic tools to evaluate native KCNQ currents in vascular smooth muscle cells. A7r5 cells express only KCNQ5 channels endogenously, and their responses to diclofenac closely resembled those of the overexpressed KCNQ5 currents. In contrast, mesenteric artery myocytes, which express both KCNQ4 and KCNQ5 channels, displayed whole-cell KCNQ currents with properties and diclofenac responses characteristic of overexpressed heteromeric KCNQ4/5 channels.

  14. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability

    Science.gov (United States)

    Speca, David J.; Ogata, Genki; Mandikian, Danielle; Bishop, Hannah I.; Wiler, Steve W.; Eum, Kenneth; Wenzel, H. Jürgen; Doisy, Emily T.; Matt, Lucas; Campi, Katharine L.; Golub, Mari S.; Nerbonne, Jeanne M.; Hell, Johannes W.; Trainor, Brian C.; Sack, Jon T.; Schwartzkroin, Philip A.; Trimmer, James S.

    2014-01-01

    The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1−/−) mice lacking this channel. Kv2.1−/− mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1−/− mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1−/− mice appears unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1−/− animals. Field recordings from hippocampal slices of Kv2.1−/− mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1−/− mice, long-term potentiation at the Schaffer collateral – CA1 synapse is decreased. Kv2.1−/− mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1−/− mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1−/− mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function. PMID:24494598

  15. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1

    Directory of Open Access Journals (Sweden)

    Lien Moreels

    2017-09-01

    Full Text Available The human ether-à-go-go channel (hEag1 or KV10.1 is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel KV10.1 inhibitor from the sea anemone Anthopleura elegantissima. Purified sea anemone fractions were screened for inhibitory activity on KV10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on KV10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-à-go-go-related gene potassium channel (hERG or Kv11.1. The toxin inhibits KV10.1 with an IC50 value of 1.1 μM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other KV and NaV channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified KV10.1 inhibitor can be used as a tool to further characterize the oncogenic channel KV10.1 or as a

  16. Clinical utility of seropositive voltage-gated potassium channel-complex antibody.

    Science.gov (United States)

    Jammoul, Adham; Shayya, Luay; Mente, Karin; Li, Jianbo; Rae-Grant, Alexander; Li, Yuebing

    2016-10-01

    Antibodies against voltage-gated potassium channel (VGKC)-complex are implicated in the pathogenesis of acquired neuromyotonia, limbic encephalitis, faciobrachial dystonic seizure, and Morvan syndrome. Outside these entities, the clinical value of VGKC-complex antibodies remains unclear. We conducted a single-center review of patients positive for VGKC-complex antibodies over an 8-year period. Among 114 patients positive for VGKC-complex antibody, 11 (9.6%) carrying the diagnosis of limbic encephalitis (n = 9) or neuromyotonia (n = 2) constituted the classic group, and the remaining 103 cases of various neurologic and non-neurologic disorders comprised the nonclassic group. The median titer for the classic group was higher than the nonclassic group ( p 0.25 nM) VGKC-complex antibody levels ( p VGKC-complex antibody titers are more likely found in patients with classically associated syndromes and other autoimmune conditions. Low-level VGKC-complex antibodies can be detected in nonspecific and mostly nonautoimmune disorders. The presence of VGKC-complex antibody, rather than its level, may serve as a marker of malignancy.

  17. Kalium: a database of potassium channel toxins from scorpion venom.

    Science.gov (United States)

    Kuzmenkov, Alexey I; Krylov, Nikolay A; Chugunov, Anton O; Grishin, Eugene V; Vassilevski, Alexander A

    2016-01-01

    Kalium (http://kaliumdb.org/) is a manually curated database that accumulates data on potassium channel toxins purified from scorpion venom (KTx). This database is an open-access resource, and provides easy access to pages of other databases of interest, such as UniProt, PDB, NCBI Taxonomy Browser, and PubMed. General achievements of Kalium are a strict and easy regulation of KTx classification based on the unified nomenclature supported by researchers in the field, removal of peptides with partial sequence and entries supported by transcriptomic information only, classification of β-family toxins, and addition of a novel λ-family. Molecules presented in the database can be processed by the Clustal Omega server using a one-click option. Molecular masses of mature peptides are calculated and available activity data are compiled for all KTx. We believe that Kalium is not only of high interest to professional toxinologists, but also of general utility to the scientific community.Database URL:http://kaliumdb.org/. © The Author(s) 2016. Published by Oxford University Press.

  18. Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.

    Science.gov (United States)

    de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco

    2018-03-23

    Voltage-dependent KCNH family potassium channel functionality can be reconstructed using non-covalently linked voltage-sensing domain (VSD) and pore modules (split channels). However, the necessity of a covalent continuity for channel function has not been evaluated at other points within the two functionally independent channel modules. We find here that by cutting Kv11.1 (hERG, KCNH2) channels at the different loops linking the transmembrane spans of the channel core, not only channels split at the S4-S5 linker level, but also those split at the intracellular S2-S3 and the extracellular S3-S4 loops, yield fully functional channel proteins. Our data indicate that albeit less markedly, channels split after residue 482 in the S2-S3 linker resemble the uncoupled gating phenotype of those split at the C-terminal end of the VSD S4 transmembrane segment. Channels split after residues 514 and 518 in the S3-S4 linker show gating characteristics similar to those of the continuous wild-type channel. However, breaking the covalent link at this level strongly accelerates the voltage-dependent accessibility of a membrane impermeable methanethiosulfonate reagent to an engineered cysteine at the N-terminal region of the S4 transmembrane helix. Thus, besides that of the S4-S5 linker, structural integrity of the intracellular S2-S3 linker seems to constitute an important factor for proper transduction of VSD rearrangements to opening and closing the cytoplasmic gate. Furthermore, our data suggest that the short and probably rigid characteristics of the extracellular S3-S4 linker are not an essential component of the Kv11.1 voltage sensing machinery.

  19. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron.

    Science.gov (United States)

    Carrisoza-Gaytán, Rolando; Salvador, Carolina; Diaz-Bello, Beatriz; Escobar, Laura I

    2014-10-01

    Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.

  20. Voltage-gated potassium channel (K(v) 1) autoantibodies in patients with chagasic gut dysmotility and distribution of K(v) 1 channels in human enteric neuromusculature (autoantibodies in GI dysmotility).

    Science.gov (United States)

    Hubball, A W; Lang, B; Souza, M A N; Curran, O D; Martin, J E; Knowles, C H

    2012-08-01

    Autoantibodies directed against specific neuronal antigens are found in a significant number of patients with gastrointestinal neuromuscular diseases (GINMDs) secondary to neoplasia. This study examined the presence of antineuronal antibodies in idiopathic GINMD and GINMD secondary to South American Trypanosomiasis. The GI distribution of voltage-gated potassium channels (VGKCs) was also investigated. Seventy-three patients were included in the study with diagnoses of primary achalasia, enteric dysmotility, chronic intestinal pseudo-obstruction, esophageal or colonic dysmotility secondary to Chagas' disease. Sera were screened for specific antibodies to glutamic acid decarboxylase, voltage-gated calcium channels (VGCCs; P/Q subtype), nicotinic acetylcholine receptors (nAChRs; α3 subtype), and voltage-gated potassium channels (VGKCs, K(V) 1 subtype) using validated immunoprecipitation assays. The distribution of six VGKC subunits (K(V) 1.1-1.6), including those known to be antigenic targets of anti-VGKC antibodies was immunohistochemically investigated in all main human GI tract regions. Three patients (14%) with chagasic GI dysmotility were found to have positive anti-VGKC antibody titers. No antibodies were detected in patients with idiopathic GINMD. The VGKCs were found in enteric neurons at every level of the gut in unique yet overlapping distributions. The VGKC expression in GI smooth muscle was found to be limited to the esophagus. A small proportion of patients with GI dysfunction secondary to Chagas' disease have antibodies against VGKCs. The presence of these channels in the human enteric nervous system may have pathological relevance to the growing number of GINMDs with which anti-VGKC antibodies have been associated. © 2012 Blackwell Publishing Ltd.

  1. Pharmacogenetics of β-Blockers

    Science.gov (United States)

    Shin, Jaekyu; Johnson, Julie A.

    2009-01-01

    β-Blockers are an important cardiovascular drug class, recommended as first-line treatment of numerous diseases such as heart failure, hypertension, and angina, as well as treatment after myocardial infarction. However, responses to a β-blocker are variable among patients. Results of numerous studies now suggest that genetic polymorphisms may contribute to variability in responses to β-blockers. This review summarizes the pharmacogenetic data for β-blockers in patients with various diseases and discusses the potential implications of β-blocker pharmacogenetics in clinical practice. PMID:17542770

  2. ATP-sensitive K(+-channels in muscle cells: features and physiological role

    Directory of Open Access Journals (Sweden)

    O. B. Vadzyuk

    2014-08-01

    Full Text Available ATP-sensitive K+-channels of plasma membranes belong to the inward rectifier potassium channels type. They are involved in coupling of electrical activity of muscle cell with its metabolic­ state. These channels are heterooctameric and consist of two types of subunits: four poreforming (Kir 6.х and four regulatory (SUR, sulfonylurea receptor. The Kir subunits contain highly selective K+ filter and provide for high-velocity K+ currents. The SUR subunits contain binding sites for activators and blockers and have metabolic sensor, which enables channel activation under conditions of metabolic stress. ATP blocks K+ currents through the ATP-sensitive K+-channels in the most types of muscle cells. However, functional activity of these channels does not depend on absolute concentration of ATP but on the АТР/ADP ratio and presence of Mg2+. Physiologically active substances, such as phosphatidylinositol bisphosphate and fatty acid esters can regulate the activity of these structures in muscle cells. Activation of these channels under ischemic conditions underlies their cytoprotective action, which results in prevention of Ca2+ overload in cytosol. In contrast to ATP-sensitive K+-channels of plasma membranes, the data regarding the structure and function of ATP-sensitive K+-channels of mitochondrial membrane are contradictory. Pore-forming subunits of this channel have not been firmly identified yet. ATP-sensitive K+ transport through the mitochondrial­ membrane is easily tested by different methods, which are briefly reviewed in this paper. Interaction of mitoKATP with physiological and pharmacological ligands is discussed as well.

  3. Alpha Blockers

    Science.gov (United States)

    ... quickly, but their effects last only a few hours. Long-acting medications take longer to work, but their effects last longer. Which alpha blocker is best for you depends on your health and the condition being treated. Alpha blockers are ...

  4. A new candidate of calcium channel blocker in silico from Tectona grandis for treatment of gestational hypertension

    Science.gov (United States)

    Azizah, A.; Suselo, Y. H.; Muthmainah, M.; Indarto, D.

    2018-05-01

    grandis. Obtusifolin 2-glucoside computationally becomes a potensial candidate of calcium channel blocker. In vitro assays should be performed to evaluate the antagonist effect of obtusifolin 2-glucoside on calcium channel Cav1.2.

  5. Hydrogen Sulfide Targets the Cys320/Cys529 Motif in Kv4.2 to Inhibit the Ito Potassium Channels in Cardiomyocytes and Regularizes Fatal Arrhythmia in Myocardial Infarction

    Science.gov (United States)

    Ma, Shan-Feng; Luo, Yan; Ding, Ying-Jiong; Chen, Ying; Pu, Shi-Xin; Wu, Hang-Jing; Wang, Zhong-Feng; Tao, Bei-Bei; Wang, Wen-Wei

    2015-01-01

    Abstract Aims: The mechanisms underlying numerous biological roles of hydrogen sulfide (H2S) remain largely unknown. We have previously reported an inhibitory role of H2S in the L-type calcium channels in cardiomyocytes. This prompts us to examine the mechanisms underlying the potential regulation of H2S on the ion channels. Results: H2S showed a novel inhibitory effect on Ito potassium channels, and this effect was blocked by mutation at the Cys320 and/or Cys529 residues of the Kv4.2 subunit. H2S broke the disulfide bridge between a pair of oxidized cysteine residues; however, it did not modify single cysteine residues. H2S extended action potential duration in epicardial myocytes and regularized fatal arrhythmia in a rat model of myocardial infarction. H2S treatment significantly increased survival by ∼1.4-fold in the critical 2-h time window after myocardial infarction with a protection against ventricular premature beats and fatal arrhythmia. However, H2S did not change the function of other ion channels, including IK1 and INa. Innovation and Conclusion: H2S targets the Cys320/Cys529 motif in Kv4.2 to regulate the Ito potassium channels. H2S also shows a potent regularizing effect against fatal arrhythmia in a rat model of myocardial infarction. The study provides the first piece of evidence for the role of H2S in regulating Ito potassium channels and also the specific motif in an ion channel labile for H2S regulation. Antioxid. Redox Signal. 23, 129–147. PMID:25756524

  6. Potassium iodide as a thyroid blocker--Three Mile Island to today

    International Nuclear Information System (INIS)

    Halperin, J.A.

    1989-01-01

    The Three Mile Island (TMI) nuclear emergency in the U.S. in March 1979 marked the first occasion when use of potassium iodide (KI) was considered for thyroid blocking of the population in the vicinity of a potentially serious release of fission products from a nuclear power reactor. In face of a demand that could not be satisfied by commercial supplies of low-dose KI drug products from the U.S. pharmaceutical industry, the Food and Drug Administration directed the manufacture and stockpiling of sufficient quantities of saturated solution of potassium iodide (SSKI) to provide protection for one million people in the event of a large-scale release of radioiodines. Although the drug was not used, the experience of producing, stockpiling, and making ready for use a large quantity of the drug resulted in significant public policy, regulatory, and logistical issues. A number of these issues have been resolved through scientific debate and consensus, development of official guidance regarding the proper role of KI in nuclear emergencies, and the approval of New Drug Applications for KI products specifically intended for thyroid blocking in nuclear emergencies. Other issues regarding broad-scale implementation of the guidelines remain today. This paper traces the history of the development and implementation of the use of KI from pre-TMI to the present

  7. Potassium iodide as a thyroid blocker--Three Mile Island to today.

    Science.gov (United States)

    Halperin, J A

    1989-05-01

    The Three Mile Island (TMI) nuclear emergency in the U.S. in March 1979 marked the first occasion when use of potassium iodide (KI) was considered for thyroid blocking of the population in the vicinity of a potentially serious release of fission products from a nuclear power reactor. In face of a demand that could not be satisfied by commercial supplies of low-dose KI drug products from the U.S. pharmaceutical industry, the Food and Drug Administration directed the manufacture and stockpiling of sufficient quantities of saturated solution of potassium iodide (SSKI) to provide protection for one million people in the event of a large-scale release of radioiodines. Although the drug was not used, the experience of producing, stockpiling, and making ready for use a large quantity of the drug resulted in significant public policy, regulatory, and logistical issues. A number of these issues have been resolved through scientific debate and consensus, development of official guidance regarding the proper role of KI in nuclear emergencies, and the approval of New Drug Applications for KI products specifically intended for thyroid blocking in nuclear emergencies. Other issues regarding broad-scale implementation of the guidelines remain today. This paper traces the history of the development and implementation of the use of KI from pre-TMI to the present.

  8. Calcium-channel blockers do not alter the clinical efficacy of clopidogrel after myocardial infarction: a nationwide cohort study

    DEFF Research Database (Denmark)

    Olesen, Jonas B; Gislason, Gunnar H; Charlot, Mette G

    2011-01-01

    Objectives The purpose of this study was to determine the risk of adverse cardiovascular events associated with concomitant use of clopidogrel and calcium-channel blockers (CCBs) in patients with myocardial infarction (MI). Background CCBs inhibit a variety of cytochrome P-450 enzymes, some...... patients treated and not treated with clopidogrel, with a hazard ratio of 1.15 (95% confidence interval [CI]: 1.07 to 1.24) and 1.05 (95% CI: 1.01 to 1.11), respectively. The increased risk was independent of clopidogrel use; the hazard rate ratio was 1.08 (95% CI: 0.99 to 1.18). Analyses of all additional...... adverse end points and propensity score–matched models provided similar results. Conclusions The clinical efficacy of clopidogrel in patients with a recent MI is not modified by concomitant CCB treatment. This potential drug interaction is unlikely to have clinical significance....

  9. Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27

    Science.gov (United States)

    Balana, Bartosz; Maslennikov, Innokentiy; Kwiatkowski, Witek; Stern, Kalyn M.; Bahima, Laia; Choe, Senyon; Slesinger, Paul A.

    2011-01-01

    G protein-gated inwardly rectifying potassium (GIRK) channels are important gatekeepers of neuronal excitability. The surface expression of neuronal GIRK channels is regulated by the psychostimulant-sensitive sorting nexin 27 (SNX27) protein through a class I (-X-Ser/Thr-X-Φ, where X is any residue and Φ is a hydrophobic amino acid) PDZ-binding interaction. The G protein-insensitive inward rectifier channel (IRK1) contains the same class I PDZ-binding motif but associates with a different synaptic PDZ protein, postsynaptic density protein 95 (PSD95). The mechanism by which SNX27 and PSD95 discriminate these channels was previously unclear. Using high-resolution structures coupled with biochemical and functional analyses, we identified key amino acids upstream of the channel's canonical PDZ-binding motif that associate electrostatically with a unique structural pocket in the SNX27-PDZ domain. Changing specific charged residues in the channel's carboxyl terminus or in the PDZ domain converts the selective association and functional regulation by SNX27. Elucidation of this unique interaction site between ion channels and PDZ-containing proteins could provide a therapeutic target for treating brain diseases. PMID:21422294

  10. Crystallization and preliminary X-ray diffraction studies of the tetramerization domain derived from the human potassium channel Kv1.3

    International Nuclear Information System (INIS)

    Winklmeier, Andreas; Weyand, Michael; Schreier, Christina; Kalbitzer, Hans Robert; Kremer, Werner

    2009-01-01

    The tetramerization domain of human Kv1.3 was cloned, expressed, purified and crystallized. The crystals belonged to space group I4 and diffracted to 1.2 Å resolution using synchrotron radiation. The tetramerization domain (T1 domain) derived from the voltage-dependent potassium channel Kv1.3 of Homo sapiens was recombinantly expressed in Escherichia coli and purified. The crystals were first grown in an NMR tube in 150 mM potassium phosphate pH 6.5 in the absence of additional precipitants. The crystals showed I4 symmetry characteristic of the naturally occurring tetrameric assembly of the single subunits. A complete native data set was collected to 1.2 Å resolution at 100 K using synchrotron radiation

  11. From in silico to in vitro: a trip to reveal flavonoid binding on the Rattus norvegicus Kir6.1 ATP-sensitive inward rectifier potassium channel.

    Science.gov (United States)

    Trezza, Alfonso; Cicaloni, Vittoria; Porciatti, Piera; Langella, Andrea; Fusi, Fabio; Saponara, Simona; Spiga, Ottavia

    2018-01-01

    ATP-sensitive inward rectifier potassium channels (Kir), are a potassium channel family involved in many physiological processes. K ATP dysfunctions are observed in several diseases such as hypoglycaemia, hyperinsulinemia, Prinzmetal angina-like symptoms, cardiovascular diseases. A broader view of the K ATP mechanism is needed in order to operate on their regulation, and in this work we clarify the structure of the Rattus norvegicus ATP-sensitive inward rectifier potassium channel 8 (Kir6.1), which has been obtained through a homology modelling procedure. Due to the medical use of flavonoids, a considerable increase in studies on their influence on human health has recently been observed, therefore our aim is to study, through computational methods, the three-dimensional (3D) conformation together with mechanism of action of Kir6.1 with three flavonoids. Computational analysis by performing molecular dynamics (MD) and docking simulation on rat 3D modelled structure have been completed, in its closed and open conformation state and in complex with Quercetin, 5-Hydroxyflavone and Rutin flavonoids. Our study showed that only Quercetin and 5-Hydroxyflavone were responsible for a significant down-regulation of the Kir6.1 activity, stabilising it in a closed conformation. This hypothesis was supported by in vitro experiments demonstrating that Quercetin and 5-Hydroxyflavone were capable to inhibit K ATP currents of rat tail main artery myocytes recorded by the patch-clamp technique. Combined methodological approaches, such as molecular modelling, docking and MD simulations of Kir6.1 channel, used to elucidate flavonoids intrinsic mechanism of action, are introduced, revealing a new potential druggable protein site.

  12. Heteromeric ASIC channels composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death

    Science.gov (United States)

    Sherwood, Thomas W.; Lee, Kirsten G.; Gormley, Matthew G.; Askwith, Candice C.

    2011-01-01

    Acid-sensing ion channel (ASIC) subunits associate to form homomeric or heteromeric proton-gated ion channels in neurons throughout the nervous system. The ASIC1a subunit plays an important role in establishing the kinetics of proton-gated currents in the central nervous system and activation of ASIC1a homomeric channels induces neuronal death following local acidosis that accompanies cerebral ischemia. The ASIC2b subunit is expressed in the brain in a pattern that overlaps ASIC1a, yet the contribution of ASIC2b has remained elusive. We find that co-expression of ASIC2b with ASIC1a in Xenopus oocytes results in novel proton-gated currents with properties distinct from ASIC1a homomeric channels. In particular, ASIC2b/1a heteromeric channels are inhibited by the non-selective potassium channel blockers tetraethylammonium (TEA) and barium. In addition, steady-state desensitization is induced at more basic pH values and Big Dynorphin sensitivity is enhanced in these unique heteromeric channels. Cultured hippocampal neurons show proton-gated currents consistent with ASIC2b contribution and these currents are lacking in neurons from mice with an ACCN1 (ASIC2) gene disruption. Finally, we find that these ASIC2b/1a heteromeric channels contribute to acidosis-induced neuronal death. Together, our results show that ASIC2b confers unique properties to heteromeric channels in central neurons. Further, these data indicate that ASIC2, like ASIC1, plays a role in acidosis-induced neuronal death and implicate the ASIC2b/1a subtype as a novel pharmacological target to prevent neuronal injury following stroke. PMID:21715637

  13. Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Yunzhao R Ren

    Full Text Available The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders.

  14. Major Channels Involved In Neuropsychiatric Disorders And Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2013-05-01

    Full Text Available Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders or schizophrenia. Moreover, point mutations in calcium, sodium and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium and potassium channels in bipolar disorder, schizophrenia and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.

  15. Data on the construction of a recombinant HEK293 cell line overexpressing hERG potassium channel and examining the presence of hERG mRNA and protein expression

    Directory of Open Access Journals (Sweden)

    Yi Fan Teah

    2017-10-01

    Full Text Available The data presented in this article are related to the research article entitled “The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr and human ether-a-go-go-related gene (hERG expression” (Y.F. Teah, M.A. Abduraman, A. Amanah, M.I. Adenan, S.F. Sulaiman, M.L. Tan [1], which the possible hERG blocking properties of deoxyelephantopin were investigated. This article describes the construction of human embryonic kidney 293 (HEK293 cells overexpressing HERG potassium channel and verification of the presence of hERG mRNA and protein expression in this recombinant cell line.

  16. Opening of the inward rectifier potassium channel alleviates maladaptive tissue repair following myocardial infarction.

    Science.gov (United States)

    Liu, Chengfang; Liu, Enli; Luo, Tiane; Zhang, Weifang; He, Rongli

    2016-08-01

    Activation of the inward rectifier potassium current (IK1) channel has been reported to be associated with suppression of ventricular arrhythmias. In this study, we tested the hypothesis that opening of the IK1 channel with zacopride (ZAC) was involved in the modulation of tissue repair after myocardial infarction. Sprague-Dawley rats were subject to coronary artery ligation and ZAC was administered intraperitoneally (15 µg/kg/day) for 28 days. Compared with the ischemia group, treatment with ZAC significantly reduced the ratio of heart/body weight and the cross-sectional area of cardiomyocytes, suggesting less cardiac hypertrophy. ZAC reduced the accumulation of collagen types I and III, accompanied with decrease of collagen area, which were associated with a reduction of collagen deposition in the fibrotic myocardium. Echocardiography showed improved cardiac function, evidenced by the reduced left ventricular end-diastolic dimension and left ventricular end-systolic dimension, and the increased ejection fraction and fractional shortening in ZAC-treated animals (all P < 0.05 vs. ischemia group). In coincidence with these changes, ZAC up-regulated the protein level of the IK1 channel and down-regulated the phosphorylation of mammalian target of rapamycin (mTOR) and 70-kDa ribosomal protein S6 (p70S6) kinase. Administration of chloroquine alone, an IK1 channel antagonist, had no effect on all the parameters measured, but significantly blocked the beneficial effects of ZAC on cardiac repair. In conclusion, opening of the IK1 channel with ZAC inhibits maladaptive tissue repair and improves cardiac function, potentially mediated by the inhibition of ischemia-activated mTOR-p70S6 signaling pathway via the IK1 channel. So the development of pharmacological agents specifically targeting the activation of the IK1 channel may protect the heart against myocardial ischemia-induced cardiac dysfunction. © The Author 2016. Published by Oxford University Press on behalf of

  17. Diclofenac Distinguishes among Homomeric and Heteromeric Potassium Channels Composed of KCNQ4 and KCNQ5 SubunitsS⃞

    Science.gov (United States)

    Brueggemann, Lioubov I.; Mackie, Alexander R.; Martin, Jody L.; Cribbs, Leanne L.

    2011-01-01

    KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 rat aortic smooth muscle cells. The conductance curves of the overexpressed channels were fitted by a single Boltzmann function in each case (V0.5 values: −31, −44, and −38 mV for KCNQ4, KCNQ5, and KCNQ4/5, respectively). Diclofenac (100 μM) inhibited KCNQ5 channels, reducing maximum conductance by 53%, but increased maximum conductance of KCNQ4 channels by 38%. The opposite effects of diclofenac on KCNQ4 and KCNQ5 could not be attributed to the presence of a basic residue (lysine) in the voltage-sensing domain of KCNQ5, because mutation of this residue to neutral glycine (the residue present in KCNQ4) resulted in a more effective block of the channel. Differences in deactivation rates and distinct voltage-dependent effects of diclofenac on channel activation and deactivation observed with each of the subunit combinations (KCNQ4, KCNQ5, and KCNQ4/5) were used as diagnostic tools to evaluate native KCNQ currents in vascular smooth muscle cells. A7r5 cells express only KCNQ5 channels endogenously, and their responses to diclofenac closely resembled those of the overexpressed KCNQ5 currents. In contrast, mesenteric artery myocytes, which express both KCNQ4 and KCNQ5 channels, displayed whole-cell KCNQ currents with properties and diclofenac responses characteristic of overexpressed heteromeric KCNQ4/5 channels. PMID:20876743

  18. Leucine-rich glioma inactivated-1 and voltage gated potassium channel autoimmune encephalitis associated with ischemic stroke; A Case Report

    Directory of Open Access Journals (Sweden)

    Marisa Patryce McGinley

    2016-05-01

    Full Text Available Autoimmune encephalitis is associated with a wide variety of antibodies and clinical presentations. Voltage gated potassium channel (VGKC antibodies are a cause of autoimmune non-paraneoplastic encephalitis characterized by memory impairment, psychiatric symptoms, and seizures. We present a case of VGKC encephalitis likely preceding an ischemic stroke. Reports of autoimmune encephalitis associated with ischemic stroke are rare. Several hypothesizes linking these two disease processes are proposed.

  19. Leucine-Rich Glioma Inactivated-1 and Voltage-Gated Potassium Channel Autoimmune Encephalitis Associated with Ischemic Stroke: A Case Report

    Science.gov (United States)

    McGinley, Marisa; Morales-Vidal, Sarkis; Ruland, Sean

    2016-01-01

    Autoimmune encephalitis is associated with a wide variety of antibodies and clinical presentations. Voltage-gated potassium channel (VGKC) antibodies are a cause of autoimmune non-paraneoplastic encephalitis characterized by memory impairment, psychiatric symptoms, and seizures. We present a case of VGKC encephalitis likely preceding an ischemic stroke. Reports of autoimmune encephalitis associated with ischemic stroke are rare. Several hypotheses linking these two disease processes are proposed. PMID:27242653

  20. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    Science.gov (United States)

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  1. 4-Aminopyridine: a pan voltage-gated potassium channel inhibitor that enhances K7.4 currents and inhibits noradrenaline-mediated contraction of rat mesenteric small arteries

    DEFF Research Database (Denmark)

    Khammy, Makhala M; Kim, Sukhan; Bentzen, Bo H

    2018-01-01

    has not been systematically studied. The aim of this study was to investigate the pharmacological activity of 4-AP on Kv7.4 and Kv7.5 channels and characterize the effect of 4-AP on rat resistance arteries. EXPERIMENTAL APPROACH: Voltage clamp experiments were performed on Xenopus laevis oocytes......BACKGROUND AND PURPOSE: Kv7.4 and Kv7.5 channels are regulators of vascular tone. 4-Aminopyridine (4-AP) is considered a broad inhibitor of voltage-gated potassium (KV) channels, with little inhibitory effect on Kv7 family members at mmol concentrations. However, the effect of 4-AP on Kv7 channels...

  2. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    Science.gov (United States)

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  3. Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels.

    Science.gov (United States)

    Zhang, Yalan; Brown, Maile R; Hyland, Callen; Chen, Yi; Kronengold, Jack; Fleming, Matthew R; Kohn, Andrea B; Moroz, Leonid L; Kaczmarek, Leonard K

    2012-10-31

    Loss of the RNA-binding protein fragile X mental retardation protein (FMRP) represents the most common form of inherited intellectual disability. Studies with heterologous expression systems indicate that FMRP interacts directly with Slack Na(+)-activated K(+) channels (K(Na)), producing an enhancement of channel activity. We have now used Aplysia bag cell (BC) neurons, which regulate reproductive behaviors, to examine the effects of Slack and FMRP on excitability. FMRP and Slack immunoreactivity were colocalized at the periphery of isolated BC neurons, and the two proteins could be reciprocally coimmunoprecipitated. Intracellular injection of FMRP lacking its mRNA binding domain rapidly induced a biphasic outward current, with an early transient tetrodotoxin-sensitive component followed by a slowly activating sustained component. The properties of this current matched that of the native Slack potassium current, which was identified using an siRNA approach. Addition of FMRP to inside-out patches containing native Aplysia Slack channels increased channel opening and, in current-clamp recordings, produced narrowing of action potentials. Suppression of Slack expression did not alter the ability of BC neurons to undergo a characteristic prolonged discharge in response to synaptic stimulation, but prevented recovery from a prolonged inhibitory period that normally follows the discharge. Recovery from the inhibited period was also inhibited by the protein synthesis inhibitor anisomycin. Our studies indicate that, in BC neurons, Slack channels are required for prolonged changes in neuronal excitability that require new protein synthesis, and raise the possibility that channel-FMRP interactions may link changes in neuronal firing to changes in protein translation.

  4. Evaluation of the therapeutic effect of potassium permanganate at early stages of an experimental acute infection of Flavobacterium columnare in channel catfish (Ictalurus punctatus)

    Science.gov (United States)

    The efficacy of potassium permanganate (KMnO4) against early stages of an experimental acute infection of Flavobacterium columnare in channel catfish (Ictalurus punctatus) was evaluated. Fish were experimentally challenged, by waterborne exposure for 2 h to F. columnare after cutaneous abrasion, an...

  5. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels.

    Science.gov (United States)

    Hansen, P B L

    2013-04-01

    Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore, by different mechanisms, T-type channels may contribute to both constriction and dilation of the arterioles. Finally, P-/Q-type channels are involved in the regulation of human intrarenal arterial contractility. The calcium blockers used in the clinic affect not only L-type but also P-/Q- and T-type channels. Therefore, the distinct effect obtained by inhibiting a given subtype or set of channels under experimental settings should be considered when choosing a calcium blocker for treatment. T-type channels seem to be crucial for regulating the GFR and the filtration fraction. Use of blockers is expected to lead to preferential efferent vasodilation, reduction of glomerular pressure and proteinuria. Therefore, renovascular T-type channels might provide novel therapeutic targets, and may have superior renoprotective effects compared to conventional calcium blockers. Acta Physiologica © 2013 Scandinavian Physiological Society.

  6. Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation.

    Science.gov (United States)

    Guo, Jun; Wang, Tingzhong; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Fridman, Michael D; Fisher, John T; Zhang, Shetuan

    2011-10-07

    Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K(+)](o)) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether I(Ks) compensates for the reduced I(Kr) under low K(+) conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mM K(+) for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mM K(+)-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mM K(+) conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS.

  7. Voltage-Gated Potassium Channel Antibodies in Slow-Progression Motor Neuron Disease.

    Science.gov (United States)

    Godani, Massimiliano; Zoccarato, Marco; Beronio, Alessandro; Zuliani, Luigi; Benedetti, Luana; Giometto, Bruno; Del Sette, Massimo; Raggio, Elisa; Baldi, Roberta; Vincent, Angela

    2017-01-01

    The spectrum of autoimmune neurological diseases associated with voltage-gated potassium channel (VGKC)-complex antibodies (Abs) ranges from peripheral nerve disorders to limbic encephalitis. Recently, low titers of VGKC-complex Abs have also been reported in neurodegenerative disorders, but their clinical relevance is unknown. The aim of the study was to explore the prevalence of VGKC-complex Abs in slow-progression motor neuron disease (MND). We compared 11 patients affected by slow-progression MND with 9 patients presenting typical progression illness. Sera were tested for VGKC-complex Abs by radioimmunoassay. The distribution of VGKC-complex Abs was analyzed with the Mann-Whitney U test. The statistical analysis showed a significant difference between the mean values in the study and control groups. A case with long-survival MND harboring VGKC-complex Abs and treated with intravenous immunoglobulins is described. Although VGKC-complex Abs are not likely to be pathogenic, these results could reflect the coexistence of an immunological activation in patients with slow disease progression. © 2016 S. Karger AG, Basel.

  8. Efficacy of sodium channel blockers in SCN2A early infantile epileptic encephalopathy.

    Science.gov (United States)

    Dilena, Robertino; Striano, Pasquale; Gennaro, Elena; Bassi, Laura; Olivotto, Sara; Tadini, Laura; Mosca, Fabio; Barbieri, Sergio; Zara, Federico; Fumagalli, Monica

    2017-04-01

    Recent clinical evidence supports a targeted therapeutic approach for genetic epileptic encephalopathies based on the molecular dysfunction. A 2-day-old male infant presented with epileptic encephalopathy characterized by burst-suppression EEG background and tonic-clonic migrating partial seizures. The condition was refractory to phenobarbital, pyridoxine, pyridoxal phosphate and levetiracetam, but a dramatic response to an intravenous loading dose of phenytoin was documented by video-EEG monitoring. Over weeks phenytoin was successfully switched to carbamazepine to prevent seizure relapses associated with difficulty in maintaining proper blood levels of phenytoin. Genetic analysis identified a novel de novo heterozygous mutation (c.[4633A>G]p.[Met1545Val]) in SCN2A. At two years and three months of age the patient is still seizure-free on carbamazepine, although a developmental delay is evident. Sodium channel blockers represent the first-line treatment for confirmed or suspected SCN2A-related epileptic encephalopathies. In severe cases with compatible electro-clinical features we propose a treatment algorithm based on a test trial with high dose intravenous phenytoin followed in case of a positive response by carbamazepine, more suitable for long-term maintenance treatment. Because of their rarity, collaborative studies are needed to delineate shared therapeutic protocols for EIEE based on the electro-clinical features and the presumed underlying genetic substrate. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Long-term use of angiotensin receptor blockers and the risk of cancer.

    Directory of Open Access Journals (Sweden)

    Laurent Azoulay

    Full Text Available The association between angiotensin receptor blockers (ARBs and cancer is controversial with meta-analyses of randomized controlled trials and observational studies reporting conflicting results. Thus, the objective of this study was to determine whether ARBs are associated with an overall increased risk of the four most common cancers, namely, lung, colorectal, breast and prostate cancers, and to explore these effects separately for each cancer type. We conducted a retrospective cohort study using a nested case-control analysis within the United Kingdom (UK General Practice Research Database. We assembled a cohort of patients prescribed antihypertensive agents between 1995, the year the first ARB (losartan entered the UK market, and 2008, with follow-up until December 31, 2010. Cases were patients newly-diagnosed with lung, colorectal, breast and prostate cancer during follow-up. We used conditional logistic regression to estimate adjusted rate ratios (RRs and 95% confidence intervals (CIs of cancer incidence, comparing ever use of ARBs with ever use of diuretics and/or beta-blockers. The cohort included 1,165,781 patients, during which 41,059 patients were diagnosed with one of the cancers under study (rate 554/100,000 person-years. When compared to diuretics and/or beta-blockers, ever use of ARBs was not associated with an increased rate of cancer overall (RR: 1.00; 95% CI: 0.96-1.03 or with each cancer site separately. The use of angiotensin-converting enzyme inhibitors and calcium channel blockers was associated with an increased rate of lung cancer (RR: 1.13; 95% CI: 1.06-1.20 and RR: 1.19; 95% CI: 1.12-1.27, respectively. This study provides additional evidence that the use of ARBs does not increase the risk of cancer overall or any of the four major cancer sites. Additional research is needed to further investigate a potentially increased risk of lung cancer with angiotensin-converting enzyme inhibitors and calcium channel blockers.

  10. High Grade Glioma Mimicking Voltage Gated Potassium Channel Complex Associated Antibody Limbic Encephalitis

    Directory of Open Access Journals (Sweden)

    Dilan Athauda

    2014-01-01

    Full Text Available Though raised titres of voltage gated potassium channel (VGKC complex antibodies have been occasionally associated with extracranial tumours, mainly presenting as Morvan's Syndrome or neuromyotonia, they have not yet been reported to be associated with an intracranial malignancy. This is especially important as misdiagnosis of these conditions and delay of the appropriate treatment can have important prognostic implications. We describe a patient with a high grade glioma presenting with clinical, radiological, and serological features consistent with the diagnosis of VGKC antibody associated limbic encephalitis (LE. This is the first association between a primary brain tumour and high titre of VGKC complex antibodies. Clinicoradiological progression despite effective immunosuppressive treatment should prompt clinicians to look for alternative diagnoses. Further studies to elucidate a possible association between VGKC complex and other surface antigen antibodies with primary brain tumours should be carried out.

  11. High grade glioma mimicking voltage gated potassium channel complex associated antibody limbic encephalitis.

    Science.gov (United States)

    Athauda, Dilan; Delamont, R S; Pablo-Fernandez, E De

    2014-01-01

    Though raised titres of voltage gated potassium channel (VGKC) complex antibodies have been occasionally associated with extracranial tumours, mainly presenting as Morvan's Syndrome or neuromyotonia, they have not yet been reported to be associated with an intracranial malignancy. This is especially important as misdiagnosis of these conditions and delay of the appropriate treatment can have important prognostic implications. We describe a patient with a high grade glioma presenting with clinical, radiological, and serological features consistent with the diagnosis of VGKC antibody associated limbic encephalitis (LE). This is the first association between a primary brain tumour and high titre of VGKC complex antibodies. Clinicoradiological progression despite effective immunosuppressive treatment should prompt clinicians to look for alternative diagnoses. Further studies to elucidate a possible association between VGKC complex and other surface antigen antibodies with primary brain tumours should be carried out.

  12. A study on the action of two calcium channel blockers (verapamil and flunarizine upon an experimental model of tardive dyskinesia in rats

    Directory of Open Access Journals (Sweden)

    João S. Pereira

    1992-09-01

    Full Text Available Tardive dyskinesia (TD, a serious complications of neuroleptic chronic use, has no effective therapy yet. We performed an experiment to study the action on TD, of the calcium channel blockers (CCB drugs, verapamil and flunarizine. We obtained the TD model in rats, administering haloperidol for a 21-day period. After this, the stereotyped movement induced by apomorphyne was rated. The CCB drugs were administered in acute (in the 28th. day and chronic (for 8 days, after the 25th day experiments. Acutely, verapamil increased the stereotyped behaviour, and promoted a reduction of it in the chronic experiment. The results suggest that CCB drugs should be tested in clinical trials of TD.

  13. Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life

    Science.gov (United States)

    Li, Jie; Blankenship, Meredith L.; Baccei, Mark L.

    2013-01-01

    Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst-firing and are distinguished by a lower “leak” membrane conductance compared to adjacent, non-bursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (Kir) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and non-pacemakers indicate the presence of functionally distinct Kir currents in these two populations at room temperature. However, Kir currents in both groups showed high sensitivity to block by extracellular Ba2+ (IC50 ~ 10 µM), which suggests the presence of ‘classical’ Kir (Kir2.x) channels in the neonatal SDH. The reduced Kir conductance within pacemakers is unlikely to be explained by an absence of particular Kir2.x isoforms, as immunohistochemical analysis revealed the expression of Kir2.1, Kir2.2 and Kir2.3 within spontaneously bursting neurons. Importantly, Ba2+ application unmasked rhythmic burst-firing in ~42% of non-bursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst-firing within lamina I was enhanced in the presence of high internal concentrations of free Mg2+, consistent with its documented ability to block Kir channels from the intracellular side. Collectively, the results indicate that Kir channels are key modulators of pacemaker activity in newborn central pain networks. PMID:23426663

  14. Sequence Alterations of I(Ks Potassium Channel Genes in Kazakhstani Patients with Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Ainur Akilzhanova

    2014-12-01

    Full Text Available Introduction. Atrial fibrillation (AF is the most common sustained arrhythmia, and it results in significant morbidity and mortality. However, the pathogenesis of AF remains unclear to date. Recently, more pieces of evidence indicated that AF is a multifactorial disease resulting from the interaction between environmental factors and genetics. Recent studies suggest that genetic mutation of the slow delayed rectifier potassium channel (I(Ks may underlie AF.Objective. To investigate sequence alterations of I(Ks potassium channel genes KCNQ1, KCNE1 and KCNE2 in Kazakhstani patients with atrial fibrillation.Methods. Genomic DNA of 69 cases with atrial fibrillation and 27 relatives were analyzed for mutations in all protein-coding exons and their flanking splice site regions of the genes KCNQ1 (NM_000218.2 and NM_181798.1, KCNE1 (NM_000219.2, and KCNE2 (NM_172201.1 using bidirectional sequencing on the ABI 3730xL DNA Analyzer (Applied Biosystems, Foster City, CA, USA.Results. In total, a disease-causing mutation was identified in 39 of the 69 (56.5% index cases. Of these, altered sequence variants in the KCNQ1 gene accounted for 14.5% of the mutations, whereas a KCNE1 mutation accounted for 43.5% of the mutations and KCNE2 mutation accounted for 1.4% of the mutations. The majority of the distinct mutations were found in a single case (80%, whereas 20% of the mutations were observed more than once. We found two sequence variants in KCNQ1 exon 13 (S546S G1638A and exon 16 (Y662Y, C1986T in ten patients (14.5%. In KCNE1 gene in exon 3 mutation, S59G A280G was observed in 30 of 69 patients (43.5% and KCNE2 exon 2 T10K C29A in 1 patient (1.4%. Genetic cascade screening of 27 relatives to the 69 index cases with an identified mutation revealed 26.9% mutation carriers  who were at risk of cardiac events such as syncope or sudden unexpected death.Conclusion. In this cohort of Kazakhstani index cases with AF, a disease-causing mutation was identified in

  15. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Gao, Zhan, E-mail: zhan-gao@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Koganti, Siva Rama Krishna, E-mail: sivaramakrishna.koganti@ttuhc.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Coetzee, William A., E-mail: william.coetzee@nyumc.org [Department of Pediatrics, NYU School of Medicine, New York, NY 10016 (United States); Goldhamer, David J., E-mail: david.goldhamer@uconn.edu [Center for Regenerative Biology, Department of Molecular and Cell Biology, Advanced Technology Laboratory, University of Connecticut, 1392 Storrs Road Unit 4243, Storrs, Connecticut 06269 (United States); Hodgson-Zingman, Denice M., E-mail: denice-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Zingman, Leonid V., E-mail: leonid-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Veterans Affairs, Medical Center, Iowa City, IA 52242 (United States)

    2016-02-26

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal muscle.

  16. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    International Nuclear Information System (INIS)

    Sierra, Ana; Subbotina, Ekaterina; Zhu, Zhiyong; Gao, Zhan; Koganti, Siva Rama Krishna; Coetzee, William A.; Goldhamer, David J.; Hodgson-Zingman, Denice M.; Zingman, Leonid V.

    2016-01-01

    Sarcolemmal ATP-sensitive potassium (K_A_T_P) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K_A_T_P channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K_A_T_P channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K_A_T_P channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K_A_T_P channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K"+ channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K_A_T_P channel deficient skeletal muscle.

  17. Endoplasmic reticulum-associated degradation of the renal potassium channel, ROMK, leads to type II Bartter syndrome.

    Science.gov (United States)

    O'Donnell, Brighid M; Mackie, Timothy D; Subramanya, Arohan R; Brodsky, Jeffrey L

    2017-08-04

    Type II Bartter syndrome is caused by mutations in the renal outer medullary potassium (ROMK) channel, but the molecular mechanisms underlying this disease are poorly defined. To rapidly screen for ROMK function, we developed a yeast expression system and discovered that yeast cells lacking endogenous potassium channels could be rescued by WT ROMK but not by ROMK proteins containing any one of four Bartter mutations. We also found that the mutant proteins were significantly less stable than WT ROMK. However, their degradation was slowed in the presence of a proteasome inhibitor or when yeast cells contained mutations in the CDC48 or SSA1 gene, which is required for endoplasmic reticulum (ER)-associated degradation (ERAD). Consistent with these data, sucrose gradient centrifugation and indirect immunofluorescence microscopy indicated that most ROMK protein was ER-localized. To translate these findings to a more relevant cell type, we measured the stabilities of WT ROMK and the ROMK Bartter mutants in HEK293 cells. As in yeast, the Bartter mutant proteins were less stable than the WT protein, and their degradation was slowed in the presence of a proteasome inhibitor. Finally, we discovered that low-temperature incubation increased the steady-state levels of a Bartter mutant, suggesting that the disease-causing mutation traps the protein in a folding-deficient conformation. These findings indicate that the underlying pathology for at least a subset of patients with type II Bartter syndrome is linked to the ERAD pathway and that future therapeutic strategies should focus on correcting deficiencies in ROMK folding. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.

    Science.gov (United States)

    Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-04-14

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The role of an ancestral hyperpolarization-activated cyclic nucleotide-gated K+ channel in branchial acid-base regulation in the green crab, Carcinus maenas.

    Science.gov (United States)

    Fehsenfeld, Sandra; Weihrauch, Dirk

    2016-03-01

    Numerous electrophysiological studies on branchial K(+) transport in brachyuran crabs have established an important role for potassium channels in osmoregulatory ion uptake and ammonia excretion in the gill epithelium of decapod crustaceans. However, hardly anything is known of the actual nature of these channels in crustaceans. In the present study, the identification of a hyperpolarization-activated cyclic nucleotide-gated potassium channel (HCN) in the transcriptome of the green crab Carcinus maenas and subsequent performance of quantitative real-time PCR revealed the ubiquitous expression of this channel in this species. Even though mRNA expression levels in the cerebral ganglion were found to be approximately 10 times higher compared with all other tissues, posterior gills still expressed significant levels of HCN, indicating an important role for this transporter in branchial ion regulation. The relatively unspecific K(+)-channel inhibitor Ba(2+), as well as the HCN-specific blocker ZD7288, as applied in gill perfusion experiments and electrophysiological studies employing the split gill lamellae revealed the presence of at least two different K(+)/NH4(+)-transporting structures in the branchial epithelium of C. maenas. Furthermore, HCN mRNA levels in posterior gill 7 decreased significantly in response to the respiratory or metabolic acidosis that was induced by acclimation of green crabs to high environmental PCO2 and ammonia, respectively. Consequently, the present study provides first evidence that HCN-promoted NH4(+) epithelial transport is involved in both branchial acid-base and ammonia regulation in an invertebrate. © 2016. Published by The Company of Biologists Ltd.

  20. New Conotoxin SO-3 Targeting N-type Voltage-Sensitive Calcium Channels

    Directory of Open Access Journals (Sweden)

    Lei Wen

    2006-04-01

    Full Text Available Selective blockers of the N-type voltage-sensitive calcium (CaV channels are useful in the management of severe chronic pain. Here, the structure and function characteristics of a novel N-type CaV channel blocker, SO-3, are reviewed. SO-3 is a 25-amino acid conopeptide originally derived from the venom of Conus striatus, and contains the same 4-loop, 6-cysteine framework (C-C-CC-C-C as O-superfamily conotoxins. The synthetic SO-3 has high analgesic activity similar to ω-conotoxin MVIIA (MVIIA, a selective N-type CaV channel blocker approved in the USA and Europe for the alleviation of persistent pain states. In electrophysiological studies, SO-3 shows more selectivity towards the N-type CaV channels than MVIIA. The dissimilarity between SO-3 and MVIIA in the primary and tertiary structures is further discussed in an attempt to illustrate the difference in selectivity of SO-3 and MVIIA towards N-type CaV channels.

  1. Students' Understanding of External Representations of the Potassium Ion Channel Protein, Part I: Affordances and Limitations of Ribbon Diagrams, Vines, and Hydrophobic/Polar Representations

    Science.gov (United States)

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This project focuses on students' understanding of three external representations of the potassium ion channel protein. This is part I of a two-part study, which focuses on the affordances and…

  2. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effects of gabapentin in mouse forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Akbarian, Reyhaneh; Norouzi-Javidan, Abbas; Nikoui, Vahid; Zolfaghari, Samira; Chamanara, Mohsen; Dehpour, Ahmad-Reza

    2017-07-01

    Gabapentin as an anticonvulsant drug also has beneficial effects in treatment of depression. Previously, we showed that acute administration of gabapentin produced an antidepressant-like effect in the mouse forced swimming test (FST) by a mechanism that involves the inhibition of nitric oxide (NO). Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (K ATP ), in the present study we investigated the involvement of K ATP channels in antidepressant-like effect of gabapentin. Gabapentin at different doses (5-10 mg/kg) and fluoxetine (20 mg/kg) were administrated by intraperitoneal route, 60 and 30 min, respectively, before the test. To clarify the probable involvement of K ATP channels, mice were pretreated with K ATP channel inhibitor or opener. Gabapentin at dose 10 mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20 mg/kg). Co-administration of subeffective dose (1 mg/kg) of glibenclamide (inhibitor of K ATP channels) with gabapentin (3 mg/kg) showed a synergistic antidepressant-like effect. Also, subeffective dose of cromakalim (opener of K ATP channels, 0.1 mg/kg) inhibited the antidepressant-like effect of gabapentin (10 mg/kg). None of the treatments had any impact on the locomotor movement. Our study, for the first time, revealed that antidepressant-like effect of gabapentin in mice is mediated by blocking the K ATP channels.

  3. Short- and long-term inhibition of cardiac inward-rectifier potassium channel current by an antiarrhythmic drug bepridil.

    Science.gov (United States)

    Ma, Fangfang; Takanari, Hiroki; Masuda, Kimiko; Morishima, Masaki; Ono, Katsushige

    2016-07-01

    Bepridil is an effective antiarrhythmic drug on supraventricular and ventricular arrhythmias, and inhibitor of calmodulin. Recent investigations have been elucidating that bepridil exerts antiarrhythmic effects through its acute and chronic application for patients. The aim of this study was to identify the efficacy and the potential mechanism of bepridil on the inward-rectifier potassium channel in neonatal rat cardiomyocytes in acute- and long-term conditions. Bepridil inhibited inward-rectifier potassium current (I K1) as a short-term effect with IC50 of 17 μM. Bepridil also reduced I K1 of neonatal cardiomyocytes when applied for 24 h in the culture medium with IC50 of 2.7 μM. Both a calmodulin inhibitor (W-7) and an inhibitor of calmodulin-kinase II (KN93) reduced I K1 when applied for 24 h as a long-term effect in the same fashion, suggesting that the long-term application of bepridil inhibits I K1 more potently than that of the short-term application through the inhibition of calmodulin kinase II pathway in cardiomyocytes.

  4. Pore size matters for potassium channel conductance

    Science.gov (United States)

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  5. Selective block of KATP channels: why the anti-diabetic sulphonylureas and rosiglitazone have more in common than we thought

    Science.gov (United States)

    Dart, Caroline

    2012-01-01

    Rosiglitazone, the thiazolidinedione class anti-diabetic withdrawn from Europe in 2010 amid reports of adverse cardiovascular effects, is revealed by Yu et al. in this issue of the British Journal of Pharmacology to be a selective blocker of ATP-sensitive potassium (KATP) channels. This seems little cause for excitement given that the closure of pancreatic KATP channels is integral to insulin secretion; and sulphonylureas, which inhibit KATP channels, are widely used to treat type II diabetes. However, rosiglitazone, whose primary targets are nuclear transcription factors that regulate genes involved in lipid metabolism, blocks KATP channels by a novel mechanism different to that of the sulphonylureas and has a worrying preference for blood flow–regulating vascular KATP channels. Identification of a new molecule that modulates KATP channel gating will not only tell us more about how these complex metabolic sensors work but also raises questions as to whether rosiglitazone suppresses the cardiovascular system's ability to cope with metabolic stress – a claim that has dogged the sulphonylureas for many years. LINKED ARTICLE This article is a commentary on Yu et al., pp. 26–36 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2012.01934.x PMID:22506686

  6. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  7. Ether à go-go potassium channel expression in soft tissue sarcoma patients

    Directory of Open Access Journals (Sweden)

    Stühmer Walter

    2006-10-01

    Full Text Available Abstract Background The expression of the human Eag1 potassium channel (Kv10.1 is normally restricted to the adult brain, but it has been detected in both tumour cell lines and primary tumours. Our purpose was to determine the frequency of expression of Eag1 in soft tissue sarcoma and its potential clinical implications. Results We used specific monoclonal antibodies to determine the expression levels of Eag1 in soft tissue sarcomas from 210 patients by immunohistochemistry. Eag1 was expressed in 71% of all tumours, with frequencies ranging from 56% (liposarcoma to 82% (rhabdomyosarcoma. We detected differences in expression levels depending on the histological type, but no association was seen between expression of this protein and sex, age, grade or tumour size. Four cell lines derived from relevant sarcoma histological types (fibrosarcoma and rhabdomyosarcoma were tested for Eag1 expression by real-time RT-PCR. We found all four lines to be positive for Eag1. In these cell lines, blockage of Eag1 by RNA interference led to a decrease in proliferation. Conclusion Eag1 is aberrantly expressed in over 70% sarcomas. In sarcoma cell lines, inhibition of Eag1 expression and/or function leads to reduced proliferation. The high frequency of expression of Eag1 in primary tumours and the restriction of normal expression of the channel to the brain, suggests the application of this protein for diagnostic or therapeutic purposes.

  8. Potassium Channel Interacting Protein 2 (KChIP2) is not a transcriptional regulator of cardiac electrical remodeling

    DEFF Research Database (Denmark)

    Winther, Sine V; Tuomainen, Tomi; Borup, Rehannah

    2016-01-01

    The heart-failure relevant Potassium Channel Interacting Protein 2 (KChIP2) augments CaV1.2 and KV4.3. KChIP3 represses CaV1.2 transcription in cardiomyocytes via interaction with regulatory DNA elements. Hence, we tested nuclear presence of KChIP2 and if KChIP2 translocates into the nucleus...... intracellular Ca(2+) concentration. Neither increasing nor decreasing intracellular Ca(2+) concentrations caused translocation of KChIP2. Microarray analysis did not identify relief of transcriptional repression in murine KChIP2(-/-) heart samples. We conclude that although there is a baseline presence of KCh...

  9. KCNQ4 channel activation by BMS-204352 and retigabine

    DEFF Research Database (Denmark)

    Schrøder, Rikke Louise K.; Jespersen, Thomas; Christophersen, P

    2001-01-01

    Activation of potassium channels generally reduces cellular excitability, making potassium channel openers potential drug candidates for the treatment of diseases related to hyperexcitabilty such as epilepsy, neuropathic pain, and neurodegeneration. Two compounds, BMS-204352 and retigabine, prese...

  10. Autoantibodies against voltage-gated potassium channel and glutamic acid decarboxylase in psychosis: A systematic review, meta-analysis, and case series.

    OpenAIRE

    Grain, Rosemary; Lally, John; Stubbs, Brendon; Malik, Steffi; LeMince, Anne; Nicholson, Timothy R; Murray, Robin M; Gaughran, Fiona

    2017-01-01

    Antibodies to the voltage-gated potassium channel (VGKC) complex and glutamic acid decarboxylase (GAD) have been reported in some cases of psychosis. We conducted the first systematic review and meta-analysis to investigate their prevalence in people with psychosis and report a case series of VGKC-complex antibodies in refractory psychosis. Only five studies presenting prevalence rates of VGKC seropositivity in psychosis were identified, in addition to our case series, with an overall prevale...

  11. The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity.

    Science.gov (United States)

    Lund, Trine M; Ploug, Kenneth B; Iversen, Anne; Jensen, Anders A; Jansen-Olesen, Inger

    2015-03-01

    Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β-hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β-hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β-hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release. Energy metabolism and neurotransmission are linked and involve ATP-sensitive potassium (KATP ) channels. However, it is still unclear how and to what degree available energy substrate affects this link. We investigated the effect of changing energy substrate from only glucose to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release. © 2014 International Society for Neurochemistry.

  12. Role of calcium in effects of atrial natriuretic peptide on aldosterone production in adrenal glomerulosa cells

    International Nuclear Information System (INIS)

    Chartier, L.; Schiffrin, E.L.

    1987-01-01

    Atrial natriuretic peptide (ANP) inhibits the stimulation of aldosterone secretion by isolated adrenal glomerulosa cells produced by angiotensin II (ANG II), ACTH, and potassium. The effect of ANP on the dose-response curve of aldosterone stimulated by ANG II, ACTH, and potassium on isolated rat adrenal glomerulosa cells was studied. In the presence of ANP the maximal response of aldosterone output stimulated by ANG II or potassium decreased and the half-maximum (EC 50 ) of the response to ACTH was displaced to the right. Because these effects resemble those of calcium-channel blockers, the authors investigated the effect of different concentrations of nifedipine, a dihydropyridine calcium-channel blocker, on the dose-response curve of aldosterone stimulated by ANG II, ACTH, and potassium. Nifedipine produced effects similar to ANP. The maximal response of aldosterone stimulated by ANG II and potassium was decreased and the dose-response curve to ACTH was displaced to the right. ANP decreased the maximal response of aldosterone to the dihydropyridine derivative BAY K8644, a calcium-channel activator, without change in its EC 50 . In contrast, nifedipine displaced the dose-response curve to BAY K8644 to the right as expected of a competitive inhibitor. The effect of ANP and nifedipine on basal and stimulated 45 Ca influx into isolated rat adrenal glomerulosa cells was studied. ANP may act on the rat adrenal glomerulosa cells at least in part by interference with calcium entry

  13. Grafting voltage and pharmacological sensitivity in potassium channels.

    Science.gov (United States)

    Lan, Xi; Fan, Chunyan; Ji, Wei; Tian, Fuyun; Xu, Tao; Gao, Zhaobing

    2016-08-01

    A classical voltage-gated ion channel consists of four voltage-sensing domains (VSDs). However, the roles of each VSD in the channels remain elusive. We developed a GVTDT (Graft VSD To Dimeric TASK3 channels that lack endogenous VSDs) strategy to produce voltage-gated channels with a reduced number of VSDs. TASK3 channels exhibit a high host tolerance to VSDs of various voltage-gated ion channels without interfering with the intrinsic properties of the TASK3 selectivity filter. The constructed channels, exemplified by the channels grafted with one or two VSDs from Kv7.1 channels, exhibit classical voltage sensitivity, including voltage-dependent opening and closing. Furthermore, the grafted Kv7.1 VSD transfers the potentiation activity of benzbromarone, an activator that acts on the VSDs of the donor channels, to the constructed channels. Our study indicates that one VSD is sufficient to voltage-dependently gate the pore and provides new insight into the roles of VSDs.

  14. Activation of endothelial and epithelial K(Ca) 2.3 calcium-activated potassium channels by NS309 relaxes human small pulmonary arteries and bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Nielsen, Gorm

    2012-01-01

    BACKGROUND AND PURPOSE: Small (K(Ca) 2) and intermediate (K(Ca) 3.1) conductance calcium-activated potassium channels (K(Ca) ) may contribute to both epithelium- and endothelium-dependent relaxations, but this has not been established in human pulmonary arteries and bronchioles. Therefore, we inv...... targets for treatment of pulmonary hypertension and chronic obstructive pulmonary disease....

  15. Inhibition of large conductance calcium-dependent potassium ...

    African Journals Online (AJOL)

    conductance, calcium and voltage- dependent potassium (BKCa) channels thereby promoting vasoconstriction. Our results show that the Rho-kinase inhibitor, Y-27632, induced concentration-dependent relaxation in rat mesenteric artery.

  16. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2.

    Science.gov (United States)

    Bukiya, Anna N; Rosenhouse-Dantsker, Avia

    2017-07-01

    G-protein gated inwardly rectifying potassium (GIRK or Kir3) channels play a major role in the control of the heart rate, and require the membrane phospholipid phosphatidylinositol-bis-phosphate (PI(4,5)P 2 ) for activation. Recently, we have shown that the activity of the heterotetrameric Kir3.1/Kir3.4 channel that underlies atrial K ACh currents was enhanced by cholesterol. Similarly, the activities of both the Kir3.4 homomer and its active pore mutant Kir3.4* (Kir3.4_S143T) were also enhanced by cholesterol. Here we employ planar lipid bilayers to investigate the crosstalk between PI(4,5)P 2 and cholesterol, and demonstrate that these two lipids act synergistically to activate Kir3.4* currents. Further studies using the Xenopus oocytes heterologous expression system suggest that PI(4,5)P 2 and cholesterol act via distinct binding sites. Whereas PI(4,5)P 2 binds to the cytosolic domain of the channel, the putative binding region of cholesterol is located at the center of the transmembrane domain overlapping the central glycine hinge region of the channel. Together, our data suggest that changes in the levels of two key membrane lipids - cholesterol and PI(4,5)P 2 - could act in concert to provide fine-tuning of Kir3 channel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Reversible dementia: two nursing home patients with voltage-gated potassium channel antibody-associated limbic encephalitis.

    Science.gov (United States)

    Reintjes, Wesley; Romijn, Marloes D M; Hollander, Daan; Ter Bruggen, Jan P; van Marum, Rob J

    2015-09-01

    Voltage-gated potassium channel antibody-associated limbic encephalitis (VGKC-LE) is a rare disease that is a diagnostic and therapeutic challenge for medical practitioners. Two patients with VGKC-LE, both developing dementia are presented. Following treatment, both patients showed remarkable cognitive and functional improvement enabling them to leave the psychogeriatric nursing homes they both were admitted to. Patients with VGKC-LE can have a major cognitive and functional improvement even after a diagnostic delay of more than 1 year. Medical practitioners who treat patients with unexplained cognitive decline, epileptic seizures, or psychiatric symptoms should be aware of LE as an underlying rare cause. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  18. Three C-terminal residues from the sulphonylurea receptor contribute to the functional coupling between the KATP channel subunits SUR2A and Kir6.2

    Science.gov (United States)

    Dupuis, Julien P; Revilloud, Jean; Moreau, Christophe J; Vivaudou, Michel

    2008-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are metabolic sensors formed by the association of the inward rectifier potassium channel Kir6.2 and the sulphonylurea receptor SUR2A. SUR2A adjusts channel gating as a function of intracellular ATP and ADP and is the target of pharmaceutical openers and blockers which, respectively, up- and down-regulate Kir6.2. In an effort to understand how effector binding to SUR2A translates into Kir6.2 gating modulation, we examined the role of a 65-residue SUR2A fragment linking transmembrane domain TMD2 and nucleotide-binding domain NBD2 that has been shown to interact with Kir6.2. This fragment of SUR2A was replaced by the equivalent residues of its close homologue, the multidrug resistance protein MRP1. The chimeric construct was expressed in Xenopus oocytes and characterized using the patch-clamp technique. We found that activation by MgADP and synthetic openers was greatly attenuated although apparent affinities were unchanged. Further chimeragenetic and mutagenetic studies showed that mutation of three residues, E1305, I1310 and L1313 (rat numbering), was sufficient to confer this defective phenotype. The same mutations had no effects on channel block by the sulphonylurea glibenclamide or by ATP, suggesting a role for these residues in activatory – but not inhibitory – transduction processes. These results indicate that, within the KATP channel complex, the proximal C-terminal of SUR2A is a critical link between ligand binding to SUR2A and Kir6.2 up-regulation. PMID:18450778

  19. St36 electroacupuncture activates nNOS, iNOS and ATP-sensitive potassium channels to promote orofacial antinociception in rats.

    Science.gov (United States)

    Almeida, R T; Galdino, G; Perez, A C; Silva, G; Romero, T R; Duarte, I D

    2017-02-01

    Orofacial pain is pain perceived in the face and/or oral cavity, generally caused by diseases or disorders of regional structures, by dysfunction of the nervous system, or through referral from distant sources. Treatment of orofacial pain is mainly pharmacological, but it has increased the number of reports demonstrating great clinical results with the use of non-pharmacological therapies, among them electroacupuncture. However, the mechanisms involved in the electroacupuncture are not well elucidated. Thus, the present study investigate the involvement of the nitric oxide synthase (NOS) and ATP sensitive K + channels (KATP) in the antinociception induced by electroacupuncture (EA) at acupoint St36. Thermal nociception was applied in the vibrissae region of rats, and latency time for face withdrawal was measured. Electrical stimulation of acupoint St36 for 20 minutes reversed the thermal withdrawal latency and this effect was maintained for 150 min. Intraperitoneal administration of specific inhibitors of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and a KATP channels blocker reversed the antinociception induced by EA. Furthermore, nitrite concentration in cerebrospinal fluid (CSF) and plasma, increased 4 and 3-fold higher, respectively, after EA. This study suggests that NO participates of antinociception induced by EA by nNOS, iNOS and ATP-sensitive K + channels activation.

  20. Crystal structure of the potassium-importing KdpFABC membrane complex

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ching-Shin; Pedersen, Bjørn Panyella; Stokes, David L.

    2017-06-21

    Cellular potassium import systems play a fundamental role in osmoregulation, pH homeostasis and membrane potential in all domains of life. In bacteria, the kdp operon encodes a four-subunit potassium pump that maintains intracellular homeostasis, cell shape and turgor under conditions in which potassium is limiting1. This membrane complex, called KdpFABC, has one channel-like subunit (KdpA) belonging to the superfamily of potassium transporters and another pump-like subunit (KdpB) belonging to the superfamily of P-type ATPases. Although there is considerable structural and functional information about members of both superfamilies, the mechanism by which uphill potassium transport through KdpA is coupled with ATP hydrolysis by KdpB remains poorly understood. Here we report the 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA and a water molecule at a canonical cation site in the transmembrane domain of KdpB. The structure also reveals two structural elements that appear to mediate the coupling between these two subunits. Specifically, a protein-embedded tunnel runs between these potassium and water sites and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. On the basis of these observations, we propose a mechanism that repurposes protein channel architecture for active transport across biomembranes.

  1. A polyether biotoxin binding site on the lipid-exposed face of the pore domain of Kv channels revealed by the marine toxin gambierol

    Science.gov (United States)

    Kopljar, Ivan; Labro, Alain J.; Cuypers, Eva; Johnson, Henry W. B.; Rainier, Jon D.; Tytgat, Jan; Snyders, Dirk J.

    2009-01-01

    Gambierol is a marine polycyclic ether toxin belonging to the group of ciguatera toxins. It does not activate voltage-gated sodium channels (VGSCs) but inhibits Kv1 potassium channels by an unknown mechanism. While testing whether Kv2, Kv3, and Kv4 channels also serve as targets, we found that Kv3.1 was inhibited with an IC50 of 1.2 ± 0.2 nM, whereas Kv2 and Kv4 channels were insensitive to 1 μM gambierol. Onset of block was similar from either side of the membrane, and gambierol did not compete with internal cavity blockers. The inhibition did not require channel opening and could not be reversed by strong depolarization. Using chimeric Kv3.1–Kv2.1 constructs, the toxin sensitivity was traced to S6, in which T427 was identified as a key determinant. In Kv3.1 homology models, T427 and other molecular determinants (L348, F351) reside in a space between S5 and S6 outside the permeation pathway. In conclusion, we propose that gambierol acts as a gating modifier that binds to the lipid-exposed surface of the pore domain, thereby stabilizing the closed state. This site may be the topological equivalent of the neurotoxin site 5 of VGSCs. Further elucidation of this previously undescribed binding site may explain why most ciguatoxins activate VGSCs, whereas others inhibit voltage-dependent potassium (Kv) channels. This previously undescribed Kv neurotoxin site may have wide implications not only for our understanding of channel function at the molecular level but for future development of drugs to alleviate ciguatera poisoning or to modulate electrical excitability in general. PMID:19482941

  2. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver.

    Science.gov (United States)

    Masia, Ricard; Krause, Daniela S; Yellen, Gary

    2015-02-01

    Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner. Copyright © 2015 the American Physiological Society.

  3. Down-regulation of A-type potassium channel in gastric-specific DRG neurons in a rat model of functional dyspepsia.

    Science.gov (United States)

    Li, S; Chen, J D Z

    2014-07-01

    Although without evidence of organic structural abnormalities, pain or discomfort is a prominent symptom of functional dyspepsia and considered to reflect visceral hypersensitivity whose underlying mechanism is poorly understood. Here, we studied electrophysiological properties and expression of voltage-gated potassium channels in dorsal root ganglion (DRG) neurons in a rat model of functional dyspepsia induced by neonatal gastric irritation. Male Sprague-Dawley rat pups at 10-day old received 0.1% iodoacetamide (IA) or vehicle by oral gavage for 6 days and studied at adulthood. Retrograde tracer-labeled gastric-specific T8 -T12 DRG neurons were harvested for the patch-clamp study in voltage and current-clamp modes and protein expression of K(+) channel in T8 -T12 DRGs was examined by western blotting. (1) Gastric specific but not non-gastric DRG neurons showed an enhanced excitability in neonatal IA-treated rats compared to the control: depolarized resting membrane potentials, a lower current threshold for action potential (AP) activation, and an increase in the number of APs in response to current stimulation. (2) The current density of tetraethylammonium insensitive (transiently inactivating A-type current), but not the tetraethylammonium sensitive (slow-inactivating delayed rectifier K(+) currents), was significantly smaller in IA-treated rats (65.4 ± 6.9 pA/pF), compared to that of control (93.1 ± 8.3 pA/pF). (3) Protein expression of KV 4.3 was down-regulated in IA-treated rats. A-type potassium channels are significantly down-regulated in the gastric-specific DRG neurons in adult rats with mild neonatal gastric irritation, which in part contribute to the enhanced DRG neuron excitabilities that leads to the development of gastric hypersensitivity. © 2014 John Wiley & Sons Ltd.

  4. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Directory of Open Access Journals (Sweden)

    Michael S. Stone

    2016-07-01

    Full Text Available Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+ ATPase pump. Approximately 90% of potassium consumed (60–100 mEq is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN is the leading cause of cardiovascular disease (CVD and a major financial burden ($50.6 billion to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  5. Site of action of calcium channel blockers in inhibiting endogenous pyrogen fever in rats.

    Science.gov (United States)

    Stitt, J T; Shimada, S G

    1991-09-01

    We have demonstrated that the Ca2+ channel blocker verapamil, administered intravenously, exerts an antipyretic effect on the febrile responses of rats to intravenously injected endogenous pyrogen (EP). We have also shown that the same intravenous dose of verapamil is ineffective in blocking fevers induced by the microinjection of exogenous prostaglandin E (PGE) into the organum vasculosum laminae terminalis (OVLT) of rats. Experiments were conducted to determine whether the site of this verapamil antipyresis was in the OVLT itself. The febrile responses of six male Sprague-Dawley rats to EP were determined at thermoneutrality. Verapamil (10 micrograms/rat) was microinjected directly into the OVLT, and the febrile responses to the EP dose were redetermined 15-30 min later. In every case the EP fevers were attenuated after verapamil pretreatment. Intra-OVLT injections of verapamil alone were without effect on body temperature. When the same dose of verapamil was injected into the OVLT 15 min before the injection of PGE into the same site, it had no effect on the ensuing PGE-induced fever. In view of the fact that less than 1/250th of the effective systemic dose of verapamil, when injected into the OVLT, was equally effective in blocking the EP fevers, we conclude that verapamil acts within the OVLT to block fever rather than peripherally. Furthermore, because verapamil administered into the OVLT does not block PGE fevers, it is unlikely that PGE produces fever by acting as a Ca2+ ionophore on hypothalamic neurons.

  6. Beta-blocker use and risk of symptomatic bradyarrhythmias: a hospital-based case-control study

    Science.gov (United States)

    Lu, Hou Tee; Kam, Jiyen; Nordin, Rusli Bin; Khelae, Surinder Kaur; Wang, Jing Mein; Choy, Chun Ngok; Lee, Chuey Yan

    2016-01-01

    Objective To investigate the risk factors of symptomatic bradyarrhythmias in relation to β-blockers use. Methods A hospital-based case-control study [228 patients: 108 with symptomatic bradyarrhythmias (cases) and 120 controls] was conducted in Sultanah Aminah Hospital, Malaysia between January 2011 and January 2014. Results The mean age was 61.1 ± 13.3 years with a majority of men (68.9%). Cases were likely than control to be older, hypertensive, lower body mass index and concomitant use of rate-controlling drugs (such as digoxin, verapamil, diltiazem, ivabradine or amiodarone). Significantly higher level of serum potassium, urea, creatinine and lower level of estimated glomerular filtration rate (eGFR) were observed among cases as compared to controls. On univariate analysis among patients on β-blockers, older age (crude OR: 1.07; 95% CI: 1.03–1.11, P = 0.000), hypertension (crude OR: 5.6; 95% CI: 1.51–20.72, P = 0.010), lower sodium (crude OR: 0.04; 95% CI: 0.81–0.99, P = 0.036), higher potassium (crude OR: 2.36; 95% CI: 1.31–4.26, P = 0.004) and higher urea (crude OR: 1.23; 95% CI: 1.11–1.38, P = 0.000) were associated with increased risk of symptomatic bradyarrhythmias; eGFR was inversely and significantly associated with symptomatic bradyarrhythmias in both ‘β-blockers’ (crude OR: 0.97; 95% CI: 0.96–0.98, P = 0.000) and ‘non-β-blockers’ (crude OR: 0.99; 95% CI: 0.97–0.99, P = 0.023) arms. However, eGFR was not significantly associated with symptomatic bradyarrhythmias in the final model of both ‘β-blockers’ (adjusted OR: 0.98; 95% CI: 0.96–0.98, P = 0.103) and ‘non-β-blockers’ (adjusted OR: 0.99; 95% CI: 0.97–1.01, P = 0.328) arms. Importantly, older age was a significant predictor of symptomatic bradyarrhythmias in the ‘β-blockers’ as compared to the ‘non-β-blockers’ arms (adjusted OR: 1.09; 95% CI: 1.03–1.15, P = 0.003 vs. adjusted OR: 1.03; 95% CI: 0.98–1.09, P = 0.232, respectively). Conclusion Older

  7. The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size

    DEFF Research Database (Denmark)

    Christensen, Alex Hørby; Chatelain, Franck C; Huttner, Inken G

    2016-01-01

    distribution with predominant localization in the endosomal compartment. Two-electrode voltage-clamp experiments using Xenopus oocytes showed that both zebrafish and wild-type human TWIK-1 channels produced K(+) currents that are sensitive to external K(+) concentration as well as acidic pH. There were......The two-pore domain potassium (K(+)) channel TWIK-1 (or K2P1.1) contributes to background K(+) conductance in diverse cell types. TWIK-1, encoded by the KCNK1 gene, is present in the human heart with robust expression in the atria, however its physiological significance is unknown. To evaluate......-coding regions in two independent cohorts of patients (373 subjects) and identified three non-synonymous variants, p.R171H, p.I198M and p.G236S, that were all located in highly conserved amino acid residues. In transfected mammalian cells, zebrafish and wild-type human TWIK-1 channels had a similar cellular...

  8. The effect of nitrazepam on depression and curiosity in behavioral tests in mice: The role of potassium channels.

    Science.gov (United States)

    Nikoui, Vahid; Ostadhadi, Sattar; Azhand, Pardis; Zolfaghari, Samira; Amiri, Shayan; Foroohandeh, Mehrdad; Motevalian, Manijeh; Sharifi, Ali Mohammad; Bakhtiarian, Azam

    2016-11-15

    Evidence show that gamma-aminobutyric acid (GABA) receptors are involved in depression, so the aim of this study was to investigate the effect of nitrazepam as agonist of GABA A receptors on depression and curiosity in male mice and the role of potassium channel in antidepressant-like response. For this purpose, we studied the antidepressant-like properties of fluoxetine, nitrazepam, glibenclamide, and cromakalim by both forced swimming test (FST) and tail suspension test (TST). Animals were injected by various doses of nitrazepam (0.05, 0.1, and 0.5mg/kg). Nitrazepam at dose of 0.5mg/kg significantly decreased the immobility time compared to control group in both FST and TST. Fluoxetine also showed such a response. Co-administration of nitrazepam (0.05mg/kg) with glibenclamide in TST (1mg/kg) and in FST (0.3, 1mg/kg) also showed antidepressant-like response. Beside, cromakalim (0.1mg/kg) could reverse the antidepressant-like effect of nitrazepam (0.5mg/kg) in both FST and TST, while cromakalim and glibenclamide alone could not change the immobility time compared to control group (P>0.05). The hole-board test revealed that nitrazepam at doses of 0.5 and 0.1mg/kg could increase the activity of the animal's head-dipping and boost the curiosity and exploration behavior of mice. The results of this study revealed that nitrazepam may possess antidepressant-like properties and this effect is dependent to potassium channels in both FST and TST. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Resveratrol Protects Against Ultraviolet A-Mediated Inhibition of the Phagocytic Function of Human Retinal Pigment Epithelial Cells Via Large-Conductance Calcium-Activated Potassium Channels

    Directory of Open Access Journals (Sweden)

    Shwu-Jiuan Sheu

    2009-07-01

    Full Text Available This study was undertaken to examine the protective effect of resveratrol on human retinal pigment epithelial (RPE cell phagocytosis against ultraviolet irradiation damage. Cultured RPE cells were exposed to ultraviolet A (UVA, 20 minutes irradiation, and treated with meclofenamic acid (30μM, 20 minutes, paxilline (100 μM, 20 minutes or resveratrol (10μM, 20 minutes. Meclofenamic acid and resveratrol were given after exposure to UVA. Pretreatment with meclofenamic acid, resveratrol or paxilline before UVA irradiation was also performed. Fluorescent latex beads were then fed for 4 hours and the phagocytotic function was assessed by flow cytometry. UVA irradiation inhibited the phagocytic function of human RPE cells. The large-conductance calcium-activated potassium channel activator meclofenamic acid ameliorated the damage caused by UVA irradiation. Pretreatment with resveratrol acid also provided protection against damage caused by UVA. Posttreatment with meclofenamic acid offered mild protection, whereas resveratrol did not. In conclusion, the red wine flavonoid resveratrol ameliorated UVA-mediated inhibition of human RPE phagocytosis. The underlying mechanism might involve the large-conductance calcium-activated potassium channels.

  10. β-Blocker pharmacogenetics in heart failure

    Science.gov (United States)

    Shin, Jaekyu

    2009-01-01

    β-Blockers (metoprolol, bisoprolol, and carvedilol) are a cornerstone of heart failure (HF) treatment. However, it is well recognized that responses to a β-blocker are variable among patients with HF. Numerous studies now suggest that genetic polymorphisms may contribute to variability in responses to a β-blocker, including left ventricular ejection fraction improvement, survival, and hospitalization due to HF exacerbation. This review summarizes the pharmacogenetic data for β-blockers in patients with HF and discusses the potential implications of β-blocker pharmacogenetics for HF patients. PMID:18437562

  11. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension.

    Science.gov (United States)

    Veiras, Luciana C; Han, Jiyang; Ralph, Donna L; McDonough, Alicia A

    2016-10-01

    Angiotensin II (AngII) hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na(+) channel abundance and activating cleavage. Acutely raising plasma [K(+)] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K(+)] with a single 3-hour 2% potassium meal would lower NCCp in Sprague-Dawley rats after 14 days of AngII (400 ng/kg per minute). The potassium-rich meal neither decreased NCCp nor increased K(+) excretion. AngII-infused rats exhibited lower plasma [K(+)] versus controls (3.6±0.2 versus 4.5±0.1 mmol/L; Pblood pressure did not significantly decrease. Epithelial Na(+) channel subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK (renal outer medulla K(+) channel abundance) abundance was unaffected by AngII or dietary K(+) In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by epithelial Na(+) channel stimulation. © 2016 American Heart Association, Inc.

  12. Role of different types of potassium channels in the antidepressant-like effect of agmatine in the mouse forced swimming test.

    Science.gov (United States)

    Budni, Josiane; Gadotti, Vinícius M; Kaster, Manuella P; Santos, Adair R S; Rodrigues, Ana Lúcia S

    2007-12-01

    The administration of agmatine elicits an antidepressant-like effect in the mouse forced swimming test by a mechanism dependent on the inhibition of the NMDA receptors and the L-arginine-nitric oxide (NO) pathway. Since it has been reported that the NO can activate different types of potassium (K(+)) channels in several tissues, the present study investigates the possibility of synergistic interactions between different types of K(+) channel inhibitors and agmatine in the forced swimming test. Treatment of mice by i.c.v. route with subeffective doses of tetraethylammonium (a non specific inhibitor of K(+) channels, 25 pg/site), glibenclamide (an ATP-sensitive K(+) channels inhibitor, 0.5 pg/site), charybdotoxin (a large- and intermediate-conductance calcium-activated K(+) channel inhibitor, 25 pg/site) or apamin (a small-conductance calcium-activated K(+) channel inhibitor, 10 pg/site), augmented the effect of agmatine (0.001 mg/kg, i.p.) in the forced swimming test. Furthermore, the administration of agmatine and the K(+) channel inhibitors, alone or in combination, did not affect locomotion in the open-field test. Moreover, the reduction in the immobility time elicited by an active dose of agmatine (10 mg/kg, i.p.) in the forced swimming test was prevented by the pre-treatment of mice with the K(+) channel openers cromakalim (10 microg/site, i.c.v.) and minoxidil (10 microg/site, i.c.v.), without affecting locomotion. Together these data raise the possibility that the antidepressant-like effect of agmatine in the forced swimming test is related to its modulatory effects on neuronal excitability, via inhibition of K(+) channels.

  13. Escitalopram block of hERG potassium channels.

    Science.gov (United States)

    Chae, Yun Ju; Jeon, Ji Hyun; Lee, Hong Joon; Kim, In-Beom; Choi, Jin-Sung; Sung, Ki-Wug; Hahn, Sang June

    2014-01-01

    Escitalopram, a selective serotonin reuptake inhibitor, is the pharmacologically active S-enantiomer of the racemic mixture of RS-citalopram and is widely used in the treatment of depression. The effects of escitalopram and citalopram on the human ether-a-go-go-related gene (hERG) channels expressed in human embryonic kidney cells were investigated using voltage-clamp and Western blot analyses. Both drugs blocked hERG currents in a concentration-dependent manner with an IC50 value of 2.6 μM for escitalopram and an IC50 value of 3.2 μM for citalopram. The blocking of hERG by escitalopram was voltage-dependent, with a steep increase across the voltage range of channel activation. However, voltage independence was observed over the full range of activation. The blocking by escitalopram was frequency dependent. A rapid application of escitalopram induced a rapid and reversible blocking of the tail current of hERG. The extent of the blocking by escitalopram during the depolarizing pulse was less than that during the repolarizing pulse, suggesting that escitalopram has a high affinity for the open state of the hERG channel, with a relatively lower affinity for the inactivated state. Both escitalopram and citalopram produced a reduction of hERG channel protein trafficking to the plasma membrane but did not affect the short-term internalization of the hERG channel. These results suggest that escitalopram blocked hERG currents at a supratherapeutic concentration and that it did so by preferentially binding to both the open and the inactivated states of the channels and by inhibiting the trafficking of hERG channel protein to the plasma membrane.

  14. Molecular and functional characterization of Anopheles gambiae inward rectifier potassium (Kir1) channels: a novel role in egg production.

    Science.gov (United States)

    Raphemot, Rene; Estévez-Lao, Tania Y; Rouhier, Matthew F; Piermarini, Peter M; Denton, Jerod S; Hillyer, Julián F

    2014-08-01

    Inward rectifier potassium (Kir) channels play essential roles in regulating diverse physiological processes. Although Kir channels are encoded in mosquito genomes, their functions remain largely unknown. In this study, we identified the members of the Anopheles gambiae Kir gene family and began to investigate their function. Notably, we sequenced the A. gambiae Kir1 (AgKir1) gene and showed that it encodes all the canonical features of a Kir channel: an ion pore that is composed of a pore helix and a selectivity filter, two transmembrane domains that flank the ion pore, and the so-called G-loop. Heterologous expression of AgKir1 in Xenopus oocytes revealed that this gene encodes a functional, barium-sensitive Kir channel. Quantitative RT-PCR experiments then showed that relative AgKir1 mRNA levels are highest in the pupal stage, and that AgKir1 mRNA is enriched in the adult ovaries. Gene silencing of AgKir1 by RNA interference did not affect the survival of female mosquitoes following a blood meal, but decreased their egg output. These data provide evidence for a new role of Kir channels in mosquito fecundity, and further validates them as promising molecular targets for the development of a new class of mosquitocides to be used in vector control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. SELECTIVE AND NONSELECTIVE β-BLOCKERS IN PRIMARY OPEN ANGLE GLAUCOMA THERAPY – RESULTS OF COLOR DOPPLER SONOGRAPHY

    Directory of Open Access Journals (Sweden)

    Vukoslava Maričić-Došen

    2002-12-01

    Full Text Available Background. Primary open angle glaucoma (POAG is a syndrome of progressive optic neuropathy characterized by optic nerve head excavation and visual field defects. Poor correlation between IOP and progression of glaucoma disease sets vascular mechanism in the centre of attention. By Color Doppler sonography, quantification of blood flow changes in vessels, which supply optic nerve head, is possible. We wanted to find out whether there are changes in the circulation of central retinal artery and posterior ciliary arteries in patients with primary open angle glaucoma treated with selective or nonselective β -blockers.Methods. 44 patients (88 eyes were divided into two groups: group 1: 22 patients (44 eyes treated with selective β -blockers (Betaxolol 0.5% and group 2: 22 patients (44 eyes treated with nonselective β -blockers (Timolol 0.5%. Vascular indices (RI, PI were measured in the central retinal artery and posterior ciliary arteries.Results. We found decreased blood flow and increased vascular indices in both groups of patients, statistically significant difference between group 1 and group 2: blood flow velocity was higher and vascular indices were lower in group 1 (Betaxolol 0.5% compared to group 2 (Timolol 0..5%.Conclusions. Selective β -blockers (calcium channel blockers act more vasoactively and neuroprotectively comparing to nonselective β -blockers.

  16. Membrane potential and cation channels in rat juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, U G; Jørgensen, F; Andreasen, D

    2004-01-01

    The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK(Ca)) of the Z......The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK...

  17. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    Science.gov (United States)

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  18. Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder

    Directory of Open Access Journals (Sweden)

    Cyrus S.H. Ho

    2018-04-01

    Full Text Available Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC complex limbic encephalitis in view of previous positive autoantibodies. His failure to respond to immunotherapy prompted testing for heavy metal poisoning, which was positive for Mn. This is the first report to examine an association between Mn and VGKC antibodies and the effects of Mn on functional brain activity using functional near-infrared spectroscopy (fNIRS.

  19. Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder.

    Science.gov (United States)

    Ho, Cyrus S H; Ho, Roger C M; Quek, Amy M L

    2018-04-18

    Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn) toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC) complex limbic encephalitis in view of previous positive autoantibodies. His failure to respond to immunotherapy prompted testing for heavy metal poisoning, which was positive for Mn. This is the first report to examine an association between Mn and VGKC antibodies and the effects of Mn on functional brain activity using functional near-infrared spectroscopy (fNIRS).

  20. Chronic Manganese Toxicity Associated with Voltage-Gated Potassium Channel Complex Antibodies in a Relapsing Neuropsychiatric Disorder

    Science.gov (United States)

    Ho, Cyrus S.H.; Quek, Amy M.L.

    2018-01-01

    Heavy metal poisoning is a rare but important cause of encephalopathy. Manganese (Mn) toxicity is especially rare in the modern world, and clinicians’ lack of recognition of its neuropsychiatric manifestations can lead to misdiagnosis and mismanagement. We describe the case of a man who presented with recurrent episodes of confusion, psychosis, dystonic limb movement and cognitive impairment and was initially diagnosed with anti-voltage-gated potassium channel (VGKC) complex limbic encephalitis in view of previous positive autoantibodies. His failure to respond to immunotherapy prompted testing for heavy metal poisoning, which was positive for Mn. This is the first report to examine an association between Mn and VGKC antibodies and the effects of Mn on functional brain activity using functional near-infrared spectroscopy (fNIRS). PMID:29669989

  1. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.

    Science.gov (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun

    2011-06-07

    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  2. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Directory of Open Access Journals (Sweden)

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  3. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    Science.gov (United States)

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  4. Electron spin-echo envelope modulation (ESEEM) reveals water and phosphate interactions with the KcsA potassium channel.

    Science.gov (United States)

    Cieslak, John A; Focia, Pamela J; Gross, Adrian

    2010-02-23

    Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential as a structural tool to describe the native environment of membrane proteins. Using the KcsA potassium channel as a model system, we demonstrate that deuterium ESEEM can detect water permeation along the lipid-exposed surface of the KcsA outer helix. We further demonstrate that (31)P ESEEM is able to identify channel residues that interact with the phosphate headgroup of the lipid bilayer. In combination with X-ray crystallography, the (31)P data may be used to define the phosphate interaction surface of the protein. The results presented here establish ESEEM as a highly informative technique for SDSL studies of membrane proteins.

  5. Palytoxin and the sodium/potassium pump—phosphorylation and potassium interaction

    International Nuclear Information System (INIS)

    Rodrigues, Antônio M; De Almeida, Antônio-Carlos G; Infantosi, Antonio F C

    2009-01-01

    We proposed a reaction model for investigating interactions between K + and the palytoxin–sodium–potassium (PTX–Na + /K + ) pump complex under conditions where enzyme phosphorylation may occur. The model is composed of (i) the Albers–Post model for Na + /K + –ATPase, describing Na + and K + pumping; (ii) the reaction model proposed for Na + /K + –ATPase interactions with its ligands (Na + , K + , ATP, ADP and P) and with PTX. A mathematical model derived for representing the reactions was used to simulate experimental studies of the PTX-induced current, in different concentrations for the pump ligands. The simulations allow interpretation of the simultaneous action of Na + /K + –ATPase phosphorylation and K + on the PTX-induced channels. The results suggest that (i) phosphorylation increases the PTX toxic effect, increasing its affinity and reducing the K + occlusion rate, and (ii) K + causes channel blockage, increases the toxin dissociation rate and impedes the induced channel phosphorylation, implying reduction of the PTX toxic effect

  6. Autoantibodies against voltage-gated potassium channel (VGKC) and glutamic acid decarboxylase (GAD) in psychosis: A systematic review, meta-analysis and case series.

    OpenAIRE

    Lally*, John; Grain*, Rosemary; Stubbs, Brendon; Malik, Steffi; LeMince, Anne; Nicholson, Timothy RJ; Murray, Robin MacGregor; Gaughran, Fiona Patricia

    2017-01-01

    Antibodies to the voltage-gated potassium channel (VGKC) complex and glutamic acid decarboxylase (GAD) have been reported in some cases of psychosis. We conducted the first systematic review and meta-analysis to investigate their prevalence in people with psychosis and report a case series of VGKC-complex antibodies in refractory psychosis. Only five studies presenting prevalence rates of VGKC seropositivity in psychosis were identified, in addition to our case series, with an overall prevale...

  7. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes.

    Science.gov (United States)

    Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V

    2015-05-01

    Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  8. Presence of voltage-gated potassium channel complex antibody in a case of genetic prion disease.

    Science.gov (United States)

    Jammoul, Adham; Lederman, Richard J; Tavee, Jinny; Li, Yuebing

    2014-06-05

    Voltage-gated potassium channel (VGKC) complex antibody-mediated encephalitis is a recently recognised entity which has been reported to mimic the clinical presentation of Creutzfeldt-Jakob disease (CJD). Testing for the presence of this neuronal surface autoantibody in patients presenting with subacute encephalopathy is therefore crucial as it may both revoke the bleak diagnosis of prion disease and allow institution of potentially life-saving immunotherapy. Tempering this optimistic view is the rare instance when a positive VGKC complex antibody titre occurs in a definite case of prion disease. We present a pathologically and genetically confirmed case of CJD with elevated serum VGKC complex antibody titres. This case highlights the importance of interpreting the result of a positive VGKC complex antibody with caution and in the context of the overall clinical manifestation. 2014 BMJ Publishing Group Ltd.

  9. The role of potassium and other ions in the control of aldosterone synthesis

    International Nuclear Information System (INIS)

    Kenyon, C.J.; Shepherd, R.M.; Fraser, R.; Pediani, J.D.; Elder, H.Y.

    1991-01-01

    Fast and slow K+ efflux components, independently regulated by angiotensin II (AII), have been identified in bovine adrenocortical cells. The authors have further investigated the role of potassium in the control of aldosterone synthesis in two ways. Firstly, isotopic tracers, in conjunction with channel modulators, have been used to study the interrelationship of K+ and Ca2+ in the control of AII-stimulated aldosterone synthesis. Secondly, electron probe X-ray microanalysis (EPXMA) was used to quantify potassium, sodium, chlorine and phosphorous in control and AII-stimulated cells. The effects of verapamil on 43K efflux were measured at two stages during AII stimulation. During the first ten minutes of treatment, when efflux via the fast component predominates, AII and verapamil both slowed efflux and their effects were additive. If verapamil was added later, at the time when efflux by the fast component appeared exhausted and the stimulatory effect of AII on the slow efflux component was apparent, it again slowed efflux. These data suggest that verapamil prevents calcium-gated K+ channels from opening by blocking Ca2+ channels. However, verapamil had no effect on AII-stimulated calcium efflux. In addition to blocking Ca2+ channels, verapamil may directly inhibit potassium efflux. EPXMA showed a bimodal distribution of potassium concentrations in control cells. However, in cells stimulated with AII for five minutes, the mean potassium content was less than in controls and was not bimodally distributed. Sodium content was increased by AII-treatment, chlorine was lowered and phosphorus remained unchanged. The data confirm previous observations that AII inhibits Na+/K+ ATPase activity

  10. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium.

    Science.gov (United States)

    Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang

    2016-05-01

    Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.

  11. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons.

    Science.gov (United States)

    Tanner, Geoffrey R; Lutas, Andrew; Martínez-François, Juan Ramón; Yellen, Gary

    2011-06-08

    ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-β-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.

  12. Voltage-Gated Potassium Channel Antibody Paraneoplastic Limbic Encephalitis Associated with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Marion Alcantara

    2013-05-01

    Full Text Available Among paraneoplastic syndromes (PNS associated with malignant hemopathies, there are few reports of PNS of the central nervous system and most of them are associated with lymphomas. Limbic encephalitis is a rare neurological syndrome classically diagnosed in the context of PNS. We report the case of a 81-year-old man who presented with a relapsed acute myeloid leukemia (AML with minimal maturation. He was admitted for confusion with unfavorable evolution as he presented a rapidly progressive dementia resulting in death. A brain magnetic resonance imaging, performed 2 months after the onset, was considered normal. An electroencephalogram showed non-specific bilateral slow waves. We received the results of the blood screening of neuronal autoantibodies after the patient's death and detected the presence of anti-voltage-gated potassium channel (VGKC antibodies at 102 pmol/l (normal at <30 pmol/l. Other etiologic studies, including the screening for another cause of rapidly progressive dementia, were negative. To our knowledge, this is the first case of anti-VGKC paraneoplastic limbic encephalitis related to AML.

  13. [Effect of down-regulation of IKs repolarization-reserve on ventricular arrhythmogenesis in a guinea pig model of cardiac hypertrophy].

    Science.gov (United States)

    Wang, Hegui; Huang, Ting; Wang, Zheng; Ge, Nannan; Ke, Yongsheng

    2018-04-28

    To observe the changes of rapidly activated delayed rectifier potassium channel (IKr) and slowly activated delayed rectifier potassium channel (IKs) in cardiac hypertrophy and to evaluate the effects of IKr and IKs blocker on the incidence of ventricular arrhythmias in guinea pigs with left ventricular hypertrophy (LVH).
 Methods: Guinea pigs were divided into a sham operation group and a left ventricular hypertrophy (LVH) group. LVH model was prepared. Whole cell patch-clamp technique was used to record IKr and IKs tail currents in a guinea pig model with LVH. The changes of QTc and the incidence rate of ventricular arrhythmias in LVH guinea pigs were observed by using the IKr and IKs blockers.
 Results: Compared with cardiac cells in the control group, the interventricular septal thickness at end systole (IVSs), left ventricular posterior wall thickness at end systole (LVPWs), QTc interval and cell capacitance in guinea pigs with LVH were significantly increased (Pguinea pigs with LVH compared with the control guinea pigs. In contrast, IKs blocker produced modest increase in QTc interval in guinea pigs of control group with no increase in LVH animals. IKs blocker did not induce ventricular arrhythmias incidence in either control or LVH animals.
 Conclusion: The cardiac hypertrophy-induced arrhythmogenesis is due to the down-regulation 
of IKs.

  14. Voltage-Gated Potassium Channel Autoimmunity Mimicking Creutzfeldt-Jakob Disease

    Science.gov (United States)

    Geschwind, Michael D.; Tan, K. Meng; Lennon, Vanda A.; Barajas, Ramon F.; Haman, Aissa; Klein, Christopher J.; Josephson, S. Andrew; Pittock, Sean J.

    2009-01-01

    Background Rapidly progressive dementia has a variety of causes, including Creutzfeldt-Jakob disease (CJD) and neuronal voltage-gated potassium channel (VGKC) autoantibody–associated encephalopathy. Objective To describe patients thought initially to have CJD but found subsequently to have immunotherapy-responsive VGKC autoimmunity. Design Observational, prospective case series. Setting Department of Neurology, Mayo Clinic, and the Memory and Aging Center, University of California, San Francisco. Patients A clinical serologic cohort of 15 patients referred for paraneoplastic autoantibody evaluation. Seven patients were evaluated clinically by at least one of us. Clinical information for the remaining patients was obtained by physician interview or medical record review. Main Outcome Measures Clinical features, magnetic resonance imaging abnormalities, electroencephalographic patterns, cerebrospinal fluid analyses, and responses to immunomodulatory therapy. Results All the patients presented subacutely with neurologic manifestations, including rapidly progressive dementia, myoclonus, extrapyramidal dysfunction, visual hallucinations, psychiatric disturbance, and seizures; most (60%) satisfied World Health Organization diagnostic criteria for CJD. Magnetic resonance imaging abnormalities included cerebral cortical diffusion-weighted imaging hyperintensities. Electroencephalographic abnormalities included diffuse slowing, frontal intermittent rhythmic delta activity, and focal epileptogenic activity but not periodic sharp wave complexes. Cerebrospinal fluid 14-3-3 protein or neuron-specific enolase levels were elevated in 5 of 8 patients. Hyponatremia was common (60%). Neoplasia was confirmed histologically in 5 patients (33%) and was suspected in another 5. Most patients’ conditions (92%) improved after immunomodulatory therapy. Conclusions Clinical, radiologic, electrophysiologic, and laboratory findings in VGKC autoantibody–associated encephalopathy may be

  15. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  16. Interactions between β-catenin and the HSlo potassium channel regulates HSlo surface expression.

    Directory of Open Access Journals (Sweden)

    Shumin Bian

    Full Text Available The large conductance calcium-activated potassium channel alpha-subunit (Slo is widely distributed throughout the body and plays an important role in a number of diseases. Prior work has shown that Slo, through its S10 region, interacts with β-catenin, a key component of the cytoskeleton framework and the Wnt signaling pathway. However, the physiological significance of this interaction was not clear.Using a combination of proteomic and cell biology tools we show the existence of additional multiple binding sites in Slo, and explore in detail β-catenin interactions with the S10 region. We demonstrate that deletion of this region reduces Slo surface expression in HEK cells, which indicates that interaction with beta-catenin is important for Slo surface expression. This is confirmed by reduced expression of Slo in HEK cells and chicken (Gallus gallus domesticus leghorn white hair cells treated with siRNA to β-catenin. HSlo reciprocally co-immunoprecipitates with β-catenin, indicating a stable binding between these two proteins, with the S10 deletion mutant having reduced binding with β-catenin. We also observed that mutations of the two putative GSK phosphorylation sites within the S10 region affect both the surface expression of Slo and the channel's voltage and calcium sensitivities. Interestingly, expression of exogenous Slo in HEK cells inhibits β-catenin-dependent canonical Wnt signaling.These studies identify for the first time a central role for β-catenin in mediating Slo surface expression. Additionally we show that Slo overexpression can lead to downregulation of Wnt signaling.

  17. Detecting Anti Ad-blockers in the Wild

    Directory of Open Access Journals (Sweden)

    Mughees Muhammad Haris

    2017-07-01

    Full Text Available The rise of ad-blockers is viewed as an economic threat by online publishers who primarily rely on online advertising to monetize their services. To address this threat, publishers have started to retaliate by employing anti ad-blockers, which scout for ad-block users and react to them by pushing users to whitelist the website or disable ad-blockers altogether. The clash between ad-blockers and anti ad-blockers has resulted in a new arms race on the Web. In this paper, we present an automated machine learning based approach to identify anti ad-blockers that detect and react to ad-block users. The approach is promising with precision of 94.8% and recall of 93.1%. Our automated approach allows us to conduct a large-scale measurement study of anti ad-blockers on Alexa top-100K websites. We identify 686 websites that make visible changes to their page content in response to ad-block detection. We characterize the spectrum of different strategies used by anti ad-blockers. We find that a majority of publishers use fairly simple first-party anti ad-block scripts. However, we also note the use of third-party anti ad-block services that use more sophisticated tactics to detect and respond to ad-blockers.

  18. Autoimmune encephalitis associated with voltage-gated potassium channels-complex and leucine-rich glioma-inactivated 1 antibodies

    DEFF Research Database (Denmark)

    Celicanin, Marko; Blaabjerg, M; Maersk-Moller, C

    2017-01-01

    BACKGROUND AND PURPOSE: The aim of this study was to describe clinical and paraclinical characteristics of all Danish patients who tested positive for anti-voltage-gated potassium channels (VGKC)-complex, anti-leucine-rich glioma-inactivated 1 (LGI1) and anti-contactin-associated protein-2......, electroencephalography and (18) F-fluorodeoxyglucose positron emission tomography scans were re-evaluated by experts in the field. RESULTS: A total of 28/192 patients tested positive for VGKC-complex antibodies by radioimmunoassay and indirect immunofluorescence; 17 had antibodies to LGI1 and 6/7 of the available....... CONCLUSIONS: Patients diagnosed with anti-LGI1 autoimmune encephalitis increased significantly from 2009 to 2014, probably due to increased awareness. In contrast to seropositive anti-VGKC-complex patients, all anti-LGI1-positive patients presented with a classical limbic encephalitis. The majority...

  19. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/rep...

  20. The Role of KCNQ1 Mutations and Maternal Beta Blocker Use During Pregnancy in the Growth of Children With Long QT Syndrome

    Directory of Open Access Journals (Sweden)

    Heta Huttunen

    2018-04-01

    Full Text Available ObjectiveTwo missense mutations in KCNQ1, an imprinted gene that encodes the alpha subunit of the voltage-gated potassium channel Kv7.1, cause autosomal dominant growth hormone deficiency and maternally inherited gingival fibromatosis. We evaluated endocrine features, birth size, and subsequent somatic growth of patients with long QT syndrome 1 (LQT1 due to loss-of-function mutations in KCNQ1.DesignMedical records of 104 patients with LQT1 in a single tertiary care center between 1995 and 2015 were retrospectively reviewed.MethodsClinical and endocrine data of the LQT1 patients were included in the analyses.ResultsAt birth, patients with a maternally inherited mutation (n = 52 were shorter than those with paternal inheritance of the mutation (n = 29 (birth length, −0.70 ± 1.1 SDS vs. −0.2 ± 1.0 SDS, P < 0.05. Further analyses showed, however, that only newborns (n = 19 of mothers who had received beta blockers during pregnancy were shorter and lighter at birth than those with paternal inheritance of the mutation (n = 29 (−0.89 ± 1.0 SDS vs. −0.20 ± 1.0 SDS, P < 0.05; and 3,173 ± 469 vs. 3,515 ± 466 g, P < 0.05. Maternal beta blocker treatment during the pregnancy was also associated with lower cord blood TSH levels (P = 0.011 and significant catch-up growth during the first year of life (Δ0.08 SDS/month, P = 0.004. Later, childhood growth of the patients was unremarkable.ConclusionLoss-of-function mutations in KCNQ1 are not associated with abnormalities in growth, whereas maternal beta blocker use during pregnancy seems to modify prenatal growth of LQT1 patients—a phenomenon followed by catch-up growth after birth.

  1. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels

    Science.gov (United States)

    Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei

    2015-01-01

    Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753

  2. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels.

    Directory of Open Access Journals (Sweden)

    Qijing Chen

    Full Text Available Large conductance Ca2+-activated potassium channels (BK are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α and BK (α+β1 currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1. Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms.

  3. [Voltage-Gated Potassium Channel-Complex Antibodies Associated Encephalopathy and Related Diseases].

    Science.gov (United States)

    Watanabe, Osamu

    2016-09-01

    Voltage-gated potassium channel (VGKC) complex antibodies are auto-antibodies, initially identified in acquired neuromyotonia (aNMT; Isaacs' syndrome), which cause muscle cramps and difficulty in opening the palm of the hands. Subsequently, these antibodies were found in patients presenting with aNMT along with psychosis, insomnia, and dysautonomia, collectively termed Morvan's syndrome (MoS), and in a limbic encephalopathy (LE) patient with prominent amnesia and frequent seizures. Typical LE cases have a distinctive adult-onset, frequent, brief dystonic seizure semiology that predominantly affects the arms and ipsilateral face. It has now been termed faciobrachial dystonic seizures (FBDS). The VGKC complex is a group of proteins that are strongly associated in situ and after extraction in the mild detergent digitonin. Recent studies indicated that the VGKC complex antibodies are mainly directed toward associated proteins (for example LGI1, Caspr2) that complex with VGKCs themselves. Patients with aNMT or MoS are most likely to have Caspr2 antibodies, whereas LGI1 antibodies are found characteristically in patients with FBDS and LE. We systematically identified and quantified autoantibodies in patient sera with VGKC-complex antibody associated encephalopathy and showed the relationship between individual antibodies and patient's symptoms. Furthermore, we revealed how autoantibodies disrupt the physiological functions of target proteins. LGI1 antibodies neutralize the interaction between LGI1 and ADAM22, reducing the synaptic AMPA receptors.

  4. TRESK potassium channel in human T lymphoblasts

    International Nuclear Information System (INIS)

    Sánchez-Miguel, Dénison Selene; García-Dolores, Fernando; Rosa Flores-Márquez, María; Delgado-Enciso, Iván; Pottosin, Igor; Dobrovinskaya, Oxana

    2013-01-01

    Highlights: • TRESK (KCNK18) mRNA is present in different T lymphoblastic cell lines. • KCNK18 mRNA was not found in resting peripheral blood lymphocytes. • Clinical samples of T lymphoblastic leukemias and lymphomas were positive for TRESK. • TRESK in T lymphoblasts has dual localization, in plasma membrane and intracellular. -- Abstract: TRESK (TWIK-related spinal cord K + ) channel, encoded by KCNK18 gene, belongs to the double-pore domain K + channel family and in normal conditions is expressed predominantly in the central nervous system. In our previous patch-clamp study on Jurkat T lymphoblasts we have characterized highly selective K + channel with pharmacological profile identical to TRESK. In the present work, the presence of KCNK18 mRNA was confirmed in T lymphoblastic cell lines (Jurkat, JCaM, H9) but not in resting peripheral blood lymphocytes of healthy donors. Positive immunostaining for TRESK was demonstrated in lymphoblastic cell lines, in germinal centers of non-tumoral lymph nodes, and in clinical samples of T acute lymphoblastic leukemias/lymphomas. Besides detection in the plasma membrane, intracellular TRESK localization was also revealed. Possible involvement of TRESK channel in lymphocyte proliferation and tumorigenesis is discussed

  5. TRESK potassium channel in human T lymphoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Miguel, Dénison Selene, E-mail: amurusk@hotmail.com [Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Villa San Sebastian, C.P. 28045 Colima (Mexico); García-Dolores, Fernando, E-mail: garciaddf@yahoo.com [Department of Pathology, Institute of Forensic Sciences, Av. Niños Héroes 130, Col. Doctores, C.P. 06720 Mexico, DF (Mexico); Rosa Flores-Márquez, María, E-mail: mariafo31@yahoo.com.mx [National Medical Center of Occident (CMNO) IMSS, Belisario Dominguez 735, Col. Independencia Oriente, C.P. 44340 Guadalajara, Jalisco (Mexico); Delgado-Enciso, Iván [University of Colima, School of Medicine, Av. Universidad 333, Col. Las Viboras, C.P. 28040 Colima (Mexico); Pottosin, Igor, E-mail: pottosin@ucol.mx [Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Villa San Sebastian, C.P. 28045 Colima (Mexico); Dobrovinskaya, Oxana, E-mail: oxana@ucol.mx [Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Villa San Sebastian, C.P. 28045 Colima (Mexico)

    2013-05-03

    Highlights: • TRESK (KCNK18) mRNA is present in different T lymphoblastic cell lines. • KCNK18 mRNA was not found in resting peripheral blood lymphocytes. • Clinical samples of T lymphoblastic leukemias and lymphomas were positive for TRESK. • TRESK in T lymphoblasts has dual localization, in plasma membrane and intracellular. -- Abstract: TRESK (TWIK-related spinal cord K{sup +}) channel, encoded by KCNK18 gene, belongs to the double-pore domain K{sup +} channel family and in normal conditions is expressed predominantly in the central nervous system. In our previous patch-clamp study on Jurkat T lymphoblasts we have characterized highly selective K{sup +} channel with pharmacological profile identical to TRESK. In the present work, the presence of KCNK18 mRNA was confirmed in T lymphoblastic cell lines (Jurkat, JCaM, H9) but not in resting peripheral blood lymphocytes of healthy donors. Positive immunostaining for TRESK was demonstrated in lymphoblastic cell lines, in germinal centers of non-tumoral lymph nodes, and in clinical samples of T acute lymphoblastic leukemias/lymphomas. Besides detection in the plasma membrane, intracellular TRESK localization was also revealed. Possible involvement of TRESK channel in lymphocyte proliferation and tumorigenesis is discussed.

  6. Patients with Long QT Syndrome Due to Impaired hERG-encoded Kv11.1 Potassium Channel Have Exaggerated Endocrine Pancreatic and Incretin Function Associated with Reactive Hypoglycemia

    DEFF Research Database (Denmark)

    Hyltén-Cavallius, Louise; Iepsen, Eva W; Wewer Albrechtsen, Nicolai J

    2017-01-01

    Background -Loss-of-function mutations in hERG (encoding the Kv11.1 voltage-gated potassium channel) cause long QT syndrome (LQT2) due to prolonged cardiac repolarization. However, Kv11.1 is also present in pancreatic α and β cells and intestinal L and K cells, secreting glucagon, insulin, and th...

  7. Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel.

    Science.gov (United States)

    Rapedius, Markus; Haider, Shozeb; Browne, Katharine F; Shang, Lijun; Sansom, Mark S P; Baukrowitz, Thomas; Tucker, Stephen J

    2006-06-01

    The pH-sensitive renal potassium channel Kir1.1 is important for K+ homeostasis. Disruption of the pH-sensing mechanism causes type II Bartter syndrome. The pH sensor is thought to be an anomalously titrated lysine residue (K80) that interacts with two arginine residues as part of an 'RKR triad'. We show that a Kir1.1 orthologue from Fugu rubripes lacks this lysine and yet is still highly pH sensitive, indicating that K80 is not the H+ sensor. Instead, K80 functionally interacts with A177 on transmembrane domain 2 at the 'helix-bundle crossing' and controls the ability of pH-dependent conformational changes to induce pore closure. Although not required for pH inhibition, K80 is indispensable for the coupling of pH gating to the extracellular K+ concentration, explaining its conservation in most Kir1.1 orthologues. Furthermore, we demonstrate that instead of interacting with K80, the RKR arginine residues form highly conserved inter- and intra-subunit interactions that are important for Kir channel gating and influence pH sensitivity indirectly.

  8. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    Science.gov (United States)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  9. Evaluation Effects of Verapamil as a Calcium Channel Blocker on Acquisition, Consolidation and Retrieval of Memory in Mice

    Directory of Open Access Journals (Sweden)

    Nooshin Masoudian

    2015-04-01

    Full Text Available Many factors are involved in learning and memory processes including brain nuclei, neurotransmitter systems, and the activity of ion channels. Studies showed inconsistent effects of calcium channel blockers on learning process, especially memory consolidation; however, little is known about their effect on memory acquisition and retrieval. Accordingly, the present study aimed to determine the effects of verapamil calcium channel antagonist as a representative of the phenylalkylamine group on different stages of memory and learning processes including acquisition, consolidation and retrieval in mice. In this experimental study, 150 male albino mice with a mean weight of 30 g were used. The mice were trained in a passive avoidance-learning task (1 mA shock for 2 seconds for evaluation of memory acquisition and consolidation and 3 seconds for evaluation of memory retrieval. The effect of verapamil (1, 2.5, 5, 10, and 20 mg/kg on memory consolidation and the most effective dose of consolidation phase on memory acquisition and retrieval was assessed. For the evaluation of memory consolidation, the animals received the drug intraperitoneally immediately after training, while for evaluation of memory acquisition and retrieval, the drug was injected one hour before training. Memory retrieval test was performed 48 hours after training (the length of time it took the animal to enter the dark part of the device. The results showed that verapamil injection exerted no effect on memory acquisition and consolidation; nevertheless, it was capable to disrupt memory retrieval in 10 and 20 mg doses. These results indicate that as a phenylalkylamine calcium channel antagonist, high doses of verapamil can impair memory. Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso

  10. Serum Starvation-Induced Voltage-Gated Potassium Channel Kv7.5 Expression and Its Regulation by Sp1 in Canine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Bo Hyung Lee

    2014-01-01

    Full Text Available The KCNQ gene family, whose members encode Kv7 channels, belongs to the voltage-gated potassium (Kv channel group. The roles of this gene family have been widely investigated in nerve and muscle cells. In the present study, we investigated several characteristics of Kv7.5, which is strongly expressed in the canine osteosarcoma cell line, CCL-183. Serum starvation upregulated Kv7.5 expression, and the Kv7 channel opener, flupirtine, attenuated cell proliferation by arresting cells in the G0/G1 phase. We also showed that Kv7.5 knockdown helps CCL-183 cells to proliferate. In an effort to find an endogenous regulator of Kv7.5, we used mithramycin A to reduce the level of the transcription factor Sp1, and it strongly inhibited the induction of Kv7.5 in CCL-183 cells. These results suggest that the activation of Kv7.5 by flupirtine may exert an anti-proliferative effect in canine osteosarcoma. Therefore, Kv7.5 is a possible molecular target for canine osteosarcoma therapy.

  11. Tungstate-targeting of BKαβ1 channels tunes ERK phosphorylation and cell proliferation in human vascular smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ana Isabel Fernández-Mariño

    Full Text Available Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51% the tungstate-produced reduction of platelet-derived growth factor (PDGF-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle.

  12. Afterdischarges following M waves in patients with voltage-gated potassium channels antibodies

    Directory of Open Access Journals (Sweden)

    Jingwen Niu

    Full Text Available Objective: To explore the correlation between afterdischarges in motor nerve conduction studies and clinical motor hyperexcitability in patients with voltage-gated potassium channels (VGKC antibodies. Methods: Six patients with positive serum antibodies to contactin-associated protein-like 2 (CASPR2 or/and leucine-rich glioma-inactivated protein 1 (LGI1 were recruited, including 5 with autoimmune encephalitis, and 1 with cramp-fasciculation syndrome. Electromyography (EMG, nerve conduction studies (NCS and F waves were performed, and afterdischarges were assessed. One patient was followed up. Results: Five patients had clinical evidence of peripheral motor nerve hyperexcitability (myokymia or cramp, and four of them had abnormal spontaneous firing in concentric needle electromyography (EMG. Prolonged afterdischarges following normal M waves were present in all six patients, including the two patients who had no EMG evidence of peripheral nerve hyperexcitability (PNH. Afterdischarges disappeared after treatment with intravenous immunoglobulin (IVIG. Conclusion: The afterdischarges in motor nerve conduction study might be a sensitive indicator of peripheral motor nerve hyperexcitability in patients with VGKC antibodies. Significance: Afterdischarges in motor nerve conduction study might be more sensitive than needle electromyography for detecting peripheral motor nerve hyperexcitability, and could disappear gradually in accordance with clinical improvement and reduction of antibodies. Keywords: Afterdischarges, VGKC, Autoimmune encephalitis, Peripheral nerve hyperexcitability, F wave, M wave

  13. Loss of Female Sex Hormones Exacerbates Cerebrovascular and Cognitive Dysfunction in Aortic Banded Miniswine Through a Neuropeptide Y-Ca2+-Activated Potassium Channel-Nitric Oxide Mediated Mechanism.

    Science.gov (United States)

    Olver, T Dylan; Hiemstra, Jessica A; Edwards, Jenna C; Schachtman, Todd R; Heesch, Cheryl M; Fadel, Paul J; Laughlin, M Harold; Emter, Craig A

    2017-10-31

    Postmenopausal women represent the largest cohort of patients with heart failure with preserved ejection fraction, and vascular dementia represents the most common form of dementia in patients with heart failure with preserved ejection fraction. Therefore, we tested the hypotheses that the combination of cardiac pressure overload (aortic banding [AB]) and the loss of female sex hormones (ovariectomy [OVX]) impairs cerebrovascular control and spatial memory. Female Yucatan miniswine were separated into 4 groups (n=7 per group): (1) control, (2) AB, (3) OVX, and (4) AB-OVX. Pigs underwent OVX and AB at 7 and 8 months of age, respectively. At 14 months, cerebral blood flow velocity and spatial memory (spatial hole-board task) were lower in the OVX groups ( P <0.05), with significant impairments in the AB-OVX group ( P <0.05). Resting carotid artery β stiffness and vascular resistance during central hypovolemia were increased in the AB-OVX group ( P <0.05), and blood flow recovery after central hypovolemia was reduced in both OVX groups ( P <0.05). Isolated pial artery (pressure myography) vasoconstriction to neuropeptide Y was greatest in the AB-OVX group ( P <0.05), and vasodilation to the Ca 2+ -activated potassium channel α-subunit agonist NS-1619 was impaired in both AB groups ( P <0.05). The ratio of phosphorylated endothelial nitric oxide synthase:total endothelial nitric oxide synthase was depressed and Ca 2+ -activated potassium channel α-subunit protein was increased in AB groups ( P <0.05). Mechanistically, impaired cerebral blood flow control in experimental heart failure may be the result of heightened neuropeptide Y-induced vasoconstriction along with reduced vasodilation associated with decreased Ca 2+ -activated potassium channel function and impaired nitric oxide signaling, the effects of which are exacerbated in the absence of female sex hormones. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability.

    Directory of Open Access Journals (Sweden)

    Kejie Chen

    Full Text Available Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß. Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3 inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis.

  15. Use of Ion-Channel Modulating Agents to Study Cyanobacterial Na+ - K+ Fluxes

    Directory of Open Access Journals (Sweden)

    Pomati Francesco

    2004-01-01

    Full Text Available Here we describe an experimental design aimed to investigate changes in total cellular levels of Na+ and K+ ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na+ levels increased exponentially with rising alkalinity, with K+ levels being maximal for optimal growth pH (~8. At standardized pH conditions, the increase in cellular Na+, as induced by NaCl at 10 mM, was coupled by the two sodium channel-modulating agents lidocaine hydrochloride at 1 &mgr;M and veratridine at 100 &mgr;M. Both the channel-blockers amiloride (1 mM and saxitoxin (1 &mgr;M, decreased cell-bound Na+ and K+ levels. Results presented demonstrate the robustness of well-defined channel blockers and channel-activators in the study of cyanobacterial Na+- K+ fluxes.

  16. Adverse CNS-effects of beta-adrenoceptor blockers.

    Science.gov (United States)

    Gleiter, C H; Deckert, J

    1996-11-01

    In 1962 propranolol, the first beta adrenoceptor antagonist (beta blocker), was brought on to the market. There is now a host of different beta blockers available, and these compounds are among the most commonly prescribed groups of drugs. The efficacy of beta blockers has been proven predominantly for the treatment of cardiovascular diseases. Beta blockers are also used for certain types of CNS disorders, such as anxiety disorders, essential tremor and migraine. While low toxicity means that they have a favorable risk-benefit ratio, given the high intensity of use, it is essential to have a comprehensive knowledge of adverse events. Adverse events of beta blockers that can be related to the CNS are quite often neglected, even in textbooks of clinical pharmacology or review articles, and thus often misdiagnosed. The following article, therefore, after summarizing the use of beta blockers for CNS indications, critically reviews the literature on centrally mediated adverse events. General pharmacological features of beta blockers and their molecular basis of action will briefly be addressed to the extent that they are or may become relevant for central nervous pharmacotherapy and side-effects.

  17. Delayed LGI1 seropositivity in voltage-gated potassium channel (VGKC)-complex antibody limbic encephalitis.

    Science.gov (United States)

    Sweeney, Michael; Galli, Jonathan; McNally, Scott; Tebo, Anne; Haven, Thomas; Thulin, Perla; Clardy, Stacey L

    2017-04-20

    We utilise a clinical case to highlight why exclusion of voltage-gated potassium channel (VGKC)-complex autoantibody testing in serological evaluation of patients may delay or miss the diagnosis. A 68-year-old man presented with increasing involuntary movements consistent with faciobrachial dystonic seizures (FBDS). Initial evaluation demonstrated VGKC antibody seropositivity with leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) seronegativity. Aggressive immunotherapy with methylprednisolone and plasmapheresis was started early in the course of his presentation. Following treatment with immunotherapy, the patient demonstrated clinical improvement. Repeat serum evaluation 4 months posthospitalisation remained seropositive for VGKC-complex antibodies, with development of LGI1 autoantibody seropositivity. VGKC-complex and LGI1 antibodies remained positive 12 months posthospitalisation. Our findings suggest that clinical symptoms can predate the detection of the antibody. We conclude that when suspicion for autoimmune encephalitis is high in the setting of VGKC autoantibody positivity, regardless of LGI1 or CASPR2 seropositivity, early immunotherapy and repeat testing should be considered. 2017 BMJ Publishing Group Ltd.

  18. Po2 cycling protects diaphragm function during reoxygenation via ROS, Akt, ERK, and mitochondrial channels.

    Science.gov (United States)

    Zuo, Li; Pannell, Benjamin K; Re, Anthony T; Best, Thomas M; Wagner, Peter D

    2015-12-01

    Po2 cycling, often referred to as intermittent hypoxia, involves exposing tissues to brief cycles of low oxygen environments immediately followed by hyperoxic conditions. After experiencing long-term hypoxia, muscle can be damaged during the subsequent reintroduction of oxygen, which leads to muscle dysfunction via reperfusion injury. The protective effect and mechanism behind Po2 cycling in skeletal muscle during reoxygenation have yet to be fully elucidated. We hypothesize that Po2 cycling effectively increases muscle fatigue resistance through reactive oxygen species (ROS), protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and certain mitochondrial channels during reoxygenation. Using a dihydrofluorescein fluorescent probe, we detected the production of ROS in mouse diaphragmatic skeletal muscle in real time under confocal microscopy. Muscles treated with Po2 cycling displayed significantly attenuated ROS levels (n = 5; P ROS, Akt, ERK, as well as chemical stimulators to close mitochondrial ATP-sensitive potassium channel (KATP) or open mitochondrial permeability transition pore (mPTP). All these blockers or stimulators abolished improved muscle function with Po2 cycling treatment. This current investigation has discovered a correlation between KATP and mPTP and the Po2 cycling pathway in diaphragmatic skeletal muscle. Thus we have identified a unique signaling pathway that may involve ROS, Akt, ERK, and mitochondrial channels responsible for Po2 cycling protection during reoxygenation conditions in the diaphragm. Copyright © 2015 the American Physiological Society.

  19. Effects of channel blocking on information transmission and energy efficiency in squid giant axons.

    Science.gov (United States)

    Liu, Yujiang; Yue, Yuan; Yu, Yuguo; Liu, Liwei; Yu, Lianchun

    2018-04-01

    Action potentials are the information carriers of neural systems. The generation of action potentials involves the cooperative opening and closing of sodium and potassium channels. This process is metabolically expensive because the ions flowing through open channels need to be restored to maintain concentration gradients of these ions. Toxins like tetraethylammonium can block working ion channels, thus affecting the function and energy cost of neurons. In this paper, by computer simulation of the Hodgkin-Huxley neuron model, we studied the effects of channel blocking with toxins on the information transmission and energy efficiency in squid giant axons. We found that gradually blocking sodium channels will sequentially maximize the information transmission and energy efficiency of the axons, whereas moderate blocking of potassium channels will have little impact on the information transmission and will decrease the energy efficiency. Heavy blocking of potassium channels will cause self-sustained oscillation of membrane potentials. Simultaneously blocking sodium and potassium channels with the same ratio increases both information transmission and energy efficiency. Our results are in line with previous studies suggesting that information processing capacity and energy efficiency can be maximized by regulating the number of active ion channels, and this indicates a viable avenue for future experimentation.

  20. Blueberry juice causes potent relaxation of rat aortic rings via the activation of potassium channels and the H₂S pathway.

    Science.gov (United States)

    Horrigan, Louise A; Holohan, Catherine A; Lawless, Gráinne A; Murtagh, Melissa A; Williams, Carmel T; Webster, Christina M

    2013-02-26

    The objective of this study was to investigate the in vitro effects of blueberry juice on healthy rat aortic rings, and to explore the roles of potassium channels and of the hydrogen sulphide (H(2)S) pathway in mediating the effects of blueberry juice. Firstly, the antioxidant capacity of blueberry juice was compared to other popular juice drinks using the Folin-Ciocalteu and the DPPH assays. Blueberry juice had significantly higher total polyphenol content than any of the other drinks studied (p blueberry juice on noradrenaline-contracted aortic rings was then observed, and the juice caused significant inhibition of noradrenaline-induced contractions (p blueberry juice (p blueberry juice (p blueberry juice has potent vasorelaxing properties, and thus may be a useful dietary agent for the prevention and treatment of hypertension. This study also provides strong evidence that Kv channels and the CSE/H(2)S pathway may be responsible, at least in part, for mediating the effects of blueberry juice.

  1. Topical beta-blockers and mortality

    NARCIS (Netherlands)

    Müskens, Rogier P. H. M.; Wolfs, Roger C. W.; Witteman, Jacqueline C. M.; Hofman, Albert; de Jong, Paulus T. V. M.; Stricker, Bruno H. C.; Jansonius, Nomdo M.

    2008-01-01

    To study the associations between long-term and short-term use of topical beta-blockers and mortality. Prospective population-based cohort study. To examine long-term effects, 3842 participants aged 55 years and older were recruited. To examine short-term effects, 484 incident beta-blocker users and

  2. Dose calcium channel blocker verapamil decrease urinary VMA levels in sympathoadrenal hyperactive patients with posttraumatic stress disorder?

    Institute of Scientific and Technical Information of China (English)

    Munawar Alam Ansari; Shahida PAhmed; Zahida Memon

    2008-01-01

    Objective:The majority of the patients with posttraumatic stress disorders (PTSD)embrace augmented urina-ry flow of Vanillylmandelic Acid (VMA)than normal subjects owing to superior sympathetic doings,which steer to cardiovascular catastrophe.Urinary flow of VMA was evaluated as sympathoadrenal bustle marker in patients with posttraumatic stress disorder.Calcium ion shows a noteworthy dependability in nervousness owing to its special effects on brain synaptosomes.So this study was conducted to explore the effects of Verapamil on sympathoadrenal motion in patients with PTSD.Methods:Placebo controlled clinical tryout was conducted. At first hundred (100)PTSD patients were chosen and enrolled in the study,from department of Psychological Medicine Dow University of Health Sciences,Karachi.Verapamil 120 mg/day was specified in divided doses to group-I (n =50)patients and group-II (n =50)patients received placebo therapy on a daily basis for nine weeks.Each and every patient was monitored weekly,all the way through extent of study.Results:Under-neath the posttraumatic stress disorder,urinary excretion of VMA was greater.Calcium channel blocker vera-pamil additionally abolished the embellished retort in urinary flow of VMA appreciably in patients with PTSD. Conclusion:Verapamil was experiential to be exceedingly effectual treatment.It reduces VMA levels in u-rine,and on the whole cardiovascular threat in PTSD patients.

  3. Transcranial Random Noise Stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-04-01

    Full Text Available Background: Application of transcranial random noise stimulation (tRNS between 0.1 and 640 Hz of the primary motor cortex (M1 for 10 minutes induces a persistent excitability increase lasting for at least 60 minutes. However, the mechanism of tRNS-induced cortical excitability alterations is not yet fully understood. Objective: The main aim of this study was to get first efficacy data with regard to the possible neuronal effect of tRNS. Methods: Single-pulse transcranial magnetic stimulation (TMS was used to measure levels of cortical excitability before and after combined application of tRNS at an intensity of 1mA for 10mins stimulation duration and a pharmacological agent (or sham on 8 healthy male participants. Results: The sodium channel blocker carbamazepine showed a tendency towards inhibiting MEPs 5-60 mins poststimulation. The GABAA agonist lorazepam suppressed tRNS-induced cortical excitability increases at 0-20 and 60 min time points. The partial NMDA receptor agonist D-cycloserine, the NMDA receptor antagonist dextromethorphan and the D2/D3 receptor agonist ropinirole had no significant effects on the excitability increases seen with tRNS.Conclusions: In contrast to transcranial direct current stimulation (tDCS, aftereffects of tRNS are seem to be not NMDA receptor dependent and can be suppressed by benzodiazepines suggesting that tDCS and tRNS depend upon different mechanisms.

  4. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  5. Neuronal trafficking of voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Jensen, Camilla S; Rasmussen, Hanne Borger; Misonou, Hiroaki

    2011-01-01

    The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials is regul......The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials...

  6. [Current Perspective on Voltage-gated Potassium Channel Complex Antibody Associated Diseases].

    Science.gov (United States)

    Watanabe, Osamu

    2018-04-01

    Voltage-gated potassium channel (VGKC) complex auto-antibodies were initially identified in Isaacs' syndrome (IS), which is characterized by muscle cramps and neuromyotonia. These antibodies were subsequently identified in patients with Morvan's syndrome (MoS), which includes IS in conjunction with psychosis, insomnia, and dysautonomia. The antibodies have also been detected in a patient with limbic encephalopathy (LE) presenting with prominent amnesia and frequent seizures. Typical cases of LE have adult-onset, with frequent, brief dystonic seizures that predominantly affect the arms and ipsilateral face, and has recently been termed faciobrachial dystonic seizures. Autoantibodies against the extracellular domains of VGKC complex proteins, leucine-rich glioma-inactivated 1 (LGI1), and contactin-associated protein-2 (Caspr2), occur in patients with IS, MoS, and LE. However, routine testing has detected VGKC complex antibodies without LGI1 or Caspr2 reactivities (double-negative) in patients with other diseases, such as Creutzfeldt-Jakob disease and amyotrophic lateral sclerosis. Furthermore, double-negative VGKC complex antibodies are often directed against cytosolic epitopes of Kv1 subunits. Therefore, these antibodies should no longer be classified as neuronal-surface antibodies and lacking pathogenic potential. Novel information has been generated regarding autoantibody disruption of the physiological functions of target proteins. LGI1 antibodies neutralize the interaction between LGI1 and ADAM22, thereby reducing the synaptic AMPA receptors. It may be that the main action is on inhibitory neurons, explaining why the loss of AMPA receptors causes amnesia, neuronal excitability and seizures.

  7. Calcium channel modulation as a target in chronic pain control.

    Science.gov (United States)

    Patel, Ryan; Montagut-Bordas, Carlota; Dickenson, Anthony H

    2018-06-01

    Neuropathic pain remains poorly treated for large numbers of patients, and little progress has been made in developing novel classes of analgesics. To redress this issue, ziconotide (Prialt™) was developed and approved as a first-in-class synthetic version of ω-conotoxin MVIIA, a peptide blocker of Ca v 2.2 channels. Unfortunately, the impracticalities of intrathecal delivery, low therapeutic index and severe neurological side effects associated with ziconotide have restricted its use to exceptional circumstances. Ziconotide exhibits no state or use-dependent block of Ca v 2.2 channels; activation state-dependent blockers were hypothesized to circumvent the side effects of state-independent blockers by selectively targeting high-frequency firing of nociceptive neurones in chronic pain states, thus alleviating aberrant pain but not affecting normal sensory transduction. Unfortunately, numerous drugs, including state-dependent calcium channel blockers, have displayed efficacy in preclinical models but have subsequently been disappointing in clinical trials. In recent years, it has become more widely acknowledged that trans-aetiological sensory profiles exist amongst chronic pain patients and may indicate similar underlying mechanisms and drug sensitivities. Heterogeneity amongst patients, a reliance on stimulus-evoked endpoints in preclinical studies and a failure to utilize translatable endpoints, all are likely to have contributed to negative clinical trial results. We provide an overview of how electrophysiological and operant-based assays provide insight into sensory and affective aspects of pain in animal models and how these may relate to chronic pain patients in order to improve the bench-to-bedside translation of calcium channel modulators. This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175

  8. Beta Blockers

    Science.gov (United States)

    ... may not work as effectively for people of African heritage and older people, especially when taken without ... conditions/high-blood-pressure/in-depth/beta-blockers/ART-20044522 . Mayo Clinic Footer Legal Conditions and Terms ...

  9. Persistent anterograde amnesia following limbic encephalitis associated with antibodies to the voltage-gated potassium channel complex.

    Science.gov (United States)

    Butler, Christopher R; Miller, Thomas D; Kaur, Manveer S; Baker, Ian W; Boothroyd, Georgie D; Illman, Nathan A; Rosenthal, Clive R; Vincent, Angela; Buckley, Camilla J

    2014-04-01

    Limbic encephalitis (LE) associated with antibodies to the voltage-gated potassium channel complex (VGKC) is a potentially reversible cause of cognitive impairment. Despite the prominence of cognitive dysfunction in this syndrome, little is known about patients' neuropsychological profile at presentation or their long-term cognitive outcome. We used a comprehensive neuropsychological test battery to evaluate cognitive function longitudinally in 19 patients with VGKC-LE. Before immunotherapy, the group had significant impairment of memory, processing speed and executive function, whereas language and perceptual organisation were intact. At follow-up, cognitive impairment was restricted to the memory domain, with processing speed and executive function having returned to the normal range. Residual memory function was predicted by the antibody titre at presentation. The results show that, despite broad cognitive dysfunction in the acute phase, patients with VGKC-LE often make a substantial recovery with immunotherapy but may be left with permanent anterograde amnesia.

  10. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... volume alterations is not yet fully understood. The KCNQ1 channel belonging to the voltage gated KCNQ family is considered a precise sensor of volume changes. The goal of this thesis was to elucidate the mechanism that induces cell volume sensitivity. Until now, a number of investigators have implicitly...

  11. High potency inhibition of hERG potassium channels by the sodium–calcium exchange inhibitor KB-R7943

    Science.gov (United States)

    Cheng, Hongwei; Zhang, Yihong; Du, Chunyun; Dempsey, Christopher E; Hancox, Jules C

    2012-01-01

    BACKGROUND AND PURPOSE KB-R7943 is an isothiourea derivative that is used widely as a pharmacological inhibitor of sodium–calcium exchange (NCX) in experiments on cardiac and other tissue types. This study investigated KB-R7943 inhibition of hERG (human ether-à-go-go-related gene) K+ channels that underpin the cardiac rapid delayed rectifier potassium current, IKr. EXPERIMENTAL APPROACH Whole-cell patch-clamp measurements were made of hERG current (IhERG) carried by wild-type or mutant hERG channels and of native rabbit ventricular IKr. Docking simulations utilized a hERG homology model built on a MthK-based template. KEY RESULTS KB-R7943 inhibited both IhERG and native IKr rapidly on membrane depolarization with IC50 values of ∼89 and ∼120 nM, respectively, for current tails at −40 mV following depolarizing voltage commands to +20 mV. Marked IhERG inhibition also occurred under ventricular action potential voltage clamp. IhERG inhibition by KB-R7943 exhibited both time- and voltage-dependence but showed no preference for inactivated over activated channels. Results of alanine mutagenesis and docking simulations indicate that KB-R7943 can bind to a pocket formed of the side chains of aromatic residues Y652 and F656, with the compound's nitrobenzyl group orientated towards the cytoplasmic side of the channel pore. The structurally related NCX inhibitor SN-6 also inhibited IhERG, but with a markedly reduced potency. CONCLUSIONS AND IMPLICATIONS KB-R7943 inhibits IhERG/IKr with a potency that exceeds that reported previously for acute cardiac NCX inhibition. Our results also support the feasibility of benzyloxyphenyl-containing NCX inhibitors with reduced potential, in comparison with KB-R7943, to inhibit hERG. PMID:21950687

  12. The roles of KCa, KATP, and KV channels in regulating cutaneous vasodilation and sweating during exercise in the heat.

    Science.gov (United States)

    Louie, Jeffrey C; Fujii, Naoto; Meade, Robert D; McNeely, Brendan D; Kenny, Glen P

    2017-05-01

    We recently showed the varying roles of Ca 2+ -activated (K Ca ), ATP-sensitive (K ATP ), and voltage-gated (K V ) K + channels in regulating cholinergic cutaneous vasodilation and sweating in normothermic conditions. However, it is unclear whether the respective contributions of these K + channels remain intact during dynamic exercise in the heat. Eleven young (23 ± 4 yr) men completed a 30-min exercise bout at a fixed rate of metabolic heat production (400 W) followed by a 40-min recovery period in the heat (35°C, 20% relative humidity). Cutaneous vascular conductance (CVC) and local sweat rate were assessed at four forearm skin sites perfused via intradermal microdialysis with: 1 ) lactated Ringer solution (control); 2 ) 50 mM tetraethylammonium (nonspecific K Ca channel blocker); 3 ) 5 mM glybenclamide (selective K ATP channel blocker); or 4 ) 10 mM 4-aminopyridine (nonspecific K V channel blocker). Responses were compared at baseline and at 10-min intervals during and following exercise. K Ca channel inhibition resulted in greater CVC versus control at end exercise ( P = 0.04) and 10 and 20 min into recovery (both P exercise (all P ≤ 0.04), and 10 min into recovery ( P = 0.02). No differences in CVC were observed with K V channel inhibition during baseline ( P = 0.15), exercise (all P ≥ 0.06), or recovery (all P ≥ 0.14). With the exception of K V channel inhibition augmenting sweating during baseline ( P = 0.04), responses were similar to control with all K + channel blockers during each time period (all P ≥ 0.07). We demonstrated that K Ca and K ATP channels contribute to the regulation of cutaneous vasodilation during rest and/or exercise and recovery in the heat. Copyright © 2017 the American Physiological Society.

  13. Verapamil for cluster headache. Clinical pharmacology and possible mode of action

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer; Tfelt-Hansen, Jacob

    2009-01-01

    is therefore limited. The clinical use of verapamil in cluster headache is reviewed and several relevant drug interactions are mentioned. Finally, its possible mode of action in cluster headache is discussed. The effect of verapamil in cluster headache most likely takes place in the hypothalamus......Verapamil is used mainly in cardiovascular diseases. High-dose verapamil (360-720 mg) is, however, currently the mainstay in the prophylactic treatment of cluster headache. The oral pharmacokinetics are variable. The pharmacodynamic effect of verapamil, the effect on blood pressure, also varies.......Verapamil is an L-type calcium channel blocker but it is also a blocker of other calcium channels (T-, P-, and possibly N- and Q-type Ca(2+) channels) and the human ether-a-go-go-related gene potassium channel. With so many different actions of verapamil, it is impossible at the present time to single out a certain...

  14. A Common Structural Component for β-Subunit Mediated Modulation of Slow Inactivation in Different KV Channels

    DEFF Research Database (Denmark)

    Strutz-Seebohm, Nathalie; Henrion, Ulrike; Schmitt, Nicole

    2013-01-01

    Background/Aims: Potassium channels are tetrameric proteins providing potassium selective passage through lipid embedded proteinaceous pores with highest fidelity. The selectivity results from binding to discrete potassium binding sites and stabilization of a hydrated potassium ion in a central...... internal cavity. The four potassium binding sites, generated by the conserved TTxGYGD signature sequence are formed by the backbone carbonyls of the amino acids TXGYG. Residues KV1.5-Val481, KV4.3-Leu368 and KV7.1- Ile 313 represent the amino acids in the X position of the respective channels. Methods...

  15. Plant ion channels: gene families, physiology, and functional genomics analyses.

    Science.gov (United States)

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  16. Expression of G-protein inwardly rectifying potassium channels (GIRKs in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. Methods GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU assay. Results GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2 was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4 mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4 mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein

  17. Radio protective effects of calcium channel blockers (Deltiazem) on survival of Saccharomyces cerevisiae cells irradiated with different doses of gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Alya, G; Shamma, M; Sharabi, N [Atomic Energy Commission, Damascus (Syrian Arab Republic), Dept. of Molecular Biology and Biotechnology

    2007-03-15

    Investigations of radioprotective effects of Deltiazem (as one of the commonly used calcium channel blockers, which is used in the treatment of acute and chronic angina and spasmo angina, in addition to the treatment of different types of essential hypertension) has been carried on Saccharomyces Cerevisiae cells. Cells cultures of the most famous yeast Saccharomyces Cerevisiae (bakers yeast) were irradiated with different doses of gamma rays. Results revealed that the necessary dose of gamma rays that leads to 10% of survived cellular population (D10 value) was about 256 Gy. This irradiation dose was used then in all irradiation experiments on culture of S. Cerevisiae cells in which different concentrations of Deltiazem (55, 110, 165 mg/Kg medium) were added before and after irradiation in order to study the radio protective effect of Deltiazem. Results showed that Deltiazem enhances survival percentage of irradiated S. Cerevisiae cultures in a concentration dependent manner. This study confirmed our previous works, which had demonstrated that Deltiazem protects lethally and supralethally irradiated rats, and enhances survival of pre-irradiated Deltiazem treated animals.(author)

  18. Radio protective effects of calcium channel blockers (Deltiazem) on survival of Saccharomyces cerevisiae cells irradiated with different doses of gamma rays

    International Nuclear Information System (INIS)

    Alya, G.; Shamma, M.; Sharabi, N.

    2007-03-01

    Investigations of radioprotective effects of Deltiazem (as one of the commonly used calcium channel blockers, which is used in the treatment of acute and chronic angina and spasmo angina, in addition to the treatment of different types of essential hypertension) has been carried on Saccharomyces Cerevisiae cells. Cells cultures of the most famous yeast Saccharomyces Cerevisiae (bakers yeast) were irradiated with different doses of gamma rays. Results revealed that the necessary dose of gamma rays that leads to 10% of survived cellular population (D10 value) was about 256 Gy. This irradiation dose was used then in all irradiation experiments on culture of S. Cerevisiae cells in which different concentrations of Deltiazem (55, 110, 165 mg/Kg medium) were added before and after irradiation in order to study the radio protective effect of Deltiazem. Results showed that Deltiazem enhances survival percentage of irradiated S. Cerevisiae cultures in a concentration dependent manner. This study confirmed our previous works, which had demonstrated that Deltiazem protects lethally and supralethally irradiated rats, and enhances survival of pre-irradiated Deltiazem treated animals.(author)

  19. Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry; Hoffmann, Else Kay

    1994-01-01

    The taurine efflux from Ehrlich ascites tumor cells is stimulated by hypotonic cell swelling. The swelling-activated taurine efflux is unaffected by substitution of gluconate for extracellular Cl– but inhibited by addition of MK196 (anion channel blocker) and 4,4 -diisothiocyanostilbene-2......,2 -disulfonic acid (DIDS; anion channel and anion exchange blocker) and by depolarization of the cell membrane. This is taken to indicate that taurine does not leave the osmotically swollen Ehrlich cells in exchange for extracellular Cl–, i.e., via the anion exchanger but via a MK196- and DIDS-sensitive channel...... that is potential dependent. An additional stimulation of the swelling-activated taurine efflux is seen after addition of arachidonic acid and oleic acid. Cell swelling also activates a Mini Cl– channel. The Cl– efflux via this Cl– channel, in contrast to the swelling-activated taurine efflux, is unaffected by DIDS...

  20. TRPA1 expression levels and excitability brake by KV channels influence cold sensitivity of TRPA1-expressing neurons.

    Science.gov (United States)

    Memon, Tosifa; Chase, Kevin; Leavitt, Lee S; Olivera, Baldomero M; Teichert, Russell W

    2017-06-14

    The molecular sensor of innocuous (painless) cold sensation is well-established to be transient receptor potential cation channel, subfamily M, member 8 (TRPM8). However, the role of transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in noxious (painful) cold sensation has been controversial. We find that TRPA1 channels contribute to the noxious cold sensitivity of mouse somatosensory neurons, independent of TRPM8 channels, and that TRPA1-expressing neurons are largely non-overlapping with TRPM8-expressing neurons in mouse dorsal-root ganglia (DRG). However, relatively few TRPA1-expressing neurons (e.g., responsive to allyl isothiocyanate or AITC, a selective TRPA1 agonist) respond overtly to cold temperature in vitro, unlike TRPM8-expressing neurons, which almost all respond to cold. Using somatosensory neurons from TRPM8-/- mice and subtype-selective blockers of TRPM8 and TRPA1 channels, we demonstrate that responses to cold temperatures from TRPA1-expressing neurons are mediated by TRPA1 channels. We also identify two factors that affect the cold-sensitivity of TRPA1-expressing neurons: (1) cold-sensitive AITC-sensitive neurons express relatively more TRPA1 transcripts than cold-insensitive AITC-sensitive neurons and (2) voltage-gated potassium (K V ) channels attenuate the cold-sensitivity of some TRPA1-expressing neurons. The combination of these two factors, combined with the relatively weak agonist-like activity of cold temperature on TRPA1 channels, partially explains why few TRPA1-expressing neurons respond to cold. Blocking K V channels also reveals another subclass of noxious cold-sensitive DRG neurons that do not express TRPM8 or TRPA1 channels. Altogether, the results of this study provide novel insights into the cold-sensitivity of different subclasses of somatosensory neurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    Science.gov (United States)

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  2. Protein kinase A-induced internalization of Slack channels from the neuronal membrane occurs by adaptor protein-2/clathrin-mediated endocytosis.

    Science.gov (United States)

    Gururaj, Sushmitha; Evely, Katherine M; Pryce, Kerri D; Li, Jun; Qu, Jun; Bhattacharjee, Arin

    2017-11-24

    The sodium-activated potassium (K Na ) channel Kcnt1 (Slack) is abundantly expressed in nociceptor (pain-sensing) neurons of the dorsal root ganglion (DRG), where they transmit the large outward conductance I KNa and arbitrate membrane excitability. Slack channel expression at the DRG membrane is necessary for their characteristic firing accommodation during maintained stimulation, and reduced membrane channel density causes hyperexcitability. We have previously shown that in a pro-inflammatory state, a decrease in membrane channel expression leading to reduced Slack-mediated I KNa expression underlies DRG neuronal sensitization. An important component of the inflammatory milieu, PKA internalizes Slack channels from the DRG membrane, reduces I KNa , and produces DRG neuronal hyperexcitability when activated in cultured primary DRG neurons. Here, we show that this PKA-induced retrograde trafficking of Slack channels also occurs in intact spinal cord slices and that it is carried out by adaptor protein-2 (AP-2) via clathrin-mediated endocytosis. We provide mass spectrometric and biochemical evidence of an association of native neuronal AP-2 adaptor proteins with Slack channels, facilitated by a dileucine motif housed in the cytoplasmic Slack C terminus that binds AP-2. By creating a competitive peptide blocker of AP-2-Slack binding, we demonstrated that this interaction is essential for clathrin recruitment to the DRG membrane, Slack channel endocytosis, and DRG neuronal hyperexcitability after PKA activation. Together, these findings uncover AP-2 and clathrin as players in Slack channel regulation. Given the significant role of Slack in nociceptive neuronal excitability, the AP-2 clathrin-mediated endocytosis trafficking mechanism may enable targeting of peripheral and possibly, central neuronal sensitization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. NERVE EXCITABILITY CHANGES AFTER NA(V)1.8 CHANNEL BLOCKER TREATMENT IN MICE DEFICIENT OF MYELIN PROTEIN P-0

    DEFF Research Database (Denmark)

    Moldovan, M.; Rosberg, M. R.; Alvarez Herrero, Susana

    2016-01-01

    Mice deficient of myelin protein zero (P0) are established models of demyelinating Charcot-Marie-Tooth (CMT) disease. Recent work form our laboratory indicated that in severely affected P0−/− as well as in P0+/− (modeling CMT1B), the neuropathy is aggravated by associated changes in voltage...... function up to 2 hours after the blockers. Overall, the baseline excitability measures were much more abnormal in P0−/− at 4 months as compared to P0+/− at 20 months. Nevertheless, in both models, the NaV1.8 blockers produced similar deviations in excitability at a dose of 100 mg/Kg. Most notably...

  4. Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model.

    Science.gov (United States)

    Pollema-Mays, Sarah L; Centeno, Maria Virginia; Ashford, Crystle J; Apkarian, A Vania; Martina, Marco

    2013-11-01

    Neuropathic pain is associated with hyperexcitability of DRG neurons. Despite the importance of leakage potassium channels for neuronal excitability, little is known about their cell-specific expression in DRGs and possible modulation in neuropathic pain. Multiple leakage channels are expressed in DRG neurons, including TASK1, TASK3, TRESK, TRAAK, TWIK1, TREK1 and TREK2 but little is known about their distribution among different cell types. Our immunohistochemical studies show robust TWIK1 expression in large and medium size neurons, without overlap with TRPV1 or IB4 staining. TASK1 and TASK3, on the contrary, are selectively expressed in small cells; TASK1 expression closely overlaps TRPV1-positive cells, while TASK3 is expressed in TRPV1- and IB4-negative cells. We also studied mRNA expression of these channels in L4-L5 DRGs in control conditions and up to 4 weeks after spared nerve injury lesion. We found that TWIK1 expression is much higher than TASK1 and TASK3 and is strongly decreased 1, 2 and 4 weeks after neuropathic injury. TASK3 expression, on the other hand, decreases 1 week after surgery but reverts to baseline by 2weeks; TASK1 shows no significant change at any time point. These data suggest an involvement of TWIK1 in the maintenance of the pain condition. © 2013.

  5. Beta-blockers: friend or foe in asthma?

    Directory of Open Access Journals (Sweden)

    Arboe B

    2013-07-01

    Full Text Available Bente Arboe, Charlotte Suppli UlrikDepartment of Pulmonary Medicine, Hvidovre Hospital and University of Copenhagen, Hvidovre, DenmarkBackground and aim: Recently, β-blockers have been suggested as a potential maintenance treatment option for asthma. The aim of this review is to provide an overview of the current knowledge of the potential benefits and risks of β-blocker therapy for asthma.Method: Systematic literature review.Results: No significant increase in the number of patients requiring rescue oral corticosteroid for an exacerbation of asthma has been observed after initiation of β-blocker treatment. Patients with mild to moderate reactive airway disease, probably both asthma and chronic obstructive pulmonary disease, may have a limited fall in forced expiratory volume in 1 second (FEV1 following single-dose administration of β-blocker, whereas no change in FEV1 has been reported following long-term administration. In a murine model of asthma, long-term administration of β-blockers resulted in a decrease in airway hyperresponsiveness, suggesting an anti-inflammatory effect. In keeping with this, long-term administration of a nonselective β-blocker to steroid-naïve asthma patients has shown a dose-dependent improvement in airway hyperresponsiveness, and either an asymptomatic fall in FEV1 or no significant change in FEV1. Furthermore, available studies show that bronchoconstriction induced by inhaled methacholine is reversed by salbutamol in patients on regular therapy with a β-blocker. On the other hand, a recent placebo-controlled trial of propranolol and tiotropium bromide added to inhaled corticosteroids revealed no effect on airway hyperresponsiveness and a small, not statistically significant, fall in FEV1 in patients classified as having mild to moderate asthma.Conclusion: The available, although limited, evidence suggests that a dose-escalating model of β-blocker therapy to patients with asthma is well tolerated, does not

  6. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, H.; Mader, I. [University Medical Center Freiburg, Department of Neuroradiology, Freiburg (Germany); Rauer, S.; Baumgartner, A. [University Medical Center Freiburg, Department of Neurology, Freiburg (Germany); Paus, S. [University Medical Center, Department of Neurology, Bonn (Germany); Wagner, J. [University Medical Center, Department of Epileptology, Bonn (Germany); Malter, M.P. [University of Cologne, Department of Neurology, Cologne (Germany); Pruess, H. [Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Lewerenz, J.; Kassubek, J. [Ulm University, Department of Neurology, Ulm (Germany); Hegen, H.; Auer, M.; Deisenhammer, F. [University Innsbruck, Department of Neurology, Innsbruck (Austria); Ufer, F. [University Medical Center, Department of Neurology, Hamburg (Germany); Bien, C.G. [Epilepsy Centre Bethel, Bielefeld-Bethel (Germany)

    2015-12-15

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE. (orig.)

  7. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis

    International Nuclear Information System (INIS)

    Urbach, H.; Mader, I.; Rauer, S.; Baumgartner, A.; Paus, S.; Wagner, J.; Malter, M.P.; Pruess, H.; Lewerenz, J.; Kassubek, J.; Hegen, H.; Auer, M.; Deisenhammer, F.; Ufer, F.; Bien, C.G.

    2015-01-01

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE. (orig.)

  8. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis.

    Science.gov (United States)

    Urbach, H; Rauer, S; Mader, I; Paus, S; Wagner, J; Malter, M P; Prüss, H; Lewerenz, J; Kassubek, J; Hegen, H; Auer, M; Deisenhammer, F; Ufer, F; Bien, C G; Baumgartner, A

    2015-12-01

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE.

  9. Development of Isaacs' syndrome following complete recovery of voltage-gated potassium channel antibody-associated limbic encephalitis.

    Science.gov (United States)

    Takahashi, Hirokatsu; Mori, Masahiro; Sekiguchi, Yukari; Misawa, Sonoko; Sawai, Setsu; Hattori, Takamichi; Kuwabara, Satoshi

    2008-12-15

    Autoantibodies against voltage-gated potassium channels (VGKC-Abs) are associated with acquired neuromyotonia (Isaacs' syndrome) and related disorders such as Morvan's syndrome and some cases of limbic encephalitis. The mechanisms underlying the various phenotypes induced by VGKC-Abs are not fully understood. Recently, we reported a case of LE with VGKC-Abs accompanied by severe intestinal pseudo-obstruction and thymoma. Thymectomy and immunosuppressive therapy induced dramatic clinical improvement of LE symptoms, and VGKC-Abs titers decreased from 1254 pM to 549 pM (normal>100 pM). Seventeen months later, the patient developed progressive generalized muscle cramping, paresthesias in his lower extremities, excessive sweating, and severe constipation. There was no recurrence of the LE. Electromyography showed fasciculation potentials and myokymic discharges, and the plasma VGKC-Abs titer was again elevated to 879 pM. Here we report a case of Isaacs' syndrome after complete remission of LE with VGKC-Abs that may provide an insight into a possible link among VGKC-Abs associated syndromes.

  10. Pharmacological dissection of K(v)7.1 channels in systemic and pulmonary arteries

    DEFF Research Database (Denmark)

    Chadha, Preet S; Zunke, Friederike; Davis, Alison J

    2012-01-01

    The aim of this study was to characterize the functional impact of KCNQ1-encoded voltage-dependent potassium channels (K(v)7.1) in the vasculature.......The aim of this study was to characterize the functional impact of KCNQ1-encoded voltage-dependent potassium channels (K(v)7.1) in the vasculature....

  11. Inhibition of K+ permeability diminishes alpha 2-adrenoceptor mediated effects on norepinephrine release

    International Nuclear Information System (INIS)

    Zimanyi, I.; Folly, G.; Vizi, E.S.

    1988-01-01

    The effect of two different potassium channel blockers, 4-aminopyridine (4-AP) and quinine, on the alpha 2-adrenoceptor mediated modulation of norepinephrine (NE) release was investigated. Pairs of mouse vasa deferentia were loaded with 3 H-norepinephrine ( 3 H-NE), superfused continuously, and stimulated electrically. 4-AP (5.3 x 10(-4) M), and quinine (10(-5) M) enhanced the stimulation-evoked release of tritium significantly. The electrically induced release of radioactivity was reduced by alpha 2-adrenoceptor agonists (1-NE and xylazine) and enhanced by the alpha 2-adrenoceptor antagonist yohimbine. Both effects were affected markedly by 4-AP or quinine: the depressant action of 1-NA and xylazine was partially antagonized and the facilitatory effect of yohimbine was completely abolished during the blockade of the potassium channels. It is suggested that the blockade of the potassium permeability counteracts negative feedback modulation; therefore, it seems likely that the stimulation of alpha 2-adrenoceptors leads to an enhanced potassium permeability and hyperpolarization of varicose axon terminals

  12. Downregulation of Kv7.4 channel activity in primary and secondary hypertension

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Chadha, Preet S; Davis, Alison J

    2011-01-01

    Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of...... structurally different activators of Kv7.2 through Kv7.5 channels (BMS-204352, S-1, and retigabine) on blood vessels from normotensive and hypertensive animals.......Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of 3...

  13. A novel 13 residue acyclic peptide from the marine snail, Conus monile, targets potassium channels.

    Science.gov (United States)

    Sudarslal, Sadasivannair; Singaravadivelan, Govindaswamy; Ramasamy, Palanisamy; Ananda, Kuppanna; Sarma, Siddhartha P; Sikdar, Sujit K; Krishnan, K S; Balaram, Padmanabhan

    2004-05-07

    A novel 13-residue peptide Mo1659 has been isolated from the venom of a vermivorous cone snail, Conus monile. HPLC fractions of the venom extract yielded an intense UV absorbing fraction with a mass of 1659Da. De novo sequencing using both matrix assisted laser desorption and ionization and electrospray MS/MS methods together with analysis of proteolytic fragments successfully yielded the amino acid sequence, FHGGSWYRFPWGY-NH(2). This was further confirmed by comparison with the chemically synthesized peptide and by conventional Edman sequencing. Mo1659 has an unusual sequence with a preponderance of aromatic residues and the absence of apolar, aliphatic residues like Ala, Val, Leu, and Ile. Mo1659 has no disulfide bridges distinguishing it from the conotoxins and bears no sequence similarity with any of the acyclic peptides isolated thus far from the venom of cone snails. Electrophysiological studies on the effect of Mo1659 on measured currents in dorsal root ganglion neurons suggest that the peptide targets non-inactivating voltage-dependent potassium channels.

  14. Chronic pain as a manifestation of potassium channel-complex autoimmunity.

    Science.gov (United States)

    Klein, Christopher J; Lennon, Vanda A; Aston, Paula A; McKeon, Andrew; Pittock, Sean J

    2012-09-11

    Autoantibodies targeting voltage-gated potassium channel (VGKC) complexes cause a spectrum of neuronal hyperexcitability disorders. We investigated pain as a manifestation of VGKC-complex autoimmunity. We reviewed the prevalence and characteristics of pain in VGKC-complex-immunoglobulin G (IgG)-seropositive patients in 25 months of comprehensive service testing for neural autoantibodies, subtyped positive sera for LGI1-IgG and CASPR2-IgG specificities, and reviewed pain prevalence in autoimmune control patients. VGKC-complex-IgG was identified in 1,992 patients of 54,853 tested (4%). Of 316 evaluated neurologically at Mayo Clinic, 159 (50%) had pain, in isolation (28%) or with accompanying neurologic manifestations (72%), and not attributable to alternative cause. Pain was subacute in onset, chronic in course, neuropathic, nociceptive, regional, or diffuse and sometimes attributed to fibromyalgia (6%) or psychogenic cause (13%). Most patients had normal peripheral nervous system function, measured by neuropathy impairment scores and nerve conduction. Evidence of neuronal hyperexcitability (hyperhidrosis, quantitative heat-pain hyperalgesia, or electromyographic excitability) was 25-fold more common in pain patients. Pain management required multiple medications in 70% (narcotics, 30%); 13 of 16 patients reported pain relief with immunotherapy. Pain was significantly associated with CASPR2-IgG-positivity (16% positive with pain, 7% without pain; p = 0.014) but not with LGI1-IgG. Less than 10% of 167 patients with neural autoantibodies other than VGKC-complex-IgG reported pain. Chronic idiopathic pain is a syndromic manifestation of VGKC-complex autoimmunity. Hyperexcitability of nociceptive pathways is implicated. CASPR2-IgG significantly associates with pain, but in most patients the antigenic VGKC-complex molecule remains to be determined. VGKC-complex autoimmunity represents an important new direction for pain research and therapy.

  15. The action of blocking agents applied to the inner face of Ca(2+)-activated K+ channels from human erythrocytes.

    Science.gov (United States)

    Dunn, P M

    1998-09-15

    The actions of clotrimazole and cetiedil, two drugs known to inhibit the Gardos channel, have been studied on single intermediate conductance calcium-activated potassium (IKCa) channels in inside out patches from human red blood cells, and compared with those of TEA and Ba2+ applied to the cytoplasmic face of the membrane. TEA produced a fast block which was observed as a reduction in the amplitude of the single channel current. This effect was weakly voltage dependent with the fraction of the membrane potential sensed by TEA at its binding site (delta) of 0.18 and a Kd at 0 mV of 20.5 mM. Ba2+ was a very potent blocker of the channel, breaking the single channel activity up into bursts, inter-spersed with silent periods lasting several seconds. The effect of Ba2+ was very voltage sensitive, delta = 0.44, and a Kd at 0 mV of 0.15 microM. Clotrimazole applied to the inner face of the membrane at a concentration block resulting in bursts of channel activity separated by quiescent periods lasting many seconds. The effect of clotrimazole was mimicked by a quaternary derivative UCL 1559, in keeping with an action at the cytoplasmic face of the channel. A high concentration of cetiedil (100 microM) produced only a weak block of the channel. The kinetics of this action were very slow, with burst and inter-burst intervals lasting several minutes. While inhibition of the Gardos channel by cetiedil is unlikely to involve an intracellular site of action, if clotrimazole is able to penetrate the membrane, part of its effect may result from binding to an intracellular site on the channel.

  16. Potential impact of renin-angiotensin system inhibitors and calcium channel blockers on plasma high-molecular-weight adiponectin levels in hemodialysis patients

    International Nuclear Information System (INIS)

    Nakagawa, Naoki; Yao, Naoyuki; Hirayama, Tomoya

    2011-01-01

    Although metabolic syndrome confers an increased risk of cardiovascular disease in the general population, little is known about the alteration of abdominal adiposity and its association with adipocytokines in hemodialysis patients. We investigated the plasma high-molecular-weight (HMW) adiponectin level and its relationship to visceral fat area (VFA) and various markers of atherosclerosis in hemodialysis patients. In a cross-sectional study, conventional cardiovascular risk factors, plasma total and HMW adiponectin, the number of components of the metabolic syndrome and, using computed tomography, the distribution of abdominal adiposity were assessed in 144 hemodialysis patients (90 men and 54 women; mean age, 60.7 years) and 30 age- and sex-matched patients with chronic kidney disease (CKD). Plasma HMW adiponectin levels in hemodialysis patients were significantly higher than those in patients with CKD, negatively associated with VFA and serum triglycerides and positively associated with plasma total adiponectin, as well as the HMW-to-total adiponectin ratio in men and women (all P<0.05) in a simple regression analysis. In a multiple regression analysis, VFA was a significant determinant of HMW adiponectin in hemodialysis patients. Furthermore, after adjustment for classical risk factors, HMW adiponectin levels were significantly higher in patients undergoing treatment with renin-angiotensin system inhibitors or calcium channel blockers compared with patients not undergoing such treatment. This study shows that plasma HMW adiponectin levels were negatively associated with VFA and positively associated with treatment with blockade of the renin-angiotensin system and of the calcium channel. Therefore, these drugs might be effective for improving adipocytokine-related metabolic abnormalities in hemodialysis patients. (author)

  17. An inhibitor of K+ channels modulates human endometrial tumor-initiating cells

    Directory of Open Access Journals (Sweden)

    Leslie Kimberly K

    2011-08-01

    Full Text Available Abstract Background Many potassium ion (K+ channels function as oncogenes to sustain growth of solid tumors, but their role in cancer progression is not well understood. Emerging evidence suggests that the early progenitor cancer cell subpopulation, termed tumor initiating cells (TIC, are critical to cancer progression. Results A non-selective antagonist of multiple types of K+ channels, tetraethylammonium (TEA, was found to suppress colony formation in endometrial cancer cells via inhibition of putative TIC. The data also indicated that withdrawal of TEA results in a significant enhancement of tumorigenesis. When the TIC-enriched subpopulation was isolated from the endometrial cancer cells, TEA was also found to inhibit growth in vitro. Conclusions These studies suggest that the activity of potassium channels significantly contributes to the progression of endometrial tumors, and the antagonists of potassium channels are candidate anti-cancer drugs to specifically target tumor initiating cells in endometrial cancer therapy.

  18. Voltage gated potassium channel antibodies positive autoimmune encephalopathy in a child: A case report and literature review of an under-recognized condition

    Directory of Open Access Journals (Sweden)

    Subramanian Ganesan

    2013-01-01

    Full Text Available Autoimmune limbic encephalitis (LE associated with voltage gated potassium channel antibodies (VGKC-Abs in children is more common than previously thought and is not always paraneoplastic. Non-neoplastic, autoimmune LE associated with VGKC-Abs has been described recently. However, only few case reports in children as the disease is predominantly described in the adult population. It is likely that this type of autoimmune encephalitis is currently under-diagnosed and hence, under-treated, especially in children. We present a 13-year-old previously fit and healthy African girl diagnosed with LE and we reviewed the literature for its current management.

  19. Voltage gated potassium channel antibodies positive autoimmune encephalopathy in a child: A case report and literature review of an under-recognized condition

    Science.gov (United States)

    Ganesan, Subramanian; Beri, Sushil; Khan, Beri; Hussain, Nahin

    2013-01-01

    Autoimmune limbic encephalitis (LE) associated with voltage gated potassium channel antibodies (VGKC-Abs) in children is more common than previously thought and is not always paraneoplastic. Non-neoplastic, autoimmune LE associated with VGKC-Abs has been described recently. However, only few case reports in children as the disease is predominantly described in the adult population. It is likely that this type of autoimmune encephalitis is currently under-diagnosed and hence, under-treated, especially in children. We present a 13-year-old previously fit and healthy African girl diagnosed with LE and we reviewed the literature for its current management. PMID:24339586

  20. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury.

    Directory of Open Access Journals (Sweden)

    Zhan Gao

    Full Text Available The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB model of heart failure is coupled with a 35-40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of Ca

  1. Docetaxel modulates the delayed rectifier potassium current (IK) and ATP-sensitive potassium current (IKATP) in human breast cancer cells.

    Science.gov (United States)

    Sun, Tao; Song, Zhi-Guo; Jiang, Da-Qing; Nie, Hong-Guang; Han, Dong-Yun

    2015-04-01

    Ion channel expression and activity may be affected during tumor development and cancer growth. Activation of potassium (K(+)) channels in human breast cancer cells is reported to be involved in cell cycle progression. In this study, we investigated the effects of docetaxel on the delayed rectifier potassium current (I K) and the ATP-sensitive potassium current (I KATP) in two human breast cancer cell lines, MCF-7 and MDA-MB-435S, using the whole-cell patch-clamp technique. Our results show that docetaxel inhibited the I K and I KATP in both cell lines in a dose-dependent manner. Compared with the control at a potential of +60 mV, treatment with docetaxel at doses of 0.1, 1, 5, and 10 µM significantly decreased the I K in MCF-7 cells by 16.1 ± 3.5, 30.2 ± 5.2, 42.5 ± 4.3, and 46.4 ± 9% (n = 5, P < 0.05), respectively and also decreased the I KATP at +50 mV. Similar results were observed in MDA-MB-435S cells. The G-V curves showed no significant changes after treatment of either MCF-7 or MDA-MB-435S cells with 10 μM docetaxel. The datas indicate that the possible mechanisms of I K and I KATP inhibition by docetaxel may be responsible for its effect on the proliferation of human breast cancer cells.

  2. A New Baroreceptor Sensitivity-Restoring Ca-Channel Blocker Diminishes Age-Related Morning Blood Pressure Increase in Hypertensive Patients: Open-Label Monitoring of Azelnidipine Treatment for Hypertension in the Early Morning (At-HOME Study

    Directory of Open Access Journals (Sweden)

    Mitsunori Sugiyama

    2010-01-01

    Full Text Available Background: Morning blood pressure (BP surge, which exhibits an age-related increase, is a risk factor for stroke in elderly hypertensive patients, independently of the 24-h BP level. We studied the effect of the new baroreceptor sensitivity (BRS-restoring Ca-channel blocker (CCB azelnidipine (AZ on this age-related morning BP increase. Methods: We conducted a 16-week prospective study to clarify the effect of morning dosing of AZ on home BPs measured in the morning and in the evening in 2,546 hypertensive patients (mean age, 65.1 years; female, 53.6%. Results: At baseline, ME-Dif (morning systolic BP [SBP]–evening SBP increased with age, independently of ME-Ave (average of the morning and evening SBPs. This age-related increase of ME-Dif was exaggerated by regular alcohol drinking and beta-blocker use. After AZ treatment (14.3 ± 3.6 mg/day, ME-AV and ME-Dif were significantly reduced independently of each other, with reductions of –18.1 ± 15.6 and –2.5 ± 13.2 mmHg, respectively (both p < 0.001. AZ treatment decreased age-related increase in ME-Dif particularly in patients who were regular consumers of alcohol and in beta-blocker users. Conclusions: The new BRS-restoring CCB AZ significantly reduced age-related increase in morning BP and had some potential benefit on cardiovascular protection in hypertension, particularly in elderly patients and/or consumers of alcohol.

  3. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Annarosa Arcangeli

    2010-04-01

    Full Text Available The expression and activity of different channel types mark and regulate specific stages of cancer establishment and progression. Blocking channel activity impairs the growth of some tumors, both in vitro and in vivo, which opens a new field for pharmaceutical research. However, ion channel blockers may produce serious side effects, such as cardiac arrhythmias. For instance, Kv11.1 (hERG1 channels are aberrantly expressed in several human cancers, in which they control different aspects of the neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they also retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities exist to produce less harmful compounds, such as developing specific drugs that bind hERG1 channels in the open state or disassemble the ion channel/integrin complex which appears to be crucial in certain stages of neoplastic progression. The potential approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1 targeting specific conformational channel states; (2 finding ever more specific inhibitors, including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; (3 using specific ligands to convey traceable or cytotoxic compounds; (4 developing channel blocking antibodies; (5 designing new molecular tools to decrease channel expression in selected cancer types. Similar concepts apply to ion transporters such as the Na+/K+ pump and the Na+/H+ exchanger. Pharmacological targeting of these transporters is also currently being considered in anti-neoplastic therapy.

  4. Inhibition of HERG potassium channels by celecoxib and its mechanism.

    Directory of Open Access Journals (Sweden)

    Roman V Frolov

    Full Text Available Celecoxib (Celebrex, a widely prescribed selective inhibitor of cyclooxygenase-2, can modulate ion channels independently of cyclooxygenase inhibition. Clinically relevant concentrations of celecoxib can affect ionic currents and alter functioning of neurons and myocytes. In particular, inhibition of Kv2.1 channels by celecoxib leads to arrhythmic beating of Drosophila heart and of rat heart cells in culture. However, the spectrum of ion channels involved in human cardiac excitability differs from that in animal models, including mammalian models, making it difficult to evaluate the relevance of these observations to humans. Our aim was to examine the effects of celecoxib on hERG and other human channels critically involved in regulating human cardiac rhythm, and to explore the mechanisms of any observed effect on the hERG channels.Celecoxib inhibited the hERG, SCN5A, KCNQ1 and KCNQ1/MinK channels expressed in HEK-293 cells with IC(50s of 6.0 µM, 7.5 µM, 3.5 µM and 3.7 µM respectively, and the KCND3/KChiP2 channels expressed in CHO cells with an IC(50 of 10.6 µM. Analysis of celecoxib's effects on hERG channels suggested gating modification as the mechanism of drug action.The above channels play a significant role in drug-induced long QT syndrome (LQTS and short QT syndrome (SQTS. Regulatory guidelines require that all new drugs under development be tested for effects on the hERG channel prior to first administration in humans. Our observations raise the question of celecoxib's potential to induce cardiac arrhythmias or other channel related adverse effects, and make a case for examining such possibilities.

  5. Mutation in the kv3.3 voltage-gated potassium channel causing spinocerebellar ataxia 13 disrupts sound-localization mechanisms.

    Directory of Open Access Journals (Sweden)

    John C Middlebrooks

    Full Text Available Normal sound localization requires precise comparisons of sound timing and pressure levels between the two ears. The primary localization cues are interaural time differences, ITD, and interaural level differences, ILD. Voltage-gated potassium channels, including Kv3.3, are highly expressed in the auditory brainstem and are thought to underlie the exquisite temporal precision and rapid spike rates that characterize brainstem binaural pathways. An autosomal dominant mutation in the gene encoding Kv3.3 has been demonstrated in a large Filipino kindred manifesting as spinocerebellar ataxia type 13 (SCA13. This kindred provides a rare opportunity to test in vivo the importance of a specific channel subunit for human hearing. Here, we demonstrate psychophysically that individuals with the mutant allele exhibit profound deficits in both ITD and ILD sensitivity, despite showing no obvious impairment in pure-tone sensitivity with either ear. Surprisingly, several individuals exhibited the auditory deficits even though they were pre-symptomatic for SCA13. We would expect that impairments of binaural processing as great as those observed in this family would result in prominent deficits in localization of sound sources and in loss of the "spatial release from masking" that aids in understanding speech in the presence of competing sounds.

  6. Formulary considerations in selection of beta-blockers.

    Science.gov (United States)

    Yedinak, K C

    1993-08-01

    Selection of beta-adrenergic blockers for formulary addition can be a difficult task, especially with the increasing availability of new beta-blockers, as well as the numerous differences in pharmacodynamic and pharmacokinetic properties of currently available agents. Nevertheless, appropriate evaluation of the important characteristics of beta-blockers should allow selection of the most cost-effective agents for formulary addition. Most importantly, differences in efficacy, product formulation and cost should be carefully considered when making formulary decisions. Notably, evidence from clinical trials indicates differences in efficacy among beta-blockers for post-myocardial infarction prophylaxis, situational anxiety, essential tremor, thyrotoxicosis, migraine prophylaxis and prevention of bleeding associated with oesophageal varices. For many clinical situations, it is also important to select an effective agent that is available in both an oral and intravenous formulation, especially for cardioprotection after acute myocardial infarction and for use in supraventricular arrhythmias. In addition, availability of sustained release products and generic formulations should be considered for their potential to increase compliance and decrease cost, respectively. Comparative drug costs, as well as costs associated with decreased compliance, should also be carefully evaluated. Differences in beta-receptor selectivity, duration of action and presence of intrinsic sympathomimetic activity (ISA) are also important considerations in the selection of beta-blockers for formulary consideration. Although degree of selectivity is relative, beta 1-selective agents may be less likely to induce bronchospasm in patients with chronic obstructive pulmonary disease (COPD) and may be less likely to affect glucose homeostasis in patients with diabetes mellitus. Duration of action of a beta-blocker is an important consideration for evaluation of efficacy throughout the recommended

  7. Characterization of hERG1a and hERG1b potassium channels-a possible role for hERG1b in the I (Kr) current

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter; Grunnet, Morten

    2008-01-01

    I (Kr) is the fast component of the delayed rectifier potassium currents responsible for the repolarization of the cardiac muscle. The molecular correlate underlying the I (Kr) current has been identified as the hERG1 channel. Recently, two splice variants of the hERG1 alpha-subunit, hERG1a and hERG......1b, have been shown to be co-expressed in human cardiomyocytes. In this paper, we present the electrophysiological characterization of hERG1a, hERG1b, and co-expressed hERG1a/b channels in a mammalian expression system using the whole-cell patch clamp technique. We also quantified the messenger RNA...... (mRNA) levels of hERG1a and hERG1b in human cardiac tissue, and based on the expressed ratios, we evaluated the resulting currents in Xenopus laevis oocytes. Compared to hERG1a channels, activation was faster for both hERG1b and hERG1a/b channels. The deactivation kinetics was greatly accelerated...

  8. The effect of the NMDA channel blocker memantine on salicylate-induced tinnitus in rats.

    Science.gov (United States)

    Ralli, M; Troiani, D; Podda, M V; Paciello, F; Eramo, S L M; de Corso, E; Salvi, R; Paludetti, G; Fetoni, A R

    2014-06-01

    Short-term tinnitus develops shortly after the administration of a high dose of salicylate. Since salicylate selectively potentiates N-methyl- D-aspartate (NMDA) currents in spiral ganglion neurons, it may play a vital role in tinnitus by amplifying NMDA-mediated neurotransmission. The aim of this study was to determine whether systemic treatment with a NMDA channel blocker, memantine, could prevent salicylate-induced tinnitus in animals. Additional experiments were performed to evaluate the effect of memantine on the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to test for changes in hearing function. Thirty-six rats were divided into 3 groups and treated daily for four consecutive days. One group (n = 12) was injected with salicylate (300 mg/kg/d, IP), the second (n = 12) was treated with memantine (5 mg/kg/d, IP) and the third group (n = 12) was injected with salicylate and memantine. All rats were tested for tinnitus and hearing loss at 2, 24, 48 and 72 h after the first drug administration and 24 h post treatment; tinnituslike behaviour was assessed with gap prepulse inhibition of acoustic startle (GPIAS), and hearing function was measured with DPOAE, ABR and noise burst prepulse inhibition of acoustic startle (NBPIAS). Rats in the salicylate group showed impaired GPIAS indicative of transient tinnitus-like behaviour near 16 kHz that recovered 24 h after the last salicylate treatment. Memantine did not cause a significant change in GPIAS. Combined injection of salicylate and memantine significantly attenuated GPIAS tinnitus-like behaviour at 48 hours after the first injection. None of the treatments induced permanent threshold shifts in the ABR and DPOAE, which recovered completely within one day post treatment. Animals treated with salicylate plus memantine showed results comparable to animals treated with salicylate alone, confirming that there is no effect of memantine on DPOAE which reflects OHC function. The

  9. Randomised clinical trial: a dose-ranging study of vonoprazan, a novel potassium-competitive acid blocker, vs. lansoprazole for the treatment of erosive oesophagitis.

    Science.gov (United States)

    Ashida, K; Sakurai, Y; Nishimura, A; Kudou, K; Hiramatsu, N; Umegaki, E; Iwakiri, K; Chiba, T

    2015-09-01

    The potassium-competitive acid blocker vonoprazan (VPZ) has potent acid-inhibitory effects and may offer clinical advantages over conventional therapy for acid-related disorders. To investigate the efficacy and safety of VPZ in patients with erosive oesophagitis (EO). In this multicentre, randomised, double-blind, parallel-group, dose-ranging study, patients ≥20 years with endoscopically confirmed EO [Los Angeles (LA) grades A-D] received VPZ 5, 10, 20 or 40 mg, or lansoprazole (LPZ) 30 mg once daily for 8 weeks. The primary endpoint was the proportion of healed EO subjects as shown by endoscopy at week 4. A total of 732 subjects received VPZ or LPZ. The proportion of healed EO subjects at week 4 was 92.3%, 92.5%, 94.4%, 97.0% and 93.2%, respectively, with VPZ 5, 10, 20 and 40 mg and LPZ 30 mg. All VPZ doses were non-inferior to LPZ when adjusted for baseline LA grades A/B and C/D. Among those with LA grades C/D, the proportions of healed EO subjects were 87.3%, 86.4%, 100%, 96.0% and 87.0%, respectively, with VPZ 5, 10, 20 and 40 mg and LPZ 30 mg. The incidence of adverse events was similar across the groups. Vonoprazan was effective and non-inferior to LPZ in healing EO. VPZ 20 mg or higher was highly efficacious for severe EO (LA grades C/D). VPZ was associated with no safety concern during this 8-week study, while there was a dose-dependent increase in serum gastrin. Once-daily VPZ 20 mg is the recommended clinical dose for treating EO. © 2015 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.

  10. Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide

    Directory of Open Access Journals (Sweden)

    Zhongjian Cheng

    2018-06-01

    Full Text Available Insufficient hydrogen sulfide (H2S has been implicated in Type 2 diabetic mellitus (T2DM and hyperhomocysteinemia (HHcy-related cardiovascular complications. We investigated the role of H2S in T2DM and HHcy-induced endothelial dysfunction in small mesenteric artery (SMA of db/db mice fed a high methionine (HM diet. HM diet (8 weeks induced HHcy in both T2DM db/db mice and non-diabetic db/+ mice (total plasma Hcy: 48.4 and 31.3 µM, respectively, and aggravated the impaired endothelium-derived hyperpolarization factor (EDHF-induced endothelium-dependent relaxation to acetylcholine (ACh, determined by the presence of eNOS inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME and prostacyclin (PGI2 inhibitor indomethacin (INDO, in SMA from db/db mice but not that from db/+ mice. A non-selective Ca2+-active potassium channel (KCa opener NS309 rescued T2DM/HHcy-impaired EDHF-mediated vascular relaxation to ACh. EDHF-induced relaxation to ACh was inhibited by a non-selective KCa blocker TEA and intermediate-conductance KCa blocker (IKCa Tram-34, but not by small-conductance KCa (SKCa blocker Apamin. HHcy potentiated the reduction of free sulfide, H2S and cystathionine γ-lyase protein, which converts L-cysteine to H2S, in SMA of db/db mice. Importantly, a stable H2S donor DATS diminished the enhanced O2- production in SMAs and lung endothelial cells of T2DM/HHcy mice. Antioxidant PEG-SOD and DATS improved T2DM/HHcy impaired relaxation to ACh. Moreover, HHcy increased hyperglycemia-induced IKCa tyrosine nitration in human micro-vascular endothelial cells. EDHF-induced vascular relaxation to L-cysteine was not altered, whereas such relaxation to NaHS was potentiated by HHcy in SMA of db/db mice which was abolished by ATP-sensitive potassium channel blocker Glycolamide but not by KCa blockers. Conclusions: Intermediate HHcy potentiated H2S reduction via CSE-downregulation in microvasculature of T2DM mice. H2S is justified as an EDHF. Insufficient H2S

  11. Beta-Adrenergic Receptor Blockers in Hypertension: Alive and Well.

    Science.gov (United States)

    Frishman, William H

    Beta-adrenergic receptor blockers (β-blockers) are an appropriate treatment for patients having systemic hypertension (HTN) who have concomitant ischemic heart disease (IHD), heart failure, obstructive cardiomyopathy, aortic dissection or certain cardiac arrhythmias. β-Blockers can be used in combination with other antiHTN drugs to achieve maximal blood pressure control. Labetalol can be used in HTN emergencies and urgencies. β-Blockers may be useful in HTN patients having a hyperkinetic circulation (palpitations, tachycardia, HTN, and anxiety), migraine headache, and essential tremor. β-Blockers are highly heterogeneous with respect to various pharmacologic properties: degree of intrinsic sympathomimetic activity, membrane stabilizing activity, β 1 selectivity, α 1 -adrenergic blocking effects, tissue solubility, routes of systemic elimination, potencies and duration of action, and specific properties may be important in the selection of a drug for clinical use. β-Blocker usage to reduce perioperative myocardial ischemia and cardiovascular (CV) complications may not benefit as many patients as was once hoped, and may actually cause harm in some individuals. Currently the best evidence supports perioperative β-blocker use in two patient groups: patients undergoing vascular surgery with known IHD or multiple risk factors for it, and for those patients already receiving β-blockers for known CV conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Structural Analysis and Deletion Mutagenesis Define Regions of QUIVER/SLEEPLESS that Are Responsible for Interactions with Shaker-Type Potassium Channels and Nicotinic Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Meilin Wu

    Full Text Available Ly6 proteins are endogenous prototoxins found in most animals. They show striking structural and functional parallels to snake α-neurotoxins, including regulation of ion channels and cholinergic signaling. However, the structural contributions of Ly6 proteins to regulation of effector molecules is poorly understood. This question is particularly relevant to the Ly6 protein QUIVER/SLEEPLESS (QVR/SSS, which has previously been shown to suppress excitability and synaptic transmission by upregulating potassium (K channels and downregulating nicotinic acetylcholine receptors (nAChRs in wake-promoting neurons to facilitate sleep in Drosophila. Using deletion mutagenesis, co-immunoprecipitations, ion flux assays, surface labeling and confocal microscopy, we demonstrate that only loop 2 is required for many of the previously described properties of SSS in transfected cells, including interactions with K channels and nAChRs. Collectively our data suggest that QVR/SSS, and by extension perhaps other Ly6 proteins, target effector molecules using limited protein motifs. Mapping these motifs may be useful in rational design of drugs that mimic or suppress Ly6-effector interactions to modulate nervous system function.

  13. Structural Analysis and Deletion Mutagenesis Define Regions of QUIVER/SLEEPLESS that Are Responsible for Interactions with Shaker-Type Potassium Channels and Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Wu, Meilin; Liu, Clifford Z; Joiner, William J

    2016-01-01

    Ly6 proteins are endogenous prototoxins found in most animals. They show striking structural and functional parallels to snake α-neurotoxins, including regulation of ion channels and cholinergic signaling. However, the structural contributions of Ly6 proteins to regulation of effector molecules is poorly understood. This question is particularly relevant to the Ly6 protein QUIVER/SLEEPLESS (QVR/SSS), which has previously been shown to suppress excitability and synaptic transmission by upregulating potassium (K) channels and downregulating nicotinic acetylcholine receptors (nAChRs) in wake-promoting neurons to facilitate sleep in Drosophila. Using deletion mutagenesis, co-immunoprecipitations, ion flux assays, surface labeling and confocal microscopy, we demonstrate that only loop 2 is required for many of the previously described properties of SSS in transfected cells, including interactions with K channels and nAChRs. Collectively our data suggest that QVR/SSS, and by extension perhaps other Ly6 proteins, target effector molecules using limited protein motifs. Mapping these motifs may be useful in rational design of drugs that mimic or suppress Ly6-effector interactions to modulate nervous system function.

  14. Beta-blockers in cirrhosis and refractory ascites

    DEFF Research Database (Denmark)

    Kimer, Nina; Feineis, Martin; Møller, Søren

    2015-01-01

    OBJECTIVE: It is currently discussed if beta-blockers exert harmful effects and increase mortality in patients with cirrhosis and refractory ascites. In this study, we provide an overview of the available literature in this field in combination with a retrospective analysis of 61 patients...... trials (9 trials on propranolol, 1 case-control study and 4 retrospective analyses) were identified. One trial suggested an increased mortality in patients treated with beta-blockers and refractory ascites. The results of the remaining trials were inconclusive. No increase in mortality among beta-blocker......-treated patients was found in the present retrospective analysis. CONCLUSIONS: Treatment with beta-blockers may increase mortality in patients with cirrhosis and refractory ascites. However, the current evidence is sparse and high-quality studies are warranted to clarify the matter....

  15. Update on the slow delayed rectifier potassium current (I(Ks)): role in modulating cardiac function.

    Science.gov (United States)

    Liu, Zhenzhen; Du, Lupei; Li, Minyong

    2012-01-01

    The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by β- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 β-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).

  16. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    International Nuclear Information System (INIS)

    Jun, Ma; Long, Huang; Chun-Ni, Wang; Zhong-Sheng, Pu

    2013-01-01

    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio x Na (and x K ), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio x Na (and x K ) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered. (interdisciplinary physics and related areas of science and technology)

  17. Morvan's syndrome with anti contactin associated protein like 2 – voltage gated potassium channel antibody presenting with syndrome of inappropriate antidiuretic hormone secretion

    Directory of Open Access Journals (Sweden)

    Anjani Kumar Sharma

    2016-01-01

    Full Text Available Morvan's syndrome is a rare autoimmune disorder characterized by triad of peripheral nerve hyperexcitability, autonomic dysfunction, and central nervous system symptoms. Antibodies against contactin-associated protein-like 2 (CASPR2, a subtype of voltage-gated potassium channel (VGKC complex, are found in a significant proportion of patients with Morvan's syndrome and are thought to play a key role in peripheral as well as central clinical manifestations. We report a patient of Morvan's syndrome with positive CASPR2–anti-VGKC antibody having syndrome of inappropriate antidiuretic hormone as a cause of persistent hyponatremia.

  18. Atomic basis for therapeutic activation of neuronal potassium channels

    DEFF Research Database (Denmark)

    Kim, Robin Y; Yau, Michael C; Galpin, Jason D

    2015-01-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific...

  19. The secret life of ion channels: Kv1.3 potassium channels and proliferation.

    Science.gov (United States)

    Pérez-García, M Teresa; Cidad, Pilar; López-López, José R

    2018-01-01

    Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.

  20. Use of beta-blockers and risk of serious upper gastrointestinal bleeding

    DEFF Research Database (Denmark)

    Reilev, Mette; Damkier, Per; Rasmussen, Lotte

    2017-01-01

    Background: Some studies indicate a reduced risk of serious upper gastrointestinal bleeding (UGIB) for users of beta-blockers, but the association remains to be confirmed in larger studies and characterized with respect to differences among beta-blockers. We aimed to assess whether beta-blocker use...... and adjusted odds ratios (ORs) of the association between current beta-blocker use and the risk of UGIB by using conditional logistic regression and further stratified by selective and non-selective beta-blockers, respectively. Results: We identified 3571 UGIB cases and 35,582 controls. Use of beta-blockers...... was not found to be associated with a decreased risk of UGIB (adjusted OR 1.10; 95% CI: 1.00-1.21). The association remained neutral after stratification by selective and non-selective beta-blockers, and by single beta-blocker substances. Similarly, we found no association between current beta-blocker use...