WorldWideScience

Sample records for potassium carbonate solutions

  1. 21 CFR 184.1619 - Potassium carbonate.

    Science.gov (United States)

    2010-04-01

    ... solution of potassium hydroxide with excess carbon dioxide to produce potassium carbonate; (3) By treating a solution of potassium hydroxide with carbon dioxide to produce potassium bicarbonate, which is... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium carbonate. 184.1619 Section 184.1619 Food...

  2. Corrosion of a hot potassium carbonate CO/sub 2/ removal plant

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1987-01-01

    After ten years of successful operation, a hot potassium carbonate CO/sub 2/ removal plant experienced severe corrosion to the 2'' (50 mm) thick carbon steel absorber process vessel over a fourteen month period. This corrosive attack resulted in complete penetration on three separate occasions. Although the cause of this corrosion is still uncertain, it appears to be the result of decreasing strength of the vanadium pentoxide inhibitor, due to increasing concentrations of hydrogen sulfide in the feed gas. After extensive research, Chevron believes that stainless steel metallurgy or replacement of the hot potassium carbonate process are the only reliable long-term solutions

  3. Extraction of transplutonium elements from carbonate solutions by alkylpyrocatechol

    International Nuclear Information System (INIS)

    Karalova, Z.K.; Myasoedov, B.F.; Rodionova, L.M.; Kuznetsova, V.S.

    1983-01-01

    Extraction of americium, berkelium as well as Ce, Eu, Th, U, Zr, Cs, Fe with solution of 4(α, α-dioctylethyl)pyrocatechol (DOP) in toluene from carbonate solutions to determine conditions of their separation has been studied. It is established that americium extraction is quite sensitive to the changes of potassium carbonate concentration. The maximum extraction of americium (R >90%) is observed in the case of 0.1-0.5 mol/l of K 2 CO 3 solutions and the minimum one (R=2.5%) - in the case of 8 mol/l K 2 CO 3 . Americium extraction increases sharply when sodium hydroxide is introduced in carbonate solutions. It is shown that varying sodium hydroxide concentration it is possible to achieve qualitative extraction of americium even from saturated solution of potassium carbonate. Reextraction of TPE is easily realized with 3 mol/l HCl solution. The system K 2 CO 3 (KOH)-DOP proved to be perspective for Am separation from Bk, Ce, Cs, actinoid elements as well as from Fe

  4. Corrosion mechanism of carbon brick in the blast furnace hearth by potassium

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Zhuang-zhuang; Deng, Yong; Fan, Xiaoyue

    2017-11-01

    Alkali plays a significant role in the formation of brittle layer of carbon brick in the blast furnace hearth. The brittle layer in a commercial blast furnace hearth was investigated. Large amounts of potassium compounds were found in the brittle layer. Subsequently, the carbon bricks which reacted with potassium in the simulation of blast furnace hearth under different contents of potassium in the brick (0.25, 0.5, 1.0 and 2.0 wt.%) during various reaction times (0.5, 1, 2 and 4 h) were experimentally studied. Finally, the formation mechanism of the brittle layer in carbon brick was clarified. The investigation results show that a large number of cracks are present in the brittle layer. The average potassium content in the brittle layer is 1 wt.%. According to the experimental results, cracks in the carbon brick can be formed by the attack of potassium. The reason for the formation of the brittle layer in the carbon brick is that the liquid potassium permeates into the carbon brick through the pores and cracks, and then reacts with SiO2 and Al2O3 in CO atmosphere. The generated potassium compounds nepheline and leucite lead to the volume expansion and the damage of the carbon brick.

  5. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  6. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; A. Frank Seibert; J. Tim Cullinane; Terraun Jones

    2003-01-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. The rigorous Electrolyte Non-Random Two-Liquid (electrolyte-NRTL) model has been regressed to represent CO{sub 2} solubility in potassium carbonate/bicarbonate solutions. An analytical method for piperazine has been developed using a gas chromatograph. Funding has been obtained and equipment has been donated to provide for modifications of the existing pilot plant system with stainless steel materials.

  7. 21 CFR 520.1696c - Penicillin V potassium for oral solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin V potassium for oral solution. 520....1696c Penicillin V potassium for oral solution. (a) Specifications. When reconstituted, each milliliter contains 25 milligrams (40,000 units) of penicillin V. (b) Sponsor. See No. 050604 in § 510.600(c) of this...

  8. Corrosion phenomena in sodium-potassium coolant resulting from solute interaction in multicomponent solution

    Science.gov (United States)

    Krasin, V. P.; Soyustova, S. I.

    2018-03-01

    The solubility of Fe, Cr, Ni, V, Mn and Mo in sodium-potassium melt has been calculated using the mathematical framework of pseudo-regular solution model. The calculation results are compared with available published experimental data on mass transfer of components of austenitic stainless steel in sodium-potassium loop under non-isothermal conditions. It is shown that the parameters of pair interaction of oxygen with transition metal can be used to predict the corrosion behavior of structural materials in sodium-potassium melt in the presence of oxygen impurity. The results of calculation of threshold concentration of oxygen of ternary oxide formation of sodium with transitional metals (Fe, Cr, Ni, V, Mn, Mo) are given in conditions when pure solid metal comes in contact with sodium-potassium melt.

  9. Radiolysis of titanium potassium oxalate in aqueous solution. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Bundo, Y; Ono, I [Industrial Research Inst. of Kanagawa Prefecture, Yokohama (Japan); Ogawa, T

    1975-01-01

    The dissolution state of titanium potassium oxalate in aqueous solution is different according to the pH. The yellowish brown titanium complex produced by the reaction of titanium potassium oxalate and hydrogen peroxide seems to be different in its structure according to the pH. Considering these points, gamma-ray irradiation was carried out on the sample by dissolving titanium potassium oxalate in purified water under the conditions of oxygen saturation and nitrogen saturation, and the relation between irradiation dose and the production of titanium complex was determined. On the basis of the experimental result, the mechanism of forming hydrogen peroxide was presumed. The radiation source used was 2,000 Ci of /sup 60/Co. For photometric analysis, a 139 type photoelectric spectrophotometer of Hitachi Ltd. was used. From the experimental results, in neutral water, titanium potassium oxalate exists in the state that two oxalic acid ions are coordinated to titanyl ion, while in case of the pH lowered by the addition of sulfuric acid, it can exist in the state that one oxalic acid ion is coordinated to titanyl ion. The yield of hydrogen peroxide produced by irradiating titanium potassium oxalate aqueous solution with gamma-ray is the sum of the molecular product from water and the radiolysis product from titanium potassium oxalate.

  10. (Vapour + liquid) equilibria, volumetric and compressibility behaviour of binary and ternary aqueous solutions of 1-hexyl-3-methylimidazolium chloride, methyl potassium malonate, and ethyl potassium malonate

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Mahdavi, Adibeh

    2012-01-01

    Highlights: ► VLE and volumetry of binary and ternary [C 6 mim][Cl], MPM and EPM aqueous solutions. ► Constant a w lines show small negative deviation from the linear isopiestic relation. ► Solute–water interactions follow the order: EPM > MPM > [C 6 mim][Cl]. ► MPM and EPM have a very weak salting-out effect on [C 6 mim][Cl] aqueous solutions. - Abstract: (Vapour + liquid) equilibrium data (water activity, vapour pressure, osmotic coefficient, and activity coefficient) of binary aqueous solutions of 1-hexyl-3-methylimidazolium chloride ([C 6 mim][Cl]), methyl potassium malonate, and ethyl potassium malonate and ternary {[C 6 mim][Cl] + methyl potassium malonate} and {[C 6 mim][Cl] + ethyl potassium malonate} aqueous solutions were obtained through the isopiestic method at T = 298.15 K. These results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solutions at molality about 0.4 mol · kg −1 . The constant water activity lines of all the ternary systems investigated show small negative deviations from the linear isopiestic relation (Zdanovskii–Stokes–Robinson rule) derived using the semi-ideal hydration model. The density and speed of sound measurements were carried out on solutions of methyl potassium malonate and ethyl potassium malonate in water and of [C 6 mim][Cl] in aqueous solutions of 0.25 mol · kg −1 methyl potassium malonate and ethyl potassium malonate at T = (288.15 to 308.15) K at atmospheric pressure. From the experimental density and speed of sound data, the values of the apparent molar volume, apparent molar isentropic compressibility and excess molar volume were evaluated and from which the infinite dilution apparent molar volume and infinite dilution apparent molar isentropic compressibility were calculated at each temperature. Although, there are no clear differences between the values of the apparent molar volume of [C 6 mim][Cl] in pure water and in methyl potassium malonate or ethyl

  11. Extraction of actinide and lanthanide complexonates in two-phase aqueous system potassium carbonate-polyethylene glycol-water

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.; Myasoedov, B.F.

    1988-01-01

    Extraction system on the basis of polyethylene glycol for the concentration, isolation and separation of actinides is suggested. Extraction of actinides and lanthanides in two-phase aqueous system: potassium carbonate - polyethylene glycol - water in the presence of different complexones is investigated. Trivalent actinides are extracted quantitatively by polyethylene glycol from potassium carbonate solutions in the system with xylenol orange and alizarin-complexone. Under the conditions uranium (6) and plutonium (4) are extracted into the phase, enriched by polyethylene glycol, quite insignificantly, which permits to separate them from trivalent actinides with the separation factor of 10 2 - 10 3 . For actinide and lanthanide separation two complexones were introduced into the system, one of them being extractant, the other one - camouflaging reactant. The best results are obtained for the mixture of xylenol orange and hydroxyethylenediphosphonic acid. Separation coefficients for americium and europium constitute 4.5 - 5.6

  12. Preparation and application of potassium and sodium titanate for removal of plutonium from basic solution

    International Nuclear Information System (INIS)

    Patil, Prashant; Pathak, Sachin S.; Pius, I.C.; Mukerjee, S.K.

    2014-01-01

    In PUREX process, after extraction and stripping of uranium and plutonium, the extractant, tributyl phosphate is usually washed with sodium carbonate solution before reuse for the removal of radiolytic/hydrolytic degradation products of TBP and small amounts of HNO 3 , uranium and plutonium goes into aqueous phase during carbonate washings. Partial neutralization of carbonate by the acid converts it to bicarbonate. Removal of plutonium from such sodium carbonate/bicarbonate streams facilitates their disposal. In the present work, studies were carried out to prepare inorganic ion-exchangers such as potassium and sodium titanates for their application as ion-exchange material. It is essential to prepare these materials in granular form to obtain good liquid flow property for ion exchange column operations, however, it is also important that the final product is having good surface area and porosity so that they may exhibit good ion exchange capacity

  13. Sound velocity in potassium hydroxide aqueous solution

    International Nuclear Information System (INIS)

    Tsapuryan, Kh.D.; Aleksandrov, A.A.; Kochetkov, A.I.

    1992-01-01

    Measurements of ultrasonic velocities in potassium hydroxide aqueous solutions are carried out within the frames of studies on improvement of water chemistry in NPP cooling systems. Method of echo pulses superposition with acoustic path length of 41.447 mm is used for measurements. The measurements are performed at 2.6 MHz frequency. Complex temperature dependence of ultrasonic velocity is determined. Ultrasonic velocity dependence on pressure is close to linear one. The formula for calculation of thermodynamic properties of the studied solutions on the basis of experimental data obtained is proposed

  14. Thermodynamics of proton dissociation from aqueous bicarbonate: apparent molar volumes and apparent molar heat capacities of potassium carbonate and potassium bicarbonate at T=(278.15 to 393.15) K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Sorenson, E.C.; Woolley, E.M.

    2004-01-01

    We have determined the apparent molar volumes V phi and apparent molar heat capacities C p,phi of aqueous potassium carbonate and potassium bicarbonate solutions in the ranges (0.014≤m/(mol · kg -1 )≤0.51) and (278.15≤T/K≤393.15) at the pressure p=0.35 MPa. Corrections for speciation due to hydrolysis and disproportionation in solution were applied using Young's rule, and semi-empirical equations representing (V phi ,m,T) and (C p,phi ,m,T) for the species {2K + , CO 3 2- (aq)} and {K + , HCO 3 - (aq)} were fitted to the experimental results. We have used these equations to estimate the change in volume Δ r V m , change in heat capacity Δ r C p,m , enthalpy change Δ r H m , entropy change Δ r S m , and equilibrium molality quotient pQ for the second proton dissociation reaction from aqueous carbonic acid

  15. The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Manzurola, Emanuel [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2007-08-15

    Vapour pressures of water over saturated solutions of sodium acetate, potassium acetate, sodium perchlorate, and potassium perchlorate were determined over the (278 to 318) K temperature range and compared with available in the literature data. The cases of saturated solutions of sodium chlorate and potassium chlorate are also considered. The determined vapour pressures were used to obtain the water activities, the osmotic coefficients, and the molar enthalpies of vaporization in considered systems.

  16. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    Devries, F.W.; Lawes, B.C.

    1982-01-01

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal

  17. Restoration of uranium solution mining deposits

    Energy Technology Data Exchange (ETDEWEB)

    Devries, F.W.; Lawes, B.C.

    1982-01-19

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal.

  18. Measurement and Modelling of the Piperazine Potassium Carbonate Solutions for CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Waseem Arshad, Muhammad

    The climate is in a critical state due to the impact of pollution by CO2 and similar greenhouse gasses. Action needs to be taken in order reduce the emission of harmful components. CO2 capture is one process to help the world population back on track in order to return to normal condition...... with the purpose of simulating the CO2 capture process. This involves equilibrium studies on physical properties in the activated carbonate solvent. Energy consumption while applying the promoted carbonate solutions using piperazine is given in overview....

  19. Interaction of natural borates with potassium hydroxide solution

    International Nuclear Information System (INIS)

    Azarova, L.A.; Vinogradov, E.E.; Kudinov, I.B.; Panasyuk, G.P.; Danilov, V.P.

    2000-01-01

    Interaction of natural borates - inyoite, ulexite and hydroboracite MgCa[B 3 O 4 (OH) 3 ] 2 ·3H 2 O with KOH solution is studied at 50 Deg C by the methods of chemical, x- ray phase, differential thermal analyses and IR spectroscopy. IR spectra points out on island character of forming borates and confirms the data of x-ray phase and chemical analyses about presence of asharite and calcium hydrous borate in resulting products. Hydroboracite (chain structure) under the action of potassium hydroxide passes into borates of magnesium and calcium with island structure and in this case boron transforms partially into liquid phase. When potassium hydroxide interacts with inyoite and ulexite calcium hydroxide and roentgenoamorphous boron-containing product precipitate [ru

  20. Behaviour of potassium hexabromoruthenate (4) in solutions

    International Nuclear Information System (INIS)

    Rudnitskaya, O.V.; Miroshnichenko, I.V.; Pichkov, V.N.

    1989-01-01

    Behaviour of potassium hexabromoruthenate in HBr, H 2 O-acetone, dimethylformamide, dimetnylsulfoxide (DMSO) solutions is investigated by means of absorption and ESR specroscopy. Complex is shown to be labile, interacts easily with solvents forming ruthenium complexes in more low oxidation degrees. Hexabromoruthenate-ion is formed in concentrated HBr, while in DMSO the formation of ruthenium (3) and (2) bromide-dimethylsulfoxide complexes occurs gradually, final product is trans-[Ru(DMSO) 4 Br 2

  1. Comparative solubilisation of potassium carbonate, sodium bicarbonate and sodium carbonate in hot dimethylformamide: application of cylindrical particle surface-controlled dissolution theory.

    Science.gov (United States)

    Forryan, Claire L; Compton, Richard G; Klymenko, Oleksiy V; Brennan, Colin M; Taylor, Catherine L; Lennon, Martin

    2006-02-07

    A surface-controlled dissolution of cylindrical solid particles model is applied to potassium carbonate, sodium bicarbonate and sodium carbonate in dimethylformamide at elevated temperatures. Previously published data for the dissolution of potassium carbonate is interpreted assuming a cylindrical rather than a spherical shape of the particles, the former representing a closer approximation to the true shape of the particles as revealed by scanning electron microscopy. The dissolution kinetics of sodium carbonate and sodium bicarbonate in dimethylformamide at 100 degrees C were investigated via monitoring of the deprotonation of 2-cyanophenol with dissolved solid to form the 2-cyanophenolate anion that was detected with UV-visible spectroscopy. From fitting of experimental results to theory, the dissolution rate constant, k, for the dissolutions of potassium carbonate, sodium bicarbonate and sodium carbonate in dimethylformamide at 100 degrees C were found to have the values of (1.0 +/- 0.1) x 10(-7) mol cm(-2) s(-1), (5.5 +/- 0.3) x 10(-9) mol cm(-2) s(-1) and (9.7 +/- 0.8) x 10(-9) mol cm(-2) s(-1), respectively.

  2. Diclofenac potassium powder for oral solution: a review of its use in patients with acute migraine.

    Science.gov (United States)

    Garnock-Jones, Karly P

    2014-08-01

    Diclofenac potassium powder for oral solution (Voltfast(®), Catafast(®), Cambia(®); hereafter referred to as diclofenac potassium powder) is a non-steroidal anti-inflammatory drug (NSAID), and is indicated for the acute treatment of migraine. This article reviews the pharmacological properties of diclofenac potassium powder and its efficacy and tolerability in patients with acute migraine. Diclofenac potassium powder was clinically efficacious and generally well tolerated in placebo-controlled trials in patients with this indication; it was more effective than diclofenac potassium tablets with regard to the primary endpoint of 2-h pain relief as well as in several important secondary endpoints, such as time to onset of analgesic action. The oral powder-for-solution formulation of diclofenac potassium is a useful option in the acute treatment of migraine with or without aura.

  3. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    Science.gov (United States)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  4. Hydrothermal carbonization of glucose in saline solution: sequestration of nutrients on carbonaceous materials

    Directory of Open Access Journals (Sweden)

    Jessica Nover

    2016-02-01

    Full Text Available In this study, feasibility of selected nutrient sequestration during hydrothermal carbonization (HTC was tested for three different HTC temperatures (180, 230, and 300 °C. To study the nutrient sequestration in solid from liquid solution, sugar and salt solutions were chosen as HTC feedstock. Glucose was used as carbohydrate source and various salts e.g., ammonium hydrophosphate, potassium chloride, potassium sulfate, and anhydrous ferric chloride were used as source of nitrogen and phosphorus, potassium, and iron, respectively. Solid hydrochar was extensively characterized by means of elemental, ICP-OES, SEM-EDX, surface area, pore volume and size, and ATR-FTIR to determine nutrients’ sequestration as well as hydrochar quality variation with HTC temperatures. The spherical mesoporous hydrochars produced during HTC have low surface area in the range of 1.0–3.5 m2 g−1. Hydrochar yield was increased about 10% with the increase of temperature from 180 °C to 300 °C. Nutrient sequestration was also increased with HTC temperature. In fact, around 71, 31, and 23 wt% nitrogen, iron, and phosphorus were sequestered at 300 °C, respectively. Potassium sequestration was very low throughout the HTC and maximum 5.2% was observed in solid during HTC.

  5. Metrological assessment of TDR performance for measurement of potassium concentration in soil solution

    Directory of Open Access Journals (Sweden)

    Isaac de M. Ponciano

    2016-04-01

    Full Text Available ABSTRACT Despite the growing use of the time domain reflectometry (TDR technique to monitoring ions in the soil solution, there are few studies that provide insight into measurement error. To overcome this lack of information, a methodology, based on the central limit theorem error, was used to quantify the uncertainty associated with using the technique to estimate potassium ion concentration in two soil types. Mathematical models based on electrical conductivity and soil moisture derived from TDR readings were used to estimate potassium concentration, and the results were compared to potassium concentration determined by flame spectrophotometry. It was possible to correct for random and systematic errors associated with TDR readings, significantly increasing the accuracy of the potassium estimation methodology. However, a single TDR reading can lead to an error of up to ± 18.84 mg L-1 K+ in soil solution (0 to 3 dS m-1, with a 95.42% degree of confidence, for a loamy sand soil; and an error of up to ± 12.50 mg L-1 of K+ (0 to 2.5 dS m-1 in soil solution, with a 95.06% degree of confidence, for a sandy clay soil.

  6. Fibrous Carbon-Metallic Materials and a Method of Manufacturing Carbon-Metallic Fibrous Materials,

    Science.gov (United States)

    1983-05-12

    for obtaining solid compositions. Example 1. A carbon unwoven fabric obtained through carbonization of polyacrylic fabric is polarized anodically in...a l.5n solution of potassium carbonate, using a current load of l5mA/cm2 for 30 seconds, and then is cathodically polarized in the same solution using...bathcontaining 30g/l Of CuCO3’Cu(OH)2, 100g/1 of potassium -sodium tartrate,50g/l of KOH and 25g/l of 40% formalin. • i The length of time in the

  7. Synthesis and derivatographic investigation of potassium octacyanotungstate (4)

    International Nuclear Information System (INIS)

    Kovbashin, V.I.; Dovgej, V.V.; Chernyak, B.I.

    1983-01-01

    The interaction between the rated quantities of potassium cyanide and WO(OH) 3 hydroxide resulted in preparation of potassium dioxytetracyanotungstate (4), K 4 [WO 2 (CN) 4 ]X6H 2 O. The latter, while interacting with a saturated potassium cyanide solution in a carbon dioxide flow transforms to potassium octacyanotungstate (4). The process of K 4 [W(CH) 8 ]x2H 2 O compound thermolysis in argon atmosphere is studied. It is found that, after dehydration of the complex, there occurs thermal transformation of K 4 [W(CN) 8 ] to K 3 [W(CN) 7 ] and then to K 3 [W(CN) 6 ]. The thermolysis final product is tungsten carbide WC

  8. Comparative study of 5% and 2.5% potassium hydroxide solution for molluscum contagiosum in children.

    Science.gov (United States)

    Uçmak, Derya; Akkurt, Meltem Zeynep; Kacar, Seval Dogruk; Sula, Bilal; Arica, Mustafa

    2014-03-01

    Molluscum contagiosum (MC) is a pediatric viral infection that is fairly contagious. Although various treatment methods are available, the presence of facial lesions limits options of therapy. We aimed to test an alternative treatment consisting of application of two different concentrations of potassium hydroxide (of KOH 5% solution and of KOH 2.5% solution) aqueous solution. In this study we evaluated the effectiveness and side-effects of daily applications of potassium hydroxide (KOH) aqueous solution at 2.5% and 5% concentrations, twice daily in 29 children with MC. Out of a total of 29 patients with molluscum contagiosum included in the study, 13 patients in the 2.5% KOH group and 12 patients in the KOH 5% group completed the study. Families were instructed to apply potassium hydroxide twice a day. The assessment of response and side-effects were performed on days 0, 15, 30, 45 and 60 (visits were numbered 1, 2, 3, 4 and 5, respectively) and one month after. We had a total of 11 (44%) patients who completely recovered after the fifth visit. While eight (66.7%) of these 11 patients were in the 5% treatment group, three (23.1%) patients were in the 2.5% treatment group, and there was a statistically meaningful difference (p Potassium hydroxide solution at a concentration of 5% was more effective than 2.5% in our patients. The treatment was well-tolerated on the face with the advantage of administration of lower concentrations. This study suggests potassium hydroxide may be a more preferable mode of treatment for molluscum contagiosum lesions on the face.

  9. CO2 Capture by Carbon Aerogel–Potassium Carbonate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2016-01-01

    Full Text Available Recently, various composites for reducing CO2 emissions have been extensively studied. Because of their high sorption capacity and low cost, alkali metal carbonates are recognized as a potential candidate to capture CO2 from flue gas under moist conditions. However, undesirable effects and characteristics such as high regeneration temperatures or the formation of byproducts lead to high energy costs associated with the desorption process and impede the application of these materials. In this study, we focused on the regeneration temperature of carbon aerogel–potassium carbonate (CA–KC nanocomposites, where KC nanocrystals were formed in the mesopores of the CAs. We observed that the nanopore size of the original CA plays an important role in decreasing the regeneration temperature and in enhancing the CO2 capture capacity. In particular, 7CA–KC, which was prepared from a CA with 7 nm pores, exhibited excellent performance, reducing the desorption temperature to 380 K and exhibiting a high CO2 capture capacity of 13.0 mmol/g-K2CO3, which is higher than the theoretical value for K2CO3 under moist conditions.

  10. Comparison Of Efficacy Of 10% Potassium Hydroxide Solution Versus Cryotherapy In Treatment Of Molluscum Contagiosum.

    Science.gov (United States)

    Qureshi, Asfandyar; Zeb, Mahwish; Jalal-Ud-Din, Mir; Sheikh, Zafar Iqbal; Alam, Muhammad Adeel; Anwar, Syed Abbas

    2016-01-01

    Different topical therapies are being used for treating molluscum contagiosum. Potassium hydroxide in varying solution strengths with irritant reaction on the skin can help in eliminating the infection. It is cheap, easily available, can be easily applied at home, with good safety profile and cost effectiveness. This study was conducted to compare the efficacy of 10% potassium hydroxide solution versus cryotherapy in treating molluscum contagiosum. This study was a Randomized control trial conducted in the Department of dermatology, Military hospital Rawalpindi. Study included 120 randomly selected patients with molluscum contagiosum divided equally into two groups. Group A were treated with 10% potassium hydroxide aqueous solution applied daily to the lesions twice daily for 6 weeks while Group B received weekly cryotherapy with liquid nitrogen. The status of lesions was documented weekly for 6 weeks. Of the 120 patients enrolled, 67 (55.8%) were male and 53 (44.2%) were female. Mean age of patients was 20.53(±8.17) years. At base line Molluscum contagiosum lesion ranged from minimum of 2 lesions to maximum of 26 lesions with a mean of 8.95 (SD ±4.45) lesions. Of 120 patients, complete clearance was observed in 98(81.6%) of patients, 48(80%) patients had lesion clearance in Group A and 50 (83.3%) patients had lesion clearance was observed in Group B. No statistical significance was observed in the lesion clearance between the two groups (p-0.63). The efficacy of 10% potassium hydroxide solution and cryotherapy is statistically same over 6 weeks of treatment. Thus less expensive, easily available and cosmetically more acceptable potassium hydroxide solution can be used instead of cryotherapy in treating molluscum contagiosum.

  11. Synthesis of porous poly(acrylamide hydrogels using calcium carbonate and its application for slow release of potassium nitrate

    Directory of Open Access Journals (Sweden)

    2009-05-01

    Full Text Available Porous poly(acrylamide was synthesized using calcium carbonate microparticles and subsequent acid treatment to remove the calcium carbonate. Methylenebisacrylamide and ammonium persulfate/sodium metabisulfite were used as crosslinking agent and redox initiator, respectively. The porous structure of resulted hydrogels was confirmed using SEM micrographs. The effect of methylenebisacrylamide concentration and calcium carbonate amount on the swelling of the hydrogels was investigated. The results showed that the effect of methylenebisacrylamide and calcium carbonate variables on the swelling is reverse. The hydrogels were subsequently utilized for the loading of potassium nitrate. Potassium nitrate as active agent was loaded into hydrogels and subsequently the release of this active agent was investigated. In these series of investigation, the effect of content of loading, methylenebisacrylamide and calcium carbonate amount on the release of potassium nitrate from hydrogels was investigated.

  12. Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid

    Science.gov (United States)

    Juhasz, Albert J.

    2010-01-01

    This elemental space radiator heat pipe is designed to operate in the 700 to 875 K temperature range. It consists of a C-C (carbon-carbon) shell made from poly-acrylonitride fibers that are woven in an angle interlock pattern and densified with pitch at high process temperature with integrally woven fins. The fins are 2.5 cm long and 1 mm thick, and provide an extended radiating surface at the colder condenser section of the heat pipe. The weave pattern features a continuous fiber bath from the inner tube surface to the outside edges of the fins to maximize the thermal conductance, and to thus minimize the temperature drop at the condenser end. The heat pipe and radiator element together are less than one-third the mass of conventional heat pipes of the same heat rejection surface area. To prevent the molten potassium working fluid from eroding the C C heat pipe wall, the shell is lined with a thin-walled, metallic tube liner (Nb-1 wt.% Zr), which is an integral part of a hermetic metal subassembly which is furnace-brazed to the inner surface of the C-C tube. The hermetic metal liner subassembly includes end caps and fill tubes fabricated from the same Nb-1Zr alloy. A combination of laser and electron beam methods is used to weld the end caps and fill tubes. A tungsten/inert gas weld seals the fill tubes after cleaning and charging the heat pipes with potassium. The external section of this liner, which was formed by a "Uniscan" rolling process, transitions to a larger wall thickness. This section, which protrudes beyond the C-C shell, constitutes the "evaporator" part of the heat pipe, while the section inside the shell constitutes the condenser of the heat pipe (see figure).

  13. Thermodynamic properties of potassium chloride aqueous solutions

    Science.gov (United States)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  14. Photochemical oxidation of americium(3) in bicarbonate-carbonate solutions saturated with N2O

    International Nuclear Information System (INIS)

    Shilov, V.P.; Yusov, A.B.

    1993-01-01

    The influence of UV radiation on 1.1x10 -4 mol/l Am(3) in bicarbonate-carbonate solutions of sodium and potassium saturated with N 2 O was studied by spectrographic method. In all the cases Am(4) was formed as a primary product. Initial rate of Am(4) accumulation remains stable in solutions up to HCO 3 - or HCO 3 - +CO 3 2- concentration of approximately 1.5 mol/l, but it decreases in case of their higher concentration. In solutions with pH 8.4-10 Am(4) disproportionates at a slow rate and the method suggested permits attaining practically 100% yield of it

  15. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  16. Kinetics of absorption of carbon dioxide into aqueous potassium salt of proline

    DEFF Research Database (Denmark)

    Paul, Subham; Thomsen, Kaj

    2012-01-01

    rate parameters are determined from the kinetic measurements and presented at each experimental condition. The reaction order is found to be in between 1.36 and 1.40 with respect to KPr for the above mentioned concentration range. The second-order rate constants, k2, are obtained as 118,914, 203......,851, and 317,625m3kmol−1s−1 at 303, 313, and 323K, respectively with activation energy of 36.5kJmol−1. The second-order rate constants are much higher than for alkanolamines and some other salt of amino acids.......The absorption of carbon dioxide (CO2) into aqueous solution of potassium prolinate (KPr) are studied at 303, 313, and 323K within the salt concentration range of 0.5–3.0kmolm−3 using a wetted wall column absorber. The experimental results are used to interpret the kinetics of the reaction of CO2...

  17. Enthalpic interactions of N-glycylglycine with xylitol in aqueous sodium chloride and potassium chloride solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Liu Min; Wang Lili; Zhu Lanying; Li Hui; Sun Dezhi; Di Youying; Li Linwei

    2010-01-01

    The mixing enthalpies of N-glycylglycine with xylitol and their respective enthalpies of dilution in aqueous sodium chloride and potassium chloride solutions have been determined by using flow-mix isothermal microcalorimetry at the temperature of 298.15 K. These experimental results have been used to determine the heterotactic enthalpic interaction coefficients (h xy , h xxy , and h xyy ) according to the McMillan-Mayer theory. It has been found that the heterotactic enthalpic pairwise interaction coefficients h xy between N-glycylglycine and xylitol in aqueous sodium chloride and potassium chloride solutions are negative and become less negative with an increase in the molality of sodium chloride or potassium chloride. The results are discussed in terms of solute-solute and solute-solvent interactions.

  18. Enthalpic interactions of N-glycylglycine with xylitol in aqueous sodium chloride and potassium chloride solutions at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Liu Min, E-mail: panpanliumin@163.co [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Wang Lili [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Zhu Lanying [College of Life Science and Bioengineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Li Hui; Sun Dezhi; Di Youying; Li Linwei [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China)

    2010-07-15

    The mixing enthalpies of N-glycylglycine with xylitol and their respective enthalpies of dilution in aqueous sodium chloride and potassium chloride solutions have been determined by using flow-mix isothermal microcalorimetry at the temperature of 298.15 K. These experimental results have been used to determine the heterotactic enthalpic interaction coefficients (h{sub xy}, h{sub xxy}, and h{sub xyy}) according to the McMillan-Mayer theory. It has been found that the heterotactic enthalpic pairwise interaction coefficients h{sub xy} between N-glycylglycine and xylitol in aqueous sodium chloride and potassium chloride solutions are negative and become less negative with an increase in the molality of sodium chloride or potassium chloride. The results are discussed in terms of solute-solute and solute-solvent interactions.

  19. Solution enthalpy of potassium iodide in furfural and its mixtures with dimethylsulfoxide

    International Nuclear Information System (INIS)

    Vlasenko, K.K.; Belov, A.A.; Vorob'ev, A.F.

    1986-01-01

    Solution enthalpy of potassium iodide in furfural-dimethylsulfoxide mixtures at 298.15 K and furfural concentration 17.3-100% are determined experimentally. K + and I - ion solvate shell composition, which in the general case doesn't correspond to the mixed solvent composition, is calculated

  20. Topical 5% potassium permanganate solution accelerates the healing process in chronic diabetic foot ulcers.

    Science.gov (United States)

    Delgado-Enciso, Iván; Madrigal-Perez, Violeta M; Lara-Esqueda, Agustin; Diaz-Sanchez, Martha G; Guzman-Esquivel, Jose; Rosas-Vizcaino, Luis E; Virgen-Jimenez, Oscar O; Kleiman-Trujillo, Juleny; Lagarda-Canales, Maria R; Ceja-Espiritu, Gabriel; Rangel-Salgado, Viridiana; Lopez-Lemus, Uriel A; Delgado-Enciso, Josuel; Lara-Basulto, Agustin D; Soriano Hernández, Alejandro D

    2018-02-01

    Potassium permanganate has been reported to be an effective treatment for certain types of wounds. The aim of the present study was to evaluate the use of potassium permanganate in the treatment of diabetic foot ulcers. A single-blind, randomized, controlled clinical trial was conducted on patients with type 2 diabetes mellitus that presented with a foot ulcer persisting for >3 months. The control group (n=10) was treated with the current standard treatment, which comprises of measures for reducing pressure in the ulcerated area, daily cleansing of the ulcer with potable water and antiseptic wash solution, and the application of a disinfectant solution on the entire surface area of the ulcer; while the intervention group (n=15) received the standard treatment plus 5% topical potassium permanganate solution applied once a day for 21 days. In the intervention group, 1 patient did not tolerate the treatment and was eliminated from the study on the first day. The remaining patients tolerated the interventions well. At the end of the treatment period, ulcers in the control group had decreased by 38% whereas those in the intervention group decreased by 73% (Ppermanganate is well tolerated and significantly accelerates the healing process of diabetic foot ulcers.

  1. Effects of potassium hydroxide post-treatments on the field-emission properties of thermal chemical vapor deposited carbon nanotubes.

    Science.gov (United States)

    Lee, Li-Ying; Lee, Shih-Fong; Chang, Yung-Ping; Hsiao, Wei-Shao

    2011-12-01

    In this study, a simple potassium hydroxide treatment was applied to functionalize the surface and to modify the structure of multi-walled carbon nanotubes grown on silicon substrates by thermal chemical vapor deposition. Scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive spectrometry were employed to investigate the mechanism causing the modified field-emission properties of carbon nanotubes. From our experimental data, the emitted currents of carbon nanotubes after potassium hydroxide treatment are enhanced by more than one order of magnitude compared with those of untreated carbon nanotubes. The emitted current density of carbon nanotubes increases from 0.44 mA/cm2 to 7.92 mA/cm2 after 30 minutes KOH treatment. This technique provides a simple, economical, and effective way to enhance the field-emission properties of carbon nanotubes.

  2. Effective extractants for the extraction of lithium from aqueous solutions containing sodium and potassium compounds

    International Nuclear Information System (INIS)

    Marinkina, G.A.; Zanina, A.S.; Shergina, S.I.; Sokolov, I.E.; Kotlyarevskii, I.L.

    1992-01-01

    The extraction power of newly obtained pure methoxy-1,3-diketones in diluents and in their mixtures with electron-donating additives during the extraction of lithium from aqueous solutions containing sodium and potassium was investigated. High separation factors were obtained; no appreciable amounts of sodium and potassium were found in the extract after total extraction of the lithium. 9 refs., 2 figs., 8 tabs

  3. Evaluating Status Change of Soil Potassium from Path Model

    Science.gov (United States)

    He, Wenming; Chen, Fang

    2013-01-01

    The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K). Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K), the chemical index of alteration (CIA), Soil Organic Matter in soil solution (SOM), Na and total nitrogen in soil solution (TN), and key indirect factors were Carbonate (CO3), Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK), Non-exchangeable potassium (neK) and water-soluble potassium (wsK) under influences of specific environmental parameters. In reversible equilibrium state of , K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of , K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth. PMID:24204659

  4. Comparison studies of surface cleaning methods for PAN-based carbon fibers with acetone, supercritical acetone and subcritical alkali aqueous solutions

    International Nuclear Information System (INIS)

    Meng Linghui; Fan Dapeng; Huang Yudong; Jiang Zaixing; Zhang Chunhua

    2012-01-01

    Highlights: ► Cleaning with supercritical acetone is appropriate to wipe off the oxygenated contaminants. ► Cleaning with supercritical acetone causes smaller damage to bulk strength of carbon fibers. ► Cleaning with subcritical alkali aqueous solution can thoroughly remove silicious contaminants. - Abstract: Four kinds of polyacrylonitrile-based carbon fibers were cleaned by three methods and were characterized by X-ray photoelectron spectroscopy, monofilament tensile strength test and atomic force microscopy (AFM). Experimental results of these tests reveal that the method using supercritical acetone or subcritical potassium hydroxide aqueous solution act as the processing medium shows a better cleaning effect compared to the traditional method, Soxhlet extraction with acetone. The method using supercritical acetone is more appropriate to wipe off the oxygenated contaminants on carbon fibers’ surfaces and causes a relatively smaller damage to the bulk strength of each carbon fiber. As far as treating method using the subcritical alkali aqueous solution, it can thoroughly remove silicious contaminants on the surfaces of treated fibers.

  5. Evaluating status change of soil potassium from path model.

    Directory of Open Access Journals (Sweden)

    Wenming He

    Full Text Available The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K. Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K, the chemical index of alteration (CIA, Soil Organic Matter in soil solution (SOM, Na and total nitrogen in soil solution (TN, and key indirect factors were Carbonate (CO3, Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK, Non-exchangeable potassium (neK and water-soluble potassium (wsK under influences of specific environmental parameters. In reversible equilibrium state of [Formula: see text], K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of [Formula: see text], K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth.

  6. Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for high rate performance supercapacitors

    Science.gov (United States)

    Liu, Zheng; Zeng, Ying; Tang, Qunli; Hu, Aiping; Xiao, Kuikui; Zhang, Shiying; Deng, Weina; Fan, Binbin; Zhu, Yanfei; Chen, Xiaohua

    2017-09-01

    Ultrahigh graphitized carbon microspheres with rich hierarchical pores (AGHPCM-1) have been successfully synthesized through the one-step activation-carbonization strategy (OACS) with porous sulfonated poly-divinylbenzene as the carbon precursor, iron as the hard template and catalyst, and potassium hydroxide (KOH) as activation agent. Through the XRD, TEM, Raman and BET analysis, AGHPCM-1 shows very high graphitization degree and rich micro-, meso- and macro-pores. More importantly, the mechanism for KOH to improve the graphitization degree of carbon materials in OACS has been illustrated by the thermodynamical theory. The tremendous heat releasing from the reaction between the catalyst precursor of Fe2O3 and potassium vapor plays a key role in the formation of graphitized carbon. It may provide a general direction to prepare highly graphitized porous carbon at a moderate temperature. Integrating the advantages of high graphitization degree and rich hierarchical porous structure, the AGHPCM-1 exhibits an excellent rate performance with a response to up to the high current density of 150 A g-1 and high scan rate of 2000 mV s-1. No obvious capacitance decay can be observed after 10000 charge/discharge cycles even at the high current density of 20 A g-1.

  7. Dependence of the concentrations of "1"3"7Cs and potassium in extracted soil solutions on soil humidity before centrifugation

    International Nuclear Information System (INIS)

    Prorok, V.V.; Datsenko, O.Yi.; Bulavyin, L.A.; Zlens'kij, S.Je.; Melnichenko, L.Yu.; Rozuvan, S.G.; Poperenko, L.V.; White, P.J.

    2017-01-01

    Concentrations of 137Cs and potassium in solutions extracted by centrifugation from soils selected at some experimental sites in the 10-km Exclusion Zone of Chornobyl Nuclear Plant were determined. The results showed that for the majority of investigated soils, the concentration of 137Cs in soil solution depends on the humidity of the soil before centrifugation. It is possible to explain the dependence of the concentration of 137Cs in the soil solution on soil humidity from the dependence of the concentrations of molecules of different molecular-gravimetric fractions in soil solution on soil humidity. Considerable amount of 137Cs in soil solution is associated with these molecules, that is why the concentration of 137Cs in the extracted soil solution changes with the humidity of soil. These dependences differ between soils. For the majority of investigated soils the concentration of 137Cs in the extracted soil solution increases with increasing humidity of the soil. By contrast, soil humidity had no effect on the potassium concentration in the extracted soil solution for any soil investigated. It is concluded, that potassium is practically not associated with molecules of different molecular-gravimetric fractions in the extracted soil solutions

  8. Performance Evaluation of Refractory Composite Coatings in Potassium Rich Environment

    Directory of Open Access Journals (Sweden)

    Kristina BRINKIENĖ

    2016-09-01

    Full Text Available A laboratory scale method was used to study the performance of reinforced cement composites in potassium rich environment of biomass combustion. Buckwheat husk (BH was used as potential source of unexploited biomass product applicable as biomass derived fuel. In order to enhance the alkali effect on the properties of the investigated materials, the solution of potassium carbonate (K2CO3 was selected as potassium rich aggressive environment. Two reinforced cement composites as potential repair coatings for restoration of damaged refractory surfaces with different composition of aggregate were used in corrosion tests. Performance of refractory coatings was evaluated by analysing the microstructure of the treated composites as well as mechanical properties. Energy-dispersive X-ray spectroscopy (SEM/EDS and optical microscopy were used to study the microstructure in the corroded region of the refractory coatings. Long term studies in the solution of 1M K2CO3 for 56 months have demonstrated that composite with the additive of fluid cracking catalyst of oil refinery and petrochemical industries is more durable in the potassium rich environment.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.8348

  9. Enthalpy of solution of potassium iodide in the water-formamide-dimethyl sulfoxide mixtures

    International Nuclear Information System (INIS)

    Belova, L.N.; Solov'ev, S.N.; Vorob'ev, A.F.

    1985-01-01

    Solution enthalpies are measured for potassium iodide in the water-formamide-dimethyl sulfoxide mixtures in a sealed oscillating calorimeter with an isothermal shell at a constant water molar fraction equal to 0.3; 0.5 and 0.7 at 298.15 K. A diagram of the dependence of solution enthalpies on the of mixed solvent composition is plotted. Deviations of experimental solution enthalpies from the calculated ones are negative over the entire concentration range studied, which testifies to the preferable solvatation of electrolyte by the formid and dimthyl sulfoxide molecules

  10. Method for ion exchange purification of sodium iodide solution from heavy metals and potassium microimpurities

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Kachur, N.Ya.; Kostromina, O.N.; Ogorodnikova, A.A.; Khajnakov, S.A.

    1990-01-01

    A method of deep ion exchange purification of sodium iodide solution from heavy metals (iron, nickel, copper, lead) and potassium microimpurities is developed. The method includes multiple sorption of microimpurities on titanium phosphate with their subsequent desorption by sorbent processing with a solution with a solution of 3-6 N nitric acid, first, and then with a neutral solution of 2 % sodium thiosulfate. The given method permits to increase the purification degree of sodium iodide solution by 25-30 %. 2 tabs

  11. 21 CFR 184.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... acid with potassium hydroxide or potassium carbonate. It occurs as transparent crystals or a white... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS...

  12. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg...

  13. Potassium fluorotitanate preparation

    International Nuclear Information System (INIS)

    Perillo, Patricia; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    In order to determine the best conditions for potassium fluotitanate preparation as intermediate step in the electrolytic production of metalic titanium, the effects of a number of experimental variables have been studied. This method is a process of sintering titanium dioxide with potassium fluosilicate and potassium chloride, followed by leaching with boiling water and further crystallization by cooling the solution. An overall yield of 90% has been attained under the following conditions: working temperature: 750 deg C; heating time for sintering: 3 hours; molar ratio: titanium dioxide: potassium fluosilicate: potassium chloride: 1 : 2 : 0.4; number of leachings: 6. (Author) [es

  14. Heavy metal toxicities in vegetable crops. VI. The effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, T; Ikeda, H

    1977-01-01

    Eight species of vegetable crops were grown in solution culture in order to investigate the effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops. Manganese was supplied at levels of 0.5, 30, and 100 ppm. At each manganese level potassium or calcium was supplied at rates of 2, 6, and 18 me/l. The pH of the nutrient solution was adjusted to 5. Manganese excess induced interveinal chlorosis on upper leaves in bean, eggplant, pepper, and spinach, and marginal chlorosis on lower leaves in cabbage, lettuce, and celery. In Welsh onions chlorosis was induced on lower leaves. Increasing the supply of potassium and calcium reduced the severity of manganese-induced chlorosis. This beneficial effect was generally more marked with calcium than with potassium. Increasing the supply of potassium and calcium was effective in alleviating the growth reduction of vegetable crops due to manganese excess. This effect also was more marked with calcium than with potassium. With increasing manganese level in the nutrient solution the manganese concentration in leaves of vegetable crops increased. Increasing the supply of potassium and calcium inhibited excessive accumulation of manganese in leaves. The influence of calcium was stronger than that of potassium. In any of the vegetable crops tested, regardless of potassium and calcium treatments, manganese concentration in leaves was closely related to manganese toxicities; the more the accumulation of manganese in leaves increased, the more the severity of manganese-induced chlorosis and growth reduction increased.

  15. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II redox active electrolyte

    Directory of Open Access Journals (Sweden)

    Katja Magdić

    2016-04-01

    Full Text Available Different types of charge storage mechanisms at unmodified graphite vs. glassy carbon electrodes in acid sulphate supporting solution containing potassium hexacyanoferrate (II redox active electrolyte, have been revealed by electrochemical impedance spectroscopy and supported by cyclic voltammetry experiments. Reversible charge transfer of Fe(CN63-/4- redox reaction detected by assessment of CVs of glassy carbon electrode, is in impedance spectra indicated by presence of bulk diffusion impedance and constant double-layer/pseudocapacitive electrode impedance compared to that measured in the pure supporting electrolyte. Some surface retention of redox species detected by assessment of CVs of graphite electrode is in impedance spectra indicated by diffusion impedance coupled in this case by diminishing of double-layer/pseudo­capacitive impedance compared to that measured in the pure supporting electrolyte. This phenomenon is ascribed to contribution of additional pseudocapacitive impedance generated by redox reaction of species confined at the electrode surface.

  16. Transport properties of a potassium-doped single-wall carbon nanotube rope

    International Nuclear Information System (INIS)

    Lee, R. S.; Kim, H. J.; Fischer, J. E.; Lefebvre, J.; Radosavljevic, M.; Hone, J.; Johnson, A. T.

    2000-01-01

    Four-probe resistance vs temperature and gate voltage are reported for an individual single-wall carbon nanotube rope before and after doping in situ with potassium. All the features in R(T) from unoriented bulk material, before and after doping, are qualitatively reproduced by the rope data. The 5.3 K conductance of the pristine rope decreases with positive gate voltage, while G vs V g becomes featureless after K doping. (c) 2000 The American Physical Society

  17. A method for the determination of free nitric acid in aqueous plutonium nitrate solutions - potassium fluoride method

    International Nuclear Information System (INIS)

    Mair, M.A.

    1988-06-01

    Plutonium IV and VI, and certain other hydrolysable metals which may be present, are converted to non-interfering species by the addition of the sample to potassium fluoride solution. The free acid is then titrated with standard sodium hydroxide solution using phenolphthalein as an indicator. (author)

  18. Quantitative determination of americium and curium in solutions using potassium tungstophosphate

    International Nuclear Information System (INIS)

    Chistyakov, V.M.; Baranov, A.A.; Erin, E.A.; Timoaeev, G.A.

    1990-01-01

    Two methods of americium (4) and curium (4) titration-replacement and redox ones - have been considered. According to the replacement method thorium nitrate solution was used as a titrant and the final point of titration was determined spectophotometrically. Using the method developed, on the basis of experimental data, the composition of thorium (4) complex with potassium tungstophosphate was determined. In case of the redox titration sodium nitrite was used, and the final titration point was indicated either spectrophotometrically or potentiometrically

  19. A Moessbauer study on the photolysis of potassium trisoxalatoferrate(III) in solid and solutions

    International Nuclear Information System (INIS)

    Sato, H.; Tominaga, T.

    1977-01-01

    The photolysis of potassium trisoxalatoferrate(III) in solid and aqueous solutions was studied by Moessbauer spectroscopy. A ferrous species was mainly detected as an intermediate product in the photoirradiated solutions. A tentative mechanism was proposed for the overall reactions in and after the photolysis of this compound. The Moessbauer spectra were measured with a Hitachi AA-40 or Shimadzu MEG-2 Moessbauer spectrometer against Co-57 in copper foil. Acrylic holders (32 mm in diameter) were used for measurements of solutions: the irradiated solution was quickly frozen before measurement by adding it dropwise into the acrylic holder which had been cooled with liquid nitrogen or dry-ice. (T.I.)

  20. Crystallization characteristics of ammonium uranyl carbonate (AUC) in ammonium carbonate solutions

    International Nuclear Information System (INIS)

    Kim, T.J.; Jeong, K.C.; Park, J.H.; Chang, I.S.; Choi, C.S.

    1994-01-01

    Ammonium carbonate solutions with an excessive amount of NH 3 were produced in a commercial AUC (ammonium uranyl carbonate) conversion plant. In this study the AUC crystals, precipitated with uranyl nitrate and ammonium carbonate solutions prepared in the laboratory, were characterized to determine the feasibility of recycling ammonium carbonate solution. The AUC crystals were easily agglomerated with the increasing concentration of CO 3 2- and mole ratio of NH 4 + /CO 3 2- in ammonium carbonate solution. Effects of a mixing system for the solution in the AUC crystallizer and the feed location of the solution onthe agglomeration of AUC crystals were also studied along with the effects of agglomerated AUC powders on UO 2 powders. Finally, the feasibility of manufacturing UO 2 fuel with a sintered pellet density of 10.52 g/cm 3 , using the AUC powders generated in this experiment, was demonstrated. (orig.)

  1. Potassium nutrition and water availability affect phloem transport of photosynthetic carbon in eucalypt trees

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo; Trivelin, Paulo; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2015-04-01

    Potassium fertilisation strongly affects growth and carbon partitioning of eucalypt on tropical soil that are strongly weathered. In addition, potassium fertilization could be of great interest in mitigating the adverse consequences of drought in planted forests, as foliar K concentrations influence osmotic adjustment, stomatal regulation and phloem loading. Phloem is the main pathway for transferring photosynthate from source leaves to sink organs, thus controlling growth partitioning among the different tree compartments. But little is known about the effect of potassium nutrition on phloem transport of photosynthetic carbon and on the interaction between K nutrition and water availability. In situ 13C pulse labelling was conducted on tropical eucalypt trees (Eucalyptus grandis L.) grown in a trial plantation with plots in which 37% of throughfall were excluded (about 500 mm/yr) using home-made transparent gutters (-W) or not (+W) and plots that received 0.45 mol K m-2 applied as KCl three months after planting (+K) or not (-K). Three trees were labelled in each of the four treatments (+K+W, +K-W, -K+W and -K-W). Trees were labelled for one hour by injecting pure 13CO2 in a 27 m3 whole crown chamber. We estimated the velocity of carbon transfer in the trunk by comparing time lags between the uptake of 13CO2 and its recovery in trunk CO2 efflux recorded by off axis integrated cavity output spectroscopy (Los Gatos Research) in two chambers per tree, one just under the crown and one at the base of the trunk. We analyzed the dynamics of the label recovered in the foliage and in the phloem sap by analysing carbon isotope composition of bulk leaf organic matter and phloem extracts using an isotope ratio mass spectrometer. The velocity of carbon transfer in the trunk and the initial rate 13C disappearance from the foliage were much higher in +K trees than in -K trees with no significant effect of rainfall. The volumetric flow of phloem, roughly estimated by multiplying

  2. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    Science.gov (United States)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Serial change of perilymphatic potassium ion concentration in the scala tympani after introducing KCl-solution into the guinea pigs' tympanic cavity].

    Science.gov (United States)

    Ikeno, K

    1990-09-01

    Characteristic nystagmus similar to the Meniere's attack could be observed after introducing KCl solution into the tympanic cavity of guinea pigs. To confirm the fact that this nystagmus was provoked by the high perilymphatic potassium ion concentration, the K+ activity of perilymph was recorded serially through the K+ specific microelectrode inserted into the scala tympani. The rapid increment of K+ activity reached maximum at 120 minutes after introducing KCl solution, and then it decreased gradually to a half of the maximum activity. However, such change of perilymphatic potassium ion concentration was not observed by introducing sucrose solution as control.

  4. The inhibitory effects of potassium chloride versus potassium silicate application on 137Cs uptake by rice

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-01-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of 137 Cs by rice plants in two pot experiments. The 137 Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K + ) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K + concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K + for rice plants in the soil, which led to a greater uptake of 137 Cs after the potassium silicate application than after the application of potassium chloride. The 137 Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. - Highlights: • Potassium application reduced 137 Cs uptake by rice grown in pot experiments. • Readily available K fertilizer more effectively decreased brown rice 137 Cs concentration. • Potassium should be applied before heading to reduce brown rice 137 Cs concentration.

  5. NuLYTELY (PEG 3350, sodium chloride, sodium bicarbonate and potassium chloride for oral solution).

    Science.gov (United States)

    Swartz, M L

    1992-02-01

    NuLYTELY (PEG 3350, Sodium Chloride, Sodium Bicarbonate, and Potassium Chloride for Oral Solution), a product from Braintree Laboratories, Inc. is a modification of GoLYTELY (PEG 3350 and Electrolytes for Oral Solution) that has been found to have the same therapeutic advantages in terms of safety, efficacy, speed and patient acceptance. This product was developed to improve upon the taste of GoLYTELY. NuLYTELY represents an effective alternative for bowel cleansing prior to colonoscopy that may be more acceptable to some patients.

  6. Distribution of droplet sizes for seed solution

    International Nuclear Information System (INIS)

    Marwah, R.K.; Dixit, N.S.; Venkataramani, N.; Rohatgi, V.K.

    In open cycle MHD power generation, power is generated by passing seeded hot combustion products of a fossil fuel through a magnetic field. Seeding is done with a salt which is readily ionizable, preferably in the form of an aqueous solution, such as potassium carbonate, potassium sulphate, etc. Methods of atomization and the theoretical drop size calculations are presented. Basic parameters necessary for droplet size determination and their measurement are also described. (K.B.)

  7. Reduction of potassium permanganate solution by γ-irradiated sodium chloride [Paper No. RD-21

    International Nuclear Information System (INIS)

    Phansalkar, V.K.; Ravishankar, D.

    1982-01-01

    The dissolution of γ-irradiated sodium chloride in potassium permanganate solution results in the reduction of MnO 4 - ions. This has been inferred from spectrophotometric studies. This has been explained on the basis of interaction of colour centres with MnO 4 - ions. The extent to which MnO 4 - ions are reduced are found to vary with

  8. Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M A; D' Auria, R; Kuo, I W; Krisch, M J; Starr, D E; Bluhm, H; Tobias, D J; Hemminger, J C

    2008-04-23

    X-ray photoemission spectroscopy operating under ambient pressure conditions is used to probe ion distributions throughout the interfacial region of a free-flowing aqueous liquid micro-jet of 6 M potassium fluoride. Varying the energy of the ejected photoelectrons by carrying out experiments as a function of x-ray wavelength measures the composition of the aqueous-vapor interfacial region at various depths. The F{sup -} to K{sup +} atomic ratio is equal to unity throughout the interfacial region to a depth of 2 nm. The experimental ion profiles are compared with the results of a classical molecular dynamics simulation of a 6 M aqueous KF solution employing polarizable potentials. The experimental results are in qualitative agreement with the simulations when integrated over an exponentially decaying probe depth characteristic of an APPES experiment. First principles molecular dynamics simulations have been used to calculate the potential of mean force for moving a fluoride anion across the air-water interface. The results show that the fluoride anion is repelled from the interface, and this is consistent with the depletion of F{sup -} at the interface revealed by the APPES experiment and polarizable force field-based molecular dynamics simulation. Together, the APPES and MD simulation data provide a detailed description of the aqueous-vapor interface of alkali fluoride systems. This work offers the first direct observation of the ion distribution at a potassium fluoride aqueous solution interface. The current experimental results are compared to those previously obtained for saturated solutions of KBr and KI to underscore the strong difference in surface propensity between soft/large and hard/small halide ions in aqueous solution.

  9. Solubility of hydrogen in aqueous solutions of sodium and potassium bicarbonate from 293 to 333 K

    NARCIS (Netherlands)

    Engel, D.C.; Engel, D.C.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1996-01-01

    An experimental study is presented of the hydrogen solubility in aqueous salt solutions containing sodium and potassium bicarbonate from 293 to 333 K. For this purpose, gas consumption measurements have been performed by determining the ultimate pressure decrease in an intensively stirred, high

  10. Solubility of Hydrogen in Aqueous Solutions of Sodium and Potassium Bicarbonate from 293 to 333 K

    NARCIS (Netherlands)

    Engel, Dico C.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1996-01-01

    An experimental study is presented of the hydrogen solubility in aqueous salt solutions containing sodium and potassium bicarbonate from 293 to 333 K. For this purpose, gas consumption measurements have been performed by determining the ultimate pressure decrease in an intensively stirred, high

  11. Oral potassium supplementation in surgical patients.

    Science.gov (United States)

    Hainsworth, Alison J; Gatenby, Piers A

    2008-08-01

    Hospital inpatients are frequently hypokalaemic. Low plasma potassium levels may cause life threatening complications, such as cardiac arrhythmias. Potassium supplementation may be administered parenterally or enterally. Oral potassium supplements have been associated with oesophageal ulceration, strictures and gastritis. An alternative to potassium salt tablets or solution is dietary modification with potassium rich food stuffs, which has been proven to be a safe and effective method for potassium supplementation. The potassium content of one medium banana is equivalent to a 12 mmol potassium salt tablet. Potassium supplementation by dietary modification has been shown to be equally efficacious to oral potassium salt supplementation and is preferred by the majority of patients. Subsequently, it is our practice to replace potassium using dietary modification, particularly in surgical patients having undergone oesophagogastrectomy or in those with peptic ulcer disease.

  12. Treatment of pediatric molluscum contagiosum with 10% potassium hydroxide solution.

    Science.gov (United States)

    Can, Burce; Topaloğlu, Filiz; Kavala, Mukaddes; Turkoglu, Zafer; Zindancı, Ilkin; Sudogan, Sibel

    2014-06-01

    Molluscum contagiosum (MC) is a common cutaneous viral infection of the skin that is frequently seen in children. Although lesions can resolve spontaneously, treatment is mandatory because of the psychological effect of widespread lesions in children. Potassium hydroxide (KOH) is a strong alkali that has been used by dermatologists for a long time in identifying the fungal infections from skin scrapings. We evaluated 40 children with MC for the safety and efficacy of treatment with topical 10% KOH aqueous solution. Parents were instructed to apply a 10% KOH aqueous solution, twice daily, with a cotton stick to all lesions. Treatment was continued till the lesions showed signs of inflammation or superficial ulceration. Assessments of response and side effects were performed at the end of week 2, week 4, week 8 and week 12. We found complete clearance of lesions in 37 (92.5%) patients receiving topical 10%KOH solution after a mean period of four weeks. Three children dropped out of the study; two children reported severe stinging of the lesions and discontinued the treatment; the other patient developed hypopigmentation during the treatment. Local side effects were observed in 12 children (32.4%). Even though 10% KOH solution is associated with some local side effects, it is a safe, effective, inexpensive and noninvasive alternative treatment of MC in children.

  13. Electrochemical polymerization of furfural on a platinum electrode in aqueous solutions of potassium biphthalate

    Directory of Open Access Journals (Sweden)

    Jorge Luiz Joaquim Hallal

    2005-03-01

    Full Text Available Three different electrochemical methods confirm the growth processes of polyfurfural on platinum electrodes in aqueous solutions. The electrochemical oxidative polymerization of furfural occurs only with 0.10 mol L-1 potassium biphthalate as the supporting electrolyte. Electrochemical and spectroscopic methods are employed to characterize the polymeric film produced. Based on spectroscopic data, a polymeric structure involving furfural and biphthalate anions is discussed.

  14. Computational study on potassium picrate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Xue-Hai; Lu, Ya-Lin; Ma, Xiu-Fang; Xiao, He-Ming [Department of Chemistry, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2006-08-15

    DFT calculation at the B3LYP level was performed on crystalline potassium picrate. The frontier bands are slightly fluctuant. The energy gap between the highest occupied crystal orbital (HOCO) and the lowest unoccupied crystal orbital (LUCO) is 0.121 a.u. (3.29 eV). The carbon atoms that are connected with the nitro groups make up the narrow lower energy bands, with small contributions from nitro oxygen and phenol oxygen. The higher energy bands consist of orbitals from the nitro groups and carbon atom. The potassium bears almost 1 a.u. positive charge. The potassium forms ionic bonding with the phenol oxygen and the nitro oxygen at the same time. The crystal lattice energy is predicted to be -574.40 kJ/mol at the B3LYP level determined with the effective core pseudopotential HAYWSC-31G basis set for potassium and 6-31G** basis set for other atoms. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  15. Study of Activated Carbons by Pyrolysis of Mangifera Indica Seed (Mango in Presence of Sodium and Potassium Hydroxide

    Directory of Open Access Journals (Sweden)

    J. C. Moreno-Piraján

    2012-01-01

    Full Text Available Activated carbons (ACs were prepared by pyrolysis of seeds mango in presence of sodium and potassium hydroxide (chemical activities. Seeds mango from Colombian Mango cultives were impregnated with aqueous solutions of NaOH and KOH following a variant of the incipient wetness method. Different concentrations were used to produce impregnation ratios of 3:1 (weight terms. Activation was carried out under argon flow by heating to 823 K with 1 h soaking time. The porous texture of the obtained ACs was characterized by physical adsorptions of N2 at 77 K and CO2 at 273 K. The impregnation ration and hydroxide type had a strong influence on the pore structure of these ACs, which could be easily controlled by simply varying the proportion of the hydroxides used in the activation. Thus, the development of porosity for precursors with low structural order (high reactivity is better with NaOH than KOH, whereas the opposite is observed for the highly ordered ones. Variable adsorption capacities and porosity distributions can be achieved depending on the activating agent selected. In general, KOH produces activated carbons with narrower micropore distributions than those prepared by NaOH.

  16. Rheological behaviour of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Banipal, Parampaul K., E-mail: pkbanipal@yahoo.co [Department of Chemistry, Guru Nanak Dev University, Amritsar 143005 (India); Chahal, Amanpreet K.; Singh, Vickramjeet [Department of Chemistry, Guru Nanak Dev University, Amritsar 143005 (India); Banipal, Tarlok S. [Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143005 (India)

    2010-08-15

    The viscosities, {eta} of mono-, di-, tri-saccharides and methylglycosides, viz., D(+)-xylose (XYL), D(-)-arabinose (ARA), D(-)-ribose (RIB), D(-)-fructose (FRU), D(+)-galactose (GAL), D(+)-mannose (MAN), D(+)-glucose (GLU), D(+)-melibiose (MEL), D(+)-cellobiose (CEL), D(+)-lactose monohydrate (LAC), D(+)-maltose monohydrate (MAL), D(+)-trehalose dihydrate (TRE), sucrose (SUC), D(+)-raffinose pentahydrate (RAF), {alpha}-methyl-D(+)-glucoside ({alpha}-Me-GLU), methyl-{alpha}-D-xylopyranoside (Me-{alpha}-XYL), and methyl-{beta}-D-xylopyranoside (Me-{beta}-XYL) in water and in (0.5, 1.0, 2.0, and 3.0) mol . kg{sup -1} aqueous solutions of potassium chloride (KCl) have been determined at T = (288.15, 298.15, 308.15, and 318.15) K from efflux time measurements by using a capillary viscometer. Densities used to determine viscosities have been reported earlier. The viscosity data have been utilized to determine the viscosity B-coefficients employing the Jones-Dole equation at different temperatures. From these data, the viscosity B-coefficients of transfer, {Delta}{sub t}B have been estimated for the transfer of various saccharides/methylglycosides from water to aqueous potassium chloride solutions. The {Delta}{sub t}B values have been found to be positive, whose magnitude increases with the increase in concentration of potassium chloride in all cases. The dB/dT coefficients, pair, {eta}{sub AB} and triplet, {eta}{sub ABB} viscometric interaction coefficients have also been determined. Gibbs free energies of activation and related thermodynamic parameters of activation of viscous flow have been determined employing Feakin's transition-state theory. The signs and magnitudes of various parameters have been discussed in terms of solute-solute and solute-solvent interactions occurring in these solutions. The effect of substitution of -OH by methoxy group, -OCH{sub 3} has also been discussed.

  17. Textural and chemical characterizations of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages.

    Science.gov (United States)

    Guo, Jia; Lua, Aik Chong

    2002-10-15

    Preparation and characterization of activated carbon from palm shell, a carbonaceous agricultural solid waste, by potassium hydroxide treatment at different stages were studied. The effects of activation temperature and chemical to sample ratio on the characteristics of the activated carbon were investigated. Fixed-bed adsorption of sulfur dioxide (SO(2)) gas was carried out to evaluate the adsorptive capacity of the samples. Desorption tests were conducted to verify the occurrence of chemisorption due to some surface functional groups or of chemical reaction between SO(2) and KOH. It was found that pre-impregnation of raw palm shell was involved in replacement of some hydrogen ions with potassium ions to form cross-linked complexes, which retarded the tar formation during carbonization, resulting in a relatively high yield. Moreover, these potassium ions accelerated the reaction as catalysts during gasification of chars by carbon dioxide. For chars with mid-impregnation, potassium hydroxide acted in two ways: (i) formation of metallic potassium by dehydration and (ii) conversion into potassium carbonate. Metallic potassium intercalated to the carbon matrix accounted for pore development and potassium carbonate layer prevented the sample from over burn-off. Post-impregnation of final products modified the textural characteristics of the sample as some pore entrances were blocked by chemicals. However, potassium hydroxide enhanced the amount of SO(2) uptaken via formation of potassium sulfite.

  18. Data on electrical properties of nickel modified potassium polytitanates compacted powders.

    Science.gov (United States)

    Goffman, V G; Gorokhovsky, A V; Gorshkov, N V; Fedorov, F S; Tretychenko, E V; Sevrugin, A V

    2015-09-01

    Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni(2+) ions and/or decorated by nickel oxides NiO x . This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH.

  19. Data on electrical properties of nickel modified potassium polytitanates compacted powders

    Directory of Open Access Journals (Sweden)

    V.G. Goffman

    2015-09-01

    Full Text Available Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni2+ ions and/or decorated by nickel oxides NiOx. This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH.

  20. Potassium sorbate-A new aqueous copper corrosion inhibitor

    International Nuclear Information System (INIS)

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-01-01

    This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH 3 CH=CHCH=CHCO 2 )) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface

  1. High temperature aqueous potassium and sodium phosphate solutions: two-liquid-phase boundaries and critical phenomena, 275-4000C; potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1981-12-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases nor liquid-liquid immiscibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators. 16 refs

  2. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Rochelle, Gary T; Seibert, Frank; Closmann, Fred; Cullinane, Tim; Davis, Jason; Goff, George; Hilliard, Marcus; McLees, John; Plaza, Jorge M; Sexton, Andrew; Wagener, David Van; Zu, Qing; Veawab, Amornvadee; Nainar, Manjula

    2007-08-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO3 promoted by piperazine (PZ). Pilot plant testing was performed in a 16.8-inch ID absorber and stripper with recirculation of air and CO{sub 2}. Three solvents (7 m MEA, 5 m K{sup +}/2.5 m PZ, and 6.4 m K{sup +}/1.6 m PZ) were tested in four campaigns with three different absorber packings. Pilot plant testing established that 5 m K{sup +}/2.5 m PZ requires two times less packing than 7 m MEA and three times less packing than 6.4 m K{sup +}/1.6 m PZ. A rigorous model of the thermodynamics and mass transfer was developed in the RateSep{trademark} block of AspenPlus{reg_sign}. The double matrix stripper reduces energy consumption by 5 to 15%. The best K{sup +}/PZ solvent, 4 m K{sup +}/4 m PZ, and the best process configuration, double matrix stripper with a double intercooled absorber, requires equivalent work of 40 kJ/mole CO{sub 2} to produce CO{sub 2} at 10 MPa. Inhibitor A is effective at reducing oxidative degradation over a wide range of metal concentrations and solvent types. Piperazine is resistant to oxidative degradation catalyzed by dissolved iron, but it oxidizes at rates comparable to monoethanolamine (MEA) in the presence of dissolved copper. The thermal degradation of MEA becomes significant at 120 C, but loaded piperazine solutions appear to be resistant to thermal degradation up to 135 C. The vapor pressure of PZ over typical lean solution at 40 C will be less than 25 ppm, which is less than the 40 ppm expected for MEA. Significant problems with foaming were encountered and alleviated by antifoamants in the pilot plant campaigns with K{sup +}/PZ. Potassium sulfate is not very soluble in 4 m K{sup +}/4 m PZ, so SO{sub 2} absorption and oxidation to sulfate in the bottom of the absorber may require operation with a slurry of potassium sulfate solids.

  3. Distribution of cadmium between calcium carbonate and solution, 2

    International Nuclear Information System (INIS)

    Kitano, Yasushi; Kanamori, Nobuko; Fujiyoshi, Ryoko

    1978-01-01

    The distribution coefficient of cadmium between calcite and solution has been measured in the calcium bicarbonate solution containing cadmium and chloride ions, which forms complexes with cadmium ions. It has been confirmed experimentally that cadmium carbonate is present as a solid solution between calcitic calcium carbonate and cadmium carbonate in the carbonate precipitate formed in the solution system. However, the constant value of the thermodynamic distribution coefficient of cadmium between calcite and solution has not been obtained experimentally in the calcium bicarbonate solution containing cadmium and chloride ions. It may have been caused by the very specific behavior of cadmium ions, but the exact reason remains unsolved and must be studied. (Kobatake, H.)

  4. Influence of fructose on the diffusion of potassium hydrogen phosphate in aqueous solutions at 25 °C

    International Nuclear Information System (INIS)

    Verissimo, Luis M.P.; Teigão, Joana M.M.; Ramos, M. Luísa; Burrows, Hugh D.; Esteso, Miguel A.; Ribeiro, Ana C.F.

    2016-01-01

    Highlights: • Diffusion coefficients of aqueous systems of fructose and potassium hydrogen phosphate measured with Lobo’s cell. • Influence of the fructose on the diffusion of potassium hydrogen phosphate. • Interactions between of hydrogen phosphate anion and fructose. - Abstract: Diffusion coefficients have been measured at 25 °C for potassium hydrogen phosphate (K_2HPO_4, 0.101 mol kg"−"1) in aqueous solutions containing various concentrations of fructose from (0.001 to 0.101) mol kg"−"1, using a conductimetric cell (the Lobo cell) coupled to an automatic data acquisition system. Significant effects of fructose were observed on the diffusion of K_2HPO_4 in these mixtures, which are attributed to the interaction between HPO_4"2"− anion (or other protonated forms) and fructose. Support for this comes from "1H and "1"3C NMR spectroscopy, which are compatible with binding between the anomeric forms of D-fructose and the HPO_4"2"− anion.

  5. Chromatographic behavior of carbonate complexes of lanthanides and of thorium in alumina

    International Nuclear Information System (INIS)

    Tomida, E.K.

    1977-01-01

    The chromatographic behavior of some rare earth elements and thorium on alumina is studied in order to evaluate the possibility of separation from concentration of trace rare earths from high-purity thorium compounds. The effect of some factors on complex thorium carbonate formation and the extent of thorium solubility in sodium and potassium carbonate solutions investigated. The sorption of rare earth elements and thoriuum on alumina from alkali carbonate solution is observed, despite the reports that alumina acts as a cation exchanger in alkali media and that thorium and rare earths form stable anionic carbonate complexes. The formation of these elements between alumina and potassium carbonate solutions is studied as a function of pH, carbonate concentration and metal ion concentration. Also the elution of rare earths from alumina is studied and the best results are obtained with mineral acids and EDTA plus alkali carbonate solutions. The effect of some parameters as column aging, mixed solvents, column treatment with organic solvents, temperature, aluant concentration is investigated. Attempting to understand this sorption mechanism, some experiments with strongly basic anion exchanger and cation exchangers of strongly acid and weakly acid type are accomplished. It is observed that there are significant differences, in some conditions, between the behavior of rare earths and of thorium, pointing our the possibility of separation of one lanthanide from others and of these from thorium [pt

  6. Determination of carbon in uranium and its compounds

    International Nuclear Information System (INIS)

    Perez-Garcia, M. M.

    1972-01-01

    This paper collects the analytical methods used our laboratories for the determination of carbon in uranium metal, uranate salts and the oxides, fluorides and carbides of uranium. The carbon is usually burned off in a induction or resistance oven under oxygen flow. The CO 2 is collected in barite solution. Where it is backtitrated with potassium biphthalate. (Author)

  7. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    DeVries, F.W.; Lawes, B.C.

    1981-01-01

    Ammonium carbonates are commonly used as the lixiviant for in-situ leaching of uranium ores. However this leads to the deposition of ammonium ions in the uranium ore formation and the problem of ammonia contamination of ground water which may find its way into the drinking water supply. The ammonia contamination of the ore deposit may be reduced by injecting an aqueous solution of a potassium salt (carbonate, bicarbonate, halide, sulfate, bisulfate, persulfate, or monopersulfate) into the deposit after mining has ceased

  8. Interomolecular interactions in diluted solutions of potassium iodocuprates (1) in dimethyl ether of diethylene glycol

    International Nuclear Information System (INIS)

    Gorodinskaya, Eh.Ya.; Mel'nikova, N.B.; Yurin, K.V.

    1991-01-01

    The role of donor solvent in the formation of potassium mononuclear iodocuprates (1) in the system CuI-KI-dimethyl ether of diethylene glycol has been considerd. The calculated values of enthalpy, free energy and entropy of viscous flow activation in the range of temperatures 298-318 K for the solutions testify to decomposition of the solvent structure. Negative deviations of mole volumes from the additivity rule characterized strong molecular interaction

  9. Relative bioavailability of diclofenac potassium from softgel capsule versus powder for oral solution and immediate-release tablet formulation.

    Science.gov (United States)

    Bende, Girish; Biswal, Shibadas; Bhad, Prafulla; Chen, Yuming; Salunke, Atish; Winter, Serge; Wagner, Robert; Sunkara, Gangadhar

    2016-01-01

    The oral bioavailability of diclofenac potassium 50 mg administered as a soft gelatin capsule (softgel capsule), powder for oral solution (oral solution), and tablet was evaluated in a randomized, open-label, 3-period, 6-sequence crossover study in healthy adults. Plasma diclofenac concentrations were measured using a validated liquid chromatography-mass spectrometry/mass spectrometry method, and pharmacokinetic analysis was performed by noncompartmental methods. The median time to achieve peak plasma concentrations of diclofenac was 0.5, 0.25, and 0.75 hours with the softgel capsule, oral solution, and tablet formulations, respectively. The geometric mean ratio and associated 90%CI for AUCinf, and Cmax of the softgel capsule formulation relative to the oral solution formulation were 0.97 (0.95-1.00) and 0.85 (0.76-0.95), respectively. The geometric mean ratio and associated 90%CI for AUCinf and Cmax of the softgel capsule formulation relative to the tablet formulation were 1.04 (1.00-1.08) and 1.67 (1.43-1.96), respectively. In conclusion, the exposure (AUC) of diclofenac with the new diclofenac potassium softgel capsule formulation was comparable to that of the existing oral solution and tablet formulations. The peak plasma concentration of diclofenac from the new softgel capsule was 67% higher than the existing tablet formulation, whereas it was 15% lower in comparison with the oral solution formulation. © 2015, The American College of Clinical Pharmacology.

  10. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    International Nuclear Information System (INIS)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying; Kim, Nayoung; Wang, Jing

    2015-01-01

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH 3 CO 2 NH 4 ) and sodium acetate (CH 3 CO 2 Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example

  11. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate

    International Nuclear Information System (INIS)

    Asakai, Toshiaki; Hioki, Akiharu

    2011-01-01

    Potassium iodate is often used as a reference material to standardize a sodium thiosulfate solution which is a familiar titrant for redox titrations. In the standardization, iodine (triiodide) liberated by potassium iodate in an acidic potassium iodide solution is titrated with a sodium thiosulfate solution. The iodine liberation process is significantly affected by the amount of acid, that of potassium iodide added, the waiting time for the liberation, and light; therefore, the process plays a key role for the accuracy of the titration results. Constant-voltage biamperometry with a modified dual platinum-chip electrode was utilized to monitor the amount of liberated iodine under several liberation conditions. Coulometric titration was utilized to determine the concentration of a sodium thiosulfate solution on an absolute basis. Potassium iodate was assayed by gravimetric titration with the sodium thiosulfate solution under several iodine liberation conditions. The liberation process was discussed from the changes in the apparent assay of potassium iodate. The information of the appropriate titration procedure obtained in the present study is useful for any analysts utilizing potassium iodate to standardize a thiosulfate solution.

  12. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Asakai, Toshiaki, E-mail: t-asakai@aist.go.jp [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3-9, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan); Hioki, Akiharu [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3-9, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan)

    2011-03-09

    Potassium iodate is often used as a reference material to standardize a sodium thiosulfate solution which is a familiar titrant for redox titrations. In the standardization, iodine (triiodide) liberated by potassium iodate in an acidic potassium iodide solution is titrated with a sodium thiosulfate solution. The iodine liberation process is significantly affected by the amount of acid, that of potassium iodide added, the waiting time for the liberation, and light; therefore, the process plays a key role for the accuracy of the titration results. Constant-voltage biamperometry with a modified dual platinum-chip electrode was utilized to monitor the amount of liberated iodine under several liberation conditions. Coulometric titration was utilized to determine the concentration of a sodium thiosulfate solution on an absolute basis. Potassium iodate was assayed by gravimetric titration with the sodium thiosulfate solution under several iodine liberation conditions. The liberation process was discussed from the changes in the apparent assay of potassium iodate. The information of the appropriate titration procedure obtained in the present study is useful for any analysts utilizing potassium iodate to standardize a thiosulfate solution.

  13. Resorcinol adsorption from aqueous solution over activated carbon

    International Nuclear Information System (INIS)

    Blanco, Diego A; Giraldo, Liliana; Moreno, Juan C

    2007-01-01

    In this paper, the adsorption behavior of Resorcinol a monohydroxylated phenol, poorly acid to 298 K, over activated carbon is analyzed by studying the solution's pH influence and the surface reduction in the adsorption process. To do this, an activated carbon of lignocellulose origin and a reduced activated carbon was used. The interaction solid solution is characterized by the analyses of adsorption in the isotherms to 298 K and pH values of 7. 00, 9.00 and 11.00 for a period of 48 hours. The capacity adsorption of activated carbons increases when the solution's pH decreases and the retained amount increases in the reduced coal to the pH of maximum adsorption.

  14. Metastable equilibrium for the quaternary system containing with lithium+potassium+magnesium+chloride in aqueous solution at 323K

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xudong; Yin, Qinghong; Jiang, Dongbo; Zeng, Ying [Chengdu University of Technology, Chengdu (China)

    2014-06-15

    The metastable equilibrium of the system contained with lithium, potassium, magnesium, and chloride in aqueous system was investigated at 323 K using an isothermal evaporation method. The isothermal experimental data and physicochemical properties, such as density and refractive index of the equilibrated solution, were determined. With the experimental results, the stereo phase diagram, the projected phase diagram, the water content diagram and the physicochemical properties versus composition diagrams were constructed. The projected phase diagram consists of three invariant points, seven univariant curves and five crystallization fields corresponding to single salts potassium chloride (KCl), lithium chloride monohydrate (LiCl·H{sub 2}O), bischofite (MgCl{sub 2}·6H{sub 2}O) and two double salts lithium carnallite (LiCl·MgCl{sub 2}·7H{sub 2}O) and potassium carnallite (KCl·MgCl{sub 2}·6H{sub 2}O). Salt KCl has the largest crystallization region; it contains almost 95% of the general crystallization field.

  15. Volumetric determination of methanol in ammonium uranil carbonate of nuclear purity

    International Nuclear Information System (INIS)

    Lorenzatto, R.L.

    1989-01-01

    The method developed allows to determine methanol in ammonium uranil carbonate (AUC) from a concentration of 0.01 % with great accuracy. The ammonium uranil carbonate is dissolved in pre-established volumes of a potassium dichromate and concentrated sulfuric acid standardized solution. Instantaneously, the methanol presents oxidates at formic acid, reducing an equivalent amount of dichromate. The remaining dichromate still present, is reduced by adding in excess a standardized solution of ferrous sulphate. The titration of this excess with a standardized solution of potassium permanganate, using ferrous o- phenanthroline as indicator, will give a net and sensitive final point which allows to obtain by a simple estimate the percentage of methanol in the analyzed sample with great precision. Besides, essays are included which were carried out with the aim of proving and putting into evidence in a practical way that the high volatility of the methanol contained in an ammonium uranil carbonate will be the main disadvantage causing errors in defect. Observations for those requesting these analyses and for analysts performing them are mentioned in order to minimize the error factor abovementioned. (Author) [es

  16. Behaviour of 29Si NMR and infrared spectra of aqueous sodium and potassium silica solutions as a function of (SiO2/M2+O) ratio

    International Nuclear Information System (INIS)

    Couty, R.; Fernandez, L.

    1996-01-01

    Sodium and potassium solutions of silica with silica concentration of 1,4 mo/kg and R ms = SiO 2 /M + 2 O ratios of 4.56 to 1.6 were obtained by depolymerization of amorphous silica gel in sodium and potassium hydroxide. Solutions have been characterized by 29 Si NMR and infrared spectroscopy. The results indicated that Na + and K + exhibit the same behaviour during the depolymerization of silica. (authors). 11 refs., 4 figs., 2 tabs

  17. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting

    International Nuclear Information System (INIS)

    Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung

    2016-01-01

    Highlights: • Nitrogen, phosphorus, and potassium contents in soil are substantially increased after the DOC washing. • The removal of Zn is dominated by proton replacement at pH 2.0, rather than by complexation with DOC. • The removal of Zn is dominated by DOC complexation between pH 3.0 and pH 5.0. - Abstract: A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg −1 in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L −1 DOC solution with a of pH 2.0 at 25 °C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH 4 + -N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively.

  18. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Po-Neng [Experimental Forest, National Taiwan University, Chushan, Nantou County, 55750, Taiwan (China); Tong, Ou-Yang [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Chiou, Chyow-San; Lin, Yu-An [Department of Environmental Engineering, National Ilan University, Ilan 26047, Taiwan (China); Wang, Ming-Kuang [Department of Animal Science, National Ilan University, Ilan 26047, Taiwan (China); Liu, Cheng-Chung, E-mail: ccliu@niu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan (China)

    2016-01-15

    Highlights: • Nitrogen, phosphorus, and potassium contents in soil are substantially increased after the DOC washing. • The removal of Zn is dominated by proton replacement at pH 2.0, rather than by complexation with DOC. • The removal of Zn is dominated by DOC complexation between pH 3.0 and pH 5.0. - Abstract: A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg{sup −1} in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L{sup −1} DOC solution with a of pH 2.0 at 25 °C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH{sub 4}{sup +}-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively.

  19. Efficient and facile fabrication of hierarchical carbon foams with abundant nanoscale pores for use in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Wei; Yang, Gui Jun; Yang, Tae Hyeon; Jung, Yong Ju [Dept. of Chemical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan (Korea, Republic of); Liu, Shan Tang [School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan (China)

    2017-03-15

    Hierarchical carbon foams (HCFs) with micro-, meso-, and macropores were successfully synthesized via a two-step process: (1) polymerization in oil-in-water (O/W) emulsions without any hard templates and (2) carbonization at 850°C. With the aim of both enhancing the stability of the emulsion and forming a micro- and mesoporous structure during the carbonization process, potassium citrate was introduced in an aqueous solution of resorcinol and formaldehyde. A series of HCFs were fabricated by changing the mass ratio of potassium citrate to total carbon sources from 0.25 to 1.5. The effect of potassium citrate on the porous structure of HCFs was investigated through nitrogen sorption tests. The prepared HCFs exhibited well-developed porous structures of micro-, meso- and macropores and high surface areas. The structural characteristics of the HCFs, including pore size distribution, surface area, and porosity, were significantly dependent on the amount of potassium citrate. It was concluded that potassium citrate greatly contributed to the formation of carbon foams with nano-sized pore structures and high porosity. Interestingly, it was found that when the mass ratio of potassium citrate to total carbon sources was 0.5, the HCFs showed the highest specific surface area (⁓1360 m{sup 2}/g). Furthermore, the capacitive performances of the HCFs were evaluated in a 6.0 M KOH aqueous solution using typical electrochemical methods such as cyclic voltammetry and galvanostatic charge/discharge tests. The capacitance of the HCFs tended to increase with the increase in surface area. In particular, the HCFs with the highest surface area also exhibited excellent electrochemical properties (high capacitance of 224 F/g at 1.0 A/g, high rate capability of 191 F/g at 10.0 A/g). These features may be attributed to both the resulting interconnected pore structure that is easily accessible to ions and the high surface area. We believe that this synthesis strategy can be easily

  20. Potassium and soot interaction in fast biomass pyrolysis at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Hofmann Larsen, Flemming; Shchukarev, Andrey

    2018-01-01

    2 reactivity was studied by thermogravimetric analysis. The XPS results showed that potassium incorporation with oxygen-containing surface groups in the soot matrix did not occur during high temperature pyrolysis. The potassium was mostly found as water-soluble salts such as KCl, KOH, KHCO3 and K2CO...... potassium amount was incorporated in the soot matrix during pyrolysis. Raman spectroscopy results showed that the carbon chemistry of biomass soot also affected the CO2 reactivity. The less reactive pinewood soot was more graphitic than herbaceous biomass soot samples with the disordered carbon structure...

  1. Separation and Precipitation of Nickel from Acidic Sulfate Leaching Solution of Molybdenum-Nickel Black Shale by Potassium Nickel Sulfate Hexahydrate Crystallization

    Science.gov (United States)

    Deng, Zhigan; Wei, Chang; Fan, Gang; Li, Xingbin; Li, Minting; Li, Cunxiong

    2018-02-01

    Nickel was separated and precipitated with potassium nickel sulfate hexahydrate [K2Ni(SO4)2·6H2O] from acidic sulfate solution, a leach solution from molybdenum-nickel black shale. The effects of the potassium sulfate (K2SO4) concentration, crystallization temperature, solution pH, and crystallization time on nickel(II) recovery and iron(III) precipitation were investigated, revealing that nickel and iron were separated effectively. The optimum parameters were K2SO4 concentration of 200 g/L, crystallization temperature of 10°C, solution pH of 0.5, and crystallization time of 24 h. Under these conditions, 97.6% nickel(II) was recovered as K2Ni(SO4)2·6H2O crystals while only 2.0% of the total iron(III) was precipitated. After recrystallization, 98.4% pure K2Ni(SO4)2·6H2O crystals were obtained in the solids. The mother liquor was purified by hydrolysis-precipitation followed by cooling, and more than 99.0% K2SO4 could be crystallized. A process flowsheet was developed to separate iron(III) and nickel(II) from acidic-sulfate solution.

  2. Thermogravimetric studies of high temperature reactions between potassium salts and chromium

    International Nuclear Information System (INIS)

    Lehmusto, J.; Lindberg, D.; Yrjas, P.; Skrifvars, B.-J.; Hupa, M.

    2012-01-01

    Highlights: ► K 2 CO 3 reacted with Cr 2 O 3 forming K 2 CrO 4 . ► Presence of chlorine did not alone explain the initiation of accelerated oxidation. ► More light was shed to the role of chromates in accelerated oxidation. ► Accelerated oxidation of chromia protected steels occurs in two consecutive stages. ► Both potassium and chloride are required, so that both stages of reaction occur. - Abstract: This study compares the high temperature reactions of potassium chloride (KCl) and potassium carbonate (K 2 CO 3 ), two salts found in fly ashes formed in biomass combustion, with both pure metallic chromium (Cr) and chromium oxide (Cr 2 O 3 ). The reactions were investigated with thermogravimetric measurements and the results discussed based on thermodynamic calculations. In simple terms: potassium chloride reacted with chromium forming potassium chromate (K 2 CrO 4 ) and chromium oxide. Potassium chloride did not react with chromium oxide. Potassium carbonate reacted with chromium oxide, but not with chromium. The presence of potassium is sufficient to initiate accelerated oxidation, but chloride is needed to sustain it.

  3. Modelling the dynamics of fish contamination by Chernobyl radiocaesium: an analytical solution based on potassium mass balance

    International Nuclear Information System (INIS)

    Koulikov, Alexei O.; Meili, Markus

    2003-01-01

    After the sudden fallout from the Chernobyl nuclear accident in 1986, activities and bioaccumulation factors of radiocaesium ( 137 Cs, 134 Cs) fluctuated strongly over several years before reaching quasi-equilibrium, with patterns significantly differing among organisms. To model these dynamic relaxation processes based on ecological mechanisms we developed mass balance equations for 137 Cs in an aquatic food chain on the following basis: (a) potassium acts as a biogeochemical analogue ('carrier') of caesium; (b) the concentration of potassium in fish and other animals is effectively constant; (c) the main source of potassium in freshwater fish is the dietary uptake. The model is applicable to linear food chains of any number of trophic levels, while solutions evaluated here include the following food chain compartments: water, invertebrates (fish food), non-piscivorous fish, and piscivorous fish. The activity concentration in the water, which is considered as the secondary source of 137 Cs, is described by multi-component first-order decay function, although two components (fast and slow) are often sufficient to provide agreement with empirical data. In every compartment the turnover rate of caesium is considered as a constant over time. The analytical solution of the model equations describes the 137 Cs activity concentration in every compartment as a series of exponential functions, of which some are derived from the source pattern, and the others determined by the 137 Cs turnover rate in each food chain compartment. The model was tested with post-Chernobyl data from several long-term studies in lakes and provided a reasonable description of important radioecological aspects

  4. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying [ETH Zurich, Institute of Environmental Engineering (Switzerland); Kim, Nayoung [EMPA, Building Energy Materials and Components (Switzerland); Wang, Jing, E-mail: jing.wang@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering (Switzerland)

    2015-10-15

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH{sub 3}CO{sub 2}NH{sub 4}) and sodium acetate (CH{sub 3}CO{sub 2}Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example.

  5. Studies on volumetric properties of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Banipal, Parampaul K. [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India)], E-mail: pkbanipal@yahoo.com; Chahal, Amanpreet K. [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India); Banipal, Tarlok S. [Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India)

    2009-04-15

    The standard partial molar volumes, V{sub 2}{sup {infinity}} at infinite dilution of monosaccharides; D(+)-xylose, D(-)-arabinose, D(-)-ribose, D(+)-mannose, D(+)-galactose, D(-)-fructose and D(+)-glucose, disaccharides; D(+)-melibiose, D(+)-cellobiose, D(+)-maltose monohydrate, D(+)-trehalose dihydrate, D(+)-lactose monohydrate and sucrose, trisaccharide; D(+)-raffinose pentahydrate, methylglycosides; {alpha}-methyl-D(+)-glucoside, methyl-{alpha}-D-xylopyranoside and methyl-{beta}-D-xylopyranoside have been determined in water and in aqueous solutions of potassium chloride (0.5, 1.0, 2.0, and 3.0) mol . kg{sup -1} at T = (288.15, 298.15, 308.15, and 318.15) K from density measurements employing a vibrating-tube densimeter. These results have been utilized to determine the corresponding standard partial molar volumes of transfer, {delta}{sub t}V{sub 2}{sup {infinity}} for the transfer of various saccharides from water to aqueous potassium chloride solutions. The standard transfer volumes have been found to be positive (except for {alpha}- and {beta}-methyl xylopyranosides in 0.5 mol . kg{sup -1} solutions of potassium chloride) whose magnitude increase with the concentration of potassium chloride as well as temperature for all the saccharides. Partial molar expansion coefficients, ({partial_derivative}V{sub 2}{sup {infinity}}/{partial_derivative}T){sub p} and the second derivative ({partial_derivative}{sup 2}V{sub 2}{sup {infinity}}/{partial_derivative}T{sup 2}){sub p} values have been estimated. Pair and higher order volumetric interaction coefficients have also been calculated from {delta}{sub t}V{sub 2}{sup {infinity}} by using the McMillan-Mayer theory. These parameters have been discussed in terms of the solute-cosolute interactions and are used to understand various mixing effects due to these interactions. The effect of substitution of -OH by glycosidic group, -OCH{sub 3} is also discussed. Attempt has also been made to discuss the stereochemical effects

  6. Double-blind, randomized, placebo-controlled trial of the use of topical 10% potassium hydroxide solution in the treatment of molluscum contagiosum.

    Science.gov (United States)

    Short, Katherine A; Fuller, L Claire; Higgins, Elisabeth M

    2006-01-01

    Molluscum contagiosum is a common viral infection of the skin that frequently affects children. Lesions take between 6 and 18 months to resolve spontaneously and are a source of great embarrassment to both caretakers and children, often affecting attendance at school and limiting social activity. Treatment options to date have been poorly tolerated by children but recent studies have suggested that potassium hydroxide may be beneficial. This double-blind, randomized, placebo-controlled study compared 10% potassium hydroxide with placebo (normal saline). Twenty patients, aged 2 to 12 years, were recruited. Parents applied a solution twice daily to lesional skin until signs of inflammation appeared. Children were examined by the same observer on days 0, 15, 30, 60, and 90. Seventy percent of children receiving topical potassium hydroxide cleared, compared with 20% in the placebo group. Further dosing studies are required to identify whether weaker concentrations of potassium hydroxide are as efficacious, with less irritancy.

  7. Stable carbon and nitrogen isotope ratios of sodium and potassium cyanide as a forensic signature.

    Science.gov (United States)

    Kreuzer, Helen W; Horita, Juske; Moran, James J; Tomkins, Bruce A; Janszen, Derek B; Carman, April

    2012-01-01

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. Upon analysis, a few of the cyanide samples displayed nonhomogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of the 65 cyanide samples, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples. © 2011 American Academy of Forensic Sciences.

  8. Kinetics of the exchange of oxygen between carbon dioxide and carbonate in aqueous solution

    International Nuclear Information System (INIS)

    Tu, C.K.; Silverman, D.N.

    1975-01-01

    A kinetic analysis of the exchange of oxygen between carbon dioxide and carbonate ion in alkaline, aqueous solutions is presented. The exchange was observed by placing 18 O-labeled carbonate, not enriched in 13 C, into solution with 13 C-enriched carbonate, not enriched in 18 O. The rate of depletion of 18 O from the 12 C-containing species and the rate of appearance of 18 O in the 13 C-containing species was measured by mass spectrometry. From these data, the second-order rate constant for the reaction between carbon dioxide and carbonate which results in the exchange of oxygen at 25 0 is 114 +- 11 M -1 sec -1 . It is emphasized that this exchange of oxygen between species of CO 2 in solution must be recognized in studies using 18 O labels to determine the fate of CO 2 in biochemical and physiological processes. (auth)

  9. Production of carbon-14 and preparation of some key precursors for labeling organic molecules

    International Nuclear Information System (INIS)

    Moriya, T.; Motoishi, S.

    1992-01-01

    Production of carbon-14 on 50 GBq scale has been performed by neutron irradiation of aluminium nitride target in the JMTR. This nuclide is separated in carbon dioxide form by combustion of the irradiated target at 1100degC with oxygen. The [ 14 C] carbon dioxide liberated thus is trapped in caustic solution and finally recovered as [ 14 C] barium carbonate. Some precursors useful for incorporating carbon-14 into a given organic molecule have been prepared. Precursors such as [1- 14 C] sodium acetate, [ 14 C] methanol and [ 14 C] potassium cyanide are prepared by rather conventional methods involving carbonation of methyl magnesium iodine, reduction of carbon dioxide with lithium aluminium hydride and reduction of carbonate with metallic potassium in the presence of ammonium salt, respectively. A catalytic polymerization of acetylene is used to prepare benzene. (author)

  10. Plutonium recovery from carbonate wash solutions

    International Nuclear Information System (INIS)

    Gray, J.H.; Reif, D.J.; Chostner, D.F.; Holcomb, H.P.

    1991-01-01

    540Periodically higher than expected levels of plutonium are found in carbonate solutions used to wash second plutonium cycle solvent. The recent accumulation of plutonium in carbonate wash solutions has led to studies to determine the cause of that plutonium accumulation, to evaluate the quality of all canyon solvents, and to develop additional criteria needed to establish when solvent quality is acceptable. Solvent from three canyon solvent extraction cycles was used to evaluate technology required to measure tributyl phosphate (TBP) degradation products and was used to evaluate solvent quality criteria during the development of plutonium recovery processes. 1 fig

  11. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 1. of ISO 7097 describes procedures for the determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with potassium dichromate and ISO 7097-2 uses a titration with cerium(IV)

  12. Glucosa-Insulin-Potassium (GIK) solution used with diabetic patients provides better recovery after coronary bypass operations.

    Science.gov (United States)

    Straus, Slavenka; Gerc, Vjekoslav; Kacila, Mirsad; Faruk, Custovic

    2013-01-01

    Tight blood glucose control has become a therapeutical goal for anesthetic management for patients scheduled for cardiac surgery, especially if they are diabetic patients. This study was created to confirm the benefits of intraoperative GIK solution usage during coronary bypass operation of diabetic patients. Patients with type 1 and 2 diabetes mellitus (DM) referred for coronary artery bypass grafting (CABG) were randomized to receive GIK solution (GIK--study group) in the first 24 hours intraoperatively or to receive official Clinical protocol without GIK solution (non GIK - control group). The primary clinical outcome was the cardiac index (CI) since it represents the most sensitive measure of cardiac work in the immediate postoperative period, and the secondary clinical outcomes were the glycemic control, insulin consumption, duration of mechanical ventilation (MV), potassium level and atrial fibrillation (AF) appearance. One hundred diabetic patients, divided into two groups, were included in the study. The cardiac index did not show a significant difference, although the study group had CI with only minor variations than those of the controlled group, hence the reason we considered the study group as the more stable. The atrial fibrillation showed a difference between two groups, with 14 (28%) patients with postoperative AF in the control group compared with 3 (6%) patients with postoperative AF in the study group. As potassium values were stable in study group, we concluded that it can be one of the reasons for less postoperative AF in this group. The duration of MV showed a significant difference (0,003) between the two groups as well. In the study group the average MV time was 534,38 minutes, compared with the control group with 749,20 minutes. The average value of glucose was 11.1 mmol/l in the control group vs. 9.8 mmol/l in the study group. The study group had less insulin consumption in order to maintain target glycemia (p = 0.001). In the non GIK

  13. Substoichiometric extraction and quantification of cobalt with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Rangamannar, B.; Prasad, K.S.S.

    1999-01-01

    A rapid and sensitive substoichiometric radiochemical procedure has been developed for the extraction of cobalt with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates. The relative extractabilities of the cobalt-xanthate complexes into chloroform and carbon tetrachloride were studied. Substoichiometric quantification methods were developed in each case and utilised to determine the cobalt content present in standard solutions as well as biological samples. (author)

  14. Soil transport parameters of potassium under a tropical saline soil condition using STANMOD

    Science.gov (United States)

    Suzanye da Silva Santos, Rafaelly; Honorio de Miranda, Jarbas; Previatello da Silva, Livia

    2015-04-01

    Environmental responsibility and concerning about the final destination of solutes in soil, so more studies allow a better understanding about the solutes behaviour in soil. Potassium is a macronutrient that is required in high concentrations, been an extremely important nutrient for all agricultural crops. It plays essential roles in physiological processes vital for plant growth, from protein synthesis to maintenance of plant water balance, and is available to plants dissolved in soil water while exchangeable K is loosely held on the exchange sites on the surface of clay particles. K will tend to be adsorbed onto the surface of negatively charged soil particles. Potassium uptake is vital for plant growth but in saline soils sodium competes with potassium for uptake across the plasma membrane of plant cells. This can result in high Na+:K+ ratios that reduce plant growth and eventually become toxic. This study aimed to obtain soil transport parameters of potassium in saline soil, such as: pore water velocity in soil (v), retardation factor (R), dispersivity (λ) and dispersion coefficient (D), in a disturbed sandy soil with different concentrations of potassium chlorate solution (KCl), which is one of the most common form of potassium fertilizer. The experiment was carried out using soil samples collected in a depth of 0 to 20 cm, applying potassium chlorate solution containing 28.6, 100, 200 and 500 mg L-1 of K. To obtain transport parameters, the data were adjusted with the software STANMOD. At low concentrations, interaction between potassium and soil occur more efficiently. It was observed that only the breakthrough curve prepared with solution of 500 mg L-1 reached the applied concentration, and the solution of 28.6 mg L-1 overestimated the parameters values. The STANMOD proved to be efficient in obtaining potassium transport parameters; KCl solution to be applied should be greater than 500 mg L-1; solutions with low concentrations tend to overestimate

  15. Study on corrosion of carbon steel in DEA aqueous solutions

    Science.gov (United States)

    Yang, Jun Han; Xie, Jia Lin; Zhang, Li

    2018-02-01

    Corrosion of carbon steel in the CO2 capture process using diethanolamine (DEA) aqueous solutions was investigated. The effects of the mass concentrations of DEA, solution temperature and CO2 loading on the corrosion rate of carbon steel were demonstrated. The experimental results provided comprehensive information on the appropriate concentration range of DEA aqueous solutions under which low corrosion of carbon steel can be achieved.

  16. The effect factors of potassium dihydrogen phosphate crystallization in aqueous solution

    Science.gov (United States)

    Zhou, Cun; Sun, Fei; Liu, Xuzhao

    2017-01-01

    The effects of cooling rate and pH on the potassium dihydrogen phosphate crystallization process were studied by means of batch crystallization process. The experiment shows that with the increase of cooling rate, the metastable zone width increase and the induction period decrease. When the pH is 3.0, the metastable zone width and induction period are both the minimum, while the crystallization rate is the highest. The crystallization products were characterized by scanning election microscope. Potassium Dihydrogen Phosphate (KDP) is a kind of excellent nonlinear optical materials, and belongs to tetragonal system, and ideal shape is aggregate of tetragonal prism and tetragonal dipyramid, the (100) cone is alternating accumulation by double positive ions and double negative ions [1-4]. The crystals of aqueous solution method to grow have large electro-optical nonlinear coefficient and high loser-damaged threshold, and it is the only nonlinear optical crystal could be used in inertial confinement fusion (ICF), KDP crystals are the ideal system to study the native defects of complex oxide insulating material [5-7]. With the development of photovoltaic technology, KDP crystals growth and performance have become a research focus worldwide [8, 9]. The merits of the crystallization process directly affect the quality of KDP products, so the study of the effect of crystallization conditions has an important significance on industrial production. This paper studied the change rule of metastable zone width, induction period, crystallization rate and particle size distribution in crystal process, and discussed the technical condition of KDP crystallization.

  17. Carbon dioxide absorbents containing potassium hydroxide produce much larger concentrations of compound A from sevoflurane in clinical practice.

    Science.gov (United States)

    Yamakage, M; Yamada, S; Chen, X; Iwasaki, S; Tsujiguchi, N; Namiki, A

    2000-07-01

    We investigated the concentrations of degraded sevoflurane Compound A during low-flow anesthesia with four carbon dioxide (CO(2)) absorbents. The concentrations of Compound A, obtained from the inspiratory limb of the circle system, were measured by using a gas chromatograph. In the groups administered 2 L/min fresh gas flow with 1% sevoflurane, when the conventional CO(2) absorbents, Wakolime(TM) (Wako, Tokyo, Japan) and Drägersorb(TM) (Dräger, Lübeck, Germany), were used, the concentrations of Compound A increased steadily from a baseline to 14.3 ppm (mean) and 13.2 ppm, respectively, at 2 h after exposure to sevoflurane. In contrast, when the other novel types of absorbents containing decreased or no potassium hydroxide/sodium hydroxide, Medisorb(TM) (Datex-Ohmeda, Louisville, CO) and Amsorb(TM) (Armstrong, Coleraine, Northern Ireland), were used, Compound A remained at baseline (potassium hydroxide/sodium hydroxide produce much larger concentrations of Compound A from sevoflurane in clinical practice. An absorbent containing neither potassium hydroxide nor sodium hydroxide produces the smallest concentrations of Compound A.

  18. stripping of uranium from DEHPA/TOPO solvent by ammonium carbonate solutions

    International Nuclear Information System (INIS)

    Khorfan, S.; Shino, O.; Wahood, A.; Dahdouh, A.

    2002-01-01

    Uranium is recovered from phosphoric acid by the DEHPA/TOPO process. In this process uranium is stripped from the loaded DEHPA/TOPO solvent in the second cycle by an ammonium carbonate solution. This paper studied stripping of uranium from 0.3 Mol DEHPA/0.075 Mol TOPO in kerosene by different ammonium carbonate solutions. The ammonium carbonate solutions tested were either made locally from ammonia and carbon dioxide gases or commercial and laboratory grades available on the market. A comparison was made between these carbonate solutions in terms of purity, stripping efficiency and phase separation. Both stripping and phase separation were carried out under different conditions of phase ratio and concentrations. The results obtained showed that ammonium carbonate prepared from direct synthesis of ammonia and carbon dioxide gases had a high purity and gave the same stripping yield as the laboratory grade. The phase separation was also slightly improved using a pure synthesized ammonium carbonate solution. the phase separation was found to be best at concentration of 0.5 Mol/L ammonium carbonate solution and at a phase A/O of 1/1 and a temperature of 50 degree centigrade. It was possible to obtain >99% yield by operating 2 stripping stages counter currently under these conditions. (authors)

  19. Field effects in graphene in an interface contact with aqueous solutions of acetic acid and potassium hydroxide

    Science.gov (United States)

    Butko, A. V.; Butko, V. Yu.; Lebedev, S. P.; Lebedev, A. A.; Kumzerov, Yu. A.

    2017-10-01

    For the creation of new promising chemical sensors, it is very important to study the influence of the interface between graphene and aqueous solutions of acids and alkalis on the transistor characteristics of graphene. Transistor structures on the basis of graphene grown by thermal decomposition of silicon carbide were created and studied. For the interface of graphene with aqueous solutions of acetic acid and potassium hydroxide in the transistor geometry, with a variation in the gate-to-source voltage, the field effect corresponding to the hole type of charge carriers in graphene was observed. It is established that an increase in the concentration of molecular ions in these solutions leads to an increase in the dependence of the resistance of the transistor on the gate voltage.

  20. Sustained-release diclofenac potassium-loaded solid lipid microparticle based on solidified reverse micellar solution: in vitro and in vivo evaluation.

    Science.gov (United States)

    Chime, Salome Amarachi; Attama, Anthony Amaechi; Builders, Philip F; Onunkwo, Godswill C

    2013-01-01

    To formulate sustained-release diclofenac potassium-loaded solid lipid microparticles (SLMs) based on solidified reverse micellar solution (SRMS) and to evaluate the in vitro and in vivo properties. SRMS consisting of mixtures of Phospholipon® 90H and Softisan® 154 were used to formulate diclofenac potassium-loaded SLMs. Characterization based on the particle size and morphology, stability and encapsulation efficiency (EE%) were carried out on the SLMs. In vitro release was carried out in simulated intestinal fluid (pH 7.5). Anti-inflammatory and ulcerogenic properties were studied using rats. Maximum EE% of 95%, 94% and 93% were obtained for SLMs formulated with SRMS 1:1, 2:1 and 1:2, respectively. In vitro release showed about 85-90% drug release at 13 h. Diclofenac potassium-loaded SLMs showed good anti-inflammatory and gastro-protective properties. Diclofenac potassium-loaded SLMs based on SRMS could be used orally or parenterally under controlled conditions, for once daily administration.

  1. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215 0 C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO 2 equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented

  2. Electrochemical formation of carbonated corrosion products on carbon steel in deaerated solutions

    International Nuclear Information System (INIS)

    Refait, Ph.; Bourdoiseau, J.A.; Jeannin, M.; Nguyen, D.D.

    2012-01-01

    Highlights: ► Green rust is electro-generated at low NaHCO 3 concentration (0.003 mol dm −3 ). ► Chukanovite and carbonated green rust are obtained in NaHCO 3 + Na 2 SO 4 deaerated electrolytes. ► The mechanisms of formation of carbonated corrosion products of carbon steel are specified. - Abstract: To investigate the nature and properties of carbonated rust layers, carbon steel electrodes were polarised anodically at a potential ∼100–200 mV higher than the open circuit potential in NaHCO 3 solutions (0.003, 0.1 and 1 mol dm −3 ) continuously deaerated by an argon flow. X-ray diffraction and μ-Raman spectroscopy were used to identify the electro-generated compounds. GR(CO 3 2− ) (=Fe II 4 Fe III 2 (OH) 12 CO 3 ·4H 2 O) is observed at 0.003 and 0.1 mol dm −3 NaHCO 3 whereas FeCO 3 is obtained at the largest concentration (1 mol dm −3 ). GR(CO 3 2− ) is accompanied by magnetite Fe 3 O 4 at the lowest NaHCO 3 concentration. The current density decreases to negligible values in each case, indicating that a passive film also forms independently of the nature of the carbonated compound. Experiments were performed similarly in solutions of NaHCO 3 and Na 2 SO 4 . Chukanovite Fe 2 (OH) 2 CO 3 could be obtained in solutions containing 0.03 mol dm −3 of each salt. In contrast with the results obtained in the solutions free of sulphate, the current density remains important during the formation of the rust layer

  3. Two-liquid-phase boundaries and critical phenomena at 275 to 4000C for high-temperature aqueous potassium phosphate and sodium phosphate solutions. Potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1982-01-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases or liquid-liquid immisibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators

  4. Evaluation of topical potassium hydroxide solution for treatment of plane warts.

    Science.gov (United States)

    Al-Hamdi, Khalil I; Al-Rahmani, Moutaz A A

    2012-01-01

    Plane wart is a common dermatological disease that is caused by human papilloma virus; although the rate of spontaneous recovery is high, it usually takes a long time to occur. Many modalities of treatments have been used but none of them proved to be uniformly effective. Potassium hydroxide (KOH) solution is a well-known keratolytic agent with many dermatological uses. To evaluate the efficacy and tolerability of topical KOH solution in the treatment of plane warts. A total of 250 patients with plane warts, consulting the department of Dermatology and Venereology of Basra Teaching Hospital between March 2008 and October 2009, were enrolled in this opened therapeutic trial study. Patients were divided into two age and sex cross-matched equal groups; patients in group (A) were treated with topical 5% KOH solution once at night, while patients in group (B) were treated with topical 10% KOH solution once nightly. Only 107 patients from group (A) and 95 patients from group (B) completed the study, while the remainders were defaulted for unknown reasons. The patients were evaluated at second and fourth week to assess the cure rates and side effects, those patients who showed complete cure were followed up for 3 months to detect any recurrence. At the end of second week, 9.3% of group (A) patients showed complete disappearance of their warts, vs 66.3% of group (B) patients. At the end of fourth week, 80.3% of group (A) patients showed complete response in comparison with 82.1% of group (B) patients. The side effects for the treating solution in both concentrations include itching, burning sensation, erythema, and temporary dyspigmentations, that were reported in 77.6% of group (A) patients in comparison with 90.5% of group (B) patients. Recurrence rate was reported in 5.8% of group (A) patients vs 5.1% of group (B) patients during the three months period of follow-up. Topical KOH solution is proved to be an effective and safe treatment of plane warts in both

  5. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    Science.gov (United States)

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  6. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions

    International Nuclear Information System (INIS)

    Tunsu, Cristian; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-01-01

    Highlights: • A wet-based decontamination process for fluorescent lamp waste is proposed. • Mercury can be leached using iodine in potassium iodide solution. • The efficiency of the process increases with an increase in leachant concentration. • Selective leaching of mercury from rare earth elements is achieved. • Mercury is furthered recovered using ion exchange, reduction or solvent extraction. - Abstract: With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent’s concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I 2 /KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5 M I 2 /KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe 4 BTBP showed good removal of mercury, with an

  7. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tunsu, Cristian, E-mail: tunsu@chalmers.se; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-15

    Highlights: • A wet-based decontamination process for fluorescent lamp waste is proposed. • Mercury can be leached using iodine in potassium iodide solution. • The efficiency of the process increases with an increase in leachant concentration. • Selective leaching of mercury from rare earth elements is achieved. • Mercury is furthered recovered using ion exchange, reduction or solvent extraction. - Abstract: With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent’s concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I{sub 2}/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5 M I{sub 2}/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe{sub 4}BTBP showed good removal of mercury

  8. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves.

    Science.gov (United States)

    Hu, Wei; Coomer, Taylor D; Loka, Dimitra A; Oosterhuis, Derrick M; Zhou, Zhiguo

    2017-06-01

    Potassium (K) plays important roles in the metabolism of carbon (C) and nitrogen (N), but studies of K deficiency affecting C-N balance are lacking. This study explored the influence of K deficiency on C-N interaction in cotton leaves by conducting a field experiment with cotton cultivar DP0912 under two K rates (K0: 0 kg K 2 O ha -1 and K67: 67 kg K 2 O ha -1 ) and a controlled environment experiment with K-deficient solution (K1: 0 mM K + ) and K-sufficient solution (K2: 6 mM K + ). The results showed that leaf K content, leaf number, leaf area, boll number, reproductive dry weight and total dry weight were significant lower under K deficiency (K0 or K1). Lower total chlorophyll content and Chl a/b ratio, and decreased Pn along with lower Gs and higher Ci were measured under K deficiency, suggesting that the decrease in Pn was resulted from non-stomatal limitation. Leaf glucose, fructose, sucrose and starch contents were higher under K deficiency, because lower sucrose export was detected in phloem. Although leaf nitrate and ammonium contents significantly decreased, free amino acid content was increased by 40-63% under K deficiency, since lower amino acid export was also measured in phloem. K deficiency also induced lower soluble protein content in leaves. Leaf ATP level was significantly increased under K deficiency, indicating ATP utilization was lower, so that less energy was supplied to C and N metabolism. The ratio of soluble sugar to free amino acid and the C/N ratio markedly increased under K deficiency, and one reason was that the phloem export reduced more prominent for sucrose (54.6-78.0%) than amino acid (36.7-85.4%) under K deficiency. In addition, lower phosphoenolpyruvate carboxylase activity limited malate and citrate biosynthesis under K deficiency, causing a decrease of C flux into the amino acids, which was not beneficial for maintaining C-N balance. Sucrose phosphate synthase and nitrate reductase activities were lower under K deficiency

  9. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amorvadee Veawab

    2006-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The pilot plant data have been reconciled using 17% inlet CO{sub 2}. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast transfer resistance, with kinetics at vacuum and diffusion of reactants and products at normal pressure. An additional major unknown ion, probably glyoxylate, has been observed in MEA degradation. Precipitation of gypsum may be a feasible approach to removing sulphate from amine solutions and providing for simultaneous removal of CO{sub 2} and SO{sub 2}. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater CO{sub 2} loading.

  10. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to carbonate and bicarbonate salts of sodium and potassium and maintenance of normal bone (ID 331, 1402) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to carbonate and bicarbonate salts of sodium and potassium and maintenance of normal bone. The scientific substantiation is based on the information provided by the Member States in the consolidated list of Article 13 health claims and references that EFSA has received from Member...... States or directly from stakeholders. The food constituents that are the subject of the health claim are carbonate and bicarbonate salts of sodium and potassium. The Panel considers that carbonate and bicarbonate salts of sodium and potassium are sufficiently characterised. The claimed effects are “acid...... the dietary intake of carbonate or bicarbonate salts of sodium or potassium and maintenance of normal bone....

  11. Determination of microamounts of potassium in sodium iodide by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ogasawara, Ken; Ohta, Masatoshi; Abe, Kenzo

    1980-01-01

    Microdetermination of potassium in sodium iodide was developed by the standard addition method. Twenty grams of sample were dissolved in 50 ml of water in a quartz beaker. To the solution, 30 ml of concentrated hydrochloric acid and 30 ml of 30% hydrogen peroxide were added, and evaporated to dryness. By this process sodium iodide was converted into sodium chloride. The cake thus obtained was dissolved in water and diluted to exactly 200 ml. To 25 ml aliquots of the solution, the standard potassium and cesium chloride solutions were added and diluted to 50 ml with water; the concentration of potassium was 0 -- 1 mg/l and that of cesium 4 mM. These solutions were introduced into an air-propane flame and the absorbances were measured at 769.9 nm. During the conversion reaction, hydrochloric acid was completely decomposed, and remained hydrogen peroxide had no influence for absorbance, and other backgrounds were negligible. The linear calibration curve was obtained in the range 0 -- 2 mg of potassium per liter. Potassium in sodium iodide was determined by this method within the coefficient of variation of +-(20 -- 3)% in the range (1.7 -- 32.5) ppm. (author)

  12. Kinetic studies of potassium permanganate adsorption by activated carbon and its ability as ethylene oxidation material

    Science.gov (United States)

    Aprilliani, F.; Warsiki, E.; Iskandar, A.

    2018-03-01

    Generally, ethylene production in many horticultural products has been seen to be detrimental to the quality during storage and distribution process. For this reason, removing ethylene from storage or distribution atmosphere is needed to maintain the quality. One of the technologies that can be applied is the use of potassium permanganate (KMnO4). KMnO4 is an active compound that can be used as an oxidizing agent on ethylene removal process. KMnO4 is not recommended for direct used application. As the result, additional material is required to impregnate the potassium permanganate. The inert materials used are commercial activated carbon. Activated carbon is chosen because it has high surface area. The purpose of this research is to determine kinetics adsorption and oxidation model of ethylene removal material. The kinetics adsorption was determined using the pseudo-first and second-order kinetic models. The data on adsorption process show that the second-order equation is more suitable to express the adsorption process on this research. The analyzing of the ethylene oxidation capacity increased with time until it reaches an optimal value. The ethylene oxidation rate is able to be estimated by the formula r = 0.1967 [C2H4]0.99 [KMnO4]0.01; MSE = 0.44 %. The actual and estimation data of ethylene oxidation show that the model is fitted to describe the actual ethylene oxidation under same experimental conditions.

  13. Determination of contents of carbonate and hydrogen carbonate in solutions for alkaline leading of uranium ores

    International Nuclear Information System (INIS)

    Radil, V.

    1988-01-01

    The new analytical method is based on the determination of the molar ratio carbonate - hydrogen carbonate using the measured concentration of hydrogen ions, the determination of the dissociation constant of carbonic acid for different values of ionic strength. The concentration of hydrogen ions was measured with a Metrohm 632 pH meter with the use of a combined glass electrode. The content of total carbonate carbon was determined coulometrically and the uranium content was determined by extraction with tributyl phosphate and by spectrometry of the complex of uranyl ions with Arsenazo III. Model solutions were used for the experiments which contained a high concentration of sulfate ions, thiosulfate ions, uranium and various proportions of carbonate and hydrogen carbonate. The composition of the individual samples of the extraction solutions are tabulated. The calibration was made of the glass combined electrode at different ionic strength, the values determined of dissociation constants of carbonic acid for different ionic strength. The mathematical procedure is described for the calculation of molar concentrations of carbonate and hudrogen carbonate and the results are presented of the analysis of model solutions. (E.S.). 5 tabs., 1 fig., 5 refs

  14. [Study of relationship between consumption of potassium permanganate and total organic carbon on plastic kitchen utensils, food packages and toys].

    Science.gov (United States)

    Ohno, Hiroyuki; Suzuki, Masako; Mutsuga, Motoh; Kawamura, Yoko

    2009-10-01

    Consumption of potassium permanganate and total organic carbon (TOC) were investigated as indices of total organic matter migrated into water from plastic kitchen utensils, food packages and toys for children. The samples were soaked in water at 60 or 95 degrees C for 30 min for kitchen utensils and food packages, and at 40 degrees C for 30 min for toys and the eluates were examined, using the two indices. The quantitation limits were both 0.5 microg/mL. Among 97 kitchen utensils and food packages tested, consumption of potassium permanganate and TOC were 0.5-10.9 microg/mL and ND-18.9 microg/mL for polyvinyl chloride (PVC) tea-pot spouts and nylon kitchen utensils, respectively. Among 32 toys tested, the levels were 0.8-45.5 microg/mL and 0.5-8.9 microg/mL from PVC toys and block toys made by ethylene vinyl acetate resin. The levels for other samples were very low. There were large discrepancies between consumption of potassium permanganate and TOC for some PVC products and nylon kitchen utensils. The cause may be a marked difference of the oxidation decomposition rate by potassium permanganate, depending on the kind of organic matter that migrated from the plastics.

  15. Evaluation of topical potassium hydroxide solution for treatment of plane warts

    Directory of Open Access Journals (Sweden)

    Khalil I Al-Hamdi

    2012-01-01

    Full Text Available Background: Plane wart is a common dermatological disease that is caused by human papilloma virus; although the rate of spontaneous recovery is high, it usually takes a long time to occur. Many modalities of treatments have been used but none of them proved to be uniformly effective. Potassium hydroxide (KOH solution is a well-known keratolytic agent with many dermatological uses. Objective: To evaluate the efficacy and tolerability of topical KOH solution in the treatment of plane warts. Materials and Methods: A total of 250 patients with plane warts, consulting the department of Dermatology and Venereology of Basra Teaching Hospital between March 2008 and October 2009, were enrolled in this opened therapeutic trial study. Patients were divided into two age and sex cross-matched equal groups; patients in group (A were treated with topical 5% KOH solution once at night, while patients in group (B were treated with topical 10% KOH solution once nightly. Only 107 patients from group (A and 95 patients from group (B completed the study, while the remainders were defaulted for unknown reasons. The patients were evaluated at second and fourth week to assess the cure rates and side effects, those patients who showed complete cure were followed up for 3 months to detect any recurrence. Results: At the end of second week, 9.3% of group (A patients showed complete disappearance of their warts, vs 66.3% of group (B patients. At the end of fourth week, 80.3% of group (A patients showed complete response in comparison with 82.1% of group (B patients. The side effects for the treating solution in both concentrations include itching, burning sensation, erythema, and temporary dyspigmentations, that were reported in 77.6% of group (A patients in comparison with 90.5% of group (B patients. Recurrence rate was reported in 5.8% of group (A patients vs 5.1% of group (B patients during the three months period of follow-up. Conclusions: Topical KOH solution is

  16. MOLECULAR DESCRIPTION OF ELECTROLYTE SOLUTION IN A CARBON AEROGEL ELECTRODE

    Directory of Open Access Journals (Sweden)

    A.Kovalenko

    2003-01-01

    Full Text Available We develop a molecular theory of aqueous electrolyte solution sorbed in a nanoporous carbon aerogel electrode, based on the replica reference interaction site model (replica RISM for realistic molecular quenched-annealed systems. We also briefly review applications of carbon aerogels for supercapacitor and electrochemical separation devices, as well as theoretical and computer modelling of disordered porous materials. The replica RISM integral equation theory yields the microscopic properties of the electrochemical double layer formed at the surface of carbon aerogel nanopores, with due account of chemical specificities of both sorbed electrolyte and carbon aerogel material. The theory allows for spatial disorder of aerogel pores in the range from micro- to macroscopic size scale. We considered ambient aqueous solution of 1 M sodium chloride sorbed in two model nanoporous carbon aerogels with carbon nanoparticles either arranged into branched chains or randomly distributed. The long-range correlations of the carbon aerogel nanostructure substantially affect the properties of the electrochemical double layer formed by the solution sorbed in nanopores.

  17. Potassium-doped n-type bilayer graphene

    Science.gov (United States)

    Yamada, Takatoshi; Okigawa, Yuki; Hasegawa, Masataka

    2018-01-01

    Potassium-doped n-type bilayer graphene was obtained. Chemical vapor deposited bilayer and single layer graphene on copper (Cu) foils were used. After etching of Cu foils, graphene was dipped in potassium hydroxide aqueous solutions to dope potassium. Graphene on silicon oxide was characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Both XPS and EDX spectra indicated potassium incorporation into the bilayer graphene via intercalation between the graphene sheets. The downward shift of the 2D peak position of bilayer graphene after the potassium hydroxide (KOH) treatment was confirmed in Raman spectra, indicating that the KOH-treated bilayer graphene was doped with electrons. Electrical properties were measured using Hall bar structures. The Dirac points of bilayer graphene were shifted from positive to negative by the KOH treatment, indicating that the KOH-treated bilayer graphene was n-type conduction. For single layer graphene after the KOH treatment, although electron doping was confirmed from Raman spectra, the peak of potassium in the X-ray photoelectron spectroscopy (XPS) spectrum was not detected. The Dirac points of single layer graphene with and without the KOH treatment showed positive.

  18. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting.

    Science.gov (United States)

    Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung

    2016-01-15

    A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg(-1) in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L(-1) DOC solution with a of pH 2.0 at 25°C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH4(+)-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Lead removal from aqueous solutions by potassium titanate doped with silica; Remocion de plomo de soluciones acuosas por titanato de potasio dopado con silice

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar G, M. A.; Aguilar E, A. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes No. 120, 31109 Chihuahua (Mexico); Gorokhovsky, A. V.; Escalante G, J. I. [Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Carretera Saltillo-Mty Km. 13, Apdo. Postal 663, Saltillo 25000, Coahuila (Mexico)], e-mail: mgzlz@hotmail.com

    2009-07-01

    This paper is related to elimination of Pb{sup 2+} ions from aqueous solutions by adsorption in potassium tetra titanate doped with silica. The adsorbent was prepared in the form of granules with pastes of potassium poly titanate (45 %), powdered Pyrex glass (5 %) and potato starch (50 %), which were extruded and thermally treated at 1100 C. The structural characteristic of the granulated adsorbent allows reducing the Pb concentration, from the solutions eluted through an adsorption column, to levels below the requirement of national standards. The effects of the time of saturation of the adsorbent and the ph of the solution were also investigated on the effectiveness of the adsorption of Pb. The mechanism of lead adsorption, by the developed adsorbent, is considered as a combination of adsorption, ion-exchange and co-precipitation processes. It is also shown that the lead-saturated adsorbent could be utilized to produce high-strength non-dangerous ceramic materials. (Author)

  20. Preparation of porous diatomite-templated carbons with large adsorption capacity and mesoporous zeolite K-H as a byproduct.

    Science.gov (United States)

    Liu, Dong; Yuan, Weiwei; Deng, Liangliang; Yu, Wenbin; Sun, Hongjuan; Yuan, Peng

    2014-06-15

    In this study, KOH activation was performed to enhance the porosity of the diatomite-templated carbon and to increase its adsorption capacity of methylene blue (MB). In addition to serving as the activation agent, KOH was also used as the etchant to remove the diatomite templates. Zeolite K-H was synthesized as a byproduct via utilization of the resultant silicon- and potassium-containing solutions created from the KOH etching of the diatomite templates. The obtained diatomite-based carbons were composed of macroporous carbon pillars and tubes, which were derived from the replication of the diatomite templates and were well preserved after KOH activation. The abundant micropores in the walls of the carbon pillars and tubes were derived from the break and reconfiguration of carbon films during both the removal of the diatomite templates and KOH activation. Compared with the original diatomite-templated carbons and CO2-activated carbons, the KOH-activated carbons had much higher specific surface areas (988 m(2)/g) and pore volumes (0.675 cm(3)/g). Moreover, the KOH-activated carbons possessed larger MB adsorption capacity (the maximum Langmuir adsorption capacity: 645.2 mg/g) than those of the original carbons and CO2-activated carbons. These results showed that KOH activation was a high effective activation method. The zeolite K-H byproduct was obtained by utilizing the silicon- and potassium-containing solution as the silicon and potassium sources. The zeolite exhibited a stick-like morphology and possessed nanosized particles with a mesopore-predominant porous structure which was observed by TEM for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Spectroscopic and redox properties of curium and californium ions in concentrated aqueous carbonate-bicarbonate media

    International Nuclear Information System (INIS)

    Hobart, D.E.; Varlashkin, P.G.; Samhoun, K.; Haire, R.G.; Peterson, J.R.

    1983-01-01

    Multimilligram quantities of trivalent curium-248 and californium-249 were investigated by absorption spectroscopy, cyclic voltammetry, and bulk solution electrolysis in concentrated aqueous carbonate-bicarbonate solution. Actinide concentrations between 10 -4 and 10 -2 M were studied in 2 M sodium carbonate and 5.5 M potassium carbonate solutions at pH values from 8 to 14. The solution absorption spectra of Cm(III) and Cf(III) in carbonate media are presented for the first time and compared to literature spectra of these species in noncomplexing aqueous solution. It was anticipated that carbonate complexation of the actinide ions could provide a sufficient negative shift in the formal potentials of the M(IV)/M(III) couples of Cm and Cf to permit the generation and stabilization of their tetravalent states in aqueous carbonate-bicarbonate medium. No conclusive evidence was found in the present work to indicate the existence of any higher oxidation states of curium or californium in carbonate solution. Some possible reasons for our inability to generate and detect oxidized species of curium and californium in this medium are discussed

  2. Preparation of Potassium Dichromate Crystals from the Chromite Concentrate by Microwave Assisted Leaching

    Directory of Open Access Journals (Sweden)

    Hua Liu

    2017-10-01

    Full Text Available In the present investigation, the oxidizing roasting process of chromite with sodium carbonate to prepare potassium dichromate crystals was studied in the microwave field with air, by heating the chromite and sodium carbonate. The chromite and sodium carbonate heated separately at 1000 °C in the microwave oven (frequency: 2.45 GHz; power 1.5 kW in order to study the microwave absorption properties. The dielectric constant and dielectric loss factor of the chromite and sodium carbonate examined. Then, chromite with sodium carbonate taken in (1:2 ratio and heated at 750 °C. Thus obtained samples were characterized using various techniques includes Powder-XRD (XRD, Scanning Electron Microscopy (SEM, and X-ray fluorescence (XRF. The XRD pattern reveals the existence of Fe3O4, Fe2O3, NaAlO2, and Na2CrO4. The iron and aluminum were leached out as Fe2O3 and Al(OH3 respectively. The resulting sample treated with the KCl to prepare potassium dichromate crystals. Finally, potassium dichromate crystals formed.

  3. The Effect of Potassium Concentration in Nutrient Solution on Lycopene, Vitamin C and Qualitative Characteristics of Cherry Tomato in Saline Conditions

    Directory of Open Access Journals (Sweden)

    E. Shabani Sangtarashani

    2013-06-01

    Full Text Available Potassium (K has a special place in improving the quality of agricultural products. To evaluate the effect of K concentration in nutrient solution on lycopene content, vitamin C and qualitative characteristics of cherry tomato in NaCl salinity conditions, an experiment was carried out as a completely randomized design with five treatments and three replications at university of Tabriz, Tabriz, Iran, in 2010. Treatments consisted of four concentrations of K (0.2, 2, 7 and 14 mM in nutrient solution with 60 mM NaCl concentration. A nutrient solution treatment without salinity was considered as control. The experiment was conducted in greenhouse, in a hydroponic system. The results indicated that increasing of K concentration increased lycopene content in fruit. Lycopene content in control treatment showed significant difference (P<0.01 in comparison with salinity treatments. With increasing the K concentration (except at 14 mM concentration, vitamin C content was increased, but indicated no statistically significant difference. Vitamin C content in saline conditions was more than control treatment, but showed no significant difference. Adding potassium concentration in nutrient solution improved yield and enhanced quality parameters such as percentage of dry matter, soluble solids and electrical conductivity of fruit extract. Since in saline conditions, the qualitative characteristics of tomato at 7 mM concentration were in the best situation, therefore using this concentration is recommended.

  4. Treated Carbon Nanofibers for Storing Energy in Aqueous KOH

    Science.gov (United States)

    Firsich, David W.

    2004-01-01

    A surface treatment has been found to enhance the performances of carbon nanofibers as electrode materials for electrochemical capacitors in which aqueous solutions of potassium hydroxide are used as the electrolytes. In the treatment, sulfonic acid groups are attached to edge plane sites on carbon atoms. The treatment is applicable to a variety of carbon nanofibers, including fibrils and both single- and multiple-wall nanotubes. The reason for choosing nanofibers over powders and other forms of carbon is that nanofibers offer greater power features. In previous research, it was found that the surface treatment of carbon nanofibers increased energy-storage densities in the presence of acid electrolytes. Now, it has been found that the same treatment increases energy-storage densities of carbon nanofibers in the presence of alkaline electrolytes when the carbon is paired with a NiOOH electrode. This beneficial effect varies depending on the variety of carbon substrate to which it is applied. It has been conjectured that the sulfonic acid groups, which exist in a deprotonated state in aqueous KOH solutions, undergo reversible electro-chemical reactions that are responsible for the observed increases in energystorage capacities. The increases can be considerable: For example, in one case, nanofibers exhibited a specific capacitance of 34 Farads per gram before treatment and 172 Farads per gram (an increase of about 400 percent) after treatment. The most promising application of this development appears to lie in hybrid capacitors, which are devices designed primarily for storing energy. These devices are designed to be capable of (1) discharge at rates greater than those of batteries and (2) storing energy at densities approaching those of batteries. A hybrid capacitor includes one electrode like that of a battery and one electrode like that of an electrochemical capacitor. For example, a hybrid capacitor could contain a potassium hydroxide solution as the electrolyte

  5. A thermodynamic approach to assess organic solute adsorption onto activated carbon in water

    KAUST Repository

    De Ridder, David J.; Verliefde, Arne R. D.; Heijman, Bas G J; Gelin, Simon; Pereira, Manuel Fernando Ribeiro; Rocha, Raquel P.; Figueiredo, José Luí s M; Amy, Gary L.; Van Dijk, Hans C.

    2012-01-01

    In this paper, the hydrophobicity of 13 activated carbons is determined by various methods; water vapour adsorption, immersion calorimetry, and contact angle measurements. The quantity and type of oxygen-containing groups on the activated carbon were measured and related to the methods used to measure hydrophobicity. It was found that the water-activated carbon adsorption strength (based on immersion calorimetry, contact angles) depended on both type and quantity of oxygen-containing groups, while water vapour adsorption depended only on their quantity. Activated carbon hydrophobicity measurements alone could not be related to 1-hexanol and 1,3-dichloropropene adsorption. However, a relationship was found between work of adhesion and adsorption of these solutes. The work of adhesion depends not only on activated carbon-water interaction (carbon hydrophobicity), but also on solute-water (solute hydrophobicity) and activated carbon-solute interactions. Our research shows that the work of adhesion can explain solute adsorption and includes the effect of hydrogen bond formation between solute and activated carbon. © 2012 Elsevier Ltd. All rights reserved.

  6. A thermodynamic approach to assess organic solute adsorption onto activated carbon in water

    KAUST Repository

    De Ridder, David J.

    2012-08-01

    In this paper, the hydrophobicity of 13 activated carbons is determined by various methods; water vapour adsorption, immersion calorimetry, and contact angle measurements. The quantity and type of oxygen-containing groups on the activated carbon were measured and related to the methods used to measure hydrophobicity. It was found that the water-activated carbon adsorption strength (based on immersion calorimetry, contact angles) depended on both type and quantity of oxygen-containing groups, while water vapour adsorption depended only on their quantity. Activated carbon hydrophobicity measurements alone could not be related to 1-hexanol and 1,3-dichloropropene adsorption. However, a relationship was found between work of adhesion and adsorption of these solutes. The work of adhesion depends not only on activated carbon-water interaction (carbon hydrophobicity), but also on solute-water (solute hydrophobicity) and activated carbon-solute interactions. Our research shows that the work of adhesion can explain solute adsorption and includes the effect of hydrogen bond formation between solute and activated carbon. © 2012 Elsevier Ltd. All rights reserved.

  7. Application of solution-mineral equilibrium chemistry to solution mining of uranium ores

    International Nuclear Information System (INIS)

    Riese, A.C.; Propp, C.J.

    1980-01-01

    Modern methods of uranium solution mining are typically accompanied by gains and losses of mass through reagent consumption by rock-forming minerals, with subsequent formation of clay minerals, gypsum, carbonates, and iron oxyhydroxides. A systematic approach to alleviate such problems involves the application of leach solutions that are in equilibrium with the host-rock minerals but in disequilibrium with the ore-forming minerals. This partial equilibrium can be approximated by solution-composition adjustments within the systems K 2 O-Al 2 O 3 SiO 2 -H 2 O and Na 2 O 3 -Al 2 O 3 SiO 2 -H 2 O. Uranium ore containing 0.15 percent U 3 O 8 from the Gulf Mineral Resources Corporation's Mariano Lake mine, the Smith Lake district of the Grants mineral belt, was collected for investigation. Presented are a theoretical evaluation of leachate data and an experimental treatment of the ore, which contained mainly K-feldspar, plagioclase feldspar, and quartz (with lesser amounts of micas, clay minerals, and organic carbonaceous material). Small-scale (less than or equal to 1 kg) column-leaching experiments were conducted to model the results of conventional leaching operations and to provide leachate solutions that could be compared with solutions calculated to be in equilibrium with the matrix minerals. Leach solutions employed include: 1) sulfuric acid, 2) sodium bicarbonate, and 3) sulfuric acid with 1.0 molal potassium chloride. The uranium concentrations in the sodium-bicarbonate leach solution and the acid-leach solution were about a gram per liter at the termination of the tests. However, the permeability of the ore in the acid leach was greatly reduced, owing to the formation of clay minerals. Uranium solubility in the leach column stabilized with the potassium-chloride solution was calculated from leachate compositions to be limited by the solubility of carnotite

  8. Differential pharmacokinetics of diclofenac potassium for oral solution vs immediate-release tablets from a randomized trial: effect of fed and fasting conditions.

    Science.gov (United States)

    Chen, Cuiping; Bujanover, Shay; Kareht, Stephanie; Rapoport, Alan M

    2015-02-01

    To compare the pharmacokinetics of, and food effect on, diclofenac potassium delivered as an oral solution vs an immediate-release tablet. Diclofenac potassium for oral solution is the only nonsteroidal anti-inflammatory drug approved as monotherapy for the acute treatment of migraine attacks with or without aura in adults 18 years of age or older. It is formulated with potassium bicarbonate as a buffering agent to raise the pH and consequently increase the aqueous solubility of diclofenac in the acidic environment of the stomach following oral administration. The dosage is 50 mg of powdered diclofenac potassium dissolved in 1 to 2 ounces (30 to 60 mL) of water prior to administration, with dosing time in relation to food intake not specified - this was the case for the pivotal efficacy and safety trials in subjects with acute migraine attacks in which the primary endpoints were achieved. For acute treatment of migraine attacks, rapid onset of pain relief is desirable and is likely related to a rapid appearance of an effective concentration of the drug in the systemic circulation. The rate at which an orally administered drug reaches the blood is affected by both its formulation and the presence of food in the stomach. The present study was designed to investigate the pharmacokinetics of 2 formulations of diclofenac potassium, an immediate-release tablet and an oral solution, and to ascertain the effect of food. This was an open-label, randomized, single-center, crossover trial in healthy volunteers. Subjects were randomized using computer-generated list to 1:1:1:1 ratio. They received a single 50-mg dose of diclofenac potassium in 4 sequences (ABCD, BADC, CDBA, and DCAB) during each of the 4 treatment periods. The 4 treatments were: A, oral solution fasting; B, tablet fasting; C, oral solution fed; and D, tablet fed. There was a ≥7-day washout period between dosing. Blood samples for pharmacokinetic analysis were taken for up to 12 hours post-dose and

  9. Effect of carboxymethylcellulose on potassium bitartrate crystallization on model solution and white wine

    Science.gov (United States)

    Bajul, Audrey; Gerbaud, Vincent; Teychene, Sébastien; Devatine, Audrey; Bajul, Gilles

    2017-08-01

    Instability in bottled wines refer to tartaric salts crystallization such as potassium bitartrate (KHT). It is not desirable as consumers see the settled salts as an evidence of a poor quality control. In some cases, it causes excessive gushing in sparkling wine. We investigate the effect of two oenological carboxymethylcellulose (CMC) for KHT inhibition in a model solution of white wine by studying the impact of some properties of CMC such as the degree of polymerization, the degree of substitution, and the apparent dissociation constant determined by potentiometric titration. Polyelectrolyte adsorption is used for determining the surface and total charge and for providing information about the availability of CMC charged groups for interacting with KHT crystal faces. The inhibitory efficiency of CMC on model solution is evaluated by measuring the induction time with the help of conductimetric methods. Crystals growth with and without CMC are studied by observation with MEB and by thermal analysis using DSC. The results confirm the effectiveness of CMC as an inhibitor of KHT crystallization in a model solution. The main hypothesis of the mechanism lies in the interaction of dissociated anionic carboxymethyl groups along the cellulose backbone with positively charged layers on KHT faces like the {0 1 0} face. Key factors such as pH, CMC chain length and total charge are discusses.

  10. The Limitation Amount of Available Potassium for Wheat in a Loess Soil

    Directory of Open Access Journals (Sweden)

    M. Vafakhah

    2014-04-01

    Full Text Available The objective of this study was determining the most limiting plant growth factor in the wheat root zone dominated by illite in clay fraction and a high specific surface with ample ammonium acetate extractible potassium. A completely randomized block design with 4 replicates was used in Seyed Miran Research Farm (Gorgan during 2009-2010 growing season. Treatments were mineral fertilizers (to achieve different levels of yields, gypsum (1000 Kg/ha calcium, calcium chloride (1000 Kg ha-1 Ca, urea (93 Kg ha-1 N and potassium chloride (105 Kg ha-1 K combined, gypsum (1000 Kg ha-1 Ca and potassium chloride (105 Kg ha-1 K combined, calcium chloride (1000 Kg ha-1 Ca and potassium chloride (105 Kg ha-1 K combined and control. Wheat cultivar (N-80-19 was planted in experimental site at 2009/12/9. The results showed that potassium is the most limiting plant growth factor in the site of the experiment. Electric diffuse double layer is expected to be truncated with a high specific surface soil in this area minimizing the soil solution-diffuse double layer interface for rapid potassium diffusion. The highest yield grain and straw with urea and potassium chloride showed a greater effect on plant and soil potassium concentrations. A greater potassium diffusion rate may be achieved as a result of greater concentration gradients between the exchange sites and soil solution by potassium fertilization and more potassium excess. Ammonium from urea diminished potassium fixation with illite and increased potassium root uptake.

  11. Observation of carbon growth and interface structures in methanol solution

    Science.gov (United States)

    Okuno, Kimio

    2015-11-01

    In the deposition of carbon on the surface of a tungsten tip in methanol solution by electrolysis, the growth structure of the carbon films, the interface state, and the dissolution of carbon atoms into the tungsten matrix of the substrate have been investigated with the atomic events by field ion microscopy (FIM). The carbon films preferentially condense on the W{111} plane. The interfacial reaction at the carbon atom-tungsten substrate interface is vigorous and the carbon atoms also readily dissolve into the substrate matrix to form a tungsten-carbon complex. The reaction depth of the deposited carbon depends on the magnitude of electrolytic current and the treatment duration in the methanol solution. In this work, the resolution depth of carbon was found to be approximately 270 atomic layers below the top layer of the tungsten substrate by a field evaporation technique. In the case of a low electrolytic current, the tungsten substrate surface is entirely covered with carbon atoms having a pseudomorphic structure. The field-electron emission characteristics were also evaluated for various coverages of the carbon film formed on the substrate.

  12. 碳酸钾添加比例对玉米秸秆生物炭表面特性的影响%Effect of Potassium Carbonate Addition Rate on Surface Characteristics of Corn Stalk Derived Biochar

    Institute of Scientific and Technical Information of China (English)

    祝凌; 王月瑛; 吕贻忠

    2017-01-01

    carbonate in mass=1:1,2:1 and 4:1). Potassium carbonate was prepared into solutions according to the impregnation ratio,0.60 mol L-1,1.2 mol L-1 and 2.4 mol L-1 in concentration,separately, and added into corn stalk at a rate of 3 ml per gram of corn stalk in preparation of activated biochar. The biochars prepared in such a way were labeled as KBC-1-600,KBC-2-600 and KBC-4-600 separately;the biochar prepared without the amendment of potassium carbonate was labeled as BC600,non-activated biochar. Basic properties of the biochars,BC(corn stalk biochar)and KBC(potassium carbonate activated biochar)were characterized,with infrared spectrum,surface functional groups,specific surface area,pore size distribution and adsorption kinetics. Naphthalene,as a typical small-sized molecule persistent pollutant (POPs),was selected as adsorbate to evaluate adsorption capacity of KBC and BC. Naphthalene adsorption capacities of KBC and BC and affinities of KBC and BC to naphthalene were analyzed,and prospect of the application of activated carbon was discussed. The pseudo first-order kinetic model,second-order kinetics model and intraparticle diffusion model were used to analyze dynamic process of the adsorption.[Result] With increasing potassium carbonate amendment rate,aromaticity of the biochars increased. When the impregnation ratio was increased from 4:1 to 2:1,hydrophilicity and polarity of the biochars improved, but when the impregnation ratio was further increased from 2:1 to 1:1,hydrophilicity and polarity of the biochars decreased,instead. Potassium carbonate amendment increased specific surface area of the biochards,with KBC-2-600 in particular reaching up to 566 m2 g-1,whereas specific surface area of the ordinary biochar(BC600)was only 86.8 m2 g-1;The KBC600 series of biochars were significantly higher or on average 16 and 4 times higher respectively than BC600 in mesopore volume and micropore volume,and also higher in mesoporosity. The amendment altered the number of functional

  13. Determination of carbon in uranium and its compounds; Determinacion de carbono en uranio metal y sus compuestos

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, M M

    1972-07-01

    This paper collects the analytical methods used our laboratories for the determination of carbon in uranium metal, uranate salts and the oxides, fluorides and carbides of uranium. The carbon is usually burned off in a induction or resistance oven under oxygen flow. The CO{sub 2} is collected in barite solution. Where it is backtitrated with potassium biphthalate. (Author)

  14. Performance of Potassium Bicarbonate and Calcium Chloride Draw Solutions for Desalination of Saline Water Using Forward Osmosis

    Directory of Open Access Journals (Sweden)

    M. Nematzadeh

    2015-01-01

    Full Text Available Forward osmosis (FO has recently drawn attention as a promising membrane based method for seawater and brackish water desalination. In this study, we focus on the use of calciun chloride (CaCl2 and potassium bicarbonate (KHCO3 as inorganic salt draw solution candidates due to their appropriate performance in water flux and reverse salt diffusion as well as reasonable cost. The experiments were carried at 25 °C and cross-flow rate of 3 L min−1.  At the same osmotic pressure, the water flux of CaCl2 draw solution tested against deionized feed water, showed 20% higher permeation than KHCO3, which it was attributed to the lower internal concentration polarization (ICP. The reverse diffusion of CaCl2 was found higher than KHCO3 solution which it would be related to the smaller ionic size and the higher permeation of this salt through the membrane. The water flux for both draw solutions against 0.33 M NaCl feed solution was about 2.8 times lower than deionized feed water because of ICP. Higher concentrations of draw solution is required for increasing the water permeation from saline water feed towards the draw side.

  15. Sterically screened halogenocyclobutanones. I. Transformations of cyclopropyl-substituted 2,2-dichlorocyclobutanones under the influence of potassium hydroxide

    International Nuclear Information System (INIS)

    Donskaya, N.A.; Bessmertnykh, A.G.; Drobysh, V.A.; Shabarov, Yu.S.

    1987-01-01

    The reaction of 2,2-dichloro-3-cyclopropylcyclobutanones with potassium hydroxide was studied. The direction of the reaction depends on the concentration of the potassium hydroxide; with a 2% solution of potassium hydroxide 4,4-dichlorobutyric acids are formed with yields of up to 80%, and with a 15% solution of potassium hydroxide 5-hydroxydihydro-2-furanones are formed with yields of up to 80%. Proposals are made about the mechanism of formation of 5-hydroxydihydro-2-furanones

  16. Post-processing application of chemical solutions for control of Listeria monocytogenes, cultured under different conditions, on commercial smoked sausage formulated with and without potassium lactate-sodium diacetate.

    Science.gov (United States)

    Geornaras, Ifigenia; Skandamis, Panagiotis N; Belk, Keith E; Scanga, John A; Kendall, Patricia A; Smith, Gary C; Sofos, John N

    2006-12-01

    This study evaluated post-processing chemical solutions for their antilisterial effects on commercial smoked sausage formulated with or without 1.5% potassium lactate plus 0.05% sodium diacetate, and contaminated (approximately 3-4 log cfu/cm(2)) with 10-strain composite Listeria monocytogenes inocula prepared under various conditions. Inoculated samples were left untreated, or were immersed (2 min, 25 +/- 2 degrees C) in solutions of acetic acid (2.5%), lactic acid (2.5%), potassium benzoate (5%) or Nisaplin (0.5%, equivalent to 5000 IU/ml of nisin) alone, and in sequence (Nisaplin followed by acetic acid, lactic acid or potassium benzoate), before vacuum packaging and storage at 10 degrees C (48 days). Acetic acid, lactic acid or potassium benzoate applied alone reduced initial L. monocytogenes populations by 0.4-1.5 log cfu/cm(2), while treatments including Nisaplin caused reductions of 2.1-3.3 log cfu/cm(2). L. monocytogenes on untreated sausage formulated with antimicrobials had a lag phase duration of 10.2 days and maximum specific growth rate (mu(max)) of 0.089 per day, compared to no lag phase and mu(max) of 0.300 per day for L. monocytogenes on untreated product that did not contain antimicrobials in the formulation. The immersion treatments inhibited growth of the pathogen for 4.9-14.8 days on sausage formulated without potassium lactate-sodium diacetate; however, in all cases significant (P meat processors in their efforts to select required regulatory alternatives for control of post-processing contamination in meat products.

  17. Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions

    Science.gov (United States)

    Podkościelny, P.; László, K.

    2007-08-01

    The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.

  18. Factors Affecting Dissolution Resistance of AC Anodizing Al in Sodium Carbonate Solution

    International Nuclear Information System (INIS)

    Abou-Krisha, M.

    2001-01-01

    Studies were performed to determine the effect of different factors on the properties and so the dissolution resistance of the anodic film of Al. Conductance and thermometric measurements were applied to evaluate the dissolution rate. The effect of applied AC voltage concentration of sodium carbonate solution, the anodization time and the temperature of sodium carbonate solutions show a parallel increase in the dissolution resistance of studied Al in hydrochloride acid. The results show that films formed by sodium carbonate solution were of porous type and have pronounced high resistance. Scanning electron microscope and x-ray diffraction further examined the films. The anodic and cathodic behavior and the effect of the scanning rate on the polarization of Al in sodium carbonate solution were studied. The regression analysis was applied to all results. (Author)

  19. Precipitation of Nd-Ca carbonate solid solution at 25 degrees C

    International Nuclear Information System (INIS)

    Carroll, S.A.

    1993-01-01

    The formation of a Nd-Ca carbonate solid solution was studied by monitoring the reactions of calcite with aqueous Nd, orthorhombic NdOHCO 3 (s) with aqueous Ca, and calcite with hexagonal Nd-carbonate solid phase as a function of time at 25 degrees C and controlled pCO 2 (g). All experiments reached steady state after 200 h of reaction. The dominant mechanism controlling the formation of the solid solution was precipitation of a Nd-Ca carbonate phase from the bulk solution as individual crystals or at the orthorhombic NdOHCO 3 (s)-solution interface. The lack of Nd adsorption or solid solution at the calcite-solution interface suggests that the solid solution was orthorhombic and may be modeled as a mixture of orthorhombic NdOHCO 3 (s) and aragonite. Orthorhombic NdOHCO 3 (s) was determined to be the stable Nd-carbonate phase in the Nd-CO 2 -H 2 O system at pCO 2 (g) 0.1 atmospheres at 25 degrees C. The equilibrium constant corrected to zero ionic strength for orthorhombic NdOHCO 3 (s) solubility is 10 10.41(±0.29) for the following: NdOHCO 3 (s) + 3H + = Nd 3+ + CO 2 (g) + H 2 O. Results are discussed in relation to radioactive waste disposal by burial, and specifically in relation to americium chemistry

  20. Characterization of potassium bromide crystals grown in the aqueous solution of picric acid

    Energy Technology Data Exchange (ETDEWEB)

    Maheswari, J. Uma, E-mail: umak.anand@gmail.com [Department of Physics, The M.D.T.Hindu College, Tirunelveli 627010, Tamilnadu (India); Krishnan, C. [Department of Physics, Arignar Anna College, Aralvoymoli 629301, Tamilnadu (India); Kalyanaraman, S. [Physics Research Centre, Sri Paramakalyani College, Alwarkurichi 627412, Tamilnadu (India); Selvarajan, P. [Department of Physics, Aditanar College of Arts and Science, Tiruchendur 628216, Tamilnadu (India)

    2016-12-01

    Potassium bromide crystals were grown in the aqueous solution of picric acid by slow evaporation technique at room temperature. X-ray Diffraction (XRD) analysis ensures that the grown sample is in Fm3m space group and FCC structure. Energy Dispersive X-ray Spectroscopy (EDX) reveals the presence of elements in the title compound. UV–Vis-NIR spectrum reveals that the grown sample is a promising nonlinear optical (NLO) material. FTIR analysis confirms the functional groups present in the sample. The thermogravimetric (TG) and differential thermogravimetric (DTA) analyses ensure that the sample material is thermally stable up to 160 °C. The second harmonic efficiency of the sample is 1.3 times greater than that of standard KDP. The mechanical strength of the grown sample is estimated by Vickers microhardness tester. The electrical properties were investigated by impedance analysis and the results of various studies of the grown crystals are discussed.

  1. Determination of plutonium in nitric acid solutions - Method by oxidation by cerium(IV), reduction by iron(II) ammonium sulfate and amperometric back-titration with potassium dichromate

    International Nuclear Information System (INIS)

    1987-01-01

    This International Standard specifies a precise and accurate analytical method for determining plutonium in nitric acid solutions. Plutonium is oxidized to plutonium(VI) in a 1 mol/l nitric acid solution with cerium(IV). Addition of sulfamic acid prevents nitrite-induced side reactions. The excess of cerium(IV) is reduced by adding a sodium arsenite solution, catalysed by osmium tetroxide. A slight excess of arsenite is oxidized by adding a 0.2 mol/l potassium permanganate solution. The excess of permanganate is reduced by adding a 0.1 mol/l oxalic acid solution. Iron(III) is used to catalyse the reduction. A small excess of oxalic acid does not interfere in the subsequent plutonium determination. These reduction and oxidation stages can be followed amperometrically and the plutonium is left in the hexavalent state. The sulfuric acid followed by a measured amount of standardized iron(II) ammonium sulfate solution in excess of that required to reduce the plutonium(VI) to plutonium(IV) is added. The excess iron(II) and any plutonium(III) formed to produce iron(III) and plutonium(IV) is amperometrically back-titrated using a standard potassium dichromate solution. The method is almost specifically for plutonium. It is suitable for the direct determination of plutonium in materials ranging from pure product solutions, to fast reactor fuel solutions with a uranium/plutonium ratio of up to 10:1, either before or after irradiation

  2. The Investigation of Electron Beam Catalytical Oxidation Process Efficiency with Potassium Persulfate in Removal Humic Acid from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    MT Ghaneian

    2015-05-01

    Results: Based on the results, changes in pH had little effect on the Humic acid removal efficiency. The average, with increasing of pH from 4 to 10, the removal efficiency of humic acid from 72.59% to 73.36% increased, respectively. The results showed that increasing of the dose from 1 to 15 kGy, humic acid removal efficiency increases. Based on results by increasing of persulfate concentration, the removal efficiency increased so that with increasing of concentration of potassium persulfate from 0.1 to 0.5 mmol/100cc, removal efficiency from 69.43% to 83.82% was increased. Kinetic experiments showed that the decomposition of humic acid by electron beam radiation followed the second-order kinetic. Conclusion: The data from this study showed that the aqueous solution containing acid Humic is decomposed effectively by electron beams irradiation. Addition of potassium persulfate can be have significant improvements in removal efficiency of humic acid in the presence of electron beam.

  3. Comparative study of sodium and potassium in different types of gallstones and in serum of subjects with gallstones and controls

    International Nuclear Information System (INIS)

    Channa, N.A.; Ghanghro, A.B.; Soomro, A.M.

    2008-01-01

    The study comprises evaluation of sodium and potassium in the pathogenesis of human gallstones as well as measurement of the concentration of these elements in gallstones and in sera of 109 gallstone subjects and 100 controls (age and sex matched with no personal or family history of gallstone disease). It was observed that serum concentrations for both sodium and potassium were comparable (p<0.05) between gallstone subjects and control subjects. In gallstones the concentration of sodium was significantly higher as compared to potassium (p<0.5). Normal sodium to potassium ratio was seen in serum of gallstone subject, whereas, low sodium to potassium ratio was seen in gallstone carriers. Amongst the different types of gallstones, significantly high (p<0.05) concentrations of sodium and potassium were seen in calcium bilirubinate gallstones. The levels for these mineral elements were also raised in serum of pure calcium carbonate gallstone subjects. The results demonstrate that the higher concentration of sodium and potassium in gallstones may involve in both calcium bilirubinate gallstones and in serum of calcium carbonate gallstone subjects, which indicate their association with calcium in the precipitation of calcium bilirubinate and calcium carbonate in bile. Furthermore, low sodium to potassium ratio in gallstones indicates low ratio in bile of gallstone subjects. (author)

  4. Comparative Study of Sodium and Potassium in Different Types of Gallstones and in Serum of Subjects with Gallstones and Controls

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Soomro

    2008-06-01

    Full Text Available The study comprises evaluation of sodium and potassium in the pathogenesis of human gallstones as well as measurement of the concentration of these elements in gallstones and in sera of 109 gallstone subjects and 100 controls (age and sex matched with no personal or family history of gallstone disease. It was observed that serum concentrations for both sodium and potassium were comparable (p>0.05 between gallstone subjects and control subjects. In gallstones the concentration of sodium was significantly higher as compared to potassium (p<0.05. Normal sodium to potassium ratio was seen in serum of gallstone subjects, whereas, low sodium to potassium ratio was seen in gallstone carriers. Amongst the different types of gallstones, significantly high (p<0.05 concentrations of sodium and potassium were seen in calcium bilirubinate gallstones. The levels for these mineral elements were also raised in serum of pure calcium carbonate gallstone subjects.The results demonstrate that the higher concentration of sodium and potassium in gallstones may involve in both calcium bilirubinate gallstones and in serum of calcium carbonate gallstone subjects, which indicate their association with calcium in the precipitation of calcium bilirubinate and calcium carbonate in bile. Furthermore, low sodium to potassium ratio in gallstones indicates low ratio in bile of gallstone subjects.

  5. The Mechanism of Redox Reaction between Palladium(II Complex Ions and Potassium Formate in Acidic Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Wojnicki M.

    2017-06-01

    Full Text Available The kinetics studies of redox reaction between palladium(II chloride complex ions and potassium formate in acidic aqueous solutions was investigated. It was shown, that the reduction reaction of Pd(II is selective in respect to Pd(II complex structure. The kinetic of the process was monitored spectrophotometrically. The influence of chloride ions concentration, Pd(II initial concentration, reductant concentration, ionic strength as well as the temperature were investigated in respect to the process dynamics. Arrhenius equation parameters were determined and are equal to 65.8 kJ/mol, and A = 1.12×1011 s−1.

  6. Tuning the optical properties of carbon nanotube solutions using amphiphilic self-assembly

    Science.gov (United States)

    Arnold, Michael S.; Stupp, Samuel I.; Hersam, Mark C.

    2003-07-01

    Recently it has been shown that aqueous solutions of sodium dodecyl sulfate (SDS) encapsulated and polymer wrapped single-walled carbon nanotubes (SWNTs) fluoresce in the near infrared (NIR) in the regime of the E11 van Hove transitions for semiconducting SWNTs. For bundled SWNTs, fluorescence is observed to be quenched along with a shift and broadening of the absorbance spectrum. Here, we study two other commercially available surfactants, BRIJ-97 and Triton-X-100, by analysis of carbon nanotube fluorescence and absorptivity in the NIR. It is found that changing the surfactant alters the corresponding optical properties of the solubilized carbon nanotubes. The NIR absorbance spectra of BRIJ-97 and Triton-X-100 carbon nanotube solutions are also compared with the absorbance spectrum of NaCl destabilized SDS-SWNT solutions. By controlling the amount of NaCl added to an aqueous solution of SDS-SWNTs, the optical absorbance spectrum can be made to match that of BRIJ-97 and Triton-X-100 solutions. Lastly, a correlation is drawn between the amount of shift in the absorbance spectrum and the fluorescence intensity, independent of surfactant used. This shift and decrease in fluorescence intensity may be due to carbon nanotube bundling.

  7. Mechanism of cesium sorption on potassium titanium hexacyanoferrate

    International Nuclear Information System (INIS)

    Sun Yongxia; Xu Shiping; Song Chongli

    1998-01-01

    The mechanism of cesium sorption on potassium titanium hexacyanoferrate is described. The dependence of the sorption speed on temperature, particle granule size, and the stirring speed is studied. The results show that the sorption process is controlled by liquid film diffusion and particle diffusion. An exchange reaction occurs mainly between K + in the exchanger and Cs + in the solution, i.e. potassium titanium hexacyanoferrate, and Cs + of simulated high-level liquid waste

  8. The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms.

    Science.gov (United States)

    Kühn, Susanne; van Werven, Bernike; van Oyen, Albert; Meijboom, André; Bravo Rebolledo, Elisa L; van Franeker, Jan A

    2017-02-15

    In studies of plastic ingestion by marine wildlife, visual separation of plastic particles from gastrointestinal tracts or their dietary content can be challenging. Earlier studies have used solutions to dissolve organic materials leaving synthetic particles unaffected. However, insufficient tests have been conducted to ensure that different categories of consumer products partly degraded in the environment and/or in gastrointestinal tracts were not affected. In this study 63 synthetic materials and 11 other dietary items and non-plastic marine debris were tested. Irrespective of shape or preceding environmental history, most polymers resisted potassium hydroxide (KOH) solution, with the exceptions of cellulose acetate from cigarette filters, some biodegradable plastics and a single polyethylene sheet. Exposure of hard diet components and other marine debris showed variable results. In conclusion, the results confirm that usage of KOH solutions can be a useful approach in general quantitative studies of plastic ingestion by marine wildlife. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Does short-term potassium fertilization improve recovery from drought stress in laurel?

    Science.gov (United States)

    Oddo, Elisabetta; Inzerillo, Simone; Grisafi, Francesca; Sajeva, Maurizio; Salleo, Sebastiano; Nardini, Andrea

    2014-08-01

    Xylem hydraulic conductance varies in response to changes in sap solute content, and in particular of potassium (K(+)) ion concentration. This phenomenon, known as the 'ionic effect', is enhanced in embolized stems, where it can compensate for cavitation-induced loss of hydraulic conductance. Previous studies have shown that in well-watered laurel plants (Laurus nobilis L.), potassium concentration of the xylem sap and plant hydraulic conductance increased 24 h after fertilization with KCl. The aim of this work was to test whether water-stressed laurel plants, grown under low potassium availability, could recover earlier from stress when irrigated with a KCl solution instead of potassium-free water. Two-year-old potted laurel seedlings were subjected to water stress by suspending irrigation until leaf conductance to water vapour (g(L)) dropped to ∼30% of its initial value and leaf water potential (ψ(L)) reached the turgor loss point (ψ(TLP)). Plants were then irrigated either with water or with 25 mM KCl and monitored for water status, gas exchange and plant hydraulics recovery at 3, 6 and 24 h after irrigation. No significant differences were found between the two experimental groups in terms of ψ(L), g(L), plant transpiration, plant hydraulic conductance or leaf-specific shoot hydraulic conductivity. Analysis of xylem sap potassium concentration showed that there were no significant differences between treatments, and potassium levels were similar to those of potassium-starved but well-watered plants. In conclusion, potassium uptake from the soil solution and/or potassium release to the xylem appeared to be impaired in water-stressed plants, at least up to 24 h after relief from water stress, so that fertilization after the onset of stress did not result in any short-term advantage for recovery from drought. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Photoconductivity and dielectric studies of potassium pentaborate

    Indian Academy of Sciences (India)

    Single crystal of potassium pentaborate (KB5) has been grown by solution growth ... equipped with the Gunn Oscillator guided with rectangular wave-guide. ... its dielectric behaviour with the change of frequency has also been investigated.

  11. Growth and development of Mentha piperita L. in nutrient solution as affected by rates of potassium

    Directory of Open Access Journals (Sweden)

    Janice Valmorbida

    2007-05-01

    Full Text Available The influence of potassium on the development of Mentha piperita L. was evaluated in the plants grown in nutritive solution modified by variations in potassium, at 6.0, 3.0, and 1.5 mmol L-1, establishing differences between treatments and corresponding, respectively, to the concentration proposed in Hoagland and Arnon's no. 2 solution and reductions by 50% and 75%. Until 21 days after transplanting, the concentration used was diluted to 50% in the three treatments. Evaluations consisted of leaf area, development of the above-ground part, and dry matter of different plant organs. Plants grown with 1.5/3.0 mmol L-1 K showed greater development of the above-ground part. Other variables were not different among plants in the different treatments.A influência do potássio no desenvolvimento de Mentha piperita L. foi avaliada em plantas cultivadas em solução nutritiva modificada pela variação de potássio, com 6.0, 3.0 e 1.5 mmol L-1, que estabeleceram as diferenças entre tratamentos e corresponderam, respectivamente, a sua concentração proposta na solução nº 2 de Hoagland e Arnon e diminuição em 50% e 75%. Até os 21 dias após o transplante a concentração utilizada foi diluída em 50% nos três tratamentos. Avaliou-se área foliar, desenvolvimento da parte aérea e matéria secas dos diferentes órgãos. Plantas cultivadas com 1.5/3.0 mmol L-1 K apresentaram maior desenvolvimento da parte aérea. Demais variáveis não diferiram entre as plantas dos diferentes tratamentos.

  12. 21 CFR 178.1010 - Sanitizing solutions.

    Science.gov (United States)

    2010-04-01

    ... aqueous solution containing potassium iodide, sodium p-toluenesulfonchloroamide, and sodium lauryl sulfate...), trisodium phosphate (CAS Reg. No. 7601-54-9), sodium lauryl sulfate (CAS Reg. No. 151-21-3), and potassium...) An aqueous solution of citric acid, disodium ethylenediaminetetraacetate, sodium lauryl sulfate, and...

  13. Influence of pH and oxygen content of buffer solutions on the corrosion behaviour of metallic materials

    International Nuclear Information System (INIS)

    Wiedemann, K.H.

    1977-05-01

    The application of solutions to the decontamination of materials in nuclear installations is based on the condition that their corrosion behaviour is clearly understood. Since electrochemical corrosion is due to cathodic and anodic partial reactions which are influenced in different ways by the pH of the solution and the oxygen content it is suggested that the results of electrochemical experiments with buffer solutions be used as a model for predicting the corrosion behaviour of materials in other solutions. In the tests described here potentio-kinetic current-potential-curves have been traced and galvanic corrosion tests have been made. The results obtained in ascorbic acid, potassium hydrogen phthalate, ammonium citrate and acetate, sodium and potassium tartrate, ammonium hydrogen phosphate, sodium carbonate, hexamethylene tetramin, ethylene diamine enable - on the basis of summarized current-potential-curves - the metals studied to be classified in four groups characterized by clear differences concerning the influence of pH on the corrosion behaviour. (Auth.)

  14. Adsorption of pertechnetate ion on various active carbons from mineral acid solutions

    International Nuclear Information System (INIS)

    Ito, K.

    1991-01-01

    The adsorption behavior of pertechnetate ion (TcO 4 - ) on active carbon has been studied for various acid solutions, taking as indicative value the distribution coefficient K d of Tc between active carbon surface and solution. In a system where the total anion concentration of the acid and its sodium salt was maintained constant, modifying the pH of the solution proved distinctly to influence the Tc adsorption behavior of active carbon: taking the case of active carbon derived from coconut shell, increasing the acidity raised K d ; around neutrality there occurred a level stage; in the alkali region, K d declined. The rise of K d in the acid region, however, was observed only with active carbon derived from coconut shell, from oil pitch or from saw dust; it failed to occur when the active carbon was derived from coal or from bone. With a hydrochloric acid system, the rise of K d started around 1 M (mol dm -1 ) HCl. Beyond 3 M, on the other hand, a breakthrough occurred, and K d declined with increasing acidity. With a nitric acid system, K d rose from 1 M, and the breakthrough occurred at 2 M. When the adsorption was left to equilibrate beyond 4 h, desorption displacement of TcO 4 - by a coexisting other anion was observed in the case of perchloric acid solutions of concentration above 0.1 M and with sulfuric acid solutions above 0.5 M. (author)

  15. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    International Nuclear Information System (INIS)

    Khalil, H.P.S.A.; Khalil, H.P.S.A.; Alothman, O.Y.; Paridah, M.T.; Zainudin, E.S.

    2014-01-01

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  16. Contribution to the liquid-vapour equilibrium of potassium and sodium mixtures

    International Nuclear Information System (INIS)

    Schreinlechner, I.; Schwarz, N.

    1975-10-01

    In this paper the phase diagram of the binary system potassium-sodium in the liquid-vapour range was calculated for different pressures and temperatures, assuming the two metals acting as ideal solution. The assumption was verified by experimental results. It is thus possible to calculate the separation factor for the rectification of potassium and to estimate the content of sodium in the vapour phase during experiments with vapourized potassium from the data of the vapour pressures of the pure metals. (author)

  17. Hydrocyanation of sulfonylimines using potassium hexacyanoferrate(II) as an eco-friendly cyanide source

    International Nuclear Information System (INIS)

    Li, Zheng; Li, Rongzhi; Zheng, Huanhuan; Wen, Fei; Li, Hongbo; Yin, Junjun; Yang, Jingya

    2013-01-01

    An efficient and eco-friendly method for hydrocyanation of sulfonylimines via one-pot two-step procedure using potassium hexacyanoferrate)II) as cyanide source, benzoyl chloride as a promoter, and potassium carbonate as a base is described. This protocol has the features of using nontoxic, nonvolatile and inexpensive cyanide source, high yield, and simple work-up procedure. (author)

  18. Hydrocyanation of sulfonylimines using potassium hexacyanoferrate(II) as an eco-friendly cyanide source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng; Li, Rongzhi; Zheng, Huanhuan; Wen, Fei; Li, Hongbo; Yin, Junjun; Yang, Jingya, E-mail: lizheng@nwnu.edu.cn [Key Laboratory of Eco-Environment-Related Polymer Materials for Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu (China)

    2013-11-15

    An efficient and eco-friendly method for hydrocyanation of sulfonylimines via one-pot two-step procedure using potassium hexacyanoferrate)II) as cyanide source, benzoyl chloride as a promoter, and potassium carbonate as a base is described. This protocol has the features of using nontoxic, nonvolatile and inexpensive cyanide source, high yield, and simple work-up procedure. (author)

  19. Investigation of Different Forms of Potassium as a Function of Clay Mineralogy and Soil Evolution in Some Soils of Fars Province

    Directory of Open Access Journals (Sweden)

    N. Sadri

    2016-10-01

    Full Text Available Introduction: The optimum and sustainable use of soil is only possible with a correct and complete understanding of its properties. Potassium (K+ is an essential element for plant growth and is a dynamic ion in the soil system and its importance in agriculture is well recognized. According to increasing order of plant availability, soil K exists in four forms: mineral (5000-25000 ppm, nonexchangeable (50-750 ppm, exchangeable (40-600 ppm, and solution (1-10 ppm. K cycling or transformations among the K forms in soils are dynamic. The objectives of the present research were to study the relationship between different forms of potassium and clay mineralogy as well as soil evolution of 14 surface soil samples from some selected locations of Fars Province. Materials and methods: Fars provinces, with an area of 122000 km2 located in southern Iran. The elevation varies from 500 m to 4400 m above mean sea level. Mean annual precipitation ranges from about 350 mm to 850 mm. Mean annual temperature ranges from 10°C to 24°C. According to Soil Moisture and Temperature Regime Map of Iran, the soils comprise xeric, and ustic moisture regimes along with mesic, thermic and hyperthemic temperature regimes. Based on the previous soil survey maps of Fars province, 14 surface soil samples were collected. Routine physicochemical analyses and clay mineralogy were performed on soil samples. Soil reaction, texture, electrical conductivity, calcium carbonate, and gypsum were identified. Soluble potassium, exchangeable potassium, non exchangeable potassium, and mineral potassium were measured. The amounts of K forms in each sample were determined. Total K was determined following digestion (110°C of soil with 48 % HF and 6 M HCl. Water soluble K was measured in the saturated extract. Exchangeable K was extracted with 20 ml 1.0 M NH4OAc (pH 7.0 for 5 min. Nitric acid-extractable K was measured by extraction of a soil sample with boiling 1.0 M HNO3 for 1 h. Potassium

  20. Removal of Ca(II) and Mg(II) from potassium chromate solution on Amberlite IRC 748 synthetic resin by ion exchange

    International Nuclear Information System (INIS)

    Yu Zhihui; Qi Tao; Qu Jingkui; Wang Lina; Chu Jinglong

    2009-01-01

    Experimental measurements have been made on the batch ion exchange of Ca(II) and Mg(II) from potassium chromate solution using cation exchanger of Amberlite IRC 748 as K + form. The ion exchange behavior of two alkaline-earth metals on the resin, depending on contact time, pH, temperature and resin dosage was studied. The adsorption isotherms were described by means of the Langmuir and Freundlich isotherms. For Ca(II) ion, the Langmuir model represented the adsorption process better than the Freundlich model. The maximum ion exchange capacity was found to be 47.21 mg g -1 for Ca(II) and 27.70 mg g -1 for Mg(II). The kinetic data were tested using Lagergren-first-order and pseudo-second-order kinetic models. Kinetic data correlated well with the pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. Various thermodynamic parameters such as Gibbs free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) were also calculated. These parameters showed that the ion exchange of Ca(II) and Mg(II) from potassium chromate solution was feasible, spontaneous and endothermic process in nature. The activation energy of ion-exchange (E a ) was determined as 12.34 kJ mol -1 for Ca(II) and 9.865 kJ mol -1 for Mg(II) according to the Arrhenius equation.

  1. Potassium bis(carbonato-O,O')(ethylenediamine-N,N')cobaltate(III) monohydrate at 173 K.

    Science.gov (United States)

    Belai, N; Dickman, M H; Pope, M T

    2001-07-01

    The title salt, K[Co(C2H8N2)(CO3)2].H2O, consists of a distorted octahedral cobalt complex anion and a seven-coordinate potassium cation. Both metal atoms have crystallographic twofold symmetry, one C2 axis passing through the Co atom and C--C bond, and another along a short K--O (water) bond of 2.600 A (corrected for libration). The carbonate is bidentate to both cobalt and potassium and the water forms a hydrogen bond to a carbonate O atom.

  2. Investigation of lanthanum- and neodymium ion interaction with potassium polyphosphate in aqueous solution

    International Nuclear Information System (INIS)

    Ezhova, Zh.A.; Tananaev, I.V.; Koval', E.M.

    1983-01-01

    A study was made on the interaction in the LaCl 3 -KPO 3 -H 2 O and NdCl 3 -KPO 3 -H 2 O systems at 0 deg C by methods of solubility of residual concentrations and measurement of the pH value. The formation of binary KLa 2 (PO 3 ) 7 x10H 2 O and KLa(PO 3 ) 4 X5H 2 O lanthanum- and potassium polyphosphates, as well as KNd 2 (PO 3 ) 7 X10H 2 O and KNd(PO 3 ) 4 X5H 2 O neodymium- apd potassiUm polyphasphates was established. Chemical, paper-chromatographic, infrared spectroscopic, X-ray diffraction and differential thermal analyses of the prepared compoUnds were conducted. Anhydrous binary lanthanum- and neodymium polyphosphates with potassium-=Kla(PO 3 ) 4 , KNd(PO 3 ) 4 , KLa 2 (PO 3 ) 7 and KNd 2 x(PO 3 ) 7 - eere prepared

  3. Relation between the adsorbed quantity and the immersion enthalpy in catechol aqueous solutions on activated carbons.

    Science.gov (United States)

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, Carbochem(TM)-PS230, was modified by chemical and thermal treatment in flow of H(2), in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pK(a). The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g(-1) for catechol aqueous solutions in a range of 20 at 1500 mg·L(-1).

  4. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2011-12-01

    Full Text Available An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG, the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1.

  5. Extracting silica from rice husk treated with potassium permanganate

    International Nuclear Information System (INIS)

    Javed, S.H.; Naveed, S.

    2008-01-01

    As an agro-waste material the rice husk is abundantly available is rice growing areas. In many areas rice husk after burning involves disposal problems because of higher quantities of silica present in it. Rice husk contains about 20 per cent silica, which is present in hydrated amorphous form. On thermal treatment the silica converts into crystobalite, which is a crystalline form of silica. However amorphous silica can be produced under controlled conditions ensuring high reactivity and large surface area. Leaching the rice husk with organic acids and alkalies removes the metallic impurities from its surface. How a dilute solution of potassium permanganate affects the rice husk is the subject of this research paper. The rice husk was treated with the dilute solution of potassium permanganate at room temperature and then analyzed by SEM, TGA and the ash by analytical treatment after burning under controlled temperature. The SEM results revealed that the protuberances of the rice husk were eaten away by the solution of potassium permanganate. Pyrolysis of rice husks showed that the thermal degradation of the treated rice husk was faster than the untreated rice husk where as analytical results confirmed the presence of more amorphous silica than untreated rice husk. (author)

  6. Potassium effect on cesium 137 behaviour in natural waters of contaminated regions (Belarus)

    International Nuclear Information System (INIS)

    Kudel'skij, A.V.; Pashkevich, V.I.; Ovsyannikova, S.V.; Petrovich, A.A.; Smit, D.T.

    1998-01-01

    Very close relationships between cesium 137 activity of water objects (soil solutions, bog and lake water) and their stable potassium contents have been revealed in the contaminated area in south-eastern Belarus. It was revealed the increase of cesium 137 activity in soil solutions and bog ecosystems proportionally with the increase of potassium content. The exponential dependence of cesium 137 activity of fish production was similar to reverse. The coefficient of cesium 137 accumulation in plants was estimated to be reverse connected with the potassium content in soils. So an universal character of these relations and their specificity are of interest when elaborating countermeasures for reducing population dose loads due to cesium 137 water migration

  7. The role of impurities on the process of growing potassium hydrogen phthalate crystals from solution; A quantitative approach

    Science.gov (United States)

    Hottenhuis, M. H. J.; Lucasius, C. B.

    1988-09-01

    Quantitative information about the influence of impurities on the crystal growth process of potassium hydrogen phthalate from its aqueous solution was obtained at two levels: microscopic and macroscopic. At the microscopic level, detailed in situ observations of spiral steps at the (010) face were performed. The velocity of these steps was measured, as well in a "clean" as in a contaminated solution, where the influence of a number of different impurities was investigated. This resulted in a measure of effectiveness of step retardation for each of these impurities. From the same microscopic observations it was observed how these effectiveness factors were influenced by the supersaturation σ, the saturation temperature Ts of the solution and the concentration cimp of the impurity that w as used. At the macroscopic level, ICP (inductively coupled plasma) measurements were carried out in order to determine the distribution coefficient of the same impurities. In these measurements again the influence of the impurity concentration and the supersaturation on the distribution coefficient kD was determined.

  8. Biomimetic synthesis and morphological control of metal carbonates at the air/solution interface

    International Nuclear Information System (INIS)

    Lee, Shichoon; Cho, Kilwon; Son, Younggon

    2012-01-01

    Biomimetic approaches can provide a means of fabricating nanostructured materials under environmentally benign conditions. In this paper, we synthesized metal carbonate films, such as calcite, strontianite, malachite, and hydrozincite films, at the air-solution interface of solutions containing corresponding metal ions by using inflowing CO 2 from the atmosphere. The addition of acidic polymers, fulfilling the role of an acidic protein in biomineralization, provided CaCO 3 nanofibers, SrCO 3 nanofibers oriented in a specific direction, and copper carbonate and zinc carbonate hydroxide thin films. The metal carbonates prepared in this study were used as precursors for the formation of metal oxide nanocrystals via pyrolysis. This work showed that various metal carbonates and metal oxides with nanostructures can be prepared by using atmospheric CO 2 . - Highlights: ► Biomimetic synthesis of metal carbonate nanofilms at the air/solution interface. ► The reaction between metal ions and carbonate ions derived from CO 2 in the air. ► Calcium, strontium, copper and zinc carbonates were formed. ► The morphologies of the nanofilms were controlled by adding the acidic polymer. ► Nanostructured metal oxides were prepared by pyrolysis of the metal carbonates.

  9. Microinjection study on potassium transport of rat kidney

    International Nuclear Information System (INIS)

    Miyamoto, Makoto

    1978-01-01

    Wister rate were divided into the following four groups. (A) control group (B) high-potassium diet group (C) low-potassium diet group (D) nephron population reduction (N.P.R.) group. Microinjection of the artificial solutions containing both 86 Rb and 3 H-inulin were performed into the proximal and distal convoluted tubules as well as cortical peritubular capillaries in rats undergoing mannitol diuresis. Excretory patterns of these substances were analyzed in successive urine samples. 3 H-inulin is entirely recovered in the urine of the experimental kidney following the injection into the proximal and distal tubules. 86 Rb is an adequate tracer for potassium and is absorbed into the potassium pool from either proximal tubular injections or peritubular capillaries. 86 Rb excreted with a time course similar to that of 3 H-inulin is termed as 'direct recovery' and that excreted more slowly, 'delayed recovery'. The 86 Rb recoveries which were obtained after proximal injections were independent of the injection site and averaged 9%. Secretion of 86 Rb into the urine was stimulate during enhanced K secretion and decreased during reduced K secretion along the distal nephron. Distal tubular injections gave 100% direct recovery in control, high-K diet, and N.P.R. rats. It was apparent that the 86 Rb recovery was significantly reduced, although not delayed, in animals deprived of dietary potassium for several weeks. At the collecting duct, the extensive net potassium reabsorption is observed in potassium depleted rats, whereas K absorption might be reduced or even secretion is seemingly taking place in potassium loading rats. In conclution, distal convolution and collecting duct play the major role in the regulation of urinary potassium excretion. (auth.)

  10. Effects of solution P H on the adsorption of aromatic compounds from aqueous solutions by activated carbon

    International Nuclear Information System (INIS)

    Nouri, S.; Haghseresht, F.; Lu, M.

    2002-01-01

    Absorption of p-Cresol, Benzoic acid and Nitro Benzene by activated carbon from dilute aqueous solutions was carried out under controlled ph conditions at 310 k. In acidic conditions, well below the pK a of all solutes, it was observed that the adsorbate solubility and the electron density of its aromatic ring were the influencing factors on the extent of the adsorption by affecting the extent of London dispersion forces. In higher solution ph conditions, on the other hand, it was found that the electrostatic forces played a significant role on the extent of adsorption. The Effect of ph must be considered from its combined effects on the carbon surface and on the solute molecules. It was found that the uptake of the molecular forms of the aromatic solutes was dependent on the substituents of the aromatic ring. Adsorption of the solutes in higher P H values was found to be dependent on the concentration of anionic form of the solutes. All isotherms were fitted into Freundlich Isotherm Equations

  11. Resorcinol adsorption from aqueous solution on activated carbon: Relation adsorption isotherm and immersion enthalpy

    International Nuclear Information System (INIS)

    Blanco, Diago A; Giraldo, Liliana; Moreno, Juan C.

    2008-01-01

    The resorcinol adsorption on a modified activated carbon, obtained from an activated commercial carbon Carbochem T M - PS30, CAG, modified by means of chemical treatment with HNO 3 7M oxidized activated carbon (CAO) and heat treatment under H 2 flow, reduced activated carbon (CAR) are studied. The influence of solution pH, the reduction and oxidation of the activated surface carbons in resorcinol aqueous solutions is determined. The interaction solid solution is characterized by adsorption isotherms analysis at 298 K and at pHs of 7.9 and 11 in order to evaluate the system on and below the value of resorcinol pKa. The adsorption capacity of carbons increases with diminishing solution pH. The amount retained increases in the reduced carbon at maximum adsorption pH and diminishes in the oxidized carbon. the experimental results of the adsorption isotherms are adjusted to the Freundlich and Langmuir models, obtaining values for the Q m ax parameter Langmuir model in the CAG of 179, 156 and 44 mgg - 1 For pH values of 7,9 and 11 respectively. In this case of modified carbons values of 233, 179 and 164 mgg - 1 Are obtained for CAR, CAG and CAO to pH 7 respectively, as general tendency the resorcinol adsorption increases in the following order CAR > CAG > CAO. Similar conclusions from immersion enthalpies are obtained, their values increase with the amount of solute retained. In the case of the CAG, immersion enthalpies between 25.8 to 40.9 Jg - 1, are obtained for resorcinol aqueous solutions in a range from 20 to 1500 mgL - 1

  12. Carbon Market and Integrated Waste Solutions : a Case Study of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Carbon Market and Integrated Waste Solutions : a Case Study of Indonesia ... dual purpose of helping developing countries achieve sustainable development ... with a view to devising integrated waste management solutions in urban centres ... and disseminate them through national, regional and international networks.

  13. The adsorption of molybdenum(VI) onto activated carbon from acid solution

    International Nuclear Information System (INIS)

    De Wet, H.F.

    1985-11-01

    The adsorption of molybdenum(VI) onto activated carbon is dependent on which nuclides are present in the solution. In this study the adsorption of Mo(VI) onto activated carbon is examined as a function of two variables, namely: the total molybdenum concentration and the pH. The equilibration time, the influence of ionic strength and the reversibility of the system was also examined. A series of solutions of a specified molybdenum concentration were equilibrated with activated carbon. In these experiments the pH varied from 5,5 to 0,9 while the temperature and ionic strength remained constant. The solutions were analysed colorimetrically and the pH equilibrium of each was measured. The molybdenum concentration for the series of experiments varied from 5x10 -4 M to 2x10 -2 M. 61 refs., 39 figs., 38 tabs

  14. The Effects of Changing Membrane Compositions and Internal Electrolytes on the Respon of Potassium Ion Sensor

    OpenAIRE

    Ulianas, Alizar; Heng, Lee Yook

    2015-01-01

    A study on the changing of membrane compositions and internal solution towards the response potassium ion sensor was carried out. Potassium ion sensor based on photocured cross linking poly(n-butyl acrylate) membranes with varying composition of valinomycin (val), sodium tetrakis [3.5-bis(trifluoro-methyl) phenyl] borat (NaTFPB), types ion of internal solution were investigated. Effects of varying composition of val, NaTFPB, types and concentration of internal solution were observed on potass...

  15. Nutritional potassium requirement for laying Japanese quails

    Directory of Open Access Journals (Sweden)

    Fernando Guilherme Perazzo Costa

    2011-12-01

    Full Text Available The objective of this study was to evaluate the potassium requirement for laying Japanese quails. Two hundred and forty quails were distributed in a randomized block design, with five treatments and six replicates, with eight birds each. The treatments consisted of a basal diet deficient in potassium (K (2.50 g/kg, supplemented with potassium carbonate, to replace the inert, to reach levels of 2.50, 3.50, 4.50, 5.50 and 6.50 (g/kg of K in the diet. There was a quadratic effect of K levels on feed intake, egg production, egg mass and feed conversion per egg mass and per egg dozen, estimating the requirements of 4.26, 4.41, 4.38, 4.43 and 4.48 (g/kg of K diet, respectively. There was no significant effect on the levels of K in the diet on egg weight, albumen weight, percentage of yolk or shell and yolk color. However, yolk and shell weights reduced and the albumen percentage increased linearly with increasing levels of K in the diet. Despite the reduction of shell weight, the increased levels of K did not influence the specific gravity and shell thickness. The use of 4.41 g/kg of potassium is recommended in the diet for laying Japanese quails.

  16. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    Science.gov (United States)

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Effect of ion concentrations on uranium absorption from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.

    1979-01-01

    The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium

  18. Suicide Attempt by Intravenous Potassium Self-Poisoning: A Case Report

    Directory of Open Access Journals (Sweden)

    Florent Battefort

    2012-01-01

    Full Text Available Introduction. Overdose of potassium is not as frequently encountered in clinical practice as hyperkalaemia due to acute or chronic renal disease. However, potassium overdoses leading to serious consequences do occur. Case Presentation. A 20-year-old nurse student presented with a cardiac arrest with asystole rhythm. Beside the patient were found four 50-mL syringes and empty vials of potassium chloride (20 mL, 10%. After initial resuscitation with epinephrine, 125 mL of a 4.2% intravenous solution of sodium bicarbonate were injected which resulted in the recovery of an effective cardiac activity. The patient recovered without sequelae. Conclusion. The difficulty in this case was to recognize the potassium poisoning. The advanced resuscitation with the use of a specific treatment helped to resuscitate the patient.

  19. Integrated process using non-stoichiometric sulfides or oxides of potassium for making less active metals and hydrocarbons

    International Nuclear Information System (INIS)

    Swanson, R.

    1984-01-01

    Disclosed is a combinative integrated chemical process using inorganic reactants and yielding, if desired, organic products. The process involves first the production of elemental potassium by the thermal or thermal-reduced pressure decomposition of potassium oxide or potassium sulfide and distillation of the potassium. This elemental potassium is then used to reduce ores or ore concentrates of copper, zinc, lead, magnesium, cadmium, iron, arsenic, antimony or silver to yield one or more of these less active metals in elemental form. Process potassium can also be used to produce hydrogen by reaction with water or potassium hydroxide. This hydrogen is reacted with potassium to produce potassium hydride. Heating the latter with carbon produces potassium acetylide which forms acetylene when treated with water. Acetylene is hydrogenated to ethene or ethane with process hydrogen. Using Wurtz-Fittig reaction conditions, the ethane can be upgraded to a mixture of hydrocarbons boiling in the fuel range

  20. Preparation of potassium tantalum fluoride from tantalum hydroxide

    International Nuclear Information System (INIS)

    Silva, F.T. da; Espinola, A.; Dutra, A.J.B.

    1987-01-01

    Potassium tantalum fluoride (K 2 TaF 7 ) is an intermediary product in the processing of tantaliferous materials; it is the basic raw material for both reduction processes in use presently: reduction by metallic sodium and electrolysis in molten halides. It is normally obtained from a fluorotantalic acid solution to which potassium ions are added the precipitation of white acicular crystals of K 2 TaF 7 . The conditions for precipitation and recrystallization were studied, and crystal characterization were done by scanning electron microscopy, X-ray diffraction and thermogravimetric and thermodifferential analyses. (Author) [pt

  1. A Novel Approach To Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. McKelvy; Andrew V. G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2006-06-21

    -stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (i) modeling/controlling the slurry fluid-flow conditions, (ii) varying the aqueous ion species/size and concentration (e.g., Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cl{sup -}, HCO{sub 3}{sup -}), and (iii) incorporating select sonication offer to enhance exfoliation and carbonation. We have succeeded in nearly doubling the extent of carbonation observed compared with the optimum procedure previously developed by the Albany Research Center. Aqueous carbonation reactivity was found to be a strong function of the ionic species present and their aqueous activities, as well as the slurry fluid flow conditions incorporated. High concentration sodium, potassium, and sodium/potassium bicarbonate aqueous solutions have been found to be the most effective solutions for enhancing aqueous olivine carbonation to date. Slurry-flow modeling using Fluent indicates that the slurry-flow dynamics are a strong function of particle size and mass, suggesting that controlling these parameters may offer substantial potential to enhance carbonation. Synergistic control of the slurry-flow and aqueous chemistry parameters offers further potential to improve carbonation reactivity, which is being investigated during the no-cost extension period. During the first project year we developed a new sonication exfoliation system with a novel sealing system to carry out the sonication studies. We also initiated(Abstract truncated).

  2. Effect of potassium-salt muds on gamma ray, and spontaneous potential measurements

    International Nuclear Information System (INIS)

    Cox, J.W.; Raymer, L.L.

    1976-01-01

    Interpretations of the gamma ray and Spontaneous Potential curves generally assume the presence of sodium chloride as the dominant salt in both the formation water and the mud filtrate. However, potassium-salt muds are increasingly being used by the oil industry. The potassium cation is significantly different from the sodium cation in its radioactive and electrochemical properties. Natural potassium contains a radioactive isotope which emits gamma rays. Thus, the presence of potassium salts in the mud system may contribute to Gamma-Ray tool response. Since the Gamma Ray is used quantitatively in many geological sequences as an indicator of clay content, a way to correct for the effect of potassium in the mud column is desirable. Correction methods and charts based on laboratory measurements and field observations are presented. The effect of temperature on the resistivity of potassium muds is also briefly discussed. From data available, it appears to be similar to that for NaCl muds. On the bases of field observations and laboratory work, the electrochemical properties of potassium-chloride and potassium-carbonate muds and mud filtrates are discussed. Activity relationships are proposed, and the influence of these salts on the SP component potentials--namely, the liquid-junction, membrane, and bi-ionic potentials--is described. Several field examples are presented

  3. Low Potassium (Hypokalemia)

    Science.gov (United States)

    Symptoms Low potassium (hypokalemia) By Mayo Clinic Staff Low potassium (hypokalemia) refers to a lower than normal potassium level ... 2 millimoles per liter (mmol/L). A very low potassium level (less than 2.5 mmol/L) ...

  4. Acid-permanganate oxidation of potassium tetraphenylboron

    International Nuclear Information System (INIS)

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO 2 , highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO 4 /2.5M H 3 PO 4 solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO 2 (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation

  5. Potassium ferrate treatment of RFETS' contaminated groundwater

    International Nuclear Information System (INIS)

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe +6 ) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern

  6. Effect of acid Lugol solution as preservative on two representative chitineous and gelatinous zooplankton groups

    DEFF Research Database (Denmark)

    Jaspers, Cornelia; Carstensen, Jacob

    2009-01-01

    The estimation of biomass from body lengths to carbon regressions is a common approach in plankton research. Several different chemicals for sample preservation are in use, and conversion factors to account for shrinkage effects exist, but to our knowledge the consequences of using potassium......-iodide and iodine (Lugol solution) as preservative on body sizes of different mesozooplankton groups have not been investigated. We tested the effect of 2% acidified Lugol solution on body sizes over time on two major marine mesozooplankton groups, namely larvaceans and copepods, which are representatives...

  7. Amperometric sensor for carbon dioxide: design, characteristics, and perforance

    International Nuclear Information System (INIS)

    Evans, J.; Pletcher, D.; Warburton, P.R.G.; Gibbs, T.K.

    1989-01-01

    A new sensor for atmospheric carbon dioxide is described. It is an amperometric device based on a porous electrode in a three-electrode cell and the electrolyte is a copper diamine complex in aqueous potassium chloride. The platinum cathode, held at constant potential, is used to detect the formation of Cu 2+ following the change in the pH of the solution when the sensor is exposed to an atmosphere containing carbon dioxide. The sensor described is designed to monitor carbon dioxide concentrations in the range 0-5%, although with some modifications, other ranges would be possible. The response to a change in the carbon dioxide content of the atmosphere is rapid (about 10s) while the monitored current is strongly (but nonlinearly) dependent on carbon dioxide concentration. Unlike other amperometric devices for carbon dioxide, there is no interference from oxygen although other acid gases would lead to an interfering response

  8. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2008-01-01

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate

  9. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2008-05-15

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate.

  10. A method for the determination of potassium concentration in organic tissue samples

    International Nuclear Information System (INIS)

    Maciel, A.C.A.

    1976-12-01

    An original method has been developed to detect small variations of potassium in several samples of organic tissue. These variations are relative to elements that are biologically representative, such as carbon, oxygen, and nitrogen. The samples are irradiated with a beam of protons from a Van de Graaff accelerator (4MV). Vacancies are created in the K-shell of potassium, and x-rays are emitted when these vacancies are filled with outer electrons. These X-rays and the protons elastically scattered by the nuclei of carbon, nitrogen and oxygen are detected and their energy spectra are analysed by computer programs especially elaborated for this purpose. A technique for routine preparation of samples in the laboratory was developed including the production of aluminum support layers, and the preparation of organic tissue samples with a low temperature microtome. The unique features of this method are that it does not destroy the tissue, permitting further analysis with the microscope, and the normalization of the amount of potassium using other elements (C,O,N) instead of the total mass of the sample. (Author) [pt

  11. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    Energy Technology Data Exchange (ETDEWEB)

    Andrew V. G. Chizmeshya; Michael J. McKelvy; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2007-06-21

    far, we have succeeded in nearly doubling the extent of carbonation observed compared with the optimum procedure previously developed by the Albany Research Center. Aqueous carbonation reactivity was found to be a strong function of the ionic species present and their aqueous activities, as well as the slurry fluid flow conditions incorporated. High concentration sodium, potassium, and sodium/potassium bicarbonate aqueous solutions have been found to be the most effective solutions for enhancing aqueous olivine carbonation to date. Slurry-flow modeling using Fluent indicates that the slurry-flow dynamics are a strong function of particle size and mass, suggesting that controlling these parameters may offer substantial potential to enhance carbonation. During the first project year we developed a new sonication exfoliation apparatus with a novel sealing system to carry out the sonication studies. We also initiated investigations to explore the potential that sonication may offer to enhance carbonation reactivity. During the second project year, we extended our investigations of the effects of sonication on the extent of carbonation as a function of the following parameters: particle size distribution, the mass of solid reactant, volume fraction of aqueous solution present, sonication power, time, temperature, and CO{sub 2} pressure. To date, none of the conditions investigated have significantly enhanced carbonation. Mechanistic investigations of the stirred ({approx}1,500 rpm) aqueous olivine carbonation process indicate the carbonation process involves both incongruent magnesium dissolution and silica precipitation, which results in robust silica-rich passivating layer formation. Secondary ion mass spectrometry observation of H within the passivating layer that forms during static carbonation suggests 2H{sup +}/Mg{sup 2+} ion exchange is associated with incongruent dissolution. Apparently, H{sub 2}O forms at or near the olivine/passivating-layer interface during the

  12. Effect of potassium ferrate on disintegration of waste activated sludge (WAS).

    Science.gov (United States)

    Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang

    2012-06-15

    The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Cole–Cole Parameter Characterization of Urea and Potassium for Improving Dialysis Treatment Assessment

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Meaney, Paul M.; Epstien, Neil R.

    2012-01-01

    In this letter, we investigate the characteristics of the dielectric properties of urea and ions such as potassium and sodium, which are the principal molecules studied during dialysis treatment. The method involves measuring the electrical properties of varying concentrations of the constituent...... solutions over a broad frequency range and estimating the associated Cole–Cole parameters. We utilized concentrations above those expected in vivo to achieve a more accurate characterization. In these studies, we found that the conductivity was essentially constant with respect to urea concentration but had...... a strong, nearly linear correlation with potassium. In addition, the alpha factor had a distinct, monotonically varying relationship for both urea and potassium with significantly different initial slopes. Utilizing these two curves, simple inversion algorithms are possible to compute the solute...

  14. Potassium iodide capsule treatment of feline sporotrichosis.

    Science.gov (United States)

    Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P

    2012-06-01

    Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.

  15. Novel precipitation technique for uranium recovery from carbonate leach solutions

    International Nuclear Information System (INIS)

    Sujoy Biswas; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.; Chakravartty, J.K.

    2015-01-01

    The recovery of uranium from carbonate ore leach solution was studied using novel precipitation method. The uranium from leach liquor was recovered as magnesium diuranate with NaOH in presence of trace amount of Mg 2+ . Effects of various parameters such as addition of H 2 SO 4 , MgO, MgSO 4 as well as NaOH were investigated for maximum uranium recovery. Overall uranium recovery of the process was 97 % with improved particle size (∼57 µm). Based on the experimental findings, a process flow-sheet was developed for uranium recovery from carbonate ore leach solution with a uranium concentration of <1 g/L. (author)

  16. Adsorption of phenol by activated carbon: Influence of activation methods and solution pH

    International Nuclear Information System (INIS)

    Beker, Ulker; Ganbold, Batchimeg; Dertli, Halil; Guelbayir, Dilek Duranoglu

    2010-01-01

    Cherry stone based activated carbon derived from a canning industry was evaluated for its ability to remove phenol from an aqueous solution in a batch process. A comparative adsorption on the uptake of phenol by using commercial activated carbon (Chemviron CPG-LF), and two non-functional commercial polymeric adsorbents (MN-200 and XAD-2) containing a styrene-divinylbenzene macroporous hyperreticulated network have been also examined. Equilibrium studies were conducted in 25 mg L -1 initial phenol concentrations, 6.5-9 solution pH and at temperature of 30 deg. C. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Besides, the cherry stone based activated carbons were carried out by using zinc chloride and KOH activation agents at different chemical ratios (activating agent/precursor), to develop carbons with well-developed porosity. The cherry stone activated carbon prepared using KOH as a chemical agent showed a high surface area. According to the results, activated carbons had excellent adsorptive characteristics in comparison with polymeric sorbents and commercial activated carbon for the phenol removal from the aqueous solutions.

  17. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    OpenAIRE

    Moreno-Piraj?n, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2011-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-so...

  18. OPTIMIZATION OF POTASSIUM NITRATE BASED SOLID PROPELLANT GRAINS FORMULATION USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Oladipupo Olaosebikan Ogunleye

    2015-08-01

    Full Text Available This study was designed to evaluate the effect of propellant formulation and geometry on the solid propellant grains internal ballistic performance using core, bates, rod and tubular and end-burn geometries. Response Surface Methodology (RSM was used to analyze and optimize the effect of sucrose, potassium nitrate and carbon on the chamber pressure, temperature, thrust and specific impulse of the solid propellant grains through Central Composite Design (CCD of the experiment. An increase in potassium nitrate increased the specific impulse while an increase in sucrose and carbon decreased specific impulse. The coefficient of determination (R2 for models of chamber pressure, temperature, thrust and specific impulse in terms of composition and geometry were 0.9737, 0.9984, 0.9745 and 0.9589, respectively. The optimum specific impulse of 127.89 s, pressure (462201 Pa, temperature (1618.3 K and thrust (834.83 N were obtained using 0.584 kg of sucrose, 1.364 kg of potassium nitrate and 0.052 kg of carbon as well as bate geometry. There was no significant difference between the calculated and experimented ballistic properties at p < 0.05. The bate grain geometry is more efficient for minimizing the oscillatory pressure in the combustion chamber.

  19. Identification of precipitates formed on zero-valent iron in anaerobic aqueous solutions

    International Nuclear Information System (INIS)

    Schuhmacher, T.; Odziemkowski, M.S.; Reardon, E.J.; Gillham, R.W.

    1997-01-01

    The formation of precipitates has been identified as a possible limitation in the use of granular iron for in situ remediation of groundwater. This study was undertaken to identify the precipitates that form on the iron surfaces under conditions of differing water chemistry. Two laboratory column tests were performed using 100 mesh, 99% pure electrolytic iron. A 120 mg/L calcium carbonate (CaCO 3 ) solution passed through one column and a 40 mg/L potassium bromide (KBr) solution through the other. The CaCO, treated iron formed a whitish gray coating on the first centimeter of the column but the KBr treated iron did not display any visible precipitates. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy were used to identify the precipitates. Calcium carbonate and ferrous carbonate (FeCO 3 ) phases were only present on the surface of the iron removed from the influent end of the column treated with a CaCO 3 solution. Iron surfaces analyzed from both the influent and the effluent end of the KBr treated iron and the effluent end of the CaCO 3 treated iron indicated the presence of magnetite (Fe 3 O 4 ) precipitates

  20. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.

    Science.gov (United States)

    Tunsu, Cristian; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-01

    With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent's concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I2/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5M I2/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe4BTBP showed good removal of mercury, with an extraction efficiency of 97.5 ± 0.7% being achieved in a single stage. Better removal of mercury was achieved in a single stage using the extractants Cyanex 302 and Cyanex 923 in kerosene, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Deposition of additives onto surface of carbon materials by blending method--general conception

    International Nuclear Information System (INIS)

    Przepiorski, Jacek

    2005-01-01

    Carbon fibers loaded with potassium carbonate and with metallic copper were prepared by applying a blending method. Raw isotropic coal pitch was blended with KOH or CuBr 2 and obtained mixtures were subjected to spinning. In this way KOH and copper salt-blended fiber with uniform distribution of potassium and copper were spun. The raw fibers were exposed to stabilization with a mixture of CO 2 and air or air only through heating to 330 deg. C and next to treatment with carbon dioxide or hydrogen at higher temperatures. Electron probe micro-analysis (EPMA) analyses showed presence of potassium carbonate or metallic copper predominantly in peripheral regions of the obtained fibers. Basing on the mechanisms of potassium and copper diffusion over the carbon volume, generalized method for the deposition of additives onto surface of carbon materials is proposed

  2. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons

    Directory of Open Access Journals (Sweden)

    Valentina Bernal

    2017-06-01

    Full Text Available Paracetamol adsorption in acidic, neutral and basic media on three activated carbons with different chemistry surfaces was studied. A granular activated carbon (GAC was prepared from coconut shell; starting from this sample, an oxidized activated carbon (GACo was obtained by treating the GAC with a boiling solution of 6 M nitric acid, so to generate a greater number of oxygenated surface groups. In addition, a reduced activated carbon (GACr was obtained by heating the GAC at 1173 K, to remove the oxygenated surface groups. Paracetamol adsorption was higher for GACr due to the lower presence of oxygenated surface functional groups. Moreover, adsorption was highest at neutral pH. The magnitude of the interactions between paracetamol molecules and activated carbons was studied by measuring the immersion enthalpies of activated carbons in solution of paracetamol at different concentrations and pH values and by calculating the interaction enthalpy. The highest value was obtained for GACr in a paracetamol solution of 1000 mg L−1 at pH 7, confirming that paracetamol adsorption is favoured on basic activated carbons at pH values near to neutrality. Finally, the Gibbs energy changes confirmed the latter result, allowing explaining the different magnitudes of the interactions between paracetamol and activated carbons, as a function of solution pH.

  3. Aqueous solution dispersement of carbon nanotubes

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  4. Effect of potassium hydroxide activation in the desulfurization process of activated carbon prepared by sewage sludge and corn straw.

    Science.gov (United States)

    Zeng, Fan; Liao, Xiaofeng; Hu, Hui; Liao, Li

    2018-03-01

    Series sludge straw-based activated carbons were prepared by sewage sludge and corn straw with potassium hydroxide (KOH) activation, and the desulfurization performance of activated carbons was studied. To obtain the best desulfurization performance, the optimum ratio between the raw materials and the activator was investigated. The results showed that when the mass ratio of sewage sludge, corn straw, and KOH was 3:7:2, the activated carbon obtained the best breakthrough and saturation sulfur sorption capacities, which were 12.38 and 5.74 times, respectively, those of samples prepared by the nonactivated raw materials. The appropriate KOH could improve the microporosity and alkaline groups, meanwhile reducing the lactone groups, which were all beneficial to desulfurization performance. The chemical adsorption process of desulfurization can be simplified to four main steps, and the main desulfurization products are elemental sulfur and sulfate. Sewage sludge (SS) and corn straw (CS) both have great production and wide distribution and are readily available in China. Much attention has been paid on how to deal with them effectively. Based on the environment protection idea of waste treatment with waste and resource recycling, low-cost adsorbents were prepared by these processes. The proposed method can be expanded to the municipal solid waste recycling programs and renewable energy plan. Thus, proceeding with the study of preparing activated carbon by SS and straw as a carbon-based dry desulfurization agent could obtain huge social, economic, and environmental benefits.

  5. Adsorption of mercury (II from liquid solutions using modified activated carbons

    Directory of Open Access Journals (Sweden)

    Hugo Soé Silva

    2010-06-01

    Full Text Available Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury abatement. Activated carbons are universal adsorbents which have been found to be a very effective alternative for mercury removal from water. The effectiveness with which a contaminant is adsorbed by the solid surface depends, among other factors, on the charge of the chemical species in which the contaminant is in solution and on the net charge of the adsorbent surface which depend on the pH of the adsorption system. In this work, activated carbon from carbonized eucalyptus wood was used as adsorbent. Two sulphurization treatments by impregnation with sulphuric acid and with carbon disulphide, have been carried out to improve the adsorption capacity for mercury entrapment. Batch adsorption tests at different temperatures and pH of the solution were carried out. The influence of the textural properties, surface chemistry and operation conditions on the adsorption capacity, is discussed.

  6. Agglomeration mechanism in biomass fluidized bed combustion – Reaction between potassium carbonate and silica sand

    DEFF Research Database (Denmark)

    Anicic, Bozidar; Lin, Weigang; Dam-Johansen, Kim

    2018-01-01

    Agglomeration is one of the operational problems in fluidized bed combustion of biomass, which is caused by interaction between bed materials (e.g. silica sand) and the biomass ash with a high content of potassium species. However, the contribution of different potassium species to agglomeration ...

  7. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  8. Effects of solution chemistry and atmosphere on leaching of alkali borosilicate glass

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Christensen, H.; Clark, D.E.; Werme, L.

    1983-01-01

    The leaching behavior of two alkali-borosilicate glasses containing 9 wt % simulated fission products and 1.6 wt % uranium oxide has been studied. Samples were exposed to one of eight types of leachants including doubly distilled water, simulated ground silicate water, a brine solution, and solutions containing various concentrations of iron, aluminum or sodium maintained at either 25 0 C, 40 0 C or 90 0 C for up to 182 days. The most aggressive leachants were the solutions containing sodium (excluding brine) and simulated ground silicate water. These solutions increased the extent of leaching by a factor of 2 to 3 over that for distilled water for one of the glasses. A partially protective surface film rich in magnesium, potassium, and chlorine was formed on the glasses exposed to the brine solution. In order to evaluate the effects of atmosphere on leaching, samples were also immersed in doubly distilled water over which the relative concentrations of oxygen, nitrogen and carbon dioxide were varied. Increasing the carbon dioxide concentration from 0 to 50% resulted in a factor of 3 increase in the leaching rate

  9. Magnesium bicarbonate as an in situ uranium lixiviant

    International Nuclear Information System (INIS)

    Sibert, J.W.

    1984-01-01

    In the subsurface solution mining of mineral values, especially uranium, in situ, magnesium bicarbonate leaching solution is used instead of sodium, potassium and ammonium carbonate and bicarbonates. The magnesium bicarbonate solution is formed by combining carbon dioxide with magnesium oxide and water. The magnesium bicarbonate lixivant has four major advantages over prior art sodium, potassium and ammonium bicarbonates

  10. Coccidian oöcysts as type-specimens: long-term storage in aqueous potassium dichromate solution preserves DNA.

    Science.gov (United States)

    Williams, R B; Thebo, P; Marshall, R N; Marshall, J A

    2010-05-01

    Preservation of the exogenous oöcyst stage of coccidian parasites (phylum Apicomplexa N.D. Levine, 1970) as type-specimens of newly described species has long been problematical. Conventional fixatives have proved unsatisfactory, and compromises such as embedding oöcysts in resin or photographing them are not entirely appropriate for various reasons. As an alternative, chilled potassium dichromate solution (normally used in the laboratory to prevent putrefaction of temporary preparations of live oöcysts) has been tested as a long-term preservative of sporulated oöcysts of Eimeria brunetti P.P. Levine, 1942, E. maxima Tyzzer, 1929, E. mitis Tyzzer, 1929, E. necatrix Johnson, 1930, E. praecox Johnson, 1930 and E. tenella (Railliet & Lucet, 1891) (suborder Eimeriorina Léger, 1911; family Eimeriidae Minchin, 1903). Oöcysts from faeces of chickens Gallus gallus (Linnaeus) were placed in 2.5% w/v aqueous potassium dichromate solution (PDS) and stored in the dark at 4 +/- 2 degrees C. After 23 years in storage, oöcysts of each species were administered orally to chickens and failed to initiate infections, indicating that the oöcysts were dead. Nevertheless, after about 24 years, DNA was still recoverable from the oöcysts, and the original species identifications made by classic parasitological methods were confirmed by polymerase chain reaction assays. Furthermore, after almost 25 years, microscopical examination revealed that the walls and internal structures remained well preserved in 83-98% of the oöcysts of the six species investigated. Hence, PDS is potentially suitable for the long-term preservation of sporulated coccidian oöcysts as type-specimens for taxonomic purposes. The samples used in this study are now in the care of the Natural History Museum, London, UK. It is recommended that they be monitored in like manner, by suitably qualified scientists, at intervals of about 5 years to assess their state of preservation and the recoverability of DNA

  11. NF ISO 7097-1. Nuclear fuel technology - Uranium dosimetry in solutions, in uranium hexafluoride and in solids - Part 1: reduction with iron (II) / oxidation with potassium bi-chromate / titration method

    International Nuclear Information System (INIS)

    2002-04-01

    This standard document describes the mode of operation of three different methods for the quantitative dosimetry of uranium in solutions, in UF 6 and in solids: reduction by iron (II), oxidation by potassium bi-chromate and titration. (J.S.)

  12. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.; Al-Hadeethi, Yas Fadel; Bekyarova, Elena; Zhao, Chao; Wang, Qingxiao; Zhang, Xixiang; Al-Zahrani, Ali; Al-Agel, Faisal Abdulaziz M; Al-Marzouki, Fahad M.; Haddon, Robert C.

    2015-01-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  13. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.

    2015-03-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  14. Changing fluxes of carbon and other solutes from the Mekong River.

    Science.gov (United States)

    Li, Siyue; Bush, Richard T

    2015-11-02

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  15. Cyclic Voltammetric Investigation of Dopamine at Poly-(Gabapentin Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    M. T. Shreenivas

    2011-01-01

    Full Text Available The poly (gabapentin film was prepared on the surface of carbon paste electrode by electrochemical method using cyclic voltammetric technique. The poly (gabapentin film-modified carbon paste electrode was calibrated with standard potassium ferrocyanide solution in 1 M KCl as a supporting electrolyte. The prepared poly (gabapentin film-coated electrode exhibits excellent electrocatalytic activity towards the detection of dopamine at physiological pH. The scan rate effect was found to be diffusion-controlled electrode process. The concentration effect of dopamine was studied, and the redox peak potentials of dopamine were dependant on pH.

  16. Activated carbons employed to remove ionic liquids from aqueous solutions

    International Nuclear Information System (INIS)

    Hassan, S.; Farooq, A.; Ahmad, M.A.; Irfan, N.; Tufail, M.

    2011-01-01

    Imidazolium and pyridinium based ionic liquids (ILs) have been separated from aqueous solutions by adsorption using a raw Chinese activated carbon (CAC), a bleached Chinese activated carbon (BAC) and an acid treated Chinese activated carbon (AAC) as adsorbent. Adsorption isotherms data of ionic liquids on activated carbons has been obtained. The influence of both cations and anions was analyzed by studying three different ILs. The role of surface chemistry of the adsorbent was also examined using activated carbons modified by oxidative treatments. The BET surface area of activated carbons was measured by nitrogen adsorption. The results of this work indicate that activated carbon is an attractive adsorbent to remove ionic liquids from water streams. It has also been demonstrated that the adsorption of hydrophilic ionic liquids can be improved by modifying the amount and nature of oxygen groups on the activated carbon surface specially by increasing basic groups. The adsorption data for isotherms was studied at acidic, neutral and basic pH values. (author)

  17. Development of New Potassium Carbonate Sorbent for CO2 Capture under Real Flue Gas Conditions

    Directory of Open Access Journals (Sweden)

    Javad Esmaili

    2014-07-01

    Full Text Available In this paper, the development of a new potassium carbonateon alumina support sorbent prepared by impregnating K2CO3 with an industrial grade of Al2O3 support was investigated. The CO2 capture capacity was measured using real flue gas with 8% CO2 and 12% H2O in a fixed-bed reactor at a temperature of 65 °C using breakthrough curves. The developed sorbent showed an adsorption capacity of 66.2 mgCO2/(gr sorbent. The stability of sorbent capture capacity was higher than the reference sorbent. The SO2 impurity decreased sorbent capacity about 10%. The free carbon had a small effect on sorbent capacity after 5 cycles. After 5 cycles of adsorption and regeneration, the changes in the pore volume and surface area were 0.020 cm3/gr and 5.5 m2/gr respectively. Small changes occurred in the pore size distribution and surface area of sorbent after 5 cycles.

  18. Light-Weight Low-Loss Dielectric Polymer Composites Containing Carbon Nanostructure

    Science.gov (United States)

    2014-10-17

    Huang, J. Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyacrylate ...Highly Conductive Graphene Nanoribbons by Longitudinal Splitting of Carbon Nanotubes Using Potassium Vapor. ACS Nano 2011, 5, 968-974. 17. Lu, W.; Ruan...conductive GNRs, prepared using sodium/ potassium unzipping of multiwall carbon nanotubes, can boost the lithium storage performance of SnO2 NPs. The

  19. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    Science.gov (United States)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  20. Effects of calcium antagonists on isolated bovine cerebral arteries: inhibition of constriction and calcium-45 uptake induced by potassium or serotonin

    International Nuclear Information System (INIS)

    Wendling, W.W.; Harakal, C.

    1987-01-01

    The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium ( 45 Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased 45 Ca uptake into cerebral artery strips during 5 minutes of 45 Ca loading; for potassium 45 Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal 45 Ca uptake but significantly blocked the increase in 45 Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of 45 Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated 45 Ca efflux. The results demonstrate that verapamil and nifedipine block 45 Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries

  1. Indirect complexometric determination of mercury(II) using potassium bromide as selective masking agent

    International Nuclear Information System (INIS)

    Sreekumar, N.V.; Nazareth, R.A.; Narayana, B.; Hegde, P.; Manjunatha, B.R.

    2002-01-01

    A complexometric method for the determination of mercury in presence of other metal ions based on the selective masking ability of potassium bromide towards mercury is described. Mercury(II) present in a given sample solution is first complexed with a known excess of EDTA and the surplus EDTA is titrated against zinc sulfate solution at pH 5-6 using xylenol orange as the indicator. A known excess of 10 % solution of potassium bromide is then added and the EDTA released from Hg-EDTA complex is titrated against standard zinc sulfate solution. Reproducible and accurate results are obtained for 8 mg to 250 mg of mercury(II) with a relative error ±0.28 % and standard deviations /leg 0.5 mg. The interference of various ions is studied. This method was applied to the determination of mercury(II) in its alloys. (author)

  2. Effects of potassium on kesterite solar cells: Similarities, differences and synergies with sodium

    Directory of Open Access Journals (Sweden)

    S. G. Haass

    2018-01-01

    Full Text Available Addition of alkali dopants is essential for achieving high-efficiency conversion efficiency of thin film solar cells based on chalcogenide semiconductors like Cu(In,GaSe2 (CIGS and Cu2ZnSn(S,Se4 (CZTSSe also called kesterite. Whereas the treatment with potassium allows boosting the performance of CIGS solar cells as compared to the conventional sodium doping, it is debated if similar effects can be expected for kesterite solar cells. Here the influence of potassium is investigated by introducing the dopant during the solution processing of kesterite absorbers. It is confirmed that the presence of potassium leads to an enhanced grain growth and a ten-fold lower potassium concentration is sufficient for obtaining grain size similar to sodium-containing absorbers. Potassium is located predominantly at grain boundaries and it suppresses incorporation of sodium into the absorber layer. The potassium doping increases the apparent carrier concentration to ∼2×1016 cm-3 for a potassium concentration of 0.2 at%. The potassium-doped solar cells yield conversion efficiency close to 10%, on par with only sodium-doped samples. Co-doping with potassium and sodium has not revealed any beneficial synergetic effects and it is concluded that both dopants exhibit similar effects on the kesterite solar cell performance.

  3. Study of uranium (VI) in carbonate solution by potentiometric titrations and ion-exchange

    International Nuclear Information System (INIS)

    Billon, A.

    1968-04-01

    The present work is devoted to the fixation of uranium (VI) on the conventional anion-exchange resin Dowex 2 X 8 in carbonate and hydrogen-carbonate media. Both media were successfully used for the recuperation of uranium (VI) from very dilute solutions. Equilibrium constant of the exchange [UO 2 (CO 3 ) 3 4+ ] S + 2 [CO 3 2- ] R ↔ [UO 2 (CO 3 ) 3 4- ] R + 2[CO 3 2- ] S is determined for carbonate concentration range 0.1 M to 0.6 M from partition curves. A markedly increase in the relative fixation of uranium results with: - increasing free carbonate concentration of the solution, - decreasing uranium concentration. A study in the same conditions of the fixation of molybdenum has made it possible to separate the latter from uranium by elution, the carbonate concentration being molar. It is suggested a possibility of separation on a larger scale, based upon molybdenum displacement by uranium in hydrogen-carbonate medium. (author) [fr

  4. Work Function Characterization of Potassium-Intercalated, Boron Nitride Doped Graphitic Petals

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2017-07-01

    Full Text Available This paper reports on characterization techniques for electron emission from potassium-intercalated boron nitride-modified graphitic petals (GPs. Carbon-based materials offer potentially good performance in electron emission applications owing to high thermal stability and a wide range of nanostructures that increase emission current via field enhancement. Furthermore, potassium adsorption and intercalation of carbon-based nanoscale emitters decreases work functions from approximately 4.6 eV to as low as 2.0 eV. In this study, boron nitride modifications of GPs were performed. Hexagonal boron nitride is a planar structure akin to graphene and has demonstrated useful chemical and electrical properties when embedded in graphitic layers. Photoemission induced by simulated solar excitation was employed to characterize the emitter electron energy distributions, and changes in the electron emission characteristics with respect to temperature identified annealing temperature limits. After several heating cycles, a single stable emission peak with work function of 2.8 eV was present for the intercalated GP sample up to 1,000 K. Up to 600 K, the potassium-intercalated boron nitride modified sample exhibited improved retention of potassium in the form of multiple emission peaks (1.8, 2.5, and 3.3 eV resulting in a large net electron emission relative to the unmodified graphitic sample. However, upon further heating to 1,000 K, the unmodified GP sample demonstrated better stability and higher emission current than the boron nitride modified sample. Both samples deintercalated above 1,000 K.

  5. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    Science.gov (United States)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  6. The effect of potassium nutrition on sup 137 Cs uptake in two upland species

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H E; Harrison, A F; Poskitt, J M; Roberts, J D; Clint, G [Institute for Terrestrial Ecology, Grange-over-Sands (UK)

    1991-01-01

    Agrostis capillaris (Agrostis) and Calluna vulgaris (Calluna), two species with differing phenologies and widespread presence in upland areas of Britain where high Chernobyl fallout occurred, were grown in pot culture with varying concentrations of potassium in the rooting medium. Tissue content of potassium increased with increasing supply in both species. Roots, excised from these plants, were placed in a solution of {sup 137}Cs-labelled caesium chloride for 15 min to determine uptake potential. There were clear negative relationships between the rate of uptake of {sup 137}Cs by both species and (a) the concentration of potassium supplied and (b) plant issue potassium concentrations. With Agrotis, there was an approximately ten-fold difference in {sup 137}Cs uptake between potassium-deficient and optimum plants; with Calluna, it was approximately eight-fold. These results demonstrate the suppression of {sup 137}Cs uptake into plants by potassium supply. (author).

  7. A New Way to Produce Cellobiose Carbonates Using Green Chemistry.

    Science.gov (United States)

    Khiari, R; Brochier-Salon, M-C; Mhenni, M F; Mauret, E; Belgacem, M N

    2016-08-23

    The preparation of cellulose derivatives using green (i.e., environmentally friendly) reagents would improve sustainability and reduce concerns arising from the use of non-green reagents. The objective of this work was to prepare cellobiose carbonate using a green reagent, dimethyl carbonate. The carbonation reaction was carried out in the presence of ethanolic potassium hydroxide solution and dimethyl carbonate for 6 h at a range of temperatures (25-70 °C). A cellobiose derivative was successfully prepared with a recovered yield of more than 70 % and characterized by FTIR and NMR spectroscopy techniques. The presence of a grafted disaccharide with a degree of substitution higher than 2 was determined by (13) C NMR analysis. The spectra of the prepared cellobiose carbonate exhibited peaks that were associated with cellulose molecules (C1 -C6 ) and corresponded to carbonate functions at around 159.4 ppm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrodialysis recovery of boric acid and potassium hydroxide from eluates of SWC facilities at NPP with VVER

    International Nuclear Information System (INIS)

    Dudnik, S.N.; Virich, P.M.; Kramskikh, E.Y.; Masanov, O.L.; Turovsky, I.P.

    1993-01-01

    To extract boric acid and potassium hydroxide from regenerates of SWC-2-46 facilities, an electrodialysis-sorption process has been devised consisting of the following operations: separation of boron-alkaline regenerate solution into desorbate and wash water; filling of desalination and concentration chambers, respectively, with desorbate and was water of electrodialysis equipment; production of boric acid and potassium hydroxide from desorbate by electrodialysis; removal of chloride-ion from boric acid solution on ion-exchange filter AB-17-18. The flow-sheet was tested and boron containing alkaline regeneration solutions were recovered from Novovoronezh NPP

  9. Spectrophotometric determination of copper in alkaline solutions and evaluation of some hydroxy-substituted 1,10-phenanthrolines as chromogenic reagents.

    Science.gov (United States)

    Dunbar, W E; Schilt, A A

    1972-09-01

    Seven new hydroxy-substituted 1,10-phenanthroline derivatives have been evaluated as chromogenic reagents for the determination of copper in strongly alkaline solution. The most sensitive of these, 2,9-dimethyl-4,7-dihydroxy-1,10-phenanthroline, has proven to be highly effective in a simple, rapid procedure for determining trace amounts of copper in sodium hydroxide, potassium carbonate, sodium phosphate or ammonium hydroxide.

  10. Permeability of solutes through cellophanes grafted with vinyl monomers. I. Diffusion of potassium chloride, urea, and uric acid

    International Nuclear Information System (INIS)

    Takigami, S.; Maeda, Y.; Nakamura, Y.

    1979-01-01

    The diffusive permeability of potassium chloride, urea, and uric acid through cellophanes grafted with acrylamide, acrylic acid, styrene, and N-vinyl-2-pyrrolidone by γ-ray irradiation was studied. The diffusive permeability coefficients of the permeants through the grafted cellophanes were increased with increase in hydration of the grafted membranes, except for the permeation of potassium chloride through cellophanes grafted with acrylic acid. The permeation of potassium chloride, urea, and uric acid through the various grafted cellophanes is explained by the free volume concept of homogeneously water-swollen membranes. However, the behavior of the permeation of potassium chloride through cellophane grafted with acrylic acid deviated from that of nonionic membranes because of the contribution of the electrical interaction between electrolyte and charge of the membrane. 4 figures, 3 tables

  11. Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks' Solution

    Science.gov (United States)

    Gnanavel, S.; Ponnusamy, S.; Mohan, L.; Radhika, R.; Muthamizhchelvan, C.; Ramasubramanian, K.

    2018-03-01

    Biomedical implants in the knee and hip are frequent failures because of corrosion and stress on the joints. To solve this important problem, metal implants can be coated with diamond carbon, and this coating plays a critical role in providing an increased resistance to implants toward corrosion. In this study, we have employed diamond carbon coating over Ti-6Al-4V and Ti-13Nb-13Zr alloys using hot filament chemical vapor deposition method which is well-established coating process that significantly improves the resistance toward corrosion, wears and hardness. The diamond carbon-coated Ti-13Nb-13Zr alloy showed an increased microhardness in the range of 850 HV. Electrochemical impedance spectroscopy and polarization studies in SBF solution (simulated body fluid solution) were carried out to understand the in vitro behavior of uncoated as well as coated titanium alloys. The experimental results showed that the corrosion resistance of Ti-13Nb-13Zr alloy is relatively higher when compared with diamond carbon-coated Ti-6Al-4V alloys due to the presence of β phase in the Ti-13Nb-13Zr alloy. Electrochemical impedance results showed that the diamond carbon-coated alloys behave as an ideal capacitor in the body fluid solution. Moreover, the stability in mechanical properties during the corrosion process was maintained for diamond carbon-coated titanium alloys.

  12. Potassium toxicity at low serum potassium levels with refeeding syndrome.

    Science.gov (United States)

    Vemula, Praveen; Abela, Oliver G; Narisetty, Keerthy; Rhine, David; Abela, George S

    2015-01-01

    Refeeding syndrome is a life-threatening condition occurring in severely malnourished patients after initiating feeding. Severe hypophosphatemia with reduced adenosine triphosphate production has been implicated, but little data are available regarding electrolyte abnormalities. In this case, we report electrocardiographic changes consistent with hyperkalemia during potassium replacement after a serum level increase from 1.9 to 2.9 mEq/L. This was reversed by lowering serum potassium back to 2.0 mEq/L. In conclusion, the patient with prolonged malnutrition became adapted to low potassium levels and developed potassium toxicity with replacement. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Kinetics of diuron and amitrole adsorption from aqueous solution on activated carbons.

    Science.gov (United States)

    Fontecha-Cámara, M A; López-Ramón, M V; Pastrana-Martínez, L M; Moreno-Castilla, C

    2008-08-15

    A study was conducted on the adsorption kinetics of diuron and amitrole from aqueous solutions on activated carbons of different particle sizes and on an activated carbon fiber. Different kinetic models were applied to the experimental results obtained. A pseudo-second-order rate equation fitted the adsorption kinetics data better than a pseudo-first-order rate equation. Amitrole showed faster adsorption kinetics compared with diuron because of the smaller size of the former herbicide, despite its lower driving force for adsorption. Both reaction rate constants increased when the particle size decreased. The activated carbon fiber and the activated carbon of smallest particle size (0.03 mm) showed similar adsorption kinetics. The intraparticle diffusion rate constant increased with higher initial concentration of herbicides in solution and with lower particle size of the adsorbent. This is because the rise in initial concentration increased the amount adsorbed at equilibrium, and the reduction in particle size increased the number of collisions between adsorbate and adsorbent particles. Demineralization of the activated carbon with particle size of 0.5mm had practically no effect on the adsorption kinetics.

  14. Study of uranium (VI) in carbonate solution by potentiometric titrations and ion-exchange; Etude des solutions d'uranium (VI) en milieu carbonate par titrages potentiometriques et echange d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Billon, A [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-04-01

    The present work is devoted to the fixation of uranium (VI) on the conventional anion-exchange resin Dowex 2 X 8 in carbonate and hydrogen-carbonate media. Both media were successfully used for the recuperation of uranium (VI) from very dilute solutions. Equilibrium constant of the exchange [UO{sub 2}(CO{sub 3}){sub 3}{sup 4+}]{sub S} + 2 [CO{sub 3}{sup 2-}]{sub R} {r_reversible} [UO{sub 2}(CO{sub 3}){sub 3}{sup 4-}]{sub R} + 2[CO{sub 3}{sup 2-}]{sub S} is determined for carbonate concentration range 0.1 M to 0.6 M from partition curves. A markedly increase in the relative fixation of uranium results with: - increasing free carbonate concentration of the solution, - decreasing uranium concentration. A study in the same conditions of the fixation of molybdenum has made it possible to separate the latter from uranium by elution, the carbonate concentration being molar. It is suggested a possibility of separation on a larger scale, based upon molybdenum displacement by uranium in hydrogen-carbonate medium. (author) [French] Le present travail precise la fixation de l'uranium (VI) sur la resine echangeuse d'anions Dowex 2 X 8, en milieu carbonate et hydrogeno-carbonate. Nous en avons deduit que ces deux milieux sont egalement favorables a la recuperation de l'uranium a partir de solutions tres diluees. La constante d'equilibre de la reaction d'echange [UO{sub 2}(CO{sub 3}){sub 3}{sup 4+}]{sub S} + 2 [CO{sub 3}{sup 2-}]{sub R} {r_reversible} [UO{sub 2}(CO{sub 3}){sub 3}{sup 4-}]{sub R} + 2[CO{sub 3}{sup 2-}]{sub S} a ete determinee pour le milieu carbonate 0.1 M a 0.6 M, a partir deb courbes de partage. La fixation relative de l'uranium augmente considerablement lorsque: - la concentration du carbonate libre (respectivement hydrogenocarbonate) diminue, - la concentration de l'uranium en solution diminue. Le comportement du molybdene a ete etudie en vue de la separation uranium-molybdene. L'ion fixe sur la resine est l'ion molybdate MoO{sub 4}{sup 2-}. La separation est

  15. Lung preservation with Euro-Collins, University of Wisconsin, Wallwork, and low-potassium-dextran solution. Université++ Paris-Sud Lung Transplant Group.

    Science.gov (United States)

    Xiong, L; Mazmanian, M; Chapelier, A R; Reignier, J; Weiss, M; Dartevelle, P G; Hervé, P

    1994-09-01

    Using isolated rat lungs, we compared prevention of ischemia-reperfusion injury provided by flushing the lungs with modified Euro-Collins solution (EC), University of Wisconsin solution (UW), low-potassium-dextran solution (LPD), or Wallwork solution (WA). After 4 hours' and 6 hours' cold ischemia, reperfusion injury was assessed on the basis of changes in filtration coefficients (Kfc) and pressure-flow curves, characterized by the slope of the curves (incremental resistance) and the extrapolation of this slope to zero flow (pulmonary pressure intercept [Ppi]). After 4 hours, Kfc and Ppi were higher with EC than with UW, LPD, and WA, and the incremental resistance was higher with EC and UW. After 6 hours, Kfc and incremental resistance Ppi were higher with LPD than with WA. Because ischemia-reperfusion injury is associated with decreased endothelial synthesis of prostacyclin and nitric oxide, we tested whether the addition of prostacyclin or the nitric oxide precursor L-arginine to WA would improve preservation. The Kfc and Ppi were lower with both treatments. In conclusion, ischemia-reperfusion injury was best prevented by using WA. The favorable effect of prostacyclin or L-arginine emphasizes the role played by endothelial dysfunction in ischemia-reperfusion injury.

  16. Tribo-performance of epoxy hybrid composites reinforced with carbon fibers and potassium titanate whiskers

    Science.gov (United States)

    Suresha, B.; Harshavardhan, B.; Ravishankar, R.

    2018-04-01

    The present investigation deals with the fabrication and characterization of epoxy reinforced with bidirectional carbon fiber mat (CF/Ep) and filled with 2.5, 5 and 7.5 wt% potassium titanate whiskers (PTw) composites. The effect of PTw loading on hardness, tensile properties and dry sliding wear behaviour of CF/Ep composite were carefully investigated in expectation of providing valuable information for the application of hybrid CF/Ep composites. Results indicated that the incorporation of PTw actually improved the hardness, tensile strength and tensile modulus of CF/Ep composites. Meanwhile, the specific wear rate of CF/Ep filled by 5 wt % PTw reached to 6.3× 10-14 m3/N-m, which is 41% lower than that of CF/Ep composite at the same dry sliding condition. It also seen that the fiber and filler worked synergistically to enhance the wear resistance. Further, for all composites the friction coefficient increases with increase in load and sliding velocity. However, PTw reinforced CF/Ep exhibited considerably higher coefficient of friction compared to unfilled ones, while PTw filler loading of 5 wt% was effective in reducing the specific wear rate of CF/Ep composite. The carbon fiber carried the applied load between the contact surfaces and protected the epoxy from severe abrasion of the counterface. At the same time, the exposed PTw out of the epoxy matrix around the fiber inhibited the direct scraping between the fiber and counterface so that the fibers could be less directly impacted during the subsequent wear process and they were protected from severe damage.

  17. Kinetics of the Reaction of CO2 with Aqueous Potassium Salt of Taurine and Glycine

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Versteeg, G.F.; Feron, P.H.M.

    2003-01-01

    The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas–liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike

  18. Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine

    NARCIS (Netherlands)

    Kumar Paramasivam Senthil, P.S.; Hogendoorn, Kees; Versteeg, Geert; Feron, P.H.M.

    2003-01-01

    The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas-liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike

  19. Metastable Equilibrium Solubility Distribution of Carbonated Apatite as a Function of Solution Composition.

    Science.gov (United States)

    Chhettry; Wang; Hsu; Fox; Baig; Barry; Zhuang; Otsuka; Higuchi

    1999-10-01

    Previous studies have shown that carbonated apatites (CAPs) exhibit the phenomenon of metastable equilibrium solubility (MES) in weak acid media. The purpose of the present investigation was to examine two questions: first, whether the MES concept is applicable to a broader range of solution conditions and, second, whether a driving force function associated with a surface complex having a constant stoichiometry governs the dissolution of CAP and, if so, what is this stoichiometry. CAP preparations with carbonate contents of 1.8-5.7 wt% (synthesized by hydrolysis of dicalcium phosphate anhydrate in solutions of varying bicarbonate levels or by direct precipitation from supersaturated calcium/phosphate/carbonate solutions) were studied as follows. MES distributions for each of the CAP preparations were determined by equilibrating the CAP under stirred conditions in a series of acetate buffers (0.10 M) containing various levels of calcium and phosphate in the pH range 4.5-6.5 and a solution calcium/phosphate ratio in the range 0.1-10. The amount dissolved in each instance was regarded as the fraction of the CAP possessing an MES value greater than that corresponding to the ion activity product (IAP) of the equilibrating solution. The solution IAPs were calculated from the solution compositions using plausible calcium phosphate stoichiometries, viz., dicalcium phosphate dihydrate, octacalcium phosphate, tricalcium phosphate, hydroxyapatite, carbonated apatite (based on the bulk composition of the particular CAP involved in the experiment), and tetracalcium phosphate. The fraction of CAP dissolved was plotted against the solution IAPs for each experimental set using each of the six assumed stoichiometries for the surface complex. The results demonstrated that the MES concept was applicable to all of the CAP preparations in media of various solution compositions and different pH levels. The most important new outcome of this study was that MES profiles for each of the

  20. Electrochemical potassium-ion intercalation in NaxCoO2: a novel cathode material for potassium-ion batteries.

    Science.gov (United States)

    Sada, Krishnakanth; Senthilkumar, Baskar; Barpanda, Prabeer

    2017-07-27

    Reversible electrochemical potassium-ion intercalation in P2-type Na x CoO 2 was examined for the first time. Hexagonal Na 0.84 CoO 2 platelets prepared by a solution combustion synthesis technique were found to work as an efficient host for K + intercalation. They deliver a high reversible capacity of 82 mA h g -1 , good rate capability and excellent cycling performance up to 50 cycles.

  1. New phenomenon of potassium permanganate treatment effect in polymer irradiated with heavy ions

    International Nuclear Information System (INIS)

    Zhou Mi; Liu Yibao; Wei Qianglin; Fu Yuanyong; Ju Wei; Chen Dongfeng; Wu Zhendong; Liang Haiying

    2014-01-01

    Background: Nuclear track membranes offer distinct advantages over conventional membranes due to their precisely determined structure. Their pore size, shape and density can be controlled intentionally so that a membrane with the required characteristics can be produced. The track etching technology plays an important role in the production of nuclear track membranes. Purpose: The effect of potassium permanganate solution pretreatment on the etching rate for polyethylene terephthalate film (PET) is studied in this work. Methods: The conductivity method is used in this research. Under different conditions, the PET films were pretreated for 1 h, 2 h, 3 h, 4 h, 5 h and 6 h by potassium permanganate solution. 5%, 15%, 25%, 35% of 2-mol·L -1 sulfuric acid solutions were added in 0.1 mol·L -1 potassium permanganate solution. Results: Track etching rate reached a peak at 2 h, Afterwards, with the pretreatment time increasing, the track etching rate declined, and the longer of the pretreatment time, the smaller of the bulk etching rate. Half cone angle either. Adding to sulfuric solution, the experimental results show that the effect on track etching rate is small, with the amount of sulfuric acid increasing, bulk etching rate becomes larger, the same change with half cone angle. In addition, the DC voltage used in the conductivity method also has impact on the track etching rate. Conclusion: The experiment has provided a method to improve the etching rate. (authors)

  2. Hyperkalemia by Euro-Collins solution in anesthesia for renal transplantation: a case report.

    Science.gov (United States)

    Hirata, Eunice Sizue; Pereira, Rosa Inês Costa; Filho, Gentil Alves; Braga, Angélica de Fátima Assunção

    2013-01-01

    To describe anesthesia for renal transplantation that progressed to a sharp potassium increase after kidney reperfusion with Euro-Collins' solution in the operative field. We will also report on diagnosis and treatment used. The use of infusion solutions in the surgical field requires careful monitoring, such as electrocardiography, measurement of serum potassium, and availability of calcium gluconate, insulin, and albuterol for immediate use. The replacement of Euro-Collins' solution for saline solution immediately before the implant may be a useful option in patients with high levels of potassium.

  3. Potassium availability in soils - forms and spatial distribution

    International Nuclear Information System (INIS)

    Afari-Sefa, Victor; Kwakye, Peter K.; Nyamiah, Mercy; Okae-Anti, Daniel; Imoro, A. Ziblim

    2004-10-01

    Potassium forms the third most important plant nutrient limiting plant growth and consequently reducing crop yields. This study was conducted on soil potassium availability, distribution and relationship with other soil properties. Seventeen top soil samples (0-15 cm) were collected from four agro-ecological zones of the Central and Western Regions of Ghana. Water soluble, exchangeable and non-exchangeable forms of K were determined. The exchangeable K was extracted with 1 N-bar NH 4 OAc, 0.1 N-bar HNO 3 , 0.01 M-bar CaCl 2 , Bray No. 1 and 1 N-bar boiling HNO 3 . The non-exchangeable K was extracted with 1 N-bar boiling HNO 3 . Potassium was determined using flame photometer. The results showed that potassium is available in the soil in different forms and amounts. Soils from the forest-savanna transition and coastal savanna zones had relatively higher soil solution K concentration than soils from the moist rainforest and semi-deciduous forest zones. Also, soils of the semi-deciduous forest and forest savanna transition as well as the coastal savanna zones contained 2-3 times exchangeable K of the soils of the moist rainforest. The results also showed that the pH, texture as well as the land use affected K availability in the soils. (author)

  4. Suppression of Powdery Mildew Using the Water Extract of Xylogone ganodermophthora and Aqueous Potassium Phosphonate Solution on Watermelon under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Hyo-Jung Kang

    2015-12-01

    Full Text Available Xylogone ganodermophthora (Xg is an ascomycetous fungus that causes yellow rot on cultivated Ganoderma lucidum. Previously, we reported in vitro antifungal activities of a Xg culture extract against several watermelon pathogens. In 2014, we conducted greenhouse experiments to evaluate the control efficacy of a water extract of cultured Xg on watermelon powdery mildew (WPM. The test material (stock solution, ca. 4,000 µg/ml was prepared by an autoclaved Xg culture in water at a ratio of 800 g of culture per 6 liter of water, and then filtering it through filter paper. Six foliar applications of the solutions (diluted 100- and 1,000-fold significantly suppressed the formation of conidiophores and conidia. The inhibitory effect of aqueous potassium phosphonate solution on the disease and its phytotoxicity was tested. Phytotoxicity on watermelon plants was observed at concentrations of 1,000 and 2,000 µg/ml as irregular brownish spots. The control efficacies against WPM were 91.9% at 2,000 µg/ml, 64.9% at 1,000 µg/ml, and 62.2% at 500 µg/ml.

  5. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Science.gov (United States)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  6. Combined Effect of Temperature and pKa on the Kinetics of Absorption of Carbon Dioxide in Aqueous Alkanolamine and Carbonate Solutions with Carbonic Anhydrase

    NARCIS (Netherlands)

    Penders-Van Elk, Nathalie J M C; Oversteegen, S. Martijn; Versteeg, Geert F.

    2016-01-01

    In present work the absorption of carbon dioxide in aqueous N-methyldiethanolamine, N,N-dimethylethanolamine, and triisopropanolamine solutions with and without the enzyme carbonic anhydrase has been studied in a stirred cell reactor at temperatures varying between 278 and 313 K, at an alkanolamine

  7. Short-term effects of carbon dioxide on carnation callus cell respiration

    International Nuclear Information System (INIS)

    Palet, A.; Ribas-Carbo, M.; Argiles, J.M.; Azcon-Bieto, J.

    1991-01-01

    The addition of potassium bicarbonate to the electrode cuvette immediately stimulated the rate of dark O 2 uptake of photomixotrophic and heterotrophic carnation (Dianthus caryophyllus L.) callus, of Elodea canadensis (Minchx) leaves, and of other plant tissues. This phenomenon occurred at pH values lower than 7.2 to 7.8, and the stimulation depended on the concentration of gaseous CO 2 in the solution. These stimulatory responses lasted several minutes and then decreased, but additional bicarbonate or gaseous CO 2 again stimulated respiration, suggesting a reversible effect. Carbonic anhydrase in the solution increased the stimulatory effect of potassium bicarbonate. The CO 2 /bicarbonate dependent stimulation of respiration did not occur in animal tissues such as rat diaphragm and isolated hepatocytes, and was inhibited by salicylhydroxamic acid in carnation callus cells and E. canadensis leaves. This suggested that the alternative oxidase was engaged during the stimulation in plant tissues. The cytochrome pathway was severely inhibited by CO 2 /bicarbonate either in the absence or in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone. The activity of cytochrome c oxidase of callus tissue homogenates was also inhibited by CO 2 /bicarbonate. The results suggested that high carbon dioxide levels (mainly free CO 2 ) partially inhibited the cytochrome pathway (apparently at the oxidase level), and this block in electron transport elicited a large transient engagement of the alternative oxidase when present uninhibited

  8. Studies on oxidative radiolysis of ibuprofen in presence of potassium persulfate

    International Nuclear Information System (INIS)

    Paul, Jhimli; Naik, D.B.; Bhardwaj, Y.K.; Varshney, Lalit

    2014-01-01

    The radiolysis of ibuprofen (IBP), a model pharmaceutical compound, was studied by gamma irradiation in an aqueous solution in the presence and absence of potassium persulfate (K 2 S 2 O 8 ). The extent of mineralization was investigated by measuring the UV–visible spectra, decrease in the chemical oxygen demand (COD) and the total organic carbon (TOC) content of aqueous IBP solution at different doses. The gamma radiolysis, in the presence of K 2 S 2 O 8 , required much lesser dose compared to in the absence of K 2 S 2 O 8 for the same extent of mineralization of aqueous IBP solution. The pulse radiolysis of IBP was carried out under different radiolytic conditions to understand the mechanism of efficient mineralization of IBP during gamma radiolysis in the presence of K 2 S 2 O 8 . It was found that unlike · OH radical, SO 4 ·− radical preferentially produces benzyl type of radicals via the formation of the benzene radical cation. The results concluded that the gamma radiolysis in presence of K 2 S 2 O 8 could be one of the efficient advanced oxidation processes for degradation of pharmaceutical compounds present in the aqueous solution. - Highlights: • The radiolysis of aqueous solution of Ibuprofen (IBP) was investigated. • The COD and TOC content decreased significantly in presence of K 2 S 2 O 8 . • Pulse radiolysis studies revealed the mechanism of mineralization of IBP. • The presence of K 2 S 2 O 8 increased the efficiency of gamma radiolysis

  9. NF ISO 7097-1. Nuclear fuel technology - Uranium dosimetry in solutions, in uranium hexafluoride and in solids - Part 1: reduction with iron (II) / oxidation with potassium bi-chromate / titration method; NF ISO 7097-1. Technologie du combustible nucleaire. Dosage de l'uranium dans des solutions, l'hexafluorure d'uranium et des solides. Partie 1: reduction par fer (II) / oxydation par bichromate de potassium / methode par titrage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    This standard document describes the mode of operation of three different methods for the quantitative dosimetry of uranium in solutions, in UF{sub 6} and in solids: reduction by iron (II), oxidation by potassium bi-chromate and titration. (J.S.)

  10. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  11. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon.

    Science.gov (United States)

    Rivera-Utrilla, J; Prados-Joya, G; Sánchez-Polo, M; Ferro-García, M A; Bautista-Toledo, I

    2009-10-15

    The objective of the present study was to analyse the behaviour of activated carbon with different chemical and textural properties in nitroimidazole adsorption, also assessing the combined use of microorganisms and activated carbon in the removal of these compounds from waters and the influence of the chemical nature of the solution (pH and ionic strength) on the adsorption process. Results indicate that the adsorption of nitroimidazoles is largely determined by activated carbon chemical properties. Application of the Langmuir equation to the adsorption isotherms showed an elevated adsorption capacity (X(m)=1.04-2.04 mmol/g) for all contaminants studied. Solution pH and electrolyte concentration did not have a major effect on the adsorption of these compounds on activated carbon, confirming that the principal interactions involved in the adsorption of these compounds are non-electrostatic. Nitroimidazoles are not degraded by microorganisms used in the biological stage of a wastewater treatment plant. However, the presence of microorganisms during nitroimidazole adsorption increased their adsorption on the activated carbon, although it weakened interactions between the adsorbate and carbon surface. In dynamic regime, the adsorptive capacity of activated carbon was markedly higher in surface water and groundwater than in urban wastewaters.

  12. Carbonic acid salts at 25 or 45 degrees C to control loquat decay under shelf life conditions.

    Science.gov (United States)

    Molinu, M G; D'Hallewin, G; Dore, A; Serusi, A; Venditti, T; Agabbio, M

    2005-01-01

    Generally recognised as save compounds (G.R.A.S) are attractive substitutes to synthetic chemicals in postharvest control diseases. They meet safety requirements, are cheap and able to be integrated with other disease control technologies. Among G.R.A.S compounds, carbonic acid salts have been investigated on carrots, bell pepper, melons, sweet cherries and their efficacy was also evaluated when combined with biological control agents. Moreover, the possibility to use sodium carbonate and sodium bicarbonate to prevent P. digitatum an P. italicum spread on Citrus fruit was studied since the begin of the 20th century. We explored the possibility to extend the use of carbonate-bicarbonate salts on loquat fruit in order to control the pathogens and to extend postharvest life. Loquat is a very perishable fruit, susceptible to decay, mechanical damage, moisture and nutritional losses during its postharvest life. We tested the combined effect of temperature and sodium or potassium carbonate-bicarbonate and ammonium carbonate. The fruit was dipped in the salt solutions at variable concentrations (0.5, 1 and 2% w/v) at 25 or 45 degrees C for two minutes and than stored under shelf life conditions (25 degrees C and 70% RH). Decay, weight loss, pH, titrable acidity and sugar content were detected after twelve days. Preliminary data show that the combined treatments were effective in decay control depending on salts. Best results were obtained with 2% potassium and sodium carbonate solution at 25 degrees C. Weight losses were related to treatment temperature and salts concentrations whereas, no differences were detected in the chemical parameters compared to the control.

  13. Potentiometric titration of polyhexamethylene biguanide hydrochloride with potassium poly(vinyl sulfate) solution using a cationic surfactant-selective electrode.

    Science.gov (United States)

    Masadome, Takashi; Yamagishi, Yuichi; Takano, Masaki; Hattori, Toshiaki

    2008-03-01

    A potentiometric titration method using a cationic surfactant as an indicator cation and a plasticized poly(vinyl chloride) membrane electrode sensitive to the cationic surfactant is proposed for the determination of polyhexamethylene biguanide hydrochloride (PHMB-HCl), which is a cationic polyelectrolyte. A sample solution of PHMB-HCl containing an indicator cation (hexadecyltrimethylammonium ion, HTA) was titrated with a standard solution of an anionic polyelectrolyte, potassium poly(vinyl sulfate) (PVSK). The end-point was detected as a sharp potential change due to an abrupt decrease in the concentration of the indicator cation, HTA, which is caused by its association with PVSK. The effects of the concentrations of HTA ion and coexisting electrolytes in the sample solution on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of PHMB-HCl and the end-point volume of the titrant exists in the concentration range from 2.0 x 10(-5) to 4.0 x 10(-4) M in the case that the concentration of HTA is 1.0 x 10(-5) M, and that from 1.0 x 10(-6) to 1.2 x 10(-5) M in the case that the concentration of HTA is 5.0 x 10(-6) M, respectively. The proposed method was applied to the determination of PHMB-HCl in some contact-lens detergents.

  14. High-surface-area active carbon

    International Nuclear Information System (INIS)

    O'Grady, T.M.; Wennerberg, A.N.

    1986-01-01

    This paper describes the preparation and properties of a unique active carbon having exceptionally high surface areas, over 2500 m 2 /gm, and extraordinary adsorptive capacities. The carbon is made by a direct chemical activation route in which petroleum coke or other carbonaceous sources are reacted with excess potassium hydroxide at 400 0 to 500 0 C to an intermediate product that is subsequently pyrolyzed at 800 0 to 900 0 C to active carbon containing potassium salts. These are removed by water washing and the carbon is dried to produce a powdered product. A granular carbon can also be made by further processing the powdered carbon by using specialized granulation techniques. Typical properties of the carbon include Iodine Numbers of 3000 to 3600, methylene blue adsorption of 650 to 750 mg/gm, pore volumes of 2.0 to 2.6 cc/gm and less than 3.0% ash. This carbon's high adsorption capacities make it uniquely suited for numerous demanding applications in the medical area, purifications, removal of toxic substances, as catalyst carriers, etc

  15. Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte

    Science.gov (United States)

    An, Yongling; Fei, Huifang; Zeng, Guifang; Ci, Lijie; Xi, Baojuan; Xiong, Shenglin; Feng, Jinkui

    2018-02-01

    Design and synthesis of capable anode materials that can store the large size K+ is the key of development for potassium-ion batteries. The low-cost and commercial expanded graphite with large particles is a graphite-derived material with good conductivity and enlarged interlayer spaces to boost the potassium ion diffusion coefficient during charge/discharge process. Thus, we achieve excellent anode performance for potassium-ion batteries based on an expanded graphite. It can deliver a capacity of 263 mAh g-1 at the rate of 10 mA g-1 and the reversible capacity remains almost unchanged after 500 cycles at a high rate of 200 mA g-1 with a coulombic efficiency of around 100%. The potassium storage mechanism is investigated by the ex situ XRD technique. This excellent potassium storage performance will make the expanded graphite promising anode candidate for potassium ion batteries.

  16. Handling of potassium

    International Nuclear Information System (INIS)

    Schwarz, N.; Komurka, M.

    1983-03-01

    As a result for the Fast Breeder Development extensive experience is available worldwide with respect to Sodium technology. Due to the extension of the research program to topping cycles with Potassium as the working medium, test facilities with Potassium have been designed and operated in the Institute of Reactor Safety. The different chemical properties of Sodium and Potassium give rise in new safety concepts and operating procedures. The handling problems of Potassium are described in the light of theoretical properties and own experiences. Selected literature on main safety and operating problems complete this report. (Author) [de

  17. Investigation of uranium sorption from carbonate solutions by different ion exchange materials

    International Nuclear Information System (INIS)

    Nekrasova, N.A.; Kudryavtseva, S.P.; Milyutin, V.V.; Chuveleva, Eh.A.; Firsova, L.A.; Gelis, V.M.

    2008-01-01

    One studied the uranium sorption from the reference carbonate solutions based on the ion-exchange resins varying in the rank. The PFA-300, the A-560, the AB-17x8 highly basic anionites and the ampholytes (S-930, S-922, S-957, ANKB-35) were shown to manifest the best sorption characteristics as to U. One determined the dependences of the static exchange capacity of the PFA-300, the A-560 and the S-922 resins as to the uranium on the carbonate solution pH, as well as the absorbed uranium desorption conditions [ru

  18. Hydrothermal Carbonization of Spent Osmotic Solution (SOS Generated from Osmotic Dehydration of Blueberries

    Directory of Open Access Journals (Sweden)

    Kaushlendra Singh

    2014-09-01

    Full Text Available Hydrothermal carbonization of spent osmotic solution (SOS, a waste generated from osmotic dehydration of fruits, has the potential of transformation into hydrochars, a value-added product, while reducing cost and overall greenhouse gas emissions associated with waste disposal. Osmotic solution (OS and spent osmotic solution (SOS generated from the osmotic dehydration of blueberries were compared for their thermo-chemical decomposition behavior and hydrothermal carbonization. OS and SOS samples were characterized for total solids, elemental composition, and thermo-gravimetric analysis (TGA. In addition, hydrothermal carbonization was performed at 250 °C and for 30 min to produce hydrochars. The hydrochars were characterized for elemental composition, Brunauer-Emmett-Teller (BET surface area, particle shape and surface morphology. TGA results show that the SOS sample loses more weight in the lower temperature range than the OS sample. Both samples produced, approximately, 40%–42% (wet-feed basis hydrochar during hydrothermal carbonization but with different properties. The OS sample produced hydrochar, which had spherical particles of 1.79 ± 1.30 μm diameter with a very smooth surface. In contrast, the SOS sample produced hydrochar with no definite particle shape but with a raspberry-like surface.

  19. Effect of potassium chloride on diffusion of theophylline at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Cecilia I.A.V., E-mail: cecilia.alves@uah.e [Departamento de Quimica Fisica, Facultad de Farmacia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Lobo, Victor M.M., E-mail: vlobo@ci.uc.p [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Esteso, Miguel A., E-mail: miguel.esteso@uah.e [Departamento de Quimica Fisica, Facultad de Farmacia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Ribeiro, Ana C.F., E-mail: anacfrib@ci.uc.p [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)

    2011-06-15

    Research highlights: {yields} Mutual diffusion coefficients of theophylline in aqueous dilute solutions. {yields} Influence of the presence of potassium chloride in the aqueous media. {yields} Estimation of the association constant, K, between THP and KCl. - Abstract: Ternary mutual diffusion coefficients measured by Taylor dispersion method (D{sub 11}, D{sub 22}, D{sub 12}, and D{sub 21}) are reported for aqueous solutions of KCl + theophylline (THP) at T = 298.15 K at carrier concentrations from (0.000 to 0.010) mol {center_dot} dm{sup -3}, for each solute. These diffusion coefficients have been measured having in mind a better understanding of the structure of these systems and the thermodynamic behavior of potassium chloride and theophylline in solution. For example, from these data it will be possible to make conclusions about the influence of this electrolyte in diffusion of THP and to estimate some parameters, such as the diffusion coefficient of the aggregate between KCl and THP.

  20. Spatial Distributions of Potassium, Solutes, and Their Deposition Rates in the Growth Zone of the Primary Corn Root 1

    Science.gov (United States)

    Silk, Wendy Kuhn; Hsiao, Theodore C.; Diedenhofen, Ulrike; Matson, Christina

    1986-01-01

    Densities of osmoticum and potassium were measured as a function of distance from the tip of the primary root of Zea mays L. (cv WF9 × mo17). Millimeter segments were excised and analyzed for osmotic potential by a miniaturized freezing point depression technique, and for potassium by flame spectrophotometry. Local deposition rates were estimated from the continuity equation with values for density and growth velocity. Osmotic potential was uniform, −0.73 ± 0.05 megapascals, throughout the growth zone of well-watered roots. Osmoticum deposition rate was 260 μosmoles per gram fresh weight per hour. Potassium density fell from 117 micromoles per gram in the first mm region to 48 micromoles per gram at the base of the growth zone. Potassium deposition rates had a maximum of 29 micromoles per gram per hour at 3.5 millimeters from the tip and were positive (i.e. potassium was being added to the tissue) until 8 millimeters from the tip. The results are discussed in terms of ion relations of the growing zone and growth physics. PMID:16665121

  1. Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film

    Science.gov (United States)

    Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka

    2011-02-01

    Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of 0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was 0.18%.

  2. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.G. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Tubular Goods Research Center of CNPC, Xi' an 710065 (China)], E-mail: dangguoli78@yahoo.com.cn; Feng, Y.R.; Bai, Z.Q. [Tubular Goods Research Center of CNPC, Xi' an 710065 (China); Zhu, J.W.; Zheng, M.S. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-11-01

    The influences of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in NaHCO{sub 3}/Na{sub 2}CO{sub 3} buffer solution are investigated by capacitance measurement and electrochemical impedance spectroscopy (EIS). The results show that the passive film appears n-type semiconductive character; with increasing the solution temperature, the addition of chromium into carbon steel and increasing the concentration of chloride ions, the slopes of Mott-Schottky plots decrease, which indicates the increment of the defect density in the passive film. EIS results show that the transfer impedance R{sub 1} and the diffusion impedance W decrease with increasing the solution temperature, with the addition of chromium into carbon steel and with increasing the chloride ions concentration. It can be concluded that the corrosion protection effect of passive film on the substrate decreases with increasing the solution temperature, adding chromium into carbon steel and increasing chloride ions concentration.

  3. Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests

    NARCIS (Netherlands)

    Camino-Serrano, Marta; Graf Pannatier, Elisabeth; Vicca, Sara; Luyssaert, Sebastiaan; Jonard, Mathieu; Ciais, Philippe; Guenet, Bertrand; Gielen, Bert; Peñuelas, Josep; Sardans, Jordi; Waldner, Peter; Sawicka, Kasia

    2016-01-01

    Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish

  4. Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests

    NARCIS (Netherlands)

    Camino-Serrano, M.; Graf Pannatier, E.; Vicca, S.; Luyssaert, S.; Jonard, M.; Ciais, P.; Guenet, B.; Gielen, B.; Peñuelas, J.; Sardans, J.; Waldner, P.; Etzold, S.; Cecchini, G.; Clarke, N.; Galić, Z.; Gandois, L.; Hansen, K.; Johnson, J.; Klinck, U.; Lachmanová, Z.; Lindroos, A.J.; Meesenburg, H.; Nieminen, T.M.; Sanders, T.G.M.; Sawicka, K.; Seidling, W.; Thimonier, A.; Vanguelova, E.; Verstraeten, A.; Vesterdal, L.; Janssens, I.A.

    2016-01-01

    Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish

  5. PROCESS USING POTASSIUM LANTHANUM SULFATE FOR FORMING A CARRIER PRECIPITATE FOR PLUTONIUM VALUES

    Science.gov (United States)

    Angerman, A.A.

    1958-10-21

    A process is presented for recovering plutonium values in an oxidation state not greater than +4 from fluoride-soluble fission products. The process consists of adding to an aqueous acidic solution of such plutonium values a crystalline potassium lanthanum sulfate precipitate which carries the plutonium values from the solution.

  6. Porous carbon with small mesoporesas an ultra-high capacity adsorption medium

    Science.gov (United States)

    Gao, Biaofeng; Zhou, Haitao; Chen, De; Yang, Jianhong

    2017-10-01

    Resins (732-type), abundant and inexpensive resources were used to prepare porous carbon with small mesopores (CSM) by carbonization and post-chemical-activation with potassium hydroxide (KOH). The N2 adsorption measurements revealed that CSM had high surface areas (1776.5 m2 g-1), large pore volumes (1.10 cm3 g-1), and nearly optimal narrow small mesopore sizes ranging from 2 to 7 nm. CSM was used as adsorbent to investigate the adsorption behavior for Rhodamine B (RhB). Due to the optimal pore size distributions (PSD), intensive-stacking interaction, S-doped, and electrostatic attraction, the CSM exhibited an ultra-high-capacity of 1590 mg g-1 for RhB in aqueous solutions.

  7. Interaction of indium trichloride with calcium carbonate in aqueous solutions

    International Nuclear Information System (INIS)

    Kochetkova, N.V.; Toptygina, G.M.; Soklakova, O.V.; Evdokimov, V.I.

    1991-01-01

    Interaction of indium trichloride with calcium carbonate in aqueous solutions was studied, using methods of potentiometry, isothermal solubility and physicochemical computer simulating. The Gibb's energy value for crystal indium trihydroxide formation was calculated on the basis of experimental data on In(OH) 3 solubility. The value obtained was used for estimating equilibrium composition of InCl 3 -HCl-CaCO 3 -CO 2 -H 2 O system at a temperature of 25 deg C and carbon dioxide partial pressure of 0.05 to 1 at

  8. Study of uranium (VI) in carbonate solution by potentiometric titrations and ion-exchange; Etude des solutions d'uranium (VI) en milieu carbonate par titrages potentiometriques et echange d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Billon, A. [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-04-01

    The present work is devoted to the fixation of uranium (VI) on the conventional anion-exchange resin Dowex 2 X 8 in carbonate and hydrogen-carbonate media. Both media were successfully used for the recuperation of uranium (VI) from very dilute solutions. Equilibrium constant of the exchange [UO{sub 2}(CO{sub 3}){sub 3}{sup 4+}]{sub S} + 2 [CO{sub 3}{sup 2-}]{sub R} {r_reversible} [UO{sub 2}(CO{sub 3}){sub 3}{sup 4-}]{sub R} + 2[CO{sub 3}{sup 2-}]{sub S} is determined for carbonate concentration range 0.1 M to 0.6 M from partition curves. A markedly increase in the relative fixation of uranium results with: - increasing free carbonate concentration of the solution, - decreasing uranium concentration. A study in the same conditions of the fixation of molybdenum has made it possible to separate the latter from uranium by elution, the carbonate concentration being molar. It is suggested a possibility of separation on a larger scale, based upon molybdenum displacement by uranium in hydrogen-carbonate medium. (author) [French] Le present travail precise la fixation de l'uranium (VI) sur la resine echangeuse d'anions Dowex 2 X 8, en milieu carbonate et hydrogeno-carbonate. Nous en avons deduit que ces deux milieux sont egalement favorables a la recuperation de l'uranium a partir de solutions tres diluees. La constante d'equilibre de la reaction d'echange [UO{sub 2}(CO{sub 3}){sub 3}{sup 4+}]{sub S} + 2 [CO{sub 3}{sup 2-}]{sub R} {r_reversible} [UO{sub 2}(CO{sub 3}){sub 3}{sup 4-}]{sub R} + 2[CO{sub 3}{sup 2-}]{sub S} a ete determinee pour le milieu carbonate 0.1 M a 0.6 M, a partir deb courbes de partage. La fixation relative de l'uranium augmente considerablement lorsque: - la concentration du carbonate libre (respectivement hydrogenocarbonate) diminue, - la concentration de l'uranium en solution diminue. Le comportement du molybdene a ete etudie en vue de la separation uranium-molybdene. L'ion fixe sur la resine est l

  9. Fluidic delivery of homogeneous solutions through carbon tube bundles

    International Nuclear Information System (INIS)

    Srikar, R; Yarin, A L; Megaridis, C M

    2009-01-01

    A wide array of technological applications requires localized high-rate delivery of dissolved compounds (in particular, biological ones), which can be achieved by forcing the solutions or suspensions of such compounds through nano or microtubes and their bundled assemblies. Using a water-soluble compound, the fluorescent dye Rhodamine 610 chloride, frequently used as a model drug release compound, it is shown that deposit buildup on the inner walls of the delivery channels and its adverse consequences pose a severe challenge to implementing pressure-driven long-term fluidic delivery through nano and microcapillaries, even in the case of such homogeneous solutions. Pressure-driven delivery (3-6 bar) of homogeneous dye solutions through macroscopically-long (∼1 cm) carbon nano and microtubes with inner diameters in the range 100 nm-1 μm and their bundled parallel assemblies is studied experimentally and theoretically. It is shown that the flow delivery gradually shifts from fast convection-dominated (unobstructed) to slow jammed convection, and ultimately to diffusion-limited transport through a porous deposit. The jamming/clogging phenomena appear to be rather generic: they were observed in a wide concentration range for two fluorescent dyes in carbon nano and microtubes, as well as in comparable transparent glass microcapillaries. The aim of the present work is to study the physics of jamming, rather than the chemical reasons for the affinity of dye molecules to the tube walls.

  10. 46 CFR Table II to Part 150 - Grouping of Cargoes

    Science.gov (United States)

    2010-10-01

    ... solution Potassium oleate Potassium salt of polyolefin acid Propyl acetate Propylene carbonate Propylene... lignosulfonate solution Sodium polyacrylate solution 2 Sodium salt of Ferric hydroxyethylethylenediamine... 46 Shipping 5 2010-10-01 2010-10-01 false Grouping of Cargoes II Table II to Part 150 Shipping...

  11. PHASE-TRANSITIONS IN THE BILAYERS OF VESICLES FORMED FROM BINARY-MIXTURES OF SYMMETRICAL DI-N-ALKYLPHOSPHATES IN AQUEOUS-SOLUTIONS

    NARCIS (Netherlands)

    BLANDAMER, MJ; BRIGGS, B; CULLIS, PM; ENGBERTS, JBFN; WAGENAAR, A; SMITS, E; HOEKSTRA, D; KACPERSKA, A

    1994-01-01

    Vesicles in aqueous solutions were prepared from binary equimolar mixtures of di-n-alkyl-phosphates (sodium and potassium), (R(1)O)(2)PO(2)(-)M(+) and (R(2)O)(2)PO(2)(-)M(+). When the number of carbon atoms in R(1) and R(2) differs by two and when R(1) or R(2) = C12H25, C14H29, C16H33 and C18H37 the

  12. The Effect of ringer Lactate as the Priming Solution of the Cardiopulmonary by Pass Circuit on Plasma Potassium Levels after Open Heart Surgery in Children

    Directory of Open Access Journals (Sweden)

    Arash Peivandi Yazdi

    2015-11-01

    Full Text Available Background: Conduct of cardiopulmonary bypass (CPB due to the higher volume of priming solution in comparison to the total blood volume in children requires careful consideration. Recently attention has been focused on the potential risk of hyperkalemia in these patients. Given its significant effects on cardiac rhythm, hyperkalemia is considered a medical emergency. In this cross-sectional study we aimed to determine the changes in K+ and other electrolytes following CPB in a pediatric cardiac surgery setting. Method: Sixty children scheduled for pediatric cardiac surgery weighing more than 5 kilograms with Hct level above 30% were enrolled. The prime solution used was Ringer-lactate. Venous blood were collected at defined time points: before, during and after CPB and at discharge. A p-value of less than 0.05 was considered statistically significant. Results: Mean age of the studied patients was 3.69±2.77 years. A rise in potassium levels during surgery was recorded. Also a significant difference in the potassium levels before surgery and at discharge were observed (p=0.007. A significant drop and a subsequent rise in the Hct level was seen overtime whereas a significant decrease in the PH and bicarbonate levels were detected. 31 experienced cardiac arrhythmia after undergoing CPB. Conclusion: A K+-free crystalloid that will offset the K+ load of stored blood is highly anticipated in these patients

  13. Adsorption Efficiency of Iron Modified Carbons for Removal of Pb(II Ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Salmani

    2016-06-01

    Full Text Available Abstract Introduction: The Lead causes severe damage to several systems of the body, especially to bony tissues. Until now, several low-cost biosorbents have been studied for removal of heavy metal ions from aqueous solutions. In the present study, carbonized pomegranate peels modified with Fe2+ and Fe3+ ions and then it was investigated for removal of Pb(II ions from aqueous solution. Materials and methods: the washed granola of pomegranate peel was separately socked with FeCl3 and FeCl2 solutions for 24 h. Then, the granules were carbonized at 400 ºC for 3 h in a programmable furnace in the atmosphere of nitrogen. The adsorption experiments were carried out for two types of iron-modified carbons by batch adsorption using one variable at a time procedures. Results: The optimum conditions were found as contact time 90 min, initial concentration 50 mg/l, and adsorbent dose, 1.00 g/100 ml solution. Maximum removal efficiency was calculated as 84% and 89% for Fe3+ and Fe2+ impregnated pomegranate peel carbons respectively. Conclusion: The iron treatment pomegranate peel carbons modified their surfaces for adsorption of heavy metals. The results showed that chemical modification of the low-cost adsorbents originating from agricultural waste has stood out for metal removal capabilities.

  14. Dissolution rate effect upon lyolumenescence of irradiated potassium chloride

    International Nuclear Information System (INIS)

    Leshchinskij, B.L.; Dzelme, Yu.R.; Tiliks, Yu.E.; Bugaenko, L.T.

    1985-01-01

    The paper is aimed at studying dissolution rate effect and concentration of electron acceptor upon lyoluminescence (LL) that occurs during dissolution of solids with radiation defects. For investigation gamma-irradiated potassium chloride monocrystalline disks were used. As a solvent 3x10sup(-6) M solution of C(RH) hodamine in 2.7 KCl aqueous solution is used. It is shown that LL occurs as a result of recombination of radiation defects with the solution and between themselves in two different regions of subsurface layer of the solid. Investigated dependences of LL intensty on dissolution rate are the efficient method of studying the structure of solids-aqueous solution interface and LL mechanism

  15. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  16. Effect of osmolarity on potassium transport in isolated cerebral microvessels

    International Nuclear Information System (INIS)

    Lin, J.D.

    1988-01-01

    Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of 86 Rb into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity of K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed

  17. Effect of pKa on the kinetics of carbon dioxide absorption in aqueous alkanolamine solutions containing carbonic anhydrase at 298K

    NARCIS (Netherlands)

    Penders-van Elk, Nathalie J M C; Fradette, Sylvie; Versteeg, Geert F.

    2015-01-01

    The absorption of carbon dioxide in various aqueous alkanolamine solutions have been studied with and without carbonic anhydrase respectively in a stirred cell reactor at 298K. The examined alkanolamines were: N,N-diethylethanolamine (DEMEA), N,N-dimethylethanolamine (DMMEA), monoethanolamine (MEA),

  18. Electrochemical reduction of dilute chromate solutions on carbon felt electrodes

    NARCIS (Netherlands)

    Frenzel, Ines; Frenzel, I.; Holdik, Hans; Barmashenko, Vladimir; Stamatialis, Dimitrios; Wessling, Matthias

    2006-01-01

    Carbon felt is a potential material for electrochemical reduction of chromates. Very dilute solutions may be efficiently treated due to its large specific surface area and high porosity. In this work, the up-scaling of this technology is investigated using a new type of separated cell and

  19. Chronic potassium depletion increases adrenal progesterone production that is necessary for efficient renal retention of potassium.

    Science.gov (United States)

    Elabida, Boutaïna; Edwards, Aurélie; Salhi, Amel; Azroyan, Anie; Fodstad, Heidi; Meneton, Pierre; Doucet, Alain; Bloch-Faure, May; Crambert, Gilles

    2011-08-01

    Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.

  20. N-nitrosodimethylamine (NDMA) as a product of potassium permanganate reaction with aqueous solutions of dimethylamine (DMA).

    Science.gov (United States)

    Andrzejewski, Przemysław; Nawrocki, Jacek

    2009-03-01

    The reactivity of permanganate with dimethylamine, as possible path of NDMA formation, has been investigated. The results have shown that potassium permanganate reaction with aqueous solutions of dimethylamine (DMA) leads to the formation of N-nitrosodimethylamine (NDMA). The contact time, the molar ratio of permanganate and DMA, pH and presence of nitrite are the key factors influencing the efficiency of NDMA formation. Significant conversion rates of DMA to NDMA were observed only for the high doses of permanganate, which were many times higher than those typically used in water treatment. This reaction however is of importance for water treatment technology, since it shows the possibility of NDMA formation as a result of oxidation of DMA. It is likely that nitrosation is the main path of the reaction. An important role of MnO2 suspension, formed as a result of permanganate reduction in NDMA formation is emphasized. Significant influence of MnO2 suspension on NDMA formation should draw our attention to the potential impact of MnO2 activated filtration beds on NDMA formation.

  1. Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences.

    Science.gov (United States)

    Pramanik, Chandrani; Gissinger, Jacob R; Kumar, Satish; Heinz, Hendrik

    2017-12-26

    Debundling and dispersion of carbon nanotubes (CNTs) in polymer solutions play a major role in the preparation of carbon nanofibers due to early effects on interfacial ordering and mechanical properties. A roadblock toward ultrastrong fibers is the difficulty to achieve homogeneous dispersions of CNTs in polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) precursor solutions in solvents such as dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). In this contribution, molecular dynamics simulations with accurate interatomic potentials for graphitic materials that include virtual π electrons are reported to analyze the interaction of pristine single wall CNTs with the solvents and polymer solutions at 25 °C. The results explain the barriers toward dispersion of SWCNTs and quantify CNT-solvent, polymer-solvent, as well as CNT-polymer interactions in atomic detail. Debundling of CNTs is overall endothermic and unfavorable with dispersion energies of +20 to +30 mJ/m 2 in the pure solvents, + 20 to +40 mJ/m 2 in PAN solutions, and +20 to +60 mJ/m 2 in PMMA solutions. Differences arise due to molecular geometry, polar, van der Waals, and CH-π interactions. Among the pure solvents, DMF restricts CNT dispersion less due to the planar geometry and stronger van der Waals interactions. PAN and PMMA interact favorably with the pure solvents with dissolution energies of -0.7 to -1.1 kcal per mole monomer and -1.5 to -2.2 kcal per mole monomer, respectively. Adsorption of PMMA onto CNTs is stronger than that of PAN in all solvents as the molecular geometry enables more van der Waals contacts between alkyl groups and the CNT surface. Polar side groups in both polymers prefer interactions with the polar solvents. Higher polymer concentrations in solution lead to polymer aggregation via alkyl groups and reduce adsorption onto CNTs. PAN and PMMA solutions in DMSO and dilute solutions in DMF support CNT dispersion more than other

  2. Comparison of sorption capacity and surface area of activated carbon prepared from Jatropha curcas fruit pericarp and seed coat

    Directory of Open Access Journals (Sweden)

    O.M. Ameen

    2012-08-01

    Full Text Available Activated carbons were prepared from fruit pericarp and seed coat of Jatropha curcas using KOH and NaCl as activating agents leading to the production of four samples of activated carbons JPS, JPP, JCS and JCP. The adsorption capacity based on adsorption of methylene blue was determined for each sample. A further study of adsorptive properties of the most efficient activated carbon (JPS was made by contacting it with standard solutions of methylene blue, acetic acid and potassium permanganate. The effects of mass of active carbon used, initial concentration of the solute and the pH of the solution on adsorption performance were investigated. Ash content and percentage fixed carbon were determined for two of the activated carbons (JPS and JCS with the highest adsorptive capacity. Equilibrium study on adsorption was carried out and the adsorption data were analyzed using the Langmuir isotherm. The results obtained indicate that activated carbons from the fruit pericarp and the seed coat of J. curcas can be used as high performance adsorbents with the fruit pericarp activated carbon showing the higher adsorption capacity. The adsorption data fitted well to the Langmuir model and adsorptive area of 824–910 m2/g was obtained for the activated carbon.DOI: http://dx.doi.org/10.4314/bcse.v26i2.2

  3. Carbon black selection from simulated broth solution for ADU gel spheres

    International Nuclear Information System (INIS)

    Chai, Jeong Kyung; Ho, Eom Sung; Kim, Yeon Ku; Cho, Moon Seoung

    2012-01-01

    The VHTR (Very High Temperature Gas Reactor) is one of the reactor concepts in the Gen IV International Collaboration. The nuclear fuel of a VHTR in the US is based on microspheres containing a mixture of UO 2 and UC 2 coated with multi carbon layers and a SiC layer. This mixture is called a 'UCO (uranium oxi carbide)' kernel. The fabrication process of this kernel was based on the sol-gel method between an ADUN and HMTA and urea, a process referred to as internal gelation. UCO kernel microspheres were first prepared at ORNL in the late 1970s. CB(Carbon Black) as a carbon source in the final UCO kernel is added during the broth solution preparation, in the processing of UCO kernel fabrication. The preparation of a good quality UCO kernel is very difficult due to the homogeneous distribution of carbon in a UCO kernel. The key requirement to obtain a good quality kernel is a uniform distribution of carbon in the ADU gel sphere forming process before the thermal treatment, i.e., during the gel formation step. The internal gelation concept was adapted in ADU gel sphere fabrication in the ORNL process of the US. Generally, UO 2 kernel microspheres are prepared by an internal gelation method (USA, India) or external gelation method (Germany, China, Japan). The UCO kernel microspheres prepared only in the US, use an internal gelation method. A material flow chart on the preparation of the microsphere kernel is simply shown in Fig. 1. The broth solution preparation, the raw material, additives, and thermal steps such as calcining and sintering processes were different to compared with the external gelation and internal gelation methods. In this study, we first carried out the matching CB selection experiments among the various kinds of CBs in a broth solution, for UCO kernel preparation using an external gelation method.

  4. Development and manufacturing cycle for potassium nitrate and phosphate producing by conversion method

    Directory of Open Access Journals (Sweden)

    А. И. Алексеев

    2016-11-01

    Full Text Available Analysis of the Russian market of potash mineral fertilizers in 2014 and forecast for 2015-2019 show [http://businesstat.ru/images/demo/potash_fertilizers_russia.pdf] that today the most widespread potash fertilizer is  the potassium chloride. But chloride-free potassium-containing products are in the highest demand at the fertilizer market. One of possible solutions to this problem is recrystallization of the potassium chloride or potassium-containing mineral ores using nitrate-containing or phosphorus-containing salt products. The basis for justifying processing conditions for polymineral potassium-containing salt raw materials and salt mineral ores is the data on phase equilibria in multicomponent water-salt systems. Knowledge of the regularities of phase equilibria in multicomponent salt systems helps to develop optimal conditions for complex processing of polymineral natural and technical raw materials. Below it is present the results of technological calculations for processing potash mineral raw materials with account of the complex nature of its utilization. Based on the analysis of the solubility diagrams of mutual salt systems different cyclic processes for production of potassium dihydrogen phosphate and nitrate and sodium chloride from dihydrogen phosphate and sodium nitrate and potassium chloride by conversion method have been designed, and ways of these processes optimization have been proposed for reducing the cost of certain technical  operations.

  5. Penicillin V Potassium

    Science.gov (United States)

    Penicillin V potassium is used to treat certain infections caused by bacteria such as pneumonia and other ... heart valves and other symptoms) from coming back. Penicillin V potassium is in a class of medications ...

  6. Evaluation of the potassium adsorption capacity of a potassium adsorption filter during rapid blood transfusion.

    Science.gov (United States)

    Matsuura, H; Akatsuka, Y; Muramatsu, C; Isogai, S; Sugiura, Y; Arakawa, S; Murayama, M; Kurahashi, M; Takasuga, H; Oshige, T; Yuba, T; Mizuta, S; Emi, N

    2015-05-01

    The concentration of extracellular potassium in red blood cell concentrates (RCCs) increases during storage, leading to risk of hyperkalemia. A potassium adsorption filter (PAF) can eliminate the potassium at normal blood transfusion. This study aimed to investigate the potassium adsorption capacity of a PAF during rapid blood transfusion. We tested several different potassium concentrations under a rapid transfusion condition using a pressure bag. The adsorption rates of the 70-mEq/l model were 76·8%. The PAF showed good potassium adsorption capacity, suggesting that this filter may provide a convenient method to prevent hyperkalemia during rapid blood transfusion. © 2015 International Society of Blood Transfusion.

  7. Potassium maldistribution revisited

    African Journals Online (AJOL)

    Background:This study investigated maldistribution of concentrated 15% potassium chloride after injection into .... and latter experiments referred to for example as “Control 1” ..... be further investigated as a reliable, simple method of potassium.

  8. Potassium-modulated physiological performance of mango plants infected by Ceratocystis fimbriata

    Directory of Open Access Journals (Sweden)

    Isaias Severino Cacique

    2017-08-01

    Full Text Available ABSTRACT Mango wilt, caused by the fungus Ceratocystis fimbriata, is an important disease affecting mango production. In view of the beneficial effects of potassium (K in other profitable crops and the lack of information about the effect of macronutrients on mango wilt development, the present study aimed to evaluate how mango plants supplied with K respond physiologically when infected by C. fimbriata. Mango plants (» 3 years old from cultivar Ubá were grown in plastic pots containing 58 mg of K·dm−3 (original K level based on the chemical analysis of the substrate or in plastic pots with substrate amended with a solution of 0.5 M potassium chloride (KCl to achieve the rate of 240 mg K·dm−3. Disease symptoms were more pronounced in inoculated plants grown at the lower K level. Substantial declines in stomatal conductance, in line with decreases in the internal-to-ambient CO2 concentration ratio and the absence of detectable changes in the chlorophyll a fluorescence parameters, suggest that the decrease in the net carbon assimilation rate is due, at least initially, to stomatal limitations. High concentrations of K and manganese were found in the stem tissues of inoculated plants and supplied with the highest K rate, most likely due to the involvement of these tissues in the local development of defense mechanisms. The results of this study suggest that the supply of K favored the physiological performance of mango plants and their resistance against C. fimbriata infection.

  9. Demixing and effective volatility of molten alkali carbonate melts in MCFCs

    Energy Technology Data Exchange (ETDEWEB)

    Brenscheidt, T.; Wendt, H. [Institut fuer Chemische Technologie, Darmstadt (Germany)

    1996-12-31

    Since the early investigation of A. Klemm, the demixing of the cations of molten binary salt mixtures with a common anion due to the different mobilities of two different cations had been investigated in numerous experiments and the respective results interpreted in terms of structural features of the melts. 1-1 electrolytes had been preferentially investigated. Okada also reported investigations on lithium carbonate/potassium carbonate mixtures in the temperature range from 980 to 1070 K. From this investigation it is known that the heavier potassium cation is faster than lithium in mixtures which are more concentrated in potassium than x{sub K2CO3} = 0,32 (Chemla effect) whereas below this isotachic concentration lithium is faster. This paper investigates demixing in molten carbonate fuel cells.

  10. One-step microwave synthesis of photoluminescent carbon nanoparticles from sodium dextran sulfate water solution

    Science.gov (United States)

    Kokorina, Alina A.; Goryacheva, Irina Y.; Sapelkin, Andrei V.; Sukhorukov, Gleb B.

    2018-04-01

    Photoluminescent (PL) carbon nanoparticles (CNPs) have been synthesized by one-step microwave irradiation from water solution of sodium dextran sulfate (DSS) as the sole carbon source. Microwave (MW) method is very simple and cheap and it provides fast synthesis of CNPs. We have varied synthesis time for obtaining high luminescent CNPs. The synthesized CNPs exhibit excitation-dependent photoluminescent. Final CNPs water solution has a blue- green luminescence. CNPs have low cytotoxicity, good photostability and can be potentially suitable candidates for bioimaging, analysis or analytical tests.

  11. Influent of Carbonization of Sol Solution at the External Gelation Process on the Quality of Uranium Oxide Kernel

    International Nuclear Information System (INIS)

    Damunir; Sukarsono

    2007-01-01

    The influent of carbonization of sol solution at the external gelation process on the quality of uranium oxide kernel was done. Variables observed are the influent of carbon, temperature and time of reduction process of U 3 O 8 kernel resulted from carbonization of sol solution. First of all, uranyl nitrate was reacted with 1 M NH 4 OH solution, producing the colloid of UO 3 . Then by mixing and heating up to the temperature of 60-80 °C, the colloid solution was reacted with PVA, mono sorbitol oleate and paraffin producing of uranium-PVA sol. Then sol solution was carbonized with carbon black of mol ratio of carbon to uranium =2.32-6.62, produce of carbide gel. Gel then washed, dried and calcined at 800 °C for 4 hours to produce of U 3 O 8 kernel containing carbon. Then the kernel was reduced by H 2 gas in the medium of N 2 gas at 500-800 °C, 50 mmHg pressure for 3 hours. The process was repeated at 700 °C, 50 mmHg pressure for 1-4 hours. The characterization of chemical properties of the gel grains and uranium oxide kernel using FTIR covering the analysis of absorption band of infra red spectrum of UO 3 , C-OH, NH 3 , C-C, C-H and OH functional group. The physical properties of uranium oxide covering specific surface area, void volume, mean diameter using surface area meter Nova-1000 and as N 2 gas an absorbent. And O/U ratio of uranium dioxide kernel by gravimetry method. The result of experiment showed that carbonization of sol solution at the external gelation process give influencing the quality of uranium oxide kernel. (author)

  12. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    OpenAIRE

    Vargas Diana P.; Giraldo Liliana; Moreno-Piraján Juan Carlos

    2017-01-01

    The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribu...

  13. Potassium supplements for oral diarrhoea regimens.

    Science.gov (United States)

    Clements, M L; Levine, M M; Black, R E; Hughes, T P; Rust, J; Tome, F C

    1980-10-18

    A study is proposed for supplementing potassium loss from diarrhea in rehydration therapies with fresh fruit and other naturally potassium-rich foods. Bananas contain .1 mol of potassium per gm. Freshly squeezed lemon or orange juices were tested for potassium and sodium content and found to have very low potassium concentration. Therefore, the banana was chosen for an upcoming study that will determine if infants and children suffering from diarrhea can ingest the amounts of the fruit necessary to elevate the potassium level sufficiently. Bananas as the potassium source are thought to be well-accepted in developing areas.

  14. Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater

    NARCIS (Netherlands)

    Griffioen, J.

    2001-01-01

    Fertilization of agricultural land in groundwater infiltration areas often causes deterioration of groundwater quality. In addition to nitrogen and phosphorous, potassium deserves attention. The fate of potassium in the subsurface is controlled mainly by cation-exchange. Use of the Potassium

  15. GENETIC DIVERSITY IN ARABICA COFFEE GROWN IN POTASSIUM-CONSTRAINED ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Waldênia de Melo Moura

    2015-02-01

    Full Text Available Potassium is a source of non-renewable natural resource, and is used in large quantities in coffee fertilization through basically imported formulations in the form of potassium chloride. An alternative to make production systems more sustainable would be obtaining cultivars more efficient in the use of this nutrient. This study aimed to evaluate the genetic diversity among 20 cultivars of coffee, in conditions of low availability of potassium to identify the best combinations for composing future populations to be used in breeding programs. The experiment was arranged in a randomized block design with three replications of nutrient solution. Agronomic characteristics and efficiencies of rooting, absorption, translocation, biomass production and potassium utilization were evaluated. The clustering analysis was based on the unweighted pair group method with arithmetic mean clustering algorithm (UPGMA and canonical variables. Variability was observed for most treatments. The multivariate procedures produced similar discrimination of genotypes, with the formation of five groups. Hybridizations between the cultivar Icatu Precoce IAC 3283 with cultivars Catuaí Amarelo IAC 62, Araponga MG1, Caturra Vermelho IAC 477, Catuaí Vermelho IAC 15, Rubi MG 1192 and Catucaí 785/15, and between the cultivar Tupi IAC 1669-33 with cultivars Icatu Vermelho IAC 4045, Acaiá Cerrado MG 1474 and Oeiras MG 6851 are the most promising for obtaining segregating populations or heterotic hybrids in breeding programs aiming more efficiency in potassium utilization.

  16. Experimental study of Pb (II) solution sorption behavior onto Coffee Husk Bioactivated Carbon

    Science.gov (United States)

    Fona, Z.; Habibah, U.

    2018-04-01

    Coffee husk which is abundantly produced in the coffee plantations is potential to be a challenging adsorbent. The fate of Pb (II) solution in the sorption mechanism onto the adsorbent has been investigated. This paper aimed to study the efficiency of Pb (II) aqueous solution removal using activated carbon from coffee husk (CAC). The sorption characteristics were using two isotherm models, Langmuir and Freundlich, were also reported. The coffee husk from local plantations in Middle Aceh was carbonized and sieved to 120/140 mesh. The charcoal was activated using hydrochloric acid before contacted with the different initial concentrations of Pb (II) solution. The remaining concentrations of the metal in the specified contact times were determined using Atomic Adsorption Spectrophotometer at 283.3 wavelength. The result showed that the equilibrium concentrations were obtained in about 30 minutes which depended on the initial concentration. The sorption mechanism followed Freundlich isotherm model where the adsorption constant and capacity were accordingly 1.353 and 1.195 mgg‑1. The iodine sorption was up to 1,053 mgg‑1. Based on the ash and moisture content, as well as iodine sorption, the activated carbon met the national standard.

  17. Determination of Metastable Zone Width, Induction Period and Interfacial Energy of a Ferroelectric Crystal - Potassium Ferrocyanide Trihydrate (KFCT

    Directory of Open Access Journals (Sweden)

    R. Kanagadurai

    2010-01-01

    Full Text Available An order-disorder type potassium ferrocyanide trihydrate (KFCT is a coordination compound forming lemon- yellow monoclinic ferroelectric crystals with curie temperature 251 K. KFCT crystals have been grown by temperature lowering solution growth technique. Solubility of KFCT has been determined for various temperatures. Metastable zone width, induction period and interfacial energy were determined for the aqueous solution of KFCT. Bulk crystal of potassium ferrocyanide trihydrate was grown with the optimized growth parameters. The grown crystal possesses good optical transmission in the entire UV-Visible region

  18. Potassium in milk and milk products

    International Nuclear Information System (INIS)

    Sombrito, E.Z.; Nuguid, Z.F.S.; Tangonan, M.C.

    1989-01-01

    The amount of potassium in imported processed milk was determined by gamma spectral analysis. The results show that the potassium content of diluted infant formula milk is closest to the reported mean concentration of potassium in human milk while other milk types have potassium values similar to the potassium content of cow milk. (Auth.). 2 figs., 5 refs

  19. Studies on the Removal of Rhodamine B and Malachite Green from Aqueous Solutions by Activated Carbon

    Directory of Open Access Journals (Sweden)

    A. Edwin Vasu

    2008-01-01

    Full Text Available Activated carbon prepared from tamarind fruit shells by direct carbonization was used for the removal of rhodamine B and malachite green dyes from aqueous solutions. Adsorption studies were performed by varying such parameters as dye concentration, pH of the dye solution, time and temperature. The equilibrium adsorption data obtained were used to calculate the Freundlich, Langmuir and Redlich-Peterson isotherm parameters. Increase in pH of the solution pH resulted in increased adsorption of both the dyes. Kinetic studies indicate that the pseudo-second order model can be used for describing the dynamics of the sorption processes. Film diffusion of the dyes was the rate determining step at low dye concentrations while diffusion of dyes through the pores the carbon particles determined the overall uptake at high concentrations. Thermodynamic parameters of the endothermic sorptions were evaluated using van’t Hoff equation. Desorption studies with acids were also performed in order to regenerate the used carbons.

  20. Electron spin ressonance of radicals produced by ultra-violet photolysis of KCL dopped with potassium cyanide and potassium cyanate

    International Nuclear Information System (INIS)

    Duran, J.E.R.

    1975-01-01

    The production of radicals by ultra-violet photolysis of KCL dopped with potassium cyanide and potassium cyanate is studied by electron spin resonance. Several new paramagnetic species are detected which are identified as HCNO - , NCN - /NCNO - , CNN - /CNON - and CNOsup(=) all giving isotropic spectra at 77 0 K. The temperature dependence of the CNOsup(=) spectrum is investigated down to 1.6 0 K. It is found that two different recrientation motions ocurr which freeze at different temperatures. The effect of this motion on the line width is analized using Anderson's theory of exchange narrowing. The electronic structure of the CNOsup(=) radical is discussed using the measured the carbon and nitrogen hfs constants. It is found that a bonding scheme similar to that accepted for the isoelectronic molecule NO 2 is applicable, and a one electron molecular orbital scheme is given. Within this scheme a negative contribution to the nitrogen isotropic hfs constant is found which is assumed to originate from the polarization of the fully occupied ls orbitals [pt

  1. Activated carbon material

    International Nuclear Information System (INIS)

    Evans, A.G.

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards

  2. Solution-Processed Carbon Nanotube True Random Number Generator.

    Science.gov (United States)

    Gaviria Rojas, William A; McMorrow, Julian J; Geier, Michael L; Tang, Qianying; Kim, Chris H; Marks, Tobin J; Hersam, Mark C

    2017-08-09

    With the growing adoption of interconnected electronic devices in consumer and industrial applications, there is an increasing demand for robust security protocols when transmitting and receiving sensitive data. Toward this end, hardware true random number generators (TRNGs), commonly used to create encryption keys, offer significant advantages over software pseudorandom number generators. However, the vast network of devices and sensors envisioned for the "Internet of Things" will require small, low-cost, and mechanically flexible TRNGs with low computational complexity. These rigorous constraints position solution-processed semiconducting single-walled carbon nanotubes (SWCNTs) as leading candidates for next-generation security devices. Here, we demonstrate the first TRNG using static random access memory (SRAM) cells based on solution-processed SWCNTs that digitize thermal noise to generate random bits. This bit generation strategy can be readily implemented in hardware with minimal transistor and computational overhead, resulting in an output stream that passes standardized statistical tests for randomness. By using solution-processed semiconducting SWCNTs in a low-power, complementary architecture to achieve TRNG, we demonstrate a promising approach for improving the security of printable and flexible electronics.

  3. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry

  4. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, Marat O., E-mail: glm@spm.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Chaschin, Ivan S. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Khokhlova, Marina A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Grigorev, Timofey E. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E. [Bakulev Scientific Center for Cardiovascular Surgery of the Russian Academy of Medical Sciences, Roublyevskoe Sh. 135, Moscow 121552 (Russian Federation); Badun, Gennadii A.; Chernysheva, Maria G. [Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Khokhlov, Alexei R. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation)

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H{sub 2}O and CO{sub 2}. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA

  5. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    International Nuclear Information System (INIS)

    Gallyamov, Marat O.; Chaschin, Ivan S.; Khokhlova, Marina A.; Grigorev, Timofey E.; Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E.; Badun, Gennadii A.; Chernysheva, Maria G.; Khokhlov, Alexei R.

    2014-01-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H 2 O and CO 2 . Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA-stabilised bovine

  6. Effect of polacrilin potassium as disintegrant on bioavailability of diclofenac potassium in tablets : a technical note.

    Science.gov (United States)

    Bele, Mrudula H; Derle, Diliprao V

    2012-09-01

    Polacrilin potassium is an ion exchange resin used in oral pharmaceutical formulations as a tablet disintegrant. It is a weakly acidic cation exchange resin. Chemically, it is a partial potassium salt of a copolymer of methacrylic acid with divinyl benzene. It ionizes to an anionic polymer chain and potassium cations. It was hypothesized that polacrilin potassium may be able to improve the permeability of anionic drugs according to the Donnan membrane phenomenon. The effect of polacrilin potassium on the permeability of diclofenac potassium, used as a model anionic drug, was tested in vitro using diffusion cells and in vivo by monitoring serum levels in rats. The amount of drug permeated across a dialysis membrane in vitro was significantly more in the presence of polacrilin potassium. Significant improvement was found in the extent of drug absorption in vivo. It could be concluded that polacrilin potassium may be used as a high-functionality excipient for improving the bioavailability of anionic drugs having poor gastrointestinal permeability.

  7. Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Pingping He

    2018-04-01

    Full Text Available A series of carbon aerogels were synthesized by polycondensation of resorcinol and formaldehyde, and their structure was adjusted by managing solution concentration of precursors. Carbon aerogels were characterized by X-ray diffraction (XRD, Raman, Fourier transform infrared spectroscopy (FTIR, N2 adsorption/desorption and scanning electron microscope (SEM technologies. It was found that the pore structure and morphology of carbon aerogels can be efficiently manipulated by managing solution concentration. The relative micropore volume of carbon aerogels, defined by Vmicro/Vtol, first increased and then decreased with the increase of solution concentration, leading to the same trend of CO2 adsorption capacity. Specifically, the CA-45 (the solution concentration of precursors is 45 wt% sample had the highest CO2 adsorption capacity (83.71 cm3/g and the highest selectivity of CO2/N2 (53 at 1 bar and 0 °C.

  8. Study on the Electrochemical Behavior of Iodide at Platinum Electrode in Potassium Chlorate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sang Hyuk; Yeon, Jei Won; Song, Kyu Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Radioactive iodine-131, is one of the most hazardous fission products which could be released from fuels of nuclear reactors during the severe accident of nuclear power plants. Due to its high radioactivity, high fission yield (2.8%) and hazardous biological effects, the behavior of iodine has been taken interests in many research groups. Iodine is known to be released from the fuels as a cesium iodide form, CsI. And, as nuclear fuels are mostly placed in the water pool, it is easily dissolved in the water after released from the fuels. In water, iodide anion could be oxidized into molecular iodine. As the molecular iodine is a volatile species and the oxidizing rate is affected by many environmental facts such as pH, radiolysis products and temperature, the oxidation reaction of the iodide ion has been considered as an important chemical reaction related to the severe accident of nuclear power plants In present work, the electrochemical behavior of iodide anion was observed by using cyclic voltammetric technique in potassium chlorate solutions. We observed two different oxidation waves in the oxidation potential region. From the comparison with the previous reported results, one is regarded as the oxidation of iodide into molecular iodine. The other is evaluated to be the formation of high-valent iodine-containing compounds

  9. Pitting corrosion of lead in sodium carbonate solutions containing NO3- ions

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Abdel Rehim, Sayed S.

    2004-01-01

    Pitting corrosion of Pb in Na 2 CO 3 solutions (pH=10.8) containing NaNO 3 as a pitting corrosion agent has been studied using potentiodynamic anodic polarization, cyclic voltammetry and chronoamperometry techniques, complemented with scanning electron microscopy (SEM) examinations of the electrode surface. In the absence of NO 3 - , the anodic voltammetric response exhibits three anodic peaks prior to oxygen evolution. The first anodic peak A 1 corresponds to the formation of PbCO 3 layer and soluble Pb 2+ species in solution. The second anodic peak A 2 is due to the formation of PbO beneath the carbonate layer. Peak A 2 is followed by a wide passive region which extends up to the appearance of the third anodic peak A 3 . The later is related to the formation of PbO 2 . Addition of NO 3 - to the carbonate solution stimulates the anodic dissolution through peaks A 1 and A 2 and breaks down the dual passive layer prior to peak A 3 . The breakdown potential decreases with an increase in nitrate concentration, temperature and electrode rotation rate, but increases with an increase in carbonate concentration and potential scan rate. Successive cycling leads to a progressive increase in breakdown potential. The current/time transients show that the incubation time for passivity breakdown decreases with increasing the applied anodic potential, nitrate concentration and temperature

  10. Kinetics of absorption of carbon dioxide in aqueous ammonia solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Versteeg, G. F.

    2009-01-01

    In the present work the absorption of carbon dioxide into aqueous ammonia solutions has been studied in a stirred cell reactor, at low temperatures and ammonia concentrations ranging from 0.1 to about 7 kmol m-3. The absorption experiments were carried out at conditions where the so-called pseudo

  11. A prospective, open, comparative study of 5% potassium hydroxide solution versus cryotherapy in the treatment of genital warts in men.

    Science.gov (United States)

    Camargo, Caio Lamunier de Abreu; Belda Junior, Walter; Fagundes, Luiz Jorge; Romiti, Ricardo

    2014-01-01

    Genital warts are caused by human papillomavirus infection and represent one of the most common sexually transmitted diseases. Many infections are transient but the virus may recur, persist, or become latent. To date, there is no effective antiviral treatment to eliminate HPV infection and most therapies are aimed at the destruction of visible lesions. Potassium hydroxide is a strong alkali that has been shown to be safe and effective for the treatment of genital warts and molluscum contagiosum. Cryotherapy is considered one of the most established treatments for genital warts. No comparative trials have been reported to date on the use of potassium hydroxide for genital warts. A prospective, open-label, randomized clinical trial was conducted to compare topical potassium hydroxide versus cryotherapy in the treatment of genital warts affecting immunocompetent, sexually active men. Over a period of 10 months, 48 patients were enrolled. They were randomly divided into two groups and selected on an alternative basis for either potassium hydroxide therapy or cryotherapy. While response to therapy did not differ substantially between both treatment modalities, side effects such as local pain and post-treatment hypopigmentation were considerably more prevalent in the groups treated using cryotherapy. In our study, potassium hydroxide therapy proved to be at least as effective as cryotherapy and offered the benefit of a better safety profile. Topical 5% potassium hydroxide presents an effective, safe, and low-cost treatment modality for genital warts in men and should be included in the spectrum of therapies for genital warts.

  12. A prospective, open, comparative study of 5% potassium hydroxide solution versus cryotherapy in the treatment of genital warts in men*

    Science.gov (United States)

    Camargo, Caio Lamunier de Abreu; Belda, Walter; Fagundes, Luiz Jorge; Romiti, Ricardo

    2014-01-01

    BACKGROUND Genital warts are caused by human papillomavirus infection and represent one of the most common sexually transmitted diseases. Many infections are transient but the virus may recur, persist, or become latent. To date, there is no effective antiviral treatment to eliminate HPV infection and most therapies are aimed at the destruction of visible lesions. Potassium hydroxide is a strong alkali that has been shown to be safe and effective for the treatment of genital warts and molluscum contagiosum. Cryotherapy is considered one of the most established treatments for genital warts. No comparative trials have been reported to date on the use of potassium hydroxide for genital warts. OBJECTIVE A prospective, open-label, randomized clinical trial was conducted to compare topical potassium hydroxide versus cryotherapy in the treatment of genital warts affecting immunocompetent, sexually active men. METHODS Over a period of 10 months, 48 patients were enrolled. They were randomly divided into two groups and selected on an alternative basis for either potassium hydroxide therapy or cryotherapy. While response to therapy did not differ substantially between both treatment modalities, side effects such as local pain and post-treatment hypopigmentation were considerably more prevalent in the groups treated using cryotherapy. RESULT In our study, potassium hydroxide therapy proved to be at least as effective as cryotherapy and offered the benefit of a better safety profile. CONCLUSION Topical 5% potassium hydroxide presents an effective, safe, and low-cost treatment modality for genital warts in men and should be included in the spectrum of therapies for genital warts. PMID:24770498

  13. Microporous-mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them

    Science.gov (United States)

    Härmas, M.; Thomberg, T.; Kurig, H.; Romann, T.; Jänes, A.; Lust, E.

    2016-09-01

    Various electrochemical methods have been applied to establish the electrochemical characteristics of the electrical double layer capacitor (EDLC) consisting of the 1 M triethylmethylammonium tetrafluoroborate solution in acetonitrile and activated carbon based electrodes. Activated microporous carbon materials used for the preparation of electrodes have been synthesized from the hydrothermal carbonization product (HTC) prepared via hydrothermal carbonization process of D-(+)-glucose solution in H2O, followed by activation with ZnCl2, KOH or their mixture. Highest porosity and Brunauer-Emmett-Teller specific surface area (SBET = 2150 m2 g-1), micropore surface area (Smicro = 2140 m2 g-1) and total pore volume (Vtot = 1.01 cm3 g-1) have been achieved for HTC activated using KOH with a mass ratio of 1:4 at 700 °C. The correlations between SBET, Smicro, Vtot and electrochemical characteristics have been studied to investigate the reasons for strong dependence of electrochemical characteristics on the synthesis conditions of carbon materials studied. Wide region of ideal polarizability (ΔV ≤ 3.0 V), very short characteristic relaxation time (0.66 s), and high specific series capacitance (134 F g-1) have been calculated for the mentioned activated carbon material, demonstrating that this system can be used for completing the EDLC with high energy- and power densities.

  14. Potassium and Your CKD Diet

    Science.gov (United States)

    ... vegetable in your diet, leach them before using. Leaching is a process by which some potassium can be pulled out ... out of my favorite high-potassium vegetables? The process of leaching will help pull potassium out of some high- ...

  15. Obtaining of potassium dicyan-argentate

    International Nuclear Information System (INIS)

    Sattarova, M.A.; Solojenkin, P.M.

    1997-01-01

    This work is devoted to obtaining of potassium dicyan-argentate. By means of exchange reaction between silver nitrate and potassium cyanide the potassium dicyan-argentate was synthesized. The analysis of obtained samples was carried out by means of titration and potentiometry.

  16. Study on CO{sub 2} absorption enhancement by adding active carbon particles into MEA solution

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Juan; Sun, Rui; Ma, Lian; Sun, Shaozeng [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2013-07-01

    The chemical absorption of CO{sub 2} is generally recognized as the most efficient post-combustion technology of CO{sub 2} separation at present. A study on CO{sub 2} absorption enhancement by adding small particles of active carbon into MEA solution is investigated within a self-designed glass stirring tank. Experiments of different particle loadings and different particle sizes have been conducted. When active carbon particle concentration is fewer, compared to the absorption rate of CO{sub 2} gas absorbed by MEA aqueous solution, the role of active carbon adsorption CO{sub 2} gas is negligible. The enhancement efficiency of CO{sub 2} absorption could be improved by 10% to the upmost in this liquid-particle system.

  17. Extrarenal potassium adaptation: role of skeletal muscle

    International Nuclear Information System (INIS)

    Blachley, J.D.; Crider, B.P.; Johnson, J.H.

    1986-01-01

    Following the ingestion of a high-potassium-content diet for only a few days, the plasma potassium of rats rises only modestly in response to a previously lethal dose of potassium salts. This acquired tolerance, termed potassium adaptation, is principally the result of increased capacity to excrete potassium into the urine. However, a substantial portion of the acute potassium dose is not immediately excreted and is apparently translocated into cells. Previous studies have failed to show an increase in the content of potassium of a variety of tissues from such animals. Using 86 Rb as a potassium analogue, we have shown that the skeletal muscle of potassium-adapted rats takes up significantly greater amounts of potassium in vivo in response to an acute challenge than does that of control animals. Furthermore, the same animals exhibit greater efflux of 86 Rb following the termination of the acute infusion. We have also shown that the Na+-K+-ATPase activity and ouabain-binding capacity of skeletal muscle microsomes are increased by the process of potassium adaptation. We conclude that skeletal muscle is an important participant in potassium adaptation and acts to temporarily buffer acute increases in the extracellular concentration of potassium

  18. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes.

    Science.gov (United States)

    Han, Shu-Jen; Tang, Jianshi; Kumar, Bharat; Falk, Abram; Farmer, Damon; Tulevski, George; Jenkins, Keith; Afzali, Ali; Oida, Satoshi; Ott, John; Hannon, James; Haensch, Wilfried

    2017-09-01

    As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.

  19. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes

    Science.gov (United States)

    Han, Shu-Jen; Tang, Jianshi; Kumar, Bharat; Falk, Abram; Farmer, Damon; Tulevski, George; Jenkins, Keith; Afzali, Ali; Oida, Satoshi; Ott, John; Hannon, James; Haensch, Wilfried

    2017-09-01

    As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.

  20. Impurity effect of iron(III) on the growth of potassium sulfate crystal in aqueous solution

    Science.gov (United States)

    Kubota, Noriaki; Katagiri, Ken-ichi; Yokota, Masaaki; Sato, Akira; Yashiro, Hitoshi; Itai, Kazuyoshi

    1999-01-01

    Growth rates of the {1 1 0} faces of a potassium sulfate crystal were measured in a flow cell in the presence of traces of impurity Fe(III) (up to 2 ppm) over the range of pH=2.5-6.0. The growth rate was significantly suppressed by the impurity. The effect became stronger as the impurity concentration was increased and at pH5 it finally disappeared completely. The concentration and supersaturation effects on the impurity action were reasonably explained with a model proposed by Kubota and Mullin [J. Crystal Growth, 152 (1995) 203]. The surface coverage of the active sites by Fe(III) is estimated to increase linearly on increasing its concentration in solution in the range examined by growth experiments. The impurity effectiveness factor is confirmed to increase inversely proportional to the supersaturation as predicted by the model. Apart from the discussion based on the model, the pH effect on the impurity action is qualitatively explained by assuming that the first hydrolysis product of aqua Fe(III) complex compound, [Fe(H 2O) 5(OH)] 2+, is both growth suppression and adsorption active, but the second hydrolysis product, [Fe(H 2O) 4(OH) 2] +, is only adsorption active.

  1. Ligand adsorption on an activated carbon for the removal of chromate ions from aqueous solutions.

    Science.gov (United States)

    García-Martín, J; López-Garzón, R; Godino-Salido, M Luz; Gutiérrez-Valero, M Dolores; Arranz-Mascarós, P; Cuesta, R; Carrasco-Marín, F

    2005-07-19

    The results presented in this work are related to the design of a guideline to develop specific properties at the surface of an activated carbon (AC). For this, two model aromatic compounds have been synthesized and their electrolytic behavior in aqueous solutions was studied by a potentiometric method. The textural characteristics of the activated carbon were determined by porosimetry methods. The nature of oxygen-carrying functions and the acid-base behavior of the AC surface were characterized by TPD and potentiometric titration methods, respectively. The adsorption and desorption equilibria of the aromatic compounds on activated carbon were measured in aqueous solutions, and the hysteresis between adsorption and desorption, which reveals irreversible adsorption, was discussed on the basis of the frontier orbital theory. HOMO and LUMO orbitals of the adsorbent and adsorbates were calculated, and irreversible adsorption was attributed to the small energy difference between HOMO and LUMO of the aromatic adsorbates and the adsorbent. Adsorption equilibria of K2CrO4 in aqueous solution on the AC alone and on the AC-aromatic ligand adsorbents, respectively, prove the efficient development of specific chemical functions at the carbon surface provided by the adsorbed aromatic compounds.

  2. Potassium-argon dating: an access to the dynamics and the history of the Planet Earth

    International Nuclear Information System (INIS)

    Gillot, P.Y.

    1993-01-01

    Today, scientists, concerned by the history and the evolution of our planet, have a wide range of dating methods. Among these, potassium-argon dating with a field of application that now largely covers that of dating by thermoluminescence or by carbon 14

  3. Comparison of Temporal Profiles among Sucrose, Sucralose, and Acesulfame Potassium after Swallowing Sweetened Coffee Beverages and Sweetened Water Solutions

    Directory of Open Access Journals (Sweden)

    Naomi Gotow

    2018-04-01

    Full Text Available Non-nutritive sweeteners have been used as substitutes for nutritive sweeteners with the goal of preventing obesity and dental caries. The main factor responsible for the difference in taste between beverages containing a nutritive sweetener and those containing a non-nutritive sweetener is the temporal profile of sensory attributes. In this study, untrained panelists performed a time–intensity evaluation of sweetness, using one coffee beverage containing a nutritive sweetener (sucrose and two coffee beverages containing non-nutritive sweeteners (sucralose or acesulfame potassium (acesulfame K. They evaluated continuously perceived intensity of sweetness for 150 s after swallowing each coffee beverage. We did not detect a significant difference in temporal profiles among the three coffee beverages. To investigate why the temporal profiles of the three coffee beverages followed similar traces, all untrained participants who had participated in the coffee beverage session also performed a time–intensity evaluation of sweetness using three water solutions (sucrose-sweetened, sucralose-sweetened, and acesulfame K–sweetened deionized water. We observed a significant difference in temporal profiles among the three water solutions. These results indicate that differences in the temporal profiles of coffee beverages might be masked by factors other than the sweetness of the sweetener.

  4. The determination of hydroxide and carbonate in concentrated sodium chloride solutions

    NARCIS (Netherlands)

    Roolvink, W.B.; Bos, M.

    1980-01-01

    A computer method for the determination of carbonate and hydroxide in concentrated (2.89 M) sodium chloride solutions is described. The method is based on multiparametric curve-fitting and can also be applied to salts of dibasic acids with unknown equilibrium constants. The systematic error is not

  5. An analysis of the potassium concentrations of soft drinks by HPGe gamma spectrometry

    International Nuclear Information System (INIS)

    Guillermo Espinosa; Jose-Ignacio Golzarri; Ilsa Hernandez-Ibinarriaga

    2009-01-01

    Potassium, in a variety of compounds, occurs in abundance in the Earth's crust, and is an essential nutrient for human health. A naturally occurring radioactive isotope of potassium, 40 K, is found in the food and water that we consume. This paper presents the results of a gamma spectrometry analysis of the 40 K concentrations of a selection of commercial soft drinks. The 40 K concentrations are used to calculate the overall potassium concentrations. The analysis was carried out using a hyper-pure germanium (HPGe) detector with Ortec R ASPEC-927 multichannel analyzer module and GammaVision R software. This system was chosen for its high resolution and automatic data processing. The carbonated soft drinks (sodas) Coca-Cola R , Coca-Cola Light R (sold as Diet Coke R in the USA and other countries), Coca-Cola Zero R , Pepsi R , Pepsi Light R , Pepsi Max R , Big Cola R , Lulu-Cola R , Manzana Lift R , Sprite R and Fanta R and the mineral waters Ciel R and Penafiel R were analyzed. These brands are all international registered trademarks. The products analyzed were manufactured and bottled in Mexico. The results show a great variety of potassium concentrations in the different soft drinks analyzed (from 128.0 to 1113.1 mg/L). The concentration of potassium in the sodas, in conjunction with the amounts drank by one person in a year (180 L/year), are high enough to warrant consideration by public health authorities and by people to whom high potassium intakes pose a risk. (author)

  6. 21 CFR 184.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  7. 21 CFR 184.1622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  8. Permeability of solutes through cellophanes grafted with vinyl monomers. II. Diffusion of potassium chloride through cellophanes grafted with acrylic acid

    International Nuclear Information System (INIS)

    Takigami, S.; Maeda, Y.; Nakamura, Y.

    1979-01-01

    The permeability behavior of potassium chloride through cellophane grafted with acrylic acid by a γ-irradiation method was studied by the theoretical equation derived from the phenomenological equation and compared with the results of Donnan membrane equilibrium. It was shown that the permeation of potassium chloride through the grafted cellophanes exhibited behavior typical of a polyionic membrane for grafts of more than 55% but depended on the permeability of both cellophane and graft regions for lower percents of grafting. It was found that the dominant factor affecting the permeation of potassium chloride was an effective concentration of fixed charge in the membrane. 5 figures, 2 tables

  9. An open, comparative study of 10% potassium hydroxide solution versus salicylic and lactic acid combination in the treatment of molluscum contagiosum in children.

    Science.gov (United States)

    Köse, Osman; Özmen, İbrahim; Arca, Ercan

    2013-08-01

    To evaluate and compare the safety and efficacy of 10% potassium hydroxide (KOH) solution and salicylic and lactic acid (SAL + LAC) combination in the treatment of molluscum contagiosum (MC). 26 patients with MC randomized into two treatment groups. 12 patients treated with 10% KOH solution and 14 patients treated with SAL + LAC combination for 6 weeks. Parents of patients were instructed to apply medication once daily only to lesions at study onset. Assessment of response of the treated lesions and side effects was performed at 2, 4 and 6 weeks of the treatment. Newly acquired lesions were not included in the study. At the end of therapy, 83.3% (n = 10) of KOH group demonstrated complete remission and 16.7% (n = 2) of them showed partial remission; four patients (33%) developed new lesions during the study. All the patients in the SAL + LAC combination group (100%) demonstrated complete remission of study entry lesions at the end of 6 weeks with five patients (35%) acquiring new lesions during the study. Minor side effects were observed in two groups. 10% KOH solution and SAL + LAC combination were found to be equally effective in the treatment of MC in children.

  10. Studies on removal of NH4+-N from aqueous solution by using the activated carbons derived from rice husk

    International Nuclear Information System (INIS)

    Zhu, Kairan; Fu, Hao; Zhang, Jinghui; Lv, Xiaoshu; Tang, Jie; Xu, Xinhua

    2012-01-01

    Water pollution caused by ammonia nitrogen has attracted a great attention as its toxicity affects both the environment and human health. The objective of this paper was to investigate the adsorption behavior of NH 4 + -N from aqueous solution by activated carbons prepared from rice husk. The physico-chemical properties of the activated carbon were characterized by Brunauer-Emmett-Teller (BET) test, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). It was found that the NH 4 + -N adsorption on the rice husk derived carbons was dependent on adsorbent dosage and solution pH. The adsorption kinetics and isotherms of NH 4 + -N by rice husk carbon were also investigated, and good correlation coefficients were obtained for the pseudo-second order kinetic equation. Dubinin-Radushkevitch (D-R) adsorption isotherm model could better describe the adsorption behavior of NH 4 + -N on the rice husk carbon. Calculated by D-R model, the adsorption course of NH 4 + -N on the rice husk carbon was favored chemical ion-exchange mechanism. Moreover, the activated carbon adsorbed NH 4 + -N was highly fertilizer conservation especially for the nitrogen element. It was proposed that the amount of removed NH 4 + -N from aqueous solutions would increase evidently treated by rice husk carbon if combined with biological method. -- Highlights: ► The dosage of rice husk carbon and pH affected the removal of NH 4 + -N from aqueous solution. ► D-R model could better describe the adsorption behavior of NH 4 + -N on the rice husk carbon. ► The removing of NH 4 + -N would be risen by rice husk carbon if combined with biological method.

  11. A high-performance carbon derived from corn stover via microwave and slow pyrolysis for supercapacitors

    DEFF Research Database (Denmark)

    Jin, Hong; wang, Xiaomin; Shen, Yanbin

    2014-01-01

    Microwave and slow pyrolysis were conducted for converting corn stover to biochar. Chemical agents of sodium hydroxide and potassium hydroxide were used to progressively produce activated carbon. The pore structures and surface area of the samples were characterized by nitrogen adsorption....../desorption at 77 K. The results demonstrated that higher specific surface areas of activated carbons were obtained by microwave pyrolysis combined with potassium hydroxide activation. However, electrochemical measurements showed that the slow pyrolysis biochar treated with 0.05 mol g−1 (potassium hydroxide...

  12. Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural.

    Science.gov (United States)

    Yardim, M F; Budinova, T; Ekinci, E; Petrov, N; Razvigorova, M; Minkova, V

    2003-08-01

    The adsorption of Hg(II) from aqueous solution at 293 K by activated carbon obtained from furfural is studied. The carbon is prepared by polymerization of furfural following carbonization and activation of the obtained polymer material with water vapor at 800 degrees C. Adsorption studies of Hg(II) are carried out varying some conditions: treatment time, metal ion concentration, adsorbent amount and pH. It is determined that Hg(II) adsorption follows both Langmuir and Freundlich isotherms. The adsorption capacity of the carbon is 174 mg/g. It is determined that Hg(II) uptake increases with increasing pH. Desorption studies are performed with hot water. The percent recovery of Hg(II) is 6%.

  13. Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution

    Science.gov (United States)

    Myodo, Miho; Inaba, Masafumi; Ohara, Kazuyoshi; Kato, Ryogo; Kobayashi, Mikinori; Hirano, Yu; Suzuki, Kazuma; Kawarada, Hiroshi

    2015-05-01

    Large-current-controllable carbon nanotube field-effect transistors (CNT-FETs) were fabricated with mm-long CNT sheets. The sheets, synthesized by remote-plasma-enhanced CVD, contained both single- and double-walled CNTs. Titanium was deposited on the sheet as source and drain electrodes, and an electrolyte solution was used as a gate electrode (solution gate) to apply a gate voltage to the CNTs through electric double layers formed around the CNTs. The drain current came to be well modulated as electrolyte solution penetrated into the sheets, and one of the solution gate CNT-FETs was able to control a large current of over 2.5 A. In addition, we determined the transconductance parameter per tube and compared it with values for other CNT-FETs. The potential of CNT sheets for applications requiring the control of large current is exhibited in this study.

  14. Determination of free acid in plutonium (IV) solutions - thermometrically, potentiometrically

    International Nuclear Information System (INIS)

    Williams, T.L.; Tucker, G.M.; Huff, G.A.; Jordan, L.G.

    1981-09-01

    The thermometric titration technique was found to offer certain advantages over potentiometry in the determination of free acid in Pu(IV) solutions. The thermometric technique was applied to the determination of free acid in plutonium nitrate solutions using potassium fluoride to suppress the hydrolytic interference of plutonium(IV). The results indicate that 0.2 to 2.0 milliequivalents of free acid can be determined with acceptable bias and precision in solutions containing up to 30 milligrams of plutonium. In contrast, neither the thermometric nor the potentiometric technique was suitable for samples containing more than eight milligrams of plutonium complexed with potassium oxalate

  15. A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects.

    Science.gov (United States)

    Hunger, Johannes; Neueder, Roland; Buchner, Richard; Apelblat, Alexander

    2013-01-17

    We study the conductance of dilute aqueous solutions for a series of guandinium salts at 298.15 K. The experimental molar conductivities were analyzed within the framework of the Quint-Viallard theory in combination with Debye-Hückel activity coefficients. From this analysis, we find no evidence for significant ion association in aqueous solutions of guanidinium chloride (GdmCl) and guanidinium thiocyanate (GdmSCN), and the molar conductivity of these electrolytes can be modeled assuming a complete dissociation. The limiting ionic conductivity of the guanidinium ion (Gdm(+)) is accurately determined to λ(Gdm(+)) = 51.45 ± 0.10 S cm(2) mol(-1). For the bivalent salts guanidinium sulfate (Gdm(2)SO(4)) and guanidinium carbonate (Gdm(2)CO(3)), the molar conductivities show small deviations from ideal (fully dissociated electrolyte) behavior, which are related to weak ion association in solution. Furthermore, for solutions of Gdm(2)CO(3), the hydrolysis of the carbonate anion leads to distinctively increased molar conductivities at high dilutions. The observed ion association is rather weak for all studied electrolytes and cannot explain the different protein denaturing activities of the studied guanidinium salts, as has been proposed previously.

  16. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  17. Carbon footprint of telemedicine solutions--unexplored opportunity for reducing carbon emissions in the health sector.

    Science.gov (United States)

    Holmner, Asa; Ebi, Kristie L; Lazuardi, Lutfan; Nilsson, Maria

    2014-01-01

    The healthcare sector is a significant contributor to global carbon emissions, in part due to extensive travelling by patients and health workers. To evaluate the potential of telemedicine services based on videoconferencing technology to reduce travelling and thus carbon emissions in the healthcare sector. A life cycle inventory was performed to evaluate the carbon reduction potential of telemedicine activities beyond a reduction in travel related emissions. The study included two rehabilitation units at Umeå University Hospital in Sweden. Carbon emissions generated during telemedicine appointments were compared with care-as-usual scenarios. Upper and lower bound emissions scenarios were created based on different teleconferencing solutions and thresholds for when telemedicine becomes favorable were estimated. Sensitivity analyses were performed to pinpoint the most important contributors to emissions for different set-ups and use cases. Replacing physical visits with telemedicine appointments resulted in a significant 40-70 times decrease in carbon emissions. Factors such as meeting duration, bandwidth and use rates influence emissions to various extents. According to the lower bound scenario, telemedicine becomes a greener choice at a distance of a few kilometers when the alternative is transport by car. Telemedicine is a potent carbon reduction strategy in the health sector. But to contribute significantly to climate change mitigation, a paradigm shift might be required where telemedicine is regarded as an essential component of ordinary health care activities and not only considered to be a service to the few who lack access to care due to geography, isolation or other constraints.

  18. Reactive extraction of carboxylic acids from apolar hydrocarbons using aqueous solutions of sodium hydrogen carbonate with back-recovery using carbon dioxide under pressure

    NARCIS (Netherlands)

    Kuzmanovic, B.; Kuipers, N.J.M.; de Haan, A.B.; Kwant, Gerard

    2005-01-01

    A combination of using an aqueous solution of sodium hydrogen carbonate for forward-extraction of carboxylic acids from a dilute apolar organic solvent, and carbon dioxide under pressure for its back-recovery, is studied. Used in combination, these two steps might provide a technique for the

  19. 197 Au Mössbauer study of the gold species adsorbed on carbon from cyanide solutions

    Science.gov (United States)

    Kongolo, K.; Bahr, A.; Friedl, J.; Wagner, F. E.

    1990-04-01

    The gold species present on activated carbon after adsorption from solutions of Au(CN)2 - have been studied by197Au Mössbauer spectroscopy as a function of the pH value of the solution, the loading of the carbon, the coadsorption of polyvalent cations, and the treatment of the samples after adsorption. The gold was found to be adsorbed mainly as Au(CN)2 -. Coadsorbed polyvalent cations (Ca²+, Gd³+) have no influence on the Mössbauer parameters of the adsorbed gold complex. After adsorption from acidic solutions (pH ≲ 4), one finds a substantial amount of adsorbed gold with Mössbauer parameters similar to those of crystalline AuCN. Presumably, this gold is bound in Aux(CN)x+1 oligomers which form during drying. An additional product with Mössbauer parameters close to those of KAu(CN)2Cl2 was observed on dried samples after adsorption at pH 1. A minor gold species with an uncommonly small electric quadrupole splitting was found on wet carbons but disappeared on drying.

  20. The heart and potassium: a banana republic.

    Science.gov (United States)

    Khan, Ehsan; Spiers, Christine; Khan, Maria

    2013-03-01

    The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium.

  1. Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution.

    Science.gov (United States)

    Kim, Jin Hee; Kataoka, Masakazu; Fujisawa, Kazunori; Tojo, Tomohiro; Muramatsu, Hiroyuki; Vega-Díaz, Sofía M; Tristán-López, F; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2011-12-08

    The dispersibility in a DNA solution of bundled multiwalled carbon nanotubes (MWCNTs), having different chemical functional groups on the CNT sidewall, was investigated by optical spectroscopy. We observed that the dispersibility of nitrogen (N)-doped MWCNTs was significantly higher than that of pure MWCNTs and MWCNTs synthesized in the presence of ethanol. This result is supported by the larger amount of adsorbed DNA on N-doped MWCNTs, as well as by the higher binding energy established between nucleobases and the N-doped CNTs. Pure MWCNTs are dispersed in DNA solution via van der Waals and hydrophobic interactions; in contrast, the nitrogenated sites within N-doped MWCNTs provided additional sites for interactions that are important to disperse nanotubes in DNA solutions. © 2011 American Chemical Society

  2. Increased serum potassium affects renal outcomes

    DEFF Research Database (Denmark)

    Miao, Y; Dobre, D; Heerspink, H J Lambers

    2011-01-01

    To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy.......To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy....

  3. Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites

    Czech Academy of Sciences Publication Activity Database

    Kikhtyanin, O.; Bulánek, R.; Frolich, K.; Čejka, Jiří; Kubička, D.

    2016-01-01

    Roč. 424, DEC 2016 (2016), s. 358-368 ISSN 1381-1169 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : activated hydrotalcites * carbon-monoxide * cyclic-ketones * Acetone * Furfural * Condensation * Potassium-BEA * Zeolite Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.211, year: 2016

  4. Removal of insecticide carbofuran from aqueous solutions by banana stalks activated carbon

    International Nuclear Information System (INIS)

    Salman, J.M.; Hameed, B.H.

    2010-01-01

    In this work, activated carbon was prepared from banana stalks (BSAC) waste to remove the insecticide carbofuran from aqueous solutions. The effects of contact time, initial carbofuran concentration, solution pH and temperature (30, 40 and 50 deg. C) were investigated. Adsorption isotherm, kinetics and thermodynamics of carbofuran on BSAC were studied. Equilibrium data were fitted to the Langmuir, Freundlich and Temkin isotherm models and the data best represented by the Langmuir isotherm. Thermodynamic parameters such as standard enthalpy (ΔH o ), standard entropy (ΔS o ) and standard free energy (ΔG o ) were evaluated. Regeneration efficiency of spent BSAC was studied using ethanol as a solvent. The efficiency was found to be in the range of 96.97-97.35%. The results indicated that the BSAC has good regeneration and reusability characteristics and can be used as alternative to present commercial activated carbon.

  5. Removal of Lead (II from Aqueous Solution Using Chitosan Impregnated Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Ali Mousa Ridha

    2017-03-01

    Full Text Available The use of biopolymer material Chitosan impregnated granular activated carbon CHGAC as adsorbent in the removal of lead ions pb.2+ from aqueous solution was studied using batch adsorption mode. The prepared CHGAC was characterized by Scanning Electronic Microscopy (SEM and atomic-absorption pectrophotometer. The adsorption of lead ions onto Chitosan-impregnated granular activated carbon was examined as a function of adsorbent weight, pH and contact time in Batch system. Langmuir and Freundlich models were employed to analyze the resulting experimental data demonstrated that better fitted by Langmuir isotherm model than Freundlich model, with good correlation coefficient. The maximum adsorption capacity calculated from the pseudo second order model in conformity to the experimental values. This means that the adsorption performance of lead ions onto CHGAC follows a pseudo second order model, which illustrates that the adsorption of Pb2+ onto CHGAC was controlled by chemisorption. The granular activated carbon GAC impregnated by Chitosan was effectively applied as adsorbent for the elimination of lead ions from aqueous solution.

  6. Can Diuretics Decrease Your Potassium Level?

    Science.gov (United States)

    ... of low potassium? Can diuretics decrease your potassium level? Answers from Sheldon G. Sheps, M.D. Yes, ... your urine. This can lead to low potassium levels in your blood (hypokalemia). Signs and symptoms of ...

  7. Application of solution-mineral equilibrium chemistry to solution mining of uranium ores

    International Nuclear Information System (INIS)

    Riese, A.C.; Popp, C.J.

    1979-01-01

    The tests described were undertaken to determine the extent to leach solution-rock interactions with uranium-bearing ore obtained from the Mariano Lake mine. Leach solutions of an acidic (H/sub 2/O/sub 4/-sulfuric acid) and basic (NaHCO/sub 3/-sodium bicarbonate) nature were tested, in addition to a leach solution containing potassium chloride and sulfuric acid (KCl/H/sub 2/SO/sub 4/). The latter solution was chosen in an attempt to equilibrate the aqueous phase with the rock-forming silicate minerals and minimize adverse effects such as clay formation, porosity loss, and lixiviant loss. 29 refs

  8. Surface structure and adsorption properties of ultrafine porous carbon fibers

    International Nuclear Information System (INIS)

    Song Xiaofeng; Wang Ce; Zhang Dejiang

    2009-01-01

    Ultrafine porous carbon fibers (UPCFs) were successfully synthesized by chemical activation of electrospun polyacrylonitrile fibers. In the current approach, potassium hydroxide was adopted as activation reagent. UPCFs were systematically evaluated by scanning electron microscope and nitrogen adsorption. The mass ratio of potassium hydroxide to preoxidized fibers, activation temperature and activation time are crucial for producing high quality UPCFs. The relationships between porous structure and process parameters are explored. UPCFs were applied as adsorbent for nitrogen monoxide to be compared with commercial porous carbon fibers.

  9. Study of the solubility of yttrium, praseodymium, neodymium, and gadolinium sulfates in the presence of sodium and potassium in sulfuric-phosphoric acid solutions at 20 deg C

    International Nuclear Information System (INIS)

    Lokshin, Eh.P.; Tareeva, O.A.; Kashulina, T.G.

    2007-01-01

    The solubility of yttrium, praseodymium, neodymium, and gadolinium sulfates in the presence of sodium and potassium ions and the composition of solid phases were studied at 20 deg C in relation to the concentration of acids in sulfuric acid, phosphoric acid, and sulfuric-phosphoric acid solutions containing up to 36 wt % H 2 SO 4 and 33.12 g 1 -1 H 3 PO 4 . The formation of double sulfates of praseodymium and neodymium with sodium and potassium ions, as well as of gadolinium sulfate with sodium ions of the composition 1 : 1 was revealed. In water at 20 deg C, the solubility products of PrNa(SO 4 ) 2 ·H 2 O, NdNa(SO 4 ) 2 ·H 2 O, GdNa(SO 4 ) 2 ·H 2 O, PrK(SO 4 ) 2 ·H 2 O, and NdK(SO 4 ) 2 ·H 2 O are found to be 7.28x10 -8 , 7.84x10 -8 , 3.09x10 -6 , 3.02x10 -6 , and 1.70x10 -6 , respectively [ru

  10. The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH)2 solutions

    International Nuclear Information System (INIS)

    Zheng, Haibing; Li, Weihua; Ma, Fubin; Kong, Qinglin

    2014-01-01

    In the present work, the performance of an amino alcohol based surface applied inhibitor was studied by the electrochemical techniques in saturated Ca(OH) 2 solutions. The surface morphology of the carbon steel was observed by scanning electron microscope, and the energy diffraction spectrum was also tested. Results showed that the inhibitor used in this work demonstrated obvious inhibition efficiency on the carbon steel in saturated Ca(OH) 2 solutions. The inhibition mechanism of the inhibitor lies in the quick adsorption of the active component on carbon steel surface

  11. Simulation and modeling CO2 absorption in biogas with DEA promoted K2CO3 solution in packed column

    Science.gov (United States)

    Nurkhamidah, Siti; Altway, Ali; Airlangga, Bramantyo; Emilia, Dwi Putri

    2017-05-01

    Absorption of carbon dioxide (CO2) using potassium carbonate (K2CO3) is one of biogas purification method. However, K2CO3 have slow mass transfer in liquid phase. So it is necessary to eliminate the disadvantage of CO2 absorption using K2CO3 by adding promotor (activator). Diethanol amine (DEA) is one of promotor which can increase its reaction rate. Simulation and modeling research of the CO2 absorption from biogas with DEA promoted K2CO3 solution has not been conducted. Thus, the main goal of this research is create model and simulation for the CO2 absorption from biogas with DEA promoted K2CO3 solution, then observe the influence of promoter concentration. DEA concentration varies between 1-5 %wt. From the simulation, we concluded that the CO2 removal rise with the increasing of promoter concentration. The highest CO2 removal is 54.5318 % at 5 % wt DEA concentration.

  12. Preparation of potassium-reduced tantalum powders

    International Nuclear Information System (INIS)

    Kolosov, V.N.; Miroshnichenko, M.N.; Orlov, V.M.; Prokhorova, T.Yu.

    2005-01-01

    Characteristics of tantalum powders prepared by reduction of molten potassium heptafluorotantalate with liquid potassium are studied in a temperature range of 750 - 850 deg C using potassium chloride as a flux at a ratio of K 2 TaF 7 : KCl = 1, 2, and 3. The use of potassium as a reducing agent facilitates washing of tantalum powders for impurity salt removal, reduces sodium content and leakage currents in the anodes. As compared to sodium process, the potassium reduction results in a high yield of sponge material, a decrease in the specific surface area and yield of tantalum powder suitable for manufacture of capacitor anodes [ru

  13. Selection of a carbon-14 fixation form

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.

    1982-09-01

    This report summarizes work on the selection of a disposal form for carbon-14 produced during the production of nuclear power. Carbon compounds were screened on the basis of solubility, thermal stability, resistance to oxidation, cost and availability, compatibility with the selected disposal matrix, leach resistance when incorporated in concrete, and compatibility with capture technologies. Carbonates are the products of the various technologies presently considered for carbon-14 capture. The alkaline earth carbonates exhibit the greatest thermal stabilities, lowest solubilities, lowest raw material cost, and greatest raw material availabilities. When reactions with cement and its impurities are considered, calcium and strontium carbonates are the only alkaline earth carbonates resistant to hydrolysis and reaction with sulfate. Leaching tests of barium, calcium, lead, potassium, and strontium carbonates in concrete showed calcium carbonate concrete to be slightly superior to the other alkaline earth carbonates, and greatly superior to a soluble carbonate, potassium carbonate, and lead carbonate. None of the additives to the concrete reduced the carbonate leaching. Acidic CO 2 -containing waters were found to greatly increase carbonate leaching from concrete. Sea water was found to leach less carbon from carbonate concretes than either distilled water or Columbia River water, which showed nearly equivalent leaching. Based on our work, calcium, barium, and strontium carbonates in concrete are the most suitable waste forms for carbon-14, with calcium carbonate concrete slightly superior to the others. If the waste form is to be exposed to natural waters, sea water will have the lowest leach rate. 6 figures, 7 tables

  14. Separation of Th from aqueous solutions using activated carbon

    International Nuclear Information System (INIS)

    Kutahyali, C.; Eral, M.

    2005-01-01

    Since the last century, thorium has been extensively used in a variety of applications. These applications produce various gaseous, liquid and solid wastes containing isotopes of thorium. Liquid wastes are freed into the surface or the underground waters of mines. Solid and liquid wastes are also produced during nuclear fuel production. Direct toxicity of thorium is low due to its stability at ambient temperatures; however thorium fine powder is self-ignitable to thorium oxide. When thorium nitrate enters living organisms it is mainly localized in liver, spleen and marrow and it precipitates in a hydroxide form. Investigations concerning the removal or minimization of the thorium concentration in the waste waters are of considerable importance environmental point of view. Adsorption is an important technique in separation and purification processes. Among many types of adsorbent materials, activated carbons are the most widely used, because of their large adsorptive capacity and low cost. Activated carbons are unique adsorbents because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. Separation and purification processes based on adsorption technique are also important in nuclear industry where activated carbon is often used for the separation of metal ions from solutions, due to its selective adsorption, high radiation stability and high purity. The activated carbons used in this study were prepared by the chemical activation of acrylic fiber. The chemical composition of acrylic fiber is a copolymer of acrylonitrile-vinyl acetate is called also poliacrylonitryl fiber. The effects of carbonization conditions resulting activated carbon were examined. Precursor/activating agent (KOH and ZnCl 2 ) ratio and carbonization temperature were investigated for the preparation of adsorbent. Adsorption experiments were carried out by a batch technique. The adsorption of thorium was studied as a function of

  15. Influence of carbonate ions on the micellization behavior in triblock copolymer solution

    CERN Document Server

    Thiyagarajan, P

    2002-01-01

    SANS was used to investigate the micellization behavior of triblock copolymers (F68, F88 and F108) as functions of carbonate ion concentration and temperature. SANS data were fitted to determine the sizes of the core and corona, inter-micelle distance, association number and the volume fraction of the micelles. As the polymer molecular weight increases, the core radius and the radius of gyration (R sub g) of the corona and the inter-micelle distance increase. The carbonate ion concentration and polymer molecular weight have dramatic influence on the temperatures at which the micellization and spherical-to-cylindrical micelle transformation occur. The mechanism by which this phenomenon occurs in these solutions is through a gradual dehydration of polymers with increasing carbonate concentration and/or temperature. (orig.)

  16. Potassium estimation in the soil solution based on electrical conductivity and soil water content Estimativa de potássio na solução do solo baseada na condutividade elétrica e umidade do solo

    Directory of Open Access Journals (Sweden)

    Torquato M. de Andrade Neto

    2012-06-01

    Full Text Available The objective of this work was to evaluate and to validate models for estimating potassium in the soil solution as a function of bulk electrical conductivity (ECw, soil water content (q and a soil solution electrical conductivity (ECss. Treatments consisted of using three concentrations of injecting solution of potassium chloride (1.0, 2.5 and 4.0 g L-1 which were applied by two trickle irrigation systems (microsprinkler and drip during the first cycle of the banana crop cv. Terra Maranhão. Results showed that it is feasible to estimate potassium concentration in the soil solution from data of ECss and q obtained by time domain reflectometry (TDR using an equation that combined a linear and a potential model. The estimated values of potassium concentration were close to the ones measured along the crop cycle under field conditions, with a mean normalized deviation of 10.0%, maximum and minimum deviation of 5.0 and 13.0%, respectively.O objetivo deste trabalho foi avaliar e validar modelo de estimativa de potássio na solução do solo, como função da condutividade elétrica aparente (CEa, da umidade do solo (q e da condutividade elétrica da solução do solo (CEss. Os tratamentos consistiram no uso de três concentrações de cloreto de potássio da solução de injeção (1,0, 2,5 e 4,0 g L-1 aplicadas por microaspersão e por gotejamento, durante o primeiro ciclo da cultura da bananeira cultivar Terra Maranhão. Os resultados mostraram que é viável estimar a concentração de K+ na solução do solo a partir de dados de q e CEa, obtidos por meio da técnica da reflectometria no domínio do tempo (TDR para condições de campo, com uso de equação resultante da combinação de um modelo linear e um potencial. Os valores de K+ estimados se aproximaram dos medidos ao longo do ciclo da cultura da bananeira "Terra" nas condições de campo, com desvio normalizado médio de 10%, desvio máximo e mínimo de 5,0 e 13,0%, respectivamente.

  17. Patterned forests of vertically-aligned multiwalled carbon nanotubes using metal salt catalyst solutions.

    Science.gov (United States)

    Garrett, David J; Flavel, Benjamin S; Baronian, Keith H R; Downard, Alison J

    2013-01-01

    A simple method for producing patterned forests of multiwalled carbon nanotubes (MWCNTs) is described. An aqueous metal salt solution is spin-coated onto a substrate patterned with photoresist by standard methods. The photoresist is removed by acetone washing leaving the acetone-insoluble catalyst pattern on the substrate. Dense forests of vertically aligned (VA) MWCNTs are grown on the patterned catalyst layers by chemical vapour deposition. The procedures have been demonstrated by growing MWCNT forests on two substrates: silicon and conducting graphitic carbon films. The forests adhere strongly to the substrates and when grown directly on carbon film, offer a simple method of preparing MWCNT electrodes.

  18. Enrichment of yttrium from rare earth concentrate by ammonium carbonate leaching and peroxide precipitation

    International Nuclear Information System (INIS)

    Vasconcellos, Mari E. de; Rocha, S.M.R. da; Pedreira, W.R.; Queiroz S, Carlos A. da; Abrao, Alcidio

    2006-01-01

    The rare earth elements (REE) solubility with ammonium carbonate vary progressively from element to element, the heavy rare earth elements (HRE) being more soluble than the light rare earth elements (LRE). Their solubility is function of the carbonate concentration and the kind of carbonate as sodium, potassium and ammonium. In this work, it is explored this ability of the carbonate for the dissolution of the REE and an easy separation of yttrium was achieved using the precipitation of the peroxide from complex yttrium carbonate. For this work is used a REE concentrate containing (%) Y 2 O 3 2.4, Dy 2 O 3 0.6, Gd 2 O 3 2.7, CeO 2 2.5, Nd 2 O 3 33.2, La 2 O 3 40.3, Sm 2 O 3 4.1 and Pr 6 O 11 7.5. The mentioned concentrate was produced industrially from the chemical treatment of monazite sand by NUCLEMON in Sao Paulo. The yttrium concentrate was treated with 200 g L -1 ammonium carbonate during 10 and 30 min at room temperature. The experiments indicated that a single leaching operation was sufficient to get a rich yttrium solution with about 60.3% Y 2 O 3 . In a second step, this yttrium solution was treated with an excess of hydrogen peroxide (130 volumes), cerium, praseodymium and neodymium peroxides being completely precipitated and separated from yttrium. Yttrium was recovered from the carbonate solution as the oxalate and finally as oxide. The final product is an 81% Y 2 O 3 . This separation envisages an industrial application. The work discussed the solubility of the REE using ammonium carbonate and the subsequent precipitation of the correspondent peroxides

  19. Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior

    International Nuclear Information System (INIS)

    L'Hostis, V.; Huet, B.; Tricheux, L.; Idrissi, H.

    2010-01-01

    The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (SO 4 2- ) and alkali (Na + , K + ) content on carbonate alkalinity of the CO 2 /H 2 O open system (pCO 2 =0. 3 mbar). in this system, calcium-silicate hydrates (C-S-H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. (authors)

  20. Enhanced Oil Recovery from Oil-wet Carbonate Rock by Spontaneous Imbibition of Aqueous Surfactant Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Standnes, Dag Chun

    2001-09-01

    The main theme of this thesis is an experimental investigation of spontaneous imbibition (SI) of aqueous cationic surfactant solution into oil-wet carbonate (chalk- and dolomite cores). The static imbibition process is believed to represent the matrix flow of oil and water in a fractured reservoir. It was known that aqueous solution of C{sub 12}-N(CH{sub 3}){sub 3}Br (C12TAB) was able to imbibe spontaneously into nearly oil-wet chalk material, but the underlying mechanism was not understood. The present work was therefore initiated, with the following objectives: (1) Put forward a hypothesis for the chemical mechanism underlying the SI of C12TAB solutions into oil-wet chalk material based on experimental data and (2) Perform screening tests of low-cost commercially available surfactants for their ability to displace oil by SI of water into oil-wet carbonate rock material. It is essential for optimal use of the surfactant in field application to have detailed knowledge about the mechanism underlying the SI process. The thesis also discusses some preliminary experimental results and suggests mechanisms for enhanced oil recovery from oil-wet carbonate rock induced by supply of thermal energy.

  1. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Directory of Open Access Journals (Sweden)

    Michael S. Stone

    2016-07-01

    Full Text Available Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+ ATPase pump. Approximately 90% of potassium consumed (60–100 mEq is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN is the leading cause of cardiovascular disease (CVD and a major financial burden ($50.6 billion to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  2. Application of Activated Carbon for Removal of Arsenic Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2007-01-01

    Full Text Available The activated carbon (AC was used for removal of As(III and As(V ions from aqueous solutions. Sorption experiments were conducted using both batch and column systems. The effect of some important parameters on sorption of these by AC was studied. It was found that among the different factors affecting sorption capacity and efficiency in removal of arsenic from aqueous solutions, the effect of pH and the oxidation state were the most prominent. The optimum pH values for removal of As(III and As(V from aqueous solutions using AC was found 12 and 3 respectively. Impregnation of AC with sulphur contain organic dyes, it is possible to improve As(III uptake considerably.

  3. An open, nonrandomized, comparative study of imiquimod 5% cream versus 10% potassium hydroxide solution in the treatment of molluscum contagiosum.

    Science.gov (United States)

    Metkar, Amol; Pande, Sushil; Khopkar, Uday

    2008-01-01

    There are numerous therapeutic modalities available for treatment of molluscum contagiosum. However, the ablative modalities are painful and not suitable for children. We aimed to evaluate and compare the safety and efficacy of 2 of the painless modalities, viz., 5% imiquimod cream and 10% potassium hydroxide (KOH) solution, in the treatment of molluscum contagiosum. Out of a total of 40 patients of molluscum contagiosum in the study, 18 patients in the imiquimod group and 19 patients in the KOH group completed the study. The given medication was applied by the patient or a parent to mollusca at night, 3 days per week. Imiquimod was continued till clinical cure; and 10% KOH, till lesions showed signs of inflammation. Assessments of response and side effects were performed at the end of week 4, week 8, and week 12. Significance was tested by Student's t test and Mann-Whitney test. The mean lesion count decreased from 22.39 to 10.75 with imiquimod and from 20.79 to 4.31 with KOH at the end of 12 weeks. We found complete clearance of lesions in 8 (44%) patients with imiquimod and in 8 (42.1%) patients with 10% KOH. Minor side effects were seen in 15 (78.9%) patients on KOH and 10 (55.5%) patients on imiquimod. The results of this study suggest that both 5% imiquimod cream and 10% KOH solution are equally effective in molluscum contagiosum though KOH has a faster onset of action. However, KOH solution is associated with a higher incidence of side effects.

  4. CO2 Mass transfer model for carbonic anhydrase-enhanced aqueous MDEA solutions

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold; Deslauriers, Maria Gundersen; Neerup, Randi

    2018-01-01

    In this study a CO2 mass transfer model was developed for carbonic anhydrase-enhanced MDEA solutions based on a mechanistic kinetic enzyme model. Four different enzyme models were compared in their ability to predict the liquid side mass transfer coefficient at temperatures in the range of 298...

  5. The effect of foliar feeding of potassium salts and urea in spinach on gas exchange, leaf yield and quality

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2012-12-01

    Full Text Available In a pot experiment conducted in a phytotron, the effectiveness of foliar feeding of different potassium salts, with and without the addition of 0.5% CO(NH22, in spinach (Spinacia oleracea L. was investigated. Potassium was applied 3 times in the form of 1% solutions KCl, KNO3, K2SO4 and C6H5K3O7•H2O, compared to water as the control treatment. The obtained results show that foliar feeding of potassium salts in spinach is an efficient method of supplementing the level of K+ in plants during vegetation. Plants fed with KNO3 had the highest content of potassium in leaves, and those fertilized with K2SO4, C6H5K3O7 × H2O and KCl had an only slightly lower potassium content. The application of potassium salts resulted in more intensive gas exchange in leaves (stomatal conductance, photosynthesis, transpiration and, as a consequence of that, increased leaf yield. Potassium nitrate and citrate influenced most effectively the abovementioned processes. The treatment of spinach with potassium salts resulted in an increased content of protein, chlorophyll, carotenoids, nitrates and iron as well as a decreased content of vitamin C and calcium in leaves.

  6. Substantiation of Optimum Stoker Number in Potassium Production by Game Method

    Directory of Open Access Journals (Sweden)

    B. A. Bogatov

    2005-01-01

    Full Text Available Dump formation process of hard halite waste in potassium production has been analyzed in the paper. The paper shows high cost of a salt dump formation and an actuality to substantiate number of ОШ-1900-110/150 stokers that are operating simultaneously. A game theory method has been used to substantiate a solution of the problem.

  7. A regenerable potassium and phosphate sorbent system to enhance dialysis efficacy and device portability: an in vitro study.

    Science.gov (United States)

    Wester, Maarten; Simonis, Frank; Gerritsen, Karin G; Boer, Walther H; Wodzig, Will K; Kooman, Jeroen P; Joles, Jaap A

    2013-09-01

    Continuous dialysis could provide benefit by constant removal of potassium and phosphate. This study investigates the suitability of specific potassium and phosphate sorbents for incorporation in an extracorporeal device by capacity and regenerability testing. Capacity testing was performed in uraemic plasma. Regenerability was tested for potassium sorbents, with adsorption based on cationic exchange for sodium, with 0.1 M and 1.0 M NaCl. To regenerate phosphate sorbents, with adsorption based on anionic exchange, 0.1 M and 1.0 M NaHCO3 and NaOH were used. Subsequently, sodium polystyrene divinylbenzene sulphonate (RES-A) and iron oxide hydroxide (FeOOH) beads were incorporated in a cartridge for testing in bovine blood using a recirculating blood circuit and a dialysis circuit separated by a high-flux dialyzer (dynamic setup). Preloading was tested to assess whether this could limit calcium and magnesium adsorption. In the batch-binding assays, zirconium phosphate most potently adsorbed potassium (0.44 ± 0.05 mmol/g) and RES-A was the best regenerable potassium sorbent (92.9 ± 5.7% with 0.1 M NaCl). Zirconium oxide hydroxide (ZIR-hydr) most potently adsorbed phosphate (0.23 ± 0.05 mmol/g) and the polymeric amine sevelamer carbonate was the best regenerable sorbent (85.7 ± 5.2% with 0.1 M NaHCO3). In the dynamic setup, a potassium adsorption of 10.72 ± 2.06 mmol in 3 h was achieved using 111 g of RES-A and a phosphate adsorption of 4.73 ± 0.53 mmol in 3 h using 55 g of FeOOH. Calcium and magnesium preloading was shown to reduce the net adsorption in 3 h from 3.57 ± 0.91 to -0.29 ± 1.85 and 1.02 ± 0.05 to -0.31 ± 0.18 mmol, respectively. RES-A and FeOOH are suitable, regenerizable sorbents for potassium and phosphate removal in dialysate regeneration. Use of zirconium carbonate and ZIR-hydr may further increase phosphate adsorption, but may compromise sorbent regenerability. Use of polymeric amines for phosphate adsorption may enhance sorbent

  8. Evaluation of robustness in the validation of total organic carbon (TOC) methodology

    International Nuclear Information System (INIS)

    Benedetti, Stella; Monteiro, Elisiane G.; Almeida, Erika V.; Oliveira, Ideli M.; Cerqueira Filho, Ademar C.; Mengatti, Jair; Fukumori, Neuza T.O.; Matsuda, Margareth M.N.

    2009-01-01

    Water is used in many steps of production and quality control as raw material for reagent preparation or dilution of solutions and for cleaning apparatus and room areas in the pharmaceutical industry, including radiopharmaceutical plants. Regulatory requirements establish specifications of purified water for different purposes. The quality of water is essential to guarantee the safe utilization of radiopharmaceuticals. A variety of methods and systems can be used to produce purified water and water for injection and all of them must fulfill the requirements for their specific use, which include TOC (total organic carbon) analysis, an indirect measurement of organic molecules present in water. The principle of TOC method is the oxidation of organic molecules to carbon dioxide, related to the carbon concentration. The aim of this study was to evaluate the parameters of robustness in TOC method in water used in the production and quality control procedures in the Radiopharmacy Directory (DIRF), according to Resolution 899 from ANVISA (National Sanitary Agency). Purified water were obtained from Milli-RX45 system. TOC standard solutions in the range of 100-1000 ppb were prepared with potassium hydrogen phthalate anhydride, transferred to vials and sequentially analyzed by a catalytic photo-oxidation reaction with a TOC model Vwp equipment from Shimadzu Corporation (Japan). The evaluated parameters were: oxidizing volume from 0.5 to 2.5 mL, acidifying volume from 1 to 5%, integration time for TC (total carbon) and IC (inorganic carbon) curves from 2 to 10 minutes. (author)

  9. Potassium recycling pathways in the human cochlea.

    Science.gov (United States)

    Weber, P C; Cunningham, C D; Schulte, B A

    2001-07-01

    Potential pathways for recycling potassium (K+) used in the maintenance of inner ear electrochemical gradients have been elucidated in animal models. However, little is known about K+ transport in the human cochlea. This study was designed to characterize putative K+ recycling pathways in the human ear and to determine whether observations from animal models can be extrapolated to humans. A prospective laboratory study using an immunohistochemical approach to analyze the distribution of key ion transport mediators in the human cochlea. Human temporal bones were fixed in situ within 1 to 6 hours of death and subsequently harvested at autopsy. Decalcification was accomplished with the aid of microwaving. Immunohistochemical staining was then performed to define the presence and cell type-specific distribution of Na,K-ATPase, sodium-potassium-chloride cotransporter (NKCC), and carbonic anhydrase (CA) in the inner ear. Staining patterns visualized in the human cochlea closely paralleled those seen in other species. Anti-Na,K-ATPase stained strongly the basolateral plasma membrane of strial marginal cells and nerve endings underlying hair cells. This antibody also localized Na,K-ATPase to type II, type IV, and type V fibrocytes in the spiral ligament and in limbal fibrocytes. NKCC was present in the basolateral membrane of strial marginal cells as well as in type II, type V, and limbal fibrocytes. Immunoreactive carbonic anhydrase was present in type I and type III fibrocytes and in epithelial cells lining Reissner's membrane and the spiral prominence. The distribution of several major ion transport proteins in the human cochlea is similar but not identical to that described in various rodent models. These results support the presence of a complex system for recycling and regulating K+ homeostasis in the human cochlea, similar to that described in other mammalian species.

  10. Extraction process of U from its ores using solutions of alkaline earth carbonates and bicarbonates in presence of carbon dioxide

    International Nuclear Information System (INIS)

    Floreancig, Antoine; Schuffenecker, Robert.

    1976-01-01

    A process is described for extracting uranium from its ores, either directly in the ore deposit or after such ore bodies have been taken from the ground, comprising an oxidation-leaching stage followed by a recovery stage. The characteristic of this process is that in the leaching process, carbonate and bicarbonate solutions of an alkaline-earth metal are used under a pressure of carbon dioxide between zero and 60 bars and at a temperature of zero to 100 0 C [fr

  11. Potassium permanganate cleansing is an effective sanitary method for the reduction of bacterial bioload on raw Coriandrum sativum.

    Science.gov (United States)

    Subramanya, Supram Hosuru; Pai, Vasudha; Bairy, Indira; Nayak, Niranjan; Gokhale, Shishir; Sathian, Brijesh

    2018-02-13

    Raw vegetables including flowers, leaves, stems, and roots are important carriers of food borne pathogens. We evaluated the bacteriological contamination of unwashed coriander leaves, and effectiveness of cleansing with 0.1% potassium permanganate solution as decontamination method. Significant bacterial contamination including pathogens like Salmonella species and Aeromonas species were isolated from unwashed coriander leaves. Decontamination with 0.1% potassium permanganate was found to be more effective than three steps wash with sterile water.

  12. 21 CFR 582.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  13. Hormones of thyroid gland in sera of rats treated with different dose of concentrated potassium iodine solutions

    Directory of Open Access Journals (Sweden)

    Marković Ljiljana

    2010-01-01

    Full Text Available Introduction Potassium iodine (KI is used as a drug therapy for treating numerous diseases such as small-vessel vasculitis, erythema nodosum, vasculitis nodularis, Sweet's syndrome, tuberculosis and granulomatosis, and for iodized salt. At the same time, KI can be harmful. Iodine intake may increase the frequency of thyroiditis in humans, and may induce the occurrence of experimental thyroiditis (ET in animals. Investigations on an experimental model for the examination of thyroiditis in Wistar rats have clearly showed morphological changes in the rat thyroid evoked by KI administration. Objective The purpose of this study was to compare the effects of low and high doses of KI on the thyroid gland of Wistar rats and determine the effect on hormone status (T4, T3 and TSH in this rat strain. Methods Two groups of rats from the Wistar strain were treated with a low iodine dose (225 μg/g BW and with a high iodine dose (675 μg/g BW of KI solutions. Untreated nonimmunized animals served as controls. The solution was administrated daily intraperitoneally during the period of 26 consecutive days. Results Monitoring hormone status (TSH, T3 and T4 and morphological changes it was found that therapeutic doses of KI applied in treatment induced the occurrence of experimental thyroiditis (chronic destructive Hashimoto's thyroiditis in humans and cell necrosis in animals not carrying a genetic susceptibility. Significant inflammatory changes were observed in rats treated with a high iodine dose. Conclusion The early iodine induced cell necrosis and inflammation in the nonimmunized animals without genetic susceptibility is a new experimental model of thyroiditis. .

  14. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Vargas Diana P.

    2017-12-01

    Full Text Available The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribution, surface area between 516 and 1685 m2 g−1 and pore volumes between 0.24 and 0.58 cm3 g−1 were obtained. Phenol adsorption capacity of the activated carbon materials increased with increasing BET surface area and pore volume, and is favored by their surface functional groups that act as electron donors. Phenol adsorption capacities are in ranged between 73.5 and 389.4 mg · g−1.

  15. 21 CFR 582.5622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  16. Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Huei-Yu [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Hsieh, Chien-Kuo [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Tsai, Ming-Chi; Wei, Yu-Hsuan; Yeh, Tsung-Kuang [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Tsai, Chuen-Horng, E-mail: tsai@aec.gov.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2015-06-01

    In this study, platinum nanoparticle/carbon nanotube (Pt NP/CNT) and platinum–ruthenium nanoparticle (Pt–Ru NP/CNT) hybrid nanocatalysts were prepared by the pulse-electrodeposition method in different aqueous solutions containing citric acid (CA) or sulfuric acid (SA). The electrocatalytic properties of the Pt NP/CNT and Pt–Ru NP/CNT electrodes prepared using different aqueous solutions were investigated for methanol oxidation. The results show that the electrochemical mass activities of these hybrid nanocatalysts prepared in the CA aqueous solution were increased by factors of 1.46 and 2.77 for Pt NPs and Pt–Ru NPs, respectively, compared with those prepared in SA aqueous solutions using the same procedure. These increased mass activities are attributed to the CA playing dual roles as both a stabilizing agent and a particle size reducing agent in the aqueous solutions. The approach developed in this work enables further reductions in the particle sizes of noble-metal nanocatalysts. - Highlights: • Pulse-electrodeposition of Pt or Pt–Ru nanoparticles on carbon nanotubes • Carbon nanotubes used as a catalyst-supporting material • Citric acid used as reducing agent in the aqueous electrodeposition solutions • Electrochemical activity for methanol oxidation improved by a factor of 1.46 to 2.77.

  17. Carbon nanotube-templated assembly of regioregular poly(3-alkylthiophene) in solution

    Science.gov (United States)

    Zhu, Jiahua; Stevens, Eric; He, Youjun; Hong, Kunlun; Ivanov, Ilia

    2016-09-01

    Control of structural heterogeneity by rationally encoding of the molecular assemblies is a key enabling design of hierarchical, multifunctional materials of the future. Here we report the strategies to gain such control using solution- based assembly to construct a hybrid nano-assembly and a network hybrid structure of regioregular poly(3- alkylthiophene) - carbon nanotube (P3AT-CNT). The opto-electronic performance of conjugated polymer (P3AT) is defined by the structure of the aggregate in solution and in the solid film. Control of P3AT aggregation would allow formation of broad range of morphologies with very distinct electro-optical. We utilize interactive templating to confine the assembly behavior of conjugated polymers, replacing poorly controlled solution processing approach. Perfect crystalline surface of the single-walled and multi-walled carbon nanotube (SWCNT/MWCNT) acts as a template, seeding P3AT aggregation of the surface of the nanotube. The seed continues directional growth through pi-pi stacking leading to the formation of to well-defined P3AT-CNT morphologies, including comb-like nano-assemblies, super- structures and gel networks. Interconnected, highly-branched network structure of P3AT-CNT hybrids is of particular interest to enable efficient, long-range, balanced charge carrier transport. The structure and opto-electionic function of the intermediate assemblies and networks of P3AT/CNT hybrids are characterized by transmission election microscopy and UV-vis absorption.

  18. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  19. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many

  20. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  1. Potassium distribution in sugar cane

    International Nuclear Information System (INIS)

    Medina, N.H.

    2014-01-01

    In this work the distribution of potassium in sugarcane has been studied during its growth in two different conditions. In the first one the sugarcane soil was prepared with natural fertilizers, using sugarcane bagasse and, in another plantation the soil was prepared with commercial fertilizer NPK with a proportion of 10-10-10. For the measurement of potassium concentration in each part of the plant, gamma ray spectrometry techniques have been used to measure gamma-rays emitted from the radioisotope 40 K present in the sugarcane samples. The concentration of potassium in roots, stems and leaves were measured periodically. The results for sugarcane cultivated in soil with natural fertilizer show a higher concentration of potassium at the beginning of plant development and over time there is an oscillatory behavior in this concentration in each part of the plant, reaching a lower concentration in the adult plant. The results for the plant grown in soil with NPK fertilizer, indicate that the potassium concentration is higher in the stem at the beginning of cultivation and remained practically constant over time in various parts of the plant, with higher values in the leaves and stem than at the root. On the other hand, the results obtained using fertilizer NPK shows a lower potassium concentration, since the fertilizer provoked a much higher growth rate. (author)

  2. Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.

    Science.gov (United States)

    Pendleton, Phillip; Wu, Sophie Hua

    2003-10-15

    This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.

  3. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    Science.gov (United States)

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  4. Influence of electro-activated solutions of weak organic acid salts on microbial quality and overall appearance of blueberries during storage.

    Science.gov (United States)

    Liato, Viacheslav; Hammami, Riadh; Aïder, Mohammed

    2017-06-01

    The aim of this work was to study the potential of diluted electro-activated solutions of weak organic acid salts (potassium acetate, potassium citrate and calcium lactate) to extend the shelf life of blueberries during post-harvest storage. The sanitizing capacity of these solutions was studied against pathogenic bacteria Listeria monocytogenes and E. coli O157:H7 as well as phytopathogenic fungi A. alternata, F. oxysporum and B. cinerea. The results showed that a 5-min treatment of inoculated blueberries with electro-activated solutions resulted in a 4 log CFU/g reduction in Listeria monocytogenes for all solutions. For E. coli O157:H7, the electro-activated potassium acetate and potassium citrate solutions achieved a decrease of 3.5 log CFU/g after 5 min of berry washing. The most important fungus reduction was found when blueberries were washed with an electro-activated solution of potassium acetate and a NaOCl solution. After 5 min of blueberry washing with an electro-activated potassium acetate solution, a very high reduction effect was observed for A. alternata, F. oxysporum and B. cinerea, which showed survival levels of only 2.2 ± 0.16, 0.34 ± 0.15 and 0.21 ± 0.16 log CFU/g, respectively. Regarding the effect of the washing on the organoleptic quality of blueberries, the obtained results showed no negative effect on the product color or textural profile. Finally, this work suggests that washing with electro-activated solutions of weak organic acid salts can be used to enhance the shelf-life of blueberries during post-harvest storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 21 CFR 172.160 - Potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing...

  6. Homogeneous catalysis of deuterium transfer by potassium hydroxide and potassium methoxide D2-H2O and D2-CH3OH exchange

    International Nuclear Information System (INIS)

    Strathdee, G.G.; Garner, D.M.; Given, R.M.

    1977-01-01

    The kinetics and mechanism of exchange of deuterium between D 2 and water and between D 2 and methanol, catalyzed respectively by concentrated potassium hydroxide and potassium methoxide, has been studied between 348 and 398 K. In the D 2 -KOH-H 2 O case, the transfer of deuterium was found to be controlled by the rate of activation of the D 2 molecule by OH - . Rapid exchange of D + with the aqueous solution followed. From the D 2 -KOCH 3 -CH 3 OH studies, it was concluded that deuterium exchange depended upon the rates of both D 2 activation by methoxide and interaction of the solvent with the transition, or encounter, complex. The dependence of second-order rate constants on solvent activity for both systems was determined by normalization of the exchange reaction rates to unit reagent activity. Analysis of the kinetic isotope effects for each system suggested that their increase with base concentration or temperature was due to solvation effects. (author)

  7. Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri.

    Science.gov (United States)

    Tabei, Yosuke; Era, Mariko; Ogawa, Akane; Morita, Hiroshi

    2012-06-01

    In spite of its central importance in research efforts, the relationship between seawater compounds and bacterial luminescence has not previously been investigated in detail. Thus, in this study, we investigated the effect of cations (Na(+) , K(+) , NH(4) (+) , Mg(2+) , and Ca(2+) ) and anions (Cl(-) , HCO(3) (-) , CO(3) (2-) , and NO(3) (-) ) on the induction of both inorganic (sulfate, sulfite, and thiosulfate) and organic (L-cysteine and L-cystine) sulfur-dependent luminescence in Vibrio fischeri. We found that HCO(3) (-) (bicarbonate) and CO(3) (2-) (carbonate), in the form of various compounds, had a stimulatory effect on sulfur-dependent luminescence. The luminescence induced by bicarbonate was further promoted by the addition of magnesium. Potassium also increased sulfur-dependent luminescence when sulfate or thiosulfate was supplied as the sole sulfur source, but not when sulfite, L-cysteine, or L-cystine was supplied. The positive effect of potassium was accelerated by the addition of magnesium and/or calcium. Furthermore, the additional supply of magnesium improved the induction of sulfite- or L-cysteine-dependent luminescence, but not the l-cystine-dependent type. These results suggest that sulfur-dependent luminescence of V. fischeri under nutrient-starved conditions is mainly controlled by bicarbonate, carbonate, and potassium. In addition, our results indicate that an additional supply of magnesium is effective for increasing V. fischeri luminescence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Contribution to the study of the Szilard-Chalmers effect in potassium ferro-cyanide; Contribution a l'etude de l'effet Szilard-Chalmers dans le ferrocyanure de potassium

    Energy Technology Data Exchange (ETDEWEB)

    Meriadec, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-01-01

    With a view to studying the Szilard-Chalmers effect in potassium ferrocyanide, a chemical separation method has been developed for the different ions formed by recoil: Fe{sup 2+}, Fe{sup 3+} and the complex forms of iron. A measurement method has been developed also for analyzing separately the isotopes {sup 55}Fe and {sup 59}Fe, and determining the relative amounts of these two isotopes in the different chemical states. The experimental results show that the activity of the two isotopes is distributed differently between the complex forms of iron, the ferrous ions and the ferric ions. This difference is of the order of 40 per cent in the ferrous solution and of 2 to 5 per cent in the ferric retention and ferric solution. (author) [French] En vue d'etudier l'effet Szilard-Chalmers dans le ferrocyanure de potassium, on a mis au point une methode de separation chimique permettant d'obtenir les differents ions formes par recul: Fe{sup 2+}, Fe{sup 3+} et les formes complexes du fer. Une methode de mesure a ete egalement mise au point pour analyser separement les isotopes {sup 55}Fe et {sup 59}Fe et determiner les proportions relatives de ces 2 isotopes dans les differents etats chimiques. Les resultats experimentaux montrent que l'activite des deux isotopes est repartie differemment entre les formes complexes du fer, les ions ferreux et les ions ferriques. Cette difference est de l'ordre de 40 pour cent dans la solution ferreuse et de 2 a 5 pour cent dans la retention et la solution ferrique. (auteur)

  9. Proapoptotic Role of Potassium Ions in Liver Cells

    Directory of Open Access Journals (Sweden)

    Zhenglin Xia

    2016-01-01

    Full Text Available Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1.

  10. Experiments and model for the viscosity of carbonated 2-amino-2-methyl-1-propanol and piperazine aqueous solution

    International Nuclear Information System (INIS)

    Fu, Dong; Li, Zhixin; Liu, Feng

    2014-01-01

    Highlights: • The viscosities of the carbonated AMP-PZ aqueous solutions were measured. • The experiments were modeled satisfactorily by using the Weiland equation. • The influence of the mass fractions of amines on the viscosity was illustrated. • The temperature and CO 2 loading dependences of the viscosity were demonstrated. -- Abstract: The viscosities (η) of carbonated 2-amino-2-methyl-1-propanol (AMP)-piperazine (PZ) aqueous solutions were measured by using a NDJ-1 rotational viscometer, with temperatures ranging from 298.15 K to 323.15 K. The total mass fraction of amines ranged from 0.3 to 0.4. The mass fraction of PZ ranged from 0.05 to 0.10. The Weiland equation was used to correlate the viscosities of both CO 2 -unloaded and CO 2 -loaded aqueous solutions and the calculated results agreed well with the experiments. The effects of temperature, mass fractions of amines and CO 2 loading (α) on the viscosities of carbonated aqueous solutions were demonstrated on the basis of experiments and calculations

  11. Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes.

    Science.gov (United States)

    Agarkova, Irina; Dunigan, David; Gurnon, James; Greiner, Timo; Barres, Julia; Thiel, Gerhard; Van Etten, James L

    2008-12-01

    Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.

  12. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  13. Electrocatalytic reduction of dioxygen by cobalt porphyrin-modified glassy carbon electrode with single-walled carbon nanotubes and nafion in aqueous solutions

    International Nuclear Information System (INIS)

    Choi, Ayoung; Jeong, Haesang; Kim, Songmi; Jo, Suhee; Jeon, Seungwon

    2008-01-01

    Cobalt porphyrin (CoP)-modified glassy carbon electrode (GCE) with single-walled carbon nanotubes (SWNTs) and Nafion demonstrated a higher electrocatalytic activity for the reduction of dioxygen in 0.1 M H 2 SO 4 solution. Cyclic and hydrodynamic voltammetry at the CoP-SWNTs/GCE-modified electrodes in O 2 -saturated aqueous solutions was used to study the electrocatalytic pathway. Compared with the CoP/GCE-modified electrodes, the reduction potential of dioxygen at the CoP-SWNTs/GCE-modified electrodes was shifted to the positive direction and the limiting current was greatly increased. Especially, the Co(TMPP)-SWNTs/GCE-modified electrode was catalyzed effectively by the 4e - reduction of dioxygen to water, because hydrodynamic voltammetry revealed the transference of approximately four electrons for dioxygen reduction and the minimal generation of hydrogen peroxide in the process of dioxygen reduction

  14. Solution mining process

    International Nuclear Information System (INIS)

    Showalter, W.E.

    1984-01-01

    A solution mining process which may be used for uranium, thorium, vanadium, copper, nickel, molybdenum, rhenium, and selenium is claimed. During a first injection-and-production phase of between 6 months and 5 years, a leaching solution is injected through at least one well into the formation to solubilize the mineral values and form a pregnant liquor. This liquor is recovered through another well. The leaching solution contains sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, an alkali metal carbonate, an alkali metal bicarbonate, ammonium carbonate or ammonium bicarbonate. Subsequently during a first production-only phase of between about 2 weeks and one year, injection of the leaching solution is suspended but pregnant liquor is still recovered. This stage is followed by a second injection-and-production phase of between 6 months and 5 years and a second production-only phase. The mineral values are separated from the pregnant liquor to form a barren liquor. The leaching agent is introduced into this liquor, and the solution is recycled. In a second claim for the solution mining of uranium, dilute carbonic acid is used as the leaching solution. The solution has a pH less than 7 and a bicarbonate ion concentration between about 380 ppm and 1000 ppm. The injection-and-production phase lasts between one and two years and the production only phase takes between one and four months. Carbon dioxide is introduced into the barren liquor to form a dilute carbonic acid solution and the solution is recycled

  15. Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties

    International Nuclear Information System (INIS)

    Wen, Rui-Tao; Niklasson, Gunnar A.; Granqvist, Claes G.

    2014-01-01

    Porous nickel oxide films were deposited onto unheated indium tin oxide coated glass substrates by reactive dc magnetron sputtering. These films had a cubic NiO structure. Electrochromic properties were evaluated in 1 M potassium hydroxide (KOH) and in 1 M lithium perchlorate in propylene carbonate (Li–PC). Large optical modulation was obtained for ∼ 500-nm-thick films both in KOH and in Li–PC (∼ 70% and ∼ 50% at 550 nm, respectively). In KOH, tensile and compressive stresses, due to the expansion and contraction of the lattice, were found for films in their bleached and colored state, respectively. In Li–PC, compressive stress was seen both in colored and bleached films. Durability tests with voltage sweeps between − 0.5 and 0.65 V vs Ag/AgCl in KOH showed good durability for 10,000 cycles, whereas voltage sweeps between 2.0 and 4.7 V vs Li/Li + in Li–PC yielded significant degradation after 1000 cycles. - Highlights: • Ni oxide films were studied in KOH and in LiClO 4 + propylene carbonate (Li–PC). • Good electrochromism was found in both electrolytes. • In KOH, tensile/compressive stresses were seen in bleached/colored films. • In Li–PC, compressive stress was seen both in colored and bleached films

  16. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  17. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  18. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  19. Potassium-38, a 7.6 minute half-lived radionuclide for assessment of myocardial function

    International Nuclear Information System (INIS)

    Chandra, R.; McDonald, J.M.; Reiman, R.E.; Tilbury, R.S.

    1979-01-01

    Potassium-38 in isotonic saline solution has been used to study the effect of cardio-active drugs, dipyridamole, propanolol and digoxin on the potassium uptake in the myocardium of dogs. The 38 KCl without added carrier was injected intravenously at about 0, 1, 2, and 3 hours after administration of the drug and the dog was scanned with a rectilinear scanner from 10 to 25 minutes after injection. THe counts/sec/mCi corrected for decay were computed for a fixed number of scan elements and compared with controls. Dipyridamole produced a 50 to 80% increase in potassium uptake at 1 hour which returned to normal at 3 hours, Digoxin produced a 10 to 30% increase, and propanolol produced a 25% decrease at 1 to 2 hours. Results are compared with studies of Hamilton using Tl-201. Our results demonstrate that measurements of K-38 uptake can be made at hourly intervals to study the effects of cardio-active drugs

  20. Race, Serum Potassium, and Associations With ESRD and Mortality.

    Science.gov (United States)

    Chen, Yan; Sang, Yingying; Ballew, Shoshana H; Tin, Adrienne; Chang, Alex R; Matsushita, Kunihiro; Coresh, Josef; Kalantar-Zadeh, Kamyar; Molnar, Miklos Z; Grams, Morgan E

    2017-08-01

    Recent studies suggest that potassium levels may differ by race. The basis for these differences and whether associations between potassium levels and adverse outcomes differ by race are unknown. Observational study. Associations between race and potassium level and the interaction of race and potassium level with outcomes were investigated in the Racial and Cardiovascular Risk Anomalies in Chronic Kidney Disease (RCAV) Study, a cohort of US veterans (N=2,662,462). Associations between African ancestry and potassium level were investigated in African Americans in the Atherosclerosis Risk in Communities (ARIC) Study (N=3,450). Race (African American vs non-African American and percent African ancestry) for cross-sectional analysis; serum potassium level for longitudinal analysis. Potassium level for cross-sectional analysis; mortality and end-stage renal disease for longitudinal analysis. The RCAV cohort was 18% African American (N=470,985). Potassium levels on average were 0.162mmol/L lower in African Americans compared with non-African Americans, with differences persisting after adjustment for demographics, comorbid conditions, and potassium-altering medication use. In the ARIC Study, higher African ancestry was related to lower potassium levels (-0.027mmol/L per each 10% African ancestry). In both race groups, higher and lower potassium levels were associated with mortality. Compared to potassium level of 4.2mmol/L, mortality risk associated with lower potassium levels was lower in African Americans versus non-African Americans, whereas mortality risk associated with higher levels was slightly greater. Risk relationships between potassium and end-stage renal disease were weaker, with no difference by race. No data for potassium intake. African Americans had slightly lower serum potassium levels than non-African Americans. Consistent associations between potassium levels and percent African ancestry may suggest a genetic component to these differences. Higher and

  1. Role of lauric acid-potassium hydroxide concentration on bacterial contamination of spray washed broiler carcasses

    Science.gov (United States)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed in a spray cabinet with various concentrations of lauric acid (LA)-potassium hydroxide (KOH) solutions. Fifty eviscerated carcasses and 5 ceca were obtained from the processing line of...

  2. A solution phase fabrication of magnetic nanoparticles encapsulated in carbon

    International Nuclear Information System (INIS)

    Wei Xianwen; Zhu Guoxing; Xia Chuanjun; Ye Yin

    2006-01-01

    To avoid high energy consumption, intensive use of hardware and high cost in the manufacture of nanoparticles encapsulated in carbon, a simple, efficient and economical solution-phase method for the fabrication of FeNi at C nanostructures has been explored. The reaction to the magnetic metal at C structures here is conducted at a relatively low temperature (160 deg. C) and this strategy can be transferred to prepare other transition metal at C core-shell nanostructures. The saturation magnetization of metal in metal at C nanostructures is similar to those of the corresponding buck metals. Magnetic metal at C nanostructures with magnetic metal nanoparticles inside and a functionalized carbon surface outside may not only provide the opportunity to tailor the magnetic properties for magnetic storage devices and therapeutics but also make possible the loading of other functional molecules (e.g. enzymes, antigens) for clinic diagnostics, molecular biology, bioengineering, and catalysis

  3. Dissolution of carbon dioxide in aqueous electrolyte solutions, in the context of geological storage: A thermodynamic approach

    International Nuclear Information System (INIS)

    Liborio, Barbara

    2017-01-01

    This thesis studies the enthalpy of solution of carbon dioxide in electrolyte aqueous solutions. To develop theoretical models describing the systems (CO 2 -water-salt) under the geological storage conditions of carbon dioxide, it is necessary to have experimental data, namely solubility and enthalpy. In this study, a customized flow mixing unit was adapted to a SETARAM C-80 calorimeter to measure the enthalpy of CO 2 solution in aqueous electrolyte solutions (NaCl, CaCl 2 and Na 2 SO 4 ) at the ionic strengths between 2 and 6 and at temperatures between 323.1 K and 372.9 K and pressures ranging from 2 to 16 MPa. Data from the literature were used to adjust the thermodynamic phase equilibrium model in the Y-φ approach. The thermodynamic model reproduces the experimental enthalpies to plus or minus 10%. The calculation of the enthalpy in the rigorous model is strongly dependent on the data of the literature. An experimental device has been set up for the determination of the molar volume of CO 2 at infinite dilution, which is necessary for thermodynamic modeling. The carbon dioxide to be stored may contain impurities such as annexes (O 2 , N 2 , SO x , H 2 S, N y O x , H 2 , CO and Ar). Under the objective of studying the influence of these impurities, an experimental apparatus has been set up for the measurement of enthalpies of solution of SO 2 in water and aqueous solutions of NaCl and the first results are promising. (author)

  4. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    Science.gov (United States)

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  5. Electrochemical Performance of Low-Carbon Steel in Alkaline Model Solutions Containing Hybrid Aggregates

    NARCIS (Netherlands)

    Koleva, D.A.; Hu, J.; De Wit, J.H.W.; Boshkov, N.; Radeva, T.; Milkova, V.; Van Breugel, K.

    2010-01-01

    This work reports on the electrochemical performance of low-carbon steel electrodes in model alkaline solutions in the presence of 4.9.10-4 g/l hybrid aggregates i.e. cement extract, containing PDADMAC (poly (diallyl, dimethyl ammonium chloride) / PAA (Poly (acrylic acid)/ PDADMAC over a CaO core.

  6. Leaching of potassium in a lysimeter experiment

    International Nuclear Information System (INIS)

    Gerzabek, M.H.

    1996-11-01

    Leaching of potassium was studied in the lysimeter plant in Seibersdorf/Austria (Pannonian climate). Averaged over three years, gravitational water amounted to 15.7% of the sum of precipitation (mean 485 mm) and irrigation (mean 138 mm). Differences between the four soils with respect to drainage were explained by the specific percentage of the soil skeleton. The average yearly potassium leaching ranged from 3.64 kg K/ha·yr (Dystric-Cambisol) to 22.7 kg K/ha·yr (drained Gleysol). Correlation between gravitational water volume and potassium leaching were only significant for one out of four soil types. No correlation was observed between extractable potassium in the soil profiles and potassium leaching. (author)

  7. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    International Nuclear Information System (INIS)

    Celik, Z. Ceylan; Can, B.Z.; Kocakerim, M. Muhtar

    2008-01-01

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid

  8. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Z. Ceylan [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)], E-mail: zcelik@atauni.edu.tr; Can, B.Z. [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, Atatuerk University, Faculty of Engineering, 25240 Erzurum (Turkey)

    2008-03-21

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid.

  9. Absorption of Carbon Dioxide in Aqueous Solutions of N-methyldiethanolamine Mixtures

    Science.gov (United States)

    Ma’mun, S.; Svendsen, H. F.

    2018-05-01

    Carbon dioxide (CO2) is one of the greenhouse gases (GHG) that has contributed to the global warming problem. Carbon dioxide is produced in large quantity from coal-fired power plants, iron and steel production, cement production, chemical and petrochemical industries, natural gas purification, and transportation. Some efforts to reduce the CO2 emissions to the atmosphere are then required. Amine-based absorption may be an option for post-combustion capture. The objective of this study is to measure the effect of promoter addition as well as MDEA concentration for the CO2 absorption into the aqueous solutions of MDEA to improve its performances, i.e. increasing the absorption rate and the absorption capacity. Absorption of CO2 in aqueous solutions of MDEA mixtures were measured at 40 °C in a bubble tank reactor. The systems tested were the mixtures of 30 wt% MDEA with 5 and 10 wt% BEA and the mixtures of 40 and 50 wt% MDEA with 6 wt% AEEA. It was found that for MDEA-BEA-H2O mixtures, the higher the promoter concentraation the higher the CO2 absorption rate, while for the MDEA-AEEA-H2O mixtures, the higher the MDEA concentration the lower the CO2 absorption rate.

  10. CO2 Capture from Flue Gas using Amino Acid Salt Solutions

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai; Stenby, Erling Halfdan; Thomsen, Kaj

    2009-01-01

    difficult. Amino acid salt solutions have emerged as an alternative to the alkanolamine solutions. A number of advantages make amino acid salt solutions attractive solvents for CO2 capture from flue gas. In the present study CO2 absorption in aqueous solutions of 0.5 M potassium glycinate and 0.5 M...

  11. Removal of phenol from radioactive waste solutions using activated granular Carbon and activated vermiculite

    International Nuclear Information System (INIS)

    Ezz El-Din, M.R.; Atta, E.R.

    2006-01-01

    The efficiency of both activated granular carbon (AGC) and activated vermiculite (AV) in removal of phenol from aqueous waste solutions is of great interest. The aim of the present study is to compare the absorbance capacities of both AGC and AV for the removal of phenol from radioactive waste solutions and to identify the factors affecting the sorption process. The experimental results were in the form of batch sorption measurements for the removal of phenol at ambient temperature (29 ± 1 degree C) and for times up to 40 min and 180 min for AGC and AV, respectively. The results indicated that activated carbon has good efficiency to adsorb phenol. Freundlich equation has been fitted to both AGC and AV for the contaminant removal. The adsorption capacities of both AGC and AV to phenol were 17.4 mg g-1 and 4.5 mg g-1, respectively. The maximum desorption percent of phenol from both loaded AGC and loaded AV were 9 % and 0 %, respectively, and it attained within about 200 min. accordingly, it is recommended that activated carbon is preferred in the applied field for removing phenol from radioactive aqueous wastes

  12. Dietary reference values for potassium

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2016-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) derives dietary reference values (DRVs) for potassium. The Panel decides to set DRVs on the basis of the relationships between potassium intake and blood pressure and stroke...

  13. Ammonium nitrate-potassium nitrate system

    Energy Technology Data Exchange (ETDEWEB)

    Cady, H.H.

    1981-01-01

    A portion of the binary phase diagram for the system ammonium nitrate-potassium nitrate has been determined from -55/sup 0/C to 185/sup 0/C. Results are presented for the ammonium-nitrate-rich end of the system up to 30 wt% potassium nitrate.

  14. Accelerated corrosion of stainless steels with the presence of molten carbonates below 923 K

    International Nuclear Information System (INIS)

    Ota, Ken-ichiro; Toda, Katsuya; Mitsushima, Shigenori; Kamiya, Nobuyuki

    2002-01-01

    The high-temperature corrosion of stainless steels (SUS316L and SUS310S) in the presence of lithium-potassium eutectic carbonate and lithium-sodium eutectic carbonate has been studied by thermogravimetry and the metal consumption method under a carbon dioxide-oxygen atmosphere in the temperature range of 773-1123 K. Although the corrosion of SUS310S obeyed the parabolic rate law for all reaction conditions, the corrosion of SUS316L significantly depended on the reaction conditions. At or above 923 K, the corrosion of SUS316L obeyed the parabolic rate law, even with a carbonate coating. The corrosion rates were accelerated during the initial period of corrosion tests below 923 K, especially around 823 K with a lithium-sodium carbonates coating. The initial accelerated corrosion was a local corrosion, which produced through holes in the metal specimens, and occurred more clearly at higher carbon dioxide partial pressures with the lithium-sodium carbonate coating than with the lithium-potassium carbonate coating. (author)

  15. Mass transfer and thermodynamic modeling of carbon dioxide absorption into MEA aqueous solution

    Directory of Open Access Journals (Sweden)

    Ghaemi Ahad

    2017-09-01

    Full Text Available In this research, thermodynamic and absorption rate of carbon dioxide in monoethanolamine (MEA solution was investigated. A correlation based on both liquid and a gas phase variable for carbon dioxide absorption rate was presented using the π-Buckingham theorem. The correlation was constructed based on dimensionless numbers, including carbon dioxide loading, carbon dioxide partial pressure, film parameter and the ratio of liquid phase film thickness and gas phase film thickness. The film parameter is used to apply the effect of chemical reactions on absorption rate. A thermodynamic model based on the extended-UNIQUAC equations for the activity coefficients coupled with the Virial equation of state for representing the non-ideality of the vapor phase was used to predict the CO2 solubility in the CO2-MEA-H2O system. The average absolute error of the results for the correlation was 6.4%, which indicates the accuracy of the proposed correlation.

  16. Cathodic behaviours of a CrO sub 3 -graphite intercalation compound in non-aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, M.; Miura, T.; Kishi, T. (Keio University, Tokyo (Japan). Faculty of Science)

    1991-08-05

    CrO{sub 3}-graphite intercalation compound (GIC) specimen was prepared by solvent method using acetic acid as a solvent and potassium permanganate as a catalyst, and its cathodic behavior in a lithium cell was studied in non-aqueous solutions (1 mol/dm{sup 3} LiClO{sub 4} in propylene carbonate (PC) or dimethylsulfoxide (DMSO)). Changes in electronic and layered lattice structures induced by cathodic reduction were measured by electron spin resonance method and X-ray diffraction one, respectively. As a result, electrochemical insertion of Li into CrO{sub 3}-GIC proceeded only in DMSO solution where reduction of Cr components was followed by that of graphite units. The amount of discharge electricity for CrO{sub 3}-GIC in DMSO solution was three times as large as that for graphite. Although the effect of non-aqueous solutions on the lithiation reaction was not yet clear fundamentally, it was expected that another electrolyte solutions are probably found out based on this experiments from which Li is inserted into CrO{sub 3}-GIC at higher discharge potentials. 22 refs., 9 figs., 1 tab.

  17. Chemiluminescence behavior of the carbon dots and the reduced state carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Xie, Jianxin [College of Resources and Environment, Yuxi Normal University, Yuxi, Yunnan 653100 (China); Long, Yijuan; Huang, Xiaoxiao; Zhu, Rui; Wang, Xiliang; Liang, Liping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Huang, Yuming, E-mail: ymhuang@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zheng, Huzhi, E-mail: zhenghz@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2014-02-15

    Potassium permanganate (KMnO{sub 4}) can react with two different carbon nanoparticles, i.e., carbon dots (CDs) and reduced state carbon dots (r-CDs), in a strong acid medium to generate chemiluminescence (CL). Furthermore, the different CL intensities and CL behaviors due to the different surface groups on these two kinds of carbon nanoparticles were confirmed. CL spectra, fluorescence spectra, UV–vis absorption spectra, and electron paramagnanetic resonance spectra were applied to investigate the CL mechanism. The main reaction pathways were proposed as follows: for the CL reaction between CDs and KMnO{sub 4}, the excited states of CDs (CDs{sup ⁎}) and Mn(II) (Mn(II){sup ⁎}) emerged as KMnO{sub 4} could inject holes into CDs, then, the CDs{sup ⁎} and Mn(II){sup ⁎} acted as luminophors to yield CL; in the r-CDs-KMnO{sub 4} system, r-CDs were oxidized by KMnO{sub 4} directly, and CDs{sup ⁎} and Mn(II){sup ⁎} were produced, at the same time, CL occurred. What is more interesting is that the CL intensity of the r-CD system is stronger than that of the CD system, which confirms that functional groups have strong effect on the CL behavior. It inspired us that new carbon nanoparticles with excellent luminous performance can be designed by tuning their surface groups. -- Highlights: • Carbon dots (CDs) and reduced state carbon dots (r-CDs) can react with potassium permanganate (KMnO{sub 4}) in a strong acid to generate chemiluminescence (CL). • With different surface groups, the CL intensity of r-CDs-KMnO{sub 4} system is different from that of CDs-KMnO{sub 4} system. • The CL mechanisms of the two systems were investigated.

  18. Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob.

    Science.gov (United States)

    Ma, Lijuan; Cui, Youzhi; Cai, Rui; Liu, Xueqiang; Zhang, Cuiying; Xiao, Dongguang

    2015-03-01

    Alkaline potassium permanganate solution (APP) was applied to the pretreatment of corncob with a simple and effective optimization of APP concentration, reaction time, temperature and solid to liquid ratio (SLR). The optimized pretreatment conditions were at 2% (w/v) potassium permanganate with SLR of 1:10 treating for 6h at 50°C. This simple one-step treatment resulted in significant 94.56% of the cellulose and 81.47% of the hemicellulose recoveries and 46.79% of the lignin removal of corncob. The reducing sugar in the hydrolysate from APP-pretreated corncob was 8.39g/L after 12h enzymatic hydrolysis, which was 1.44 and 1.29 folds higher than those from raw and acid pretreated corncobs. Physical characteristics, crystallinity and structure of the pretreated corncob were analyzed and assessed by SEM, XRD and FTIR. The APP pretreatment process was novel and enhanced enzymatic hydrolysis of lignocellulose by affecting composition and structural features. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A novel preparation of methyl-β-cyclodextrin from dimethyl carbonate and β-cyclodextrin

    DEFF Research Database (Denmark)

    Gan, Yongjiang; Zhang, Yimin; Xiao, Chuanhao

    2011-01-01

    A novel green synthesis process about methyl-β-cyclodextrin has been investigated through the reaction between β-cyclodextrin and dimethyl carbonate by anhydrous potassium carbonate as catalyst in DMF. The influence of experimental factors including the molar ratio of dimethyl carbonate to β-cycl...

  20. Neural synchronization via potassium signaling

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik

    2006-01-01

    Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...

  1. Genetics Home Reference: potassium-aggravated myotonia

    Science.gov (United States)

    ... aggravated by eating potassium-rich foods such as bananas and potatoes. Stiffness occurs in skeletal muscles throughout the body. Potassium-aggravated myotonia ranges in severity from mild episodes ...

  2. Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.M. [College of Materials Science and Engineering, Chongqing University (China); Luo, S.X. [Department of Chemistry, Zunyi Normal College, Zunyi (China); Sun, C. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Wu, Y.H.

    2010-04-15

    In this study, effect of cations, Ca{sup 2+}, Mg{sup 2+}, K{sup +}, and anions, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, NO{sub 3}{sup -} on electrochemical corrosion behavior of carbon steel in simulated soil solution was investigated through potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results indicate that the Ca{sup 2+}and Mg{sup 2+} can decrease the corrosion current density of carbon steel in simulated soil solution, and K{sup +}, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, and NO{sub 3}{sup -} can increase the corrosion density. All the above ions in the simulated soil solution can decrease its resistivity, but they have different effect on the charge transfer resistivity. This finding can be useful in evaluating the corrosivity of certain soil through chemical analysis, and provide data for construction engineers. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste.

    Science.gov (United States)

    Rao, M Madhava; Reddy, D H K Kumar; Venkateswarlu, Padala; Seshaiah, K

    2009-01-01

    Removal of mercury from aqueous solutions using activated carbon prepared from Ceiba pentandra hulls, Phaseolus aureus hulls and Cicer arietinum waste was investigated. The influence of various parameters such as effect of pH, contact time, initial metal ion concentration and adsorbent dose for the removal of mercury was studied using a batch process. The experiments demonstrated that the adsorption process corresponds to the pseudo-second-order-kinetic models and the equilibrium adsorption data fit the Freundlich isotherm model well. The prepared adsorbents ACCPH, ACPAH and ACCAW had removal capacities of 25.88 mg/g, 23.66 mg/g and 22.88 mg/g, respectively, at an initial Hg(II) concentration of 40 mg/L. The order of Hg(II) removal capacities of these three adsorbents was ACCPH>ACPAH>ACCAW. The adsorption behavior of the activated carbon is explained on the basis of its chemical nature. The feasibility of regeneration of spent activated carbon adsorbents for recovery of Hg(II) and reuse of the adsorbent was determined using HCl solution.

  4. Vickers microhardness studies on solution-grown single crystals of potassium boro-succinate

    Science.gov (United States)

    Lakshmipriya, M.; Rajan Babu, D.; Ezhil Vizhi, R.

    2015-02-01

    The semiorganic crystals of potassium boro-succinate (KBS) were grown by slow evaporation method. KBS crystallizes in monoclinic system which was confirmed by powder XRD analysis. Vickers microhardness study has been carried out over a load range of 25-100 g. The Vickers hardness numbers (Hv) of the material increases as the load increases so the material is suitable for device fabrication. The Meyer index 'n' is estimated to be greater than 1.6, the crystal system belongs to the soft material category. The elastic stiffness coefficient, c11, has also been calculated using Wooster's empirical relation from the hardness data. The fracture toughness values 'Kc', determined from measurements of crack lengths, were estimated to be 0.15166 MN/m3/2. The brittleness indices 'Bi' were estimated as 276 m-1/2.

  5. Nuclear magnetic relaxation in picolines solutions in carbon tetrachloride

    International Nuclear Information System (INIS)

    Jurga, J.; Pajak, Z.; Jurga, K.; Jurga, S.

    1973-01-01

    Spin-lattice relaxation times of the ring and CH 3 group have been measured in order to establish the temperature dependence of the longitudinal relaxation times for picolins in carbon tetrachloride solutions. The information concerning the intramolecular contribution to the relaxation times have been obtained. The high resolution NPR spectrometer operating at 25 MHz has been used. The measurements have been performed in the temperature range from -60degC to 80degC. The experimental results are compared to the predictions given by the Nora Hill and Debye models and it has been found that the Nora Hill model fits the experimental data better than the Debye model. (S.B.)

  6. Removal of Methylene Blue from Aqueous Solution by Activated Carbon Prepared from Pea Shells (Pisum sativum

    Directory of Open Access Journals (Sweden)

    Ünal Geçgel

    2013-01-01

    Full Text Available An activated carbon was prepared from pea shells and used for the removal of methylene blue (MB from aqueous solutions. The influence of various factors such as adsorbent concentration, initial dye concentration, temperature, contact time, pH, and surfactant was studied. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. The adsorption isotherm was found to follow the Langmuir model. The monolayer sorption capacity of activated carbon prepared from pea shell for MB was found to be 246.91 mg g−1 at 25 ∘C. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. Kinetic studies showed that the adsorption followed pseudo-second-order kinetic model. Various thermodynamic parameters such as , , and were evaluated. The results in this study indicated that activated carbon prepared from pea shell could be employed as an adsorbent for the removal of MB from aqueous solutions.

  7. Influence of washing time on residual contamination of carcasses sprayed with lauric acid-potassium hydroxide.

    Science.gov (United States)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) (w/v) solution. Forty eviscerated carcasses and 5 ceca were obtained from the processing l...

  8. Synthesis of Analcime Crystals and Simultaneous Potassium Extraction from Natrolite Syenite

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2017-01-01

    Full Text Available Analcime single crystals were successfully synthesized from natrolite syenite powder (K2O 10.89% and 92.6% of potassium was extracted simultaneously by means of soda roasting followed by alkali-hydrothermal method. Effects of NaOH concentration, reaction temperature, and holding period on the analcime formation and potassium extraction were investigated systemically. The results indicated that NaOH concentration plays an important role in determining the chemical composition of zeolites and size distribution; by turning the NaOH concentrations, three different pure zeolites (i.e., the phillipsite-Na, the analcime, and the sodalite were prepared. Besides, a higher temperature could accelerate the dissolution of K+ ions and enhance the crystallinity degree of zeolite. The reactions involved in the analcime synthesis can be summarized as follows: sodium aluminum silicate dissolution → precipitation and dissolution of metastable zeolite-P → analcime nucleation → analcime growth. The extraction ratio of K+ is associated with the types of synthesized zeolites, among which analcime is the most effective to promote potassium leaching out from zeolite lattice position. The optimal condition for analcime crystallization and K+ leaching is found to be as follows: 175°C for 4 h in 0.5 mol/L NaOH solution.

  9. Novel polymeric potassium complex: Its synthesis, structural characterization, photoluminescence and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ceyhan, Goekhan [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Tuemer, Mehmet, E-mail: mtumer@ksu.edu.tr [Chemistry Department, K.Maras Suetcue Imam University, 46100 K.Maras (Turkey); Koese, Muhammet; McKee, Vickie [Chemistry Department, Loughborough University, LE11 3TU Leicestershire (United Kingdom)

    2012-03-15

    In this paper, we obtained a novel poly(vanillinato potassium) complex (PVP) as a single crystal and characterized by analytical and spectroscopic methods. A single crystal of the PVP was obtained from the acetone solution. X-ray structural data show that crystals contain polymeric K{sup +} complex of vanillin. Each potassium ion in the polymeric structure is identical and seven-coordinate, bonded to two methoxy, two phenoxy and three aldehyde oxygen atoms from four vaniline molecules. Two aldehyde oxygen atoms are bridging between potassium ions. It crystallizes in the monoclinic system, space group P2{sub 1}/c, with lattice parameters a=9.6215(10) A, b=17.4139(19) A, c=9.6119(10) A, {beta}=100.457(2) Degree-Sign and Z=4. Thermal properties of the PVP were investigated by TGA, DTA and DSC methods. The electrochemical properties of the complex were studied in different solvents and at various scan rates. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence property in CH{sub 3}CN and n-butanol. - Highlights: Black-Right-Pointing-Pointer Novel polymeric potassium complex was prepared and fully characterized. Black-Right-Pointing-Pointer X-ray crystal structure of complex was reported. Black-Right-Pointing-Pointer Electrochemical properties of compound were investigated. Black-Right-Pointing-Pointer Thermal and DSC measurements of complex were examined.

  10. Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution.

    Science.gov (United States)

    De Boom, Aurore; Aubert, Jean-Emmanuel; Degrez, Marc

    2014-05-01

    Carbonation was applied to a Pb- and Zn-contaminated fraction of municipal solid waste incineration electrofilter fly ashes in order to reduce heavy metal leaching. Carbonation tests were performed in solution, by Na2CO3 addition or CO2 bubbling, and were compared with washing (with water only). The injection of CO2 during the washing did not modify the mineralogy, but the addition of Na2CO3 induced the reaction with anhydrite, forming calcite. Microprobe analyses showed that Pb and Zn contamination was rather diffuse and that the various treatments had no effect on Pb and Zn speciation in the residues. The leaching tests indicated that carbonation using Na2CO3 was successful because it gave a residue that could be considered as non-hazardous material. With CO2 bubbling, Pb and Zn leaching was strongly decreased compared with material washed with water alone, but the amount of chromium extracted became higher than the non-hazardous waste limits for landfilling.

  11. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor

    Science.gov (United States)

    Hao, Zhi-Qiang; Cao, Jing-Pei; Wu, Yan; Zhao, Xiao-Yan; Zhuang, Qi-Qi; Wang, Xing-Yong; Wei, Xian-Yong

    2017-09-01

    Waste sugar solution (WSS), which contains abundant 2-keto-L-gulonic acid, is harmful to the environment if discharged directly. For value-added utilization of the waste resource, a novel process is developed for preparation of porous carbon spheres by hydrothermal carbonization (HTC) of WSS followed by KOH activation. Additionally, the possible preparation mechanism of carbon spheres is proposed. The effects of hydrothermal and activation parameters on the properties of the carbon sphere are also investigated. The carbon sphere is applied to electric double-layer capacitor and its electrochemical performance is studied. These results show that the carbon sphere obtained by HTC at 180 °C for 12 h with the WSS/deionized water volume ratio of 2/3 possess the highest specific capacitance under identical activation conditions. The specific capacitance of the carbon spheres can reach 296.1 F g-1 at a current density of 40 mA g-1. Besides, excellent cycle life and good capacitance retention (89.6%) are observed at 1.5 A g-1 after 5000 cycles. This study not only provides a facile and potential method for the WSS treatment, but also achieves the high value-added recycling of WSS for the preparation of porous carbon spheres with superior electrochemical properties.

  12. Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems

    International Nuclear Information System (INIS)

    Zhang, Xiaoshun; Yu, Tao; Yang, Bo; Zheng, Limin; Huang, Linni

    2015-01-01

    Highlights: • A novel optimal carbon-energy combined-flow (OCECF) model is firstly established. • A novel approximate ideal multi-objective solution Q(λ) learning is designed. • The proposed algorithm has a high convergence stability and reliability. • The proposed algorithm can be applied for OCECF in a large-scale power grid. - Abstract: This paper proposes a novel approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems. The carbon emissions, fuel cost, active power loss, voltage deviation and carbon emission loss are chosen as the optimization objectives, which are simultaneously optimized by five different Q-value matrices. The dynamic optimal weight of each objective is calculated online from the entire Q-value matrices such that the greedy action policy can be obtained. Case studies are carried out to evaluate the optimization performance for carbon-energy combined-flow in an IEEE 118-bus system and the regional power grid of southern China.

  13. Opium can differently alter blood glucose, sodium and potassium in male and female rats.

    Science.gov (United States)

    Karam, Gholamreza Asadi; Rashidinejad, Hamid Reza; Aghaee, Mohammad Mehdi; Ahmadi, Jafar; Rahmani, Mohammad Reza; Mahmoodi, Mehdi; Azin, Hosein; Mirzaee, Mohammad Reza; Khaksari, Mohammad

    2008-04-01

    To determine the effects of opium on serum glucose, potassium and sodium in male and female Wistar rat, opium solution (60 mg/kg) injected intraperitoneally and the same volume of distilled water was used as control (7 rats in each group). Blood samples were collected at 0, 30, 60, 120, 240 and 360 minutes after injection from orbit cavity and the values of serum glucose, sodium (Na(+)) and potassium (K(+)) were measured. The data were then analyzed by the repeated measure ANOVA based on sex and case-control group. P opium solution injection, in female rats compared to a control group. However, the male rats had this rise at 30, 60 and 120 minutes after opium solution injection compared to control group. While serum glucose in male rats was significantly higher than females at 30, 60 and 120 minutes, this value was higher in the female rats at 360 minutes. Therefore, serum glucose alterations following opium injection was significantly different in groups and in the sexes at different times. Sodium (Na(+)) rose at 60, 240 and 360 minutes significantly in all rats compared to control group. However, sodium alteration following opium injection was significantly different only between treated and control groups but sex-independent at all times. Potassium (K(+)) increased significantly at 60, 120, 240 and 360 minutes in male rats, compared to a control group. In female rats K(+) significantly raised at 30, 120, 240 and 360 minutes. Therefore, the alteration of K(+) in male and female rats was found time dependent and sex independent. According to our results, opium increased serum glucose in male and female rats differently, and it interferes with metabolic pathways differently on a gender dependent basis. Opium raised serum Na(+) and K(+), thus it interfere with water regulation and blood pressure via different mechanism.

  14. Oxidative degradation of Boltysh shale by alkaline potassium permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Pobul, I Ya; Fomina, A S

    1974-01-01

    This reaction proceeded in stages at 47 to 48/sup 0/C with a 3 percent solution of potassium permanganate in a 1 percent alkaline solution. The products were separated into groups and identified by gas-liquid chromatography. Small amounts of monocarboxylic acids were identified, with normal and branched chains, from acetic to lauric acid. Dicarboxylic acids were mainly of normal structure, or methyl substituted, from succinic to hexadecanedicarboxylic acid. No tricarboxylic acids were detected. For products of primary oxidation insoluble in acid media, a high content of C/sub 10/-C/sub 16/ acids was characteristic, and for the final degree of oxidation C/sub 11/-C/sub 18/ acids. The organic portion of shale consists of structural units, differing in mass and in stability to alkaline permanganate.

  15. The Effects of Different Tillage Methods on Available Soil Potassium Measured by Various Extractors in a Soil with High Specific Surface Area

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2016-02-01

    Full Text Available Introduction: The effects of any tillage method on soil properties, depends on location (soil, water and air and the number of (years their implementation. Soil compaction reduces yield through increased soil mechanical resistance against root growth and lower water and nutrient use efficiency (Gamda et al. 18 & Ishagh et al 23. Soil surface and sub surface compaction both reduce yield due to limited root growth and plant potassium uptake (Doulan et al. 14. Sabt et al. (50 reported that in the study area, which the lands are mostly illite clay (high specific surface area with sufficient nitrogen, soil potassium is the most important limiting factor for the growth of wheat.Considering the point that loess soils in Golestan Province have a high specific surface area,they can provide potassium for plants to produce crop, but for a higher production, potassium fertilizers should be used. Previous studies indicated that production of wheat is limited due to potassium deficiency (4, 49, 54 and 57. In these soils with a high specific surface area, the speed of movement of potassium from the soil solution is low, and doing solimits wheat yield.In loess soils containing high illite and high specific surface area (eg, soilsin the series of Rahmat Abad of Gorgan, ammonium acetate measured potassium on exchange and solution surfaces, which is highly correlated with grain yield (54 . There is a high correlation between grain yield with overload of potassium and Na TPB extraction (57. The aim of this study was to absorb potassium (limiting factor for plant growth with different tillage systemsat different depths. International recommendations towards reducing the depth and intensity of tillage (from minimum tillage to no-tillage in order to reduce erosion and oxidation of organic substances plays an important role in determining the amount of greenhouse gases. If potassium absorption does not reduceafter reducing tillage intensity,low or no-tillage methods

  16. Mechanism of pitting corrosion prevention by nitrite in carbon steel exposed to dilute salt solutions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Zapp, P.E.; Zee, J. van.

    1998-01-01

    'The overall goal of this project is to develop a fundamental understanding of the role of nitrite in preventing the breakdown of protective oxide(s) on carbon steel and the onset of pitting. Pitting corrosion of carbon steel exposed to dilute alkaline salt solutions can be induced by nitrate, sulfate, and chloride ions and is prevented by sufficient concentration of nitrite. A significant example of this material/electrolyte system is the storage and processing of DOE''s high-level radioactive liquid waste in carbon steel tanks. Added nitrite in the waste has a considerable downstream impact on the immobilization of the waste in a stable glass form. Waste tank integrity and glass production efficiency may benefit from the fundamental understanding of nitrite''s role in preventing pitting. This report summarizes progress after approximately six months of effort in this three-year EMSP project. Initial experimental and theoretical work has focused on the electrochemical behavior of carbon steel in simplified non-radioactive solutions that simulate complex dilute radioactive waste solutions. These solutions contain corrosion-inducing species such as nitrate and chloride and the corrosion-inhibiting nitrite at moderately alkaline pHs. The electrochemical behavior of interest here is that of the open-circuit potential of the steel specimen at equilibrium in the experimental electrolyte and the measures of the steel''s passivity and passivity breakdown.'

  17. The relation between inversion enthalpy and adsorption parameters for an activated carbon in aqueous Pb2+ solutions

    International Nuclear Information System (INIS)

    Giraldo, Liliana; Moreno, Juan Carlos

    2006-01-01

    We report the preparation of an activated carbon obtained by impregnation of mineral carbon samples with a phosphoric acid solution (50%).The obtained material, exhibits a superficial area of 586 m 2 .g -1 and a total pore volume of 0.37 cm 3 g -1 . With respect to the chemical properties, the activated carbon shows an increased number of acidic sites (0.92 meq g -l ) compared to basic sites (0.63 meq g-1) which yields a material with almost neutral characteristics (PHpzc: 7.4). At a pH: 4.0 the amount of Pb 2 + absorbed and the immersion enthalpy values for the activated carbon reached a maximum with values of 15.7 mg -1 y 27.6 Jg -1 respectively. It was established that similar behaviour occurs for the two properties, absorption and immersion enthalpy, as a function of pH. In addition, a second order function that relates the adsorption constant and immersion enthalpy, and the adsorption constant and pH of the solution are presented

  18. The relation between immersion enthalpy and adsorption parameters for an activated carbon in aqueous Pb2+solutions

    International Nuclear Information System (INIS)

    Girado, Liliana; Moreno, Juan Carlos

    2006-01-01

    We report the preparation of an activated carbon obtained by impregnation of mineral carbon samples with phosphoric acid solution (50%). the obtained material, exhibits a superficial area of 586 m 2 .g -1 and a total pore volume of 0,37 cm 3 g -1 . with respect to the chemical properties, the activated carbon shows an increased number of acidic sites (0,92 meq g -1 ) compared to basic sites (0,63 meq g -1 ) which yields a material with almost neutral characteristics (pH p zc: 7,4). At a pH: 4.0 the amount of pb2+ absorbed and the immersion enthalpy values for the activated carbon reached maxim with values of 15.7 mg -1 y 27,6 Jg -1 respectively. it was established that similar behavior occurs for the two properties, absorption and immersion enthalpy, as a function of pH. in addition, a second order function that relates the adsorption constant and immersion enthalpy, and the adsorption constant and ph of the solution are presented

  19. Caesium absorption by barley - influence of its retention by the soil - competitive action of potassium; Absorption du cesium par l'orge - influence de sa retention dans le sol - action competitive du potassium

    Energy Technology Data Exchange (ETDEWEB)

    Ferron-Trosseau, F [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-06-01

    We have studied, in various culture media, how the absorption of caesium by barley varies with its concentration, and how this absorption can be in competition with a similar alkali cation-potassium. We have also considered the caesium distribution in the ground in particular radio-active caesium, between the soil and solution, as a function of the amount of caesium. From our work it is clear that barley behaves very differently according to whether the caesium is in a nutritive solution or is in the soil: for a nutritive solution, the fraction of caesium (radioactive and stable) absorbed by barley remains practically constant in the presence of increasing amounts (relatively small) of stable caesium; in soil, the fraction of the radio-active caesium absorbed increases as the stable caesium content (fairly low) of the soil increases, in relationship with a rapidly decreasing selectivity of the soil for Cs{sup +}. The difference between these results is thus explained by the very pronounced selectivity of the illitic soil studied for Cs{sup +}, as long as the proportion of Cs remains low, about as low as that of most natural soils. Furthermore, the K{sup +} ion is in competition with the Cs{sup +} ion, for absorption by barley in a culture medium in a nutritive solution or in soil, only when the potassium concentrations are relatively low, of the order of the nutritive maximum. This shows that the addition of potassium to a medium already rich in this element does not reduce the absorption of caesium by barley. The choice of experimental conditions close to natural conditions (nutritive media strong in calcium) and the examination of the distribution of radioactive caesium between the soil, the soil solution and the plant in the presence of very low doses of stable caesium make these results interesting from the 'atomic health' point of view; it should be expected that a definite contamination risk exists for plants cultivated on synthetic media and for plants such

  20. Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology.

    Science.gov (United States)

    Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki

    2010-01-01

    Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).

  1. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  2. A boring solution

    Energy Technology Data Exchange (ETDEWEB)

    Radiuk, M I; Iushkova, N E; Kozubovskii, A I

    1979-10-25

    A boring solution is being patented for boring for oil and gas, which can be used in wells, where the temperature of the circulating liquid reaches 100/sup 0/. Polyvinyl acetate emulsion (PVE) is added for the purpose of decreasing viscosity of the solution at a temperature of agression into the boring solution containing clay, water, carboxymethylcellulose (CBC), a chloride from the number of sodium, potassium, or magnesium chlorides. The solution has the following composition in %: clay, 10 to 20; CBC, 1.5 to 2.0; chloride, 5 to 20; PVE, 0.5 to 2; water, up to 100. In accordance to GOST 1000-62 for the accepted PVE, the compound has the following composition, in %: monomer, 0.8; dry residue, greater than or equal to 50; plasticizer (tributyl phthalate), 5 to 15. The boring solution is processed according to the following method. The original solution, containing clay, water, salts, receives 1.5 to 2% CBC and afterwards it is processed with 0.5 to 2% PVE.

  3. Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Rui-Tao, E-mail: Ruitao.Wen@angstrom.uu.se; Niklasson, Gunnar A.; Granqvist, Claes G.

    2014-08-28

    Porous nickel oxide films were deposited onto unheated indium tin oxide coated glass substrates by reactive dc magnetron sputtering. These films had a cubic NiO structure. Electrochromic properties were evaluated in 1 M potassium hydroxide (KOH) and in 1 M lithium perchlorate in propylene carbonate (Li–PC). Large optical modulation was obtained for ∼ 500-nm-thick films both in KOH and in Li–PC (∼ 70% and ∼ 50% at 550 nm, respectively). In KOH, tensile and compressive stresses, due to the expansion and contraction of the lattice, were found for films in their bleached and colored state, respectively. In Li–PC, compressive stress was seen both in colored and bleached films. Durability tests with voltage sweeps between − 0.5 and 0.65 V vs Ag/AgCl in KOH showed good durability for 10,000 cycles, whereas voltage sweeps between 2.0 and 4.7 V vs Li/Li{sup +} in Li–PC yielded significant degradation after 1000 cycles. - Highlights: • Ni oxide films were studied in KOH and in LiClO{sub 4} + propylene carbonate (Li–PC). • Good electrochromism was found in both electrolytes. • In KOH, tensile/compressive stresses were seen in bleached/colored films. • In Li–PC, compressive stress was seen both in colored and bleached films.

  4. Qualitative Carbohydrate Analysis using Alkaline Potassium ...

    Indian Academy of Sciences (India)

    IAS Admin

    CLASSROOM. 285. RESONANCE | March 2016. Qualitative Carbohydrate Analysis using Alkaline. Potassium Ferricyanide. Keywords. Alkaline potassium ferricyanide, qualitative ... Carbohydrates form a distinct class of organic compounds often .... Laboratory Techniques: A contemporary Approach, W B Saunders Com-.

  5. Suicidal ingestion of potassium permanganate crystals: a rare encounter.

    Science.gov (United States)

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A C; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ingestion of potassium permanganate crystals. After treatment, the patient was discharged home on the 8(th) day after admission. So we conclude that Emergency endoscopy has a significant role in diagnosis and management of potassium permanganate ingestion.

  6. Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root

    International Nuclear Information System (INIS)

    Zhang Jian; Li Yan; Zhang Chenglu; Jing Yuming

    2008-01-01

    Arundo donax root carbon (ADRC), a new adsorbent, was prepared from Arundo donax root by carbonization. The surface area of the adsorbent was determined 158 m 2 /g by N 2 adsorption isotherm. Batch adsorption experiments were carried out for the removal of malachite green (MG) from aqueous solution using ADRC as adsorbent. The effects of various parameters such as solution pH (3-10), carbon dose (0.15-1.0 g/100 ml) and initial MG concentration (10-100 mg/l) on the adsorption system were investigated. The effective pH was 5-7 and the optimum adsorbent dose was found to be 0.6 g/100 ml. Equilibrium experimental data at 293, 303 and 313 K were better represented by Langmuir isotherm than Freundlich isotherm using linear and non-linear methods. Thermodynamic parameters such as ΔG, ΔH and ΔS were also calculated. The negative Gibbs free energy change and the positive enthalpy change indicated the spontaneous and endothermic nature of the adsorption. The adsorption equilibrium time was 180 min. Adsorption kinetics was determined using pseudo-first-order model, pseudo-second-order model and intraparticle diffusion model. The results showed that the adsorption of MG onto ADRC followed pseudo-second-order model

  7. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions

    KAUST Repository

    Li, Yan Vivian

    2014-12-01

    © 2014 Elsevier Inc. Understanding nanoparticle-surface adhesion is necessary to develop inert tracers for subsurface applications. Here we show that nanoparticles with neutral surface charge may make the best subsurface tracers, and that it may be possible to used SiO2 nanoparticle retention to measure the fraction of solid surface that has positive charge. We show that silica nanoparticles dispersed in NaCl electrolyte solutions are increasingly retained in calcium carbonate (calcite) sand-packed columns as the solution ionic strength increases, but are not retained if they are injected in pure water or Na2SO4 electrolyte solutions. The particles retained in the NaCl experiments are released when the column is flushed with pure water or Na2SO4 solution. AFM measurements on calcite immersed in NaCl solutions show the initial repulsion of a silica colloidal probe as the surface is approached is reduced as the solution ionic strength increases, and that at high ionic strengths it disappears entirely and only attraction remains. These AFM measurements and their interpretation with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory shows the calcite surface charge is always negative for Na2SO4 solutions, but changes from negative to positive in a patchy fashion as the ionic strength of the NaCl solution increases. Since mixed-charge (patchy) surfaces may be common in the subsurface, nanoparticles with near-zero charge may make the best tracers.

  8. Anodic polarization behavior of pure copper in carbonate solutions

    International Nuclear Information System (INIS)

    Kawasaki, Manabu; Taniguchi, Naoki; Naitou, Morimasa

    2008-03-01

    Copper is one of the candidate materials for overpacks. The redox condition at the early stage of the post closure will be oxidizing. In order to understand the influence of environmental factors on the corrosion behavior of copper in such oxidizing environment, anodic polarization tests were performed in carbonate aqueous solution with varying the concentration of representative chemical species in groundwater. As the results of potentiodynamic and potentiostatic tests, anodic polarization behavior of pure copper was summarized as follows; Carbonate ion and bicarbonate ion promoted the passivation of pure copper, and suppressed the initiation of film breakdown. Chloride ion promoted both the active dissolution and initiation of film breakdown of pure copper. The influence of sulfate ion and pH was small, but the action of sulfate ion to the pure copper was similar to that of chloride ion, and the increase of pH was likely to promote the passivation and suppress the initiation of film breakdown. The film breakdown potential, Eb, was represented as a function of the ratio of aggressive ion and inhibiting ion such as [Cl - ]/[HCO 3 - ], [SO 4 2- ]/[HCO 3 - ]. When the ratio exceeds a certain value, the anodic polarization curve becomes active dissolution type so that no macroscopic film breakdown can not be occurred. The lower limit of Eb in passive type region was estimated to be about -200 mV vs. SCE. As the results of potentio static tests, the corrosion form near the Eb was uniform dissolution over the surface, but pitting corrosion and non-uniform corrosion occurred according to the condition of the test solution. Neither pitting corrosion nor non-uniform corrosion occurred at the potential below Eb in every test cases. (author)

  9. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    Science.gov (United States)

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  10. Microelectrode array measurement of potassium ion channel remodeling on the field action potential duration in rapid atrial pacing rabbits model.

    Science.gov (United States)

    Sun, Juan; Yan, Huang; Wugeti, Najina; Guo, Yujun; Zhang, Ling; Ma, Mei; Guo, Xingui; Jiao, Changan; Xu, Wenli; Li, Tianqi

    2015-01-01

    Atrial fibrillation (AF) arises from abnormalities in atrial structure and electrical activity. Microelectrode arrays (MEA) is a real-time, nondestructive measurement of the resting and action potential signal, from myocardial cells, to the peripheral circuit of electrophysiological activity. This study examined the field action potential duration (fAPD) of the right atrial appendage (RAA) by MEA in rapid atrial pacing (RAP) in the right atrium of rabbits. In addition, this study also investigated the effect of potassium ion channel blockers on fAPD. 40 New Zealand white rabbits of either sex were randomly divided into 3 groups: 1) the control, 2) potassium ion channel blocker (TEA, 4-Ap and BaCl2), and 3) amiodarone groups. The hearts were quickly removed and right atrial appendage sectioned (slice thickness 500 μm). Each slice was perfused with Tyrode's solution and continuously stimulated for 30 minutes. Sections from the control group were superfused with Tyrode's solution for 10 minutes, while the blocker groups and amiodarone were both treated with their respective compounds for 10 minutes each. The fAPD of RAA and action field action potential morphology were measured using MEA. In non-pace (control) groups, fAPD was 188.33 ± 18.29 ms after Tyrode's solution superfusion, and 173.91 ± 6.83 ms after RAP. In pace/potassium ion channel groups, TEA and BaCl2 superfusion prolonged atrial field action potential (fAPD) (control vs blocker: 176.67 ± 8.66 ms vs 196.11 ± 10.76 ms, 182.22 ± 12.87 ms vs 191.11 ± 13.09 ms with TEA and BaCl2 superfusion, respectively, P action potential in animal heart slices. After superfusing potassium ion channel blockers, fAPD was prolonged. These results suggest that Ito, IKur and IK1 remodel and mediate RAP-induced atrial electrical remodeling. Amiodarone alter potassium ion channel activity (Ito, IKur, IK1 and IKs), shortening fAPD.

  11. Electrochemical Study of Modified Glassy Carbon Electrode with Carboxyphenyl Diazonium Salt in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mariem BOUROUROU

    2014-05-01

    Full Text Available The covalent grafting of carboxyphenyl functionalities to planar carbon substrates by reaction with 2-carboxybenezenediazonium salt has been studied in aqueous acid solution. The surface was characterized, before and after the functionnalization process, by cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry (LSV in order to control and to prove the formation of a coating on the carbon surface. The results indicate the presence of substituted phenyl groups on the investigated surface. Electrochemical impedance measurements show that the slowing down of the electron transfer kinetics was more evident by increasing the number of cycles resulting to higher DEp and RCT parameters. Besides, the effect of the pH on the electron transfer processes of the Fe(CN63-/4- at the modified electrode is studied. By changing the solution pH the terminal group’s charge state would vary, based on which the surface pKa value is estimated.

  12. Determination of uranium in coated fuel particle compact by potassium fluoride fusion-gravimetric method

    International Nuclear Information System (INIS)

    Ito, Mitsuo; Iso, Shuichi; Hoshino, Akira; Suzuki, Shuichi.

    1992-03-01

    Potassium fluoride-gravimetric method has been developed for the determination of uranium in TRISO type-coated fuel particle compact. Graphite matrix in the fuel compact is burned off by heating it in a platinum crucible at 850degC. The coated fuel particles thus obtained are decomposed by fusion with potassium fluoride at 900degC. The melt was dissolved with sulfuric acid. Uranium is precipitated as ammonium diuranate, by passing ammonia gas through the solution. The resulting precipitate is heated in a muffle furnace at 850degC, to convert uranium into triuranium octoxide. Uranium in the triuranium octoxide was determined gravimetrically. Ten grams of caoted fuel particles were completely decomposed by fusion with 50 g of potassium fluoride at 900degC for 3 hrs. Analytical result for uranium in the fuel compact by the proposed method was 21.04 ± 0.05 g (n = 3), and was in good agreement with that obtained by non-destructive γ-ray measurement method : 21.01 ± 0.07 g (n = 3). (author)

  13. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff

    Energy Technology Data Exchange (ETDEWEB)

    Angın, Dilek, E-mail: angin@sakarya.edu.tr [Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya (Turkey); Köse, T. Ennil, E-mail: ennilb@ogu.edu.tr [Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480 Meselik-Eskisehir (Turkey); Selengil, Uğur, E-mail: uselen@ogu.edu.tr [Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480 Meselik-Eskisehir (Turkey)

    2013-09-01

    The use of activated carbon obtained from biochar for the removal of reactive dyestuff from aqueous solutions at various contact times, pHs and temperatures was investigated. The biochar was chemically modified with potassium hydroxide. The surface area and micropore volume of activated carbon was 1277 m{sup 2}/g and 0.4952 cm{sup 3}/g, respectively. The surface characterization of both biochar and activated carbon was undertaken using by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental data indicated that the adsorption isotherms are well described by the Dubinin–Radushkevich (DR) isotherm equation. The adsorption kinetics of reactive dyestuff obeys the pseudo second-order kinetic model. The thermodynamic parameters such as ΔG{sup o}, ΔH{sup o} and ΔS{sup o} were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 1.12 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal reactive dyestuff from waste water.

  14. Preparation of Activated and Non-Activated Carbon from Conocarpus Pruning Waste as Low-Cost Adsorbent for Removal of Heavy Metal Ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ahmed H. El-Naggar

    2015-12-01

    Full Text Available Conocarpus pruning waste, an agricultural byproduct, was converted into low-cost activated and non-activated carbons and used for the remediation of Cd2+, Cu2+, and Pb2+ from aqueous solutions. The carbonization was carried out at 400 °C, while the activation was carried out in the presence of KOH and ZnCl2. Batch single-solute and multi-solute equilibrium and kinetic experiments were carried out to determine the adsorption capacities of the prepared activated and non-activated carbons, and these were further compared with commercially available activated carbon. The results showed that KOH-activated carbon (CK outperformed the other activated and non-activated carbons in terms of adsorption efficiency. CK removed >50% of the applied Cd2+ and Cu2+ and 100% of Pb2+ at the initial concentration of 40 mg L-1. Interestingly, the performance of Conocarpus-derived non-activated carbon was better than that of the commercial activated carbon, as observed from the Langmuir maximum adsorption capacities of 65.61, 66.12, and 223.05 µmol g-1 for Cd2+, Cu2+, and Pb2+, respectively. The Pb2+ was the metal most easily removed from aqueous solution because of its large ionic radius. The kinetic dynamics were well described by the pseudo-second order and Elovich models.

  15. An open, randomized, comparative clinical and histological study of imiquimod 5% cream versus 10% potassium hydroxide solution in the treatment of molluscum contagiosum.

    Science.gov (United States)

    Seo, Sang-Hee; Chin, Hyun-Woo; Jeong, Dong-Wook; Sung, Hyun-Woo

    2010-05-01

    Although molluscum contagiosum (MC) resolves spontaneously, there are several reasons to treat this dermatological disorder. To evaluate the safety and efficacy of 5% imiquimod cream versus 10% potassium hydroxide (KOH) solution in treating MC, and to propose the mechanism of cure by observing the histological findings. Imiquimod or KOH were applied by the patient or a parent 3 days per week until all lesions cleared. The number of MC lesions was counted and side effects were evaluated at 5 points during the treatment (the initial visit, week 2, week 4, week 8, and week 12). Histological changes were compared between 2 patients of each group, before and after the 2 weeks of application. In both group, the mean lesion counts decreased all through to week 12, and the reduction in number of lesions were statistically significant in both groups (p <0.005). Over 40% of each group developed local side effects, and no systemic side effects were noted in either group. Before treatment, histological findings showed little or no dermal infiltrates. After treatment, specimens showed dense lymphocytic infiltrates, especially T cells, around the lesions which had resolved. Both 10% KOH solution and 5% imiquimod cream are effective and safe treatment of MC.

  16. Preliminary Evaluation of Potassium Extraction from Bamboo Ash

    Directory of Open Access Journals (Sweden)

    Samadhi Tjokorde W.

    2018-01-01

    Full Text Available Bamboo is a potentially economical fuel crop that has not been utilized at a substantial extent for energy generation in Indonesia. As a thermal conversion waste, bamboo ash is particularly interesting due to its high potassium content. This paper discusses the determination of several key parameters of a simple batchwise extraction process to recover potassium in the form of weak solution from bamboo ash. To produce the ash, black bamboo (Gigantochloa atroviolaceae is charred in a fixed bed combustor. The bamboo char is ground and ashed at 500 °C in an electric furnace. The ash yield is 3.3 %-mass relative to as-received ash, with an ash K2O content of 12.9 %-mass. The ash is ground until passing 100-mesh standard sieve, and extracted by deionized water on a 2-stage laboratory-scale batchwise extractor battery. Process variables include extractror battery configuration (counter-current and co-current, temperature (nominal setting at 45-80 °C, and contact period of 1-6 hours. The concentration of extracted K2O increases asymptotically with temperature and contact time. Counter-current extraction yields more than twice the extract K2O concentration compared to cross-current extraction. The optimum conditions for the counter-current extraction is identified as a temperature of 78 °C and contact time of 4 hours, resulting in a 0.70 %-mass K2O solution concentration. Spot sampling of commercial liquid fertilizer products in Indonesia indicates an equivalent K2O content of 0.08-13.6 %-mass, suggesting the potential of the bamboo ash extract as an intermediate for fertilizer product.

  17. A sensitive kinetic spectrophotometric determination of traces of tungsten in solution based on its inhibitory effect on the decolorization reaction of potassium permanganate

    Directory of Open Access Journals (Sweden)

    Petković Branka

    2016-01-01

    Full Text Available The present work describes a rapid and sensitive method for the determination of ultra micro amounts of tungsten (VI based on its inhibitory effect on the oxidation of 4-hidroxycoumarine by potassium permanganate in the presence of hydrochloric acid. The sensitivity of the method is 20 ng/cm3. The probable relative error is -4.8-13 % for the W(VI concentration range 250 to 20 ng/cm3, respectively. Kinetic equations for the investigated process which determine the order of the reactions regarding to each reaction parameter under certain experimental conditions were proposed, and they allowed quantification of the unknown concentrations W(VI in solution. The detection and quantification limit of the method are 4.5 and 15.1 ng/cm3. The effects of certain foreign ions upon the reaction rate were determined for the assessing the selectivity of the method.

  18. Function of coral reef for glbal scale circulation of carbon dioxide. Chikyu kobo no CO sub 2 junkan ni okeru sangosho no yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Kayane, H [Geological Survey of Japan, Tokyo (Japan)

    1990-12-01

    Together with the global warming problem, it becomes important to elucidate the carbon dioxide circulation in global scale mechanism. Within a part of that elucidation, explanation of function and ecology was made of coral reef, fixing carbon dioxide through two passages, ie., formation of potassium carbonate skeleton and formation of organic matter. The coral reef is judged to become effective sink of carbon dioxide by the photosynthesis by symbiotic seaweed in coral body and coral formation of potassium carbonate skeleton. The coral reef is higher than the tropical rain forest in diversity and productivity of biological matter. In addition, the formation of potassium carbonate also fixes carbon dioxide. Its producing rate of organic matter is 2.5kgC/m {sup 2}/year, which is 20 times as high as that of offshore region. Also, its sedimentary rate is more than several hundreds of times as high as that by Foraminifera in the offshore region. Therefore, its effective control is important, though it still has unknown points. 22 refs., 13 figs., 1 tab.

  19. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  20. Potassium test

    Science.gov (United States)

    ... hyperkalemia ) may be due to: Addison disease (rare) Blood transfusion Certain medicines Crushed tissue injury Hyperkalemic periodic paralysis ... released. This may cause a falsely high result. Alternative Names Hypokalemia test; K+ Images Blood test References Mount DB. Disorders of potassium balance. ...

  1. Habit control of deuterated potassium dihydrogen phosphate crystal for laser applications

    Science.gov (United States)

    Guzman, L. A.; Suzuki, M.; Fujimoto, Y.; Fujioka, K.

    2016-03-01

    In this study we investigate the habit of partially deuterated potassium dihydrogen phosphate (DKDP) crystals in the presence of Al3+ ions. We have grown single DKDP crystals in (50wt% and 80wt%) partially deuterated solutions and in solutions doped with Al3+ ions (2 ppm) by the point-seed rapid growth technique at controlled supercooling (ΔT=10°C). The growth length of each crystal face was measured and the aspect ratio was calculated. We found that crystals grown in partially deuterated solutions are similar in aspect ratio, while, crystals grown in deuterated solutions doped with Al3+ ions showed a relative change in aspect ratio, the crystal increased in size in the pyramidal direction (vertical axis direction). Crystal characteristics were also analyzed by X-ray diffraction, FTIR and Raman spectroscopy. We have speculated that the relative habit modification is due to a probably adsorption and inclusions of Al3+ ions in the prismatic section of the crystal.

  2. Habit control of deuterated potassium dihydrogen phosphate crystal for laser applications

    International Nuclear Information System (INIS)

    Guzman, L A; Suzuki, M; Fujimoto, Y; Fujioka, K

    2016-01-01

    In this study we investigate the habit of partially deuterated potassium dihydrogen phosphate (DKDP) crystals in the presence of Al 3+ ions. We have grown single DKDP crystals in (50wt% and 80wt%) partially deuterated solutions and in solutions doped with Al 3+ ions (2 ppm) by the point-seed rapid growth technique at controlled supercooling (ΔT=10°C). The growth length of each crystal face was measured and the aspect ratio was calculated. We found that crystals grown in partially deuterated solutions are similar in aspect ratio, while, crystals grown in deuterated solutions doped with Al 3+ ions showed a relative change in aspect ratio, the crystal increased in size in the pyramidal direction (vertical axis direction). Crystal characteristics were also analyzed by X-ray diffraction, FTIR and Raman spectroscopy. We have speculated that the relative habit modification is due to a probably adsorption and inclusions of Al 3+ ions in the prismatic section of the crystal. (paper)

  3. Removal of mercury ion from aqueous solution by activated carbons obtained from biomass and coals

    Energy Technology Data Exchange (ETDEWEB)

    Ekinci, E.; Yardim, F. [Faculty of Chemical Engineering, Istanbul Technical University, Ayazaga, 80626 Istanbul (Turkey); Budinova, T.; Petrov, N.; Razvigorova, M.; Minkova, V. [Institute of Organic Chemistry, Bulgarian Academy of Sciences, Acad.G.Bonchev, str. bl. 9, Sofia (Bulgaria)

    2002-06-20

    The adsorption of Hg(II) from aqueous solution at 293 K by activated carbons obtained from apricot stones, furfural and coals was studied. Adsorption studies were performed under the varying conditions of time of treatment, metal ion concentration and pH. The process of adsorption followed Langmuir isotherm. The removal of Hg(II) increased with the increase of pH of the solution from 2 to 5 and remained constant up to pH 10. Desorption studies were preformed.

  4. Improved hydrogen generation from alkaline NaBH{sub 4} solution using cobalt catalysts supported on modified activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan; Guo, Qingjie; Yue, Xuehai [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Dai, Ping [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China)

    2008-12-15

    Hydrogen production from alkaline sodium borohydride (NaBH{sub 4}) solution via hydrolysis process over activated carbon supported cobalt catalysts is studied. Activated carbons are used in their original form and after liquid phase oxidation with HNO{sub 3}. The changes in surface functional groups of the activated carbon are detected by FTIR spectroscopy. The effects of HNO{sub 3} oxidation on the properties of the activated carbon and the resulting catalyst performance are investigated. FTIR analysis reveals that the oxidative treatment leads to the formation of various functional groups on the surface of the activated carbon. Cobalt catalysts supported on the modified activated carbon are found to exhibit higher activity and stability. (author)

  5. Evaluation of the potential of additives as corrosion inhibitors of CA-50 carbon steel used as reinforcement in concretes

    International Nuclear Information System (INIS)

    Mennucci, Marina Martins

    2006-01-01

    In this work, various compounds were tested to evaluate their potential capability for their use as corrosion inhibitors of carbon steel reinforcement in concretes. The additives tested were sodium benzoate, polyethylene glycol, hexamethylenetetramine, benzotriazole and yttrium carbonate. Initially, exploratory tests were carried out to select the ones to be used as corrosion inhibitors, based on the inhibit ion efficiency determined from electrochemical tests, specifically polarization tests and electrochemical impedance spectroscopy. These tests were carried out in a solution composed of 0.01 N sodium hydroxide (NaOH) and 0.05 N potassium hydroxide (KOH) to simulate the composition of the solution inside the pores in concretes. The additive that presented the most promising potential to be used as corrosion inhibitor was benzotriazole (BTA). After the elimination of some compounds and selection of the additive with higher corrosion inhibit ion efficiency in the test medium, the effect of its concentration on the corrosion inhibition efficiency was evaluated. Sodium nitrite solutions with the same concentrations as those solutions with BTA were tested for comparison reasons. Sodium nitrite is a well established corrosion inhibitor for carbon steel reinforcement in concretes but it has been related to toxic effects. The BTA was associated to higher corrosion inhibition efficiencies than that of sodium nitrite in similar concentrations. A blackish adherent film was formed on the steel surface exposed to BTA solutions during long periods of immersion in the alkaline medium. The results suggest that BTA is a potential candidate for substitution of nitrites as corrosion inhibitor of reinforcements in concrete. (author)

  6. Biosorption Studies for the Removal of Malachite Green from its Aqueous Solution by Activated Carbon Prepared from Cassava Peel

    Directory of Open Access Journals (Sweden)

    C. Parvathi

    2011-01-01

    Full Text Available The association of dyes with health related problems is not a new phenomenon. The effectiveness of carbon adsorption for dye removal from textile effluent has made it an ideal alternative to other expensive treatment methods. The preparation of activated carbon from agricultural waste could increase economic return and reduce pollution. Cassava peel has been used as a raw material to produce activated carbon. The study investigates the removal of malachite green dye from its aqueous solution. The effects of condition such as adsorbent dosage, initial dye concentration, pH and contact time were studied. The adsorption capacity was demonstrated as a function of time for malachite green from aqueous solution by the prepared activated carbon. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly. Higher adsorption percentages were observed at lower concentrations of malachite green dye. Silver nitrate treated cassava peel showed a better performance compared to Sulphuric acid treated and raw carbons, thus making it an interesting option for dye removal textile effluent.

  7. Corrosion inhibition of carbon steel XC70 in H 2 SO 4 solution by ...

    African Journals Online (AJOL)

    In this work, we studied the efficiency of corrosion inhibition of carbon steel XC70 in H2SO4 0.5 M aqueous solution using ferrocenyl derivatives synthesized in our laboratory, this compound is: 3-(ferrocenylmethylamine)benzonitrile. The inhibitory potential of this compound was determined by electrochemical techniques ...

  8. solution growth and characterization of copper oxide thin films ...

    African Journals Online (AJOL)

    Thin films of copper oxide (CuO) were grown on glass slides by using the solution growth technique. Copper cloride (CuCl ) and potassium telluride (K T O ) were used. Buffer 2 2e 3 solution was used as complexing agent. The solid state properties and optical properties were obtained from characterization done using PYE ...

  9. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Solehudin, Agus, E-mail: asolehudin@upi.edu [Department of Mechanical Engineering Education, Indonesia University of Education (UPI), Bandung, West Java (Indonesia); Nurdin, Isdiriayani [Department of Chemical Engineering, Bandung Institute of Technology, Bandung, West Java (Indonesia)

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  10. Electrochemical Corrosion Behavior of Carbon Steel and Hot Dip Galvanized Steel in Simulated Concrete Solution with Different pH Values

    Directory of Open Access Journals (Sweden)

    Wanchen XIE

    2017-08-01

    Full Text Available Hot dip galvanizing technology is now widely used as a method of protection for steel rebars. The corrosion behaviors of Q235 carbon steel and hot galvanized steel in a Ca(OH2 solution with a pH from 10 to 13 was investigated by electrode potential and polarization curves testing. The results indicated that carbon steel and hot galvanized steel were all passivated in a strong alkaline solution. The electrode potential of hot dip galvanized steel was lower than that of carbon steel; thus, hot dip galvanized steel can provide very good anodic protection for carbon steel. However, when the pH value reached 12.5, a polarity reversal occurred under the condition of a certain potential. Hot dip galvanized coating became a cathode, and the corrosion of carbon steel accelerated. The electrochemical behaviors and passivation abilities of hot dip galvanized steel and carbon steel were affected by pH. The higher the pH value was, the more easily they were passivated.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16675

  11. Errors in potassium balance

    International Nuclear Information System (INIS)

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by 40 K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies

  12. Phase Diagrams of Some Sodium and Potassium Salts In Light and Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, K E

    1968-12-15

    Phase diagrams for fluorides, chlorides, bromides, iodides, nitrates, sulphates and carbonates of sodium and potassium with D{sub 2}O and H{sub 2}O have been determined in the range from eutectic temperature to 60 deg C. Generally the relative solubility is less in D{sub 2}O, but there are some exceptions in cases of a hydrate as the solid phase. The freezing point depression for freezing of ice is often somewhat smaller in the case of D{sub 2}O.

  13. Interaction between Single Nucleotide Polymorphism and Urinary Sodium, Potassium, and Sodium-Potassium Ratio on the Risk of Hypertension in Korean Adults

    Directory of Open Access Journals (Sweden)

    Yeong Mi Park

    2017-03-01

    Full Text Available Hypertension is a complex disease explained with diverse factors including environmental factors and genetic factors. The objectives of this study were to determine the interaction effects between gene variants and 24 h estimated urinary sodium and potassium excretion and sodium-potassium excretion ratios on the risk of hypertension. A total of 8839 participants were included in the genome-wide association study (GWAS to find genetic factors associated with hypertension. Tanaka and Kawasaki formulas were applied to estimate 24 h urinary sodium and potassium excretion. A total of 4414 participants were included in interaction analyses to identify the interaction effects of gene variants according to 24 h estimated urinary factors on the risk of hypertension. CSK rs1378942 and CSK-MIR4513 rs3784789 were significantly modified by urinary sodium-potassium excretion ratio. In addition, MKLN rs1643270 with urinary potassium excretion, LOC101929750 rs7554672 with urinary sodium and potassium excretion, and TENM4 rs10466739 with urinary sodium-potassium excretion ratio showed significant interaction effects. The present study results indicated that the mutant alleles of CSK rs1378942 and CSK-MIR4513 rs3784789 had the strongest protective effects against hypertension in the middle group of 24 h estimated urinary sodium-potassium excretion ratio. Further studies are needed to replicate these analyses in other populations.

  14. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp.

    Science.gov (United States)

    Ayub, J. Juri; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.; Velasco, R. H.

    2008-08-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs+ (and K+) using electrophysiological techniques. Although the 137Cs soil inventory ranged between 328-730 Bq m-2 in this region, no 137Cs activity was detected in these plants. However, all the species, submitted previously to K+ starvation, showed the uptake of both Cs+ and K+ when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. KM values were smaller for K+ than for Cs+, indicating a higher affinity for the first cation. The presence of increasing K+ concentrations in the assay medium inhibited Cs+ uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs+ is smaller than K+ concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.

  15. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp

    International Nuclear Information System (INIS)

    Ayub, J. Juri; Velasco, R. H.; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.

    2008-01-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs + (and K + ) using electrophysiological techniques. Although the 137 Cs soil inventory ranged between 328-730 Bq m -2 in this region, no 137 Cs activity was detected in these plants. However, all the species, submitted previously to K + starvation, showed the uptake of both Cs + and K + when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. K M values were smaller for K + than for Cs + , indicating a higher affinity for the first cation. The presence of increasing K + concentrations in the assay medium inhibited Cs + uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs + is smaller than K + concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors

  16. ADSORPTION OF COPPER FROM AQUEOUS SOLUTION BY ELAIS GUINEENSIS KERNEL ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    NAJUA DELAILA TUMIN

    2008-08-01

    Full Text Available In this study, a series of batch laboratory experiments were conducted in order to investigate the feasibility of Elais Guineensis kernel or known as palm kernel shell (PKS-based activated carbon for the removal of copper from aqueous solution by the adsorption process. Investigation was carried out by studying the influence of initial solution pH, adsorbent dosage and initial concentration of copper. The particle size of PKS used was categorized as PKS–M. All batch experiments were carried out at a constant temperature of 30°C (±2°C using mechanical shaker that operated at 100 rpm. The single component equilibrium data was analyzed using Langmuir, Freundlich, Redlich-Peterson, Temkin and Toth adsorption isotherms.

  17. Synthesis and characterization of homogeneous interstitial solutions of nitrogen and carbon in iron-based lattices

    DEFF Research Database (Denmark)

    Brink, Bastian Klüge

    work in synthesis and characterization of interstitial solutions ofnitrogen and carbon in iron-based lattices. In order to avoid the influences of gradients incomposition and residual stresses, which are typically found in treated surface layers,homogenous samples are needed. These were prepared from...

  18. A new mechanism for selective adsorption of rubber on carbon black surface caused by nano-confinement in SBR/NBR solution

    Science.gov (United States)

    Kawazoe, Masayuki

    A novel mechanism of selective adsorption of rubber molecules onto carbon black surface in a binary immiscible rubber blend solution has been proposed in this dissertation. The phenomenon leads to uneven distribution of carbon black to the specific polymer in the blend and the obtained electrically conductive composite showed drastic reduction of percolation threshold concentration (PTC). The mechanism and the feature of conductive network formation have much potential concerning both fundamental understanding and industrial application to improve conductive polymer composites. In chapter I, carbon black filled conductive polymer composites are briefly reviewed. Then, in chapter II, a mechanism of rubber molecular confinement into carbon black aggregate structure is introduced to explain the selective adsorption of a specific rubber onto carbon black surface in an immiscible rubber solution blend (styrene butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) with toluene or chloroform). Next, in chapters III and IV, polymers with various radius of gyration (Rg) and carbon blacks with various aggregate structure are examined to verify the selective adsorption mechanism. Finally, in chapter V, the novel mechanism was applied to create unique meso-/micro-unit conductive network in carbon black dispersed SBR/NBR composites.

  19. Recovery of gold from solutions with ammonia and thiosulfate using activated carbon

    OpenAIRE

    Vargas, C.; Navarro, Patricio; Araya, Eyleen; Pávez, F.; Alguacil, Francisco José

    2006-01-01

    The recovery of gold from solutions containing thiosulfate and ammonia using granular activated carbon was studied, evaluating the adsorption and elution stages. The influence of ammonia and thiosulfate concentration and the presence of impurities such as copper and zinc were also evaluated. In the presence of ammonia there was a concentration which maximized the adsorption of gold, while thiosulfate and impurities presence was harmful for the adsorption of gold. During elution, ammonia and t...

  20. The study on density change of carbon dioxide seawater solution at high pressure and low temperature

    International Nuclear Information System (INIS)

    Song, Y.; Chen, B.; Nishio, M.; Akai, M.

    2005-01-01

    It has been widely considered that the global warming, induced by the increasing concentration of carbon dioxide and other greenhouse gases in the atmosphere, is an environmental task affecting the world economic development. In order to mitigate the concentration of CO 2 in the atmosphere, the sequestration of carbon dioxide into the ocean had been investigated theoretically and experimentally over the last 10 years. In addition to ocean dynamics, ocean geological, and biological information on large space and long time scales, the physical-chemistry properties of seawater-carbon dioxide system at high pressure (P>5.0 MPa) and lower temperature (274.15 K 3 , which is approximately same with that of carbon dioxide freshwater solution, the slope of which is 0.275 g/cm 3