WorldWideScience

Sample records for post stall airfoil

  1. A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack

    Science.gov (United States)

    Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.

    2013-01-01

    This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.

  2. The computation of the post-stall behavior of a circulation controlled airfoil

    Science.gov (United States)

    Linton, Samuel W.

    1993-01-01

    The physics of the circulation controlled airfoil is complex and poorly understood, particularly with regards to jet stall, which is the eventual breakdown of lift augmentation by the jet at some sufficiently high blowing rate. The present paper describes the numerical simulation of stalled and unstalled flows over a two-dimensional circulation controlled airfoil using a fully implicit Navier-Stokes code, and the comparison with experimental results. Mach numbers of 0.3 and 0.5 and jet total to freestream pressure ratios of 1.4 and 1.8 are investigated. The Baldwin-Lomax and k-epsilon turbulence models are used, each modified to include the effect of strong streamline curvature. The numerical solutions of the post-stall circulation controlled airfoil show a highly regular unsteady periodic flowfield. This is the result of an alternation between adverse pressure gradient and shock induced separation of the boundary layer on the airfoil trailing edge.

  3. The effects of NACA 0012 airfoil modification on aerodynamic performance improvement and obtaining high lift coefficient and post-stall airfoil

    Science.gov (United States)

    Sogukpinar, Haci

    2018-02-01

    In this study, aerodynamic performances of NACA 0012 airfoils with distinct modification are numerically investigated to obtain high lift coefficient and post-stall airfoils. NACA 0012 airfoil is divided into two part thought chord line then suction sides kept fixed and by changing the thickness of the pressure side new types of airfoil are created. Numerical experiments are then conducted by varying thickness of NACA 0012 from lower surface and different relative thicknesses asymmetrical airfoils are modified and NACA 0012-10, 0012-08, 0012-07, 0012-06, 0012-04, 0012-03, 0012-02, 0012-01 are created and simulated by using COMSOL software.

  4. Effects of laminar separation bubbles and turbulent separation on airfoil stall

    Energy Technology Data Exchange (ETDEWEB)

    Dini, P. [Carleton College, Northfield, MN (United States); Coiro, D.P. [Universita di Napoli (Italy)

    1997-12-31

    An existing two-dimensional, interactive, stall prediction program is extended by improving its laminar separation bubble model. The program now accounts correctly for the effects of the bubble on airfoil performance characteristics when it forms at the mid-chord and on the leading edge. Furthermore, the model can now predict bubble bursting on very sharp leading edges at high angles of attack. The details of the model are discussed in depth. Comparisons of the predicted stall and post-stall pressure distributions show excellent agreement with experimental measurements for several different airfoils at different Reynolds numbers.

  5. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    Science.gov (United States)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  6. Close-loop Dynamic Stall Control on a Pitching Airfoil

    Science.gov (United States)

    Giles, Ian; Corke, Thomas

    2017-11-01

    A closed-loop control scheme utilizing a plasma actuator to control dynamic stall is presented. The plasma actuator is located at the leading-edge of a pitching airfoil. It initially pulses at an unsteady frequency that perturbs the boundary layer flow over the suction surface of the airfoil. As the airfoil approaches and enters stall, the amplification of the unsteady disturbance is detected by an onboard pressure sensor also located near the leading edge. Once detected, the actuator is switched to a higher voltage control state that in static airfoil experiments would reattach the flow. The threshold level of the detection is a parameter in the control scheme. Three stall regimes were examined: light, medium, and deep stall, that were defined by their stall penetration angles. The results showed that in general, the closed-loop control scheme was effective at controlling dynamic stall. The cycle-integrated lift improved in all cases, and increased by as much as 15% at the lowest stall penetration angle. As important, the cycle-integrated aerodynamic damping coefficient also increased in all cases, and was made to be positive at the light stall regime where it traditionally is negative. The latter is important in applications where negative damping can lead to stall flutter.

  7. Airfoil stall interpreted through linear stability analysis

    Science.gov (United States)

    Busquet, Denis; Juniper, Matthew; Richez, Francois; Marquet, Olivier; Sipp, Denis

    2017-11-01

    Although airfoil stall has been widely investigated, the origin of this phenomenon, which manifests as a sudden drop of lift, is still not clearly understood. In the specific case of static stall, multiple steady solutions have been identified experimentally and numerically around the stall angle. We are interested here in investigating the stability of these steady solutions so as to first model and then control the dynamics. The study is performed on a 2D helicopter blade airfoil OA209 at low Mach number, M 0.2 and high Reynolds number, Re 1.8 ×106 . Steady RANS computation using a Spalart-Allmaras model is coupled with continuation methods (pseudo-arclength and Newton's method) to obtain steady states for several angles of incidence. The results show one upper branch (high lift), one lower branch (low lift) connected by a middle branch, characterizing an hysteresis phenomenon. A linear stability analysis performed around these equilibrium states highlights a mode responsible for stall, which starts with a low frequency oscillation. A bifurcation scenario is deduced from the behaviour of this mode. To shed light on the nonlinear behavior, a low order nonlinear model is created with the same linear stability behavior as that observed for that airfoil.

  8. An airloads theory for morphing airfoils in dynamic stall with experimental correlation

    Science.gov (United States)

    Ahaus, Loren A.

    Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft may incorporate dynamically morphing airfoils (trailing-edge aps, dynamic camber, dynamic droop, etc.). Reduced-order aerodynamic models are needed for preliminary design and ight simulation. A unified model for predicting the airloads on a morphing airfoil in dynamic stall is presented, consisting of three components. First, a linear airloads theory allows for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to capture the effects of the wake, the airloads theory is coupled to an induced ow model. Third, the overshoot and time delay associated with dynamic stall are modeled by a second-order dynamic filter, along the lines of the ONERA dynamic stall model. This paper presents a unified airloads model that allows arbitrary airfoil morphing with dynamic stall. Correlations with experimental data validate the theory.

  9. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil

    Directory of Open Access Journals (Sweden)

    Wang Qing

    2015-04-01

    Full Text Available In order to alleviate the dynamic stall effects in helicopter rotor, the sequential quadratic programming (SQP method is employed to optimize the characteristics of airfoil under dynamic stall conditions based on the SC1095 airfoil. The geometry of airfoil is parameterized by the class-shape-transformation (CST method, and the C-topology body-fitted mesh is then automatically generated around the airfoil by solving the Poisson equations. Based on the grid generation technology, the unsteady Reynolds-averaged Navier-Stokes (RANS equations are chosen as the governing equations for predicting airfoil flow field and the highly-efficient implicit scheme of lower–upper symmetric Gauss–Seidel (LU-SGS is adopted for temporal discretization. To capture the dynamic stall phenomenon of the rotor more accurately, the Spalart–Allmaras turbulence model is employed to close the RANS equations. The optimized airfoil with a larger leading edge radius and camber is obtained. The leading edge vortex and trailing edge separation of the optimized airfoil under unsteady conditions are obviously weakened, and the dynamic stall characteristics of optimized airfoil at different Mach numbers, reduced frequencies and angles of attack are also obviously improved compared with the baseline SC1095 airfoil. It is demonstrated that the optimized method is effective and the optimized airfoil is suitable as the helicopter rotor airfoil.

  10. Design of advanced airfoil for stall-regulated wind turbines

    Directory of Open Access Journals (Sweden)

    F. Grasso

    2017-07-01

    Full Text Available Nowadays, all the modern megawatt-class wind turbines make use of pitch control to optimise the rotor performance and control the turbine. However, for kilowatt-range machines, stall-regulated solutions are still attractive and largely used for their simplicity and robustness. In the design phase, the aerodynamics plays a crucial role, especially concerning the selection/design of the necessary airfoils. This is because the airfoil performance is supposed to guarantee high wind turbine performance but also the necessary machine control capabilities. In the present work, the design of a new airfoil dedicated to stall machines is discussed. The design strategy makes use of a numerical optimisation scheme, where a gradient-based algorithm is coupled with the RFOIL code and an original Bezier-curves-based parameterisation to describe the airfoil shape. The performances of the new airfoil are compared in free- and fixed-transition conditions. In addition, the performance of the rotor is analysed, comparing the impact of the new geometry with alternative candidates. The results show that the new airfoil offers better performance and control than existing candidates do.

  11. Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet

    Directory of Open Access Journals (Sweden)

    Qijun ZHAO

    2017-12-01

    Full Text Available The effects of synthetic jet control on unsteady dynamic stall over rotor airfoil are investigated numerically. A moving-embedded grid method and an Unsteady Reynolds Averaged Navier-Stokes (URANS solver coupled with k-ω Shear Stress Transport (SST turbulence model are established for predicting the complex flowfields of oscillatory airfoil under jet control. Additionally, a velocity boundary condition modeled by sinusoidal function has been developed to fulfill the perturbation effect of periodic jet. The validity of present CFD method is evaluated by comparisons of the calculated results of baseline dynamic stall case for rotor airfoil and jet control case for VR-7B airfoil with experimental data. Then, parametric analyses are conducted emphatically for an OA212 rotor airfoil to investigate the effects of jet control parameters (jet location, dimensionless frequency, momentum coefficient, jet angle, jet type and dual-jet on dynamic stall characteristics of rotor airfoil. It is demonstrated by the calculated results that efficiency of jet control could be improved with specific momentum coefficient and jet angle when the jet is located near separation point of rotor airfoil. Furthermore, the dual-jet could improve control efficiency more obviously on dynamic stall of rotor airfoil with respect to the unique jet, and the influence laws of dual-jet’s angles and momentum coefficients on control effects are similar to those of the unique jet. Finally, unsteady aerodynamic characteristics of rotor via synthetic jet which is located on the upper surface of rotor blade in forward flight are calculated, and as a result, the aerodynamic characteristics of rotor are improved compared with the baseline. The results indicate that synthetic jet has the capability in improving aerodynamic characteristics of rotor. Keywords: Airfoil, Dynamic stall characteristics, Flow control, Moving-embedded grid methodology, Navier-Stokes equations, Parametric

  12. Simulasi Numerik Dynamic Stall Pada Airfoil Yang Berosilasi

    Directory of Open Access Journals (Sweden)

    Galih S.T.A. Bangga

    2012-09-01

    Full Text Available Kebutuhan analisa pada sudu helikopter, kompresor, kincir angin dan struktur streamline lainya yang beroperasi pada angle of attack yang tinggi dan melibatkan instationary effects yang disebut dynamic stall menjadi semakin penting. Fenomena ini ditandai dengan naiknya dynamic lift melewati static lift maksimum pada critical static stall angle, vortex yang terbentuk pada leading edge mengakibatkan naiknya suction contribution yang kemudian terkonveksi sepanjang permukaan hingga mencapai trailling edge diikuti terbentuknya trailling edge vortex yang menunjukkan terjadinya lift stall. Fenomena ini sangat berbahaya terhadap struktur airfoil itu sendiri. Secara umum, beban fatique yang ditimbulkan oleh adanya efek histerisis karena fluktuasi gaya lift akibat induksi vibrasi lebih besar dibandingkan kondisi statis. Simulasi numerik dilakukan secara 2D dengan menggunakan profil Boeing-Vertol V23010-1.58 pada α0 = 14.92°. Standard-kω dan SST-kω digunakan sebagai URANS turbulence modelling. Model osilasi dari airfoil disusun dalam suatu user defined function (UDF. Gerakan meshing beserta airfoil diakomodasi dengan menggunakan dynamic mesh approach. Simulasi numerik menunjukkan bahwa, model SST-kω menunjukkan performa yang lebih baik dibandingkan dengan Standard-kω. Fenomena travelling vortex yang terjadi mampu ditangkap dengan baik, meski pada angle of attack yang tinggi URANS turbulence model gagal memprediksikan fenomena yang terjadi karena dominasi efek 3D.

  13. Inviscid double wake model for stalled airfoils

    International Nuclear Information System (INIS)

    Marion, L; Ramos-García, N; Sørensen, J N

    2014-01-01

    An inviscid double wake model based on a steady two-dimensional panel method has been developed to predict aerodynamic loads of wind turbine airfoils in the deep stall region. The separated flow is modelled using two constant vorticity sheets which are released at the trailing edge and at the separation point. A calibration of the code through comparison with experiments has been performed using one set of airfoils. A second set of airfoils has been used for the validation of the calibrated model. Predicted aerodynamic forces for a wide range of angles of attack (0 to 90 deg) are in overall good agreement with wind tunnel measurements

  14. Dynamic Stall Vortex Formation of OA-209 Airfoil at Low Reynolds Number

    OpenAIRE

    Aung Myo Thu; Sang Eon Jeon; Yung Hwan Byun; Soo Hyung Park

    2014-01-01

    The unsteady flow field around oscillating OA-209 airfoil at a Reynolds number of 3.5×105 were investigated. Three different reduced frequencies were tested in order to see how it affects the hysteresis loop of an airfoil. At a reduced frequency of 0.05 the deep dynamic stall phenomenon was observed. Lift overshooting was observed as a result of dynamic stall vortex (DSV) shedding. Further investigation was carried out to find out the cause of DSV formation and shedding over airfoil. Particle...

  15. Dynamic stall study of a multi-element airfoil

    Science.gov (United States)

    Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.

    1992-01-01

    Unsteady flow behavior and load characteristics of a VR-7 airfoil with and without a slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 degrees at a Reynolds number of 200,000 to obtain the unsteady lift, drag and pitching moment data. A fluorescing dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flow field and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.

  16. Numerical simulation of the RISOe1-airfoil dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)

  17. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian

    2007-01-01

    on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...

  18. A Dynamic Stall Model for Airfoils with Deformable Trailing Edges

    International Nuclear Information System (INIS)

    Andersen, Peter Bjoern; Gaunaa, Mac; Bak, Christian; Hansen, Morten Hartvig

    2007-01-01

    The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa for the attached flow region and Hansen et al. The model will be compared to wind tunnel measurements from Velux described by Bak et al

  19. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian

    2009-01-01

    , lead-lag, pitch, trailing-edge flapping. In the linear region, the model reduces to the inviscid model, which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed model can be considered a crossover between the work of Gaunaa......The present work contains an extension of the Beddoes-Leishman-type dynamic stall model. In this work, a deformable trailing-edge flap has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in heave...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....

  20. Flow Observations with Tufts and Lampblack of the Stalling of Four Typical Airfoil Sections in the NACA Variable-density Tunnel

    Science.gov (United States)

    Abbott, Ira H; Sherman, Albert

    1938-01-01

    A preliminary investigation of the stalling processes of four typical airfoil sections was made over the critical range of the Reynolds Number. Motion pictures were taken of the movements of small silk tufts on the airfoil surface as the angle of attack increased through a range of angles including the stall. The boundary-layer flow also at certain angles of attack was indicated by the patterns formed by a suspension of lampblack in oil brushed onto the airfoil surface. These observations were analyzed together with corresponding force-test measurements to derive a picture of the stalling processes of airfoils.

  1. Shallow and deep dynamic stall for flapping low Reynolds number airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Ol, Michael V. [Wright-Patterson AFB, Air Force Research Lab., Dayton, OH (United States); Bernal, Luis; Kang, Chang-Kwon; Shyy, Wei [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States)

    2009-05-15

    We consider a combined experimental (based on flow visualization, direct force measurement and phase-averaged 2D particle image velocimetry in a water tunnel), computational (2D Reynolds-averaged Navier-Stokes) and theoretical (Theodorsen's formula) approach to study the fluid physics of rigid-airfoil pitch-plunge in nominally two-dimensional conditions. Shallow-stall (combined pitch-plunge) and deep-stall (pure-plunge) are compared at a reduced frequency commensurate with flapping-flight in cruise in nature. Objectives include assessment of how well attached-flow theory can predict lift coefficient even in the presence of significant separation, and how well 2D velocimetry and 2D computation can mutually validate one another. The shallow-stall case shows promising agreement between computation and experiment, while in the deep-stall case, the computation's prediction of flow separation lags that of the experiment, but eventually evinces qualitatively similar leading edge vortex size. Dye injection was found to give good qualitative match with particle image velocimetry in describing leading edge vortex formation and return to flow reattachment, and also gave evidence of strong spanwise growth of flow separation after leading-edge vortex formation. Reynolds number effects, in the range of 10,000-60,000, were found to influence the size of laminar separation in those phases of motion where instantaneous angle of attack was well below stall, but have limited effect on post-stall flowfield behavior. Discrepancy in lift coefficient time history between experiment, theory and computation was mutually comparable, with no clear failure of Theodorsen's formula. This is surprising and encouraging, especially for the deep-stall case, because the theory's assumptions are clearly violated, while its prediction of lift coefficient remains useful for capturing general trends. (orig.)

  2. Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet

    Directory of Open Access Journals (Sweden)

    He-Yong Xu

    2016-06-01

    Full Text Available Dynamic stall control of a S809 airfoil is numerically investigated by implementing a co-flow jet (CFJ. The numerical methods of the solver are validated by comparing results with the baseline experiment as well as a NACA 6415-based CFJ experiment, showing good agreement in both static and dynamic characteristics. The CFJ airfoil with inactive jet is simulated to study the impact that the jet channel imposes upon the dynamic characteristics. It is shown that the presence of a long jet channel could cause a negative effect of decreasing lift and increasing drag, leading to fluctuating extreme loads in terms of drag and moment. The main focus of the present research is the investigation of the dynamic characteristics of the CFJ airfoil with three different jet momentum coefficients, which are compared with the baseline, giving encouraging results. Dynamic stall can be greatly suppressed, showing a very good control performance of significantly increased lift and reduced drag and moment. Analysis of the amplitude of variation in the aerodynamic coefficients indicates that the fluctuating extreme aerodynamic loads are significantly alleviated, which is conducive to structural reliability and improved life cycle. The energy consumption analysis shows that the CFJ concept is applicable and economical in controlling dynamic stall.

  3. Self-induced vibrations of a DU96-W-180 airfoil in stall

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.

    2014-01-01

    This work presents an analysis of two-dimensional (2D) and three-dimensional (3D) non-moving, prescribed motion and elastically mounted airfoil computational fluid dynamics (CFD) computations. The elastically mounted airfoil computations were performed by means of a 2D structural model with two...... degrees of freedom. The computations aimed at investigating the mechanisms of both vortex-induced and stall-induced vibrations related to a wind turbine blade at standstill conditions. In this work, a DU96-W-180 airfoil was used in the angle-of-attack region potentially corresponding to stallinduced...... vibrations. The analysis showed significant differences between the aerodynamic stability limits predicted by 2D and 3D CFD computations. A general agreement was reached between the prescribed motion and elastically mounted airfoil computations. 3D computations indicated that vortex-induced vibrations...

  4. Effects of finite aspect ratio on wind turbine airfoil measurements

    DEFF Research Database (Denmark)

    Kiefer, Janik; Miller, Mark A.; Hultmark, Marcus

    2016-01-01

    Wind turbines partly operate in stalled conditions within their operational cycle. To simulate these conditions, it is also necessary to obtain 2-D airfoil data in terms of lift and drag coefficients at high angles of attack. Such data has been obtained previously, but often at low aspect ratios...... and only barely past the stall point, where strong wall boundary layer influence is expected. In this study, the influence of the wall boundary layer on 2D airfoil data, especially in the post stall domain, is investigated. Here, a wind turbine airfoil is tested at different angles of attack and with two...

  5. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil

    Directory of Open Access Journals (Sweden)

    Zhao Guoqing

    2014-10-01

    Full Text Available Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier–Stokes equations coupled with a k − ω shear stream transport turbulence model are employed to accomplish the flowfield simulation of rotor airfoils under jet control. Additionally, a velocity boundary condition modeled by a sinusoidal function is developed to fulfill the perturbation effect of periodic jets. The validity of the present CFD procedure is evaluated by the simulated results of an isolated synthetic jet and the jet control case for airfoil NACA0015. Then, parametric analyses are conducted specifically for an OA213 rotor airfoil to investigate the effects of jet parameters (forcing frequency, jet location and momentum coefficient, jet direction, and distribution of jet arrays on the control effect of the aerodynamic characteristics of a rotor airfoil. Preliminary results indicate that the efficiency of jet control can be improved with specific frequencies (the best lift-drag ratio at F+ = 2.0 and jet angles (40° or 75° when the jets are located near the separation point of the rotor airfoil. Furthermore, as a result of a suitable combination of jet arrays, the lift coefficient of the airfoil can be improved by nearly 100%, and the corresponding drag coefficient decreased by 26.5% in comparison with the single point control case.

  6. The quest for stall-free dynamic lift

    Science.gov (United States)

    Tung, C.; Mcalister, K. W.; Carr, Lawrence W.; Duque, E.; Zinner, R.

    1992-01-01

    During the past decade, numerous major effects have addressed the question of how to control or alleviate dynamic stall effects on helicopter rotors, but little concrete evidence of any significant reduction of the adverse characteristics of the dynamic stall phenomenon has been demonstrated. Nevertheless, it is important to remember that the control of dynamic stall is an achievable goal. Experiments performed at the US Army Aeroflight-dynamics Directorate more than a decade ago demonstrated that dynamic stall is not an unavoidable penalty of high amplitude motion, and that airfoils can indeed operate dynamically at angles far above the static-stall angle without necessarily forming a stall vortex. These experiments, one of them featuring a slat that was designed from static airfoil considerations, showed that unsteadiness can be a very beneficial factor in the development of high-lift devices for helicopter rotors. The experience drawn from these early experiments is now being focused on a program for the alleviation of dynamic-stall effects on helicopter rotors. The purpose of this effort is to demonstrate that rotor stall can be controlled through an improved understanding of the unsteady effects on airfoil stall and to document the role of specific means that lead to stall alleviation in the three dimensional unsteady environment of helicopter rotors in forward flight. The first concept to be addressed in this program will be a slatted airfoil. A two dimensional unsteady Navier-Stokes code has been modified to compute the flow around a two-element airfoil.

  7. Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with leading edge protuberances

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2017-01-01

    Full Text Available This article presents a numerical investigation of the effects of leading-edge protuberances on airfoil stall and post-stall performance. An improved delayed detached eddy simulation (IDDES method was adopted. As a result, to clarify the effects of ‘bi-periodic’ phenomenon around stall region, it was found that the flow separation at troughs was the main inducement of aerodynamic lift degradation within pre-stall regime and the flow pattern where vortices diverged was predominant. It was also found that the variations in flow patterns led to the gentle stall process. Furthermore, to study the statistical characteristics of unsteady vortex shedding, corresponding spectrum characteristics were also analyzed from another perspective, suggesting that the vortex shedding frequency was higher where vortices converged. Eventually, the improved performances of tubercled airfoil within post-stall regime could be attributed to the strong streamwise vortices generated by the leading-edge protuberances. Deploying the methods of vortex dynamics, the generation and evolution of the streamwise vortices were depicted. It turned out that the primary and secondary vortices were induced by spanwise pressure gradient at airfoil surface; meanwhile, vortex stretching played a key role in primary vortex evolution, which initially enhanced the strength of vortices corresponding to the acceleration of streamwise velocity.

  8. Suppression of dynamic stall with a leading-edge slat on a VR-7 airfoil

    Science.gov (United States)

    Mcalister, K. W.; Tung, C.

    1993-01-01

    The VR-7 airfoil was experimentally studied with and without a leading-edge slat at fixed angles of attack from 0 deg to 30 deg at Re = 200,000 and for unsteady pitching motions described by alpha equals alpha(sub m) + 10 deg(sin(wt)). The models were two dimensional, and the test was performed in a water tunnel at Ames Research Center. The unsteady conditions ranged over Re equals 100,000 to 250,000, k equals 0.001 to 0.2, and alpha(sub m) = 10 deg to 20 deg. Unsteady lift, drag, and pitching-moment measurements were obtained along with fluorescent-dye flow visualizations. The addition of the slat was found to delay the static-drag and static-moment stall by about 5 degrees and to eliminate completely the development of a dynamic-stall vortex during unsteady motions that reached angles as high as 25 degrees. In all of the unsteady cases studied, the slat caused a significant reduction in the force and moment hysteresis amplitudes. The reduced frequency was found to have the greatest effect on the results, whereas the Reynolds number had little effect on the behavior of either the basic or the slatted airfoil. The slat caused a slight drag penalty at low angles of attack, but generally increased the lift/drag ratio when averaged over the full cycle of oscillation.

  9. Numerical study of the static and pitching RISOe-B1-18 airfoil[STALL

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2004-01-01

    The objective of this report is the better understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. In this study, the case of the RISOe-B1-18 airfoil which was equipped and measured in an open jet wind tunnel is studied. Two and three dimensional Navier-Stokes calculations using the k-w SST and Detached Eddy Simulation turbulence models are conducted. An engineering semi-empirical dynamic stall model is also used for performing calculations. Computational results are compared to the experimental results that are available both for the static airfoil and in the case of pitching motions. It is shown that the Navier-Stokes simulations can reproduced the main characteristic features of the flow. The DES model seems also to be able to reproduce some details of the unsteady aerodynamics. The Navier-Stokes computations can then be used to improve the performance of the engineering model. (au)

  10. Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory

    Science.gov (United States)

    Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.

    2015-01-01

    An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.

  11. Dynamic stall characterization using modal analysis of phase-averaged pressure distributions

    Science.gov (United States)

    Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan

    2017-11-01

    Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.

  12. Zonal RANS/LES coupling simulation of a transitional and separated flow around an airfoil near stall

    Energy Technology Data Exchange (ETDEWEB)

    Richez, F.; Mary, I.; Gleize, V. [ONERA, Department of Computational Fluid Dynamics and Aeroacoustics, 29 Avenue de la Division Leclerc, BP 72, Chatillon (France); Basdevant, C. [Universite Paris-Nord, Laboratoire d' Analyse, Geometrie et Applications, CNRS, Villetaneuse (France)

    2008-05-15

    The objective of the current study is to examine the course of events leading to stall just before its occurrence. The stall mechanisms are very sensitive to the transition that the boundary layer undergoes near the leading edge of the profile by a so-called laminar separation bubble (LSB). In order to provide helpful insights into this complex flow, a zonal Reynolds-averaged Navier-Stokes (RANS)/large-eddy simulation (LES) simulation of the flow around an airfoil near stall has been achieved and its results are presented and analyzed in this paper. LSB has already been numerically studied by direct numerical simulation (DNS) or LES, but for a flat plate with an adverse pressure gradient only. We intend, in this paper, to achieve a detailed analysis of the transition process by a LSB in more realistic conditions. The comparison with a linear instability analysis has shown that the numerical instability mechanism in the LSB provides the expected frequency of the perturbations. Furthermore, the right order of magnitude for the turbulence intensities at the reattachment point is found. (orig.)

  13. Low-Order Modeling of Dynamic Stall on Airfoils in Incompressible Flow

    Science.gov (United States)

    Narsipur, Shreyas

    flap to model the effect of the separated boundary-layer. Unsteady RANS results for several pitch and plunge motions showed that the differences in aerodynamic loads between steady and unsteady flows can be attributed to the boundary-layer convection lag, which can be modeled by choosing an appropriate value of the time lag parameter, tau2. In order to provide appropriate viscous corrections to inviscid unsteady calculations, the non-linear decambering flap is applied with a time lag determined by the tau2 value, which was found to be independent of motion kinematics for a given airfoil and Reynolds number. The predictions of the aerodynamic loads, unsteady stall, hysteresis loops, and ow reattachment from the low-order model agree well with CFD and experimental results, both for individual cases and for trends between motions. The model was also found to perform as well as existing semi-empirical models while using only a single empirically defined parameter. Inclusion of LEV shedding capabilities and combining the resulting algorithm with phase one's trailing-edge separation model was the primary objective of phase two. Computational results at low and high Reynolds numbers were used to analyze the ow morphology of the LEV to identify the common surface signature associated with LEV initiation at both low and high Reynolds numbers and relate it to the critical leading-edge suction parameter (LESP ) to control the initiation and termination of LEV shedding in the low-order model. The critical LESP, like the tau2 parameter, was found to be independent of motion kinematics for a given airfoil and Reynolds number. Results from the final low-order model compared excellently with CFD and experimental solutions, both in terms of aerodynamic loads and vortex ow pattern predictions. Overall, the final combined dynamic stall model that resulted from the current research was successful in accurately modeling the physics of unsteady ow thereby helping restrict the number of

  14. Pitching Airfoil Boundary Layer Investigations

    OpenAIRE

    Raffel, Markus; Richard, Hugues; Richter, Kai; Bosbach, Johannes; Geißler, Wolfgang

    2006-01-01

    The present paper describes an experiment performed in a transonic wind tunnel facility where a new test section has been developed especially for the investigation of the unsteady flow above oscillating airfoils under dynamic stall conditions. Dynamic stall is characterized by the development, movement and shedding of one or more concentrated vortices on the airfoils upper surface. The hysteresis loops of lift-, drag- and pitching moment are highly influenced by these vortices. To understand...

  15. Numerical study of unsteady viscous flow past oscillating airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Jin Yan; Yuan Xin [Tsinghua Univ., Dept. of Thermal Engineering, Beijing (China)

    2001-07-01

    Accurate simulation of the dynamic stall of an oscillating airfoil is of major importance to wing and wind turbine blade design. However, dynamic stall is complicated and influenced by many factors, such as geometry shape of the airfoil, reduced frequency, etc. The difficulties of simulation are both mathematical (numerical method) and physical (turbulence model). The present paper has introduced a new numerical method (new LU-type scheme and fourth-order higher resolution MUSCL TVD scheme) and q-{omega} turbulence modelling to calculate the unsteady flowfields of an oscillating NACA0015 airfoil. The test targets include attached flow, light-stall and deep-stall of the airfoil. The calculated results for attached flow and light-stall are in good agreement with those of experiments. The calculated results for deep-stall also show improvement, especially during the downstroke of the oscillation. However, there is still a significant difference between the results of calculation and experiment in the hysteresis curves of the drag coefficient. One reason is that the q-{omega} turbulence model still has limitations. Another is that the drag coefficient is difficult to measure and the experiments are not reliable. (Author)

  16. Airfoil characteristics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C; Fuglsang, P; Soerensen, N N; Aagaard Madsen, H [Risoe National Lab., Roskilde (Denmark); Shen, Wen Zhong; Noerkaer Soerensen, J [Technical Univ. of Denmark, Lyngby (Denmark)

    1999-03-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are based on four different methods: 1) Inverse momentum theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotor with LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall at the tip is low and that it is high at the root compared to 2D airfoil characteristics. The use of these characteristics in aeroelastic calculations shows a good agreement in power and flap moments with measurements. Furthermore, a fatigue analysis shows a reduction in the loads of up to 15 % compared to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFD computations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived that can be used to calculate mean values of power and loads. The lift in stall at the tip is low and at the root it is high compared to 2D airfoil characteristics. In particular the power curves were well calculated by use of the optimised airfoil characteristics. In the quasi-3D CFD computations, the airfoil characteristics are derived directly. This Navier-Stokes model takes into account rotational and 3D effects. The model enables the study of the rotational effect of a rotor blade at computing costs similar to what is typical for 2D airfoil calculations. The depicted results show that the model is capable of determining the correct qualitative behaviour for airfoils subject to rotation. The method shows that lift is high at the root compared to 2D airfoil

  17. Aerodynamic characteristics of wind turbine blade airfoils at high angles-of-attack

    NARCIS (Netherlands)

    Timmer, W.A.

    2010-01-01

    Airfoil characteristics at deep stall angles were investigated. It appeared that the maximum drag coefficient as a function of the airfoil upwind y/c ordinate at x/c=0.0125 can be approximated by a straight line. The lift-drag ratios in deep stall of a number of airfoils with moderate lower surface

  18. Prediction of unsteady airfoil flows at large angles of incidence

    Science.gov (United States)

    Cebeci, Tuncer; Jang, H. M.; Chen, H. H.

    1992-01-01

    The effect of the unsteady motion of an airfoil on its stall behavior is of considerable interest to many practical applications including the blades of helicopter rotors and of axial compressors and turbines. Experiments with oscillating airfoils, for example, have shown that the flow can remain attached for angles of attack greater than those which would cause stall to occur in a stationary system. This result appears to stem from the formation of a vortex close to the surface of the airfoil which continues to provide lift. It is also evident that the onset of dynamic stall depends strongly on the airfoil section, and as a result, great care is required in the development of a calculation method which will accurately predict this behavior.

  19. The onset of dynamic stall revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mulleners, Karen; Raffel, Markus [German Aerospace Center (DLR), Goettingen (Germany)

    2012-03-15

    Dynamic stall on a helicopter rotor blade comprises a series of complex aerodynamic phenomena in response to the unsteady change of the blade's angle of attack. It is accompanied by a lift overshoot and delayed massive flow separation with respect to static stall. The classical hallmark of the dynamic stall phenomenon is the dynamic stall vortex. The flow over an oscillating OA209 airfoil under dynamic stall conditions was investigated by means of unsteady surface pressure measurements and time-resolved particle image velocimetry. The characteristic features of the unsteady flow field were identified and analysed utilising different coherent structure identification methods. An Eulerian and a Lagrangian procedure were adopted to locate the axes of vortices and the edges of Lagrangian coherent structures, respectively; a proper orthogonal decomposition of the velocity field revealed the energetically dominant coherent flow patterns and their temporal evolution. Based on the complementary information obtained by these methods the dynamics and interaction of vortical structures were analysed within a single dynamic stall life cycle leading to a classification of the unsteady flow development into five successive stages: the attached flow stage; the stall development stage; stall onset; the stalled stage; and flow reattachment. The onset of dynamic stall was specified here based on a characteristic mode of the proper orthogonal decomposition of the velocity field. Variations in the flow field topology that accompany the stall onset were verified by the Lagrangian coherent structure analysis. The instantaneous effective unsteadiness was defined as a single representative parameter to describe the influence of the motion parameters. Dynamic stall onset was found to be promoted by increasing unsteadiness. The mechanism that results in the detachment of the dynamic stall vortex from the airfoil was identified as vortex-induced separation caused by strong viscous

  20. Compressible dynamic stall control using high momentum microjets

    Science.gov (United States)

    Beahan, James J.; Shih, Chiang; Krothapalli, Anjaneyulu; Kumar, Rajan; Chandrasekhara, Muguru S.

    2014-09-01

    Control of the dynamic stall process of a NACA 0015 airfoil undergoing periodic pitching motion is investigated experimentally at the NASA Ames compressible dynamic stall facility. Multiple microjet nozzles distributed uniformly in the first 12 % chord from the airfoil's leading edge are used for the dynamic stall control. Point diffraction interferometry technique is used to characterize the control effectiveness, both qualitatively and quantitatively. The microjet control has been found to be very effective in suppressing both the emergence of the dynamic stall vortex and the associated massive flow separation at the entire operating range of angles of attack. At the high Mach number ( M = 0.4), the use of microjets appears to eliminate the shock structures that are responsible for triggering the shock-induced separation, establishing the fact that the use of microjets is effective in controlling dynamic stall with a strong compressibility effect. In general, microjet control has an overall positive effect in terms of maintaining leading edge suction pressure and preventing flow separation.

  1. Quiet airfoils for small and large wind turbines

    Science.gov (United States)

    Tangler, James L [Boulder, CO; Somers, Dan L [Port Matilda, PA

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  2. Experimental study of pitching and plunging airfoils at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Yeon Sik; Bernal, Luis P. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States)

    2012-12-15

    Measurements of the unsteady flow structure and force time history of pitching and plunging SD7003 and flat plate airfoils at low Reynolds numbers are presented. The airfoils were pitched and plunged in the effective angle of attack range of 2.4 -13.6 (shallow-stall kinematics) and -6 to 22 (deep-stall kinematics). The shallow-stall kinematics results for the SD7003 airfoil show attached flow and laminar-to-turbulent transition at low effective angle of attack during the down stroke motion, while the flat plate model exhibits leading edge separation. Strong Re-number effects were found for the SD7003 airfoil which produced approximately 25 % increase in the peak lift coefficient at Re = 10,000 compared to higher Re flows. The flat plate airfoil showed reduced Re effects due to leading edge separation at the sharper leading edge, and the measured peak lift coefficient was higher than that predicted by unsteady potential flow theory. The deep-stall kinematics resulted in leading edge separation that led to formation of a large leading edge vortex (LEV) and a small trailing edge vortex (TEV) for both airfoils. The measured peak lift coefficient was significantly higher ({proportional_to}50 %) than that for the shallow-stall kinematics. The effect of airfoil shape on lift force was greater than the Re effect. Turbulence statistics were measured as a function of phase using ensemble averages. The results show anisotropic turbulence for the LEV and isotropic turbulence for the TEV. Comparison of unsteady potential flow theory with the experimental data showed better agreement by using the quasi-steady approximation, or setting C(k) = 1 in Theodorsen theory, for leading edge-separated flows. (orig.)

  3. DYNSTALL: Subroutine package with a dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, Anders [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    2001-03-01

    A subroutine package, called DYNSTALL, for the calculation of 2D unsteady airfoil aerodynamics is described. The subroutines are written in FORTRAN. DYNSTALL is basically an implementation of the Beddoes-Leishman dynamic stall model. This model is a semi-empirical model for dynamic stall. It includes, however, also models for attached flow unsteady aerodynamics. It is complete in the sense that it treats attached flow as well as separated flow. Semi-empirical means that the model relies on empirically determined constants. Semi because the constants are constants in equations with some physical interpretation. It requires the input of 2D airfoil aerodynamic data via tables as function of angle of attack. The method is intended for use in an aeroelastic code with the aerodynamics solved by blade/element method. DYNSTALL was written to work for any 2D angles of attack relative to the airfoil, e.g. flow from the rear of an airfoil.

  4. Numerical modeling of a pitch oscillating S809 airfoil dynamic stall in 2D with application to a horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Gharali, K.; Johnson, D.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering, Wind Energy Group

    2010-07-01

    Natural wind can sometimes have a strong wind shear that causes the Dynamic Stall (DS) phenomena which may result in dynamic loads and varying lift coefficients. The DS phenomena cannot be prevented in horizontal axis wind turbines (HAWTs). Therefore, it is necessary to study the unsteady aerodynamics in order to modify common wind turbine rotor designs. This paper reported on a study that investigated the dynamic flow fields around an oscillating 2D S809 airfoil, representing the aerodynamic characteristics of HAWT airfoils for dynamic stall conditions. A computational fluid dynamic (CFD) flow solver package with Fluent was used with different turbulence models, notably the Spalart-Allmaras and Detached Eddy Simulation (DES) methods. A sliding mesh is commonly used in numerical methods for simulating an oscillating foil, but sliding meshes suffer from mesh generation complexity and increased computational time. In this study, instead of a sinusoidally pitching airfoil, the direction of the far-field flow was changed according to a user-defined function in the software to simulate a proper angle of attack for the boundary conditions in each time step. This strategy helped to decrease processing time. The simulation results were in good agreement with experimental data and the Beddoes-Leishman model results. The DES method for unsteady 2D flow was not recommended. It was concluded that the Fluent package is time efficient, reliable and economic for the wind turbine industry. 17 refs., 3 figs.

  5. Design of a 21 m blade with Risø-A1 airfoils for active stall controlled wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, Peter; Sangill, O.; Hansen, P.

    2002-01-01

    This is the final report, from the project, "Design of a Rotor/Airfoil Family for Active Stall-regulated Wind Turbines by Use of Multi-point Optimization". It describes the full scale testing of a 21 m wind turbine blade specially designed for active stallregulation. Design objectives were...... increased ratio of produced energy to turbine loads and more stable power control characteristics. Both were taken directly into account during the design of the blade using numerical optimization. The blade used theRisø-A1 airfoil family, which was specially designed for operation on wind turbine blades....... The new blade was designed to replace the LM 21.0P blade. A measurement campaign was carried out simultaneously on two identical adjacent wind turbines where onehad the new blades and the other had LM 21.0P blades. Power and loads including blade section moments for the new blades were measured to assess...

  6. Experimental investigation on the effects of non-cyclical frequency and amplitude variation on dynamic stall

    Science.gov (United States)

    Heintz, Kyle C.

    An experimental study of a cambered airfoil undergoing non-cyclical, transient pitch trajectories and the resulting effects on the dynamic stall phenomenon is presented. Surface pressure measurements and airfoil incidence angle are acquired simultaneously to resolve instantaneous aerodynamic load coefficients at Mach numbers ranging from 0.2 to 0.4. Derived from these coefficients are various formulations of the aerodynamic damping factor, referred to copiously throughout. Using a two-motor mechanism, each providing independent frequency and amplitude input to the airfoil, unique pitch motions can be implemented by actively controlling the phase between inputs. This work primarily focuses on three pitch motion schemas, the first of which is a "chirp" style trajectory featuring concurrent exponential frequency growth and amplitude decay. Second, these parameters are tested separately to determine their individual contributions. Lastly, a novel dual harmonic pitch motion is devised which rapidly traverses dynamic stall regimes on an inter-cycle basis by modulating the static-stall penetration angle. Throughout all results presented, there is evidence that for consecutive pitch-cycles, the process of dynamic stall is affected when prior oscillations prior have undergone deeper stall-penetration angles. In other words when stall-penetration is descending, retreating from a regime of light or deep stall, statistics of load coefficients, such as damping coefficient, maximum lift, minimum quarter-chord moment, and their phase relationships, do not match the values seen when stall-penetration was growing. The outcomes herein suggest that the airfoil retains some memory of previous flow separation which has the potential to change the influence of the dynamic stall vortex.

  7. Active flow control of the laminar separation bubble on a plunging airfoil near stall

    Science.gov (United States)

    Pande, Arth; Agate, Mark; Little, Jesse; Fasel, Hermann

    2017-11-01

    The effects of small amplitude (A/c = 0.048) high frequency (πfc/U∞ = 0.70) plunging motion on the X-56A airfoil are examined experimentally at Re = 200,000 for 12° angle of attack (CL,MAX = 12.25°) . The purpose of this research is to study the aerodynamic influence of structural motion when the wing is vibrating close to its eigenfrequency near static stall. Specific focus is placed on the laminar separation bubble (LSB) near the leading edge and its control via plasma actuation. In the baseline case, the leading edge bubble bursts during the oscillation cycle causing moment stall. A collaborative computational effort has shown that small amplitude forcing at a frequency that is most amplified by the primary instability of the LSB (FLSB+= 1, Fc+= 52) generates coherent spanwise vortices that entrain freestream momentum, thus reducing separation all while maintaining a laminar flow state. Results (PIV and surface pressure) indicate that a similar control mechanism is effective in the experiments. This is significant given the existence of freestream turbulence in the wind tunnel which has been shown to limit the efficacy of this active flow control technique in a model problem using Direct Numerical Simulation. The implications of these results are discussed.

  8. Dynamic stall - The case of the vertical axis wind turbine

    Science.gov (United States)

    Laneville, A.; Vittecoq, P.

    1986-05-01

    This paper presents the results of an experimental investigation on a driven Darrieus turbine rotating at different tip speed ratios. For a Reynolds number of 3.8 x 10 to the 4th, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon. It was observed that in deep stall conditions, a vortex is formed at the leading edge; this vortex moves over the airfoil surface with 1/3 of the airfoil speed and then is shed at the trailing edge. After its shedding, the vortex can interact with the airfoil surface as the blade passes downstream.

  9. Study on Trailing Edge Ramp of Supercritical Airfoil

    Science.gov (United States)

    2016-03-30

    China Abstract Trailing edge flow control method could improve the performance of supercritical airfoil with a small modification on the original...stall behaviour . As a result, the non-separation ramp could increase the thickness of airfoil, which benefits wing structure and aerodynamic...direction based on the original RAE2822 airfoil, which will thicken the airfoil. The interpolation is implemented as shown in Eqn. 1. This modification could

  10. Combustion-Powered Actuation for Dynamic Stall Suppression - Simulations and Low-Mach Experiments

    Science.gov (United States)

    Matalanis, Claude G.; Min, Byung-Young; Bowles, Patrick O.; Jee, Solkeun; Wake, Brian E.; Crittenden, Tom; Woo, George; Glezer, Ari

    2014-01-01

    An investigation on dynamic-stall suppression capabilities of combustion-powered actuation (COMPACT) applied to a tabbed VR-12 airfoil is presented. In the first section, results from computational fluid dynamics (CFD) simulations carried out at Mach numbers from 0.3 to 0.5 are presented. Several geometric parameters are varied including the slot chordwise location and angle. Actuation pulse amplitude, frequency, and timing are also varied. The simulations suggest that cycle-averaged lift increases of approximately 4% and 8% with respect to the baseline airfoil are possible at Mach numbers of 0.4 and 0.3 for deep and near-deep dynamic-stall conditions. In the second section, static-stall results from low-speed wind-tunnel experiments are presented. Low-speed experiments and high-speed CFD suggest that slots oriented tangential to the airfoil surface produce stronger benefits than slots oriented normal to the chordline. Low-speed experiments confirm that chordwise slot locations suitable for Mach 0.3-0.4 stall suppression (based on CFD) will also be effective at lower Mach numbers.

  11. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C. [Air Force Research Laboratory, Computational Sciences Branch, Air Vehicles Directorate, Wright-Patterson AFB, OH (United States)

    2009-05-15

    The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re{sub c} = 10 {sup 4}), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re{sub c}=10 {sup 4

  12. Steady Aerodynamic Characteristics of Two-Dimensional NACA0012 Airfoil for One Revolution Angle of Attack

    Science.gov (United States)

    Park, Byung Ho; Han, Yong Oun

    2018-04-01

    Steady variations in aerodynamic forces and flow behaviors of two-dimensional NACA0012 airfoil were investigated using a numerical method for One Revolution Angle of Attack (AOA) at Reynolds number of 105 . The profiles of lift coefficients, drag coefficients, and pressure coefficients were compared with those of the experimental data. The AERODAS model was used to analyze the profiles of lift and drag coefficients. Wake characteristics were given along with the deficit profiles of incoming velocity components. Both the characteristics of normal and reverse airfoil models were compared with the basic aerodynamic data for the same range of AOA. The results show that two peaks of the lift coefficients appeared at 11.5{°} and 42{°} and are in good agreement with the pre-stall and post-stall models, respectively. Counter-rotating vortex flows originated from the leading and trailing edges at a high AOA, which formed an impermeable zone over the suction surface and made reattachments in the wake. Moreover, the acceleration of inflow along the boundary of the vortex wrap appeared in the profile of the wake velocity. The drag profile was found to be independent of the airfoil mode, but the lift profile was quite sensitive to the airfoil mode.

  13. Assessment of the aerodynamic characteristics of thick airfoils in high Reynolds and moderate Ma numbers using CFD modeling

    International Nuclear Information System (INIS)

    Prospathopoulos, John M; Papadakis, Giorgos; Voutsinas, Spyros G; Diakakis, Kostas; Sieros, Giorgos; Chaviaropoulos, Takis K

    2014-01-01

    The aerodynamic characteristics of thick airfoils in high Reynolds number is assessed using two different CFD RANS solvers: the compressible MaPFlow and the incompressible CRES-flowNS-2D both equipped with the k-ω SST turbulence model. Validation is carried out by comparing simulations against existing high Reynolds experimental data for the NACA 63-018 airfoil in the range of -10° to 20°. The use of two different solvers aims on one hand at increasing the credibility in the results and on the other at quantifying the compressibility effects. Convergence of steady simulations is achieved within a mean range of -10° to 14° which refers to attached or light stall conditions. Over this range the simulations from the two codes are in good agreement. As stall gets deeper, steady convergence ceases and the simulations must switch to unsteady. Lift and drag oscillations are produced which increase in amplitude as the angle of attack increases. Finally in post stall, the average C L is found to decrease up to ∼24° or 32° for the FFA or the NACA 63-018 airfoils respectively, and then recover to higher values indicating a change in the unsteady features of the flow

  14. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    Science.gov (United States)

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the

  15. Aero-elastic stability of airfoil flow using 2-D CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)

  16. Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil

    Directory of Open Access Journals (Sweden)

    Sohrab Gholamhosein Pouryoussefi

    2016-06-01

    Full Text Available In this paper, the effects of icing on an NACA 23012 airfoil have been studied. Experiments were applied on the clean airfoil, runback ice, horn ice, and spanwise ridge ice at a Reynolds number of 0.6 × 106 over angles of attack from −8° to 20°, and then results are compared. Generally, it is found that ice accretion on the airfoil can contribute to formation of a flow separation bubble on the upper surface downstream from the leading edge. In addition, it is made clear that spanwise ridge ice provides the greatest negative effect on the aerodynamic performance of the airfoil. In this case, the stall angle drops about 10° and the maximum lift coefficient reduces about 50% which is hazardous for an airplane. While horn ice leads to a stall angle drop of about 4° and a maximum lift coefficient reduction to 21%, runback ice has the least effect on the flow pattern around the airfoil and the aerodynamic coefficients so as the stall angle decreases 2° and the maximum lift reduces about 8%.

  17. 2D URANS simulation of aerodynamic loads on a pitching airfoil: Impact of computational parameters

    NARCIS (Netherlands)

    Geng, F.; Kalkman, I.M.; Suiker, A.S.J.; Blocken, B.J.E.

    2017-01-01

    A numerical study of aerodynamic loads on pitching airfoils using Computational Fluid Dynamics (CFD) is challenging due complicated airfoil-vortex interactions and the possible occurrence of dynamic stall. In the latter case the combination of boundary layer transitions and airfoil oscillations

  18. Analysis of turbulent separated flows for the NREL airfoil using anisotropic two-equation models at higher angles of attack

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shijie [Tsinghua University, Beijing (China). School of Architecture; Yuan Xin; Ye Dajun [Tsinghua University, Beijing (China). Dept. of Thermal Engineering

    2001-07-01

    Numerical simulations of the turbulent flow fields at stall conditions are presented for the NREL (National Renewable Energy Laboratory) S809 airfoil. The flow is modelled as compressible, viscous, steady/unsteady and turbulent. Four two-equation turbulence models (isotropic {kappa}-{epsilon} and q-{omega} models, anisotropic {kappa}-{epsilon} and -{omega} models), are applied to close the Reynolds-averaged Navier-Stokes equations, respectively. The governing equations are integrated in time by a new LU-type implicit scheme. To accurately model the convection terms in the mean-flow and turbulence model equations, a modified fourth-order high resolution MUSCL TVD scheme is incorporated. The large-scale separated flow fields and their losses at the stall and post-stall conditions are analyzed for the NREL S809 airfoil at various angles of attack ({alpha}) from 0 to 70 degrees. The numerical results show excellent to fairly good agreement with the experimental data. The feasibility of the present numerical method and the influence of the four turbulence models are also investigated. (author)

  19. Low Reynolds number airfoil aerodynamic loads determination via line integral of velocity obtained with particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.; Su, Y.Y. [McGill University, Department of Mechanical Engineering, Montreal, QC (Canada)

    2012-11-15

    The small magnitude lift forces generated by both a NACA 0012 airfoil and a thin flat plate at Re = 29,000 and 54,000 were determined through the line integral of velocity, obtained with particle image velocimetry, via the application of the Kutta-Joukowsky theorem. Surface pressure measurements of the NACA0012 airfoil were also obtained to validate the lift coefficient C{sub l}. The bound circulation was found to be insensitive to the size and aspect ratio of the rectangular integration loop for pre-stall angles. The present C{sub l} data were also found to agree very well with the surface pressure-determined lift coefficient for pre-stall conditions. A large variation in C{sub l} with the loop size and aspect ratio for post-stall conditions was, however, observed. Nevertheless, the present flat-plate C{sub l} data were also found to collectively agree with the published force-balance measurements at small angles of attack, despite the large disparity exhibited among the various published data at high angles. Finally, the ensemble-averaged wake velocity profiles were also used to compute the drag coefficient and, subsequently, the lift-to-drag ratio. (orig.)

  20. Low-Reynolds number compressible flow around a triangular airfoil

    Science.gov (United States)

    Munday, Phillip; Taira, Kunihiko; Suwa, Tetsuya; Numata, Daiju; Asai, Keisuke

    2013-11-01

    We report on the combined numerical and experimental effort to analyze the nonlinear aerodynamics of a triangular airfoil in low-Reynolds number compressible flow that is representative of wings on future Martian air vehicles. The flow field around this airfoil is examined for a wide range of angles of attack and Mach numbers with three-dimensional direct numerical simulations at Re = 3000 . Companion experiments are conducted in a unique Martian wind tunnel that is placed in a vacuum chamber to simulate the Martian atmosphere. Computational findings are compared with pressure sensitive paint and direct force measurements and are found to be in agreement. The separated flow from the leading edge is found to form a large leading-edge vortex that sits directly above the apex of the airfoil and provides enhanced lift at post stall angles of attack. For higher subsonic flows, the vortical structures elongate in the streamwise direction resulting in reduced lift enhancement. We also observe that the onset of spanwise instability for higher angles of attack is delayed at lower Mach numbers. Currently at Mitsubishi Heavy Industries, Ltd., Nagasaki.

  1. A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations

    DEFF Research Database (Denmark)

    Hansen, M.H.; Gaunaa, Mac; Aagaard Madsen, Helge

    2004-01-01

    This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The model predicts the unsteady aerodynamic forces and moment on an airfoil section undergoing arbitrary motionin heave, lead-lag, and pitch. The model...... features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identicalresults to the full model for small amplitude oscillations. Furthermore, it is shown that the response of finite thichkness airfoils can be reproduced to a high accuracy by the use of specific...... is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. Theproposed dynamic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic...

  2. The Role of Separation Bubbles on the Aerodynamic Characteristics of Airfoils, Including Stall and Post-Stall, at Low Reynolds Numbers

    Science.gov (United States)

    Chen, Hsun H.; Cebeci, Tuncer

    2007-01-01

    Airfoils at high Reynolds numbers, in general, have small separation bubbles that are usually confined to the leading edge. Since the Reynolds number is large, the turbulence model for the transition region between the laminar and turbulent flow is not important. Furthermore, the onset of transition occurs either at separation or prior to separation and can be predicted satisfactorily by empirical correlations when the incident angle is small and can be assumed to correspond to laminar separation when the correlations do not apply, i.e., at high incidence angles.

  3. Derivation of airfoil characteristics for the LM 19.1 blade based on 3D CFD rotor calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C; Soerensen, N N; Madsen, H A [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Airfoil characteristics for the LM 19.1 blade are derived from 3D CFD computations on a full-scale 41-m rotor. Based on 3D CFD the force distributions on the blades are determined, from which airfoil characteristics are derived using the momentum theory. The final airfoil characteristics are constructed using both wind tunnel measurements and 3D CFD. Compared to 2D wind tunnel measurements they show a low lift in stall for the airfoil sections at the tip. At the airfoil sections at the inner part of the blade, they show a high lift in stall. At about 60% radius the lift agrees well to 2D wind tunnel measurements. Aero-elastic calculations using the final airfoil characteristics show good agreement to measured power and flap moments. Furthermore, a fatigue load analysis shows a reduction of up to 15% of the load compared to commonly used data. (au)

  4. Direct numerical simulation of a NACA0012 in full stall

    International Nuclear Information System (INIS)

    Rodríguez, I.; Lehmkuhl, O.; Borrell, R.; Oliva, A.

    2013-01-01

    Highlights: • Coherent structures at transitional and supercritical wake modes are presented. • Vortex shedding is detected in both wake modes. • KH instabilities and vortex shedding frequencies are identified. • Low-frequency flapping of the shear-layer is also detected after stall. • Local pressure distribution at both AOA is coherent with experimental observations. -- Abstract: This work aims at investigating the mechanisms of separation and the transition to turbulence in the separated shear-layer of aerodynamic profiles, while at the same time to gain insight into coherent structures formed in the separated zone at low-to-moderate Reynolds numbers. To do this, direct numerical simulations of the flow past a NACA0012 airfoil at Reynolds numbers Re = 50,000 (based on the free-stream velocity and the airfoil chord) and angles of attack AOA = 9.25° and AOA = 12° have been carried out. At low-to-moderate Reynolds numbers, NACA0012 exhibits a combination of leading-edge/trailing-edge stall which causes the massive separation of the flow on the suction side of the airfoil. The initially laminar shear layer undergoes transition to turbulence and vortices formed are shed forming a von Kármán like vortex street in the airfoil wake. The main characteristics of this flow together with its main features, including power spectra of a set of selected monitoring probes at different positions on the suction side and in the wake of the airfoil are provided and discussed in detail

  5. Unsteady Navier-Stokes computations over airfoils using both fixed and dynamic meshes

    Science.gov (United States)

    Rumsey, Christopher L.; Anderson, W. Kyle

    1989-01-01

    A finite volume implicit approximate factorization method which solves the thin layer Navier-Stokes equations was used to predict unsteady turbulent flow airfoil behavior. At a constant angle of attack of 16 deg, the NACA 0012 airfoil exhibits an unsteady periodic flow field with the lift coefficient oscillating between 0.89 and 1.60. The Strouhal number is 0.028. Results are similar at 18 deg, with a Strouhal number of 0.033. A leading edge vortex is shed periodically near maximum lift. Dynamic mesh solutions for unstalled airfoil flows show general agreement with experimental pressure coefficients. However, moment coefficients and the maximum lift value are underpredicted. The deep stall case shows some agreement with experiment for increasing angle of attack, but is only qualitatively comparable past stall and for decreasing angle of attack.

  6. Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances

    Science.gov (United States)

    Cai, Chang; Zuo, Zhigang; Maeda, Takao; Kamada, Yasunari; Li, Qing'an; Shimamoto, Kensei; Liu, Shuhong

    2017-11-01

    Recently leading-edge protuberances have attracted great attention as a passive method for separation control. In this paper, the effect of multiple leading-edge protuberances on the performance of a two-dimensional airfoil is investigated through experimental measurement of aerodynamic forces, surface tuft visualization, and numerical simulation. In contrast to the sharp stall of the baseline airfoil with large hysteresis effect during AOA (angle of attack) increasing and decreasing, the stall process of the modified airfoil with leading-edge protuberances is gentle and stable. Flow visualization revealed that the flow past each protuberance is periodic and symmetric at small AOAs. Streamwise vortices are generated on the shoulders of the protuberance, leading to a larger separation around the valley sections and a longer attachment along the peak sections. When some critical AOA is exceeded, aperiodic and asymmetric flow patterns occur on the protuberances at different spanwise positions, with leading-edge separation on some of the valley sections and non-stalled condition elsewhere. A combined mechanism, involving both the compartmentalization effect of the slender momentum-enhanced attached flows on the protuberance peaks and the downwash effect of the local stalled region with low circulation, is proposed to explain the generation of the aperiodic flow patterns. The influence of the number of protuberances is also investigated, which shows similar aperiodic flow patterns. The distance between the neighboring local stalled valley sections is found to be in the range of 4-7 times the protuberance wavelength. According to the proposed mechanism, it is speculated that the distance between the neighboring local stalled valley sections is inclined to increase with a smaller protuberance amplitude or at a larger AOA.

  7. Prediction of unsteady separated flows on oscillating airfoils

    Science.gov (United States)

    Mccroskey, W. J.

    1978-01-01

    Techniques for calculating high Reynolds number flow around an airfoil undergoing dynamic stall are reviewed. Emphasis is placed on predicting the values of lift, drag, and pitching moments. Methods discussed include: the discrete potential vortex method; thin boundary layer method; strong interaction between inviscid and viscous flows; and solutions to the Navier-Stokes equations. Empirical methods for estimating unsteady airloads on oscillating airfoils are also described. These methods correlate force and moment data from wind tunnel tests to indicate the effects of various parameters, such as airfoil shape, Mach number, amplitude and frequency of sinosoidal oscillations, mean angle, and type of motion.

  8. Airfoil characteristics for wind turbines

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.

    1999-01-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum...... theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotorwith LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall...... to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFDcomputations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived...

  9. Effect of surface roughness on the aerodynamic characteristics of a symmetrical airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Chakroun, W.; Al-Mesri, I.; Al-Fahad, S.

    2005-07-01

    The objective of this study is to investigate the effect of surface roughness by varying the roughness size and location on the aerodynamic characteristics of the airfoil. Test were conducted on the symmetrical airfoil models NACA 0012 in which the nature of the surface was varied from smooth to very rough and at a chord Reynolds number of 1.5*10{sup 5}. Different airfoil models with various roughness sizes and roughness locations were tested for different angles of attack. Lift, drag and pressure coefficients were measured and velocity profiles were determined for the smooth and grit 36 roughened models. It is shown that as the surface roughness increases, the minimum drag also increases due to the increase of the skin friction and the lift decreases. Surface roughness is seen to delay the stall angle and also increase the lift in the stall region. The airfoil model with the roughness located at the trailing edge shows minimum drag and maximum lift up to the stall angle compared to the other cases of different roughness locations. It is confirmed that, for the rough surface, a turbulent boundary layer exists where the laminar boundary layer is encountered for the smooth surface at the same Reynolds number. The measured skin friction for the rough surface is larger than that for the smooth surface. (author)

  10. Numerical Simulation of Unsteady Large Scale Separated Flow around Oscillating Airfoil

    OpenAIRE

    Isogai, Koji; 磯貝, 紘二

    1991-01-01

    Numerical simulations of dynamic stall phenomenon of NACA0012 airfoil oscillating in pitch near static stalling angle are performed by using the compressible Navier-Stokes equations. In the present computations, a TVD scheme and an algebraic turbulence model are employed for the simulations of the unsteady separated flows at Reynolds number of 1.1x105. The hysteresis loops of the unsteady pitching moment during dynamic stall are compared with the existing experimental data. The flow pattern a...

  11. Lift hysteresis at stall as an unsteady boundary-layer phenomenon

    Science.gov (United States)

    Moore, Franklin K

    1956-01-01

    Analysis of rotating stall of compressor blade rows requires specification of a dynamic lift curve for the airfoil section at or near stall, presumably including the effect of lift hysteresis. Consideration of the magnus lift of a rotating cylinder suggests performing an unsteady boundary-layer calculation to find the movement of the separation points of an airfoil fixed in a stream of variable incidence. The consideration of the shedding of vorticity into the wake should yield an estimate of lift increment proportional to time rate of change of angle of attack. This increment is the amplitude of the hysteresis loop. An approximate analysis is carried out according to the foregoing ideas for a 6:1 elliptic airfoil at the angle of attack for maximum lift. The assumptions of small perturbations from maximum lift are made, permitting neglect of distributed vorticity in the wake. The calculated hysteresis loop is counterclockwise. Finally, a discussion of the forms of hysteresis loops is presented; and, for small reduced frequency of oscillation, it is concluded that the concept of a viscous "time lag" is appropriate only for harmonic variations of angle of attack with time at mean conditions other than maximum lift.

  12. Separation control of NACA0015 airfoil using plasma actuators

    Science.gov (United States)

    Harada, Daisuke; Sakakibara, Jun

    2017-11-01

    Separation control of NACA0015 airfoil by means of plasma actuators was investigated. Plasma actuators in spanwise intermittent layout on the suction surface of the airfoil were activated with spanwise phase difference φ = 0 or φ = π in the case of dimensionless burst frequencyF+ = 6 and F+ = 0.5 at Re = 6.3 ×104 . The lift and drag of the airfoil were measured using a two component force balance. The flow around the airfoil was measured by PIV analysis. In the condition of F+ = 6 and φ = π at around stall angle, which is 10 degrees, the lift-to-drag ratio was higher than that ofF+ = 6 and φ = 0 . Therefore, it was confirmed that aerodynamic characteristics of the airfoil improved by disturbances with temporal and spatial phase difference.

  13. A theory of post-stall transients in axial compression systems. I - Development of equations

    Science.gov (United States)

    Moore, F. K.; Greitzer, E. M.

    1985-01-01

    An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.

  14. S833, S834, and S835 Airfoils: November 2001--November 2002

    Energy Technology Data Exchange (ETDEWEB)

    Somers, D. M.

    2005-08-01

    A family of quiet, thick, natural-laminar-flow airfoils, the S833, S834, and S835, for 1 - 3-meter-diameter, variable-speed/variable-pitch, horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The airfoils should exhibit docile stalls, which meet the design goal. The constraints on the pitching moment and the airfoils thicknesses have been satisfied.

  15. S830, S831, and S832 Airfoils: November 2001-November 2002

    Energy Technology Data Exchange (ETDEWEB)

    Somers, D. M.

    2005-08-01

    A family of quiet, thick, natural-laminar-flow airfoils, the S830, S831, and S832, for 40 - 50-meter-diameter, variable-speed/variable-pitch, horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The airfoils should exhibit docile stalls, which meet the design goal. The constraints on the pitching moment and the airfoils thicknesses have been satisfied.

  16. Estimation of supersonic fighter jet airfoil data and low speed aerodynamic analysis of airfoil section at the Mach number 0.15

    Science.gov (United States)

    Sogukpinar, Haci

    2018-02-01

    In this paper, some of the NACA 64A series airfoils data are estimated and aerodynamic properties are calculated to facilitate great understandings effect of relative thickness on the aerodynamic performance of the airfoil by using COMSOL software. 64A201-64A204 airfoils data are not available in literature therefore 64A210 data are used as reference data to estimate 64A201, 64A202, 64A203, 64A204 airfoil configurations. Numerical calculations are then conducted with the angle of attack from -12° to +16° by using k-w turbulence model based on the finite-volume approach. The lift and drag coefficient are one of the most important parameters in studying the airplane performance. Therefore lift, drag and pressure coefficient around selected airfoil are calculated and compared at the Reynolds numbers of 6 × 106 and also stalling characteristics of airfoil section are investigated and presented numerically.

  17. Compressible dynamic stall vorticity flux control using a dynamic ...

    Indian Academy of Sciences (India)

    systems, such as a wind turbine, are prevented from ever entering dynamic stall, essentially disregarding potential ... future generations of such systems, an overwhelming need has developed to avail this benefit safely. ... approach must diffuse the vorticity prior to its coalescence, but keep the vorticity over the airfoil up to ...

  18. Numerical Investigations of Dynamic Stall Control

    Directory of Open Access Journals (Sweden)

    Florin FRUNZULICA

    2014-04-01

    Full Text Available In this paper we investigated numerically the dynamic stall phenomenon and the possibilities to control it, with application to vertical axis wind turbines (for urban users. The Phenomenon appear at low tip speed ratio (TSR<4 and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a computational study of dynamic stall around NACA 0012 airfoil in pitching motion at relative low Reynolds number (105. Also, we performed the same analysis for four flow control methods: two passive (Gurney flap and slot and two active (blowing jet on the rounded trailing edge and synthetic jet periodically activated. The Results are compared to those of an existing experimental case test.

  19. Unsteady aerodynamic behavior of an airfoil with and without a slat

    Science.gov (United States)

    Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.

    1993-01-01

    Unsteady flow behavior and load characteristics of a 2D VR-7 airfoil with and without a leading-edge slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 deg at Re = 200,000 to obtain the unsteady lift, drag, and pitching moment data. A fluorescent dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flowfield and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.

  20. Analysis of compressible light dynamic stall flow at transitional Reynolds numbers

    DEFF Research Database (Denmark)

    Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.

    1996-01-01

    Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...

  1. Design of the new Risoe-A1 airfoil family for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P; Dahl, K S [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    A new airfoil family for wind turbines was developed by use of a design method using numerical optimization and the flow solver, XFOIL. The results were evaluated with the Navier-Stokes solver EllipSys2D. The airfoil family constitutes 6 airfoils ranging in thickness from 15% to 30%. The airfoils were designed to have a maximum lift coefficient around 1.5 in natural conditions and high lift-drag ratios below maximum lift. Insensitivity to leading edge roughness was obtained by securing that transition from laminar to turbulent flow on the suction side occurred close to the leading edge just before stall. The airfoil family was designed for a 600 kW wind turbine and provides a basis for further enhancing the characteristics of airfoils for wind turbines and to tailor airfoils for specific rotor sizes and power regulation principles. (au) EFP-95; EFP-98. 16 refs.

  2. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees

    International Nuclear Information System (INIS)

    Moore, Joseph; Cory, Rick; Tedrake, Russ

    2014-01-01

    Birds routinely execute post-stall maneuvers with a speed and precision far beyond the capabilities of our best aircraft control systems. One remarkable example is a bird exploiting post-stall pressure drag in order to rapidly decelerate to land on a perch. Stall is typically associated with a loss of control authority, and it is tempting to attribute this agility of birds to the intricate morphology of the wings and tail, to their precision sensing apparatus, or their ability to perform thrust vectoring. Here we ask whether an extremely simple fixed-wing glider (no propeller) with only a single actuator in the tail is capable of landing precisely on a perch from a large range of initial conditions. To answer this question, we focus on the design of the flight control system; building upon previous work which used linear feedback control design based on quadratic regulators (LQR), we develop nonlinear feedback control based on nonlinear model-predictive control and ‘LQR-Trees’. Through simulation using a flat-plate model of the glider, we find that both nonlinear methods are capable of achieving an accurate bird-like perching maneuver from a large range of initial conditions; the ‘LQR-Trees’ algorithm is particularly useful due to its low computational burden at runtime and its inherent performance guarantees. With this in mind, we then implement the ‘LQR-Trees’ algorithm on real hardware and demonstrate a 95 percent perching success rate over 147 flights for a wide range of initial speeds. These results suggest that, at least in the absence of significant disturbances like wind gusts, complex wing morphology and sensing are not strictly required to achieve accurate and robust perching even in the post-stall flow regime. (papers)

  3. Experimental study of wind-turbine airfoil aerodynamics in high turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Devinant, Ph.; Laverne, T.; Hureau, J. [Laboratoire de Mecanique et d' Energetique Ecole Superieure de l' Energie et des Materiaux Universite d' Orleans, rue Leonard de Vinci F-45072 , Cedex 2 Orleans (France)

    2002-06-01

    Wind turbines very often have to operate in high turbulence related, for example, with lower layers atmospheric turbulence or wakes of other wind turbines. Most available data on airfoil aerodynamics concerns mainly aeronautical applications, which are characterized by a low level of turbulence (generally less than 1%) and low angles of attack. This paper presents wind tunnel test data for the aerodynamic properties-lift, drag, pitching moment, pressure distributions-of an airfoil used on a wind turbine when subjected to incident flow turbulence levels of 0.5-16% and placed at angles of attack up to 90. The results show that the aerodynamic behavior of the airfoil can be strongly affected by the turbulence level both qualitatively and quantitatively. This effect is especially evidenced in the angle of attack range corresponding to airfoil stall, as the boundary layer separation point advances along the leeward surface of the airfoil.

  4. Detached Eddy Simulations of an Airfoil in Turbulent Inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse; Sørensen, Niels; Davidson, Lars

    2009-01-01

    The effect of resolving inflow turbulence in detached eddy simulations of airfoil flows is studied. Synthetic turbulence is used for inflow boundary condition. The generated turbulence fields are shown to decay according to experimental data as they are convected through the domain with the free...... stream velocity. The subsonic flow around a NACA 0015 airfoil is studied at Reynolds number 1.6 × 106 and at various angles of attack before and after stall. Simulations with turbulent inflow are compared to experiments and to simulations without turbulent inflow. The results show that the flow...

  5. Experimental Investigation of Unsteady Aerodynamic Forces on Airfoil in Harmonic Translatory Motion

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Sørensen, Jens Nørkær

    2003-01-01

    The present paper describes the main results from an experimental investigation of the unsteady aerodynamic forces on a NACA 0015 airfoil subject to 1-degree-of-freedom (DOF) harmonic translatory motion. The focus of the experimental investigations was to determine the factors that influence...... maximum lift for both stationary and moving airfoil configurations. The mean as well as the dynamic characteristics of the different stall levels were found to differ from each other. An investigation of the negative aerodynamically damped cases showed that the damping decrease as the reduced frequency...... is decreased. Comparison between the experimental data, 2D Navier-Stokes computations and two commonly used dynamic stall models reveal that all models failed to reproduce the dynamic characteristics of the flow for incidences above maximum lift, however the Navier-Stokes computations generally captured...

  6. Inverse airfoil design method for low-speed straight-bladed Darrieus-type VAWT applications

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, F. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia); Paraschivoiu, I.; Trifu, O. [Ecole Polytechnique, Montreal, PQ (Canada); Hess, M.; Gabrys, C. [Mariah Power Inc., Reno, NV (United States)

    2008-07-01

    Inverse airfoil design of a low-speed straight-bladed Darrieus-type vertical axis wind turbine (VAWT) can help improve aerodynamic performance and power output by eliminating undesirable flow field characteristics at very low Reynolds number. This study used an interactive inverse airfoil design method (PROFOIL) that allows specification of velocity and boundary-layer characteristics over different segments of the airfoil subject to constraints on the geometry (closure) and the flow field (far field boundary). Additional constraints were also considered to address pitching moment coefficient, thickness and the power output for a given tip-speed ratio. Performance analyses of the airfoil and the VAWT were carried out using state-of-the-art analyses codes XFOIL and CARDAAV, respectively. XFOIL is a panel method with a coupled boundary-layer scheme and is used to obtain the aerodynamic characteristics of resulting airfoil shapes. The final airfoil geometry is obtained through a multi-dimensional Newton iteration. The study showed that the strength of the method lies in the inverse design methodology whereas its weaknesses is in reliably predicting aerodynamic characteristics of airfoils at low Reynolds numbers and high angles of attack. A 10-15 per cent increase in the relative performance of the VAWT was achieved with this method. Although the results of the study showed that the method has great application potential for VAWTs in general, there is much room for improvement in flow analysis capabilities for low Re flows in reliably predicting post-stall aerodynamic characteristics. In the absence of such analysis capabilities, the authors suggested that the results should be viewed qualitatively and not quantitatively. 36 refs., 1 tab., 4 figs.

  7. Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil

    Science.gov (United States)

    Ghia, K. N.; Osswald, G. A.; Ghia, U.

    1986-01-01

    The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.

  8. An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles

    Science.gov (United States)

    Ni, Zao; Su, Tsung-chow; Dhanak, Manhar

    2018-04-01

    Experimental data for untwisted airfoils are utilized to propose a model for predicting the lift coefficients of twisted airfoils with leading-edge tubercles. The effectiveness of the empirical model is verified through comparison with results of a corresponding computational fluid-dynamic (CFD) study. The CFD study is carried out for both twisted and untwisted airfoils with tubercles, the latter shown to compare well with available experimental data. Lift coefficients of twisted airfoils predicted from the proposed empirically-based model match well with the corresponding coefficients determined using the verified CFD study. Flow details obtained from the latter provide better insight into the underlying mechanism and behavior at stall of twisted airfoils with leading edge tubercles.

  9. Influence of transition on steady and unsteady wind-turbine airfoil aerodynamics

    Science.gov (United States)

    Paterson, Eric; Lavely, Adam; Vijayakumar, Ganesh; Brasseur, James

    2011-11-01

    Laminar-flow airfoils for large stall-regulated horizontal-axis wind turbines are designed to achieve a restrained maximum lift coefficient and a broad laminar low- drag bucket under steady flow conditions and at specific Reynolds numbers. Blind- comparisons of the 2000 NREL Unsteady Aerodynamics Experiment showed large discrepancies and illustrated the need for improved physics modeling. We have studied the S809 airfoil under static and dynamic (ramp-up, ramp-down, and oscillatory) conditions, using the four-equation transition model of Langtry and Menter (2009), which has been implemented as a library accessible by an OpenFOAM RANS solver. Model validation is performed using surface-pressure and lift/drag data from U. Glasgow (2009) and OSU (1995) wind tunnel experiments. Performance of the transition model is assessed by analyzing integrated performance metrics, as well as detailed surface pressure and pressure gradient, wall-shear stress, and boundary-layer profiles and separation points. Demonstration of model performance in the light- and deep-stall regimes of dynamic stall is an important step in reducing uncertainties in full 3D simulations of turbines operating in the atmospheric boundary layer. Supported by NSF Grant 0933647.

  10. Controlled Aerodynamic Loads on an Airfoil in Coupled Pitch/Plunge by Transitory Regulation of Trapped Vorticity

    Science.gov (United States)

    Tan, Yuehan; Crittenden, Thomas; Glezer, Ari

    2017-11-01

    The aerodynamic loads on an airfoil moving in coupled, time-periodic pitch-plunge beyond the static stall margin are controlled using transitory regulation of trapped vorticity concentrations. Actuation is effected by a spanwise array of integrated miniature chemical (combustion based) impulse actuators that are triggered intermittently during the airfoil's motion and have a characteristic time scale that is an order of magnitude shorter than the airfoil's convective time scale. Each actuation pulse effects momentary interruption and suspension of the vorticity flux with sufficient control authority to alter the airfoil's global aerodynamic characteristics throughout its motion cycle. The effects of the actuation are assessed using time-dependent measurements of the lift and pitching moment coupled with time-resolved particle image velocimetry over the airfoil and in its near wake that is acquired phased-locked to its motion. It is shown that while the presence of the pitch-coupled plunge delays lift and moment stall during upstroke, it also delays flow reattachment during the downstroke and results in significant degradation of the pitch stability. These aerodynamic shortcomings are mitigated using superposition of a limited number of pulses that are staged during the pitch/plunge cycle and lead to enhancement of cycle lift and pitch stability, and reduces the cycle hysteresis and peak pitching moment.

  11. Unsteady Double Wake Model for the Simulation of Stalled Airfoils

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Cayron, Antoine; Sørensen, Jens Nørkær

    2015-01-01

    In the present work, the recent developed Unsteady Double Wake Model, USDWM, is used to simulate separated flows past a wind turbine airfoil at high angles of attack. The solver is basically an unsteady two-dimensional panel method which uses the unsteady double wake technique to model flow separ...

  12. A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.H.; Gaunaa, M.; Aagaard Madsen, H.

    2004-06-01

    This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The m odel predicts the unsteady aerodynamic foreces and moment on an airfoil section undergoing arbitrary motion in heavy, lead-lag, and pitch. The model includes the effects of shed vorticity from the trailing edge (Theodorsen Theory), and the effects of an instationary trailing edge separation point. The governing equations of the model are nonlinear, and they are linearized about a steady state for application in stability analyzes. A validation is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. The proposed dyanmic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identical results to the full model for small amplitude oscillations. furthermore, it is shown that the response of finite thickness airfoils can be reproduced to a high accuracy by the use of specific inviscid response functions. (au)

  13. Nonlinear Characteristics of Helicopter Rotor Blade Airfoils: An Analytical Evaluation

    Directory of Open Access Journals (Sweden)

    Constantin Rotaru

    2013-01-01

    Full Text Available Some results are presented about the study of airloads of the helicopter rotor blades, the aerodynamic characteristics of airfoil sections, the physical features, and the techniques for modeling the unsteady effects found on airfoil operating under nominally attached flow conditions away from stall. The unsteady problem was approached on the basis of Theodorsen's theory, where the aerodynamic response (lift and pitching moment is considered as a sum of noncirculatory and circulatory parts. The noncirculatory or apparent mass accounts for the pressure forces required to accelerate the fluid in the vicinity of the airfoil. The apparent mass contributions to the forces and pitching moments, which are proportional to the instantaneous motion, are included as part of the quasi-steady result.

  14. The relevance of the dynamic stall effect for transient fault operations of active-stall wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul; Jensen, Birgitte Bak

    2005-06-15

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematically, and from this its effect quantified. Two quantities are chosen to describe the influence of the dynamic stall effect: one is active power and the other is time delay. Subsequently a transient fault scenario is simulated with and without the dynamic stall effect and the differences discussed. From this comparison, the conclusion is drawn that the dynamic stall effect has some influence on the post-fault behaviour of the wind turbine, and it is hence suggested that the dynamic stall effect is considered if an active-stall wind turbine is to be modelled realistically. (Author)

  15. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  16. Experimental Analysis of the Vorticity and Turbulent Flow Dynamics of a Pitching Airfoil at Realistic Flight Conditions

    National Research Council Canada - National Science Library

    Bowersox, Rodney D; Sahoo, Dipankar

    2007-01-01

    The primary objective of this research proposal was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions...

  17. Transonic airfoil design for helicopter rotor applications

    Science.gov (United States)

    Hassan, Ahmed A.; Jackson, B.

    1989-01-01

    Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.

  18. Characterization of the Effect of Wing Surface Instrumentation on UAV Airfoil Performance

    Science.gov (United States)

    Ratnayake, Nalin A.

    2009-01-01

    Recently proposed flight research at NASA Dryden Flight Research Center (DFRC) has prompted study into the aerodynamic effects of modifications made to the surfaces of laminar airfoils. The research is focused on the high-aspect ratio, laminar-flow type wings commonly found on UAVs and other aircraft with a high endurance requirement. A broad range of instrumentation possibilities, such as structural, pressure, and temperature sensing devices may require the alteration of the airfoil outer mold line as part of the installation process. This study attempts to characterize the effect of installing this additiona1 instrumentation on key airfoil performance factors, such as transition location, lift and drag curves, and stall point. In particular, the general case of an airfoil that is channeled in the spanwise direction is considered, and the impact on key performance characteristics is assessed. Particular attention is focused on exploring the limits of channel depth and low-Reynolds number on performance and stall characteristics. To quantify the effect of increased skin friction due to premature transition caused by protruding or recessed instrumentation, two simplified, conservative scenarios are used to consider two potential sources of diaturbance: A) that leading edge alterations would cause linearly expanding areas (triangles) of turbulent flow on both surfaces of the wing upstream of the natural transition point, and B) that a channel or bump on the upper surface would trip turbulent flow across the whole upper surface upstream of the natural transition point. A potentially more important consideration than the skin friction drag increment is the change in overall airfoil performance due to the installation of instrumentation along most of the wingspan. To quantify this effect, 2D CFD simulations of the flow over a representative mid-span airfoil section were conducted in order to assess the change in lift and drag curves for the airfoil in the presence of

  19. Numerical investigation of aerodynamic flow actuation produced by surface plasma actuator on 2D oscillating airfoil

    Directory of Open Access Journals (Sweden)

    Minh Khang Phan

    2016-08-01

    Full Text Available Numerical simulation of unsteady flow control over an oscillating NACA0012 airfoil is investigated. Flow actuation of a turbulent flow over the airfoil is provided by low current DC surface glow discharge plasma actuator which is analytically modeled as an ion pressure force produced in the cathode sheath region. The modeled plasma actuator has an induced pressure force of about 2 kPa under a typical experiment condition and is placed on the airfoil surface at 0% chord length and/or at 10% chord length. The plasma actuator at deep-stall angles (from 5° to 25° is able to slightly delay a dynamic stall and to weaken a pressure fluctuation in down-stroke motion. As a result, the wake region is reduced. The actuation effect varies with different plasma pulse frequencies, actuator locations and reduced frequencies. A lift coefficient can increase up to 70% by a selective operation of the plasma actuator with various plasma frequencies and locations as the angle of attack changes. Active flow control which is a key advantageous feature of the plasma actuator reveals that a dynamic stall phenomenon can be controlled by the surface plasma actuator with less power consumption if a careful control scheme of the plasma actuator is employed with the optimized plasma pulse frequency and actuator location corresponding to a dynamic change in reduced frequency.

  20. Particle image velocimetry investigation of flow over unsteady airfoil with trailing-edge strip

    Energy Technology Data Exchange (ETDEWEB)

    Gerontakos, P.; Lee, T. [McGill University, Montreal, QC (Canada)

    2008-04-15

    The flow over a flapped NACA 0012 airfoil, oscillated slightly through the static-stall angle, was investigated by using particle image velocimetry, and was supplemented by surface pressure and dynamic-load measurements. A significant increase in the dynamic lift force and nose-down pitching moment was observed. The most pronounced flow phenomenon was the formation and detachment of an energetic leading-edge vortex compared to the no-flapped airfoil. The details of the underlying physical mechanisms responsible for the various light-stall flow processes were provided via the instantaneous velocity and vorticity fields measurements. In contrast to the Gurney flap, the inverted trailing-edge strip led to an improved negative damping while a reduced lift force. The addition of an inverted strip always led to the appearance of a Karman-type vortex shedding street immediately downstream of the strip over the entire oscillation cycle. (orig.)

  1. Investigation of flow past a translatoric oscillating airfoil using detached eddy simulation

    DEFF Research Database (Denmark)

    Reck, Mads; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær

    2003-01-01

    Wind turbine rotor blades in operation have been observed to undergo stall-induced lead-lag instabilities resulting in dramatic reduction of blade life, due to structural fatigue. Previous attempts to numerically simulate the flow past a translatoric oscillating airfoil have been few and feeble...... at the high angle of attacks often experienced by the individual rotor blade. The present paper covers simulation of a translatoric oscillating NACA 0015 airfoil at a Reynolds number of 555,000, corresponding to avialable experimental data, using the newly adopted Detached Eddy Simulation (DES) approach...

  2. A Two Element Laminar Flow Airfoil Optimized for Cruise. M.S. Thesis

    Science.gov (United States)

    Steen, Gregory Glen

    1994-01-01

    Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.

  3. Analysis of unswept and swept wing chordwise pressure data from an oscillating NACA 0012 airfoil experiment. Volume 1: Technical Report

    Science.gov (United States)

    St.hilaire, A. O.; Carta, F. O.

    1983-01-01

    The unsteady chordwise force response on the airfoil surface was investigated and its sensitivity to the various system parameters was examined. A further examination of unsteady aerodynamic data on a tunnel spanning wing (both swept and unswept), obtained in a wind tunnel, was performed. The main body of this data analysis was carried out by analyzing the propagation speed of pressure disturbances along the chord and by studying the behavior of the unsteady part of the chordwise pressure distribution at various points of the airfoil pitching cycle. It was found that Mach number effects dominate the approach to and the inception of both static and dynamic stall. The stall angle decreases as the Mach number increases. However, sweep dominates the load behavior within the stall regime. Large phase differences between unswept and swept responses, that do not exist at low lift coefficient, appear once the stall boundary is penetrated. It was also found that reduced frequency is not a reliable indicator of the unsteady aerodynamic response in the high angle of attack regime.

  4. A new method for measuring lift forces acting on an airfoil under dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wolken-Moehlmann, Gerrit; Peinke, Joachim [Institute of Physics, University of Oldenburg (Germany)

    2008-07-01

    Wind turbines operate in a turbulent atmospheric boundary layer and are exposed to strong wind fluctuations in time and space. This can induce the dynamic stall, a phenomenon that causes extra loads. Dynamic stall occurs under fast changes in the angle of attack (AoA) and was determined in detail in helicopter research. But in contrast to helicopter aerodynamics, the changes in the AoA of wind turbine airfoils are in general non-sinusoidal, and thus it seems to be difficult to use these measurements and models. Our goal is to acquire lift data under conditions more comparable to real wind turbines, including non-periodic changes in the AoA. For this purpose a closed test section for our wind tunnel was built. An airfoil with a chord length of 0.2m will be rotated by a stepping motor with angular velocities of up to 300 {sup circle} /s. With a maximum wind velocity of 50m/s, Reynolds numbers of Re=700 000 can be realized. The lift force is determined by the counter forces acting on the wind tunnel walls. These are measured by two lines of 40 pressure sensors with sampling rates up to 2kHz. The results show distinct dynamic stall characteristics. Further experiments with different parameters and foils will give a better insight in dynamic stall and a verification and improvement of existing models.

  5. Dynamic lift measurements on a FX79W151A airfoil via pressure distribution on the wind tunnel walls

    Energy Technology Data Exchange (ETDEWEB)

    Wolken-Moehlmann, Gerrit [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany); Knebel, Pascal [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany); Barth, Stephan [ECN Wind Energy, Energy research Centre of the (Netherlands); Peinke, Joachim [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany)

    2007-07-15

    We report on an experimental setup for measurements of dynamic stall for airfoils via the pressure distribution over wind tunnel walls. This measuring technique, hitherto used for lift measurements under static conditions, is also an adequate method for dynamic conditions until stall occurs. A step motor is used, allowing for sinusoidal as well as non-sinusoidal and stochastic pitching to simulate fast fluctuating flow conditions. Measurements with sinusoidal pitching and constant angular velocities were done and show dynamic stall characteristics. Under dynamic stall conditions, maximum lift coefficients were up to 80% higher than the maximum for static lift.

  6. Effect of Reynolds Number on Aerodynamics of Airfoil with Gurney Flap

    Directory of Open Access Journals (Sweden)

    Shubham Jain

    2015-01-01

    Full Text Available Steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of variation in Reynolds number on the aerodynamics of the airfoil without and with a Gurney flap of height of 3% chord are presented in this paper. RANS based one-equation Spalart-Allmaras model is used for the computations. Both lift and drag coefficients increase with Gurney flap compared to those without Gurney flap at all Reynolds numbers at all angles of attack. The zero lift angle of attack seems to become more negative as Reynolds number increases due to effective increase of the airfoil camber. However the stall angle of attack decreased by 2° for the airfoil with Gurney flap. Lift coefficient decreases rapidly and drag coefficient increases rapidly when Reynolds number is decreased below critical range. This occurs due to change in flow pattern near Gurney flap at low Reynolds numbers.

  7. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil.

    Science.gov (United States)

    Tian, Weijun; Yang, Zhen; Zhang, Qi; Wang, Jiyue; Li, Ming; Ma, Yi; Cong, Qian

    2017-01-01

    The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.

  8. Nonlinear Aeroelastic Study of Stall Induced Oscillation in a Symmetric Airfoil

    NARCIS (Netherlands)

    Sarkar, S.; Bijl, H.

    2006-01-01

    In this paper the aeroelastic stability of a wind turbine rotor in the dynamic stall regime is investigated. Increased flexibility of modern turbine blades makes them more susceptible to aeroelastic instabilities. Complex oscillation modes like flap/lead-lag are of particular concern, which give way

  9. Development of High Speed Imaging and Analysis Techniques Compressible Dynamics Stall

    Science.gov (United States)

    Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    Dynamic stall has limited the flight envelope of helicopters for many years. The problem has been studied in the laboratory as well as in flight, but most research, even in the laboratory, has been restricted to surface measurement techniques such as pressure transducers or skin friction gauges, except at low speed. From this research, it became apparent that flow visualization tests performed at Mach numbers representing actual flight conditions were needed if the complex physics associated with dynamic stall was to be properly understood. However, visualization of the flow field during compressible conditions required carefully aligned and meticulously reconstructed holographic interferometry. As part of a long-range effort focused on exposing of the physics of compressible dynamic stall, a research wind tunnel was developed at NASA Ames Research Center which permits visual access to the full flow field surrounding an oscillating airfoil during compressible dynamic stall. Initially, a stroboscopic schlieren technique was used for visualization of the stall process, but the primary research tool has been point diffraction interferometry(PDI), a technique carefully optimized for use in th is project. A review of the process of development of PDI will be presented in the full paper. One of the most valuable aspects of PDI is the fact that interferograms are produced in real time on a continuous basis. The use of a rapidly-pulsed laser makes this practical; a discussion of this approach will be presented in the full paper. This rapid pulsing(up to 40,000 pulses/sec) produces interferograms of the rapidly developing dynamic stall field in sufficient resolution(both in space and time) that the fluid physics of the compressible dynamic stall flowfield can be quantitatively determined, including the gradients of pressure in space and time. This permits analysis of the influence of the effect of pitch rate, Mach number, Reynolds number, amplitude of oscillation, and other

  10. Reversible airfoils for stopped rotors in high speed flight

    International Nuclear Information System (INIS)

    Niemiec, Robert; Jacobellis, George; Gandhi, Farhan

    2014-01-01

    This study starts with the design of a reversible airfoil rib for stopped-rotor applications, where the sharp trailing-edge morphs into the rounded leading-edge, and vice-versa. A NACA0012 airfoil is approximated in a piecewise linear manner and straight, rigid outer profile links used to define the airfoil contour. The end points of the profile links connect to control links, each set on a central actuation rod via an offset. Chordwise motion of the actuation rod moves the control and the profile links and reverses the airfoil. The paper describes the design methodology and evolution of the final design, based on which two reversible airfoil ribs were fabricated and used to assemble a finite span reversible rotor/wing demonstrator. The profile links were connected by Aluminum strips running in the spanwise direction which provided stiffness as well as support for a pre-tensioned elastomeric skin. An inter-rib connector with a curved-front nose piece supports the leading-edge. The model functioned well and was able to reverse smoothly back-and-forth, on application and reversal of a voltage to the motor. Navier–Stokes CFD simulations (using the TURNS code) show that the drag coefficient of the reversible airfoil (which had a 13% maximum thickness due to the thickness of the profile links) was comparable to that of the NACA0013 airfoil. The drag of a 16% thick elliptical airfoil was, on average, about twice as large, while that of a NACA0012 in reverse flow was 4–5 times as large, even prior to stall. The maximum lift coefficient of the reversible airfoil was lower than the elliptical airfoil, but higher than the NACA0012 in reverse flow operation. (paper)

  11. Development and application of a dynamic stall model for rotating wind turbine blades

    International Nuclear Information System (INIS)

    Xu, B F; Yuan, Y; Wang, T G

    2014-01-01

    In unsteady conditions of wind turbines, both the dynamic stall phenomenon and the three-dimensional (3D) rotational effect affect the rotor aerodynamics. The dynamic stall mechanism for rotating wind turbine blades is first investigated. Through the comparison of the aerodynamic data between the rotating blade and the two-dimensional (2D) airfoil, the normal force slope in the attached flow and the separation point expression in the separated flow are modified in the Beddoes-Leishman (B-L) dynamic stall model for rotating NREL wind turbine blades. The modified model is validated by the comparison between the calculation results and the experimental results of the lift and drag coefficients at different radial positions. Both the hysteresis loop shapes and the calculation values are closer to the experiment than the 2D dynamic stall model. The present dynamic stall model is then coupled to a free vortex wake model. The coupled model is used to calculate the unsteady blade aerodynamic loads and the low speed shaft torque of the NREL wind turbine in a yawed condition. The accuracy is greatly improved by the corrections presented in the paper

  12. A Comparative Study Using CFD to Predict Iced Airfoil Aerodynamics

    Science.gov (United States)

    Chi, x.; Li, Y.; Chen, H.; Addy, H. E.; Choo, Y. K.; Shih, T. I-P.

    2005-01-01

    WIND, Fluent, and PowerFLOW were used to predict the lift, drag, and moment coefficients of a business-jet airfoil with a rime ice (rough and jagged, but no protruding horns) and with a glaze ice (rough and jagged end has two or more protruding horns) for angles of attack from zero to and after stall. The performance of the following turbulence models were examined by comparing predictions with available experimental data. Spalart-Allmaras (S-A), RNG k-epsilon, shear-stress transport, v(sup 2)-f, and a differential Reynolds stress model with and without non-equilibrium wall functions. For steady RANS simulations, WIND and FLUENT were found to give nearly identical results if the grid about the iced airfoil, the turbulence model, and the order of accuracy of the numerical schemes used are the same. The use of wall functions was found to be acceptable for the rime ice configuration and the flow conditions examined. For rime ice, the S-A model was found to predict accurately until near the stall angle. For glaze ice, the CFD predictions were much less satisfactory for all turbulence models and codes investigated because of the large separated region produced by the horns. For unsteady RANS, WIND and FLUENT did not provide better results. PowerFLOW, based on the Lattice Boltzmann method, gave excellent results for the lift coefficient at and near stall for the rime ice, where the flow is inherently unsteady.

  13. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Science.gov (United States)

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In

  14. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambdaoperate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying

  15. URANS simulations of separated flow with stall cells over an NREL S826 airfoil

    DEFF Research Database (Denmark)

    Sarlak Chivaee, Hamid; Nishino, T.; Sørensen, Jens Nørkær

    2016-01-01

    airfoil using unsteady Reynolds-averaged Navier-Stokes (URANS) approach. Results of the simulations are demonstrated in terms of mean flow velocity, lift and drag, as well as pressure distribution, and validated against available experimental data. The simulations are carried out with a wide computational......A series of wind tunnel measurements and oil flow visualization was recently carried out at the Technical University of Denmark in order to investigate flow characteristics over a 14% thick NREL S826 airfoil at low Reynolds numbers. This paper aims at presenting numerical simulations of the same...

  16. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    Science.gov (United States)

    Aftab, S M A; Ahmad, K A

    2017-01-01

    The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  17. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl’s Airfoil

    Directory of Open Access Journals (Sweden)

    Weijun Tian

    2017-01-01

    Full Text Available The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl’s wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl’s wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44% compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.

  18. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    Directory of Open Access Journals (Sweden)

    S M A Aftab

    Full Text Available The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c, the wavelength (0.25c is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  19. Aerodynamic characteristics of an oscillating airfoil. [For Vertical Axis Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Wickens, R H

    1986-03-01

    Results are reported from wind tunnel tests to study the effects of dynamic aerodynamics on the efficiency of a NACA 0018 airfoil used on a Darreius vertical axis wind turbine (VAWT). The topic is of interest because of uncontrolled pitching which occurs during operation and which produces stall, turbulence and separation effects that reduce efficiency. Present stream-tube theory and axial momentum models are not applicable in the unstable regimes. The wind tunnel tests were conducted with a 45 m/sec flow with an Re of 1.5 million. The situation mimicked typical wind turbine operational conditions. The airfoil was mounted on a hydraulic actuator to allow it to rotate about its quarter-chord location and to control the extent and frequency of oscillations. Data were also gathered on the performance in a steady flow for comparative purposes. Summary data are provided on the static and total pressures over a complete cycle of oscillation, and related to the angles of attack, time of onset of stall, and the lift and drag coefficients. The limitations of the study with regard to the absence of consideration of the flow acceleration experienced by an advancing blade are noted. 13 references.

  20. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper.Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0.It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain

  1. Design of a new urban wind turbine airfoil using a pressure-load inverse method

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, J.C.C.; Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Marques da Silva, F. [LNEC - Laboratorio Nacional de Engenharia Civil, Av. Brasil, 101, 1700-066 Lisboa (Portugal); Estanqueiro, A.I. [INETI - Instituto Nacional de Engenharia, Tecnologia e Inovacao Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-12-15

    This paper presents the design methodology of a new wind turbine airfoil that achieves high performance in urban environment by increasing the maximum lift. For this purpose, an inverse method was applied to obtain a new wind turbine blade section with constant pressure-load along the chord, at the design inlet angle. In comparison with conventional blade section designs, the new airfoil has increased maximum lift, reduced leading edge suction peak and controlled soft-stall behaviour, due to a reduction of the adverse pressure gradient on the suction side. Wind tunnel experimental results confirmed the computational results. (author)

  2. Flow transients induced on a 2D airfoil by pulse-modulated actuation

    Energy Technology Data Exchange (ETDEWEB)

    Amitay, Michael [Rensselaer Polytechnic Institute, Mechanical, Aerospace and Nuclear Engineering, Troy, NY (United States); Glezer, Ari [Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, GA (United States)

    2006-02-01

    The transitory response of the flow over a stalled, 2D airfoil to a momentary synthetic jet actuation that is realized by low-duty cycle amplitude modulation of the actuator's resonant waveform is investigated experimentally using hot-wire anemometry and flow visualization. The pulse-like actuation results in the shedding of large vortical structures and a momentary flow attachment. (orig.)

  3. Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number

    Directory of Open Access Journals (Sweden)

    Ma Dongli

    2015-08-01

    Full Text Available This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles (HAUAVs cruising at low speed. Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow. The water tunnel model tests further validate the accuracy and effectiveness of the numerical method. Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses (12%, 14%, 16%, 18%, as well as different locations of the maximum relative thickness (x/c = 22%, 26%, 30%, 34%, at a low Reynolds number of 5 × 105. Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble. On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance. The numerical method is feasible for the simulation of low Reynolds number flow. The study can help to provide a basis for the design of low Reynolds number airfoil.

  4. RANS study of unsteady flow around a profile blade : application to stall of horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Belkheir, N. [Khemis Miliana Univ., Ain Defla (Algeria); Dizene, R. [Univ. des Sciences et de la Technologie Houari Boumediene, Algiers (Algeria). Laboratoire de Mecanique Avancee; Khelladi, S.; Massouh, F.; Dobrev, I. [Arts et Metiers Paris Tech., Paris (France)

    2010-07-01

    The shape of an airfoil is designed to achieve the best aerodynamic performance. An aerofoil section undergoes dynamic stall when subjected to any form of unsteady angle of pitch. The study of a horizontal-axis wind turbine (HAWT) under wind operating conditions is complex because it is subject to instantaneous speed and wind direction variation. When turbine blades are driven into a dynamic stall, the lift coefficient drops suddenly resulting in a degradation in aerodynamic performance. This study presented steady and unsteady wind load predictions over an oscillating S809 airfoil tested in a subsonic wind tunnel. A model of sinusoidal pitch oscillations was used. The values for the angles of attack in steady state ranged from -20 to +40 degrees. The model considered 3 frequencies and 2 amplitudes. The two-dimensional numerical model simulated the instantaneous change of wind direction with respect to the turbine blade. Results were compared with data measurements of S809 aerofoil. Reasonable deviations were obtained between the predicted and experimental results for pitch oscillations. The URANS approach was used to predict the stall while the software FLUENT was used for the numerical solution. It was concluded that the behaviour of the unsteady flow in the wind farm must be considered in order to obtain an accurate estimate of the wind turbine aerodynamic load. 12 refs., 5 figs.

  5. Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

    Science.gov (United States)

    Mahajan, A. J.; Kaza, K. R. V.; Dowell, E. H.

    1993-01-01

    A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

  6. Vortex-induced vibrations of a DU96-W-180 airfoil at 90° angle of attack

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.

    2014-01-01

    This work presents an analysis of vortex-induced vibrations of a DU96-W-180 airfoil in deep stall at a 90 degrees angle of attack, based on 2D and 3D Reynolds Averaged Navier Stokes and 3D Detached Eddy Simulation unsteady Computational Fluid Dynamics computations with non-moving, prescribed motion...... and elastically mounted airfoil suspensions. Stationary vortex-shedding frequencies computed in 2D and 3D Computational Fluid Dynamics differed. In the prescribed motion computations, the airfoil oscillated in the direction of the chord line. Negative aerodynamic damping, found in both 2D and 3D Computational...... Fluid Dynamics computations with moving airfoil, showed in the vicinity of the stationary vortex-shedding frequency computed by 2D Computational Fluid Dynamics. A shorter time series was sufficient to verify the sign of the aerodynamic damping in the case of the elastic computations than the prescribed...

  7. Flow control at low Reynolds numbers using periodic airfoil morphing

    Science.gov (United States)

    Jones, Gareth; Santer, Matthew; Papadakis, George; Bouremel, Yann; Debiasi, Marco; Imperial-NUS Joint PhD Collaboration

    2014-11-01

    The performance of airfoils operating at low Reynolds numbers is known to suffer from flow separation even at low angles of attack as a result of their boundary layers remaining laminar. The lack of mixing---a characteristic of turbulent boundary layers---leaves laminar boundary layers with insufficient energy to overcome the adverse pressure gradient that occurs in the pressure recovery region. This study looks at periodic surface morphing as an active flow control technique for airfoils in such a flight regime. It was discovered that at sufficiently high frequencies an oscillating surface is capable of not only reducing the size of the separated region---and consequently significantly reducing drag whilst simultaneously increasing lift---but it is also capable of delaying stall and as a result increasing CLmax. Furthermore, by bonding Macro Fiber Composite actuators (MFCs) to the underside of an airfoil skin and driving them with a sinusoidal frequency, it is shown that this control technique can be practically implemented in a lightweight, energy efficient way. Imperial-NUS Joint Ph.D. Programme.

  8. Viscous-inviscid method for the simulation of turbulent unsteady wind turbine airfoil flow

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, L.; Velazquez, A.; Matesanz, A. [Thermal Engineering Area, Carlos III University of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain)

    2002-06-01

    A Viscous-inviscid interaction method is presented that allows for the simulation of unsteady airfoil flow in the context of wind turbine applications. The method couples a 2-D external unsteady potential flow to a 2-D unsteady turbulent boundary layer. The separation point on the airfoil leeward side is determined in a self-consistent way from the boundary-layer equations, and the separated flow region is modelled independently. Wake shape and motion are also determined in a self-consistent way, while an unsteady Kutta condition is implemented. The method is able to deal with attached flow and light stall situations characterised by unsteady turbulent boundary-layer separation size up to 50% of the airfoil chord length. The results of the validation campaign show that the method could be used for industrial design purposes because of its numerical robustness, reasonable accuracy, and limited computational time demands.

  9. Active Control of Separation from the Slat Shoulder of a Supercritical Airfoil

    Science.gov (United States)

    Pack, LaTunia G.; Schaeffler, Norman W.; Yao, Chung-Sheng; Seifert, Avi

    2002-01-01

    Active flow control in the form of zero-mass-flux excitation was applied at the slat shoulder of a simplified high-lift airfoil to delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge slat and a 25% chord simply hinged trailing edge flap. The cruise configuration data was successfully reproduced, repeating previous experiments. The effects of flap and slat deflection angles on the performance of the airfoil integral parameters were quantified. Detailed flow features were measured as well, in an attempt to identify optimal actuator placement. The measurements included: steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization and Particle Image Velocimetry (PIV). High frequency periodic excitation was applied to delay the occurrence of slat stall and improve the maximum lift by 10 to 15%. Low frequency amplitude modulation was used to reduce the oscillatory momentum coefficient by roughly 50% with similar aerodynamic performance.

  10. Computational methods for investigation of surface curvature effects on airfoil boundary layer behavior

    Directory of Open Access Journals (Sweden)

    Xiang Shen

    2017-03-01

    Full Text Available This article presents computational algorithms for the design, analysis, and optimization of airfoil aerodynamic performance. The prescribed surface curvature distribution blade design (CIRCLE method is applied to a symmetrical airfoil NACA0012 and a non-symmetrical airfoil E387 to remove their surface curvature and slope-of-curvature discontinuities. Computational fluid dynamics analysis is used to investigate the effects of curvature distribution on aerodynamic performance of the original and modified airfoils. An inviscid–viscid interaction scheme is introduced to predict the positions of laminar separation bubbles. The results are compared with experimental data obtained from tests on the original airfoil geometry. The computed aerodynamic advantages of the modified airfoils are analyzed in different operating conditions. The leading edge singularity of NACA0012 is removed and it is shown that the surface curvature discontinuity affects aerodynamic performance near the stalling angle of attack. The discontinuous slope-of-curvature distribution of E387 results in a larger laminar separation bubble at lower angles of attack and lower Reynolds numbers. It also affects the inherent performance of the airfoil at higher Reynolds numbers. It is shown that at relatively high angles of attack, a continuous slope-of-curvature distribution reduces the skin friction by suppressing both laminar and turbulent separation, and by delaying laminar-turbulent transition. It is concluded that the surface curvature distribution has significant effects on the boundary layer behavior and consequently an improved curvature distribution will lead to higher aerodynamic efficiency.

  11. Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array

    Science.gov (United States)

    Papageorgiou, Anthony W.; Parkinson, Luke A.; Karas, Andrew R.; Hansen, Kristy L.; Arkwright, John W.

    2018-02-01

    Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.

  12. Modification of the NACA 632-415 leading edge for better aerodynamic performance

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.

    2002-01-01

    Double stall causes more than one power level when stall-regulated wind turbines operate in stall. This involves significant uncertainty on power production and loads. To avoid double stall, a new leading edge was designed for the NACA 632-415 airfoil, an airfoil that is often used in the tip...... region of wind turbines. A numerical optimization tool incorporating XFOIL was used with a special formulation for the airfoil leading edge shape. The EllipSys2D CFD code was used to analyze the modified airfoil. In theory and in wind tunnel tests, the modified airfoil showed smooth and stable stall...... stall and aerodynamic damping characteristics for the modified airfoil and the NACA 632-415 airfoil were the same. The modified airfoil with leading edge roughness in general had better characteristics compared with the NACA 632-415 airfoil. ©2002 ASME...

  13. Wind turbine blade vibration at standstill conditions — the effect of imposing lag on the aerodynamic response of an elastically mounted airfoil

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac

    2015-01-01

    The present study investigated physical phenomena related to stall-induced vibrations potentially existing on wind turbine blades at standstill conditions. The study considered two-dimensional airfoil sections while it omitted three-dimensional effects. In the study, a new engineering-type...... computational model for the aeroelastic response of an elastically mounted airfoil was used to investigate the influence of temporal lag in the aerodynamic response on the aeroelastic stability in deep stall. The study indicated that even a relatively low lag significantly increases the damping of the model....... A comparison between the results from a model with lag imposed on all force components with the results from a model with lag imposed exclusively on the lift showed only marginal difference between the damping in the two cases. A parameter study involving positions of the elastic hinge point and the center...

  14. ATEFlap aerodynamic model, a dynamic stall model including the effects of trailing edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.; Gaunaa, M.

    2012-02-15

    The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)

  15. Airfoils and method for designing airfoils

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to airfoils and design and design optimization of airfoils, in particular airfoils of rotor blades for wind turbines. One aspect of the invention relates to an airfoil with an external shape provided by an airfoil profile defined by a limited number of parameters......, such as a set of parameters. Another aspect of the invention relates to a method for designing an airfoil by means of an analytical airfoil profile, said method comprising the step of applying a conformal mapping to a near circle in a near circle plane, wherein the near circle is at least partly expressed...... by means of an analytical function, said conformal mapping transforming the near circle in the near circle plane to the airfoil profile in an airfoil plane. L...

  16. Airfoil computations using the gamma-Retheta model; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Niels N.

    2009-05-15

    The present work addresses the validation of the implementation of the Menter, Langtry et al. gamma-theta correlation based transition model [1, 2, 3] in the EllipSys2D code. Firstly the 2. order of accuracy of the code is verified using a grid refinement study for laminar, turbulent and transitional computations. Based on this, an estimate of the error in the computations is determined to be approximately one percent in the attached region. Following the verification of the implemented model, the model is applied to four airfoils, NACA64-018, NACA64-218, NACA64-418 and NACA64-618 and the results are compared to measurements [4] and computations using the Xfoil code by Drela et al. [5]. In the linear pre stall region good agreement is observed both for lift and drag, while differences to both measurements and Xfoil computations are observed in stalled conditions. (au)

  17. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    International Nuclear Information System (INIS)

    Xu, Haoran; Yang, Hua; Liu, Chao; Shen, Wenzhong; Zhu, Weijun

    2014-01-01

    The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL methods at a chord Reynolds number of 3 × 10 6 . The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST model and RFOIL all show that with the increase of thickness of trailing edge, the linear region of lift is extended and the maximum lift also increases, the increase rate and amount of lift become limited gradually at low angles of attack, while the drag increases dramatically. For thicker airfoils with larger maximum thickness to chord length, the increment of lift is larger than that of relatively thinner airfoils when the thickness of blunt trailing edge is increased from 5% to 10% chord length. But too large lift can cause abrupt stall which is profitless for power output. The transient characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase. The transient calculations over-predict the lift at large angles of attack and drag at all angles of attack than the steady calculations which is likely to be caused by the artificial restriction of the flow in two dimensions

  18. 2-D and 3-D CFD Investigation of NREL S826 Airfoil at Low Reynolds Numbers

    International Nuclear Information System (INIS)

    Cakmakcioglu, S C; Sert, I O; Tugluk, O; Sezer-Uzol, N

    2014-01-01

    In this study CFD investigation of flow over the NREL S826 airfoil is performed. NREL S826 airfoil was designed for HAWTs of 10-15 meter diameters. However, it is used in the NTNU wind turbine rotor model and low Reynolds number flow characteristics become important in the validations with the test cases of this rotor model. The airfoil CFD simulations are carried out in 2-D and 3-D computational domains. The k-rn SST turbulence model with Langtry-Menter (γ-Re θ ) transition prediction model for turbulence closure is used in the calculations. The Delayed DES is also performed in the stall region for comparisons. The results are compared with the available METUWIND experimental data, and are shown to be in fair agreement. It is observed that 3-D CFD analysis provides increased accuracy at increased computational cost

  19. An insight into the separate flow and stall delay for HAWT

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Guohua; Shen, Xin; Zhu, Xiaocheng; Du, Zhaohui [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-01-15

    The flow characteristics and the stall delay phenomenon of wind turbine rotor due to blade rotation in the steady state non-yawed conditions are investigated. An incompressible Reynolds-averaged Navier-Stokes solver is applied to carry out all the cases at different wind speeds from 5 m/s to 10 m/s with an interval of 1 m/s. CFD results turn out to agree well with experimental ones at incoming wind speeds below 10 m/s, though at 10 m/s some deviations exist due to the relative large flow separation and 3D spanwise flow over the suction surface of the blade. In the meanwhile, a lifting surface code with and without Du-Selig stall delay model is used to predict the power. A MATLAB code is developed to extract aerodynamic force coefficients from 3D CFD computations which are compared with the 2D airfoil wind tunnel experiment to demonstrate the stall delay and augmented lift phenomenon particularly at inboard span locations of the blade. The computational results are compared with the corrected value by the Du-Selig model and a lifting surface method derived data based on the measurements of the Unsteady Aerodynamic Experiment at the NASA Ames wind tunnel. (author)

  20. Control of unsteady separated flow associated with the dynamic pitching of airfoils

    Science.gov (United States)

    Ahmed, Sajeer

    1991-01-01

    Although studies have been done to understand the dependence of parameters for the occurrence of deep stall, studies to control the flow for sustaining lift for a longer time has been little. To sustain the lift for a longer time, an understanding of the development of the flow over the airfoil is essential. Studies at high speed are required to study how the flow behavior is dictated by the effects of compressibility. When the airfoil is pitched up in ramp motion or during the upstroke of an oscillatory cycle, the flow development on the upper surface of the airfoil and the formation of the vortex dictates the increase in lift behavior. Vortex shedding past the training edge decreases the lift. It is not clear what is the mechanism associated with the unsteady separation and vortex formation in present unsteady environment. To develop any flow control device, to suppress the vortex formation or delay separation, it is important that this mechanism be properly understood. The research activities directed toward understanding these questions are presented and the results are summarized.

  1. On the effects of leading edge vortex generators on an OA209 airfoil

    OpenAIRE

    Heine, Benjamin; Mulleners, Karen; Gardner, Anthony; Mai, Holger

    2009-01-01

    Leading edge vortex generators have been found to significantly increase the aerodynamic performance of an airfoil under dynamic stall conditions. However, the principle of operation of these devices is still unclear. Therefore static wind and water tunnel experiments as well as CFD simulations have been conducted on a rotary aircraft wing profile OA209. A POD analysis applied to the vector fields generated by PIV measurements showed that the vortex generators break larger flow structures...

  2. Theory and Low-Order Modeling of Unsteady Airfoil Flows

    Science.gov (United States)

    Ramesh, Kiran

    Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It

  3. Prediction of dynamic loads and induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Aagaard Madsen, H. [Risoe National Lab. (Denmark); Bjoerck, A. [Aeronautical Research Inst. of Sweden (Sweden); Enevoldsen, P. [Bonus Energy A/S (Denmark); Oeye, S. [The Technical Univ. of Denmark (Denmark); Ganander, H. [Teknikgruppen AB (Sweden); Winkelaar, D. [Netherlands Energy Research Foundation (Netherlands)

    1998-05-01

    Results from research in an EC Joule-III project and from national projects are presented. The objectives are improvement of design methods for stall regulated wind turbines with emphasis on stall induced vibrations and dynamic stall. The primary concern is limitation of the edgewise vibrations in the fundamental blade natural mode shape, which have caused trouble on modern wind turbines of approximate size 500 kW nominal power and 40 m rotor diameter. A theoretical study of quasi-steady aerodynamics confirms that the vibrations are driven basically by energy supplied from the aerodynamic forces during stalled operation. This energy exchange is equivalent to negative aerodynamic damping. The theoretical approach identifies the main parameters controlling the phenomenon. These parameters describe the steady and the dynamic airfoil characteristics, the overall aerodynamic layout of the blade, e.g. chord length and twist, the structural properties of the blade, e.g. structural damping and properties controlling the resulting vibration direction. Furthermore, full aeroelastic calculations and comparison with measurements show that the properties of the supporting structure, i.e. the main shaft, the nacelle and the tower, are important, as the global vibration of the rotor on its support may exchange energy with the blade vibration, when the blade natural frequency is close to one of the frequencies of the coupled rotor tilt-yaw mode shapes, usually denoted the global rotor whirl frequencies. It is confirmed that the influence of changing the primary design parameters can be determined by use of qualified aeroelastic calculations. Presented design guidelines therefore build on both the simple quasi-steady models, which can be used for the preliminary choice of the design variables mentioned above, and on full aeroelastic calculations. The aeroelastic calculations refine the design basis and should be used for choosing the final design variables and for final

  4. A stochastic model for the simulation of wind turbine blades in static stall

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.

    2010-01-01

    The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...... a conditional simulation technique for stochastic processes. The input data for the model can be collected either from measurements or from numerical results from a Computational Fluid Dynamics code for airfoil sections at constant angles of attack. An analysis of such data is provided, which helps to determine...

  5. 2D CFD Airfoil Analysis

    Science.gov (United States)

    Babb, Grace

    2017-11-01

    This work aims to produce a higher fidelity model of the blades for NASA's X-57 all electric propeller driven experimental aircraft. This model will, in turn, allow for more accurate calculations of the thrust each propeller can generate. This work uses computational fluid dynamics (CFD) to first analyze the propeller blades as a series of 11 differently shaped airfoils and calculate, among other things, the coefficients for lift and drag associated with each airfoil at different angles of attack. OpenFOAM-a C + + library that can be used to create series of applications for pre-processing, solving, and post-processing-is one of the primary tools utilized in these calculations. By comparing the data OpenFOAM generates about the NACA 23012 airfoil with existing experimental data about the NACA 23012 airfoil, the reliability of our model is measured and verified. A trustworthy model can then be used to generate more data and sent to NASA to aid in the design of the actual aircraft.

  6. Experimental investigation of the flowfield of an oscillating airfoil

    Science.gov (United States)

    Panda, J.; Zaman, K. B. M. Q.

    1992-01-01

    The flowfield of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than or = k less than or = 1.6 is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between angles of attack (alpha) of 5 and 25 degrees. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 degrees at k = 0.2, but is shed at the minimum alpha of 5 degrees at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 degrees) dominates the unsteady fluctuations in the wake.

  7. Performance assessment of Darrieus wind turbine with symmetric and cambered airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Cisse, H.; Trifu, O.; Paraschivoiu, I. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique

    2007-07-01

    This paper outlined the wind turbine and design software used to predict the flow conditions and performance of a straight-bladed Darrieus wind turbine. Three different blade sections were considered, notably the NACA 0018; the SNLA NLF 18/50 symmetrical airfoil; and the FX63-137 cambered airfoil. The numerical predictions of the flow conditions during the operation of the rotors were also presented. Torque yield for each blade section under a variety of operating conditions was presented. The numerical software program used in the study was based on a double-multiple streamtube model which considered a partition of the rotor in streamtubes and considered each of the 2 blade elements as an actuator disk. The actuator disk theory was based on a theory of momentum conservation. Wind velocities were determined in order to calculate forces acting on the actuator disks. A second set of equations was used to determine the forces acting on the upwind and downwind blade elements. Equations were also derived for the downwind interference factor. The following 3 main sets of data were used: (1) a geometry definition of the wind turbine; (2) operational conditions; and (3) main control parameters. Results of the study showed that the cambered airfoil blade section produced 10 times more torque in turbine starting conditions than the NACA 0018. Laminar airfoil lift to drag ratio at low angles of attack, and the use of appropriate Reynolds numbers resulted in higher efficiency. The large static stall angle of the cambered airfoil allowed higher power outputs than symmetrical airfoils. It was concluded that the starting torque of a Darrieus turbine can be increased by using a cambered blade section. 13 refs., 19 figs.

  8. Effects of grit roughness and pitch oscillations on the S810 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, R.R.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-01-01

    An S810 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory 3 x 5 subsonic wind tunnel under steady state and unsteady conditions. The test defined baseline conditions for steady state angles of attack from -20{degrees} to +40{degrees} and examined unsteady behavior by oscillating the model about its pitch axis for three mean angles, three frequencies, and two amplitudes. For all cases, Reynolds numbers of 0.75, 1, 1.25, and 1.5 million were used. In addition, the above conditions were repeated after the application of leading edge grit roughness (LEGR) to determine contamination effects on the airfoil performance. Baseline steady state results of the S810 testing showed a maximum lift coefficient of 1.15 at 15.2{degrees}angle of attack. The application of LEGR reduced the maximum lift coefficient by 12% and increased the 0.0085 minimum drag coefficient value by 88%. The zero lift pitching moment of -0.0286 showed a 16% reduction in magnitude to -0.0241 with LEGR applied. Data were also obtained for two pitch oscillation amplitudes: {plus_minus}5.5{degrees} and {plus_minus}10{degrees}. The larger amplitude consistently gave a higher maximum lift coefficient than the smaller amplitude and both sets of unsteady maximum lift coefficients were greater than the steady state values. Stall was delayed on the airfoil while the angle of attack was increasing, thereby causing an increase in maximum lift coefficient. A hysteresis behavior was exhibited for all the unsteady test cases. The hysteresis loops were larger for the higher reduced frequencies and for the larger amplitude oscillations. In addition to the hysteresis behavior, an unusual feature of these data were a sudden increase in the lift coefficient where the onset of stall was expected. As in the steady case, the effect of LEGR in the unsteady case was to reduce the lift coefficient at high angles of attack.

  9. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    Peter Busche

    2012-10-01

    Full Text Available A sensor concept for detection of boundary layer separation (flow separation, stall and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor’s position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle. Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow and even negative flow values (back flow for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.

  10. Airfoil structure

    Science.gov (United States)

    Frey, G.A.; Twardochleb, C.Z.

    1998-01-13

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.

  11. Education stalls and subsequent stalls in African fertility: A descriptive overview

    Directory of Open Access Journals (Sweden)

    Anne Goujon

    2015-12-01

    Full Text Available Background: Recent stalls in fertility decline have been observed in a few countries in sub-Saharan Africa, and so far no plausible common reason has been identified in the literature. This paper develops the hypothesis that these fertility stalls could be associated with stalls in the progress of education among the women of the relevant cohorts, possibly resulting partly from the Structural Adjustment Programs (SAPs of the 1980s. Methods: We descriptively link the change in the education composition of successive cohorts of young women in sub-Saharan Africa and the recent fertility stalls. We use reconstructed data on population by age, gender, and level of education from www.wittgenstein centre.org/dataexplorer, and fertility rates from the United Nations. Results: In most sub-Saharan African countries, we observe that the same countries that had fertility stalls had a stall in the progress of education, particularly for young women who were of primary school age during the 1980s, when most of the countries were under structural adjustment. Conversely, stalls in fertility are less common in countries that did not have an education stall, possibly in relation to SAPs. Conclusions: The results point to the possibility of a link between the recent fertility stalls and discontinuities in the improvement of the education of the relevant cohorts, which in turn could be related to the SAPs in the 1980s. This descriptive finding now needs to be corroborated through more detailed cohort-specific fertility analysis. If the education-fertility link can be further established, it will have important implications for the projections of population growth in affected countries.

  12. Composite airfoil assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose

    2015-03-03

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  13. RANS Simulations of Aerodynamic Performance of NACA 0015 Flapped Airfoil

    Directory of Open Access Journals (Sweden)

    Sohaib Obeid

    2017-01-01

    Full Text Available An analysis of 2D subsonic flow over an NACA 0015 airfoil with a 30% trailing edge flap at a constant Reynolds number of 106 for various incidence angles and a range of flap deflections is presented. The steady-state governing equations of continuity and momentum conservation are solved combined with the realizable k-ε turbulence model using the ANSYS-Fluent code (Version 13.7, ANSYS, Inc., Canonsburg, PA, USA. The primary objective of the study is to provide a comprehensive understanding of flow characteristics around the NACA 0015 airfoil as a function of the angle of attack and flap deflection at Re = 106 using the realizable k-ε turbulence model. The results are validated through comparison of the predictions with the free field experimental measurements. Consistent with the experimental observations, the numerical results show that increased flap deflections increase the maximum lift coefficient, move the zero-lift angle of attack (AoA to a more negative value, decrease the stall AoA, while the slope of the lift curve remains unchanged and the curve just shifts upwards. In addition, the numerical simulations provide limits for lift increment Δ C l and Cl, max values to be 1.1 and 2.2, respectively, obtained at a flap deflection of 50°. This investigation demonstrates that the realizable k-ε turbulence model is capable of predicting flow features over an airfoil with and without flap deflections with reasonable accuracy.

  14. Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Heating Technology Research and Development Center, Beijing District Heating Group, Beijing 100028 (China); Zhang, Lishen, E-mail: lishenzhang@sina.com [Heating Technology Research and Development Center, Beijing District Heating Group, Beijing 100028 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Jufeng, E-mail: lijufeng.net@163.com [Nuclear and Radiation Safety Center, Ministry of Environmental Protection, Beijing 100082 (China); Zhang, Hang, E-mail: zhanghang@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhigang, E-mail: zgliu9322@163.com [Energy Research Institute of Shandong Academy of Sciences, Jinan, Shandong 250014 (China)

    2017-04-15

    Highlights: • Pressure drop of NACA 0020 airfoil fin PCHE reduces strikingly in comparison with the zigzag PCHE. • Pressure drop of NACA 00XX airfoil fin PCHE decreases as airfoil thickness increases. • Heat transfer performance of NACA 00XX airfoil fin PCHE increases as airfoil thickness rises. • Comprehensive performance of NACA 00XX airfoil fin PCHE degrades as airfoil thickness increases. - Abstract: Printed circuit heat exchanger (PCHE) can be used in supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle. The present study compares NACA 0020 airfoil fin PCHE with conventional zigzag PCHE by numerical analysis. Pressure drop of the former has a striking reduction while maintaining excellent heat transfer performance. Comparison on four NACA 00XX series airfoil fin PCHEs is performed to investigate the influence of airfoil profile on flow and heat transfer performance. With a fixed vertical pitch, heat transfer performance of NACA series airfoil fin PCHE increases as airfoil thickness increases. However, comprehensive performance, in which both flow and heat transfer are taken into account, degrades with increasing airfoil thickness. Among four NACA airfoil fin PCHEs presented in this paper, NACA 0010 airfoil fin PCHE demonstrates the best comprehensive performance.

  15. Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil

    International Nuclear Information System (INIS)

    Chen, Fei; Zhang, Lishen; Huai, Xiulan; Li, Jufeng; Zhang, Hang; Liu, Zhigang

    2017-01-01

    Highlights: • Pressure drop of NACA 0020 airfoil fin PCHE reduces strikingly in comparison with the zigzag PCHE. • Pressure drop of NACA 00XX airfoil fin PCHE decreases as airfoil thickness increases. • Heat transfer performance of NACA 00XX airfoil fin PCHE increases as airfoil thickness rises. • Comprehensive performance of NACA 00XX airfoil fin PCHE degrades as airfoil thickness increases. - Abstract: Printed circuit heat exchanger (PCHE) can be used in supercritical carbon dioxide (S-CO_2) Brayton cycle. The present study compares NACA 0020 airfoil fin PCHE with conventional zigzag PCHE by numerical analysis. Pressure drop of the former has a striking reduction while maintaining excellent heat transfer performance. Comparison on four NACA 00XX series airfoil fin PCHEs is performed to investigate the influence of airfoil profile on flow and heat transfer performance. With a fixed vertical pitch, heat transfer performance of NACA series airfoil fin PCHE increases as airfoil thickness increases. However, comprehensive performance, in which both flow and heat transfer are taken into account, degrades with increasing airfoil thickness. Among four NACA airfoil fin PCHEs presented in this paper, NACA 0010 airfoil fin PCHE demonstrates the best comprehensive performance.

  16. Observations of the Growth and Decay of Stall Cells during Stall and Surge in an Axial Compressor

    Directory of Open Access Journals (Sweden)

    Adam R. Hickman

    2017-01-01

    Full Text Available This research investigated unsteady events such as stall inception, stall-cell development, and surge. Stall is characterized by a decrease in overall pressure rise and nonaxisymmetric throughflow. Compressor stall can lead to surge which is characterized by quasi-axisymmetric fluctuations in mass flow and pressure. Unsteady measurements of the flow field around the compressor rotor are examined. During the stall inception process, initial disturbances were found within the rotor passage near the tip region. As the stall cell develops, blade lift and pressure ratio decrease within the stall cell and increase ahead of the stall cell. The stall inception event, stall-cell development, and stall recovery event were found to be nearly identical for stable rotating stall and surge cases. As the stall cell grows, the leading edge of the cell will rotate at a higher rate than the trailing edge in the rotor frame. The opposite occurs during stall recovery. The trailing edge of the stall cell will rotate at the approximate speed as the fully developed stall cell, while the leading edge decreases in rotational speed in the rotor frame.

  17. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    International Nuclear Information System (INIS)

    Abdoli, A; Mirzaee, I; Purmahmod, N; Anvari, A

    2008-01-01

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s -1 at a post-stall angle of attack of 23 deg. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, A b and D c , have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications

  18. Fluid forces on a very low Reynolds number airfoil and their prediction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y., E-mail: mmyzhou@polyu.edu.h [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Alam, Md. Mahbub [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Yang, H.X. [Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Guo, H. [School of Aeronautical Science and Engineering, Beijing University of Aeronautics and Astronautics, Xue Yuan Road No. 37, HaiDian District, Beijing (China); Wood, D.H. [School of Engineering, University of Newcastle, Callaghan NSW 2308 (Australia)

    2011-02-15

    This paper presents the measurements of mean and fluctuating forces on an NACA0012 airfoil over a large range of angle ({alpha}) of attack (0-90{sup o}) and low to small chord Reynolds numbers (Re{sub c}), 5.3 x 10{sup 3}-5.1 x 10{sup 4}, which is of both fundamental and practical importance. The forces, measured using a load cell, display good agreement with the estimate from the LDA-measured cross-flow distributions of velocities in the wake based on the momentum conservation. The dependence of the forces on both {alpha} and Re{sub c} is determined and discussed in detail. It has been found that the stall of an airfoil, characterized by a drop in the lift force and a jump in the drag force, occurs at Re{sub c} {>=} 1.05 x 10{sup 4} but is absent at Re{sub c} = 5.3 x 10{sup 3}. A theoretical analysis is developed to predict and explain the observed dependence of the mean lift and drag on {alpha}.

  19. Numerical study on a single bladed vertical axis wind turbine under dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih [Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart (Germany); Hutomo, Go; Sasongko, Herman [Dept. of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya (Indonesia); Wiranegara, Raditya [School of Mechanical Aerospace and Civil Engineering, University of Manchester, Manchester (United Kingdom)

    2017-01-15

    The aim of this study is to investigate the flow development of a single bladed vertical axis wind turbine using Computational fluid dynamics (CFD) methods. The blade is constructed using the NACA 0012 profile and is operating under stalled conditions at tip speed ratio of 2. Two dimensional simulations are performed using a commercial CFD package, ANSYS Fluent 15.0, employing the Menter-SST turbulence model. For the preliminary study, simulations of the NACA 0012 airfoil under static conditions are carried out and compared with available measurement data and calculations using the boundary layer code XFOIL. The CFD results under the dynamic case are presented and the resulting aerodynamic forces are evaluated. The turbine is observed to generate negative power at certain azimuth angles which can be divided into three main zones. The blade vortex interaction is observed to strongly influence the flow behavior near the blade and contributes to the power production loss. However, the impact is considered small since it covers only 6.4 % of the azimuth angle range where the power is negative compared to the dynamic stall impact which covers almost 22 % of the azimuth angle range.

  20. Innovative Design of a Darrieus Straight Bladed Vertical Axis Wind Turbine by using Multi Element Airfoil

    DEFF Research Database (Denmark)

    Chougle, Prasad Devendra

    . Mainly, there is the horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). HAWTs are more popular than VAWTs due to failure of VAWT commercialization during the late of 1980s on a large scale. However, in recent research work it has been documented that VAWTs are more economical......, and the wind tunnel testing of double-element airfoil is performed. It is found that the aerodynamic characteristics of the airfoil increased considerably by delaying the angle of stall. These two facts are very suitable for vertical axis wind turbine since they operate in a larger range of angle of attack......, ±40_, compared to the horizontal axis wind turbines which operate in the range of attack, ±15_. A new design of vertical axis wind turbine is then proposed, and aerodynamic performance is evaluated based on double multiple stream tube methods. The performance parameters are almost doubled compared...

  1. Transition Process from Diffuser Stall to Stage Stall in a Centrifugal Compressor with a Vaned Diffuser

    Directory of Open Access Journals (Sweden)

    Nobumichi Fujisawa

    2017-01-01

    Full Text Available The transition process from a diffuser rotating stall to a stage stall in a centrifugal compressor with a vaned diffuser was investigated by experimental and numerical analyses. From the velocity measurements, it was found that the rotating stall existed on the shroud side of the diffuser passage in the off-design flow condition. The numerical results revealed the typical vortical structure of the diffuser stall. The diffuser stall cell was caused by the systematic vortical structure which consisted of the tornado-type vortex, the longitudinal vortex at the shroud/suction surface corner (i.e., leading edge vortex (LEV, and the vortex in the throat area of the diffuser passages. Furthermore, the stage stall, which rotated within both the impeller and diffuser passages, occurred instead of the diffuser stall as the mass flow rate was decreased. According to the velocity measurements at the diffuser inlet, the diffuser stall which rotated on the shroud side was shifted to the hub side. Then, the diffuser stall moved into the impeller passages and formed the stage stall. Therefore, the stage stall was caused by the development of the diffuser stall, which transferred from the shroud side to the hub side in the vaneless space and expanded to the impeller passages.

  2. Comfort zone-design free stalls: do they influence the stall use behavior of lame cows?

    Science.gov (United States)

    Cook, N B; Marin, M J; Mentink, R L; Bennett, T B; Schaefer, M J

    2008-12-01

    The behavior of 59 cows in 4 herds, each with Comfort Zone-design free stalls with dimensions suitable for 700-kg, mature Holstein dairy cows, was filmed for a 48-h period. Comparison was made between nonlame, slightly lame, and moderately lame cows on either rubber-crumb-filled mattress stall surfaces bedded with a small amount of sawdust (2 herds) or a Pack Mat design, which consisted of a rubber-crumb-filled mattress pad installed 5 cm below a raised rear curb, bedded with 5 to 8 cm of sand bedding (2 herds). All other stall design components were similar. Despite adequate resting space and freedom to perform normal rising and lying movements, lame cows on mattresses stood in the stall for >2 h longer than nonlame cows. Although a significant increase in stall standing behavior was observed in lame cows on Pack Mat stalls, the mean (95% confidence interval) standing time in the stall was only 0.7 (0 to 3.0) h/d for nonlame cows and 1.6 (0 to 4.2) h/d for moderately lame cows, which was less than the 2.1 (0 to 4.4), 4.3 (1.6 to 6.9), and 4.9 (2.5 to 7.3) h/d spent standing in the stall for nonlame, slightly lame, and moderately lame cows on mattresses, respectively. This observation supports the hypothesis that it is the nature of the stall surface that dictates changes in stall standing behavior observed in lame cows, rather than other components of stall design. The finding that only 5 to 8 cm of sand over a mattress pad provides most of the benefits of deep sand-bedded stalls, along with other advantages related to stall maintenance and manure handling, gives farmers another useful housing alternative with which to improve cow comfort and well-being.

  3. Validation of an Actuator Line Model Coupled to a Dynamic Stall Model for Pitching Motions Characteristic to Vertical Axis Turbines

    International Nuclear Information System (INIS)

    Mendoza, Victor; Goude, Anders; Bachant, Peter; Wosnik, Martin

    2016-01-01

    Vertical axis wind turbines (VAWT) can be used to extract renewable energy from wind flows. A simpler design, low cost of maintenance, and the ability to accept flow from all directions perpendicular to the rotor axis are some of the most important advantages over conventional horizontal axis wind turbines (HAWT). However, VAWT encounter complex and unsteady fluid dynamics, which present significant modeling challenges. One of the most relevant phenomena is dynamic stall, which is caused by the unsteady variation of angle of attack throughout the blade rotation, and is the focus of the present study. Dynamic stall is usually used as a passive control for VAWT operating conditions, hence the importance of predicting its effects. In this study, a coupled model is implemented with the open-source CFD toolbox OpenFOAM for solving the Navier-Stokes equations, where an actuator line model and dynamic stall model are used to compute the blade loading and body force. Force coefficients obtained from the model are validated with experimental data of pitching airfoil in similar operating conditions as an H-rotor type VAWT. Numerical results show reasonable agreement with experimental data for pitching motion. (paper)

  4. Validation of an Actuator Line Model Coupled to a Dynamic Stall Model for Pitching Motions Characteristic to Vertical Axis Turbines

    Science.gov (United States)

    Mendoza, Victor; Bachant, Peter; Wosnik, Martin; Goude, Anders

    2016-09-01

    Vertical axis wind turbines (VAWT) can be used to extract renewable energy from wind flows. A simpler design, low cost of maintenance, and the ability to accept flow from all directions perpendicular to the rotor axis are some of the most important advantages over conventional horizontal axis wind turbines (HAWT). However, VAWT encounter complex and unsteady fluid dynamics, which present significant modeling challenges. One of the most relevant phenomena is dynamic stall, which is caused by the unsteady variation of angle of attack throughout the blade rotation, and is the focus of the present study. Dynamic stall is usually used as a passive control for VAWT operating conditions, hence the importance of predicting its effects. In this study, a coupled model is implemented with the open-source CFD toolbox OpenFOAM for solving the Navier-Stokes equations, where an actuator line model and dynamic stall model are used to compute the blade loading and body force. Force coefficients obtained from the model are validated with experimental data of pitching airfoil in similar operating conditions as an H-rotor type VAWT. Numerical results show reasonable agreement with experimental data for pitching motion.

  5. Effects of a trapped vortex cell on a thick wing airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Lasagna, Davide; Iuso, Gaetano [Politecnico di Torino, Dipartimento di Ingegneria Aeronautica e Spaziale, Torino (Italy); Donelli, Raffaele; De Gregorio, Fabrizio [Centro Italiano di Ricerca Aerospaziale (C.I.R.A), Capua (Italy)

    2011-11-15

    The effects of a trapped vortex cell (TVC) on the aerodynamic performance of a NACA0024 wing model were investigated experimentally at Re = 10{sup 6} and 6.67 x 10{sup 5}. The static pressure distributions around the model and the wake velocity profiles were measured to obtain lift and drag coefficients, for both the clean airfoil and the controlled configurations. Suction was applied in the cavity region to stabilize the trapped vortex. For comparison, a classical boundary layer suction configuration was also tested. The drag coefficient curve of the TVC-controlled airfoil showed sharp discontinuities and bifurcative behavior, generating two drag modes. A strong influence of the angle of attack, the suction rate and the Reynolds number on the drag coefficient was observed. With respect to the clean airfoil, the control led to a drag reduction only if the suction was high enough. Compared to the classical boundary layer suction configuration, the drag reduction was higher for the same amount of suction only in a specific range of incidence, i.e., {alpha} = -2 to {alpha} = 6 and only for the higher Reynolds number. For all the other conditions, the classical boundary layer suction configuration gave better drag performances. Moderate increments of lift were observed for the TVC-controlled airfoil at low incidence, while a 20% lift enhancement was observed in the stall region with respect to the baseline. However, the same lift increments were also observed for the classical boundary layer suction configuration. Pressure fluctuation measurements in the cavity region suggested a very complex interaction of several flow features. The two drag modes were characterized by typical unsteady phenomena observed in rectangular cavity flows, namely the shear layer mode and the wake mode. (orig.)

  6. Iced airfoil separation bubble measurements by particle image velocimetry

    Science.gov (United States)

    Jacobs, Jason J.

    Not long after the birth of aviation, pilots began to recognize the dangers posed by aircraft icing. Since that time, research has improved the awareness of this problem and the scientific understanding of the associated aerodynamic impacts, however, few studies have involved detailed, quantitative, flowfield measurements. For this reason, the current investigation was conducted in which high spatial-resolution flowfield measurements were acquired of a NACA 0012 airfoil with two- and three-dimensional, simulated, leading-edge, horn-ice accretions utilizing particle image velocimetry (PIV). These measurements complemented existing iced airfoil performance measurements, revealed previously unknown details regarding the structure and behavior of these flowfields, and could potentially facilitate the development and improvement of computational schemes used to predict largely separated flows, including that of an iced airfoil near stall. Previous iced airfoil investigations have demonstrated somewhat reduced aerodynamic penalties resulting from a three-dimensional ice simulation, compared to those of a two-dimensional ice simulation of a representative cross section. Correspondingly, the current measurements revealed accelerated transition of the separated shear layer emanating from a three-dimensional ice simulation and therefore enhanced pressure recovery and reduced mean separation bubble length, each relative to the flowfield of a representative two-dimensional ice simulation. These effects appeared to result from the quasi-steady distribution of discrete, streamwise vortices which aided the turbulent entrainment of fluid from the recirculation region of the three-dimensional ice simulation separation bubble flowfield. These vortices were generated by a streamwise-vortex instability excited by roughness along the three-dimensional ice simulation and produced spanwise-cell structures throughout this flowfield, as well as significant spanwise variation in peak

  7. Airfoils for wind turbine

    Science.gov (United States)

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  8. Unsteady airfoil flows with application to aeroelastic stability

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Jeppe

    1999-09-01

    The present report describes numerical investigation of two-dimensional unsteady airfoil flows with application to aeroelastic stability. The report is divided in two parts. Part A describes the purely aerodynamic part, while Part B includes the aeroelastic part. In Part A a transition prediction algorithm based on a simplified version of the e{sup n} method is proposed. Laminar Boundary Layer instability data are stored in a database from which stability characteristics can be extracted by interpolation. Input to the database are laminar integral boundary layer parameters. These are computed from an integral boundary layer formulation coupled to a Navier-Stokes flow solver. Five different airfoils are considered at fixed angle of attack, and the flow is computed assuming both fully turbulent and transitional flow and compared with experimental data. Results indicate that using a transition model the drag prediction is improved considerably. Also the lift is slightly improved. At high angles of attack transition will affect leading edge separation which again will affect the overall vortex shedding. If the transition point is not properly predicted this will affect the whole hysteresis curve. The transition model developed in the present work showed more stable predictions compared to the empirical transition model. In Part B a simple three degrees-of-freedom (DOF) structural dynamics model is developed and coupled to the aerodynamics models from Part A. A 2nd order accurate time integration scheme is used to solve the equations of motion. Two airfoils are investigated. The aeroelastic models predict stable conditions well at low angle of attack. But at high angles of attack, and where unstable behaviour is expected, only the Navier-Stokes solver predict correct aeroelastic response. The semi-empirical dynamic stall model does not predict vortex shedding and moment correctly leading to an erroneous aerodynamic damping. (au) 5 tabs.; 55 ills., 52 refs.

  9. Comparing Ns-DBD vs Ac-DBD plasma actuation mechanisms on a NACA 0012 airfoil

    Science.gov (United States)

    Singh, Ashish; Durasiewicz, Claudia; Little, Jesse

    2017-11-01

    A NACA 0012 airfoil is used to study ns-DBD and ac-DBD plasma actuators at a Reynolds number of 740,000 (U∞=40 m/s). Ns-DBD plasma actuators are hypothesized to work on the principle of joule heating whereas ac-DBD actuators add momentum to the flow. Short duration forcing at a time scale much smaller than the convective time based on model chord is employed to study the control mechanism and flow field response. 2-D PIV carried out over a convective time range of 0-10 is used to study the flow structure. The results show the breakup of shear layer vorticity at the point of actuation followed by reattachment to the suction side of the airfoil and finally stall again. These events are very similar between the two actuators and indicate a similar flow response to different perturbation types. The pulse energies are varied and the response shows little change. The results are compared to other transitory separation control studies using more conventional actuators. The detailed study of these two control mechanisms with the separated flow over an airfoil helps to shed light on the evolution of the flow control process. Additional results on a simplified model problem (low speed mixing layer) are included to provide context. Supported by U.S. Army Research Office (W911NF-14-1-0662).

  10. Identify the Rotating Stall in Centrifugal Compressors by Fractal Dimension in Reconstructed Phase Space

    Directory of Open Access Journals (Sweden)

    Le Wang

    2015-11-01

    Full Text Available Based on phase space reconstruction and fractal dynamics in nonlinear dynamics, a method is proposed to extract and analyze the dynamics of the rotating stall in the impeller of centrifugal compressor, and some numerical examples are given to verify the results as well. First, the rotating stall of an existing low speed centrifugal compressor (LSCC is numerically simulated, and the time series of pressure in the rotating stall is obtained at various locations near the impeller outlet. Then, the phase space reconstruction is applied to these pressure time series, and a low-dimensional dynamical system, which the dynamics properties are included in, is reconstructed. In phase space reconstruction, C–C method is used to obtain the key parameters, such as time delay and the embedding dimension of the reconstructed phase space. Further, the fractal characteristics of the rotating stall are analyzed in detail, and the fractal dimensions are given for some examples to measure the complexity of the flow in the post-rotating stall. The results show that the fractal structures could reveal the intrinsic dynamics of the rotating stall flow and could be considered as a characteristic to identify the rotating stall.

  11. Reinforced Airfoil Shaped Body

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to an airfoil shaped body with a leading edge and a trailing edge extending along the longitudinal extension of the body and defining a profile chord, the airfoil shaped body comprising an airfoil shaped facing that forms the outer surface of the airfoil shaped body...

  12. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  13. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    Energy Technology Data Exchange (ETDEWEB)

    Abdoli, A; Mirzaee, I; Purmahmod, N [Faculty of Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Anvari, A [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: ab.abdoli@gmail.com

    2008-09-07

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s{sup -1} at a post-stall angle of attack of 23 deg. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, A{sub b} and D{sub c}, have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications.

  14. The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight

    Energy Technology Data Exchange (ETDEWEB)

    Rival, David; Prangemeier, Tim; Tropea, Cameron [Technische Universitaet Darmstadt (Germany). Institute of Fluid Mechanics and Aerodynamics

    2009-05-15

    The formation process of leading-edge vortices has been investigated experimentally using Particle Image Velocimetry. Various airfoil kinematics have been tested, including asymmetric and peak-shifted plunging motions, and are evaluated for Re = 30,000 and a reduced frequency range of 0.2{<=}k{<=}0.33. By measuring the growth in the leading-edge vortex during the dynamic-stall process, the vortex pinch-off process is examined based on the concept of an optimal vortex formation time. The various kinematics are then evaluated with respect to their associated vortex strength, timing and convection into the wake. (orig.)

  15. Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, J.C. [College of Mechanical and Electrical Engineering, Central South University, Changsha (China); School of Electromechanical Engineering, Hunan University of Science and Technology, Xiangtan (China); Hu, Y.P.; Liu, D.S. [School of Electromechanical Engineering, Hunan University of Science and Technology, Xiangtan (China); Long, X. [Hara XEMC Windpower Co., Ltd., Xiangtan (China)

    2011-03-15

    The aerodynamic loads for MW scale horizontal-axis wind turbines are calculated and analyzed in the established coordinate systems which are used to describe the wind turbine. In this paper, the blade element momentum (BEM) theory is employed and some corrections, such as Prandtl and Buhl models, are carried out. Based on the B-L semi-empirical dynamic stall (DS) model, a new modified DS model for NACA63-4xx airfoil is adopted. Then, by combing BEM modified theory with DS model, a set of calculation method of aerodynamic loads for large scale wind turbines is proposed, in which some influence factors such as wind shear, tower, tower and blade vibration are considered. The research results show that the presented dynamic stall model is good enough for engineering purpose; the aerodynamic loads are influenced by many factors such as tower shadow, wind shear, dynamic stall, tower and blade vibration, etc, with different degree; the single blade endures periodical changing loads but the variations of the rotor shaft power caused by the total aerodynamic torque in edgewise direction are very small. The presented study approach of aerodynamic loads calculation and analysis is of the university, and helpful for thorough research of loads reduction on large scale wind turbines. (author)

  16. Airfoil System for Cruising Flight

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Liu, Tianshu (Inventor)

    2014-01-01

    An airfoil system includes an airfoil body and at least one flexible strip. The airfoil body has a top surface and a bottom surface, a chord length, a span, and a maximum thickness. Each flexible strip is attached along at least one edge thereof to either the top or bottom surface of the airfoil body. The flexible strip has a spanwise length that is a function of the airfoil body's span, a chordwise width that is a function of the airfoil body's chord length, and a thickness that is a function of the airfoil body's maximum thickness.

  17. Active Control of Flow around NACA 0015 Airfoil by Using DBD Plasma Actuator

    Directory of Open Access Journals (Sweden)

    Şanlısoy A.

    2013-04-01

    Full Text Available In this study, effect of plasma actuator on a flat plate and manipulation of flow separation on NACA0015 airfoil with plasma actuator at low Reynolds numbers were experimentally investigated. In the first section of the study, plasma actuator which consists of positive and grounded electrode couple and dielectric layer, located on a flat plate was actuated at different frequencies and peak to peak voltages in range of 3-5 kHz and 6-12 kV respectively. Theinduced air flow velocity on the surface of flat plate was measured by pitot tube at different locations behind the actuator. The influence of dielectricthickness and unsteady actuation with duty cycle was also examined. In the second section, the effect of plasma actuator on NACA0015 airfoil was studied atReynolds number 15000 and 30000. Four plasma actuators were placed at x/C = 0.1, 0.3, 0.5 and 0.9, and different electrode combinations were activated by sinusoidal signal. Flow visualizations were done when the attack angles were 0°, 5°, 10°, 15° and 20°. The results indicate that up to the 15° attack angle, the separated flow was reattached by plasma actuator at 12kV peak to peak voltage and 4 kHz frequency. However, 12 kVpp voltage was insufficient to reattach the flow at 20° angle of attack. The separated flow could be reattached by increasing the voltage up to 13 kV. Lift coefficient was also increased by the manipulated flow over the airfoil. Results showed that even high attack angles, the actuators can control the flow separation and prevent the airfoil from stall at low Reynolds numbers.

  18. Wake structure and similar behavior of wake profiles downstream of a plunging airfoil

    Directory of Open Access Journals (Sweden)

    Ali R. DAVARI

    2017-08-01

    Full Text Available Very limited attention has already been paid to the velocity behavior in the wake region in unsteady aerodynamic problems. A series of tests has been performed on a flapping airfoil in a subsonic wind tunnel to study the wake structure for different sets of mean angle of attack, plunging amplitude and reduced frequency. In this study, the velocity profiles in the wake for various oscillation parameters have been measured using a wide shoulder rake, especially designed for the present experiments. The airfoil under consideration was a critical section of a 660 kW wind turbine. The results show that for a flapping airfoil the wake structure can be of drag producing type, thrust producing or neutral, depending on the mean angle of attack, oscillation amplitude and reduced frequency. In a thrust producing wake, a high-momentum high-velocity jet flow is formed in the core region of the wake instead of the conventional low-momentum flow. As a result, the drag force normally experienced by the body due to the momentum deficit would be replaced by a thrust force. According to the results, the momentum loss in the wake decreases as the reduced frequency increases. The thrust producing wake pattern for the flapping airfoil has been observed for sufficiently low angles of attack in the absence of the viscous effects. This phenomenon has also been observed for either high oscillation amplitudes or high reduced frequencies. According to the results, for different reduced frequencies and plunging amplitudes, such that the product of them be a constant, the velocity profiles exhibit similar behavior and coalesce on each other. This similarity parameter works excellently at small angles of attack. However, at near stall boundaries, the similarity is not as evident as before.

  19. Aerodynamic response of an airfoil section undergoing pitch motion and trailing edge flap deflection: a comparison of simulation methods

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Riziotis, Vasilis A.; Gaunaa, Mac

    2015-01-01

    The study presents and compares aerodynamic simulations for an airfoil section with an adaptive trailing edge flap, which deflects following a smooth deformation shape. The simulations are carried out with three substantially different methods: a Reynolds-averaged Navier–Stokes solver, a viscous–inviscid...... to separated conditions and accounting for the effects of flap deflection; the steady results from the Navier–Stokes solver and the viscous–inviscid interaction method are used as input data for the simpler dynamic stall model. The paper characterizes then the dynamics of the unsteady forces and moments...

  20. Airfoil design and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, T. [Stuttgart Univ. (Germany). Inst. fuer Aerodynamik und Gasdynamik

    2001-07-01

    The aerodynamic efficiency of mildly swept wings is mainly influenced by the characteristics of the airfoil sections. The specific design of airfoils is therefore one of the classical tasks of aerodynamics. Since the airfoil characteristics are directly dependent on the inviscid pressure distribution the application of inverse calculation methods is obvious. The direct numerical airfoil optimization offers an alternative to the manual design and attracts increasing interest. (orig.)

  1. Why do Cross-Flow Turbines Stall?

    Science.gov (United States)

    Cavagnaro, Robert; Strom, Benjamin; Polagye, Brian

    2015-11-01

    Hydrokinetic turbines are prone to instability and stall near their peak operating points under torque control. Understanding the physics of turbine stall may help to mitigate this undesirable occurrence and improve the robustness of torque controllers. A laboratory-scale two-bladed cross-flow turbine operating at a chord-based Reynolds number ~ 3 ×104 is shown to stall at a critical tip-speed ratio. Experiments are conducting bringing the turbine to this critical speed in a recirculating current flume by increasing resistive torque and allowing the rotor to rapidly decelerate while monitoring inflow velocity, torque, and drag. The turbine stalls probabilistically with a distribution generated from hundreds of such events. A machine learning algorithm identifies stall events and indicates the effectiveness of available measurements or combinations of measurements as predictors. Bubble flow visualization and PIV are utilized to observe fluid conditions during stall events including the formation, separation, and advection of leading-edge vortices involved in the stall process.

  2. Factors affecting stall use for different freestall bases.

    Science.gov (United States)

    Wagner-Storch, A M; Palmer, R W; Kammel, D W

    2003-06-01

    The objective of this study was to compare stall use (stall occupancy and cow position) by barn side for factors affecting stall use. A closed circuit television system recorded stall use four times per day for a 9-mo period starting May 9, 2001. Six factors were analyzed: stall base, distance to water, stall location within stall base section, stall location within barn, inside barn temperature, and length of time cows were exposed to stall bases. Two barn sides with different stocking densities were analyzed: low (66%), with cows milked by robotic milker; and high (100%), with cows milked 2X in parlor. Six stall base types were tested: two mattresses, a waterbed, a rubber mat, concrete, and sand (high side only). The base types were grouped 3 to 7 stalls/section and randomly placed in each row. Cows spent more time in mattress-based stalls, but the highest percentage lying was in sand-based stalls. The following significant stall occupancy percentages were found: sand had the highest percentage of cows lying on the high stocking density side (69%), followed by mattress type 1 (65%) > mattress type 2 (57%) > waterbed (45%) > rubber mat (33%) > concrete (23%). Mattress type 1 had the highest percentage stalls occupied (88%), followed by mattress type 2 (84%) > sand (79%) > soft rubber mat (65%) > waterbed (62%) > concrete (39%). On the low stocking rate side, mattress type 1 had the highest percentage cows lying (45%) and occupied (59.6%), followed by mattress type 2 > waterbed > soft rubber mat > concrete. Cow lying and stalls occupied percentages were highest for stalls 1) not at the end of a section, and 2) on the outside row, and varied by base type for time cows exposed to stalls and inside barn temperature. Lying and occupied percentages were different for different mattress types. The percentage of stalls with cows standing was higher for mat and mattress-based stalls. Results show mattress type 1 and sand to be superior and rubber mats and concrete inferior

  3. Contribution to finite element modelling of airfoil aeroelastic instabilities

    Directory of Open Access Journals (Sweden)

    Horáček J.

    2007-10-01

    Full Text Available Nonlinear equations of motion for a flexibly supported rigid airfoil with additional degree of freedom for controlling of the profile motion by a trailing edge flap are derived for large vibration amplitudes. Preliminary results for numerical simulation of flow-induced airfoil vibrations in a laminar incompressible flow are presented for the NACA profile 0012 with three-degrees of freedom (vertical translation, rotation around the elastic axis and rotation of the flap. The developed numerical solution of the Navier – Stokes equations and the Arbitrary Eulerian-Lagrangian approach enable to consider the moving grid for the finite element modelling of the fluid flow around the oscillating airfoil. A sequence of numerical simulation examples is presented for Reynolds numbers up to about Re~10^5, when the system loses the aeroelastic stability, and when the large displacements of the profile and a post-critical behaviour of the system take place.

  4. Nozzle airfoil having movable nozzle ribs

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  5. Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications

    Science.gov (United States)

    Wolff, T.; Ernst, B.; Seume, J. R.

    2014-06-01

    The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated.

  6. Aerodynamic behavior of an airfoil with morphing trailing edge for wind turbine applications

    International Nuclear Information System (INIS)

    Wolff, T; Ernst, B; Seume, J R

    2014-01-01

    The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time- resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated

  7. Darrieus wind-turbine airfoil configurations

    Science.gov (United States)

    Migliore, P. G.; Fritschen, J. R.

    1982-06-01

    The purpose was to determine what aerodynamic performance improvement, if any, could be achieved by judiciously choosing the airfoil sections for Darrieus wind turbine blades. Ten different airfoils, having thickness to chord ratios of twelve, fifteen and eighteen percent, were investigated. Performance calculations indicated that the NACA 6-series airfoils yield peak power coefficients at least as great as the NACA. Furthermore, the power coefficient-tip speed ratio curves were broader and flatter for the 6-series airfoils. Sample calculations for an NACA 63 sub 2-015 airfoil showed an annual energy output increase of 17 to 27% depending upon rotor solidity, compared to an NACA 0015 airfoil. An attempt was made to account for the flow curvature effects associated with Darrieus turbines by transforming the NACA 63 sub 2-015 airfoil to an appropriate shape.

  8. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  9. 14 CFR 25.203 - Stall characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall characteristics. 25.203 Section 25.203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stalls § 25.203 Stall characteristics. (a) It must...

  10. Effects of three types of free-stall surfaces on preferences and stall usage by dairy cows.

    Science.gov (United States)

    Tucker, C B; Weary, D M; Fraser, D

    2003-02-01

    One important criterion in choosing appropriate housing systems for dairy cattle is that the freestall provides a comfortable surface for the cow. This paper describes two experiments testing the effects of commonly used lying surfaces on stall preference and stall usage by Holstein cows. In both experiments, 12 cows were housed individually in separate pens. Each pen contained three free stalls with a different surface: deep-bedded sawdust, deep-bedded sand, and a geotextile mattress covered with 2 to 3 cm of sawdust. The animals were restricted to each surface in turn, in a random order for either 2 (Experiment 1) or 3 d (Experiment 2). Both before and after this restriction phase, the animals were allowed access to all three surfaces, and preference was determined, based on lying times. Of the 12 cows used in Experiment 1, 10 preferred sawdust before and nine after the restriction phase. During the restriction phase, average lying times and number of lying events during the restriction phase were significantly lower for the sand-bedded stalls (P sand bedded stalls. In this experiment, about half the cows preferred sand and half sawdust, after the restriction phase. During the restriction phase of experiment, lying times and number of lying events were lower, and standing times were higher when the animals were restricted to the mattresses compared to either sand or sawdust (P < or = 0.05). These results indicate that (1) free stall surface can affect both stall preferences and stall usage, and (2) mattresses are less preferred.

  11. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Directory of Open Access Journals (Sweden)

    Matejka Milan

    2012-04-01

    Full Text Available Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  12. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Science.gov (United States)

    Popelka, Lukas; Kuklova, Jana; Simurda, David; Souckova, Natalie; Matejka, Milan; Uruba, Vaclav

    2012-04-01

    Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  13. A computational procedure to define the incidence angle on airfoils rotating around an axis orthogonal to flow direction

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Balduzzi, Francesco; Ferrara, Giovanni; Ferrari, Lorenzo

    2016-01-01

    Highlights: • New method to calculate the incidence angle from a computed CFD flow field. • Applicable to each airfoil rotating around an axis orthogonal to flow direction. • Composed by four, easily automatable steps explained in details. • Robustness of the model assessed on two Darrieus turbine study cases. - Abstract: Numerical simulations provided in the last few years a significant contribution for a better understanding of many phenomena connected to the flow past rotating blades. In case of airfoils rotating around an axis orthogonal to flow direction, one of the most critical issues is represented by the definition of the incidence angle on the airfoil from the computed flow field. Incidence indeed changes continuously as a function of the azimuthal position of the blade and a distribution of peripheral speed is experienced along the airfoil’s thickness due to radius variation. The possibility of reducing the flow to lumped parameters (relative speed modulus and direction), however, would be of capital relevance to transpose accurate CFD numerical results into effective inputs to low-order models that are often exploited for preliminary design analyses. If several techniques are available for this scope in the case of blades rotating around an axis parallel to flow direction (e.g., horizontal-axis wind turbines), the definition of a robust procedure in case the revolution axis is orthogonal to the flow is still missing. In the study, a novel technique has been developed using data from Darrieus-like rotating airfoils. The method makes use of the virtual camber theory to define a virtual airfoil whose pressure coefficient distributions in straight flow are used to match those of the real airfoil in curved flow. Even if developed originally for vertical-axis wind turbines, the method is of general validity and is thought to represent in the near future a valuable tool for researchers to get a new insight on many complex phenomena connected to flow

  14. Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)

    Science.gov (United States)

    Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar

    2017-07-01

    Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.

  15. Simulator Studies of the Deep Stall

    Science.gov (United States)

    White, Maurice D.; Cooper, George E.

    1965-01-01

    Simulator studies of the deep-stall problem encountered with modern airplanes are discussed. The results indicate that the basic deep-stall tendencies produced by aerodynamic characteristics are augmented by operational considerations. Because of control difficulties to be anticipated in the deep stall, it is desirable that adequate safeguards be provided against inadvertent penetrations.

  16. Pressure distribution over an NACA 23012 airfoil with an NACA 23012 external-airfoil flap

    Science.gov (United States)

    Wenzinger, Carl J

    1938-01-01

    Report presents the results of pressure-distribution tests of an NACA 23012 airfoil with an NACA 23012 external airfoil flap made in the 7 by 10-foot wind tunnel. The pressures were measured on the upper and lower surfaces at one chord section on both the main airfoil and on the flap for several different flap deflections and at several angles of attack. A test installation was used in which the airfoil was mounted horizontally in the wind tunnel between vertical end planes so that two-dimensional flow was approximated. The data are presented in the form of pressure-distribution diagrams and as graphs of calculated coefficients for the airfoil-and-flap combination and for the flap alone.

  17. The analysis on centrifugal compressor rotating stall

    International Nuclear Information System (INIS)

    Kim, Ji Hwan; Kim, Kwang Ho; Shin, You Hwan

    2003-01-01

    In the present study, the performance characteristics and the number of stall cell during rotating stall of a centrifugal air compressor were experimentally investigated. Rotating stall in the vaneless diffuser were investigated by measuring unsteady pressure fluctuations at several different diffuser radius using a high frequency pressure transducer. The number of stall cell and their rotational speeds are distinctive features of the rotating stall phenomenon. The present study is mainly forced on the analysis for the stall cell number and its propagation speed unstable operating region of the compressor. The interpretation method of visualization is based on the pressure distribution in the circumference pressure fields while plotting the pressure and its harmonics variations in time in polar coordinates. To obtain the visualize the existence rotating stall, auto-correlation function and the frequency spectra of the pressure fluctuations were measured at r/r2=1.52. When the flow coefficient is lower than 0.150, the static pressure at impeller inlet is higher than that at inlet duct of the compressor. And the flow coefficient is lower than 0.086, several stall cell groups of discrete frequencies are observed

  18. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    International Nuclear Information System (INIS)

    Manela, A.

    2016-01-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  19. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    Energy Technology Data Exchange (ETDEWEB)

    Manela, A. [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2016-07-15

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  20. Unsteady characteristics of the static stall of an airfoil subjected to freestream turbulence level up to 16%

    Energy Technology Data Exchange (ETDEWEB)

    Sicot, Christophe; Aubrun, Sandrine; Loyer, Stephane; Devinant, Philippe [Laboratoire de Mecanique et d' Energetique, Orleans (France)

    2006-10-15

    Fluctuation of the separation point on an airfoil under high turbulence level is investigated using pressure measurements and flow visualisations. The characteristics of the unsteady loads induced by Karman vortex shedding are studied. This is related with a local approach based on the study of the oscillation zone. A method based on the pressure standard deviation is proposed to obtain the length of this zone, which is found to be independent of the turbulence level. This result is in agreement with that obtained by spectral analysis which shows no effect of the turbulence level on the Karman vortex shedding frequency. (orig.)

  1. VISUALISASI DISTRIBUSI TEKANAN PADA AIRFOIL JOUKOWSKY

    Directory of Open Access Journals (Sweden)

    Eddy Maryonoto

    2009-02-01

    Full Text Available The goal of this research is to develop a computer based system that can beused to visualize pressure distribution on the Joukowsky's airfoil and streamlinespattern around the airfoil. The pressure on the airfoil is calculdted usingformulasderived from potensial theory. Visualization of pressure distribution implementedby using color gradation technique and coded b.v using Borland Delphi 6programming language. The result of the test shotus lhat lhe system has performedperfectly. Pressure dislribution on some kinds of JoukowslE's airfoil shapes andstresmlines pattern around the airfoils can be presenled and seen clearly byusing this visualization system, where the paltern of the pressure distribution onthe airfoil marked by color gradation.

  2. Initial design of a stall-controlled wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, T.A. [Inst. for Energiteknikk, Kjeller (Norway)

    1997-08-01

    A model intended for initial design of stall-controlled wind turbine rotors is described. The user specifies relative radial position of an arbitrary number of airfoil sections, referring to a data file containing lift-and drag curves. The data file is on the same format as used in the commercial blade-element code BLADES-/2/, where lift- and drag coefficients are interpolated from tables as function of Reynolds number, relative thickness and angle of attack. The user can set constraints on a selection of the following: Maximum power; Maximum thrust in operation; Maximum root bending moment in operation; Extreme root bending moment, parked rotor; Tip speed; Upper and lower bounds on optimisation variables. The optimisation variables can be selected from: Blade radius; Rotational speed; Chord and twist at an arbitrary number of radial positions. The user can chose linear chord distribution and a hyperbola-like twist distribution to ensure smooth planform and twist, or cubic spline interpolation for one or both. The aerodynamic model is based on classical strip theory with Prandtl tip loss correction, supplemented by empirical data for high induction factors. (EG)

  3. Free-stream turbulence effects on the flow around an S809 wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)

    2012-07-01

    Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)

  4. Airfoil shape for a turbine nozzle

    Science.gov (United States)

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  5. Airfoil shape for a turbine bucket

    Science.gov (United States)

    Hyde, Susan Marie; By, Robert Romany; Tressler, Judd Dodge; Schaeffer, Jon Conrad; Sims, Calvin Levy

    2005-06-28

    Third stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth Table I wherein X and Y values are in inches and the Z values are non-dimensional values from 0 to 0.938 convertible to Z distances in inches by multiplying the Z values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X and Y distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelop of .+-.0.150 inches in directions normal to the surface of the airfoil.

  6. Wind turbine airfoil catalogue

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, N.; Johansen, J.; Fuglsang, P.

    2001-08-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solver EllipSys2D, as well as results from the panel method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which air-foils it does not perform well compared to the experiments, as well as why, when it does so. The airfoils are classified according to the agreement between the numerical results and experimental data. A study correlating the available data and this classification is performed. It is found that transition modelling is to a large extent responsible for the poor quality of the computational results for most of the considered airfoils. The transition model mechanism that leads to these discrepancies is identified. Some advices are given for elaborating future airfoil design processes that would involve the numerical code EllipSys2D in particular, and transition modelling in general. (au)

  7. Predicting the aerodynamic characteristics of 2D airfoil and the performance of 3D wind turbine using a CFD code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bum Suk; Kim, Mann Eung [Korean Register of Shipping, Daejeon (Korea, Republic of); Lee, Young Ho [Korea Maritime Univ., Busan (Korea, Republic of)

    2008-07-15

    Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(K- {epsilon}) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

  8. Predicting the aerodynamic characteristics of 2D airfoil and the performance of 3D wind turbine using a CFD code

    International Nuclear Information System (INIS)

    Kim, Bum Suk; Kim, Mann Eung; Lee, Young Ho

    2008-01-01

    Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(K- ε) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model

  9. Rotating stall simulation for axial and centrifugal compressors

    Science.gov (United States)

    Halawa, Taher; Gadala, Mohamed S.

    2017-05-01

    This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.

  10. 16 CFR 1505.50 - Stalled motor testing.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...

  11. The Relevance of the Dynamic Stall Effect for Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematica...

  12. Turbine airfoil to shround attachment

    Science.gov (United States)

    Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J

    2014-05-06

    A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.

  13. Multiple piece turbine airfoil

    Science.gov (United States)

    Kimmel, Keith D; Wilson, Jr., Jack W.

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  14. Biomimetic Wind Turbine Design with Lift Enhancing Periodic Stall

    NARCIS (Netherlands)

    Stamhuis, Eize Jan

    2017-01-01

    A wind turbine includes a rotor; a blade; and a periodic stall system. The periodic stall system selectively moves at least part of the blade in an oscillating motion whereby an angle of incidence continuously varies to invoke periodic stall. The periodic stall system can move the entire blade or

  15. On the Active and Passive Flow Separation Control Techniques over Airfoils

    Science.gov (United States)

    Moghaddam, Tohid; Banazadeh Neishabouri, Nafiseh

    2017-10-01

    In the present work, recent advances in the field of the active and passive flow separation control, particularly blowing and suction flow control techniques, applied on the common airfoils are briefly reviewed. This broad research area has remained the point of interest for many years as it is applicable to various applications. The suction and blowing flow control methods, among other methods, are more technically feasible and market ready techniques. It is well established that the uniform and/or oscillatory blowing and suction flow control mechanisms significantly improve the lift-to-drag ratio, and further, postpone the boundary layer separation as well as the stall. The oscillatory blowing and suction flow control, however, is more efficient compared to the uniform one. A wide range of parameters is involved in controlling the behavior of a blowing and/or suction flow control, including the location, length, and angle of the jet slots. The oscillation range of the jet slot is another substantial parameter.

  16. 基于海鸥翼型的小型风力机叶片仿生设计与试验%Bionic design and test of small-sized wind turbine blade based on seagull airfoil

    Institute of Scientific and Technical Information of China (English)

    王骥月; 丛茜; 梁宁; 毛士佳; 关欢欢; 刘林鹏; 陈创发

    2015-01-01

    针对现有小型风力发电机效率远低于理论值问题,对100 W水平轴风力机叶片进行仿生改进。采用Spalart-Allmaras模型分析不同攻角下海鸥翼型与标准翼型的气动特性;以标准100 W水平轴风力机叶片为原型,结合海鸥翼型、标准弦长和计算得出的安装角,设计得到仿海鸥翼型叶片;利用SST k-ω模型进行仿海鸥翼型叶片与标准叶片气动特性数值模拟;搭建室内风力机效率测试平台,进行仿海鸥翼型风力机与标准风力机效率对比试验。结果表明:海鸥翼型气动性能优良,最大升力系数是标准翼型的2.19倍,最大升阻比是标准翼型的1.34倍;仿海鸥翼型叶片与标准叶片相比,输出功率提高25.77%。该研究可为小型风力发电机的改进设计提供参考。%Power of the existing small-sized wind turbine blades is much less than the theoretical value. This study improved 100 W wind turbine blades to increase the power of wind turbine. First of all, Spalart-Allmaras model which was suitable for airfoil stalling characteristics research was used to analyze the aerodynamic characteristics of seagull airfoil and standard airfoil with different angles of attack (AOA). Seagull airfoil and standard airfoil were got from seagull wing and standard blade by portable three-dimension scanner, Imageware software and Geomagic Studio software through standard blade scan, seagull wing scan, point cloud processing, reverse engineering modeling and cross section capture. Lift coefficients and lift-drag ratios of seagull airfoil and standard airfoil were calculated by Fluent software. Secondly, bionic blade was designed based on standard 100 W blades and Glauert theory. Thirdly, numerical simulations of bionic blade and standard blade were performed by using SST(shear stress transport) k-ω model which was suitable for blade performance research to analyze the aerodynamic characteristics of bionic blade and standard

  17. Second Stage Turbine Bucket Airfoil.

    Science.gov (United States)

    Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward

    2003-05-06

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  18. Third-stage turbine bucket airfoil

    Science.gov (United States)

    Pirolla, Peter Paul; Siden, Gunnar Leif; Humanchuk, David John; Brassfield, Steven Robert; Wilson, Paul Stuart

    2002-01-01

    The third-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  19. Airfoil Shape Optimization in Transonic Flow

    International Nuclear Information System (INIS)

    Islam, Z.

    2004-01-01

    A computationally efficient and adaptable design tool is constructed by coupling a flow analysis code based on Euler equations, with the well established numerical optimization algorithms. Optimization technique involving two analysis methods of Simplex and Rosenbrock have been used. The optimization study involves the minimization of wave drag for two different airfoils with geometric constraints on the airfoil maximum thickness or the cross sectional area along with aerodynamic constraint on lift coefficient. The method is applied to these airfoils transonic flow design points, and the results are compared with the original values. This study shows that the conventional low speed airfoils can be optimized to become supercritical for transonic flight speeds, while existing supercritical airfoils can still be improved further at particular design condition. (author)

  20. Stalling Tropical Cyclones over the Atlantic Basin

    Science.gov (United States)

    Nielsen-Gammon, J. W.; Emanuel, K.

    2017-12-01

    Hurricane Harvey produced massive amounts of rain over southeast Texas and southwest Louisiana. Average storm total rainfall amounts over a 10,000 square mile (26,000 square km) area exceeded 30 inches (750 mm). An important aspect of the storm that contributed to the large rainfall totals was its unusual motion. The storm stalled shortly after making landfall, then moved back offshore before once again making landfall five days later. This storm motion permitted heavy rainfall to occur in the same general area for an extended period of time. The unusual nature of this event motivates an investigation into the characteristics and potential climate change influences on stalled tropical cyclones in the Atlantic basin using the HURDAT 2 storm track database for 1866-2016 and downscaled tropical cyclones driven by simulations of present and future climate. The motion of cyclones is quantified as the size of a circle circumscribing all storm locations during a given length of time. For a three-day period, Harvey remained inside a circle with a radius of 123 km. This ranks within the top 0.6% of slowest-moving historical storm instances. Among the 2% of slowest-moving storm instances prior to Harvey, only 13 involved storms that stalled near the continental United States coast, where they may have produced substantial rainfall onshore while tapping into marine moisture. Only two such storms stalled in the month of September, in contrast to 20 September stalls out of the 36 storms that stalled over the nearby open Atlantic. Just four of the stalled coastal storms were hurricanes, implying a return frequency for such storms of much less than once per decade. The synoptic setting of these storms is examined for common features, and historical and projected trends in occurrences of stalled storms near the coast and farther offshore are investigated.

  1. Second-stage turbine bucket airfoil

    Science.gov (United States)

    Wang, John Zhiqiang; By, Robert Romany; Sims, Calvin L.; Hyde, Susan Marie

    2002-01-01

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X and Y values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket. The second-stage wheel has sixty buckets.

  2. Dynamic Stall Control Using Plasma Actuators

    Science.gov (United States)

    Webb, Nathan; Singhal, Achal; Castaneda, David; Samimy, Mo

    2017-11-01

    Dynamic stall occurs in many applications, including sharp maneuvers of fixed wing aircraft, wind turbines, and rotorcraft and produces large unsteady aerodynamic loads that can lead to flutter and mechanical failure. This work uses flow control to reduce the unsteady loads by excitation of instabilities in the shear layer over the separated region using nanosecond pulse driven dielectric barrier discharge (NS-DBD) plasma actuators. These actuators have been shown to effectively delay or mitigate static stall. A wide range of flow parameters were explored in the current work: Reynolds number (Re = 167,000 to 500,000), reduced frequency (k = 0.025 to 0.075), and excitation Strouhal number (Ste = 0 to 10). Based on the results, three major conclusions were drawn: (a) Low Strouhal number excitation (Ste <0.5) results in oscillatory aerodynamic loads in the stalled stage of dynamic stall; (b) All excitation resulted in earlier flow reattachment; and (c) Excitation at progressively higher Ste weakened and eventually eliminated the dynamic stall vortex (DSV), thereby dramatically reducing the unsteady loading. The decrease in the strength of the DSV is achieved by the formation of shear layer coherent structures that bleed the leading-edge vorticity prior to the ejection of the DSV.

  3. Observations of dynamic stall on Darrieus wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N.; Shibuya, S. [Department of Mechanical and Production Engineering, Niigata University, 8050 Ikarashi 2, 950-2181 Niigata (Japan)

    2001-02-01

    Flow field around a Darrieus wind turbine blade in dynamic stall is studied by flow visualization and particle image velocimetry (PIV) measurement in stationary and rotating frames of reference. The experiment is carried out using the small-scale Darrieus wind turbine in a water tunnel. The unsteady nature of the dynamic stall observed by the flow visualization is quantitatively reproduced in the instantaneous velocity distributions by PIV measurement, which describes the successive shedding of two pairs of stall vortices from the blade moving upstream. The mechanism of dynamic stall is due to the successive generation of separation on the inner surface of the blade followed by the formation of roll-up vortices from the outer surface. Although the qualitative nature of the dynamic stall is independent of the tip-speed ratios, the blade angle for stall appearance and the growth rate of the stall vortices are influenced by the change in tip-speed ratios.

  4. Simulation model of an active stall wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)

    2004-07-01

    This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)

  5. Root region airfoil for wind turbine

    Science.gov (United States)

    Tangler, James L.; Somers, Dan M.

    1995-01-01

    A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

  6. Airfoil selection methodology for Small Wind Turbines

    DEFF Research Database (Denmark)

    Salgado Fuentes, Valentin; Troya, Cesar; Moreno, Gustavo

    2016-01-01

    On wind turbine technology, the aerodynamic performance is fundamental to increase efficiency. Nowadays there are several databases with airfoils designed and simulated for different applications; that is why it is necessary to select those suitable for a specific application. This work presents...... a new methodology for airfoil selection used in feasibility and optimization of small wind turbines with low cut-in speed. On the first stage, airfoils data is tested on XFOIL software to check its compatibility with the simulator; then, arithmetic mean criteria is recursively used to discard...... underperformed airfoils; the best airfoil data was exported to Matlab for a deeper analysis. In the second part, data points were interpolated using "splines" to calculate glide ratio and stability across multiple angles of attack, those who present a bigger steadiness were conserved. As a result, 3 airfoils...

  7. Nonlinear aeroelastic behavior of compliant airfoils

    International Nuclear Information System (INIS)

    Thwapiah, G; Campanile, L F

    2010-01-01

    Since the beginning of aviation and up to the present time, airfoils have always been built as rigid structures. They are designed to fly under their divergence speed in order to avoid static aeroelastic instabilities and the resulting large deformations, which are not compatible with the typically low compliance of such airfoils. In recent years, research on airfoil morphing has generated interest in innovative ideas like the use of compliant systems, i.e. systems built to allow for large deformations without failure, in airfoil construction. Such systems can operate in the neighborhood of divergence and take advantage of large aeroelastic servo-effects. This, in turn, allows compact, advanced actuators to control the airfoil's deformation and loads, and hence complement or even replace conventional flaps. In order to analyze and design such compliant, active aeroelastic structures a nonlinear approach to static aeroelasticity is needed, which takes into account the effect of large deformations on aerodynamics and structure. Such an analytical approach is presented in this paper and applied to a compliant passive airfoil as the preliminary step in the realization of a piezoelectrically driven, active aeroelastic airfoil. Wind tunnel test results are also presented and compared with the analytic prediction. The good agreement and the observed behavior in the wind tunnel give confidence in the potential of this innovative idea

  8. Nonlinear aeroelastic behavior of compliant airfoils

    Science.gov (United States)

    Thwapiah, G.; Campanile, L. F.

    2010-03-01

    Since the beginning of aviation and up to the present time, airfoils have always been built as rigid structures. They are designed to fly under their divergence speed in order to avoid static aeroelastic instabilities and the resulting large deformations, which are not compatible with the typically low compliance of such airfoils. In recent years, research on airfoil morphing has generated interest in innovative ideas like the use of compliant systems, i.e. systems built to allow for large deformations without failure, in airfoil construction. Such systems can operate in the neighborhood of divergence and take advantage of large aeroelastic servo-effects. This, in turn, allows compact, advanced actuators to control the airfoil's deformation and loads, and hence complement or even replace conventional flaps. In order to analyze and design such compliant, active aeroelastic structures a nonlinear approach to static aeroelasticity is needed, which takes into account the effect of large deformations on aerodynamics and structure. Such an analytical approach is presented in this paper and applied to a compliant passive airfoil as the preliminary step in the realization of a piezoelectrically driven, active aeroelastic airfoil. Wind tunnel test results are also presented and compared with the analytic prediction. The good agreement and the observed behavior in the wind tunnel give confidence in the potential of this innovative idea.

  9. The aerodynamic design of an advanced rotor airfoil

    Science.gov (United States)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  10. Effects of grit roughness and pitch oscillations on the NACA 4415 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, M.J.; Reuss Ramsay, R.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-07-01

    A NACA 4415 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory 3 x 5 subsonic wind tunnel under steady state and unsteady conditions. The test defined baseline conditions for steady state angles of attack from {minus}10{degree} to +40{degree} and examined unsteady behavior by oscillating the model about its pitch axis for three mean angles, three frequencies, and two amplitudes. For all cases, Reynolds numbers of 0.75, 1, 1.25, and 1.5 million were used. In addition, these were repeated after the application of leading edge grit roughness (LEGR) to determine contamination effects on the airfoil performance. Steady state results of the NACA 4415 testing at Reynolds number of 1.25 million showed a baseline maximum lift coefficient of 1.30 at 12.3{degree} angle of attack. The application of LEGR reduced the maximum lift coefficient by 20% and increased the 0.0090 minimum drag coefficient value by 62%. The zero lift pitching moment of {minus}0.0967 showed a 13% reduction in magnitude to {minus}0.0842 with LEGR applied. Data were also obtained for two pitch oscillation amplitudes: {+-}5.5{degree} and {+-}10{degree}. The larger amplitude consistently gave a higher maximum lift coefficient than the smaller amplitude, and both unsteady maximum lift coefficients were greater than the steady state values. Stall is delayed on the airfoil while the angle of attack is increasing, thereby causing an increase in maximum lift coefficient. A hysteresis behavior was exhibited for all the unsteady test cases. The hysteresis loops were larger for the higher reduced frequencies and for the larger amplitude oscillations. As in the steady case, the effect of LEGR in the unsteady case was to reduce the lift coefficient at high angles of attack. In addition, with LEGR, the hysteresis behavior persisted into lower angles of attack than for the clean case.

  11. New airfoils for small horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Giguere, P.; Selig, M.S. [Univ. of Illinois, Urbana, IL (United States)

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  12. Study of airfoil trailing edge bluntness noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2010-01-01

    This paper deals with airfoil trailing edge noise with special focus on airfoils with blunt trailing edges. Two methods are employed to calculate airfoil noise: The flow/acoustic splitting method and the semi-empirical method. The flow/acoustic splitting method is derived from compressible Navier...... design or optimization. Calculations from both methods are compared with exist experiments. The airfoil blunt noise is found as a function of trailing edge bluntness, Reynolds number, angle of attack, etc....

  13. Characterization of Oscillatory Lift in MFC Airfoils

    OpenAIRE

    Lang Jr, Joseph Reagle

    2014-01-01

    The purpose of this research is to characterize the response of an airfoil with an oscillatory morphing, Macro-fiber composite (MFC) trailing edge. Correlation of the airfoil lift with the oscillatory input is presented. Modal analysis of the test airfoil and apparatus is used to determine the frequency response function. The effects of static MFC inputs on the FRF are presented and compared to the unactuated airfoil. The transfer function is then used to determine the lift component du...

  14. Turbine airfoil having near-wall cooling insert

    Science.gov (United States)

    Martin, Jr., Nicholas F.; Wiebe, David J.

    2017-09-12

    A turbine airfoil is provided with at least one insert positioned in a cavity in an airfoil interior. The insert extends along a span-wise extent of the turbine airfoil and includes first and second opposite faces. A first near-wall cooling channel is defined between the first face and a pressure sidewall of an airfoil outer wall. A second near-wall cooling channel is defined between the second face and a suction sidewall of the airfoil outer wall. The insert is configured to occupy an inactive volume in the airfoil interior so as to displace a coolant flow in the cavity toward the first and second near-wall cooling channels. A locating feature engages the insert with the outer wall for supporting the insert in position. The locating feature is configured to control flow of the coolant through the first or second near-wall cooling channel.

  15. Hybrid Optimization for Wind Turbine Thick Airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2012-06-15

    One important element in aerodynamic design of wind turbines is the use of specially tailored airfoils to increase the ratio of energy capture and reduce cost of energy. This work is focused on the design of thick airfoils for wind turbines by using numerical optimization. A hybrid scheme is proposed in which genetic and gradient based algorithms are combined together to improve the accuracy and the reliability of the design. Firstly, the requirements and the constraints for this class of airfoils are described; then, the hybrid approach is presented. The final part of this work is dedicated to illustrate a numerical example regarding the design of a new thick airfoil. The results are discussed and compared to existing airfoils.

  16. An overview of NACA 6-digit airfoil series characteristics with reference to airfoils for large wind turbine blades

    NARCIS (Netherlands)

    Timmer, W.A.

    2009-01-01

    This paper investigates the NACA 63 and 64 6-digit series of airfoils tested in the NACA LTPT in view to verify the RFOIL calculated airfoil characteristics for high Reynolds numbers. Some anomalies in the zero-lift angles of 15% and 18% thick airfoils from these series are identified, both in the

  17. Airfoil shape for flight at subsonic speeds. [design analysis and aerodynamic characteristics of the GAW-1 airfoil

    Science.gov (United States)

    Whitcomb, R. T. (Inventor)

    1976-01-01

    An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.

  18. Design and optimization of tidal turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2012-03-15

    To increase the ratio of energy capture to the loading and, thereby, to reduce cost of energy, the use of specially tailored airfoils is needed. This work is focused on the design of an airfoil for marine application. Firstly, the requirements for this class of airfoils are illustrated and discussed with reference to the requirements for wind turbine airfoils. Then, the design approach is presented. This is a numerical optimization scheme in which a gradient-based algorithm is used, coupled with the RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints .A section of the present work is dedicated to address this point; particular importance is given to the cavitation phenomenon. Finally, a numerical example regarding the design of a high-efficiency hydrofoil is illustrated, and the results are compared with existing turbine airfoils, considering also the effect on turbine performance due to different airfoils.

  19. Design and optimization of tidal turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2011-07-15

    In order to increase the ratio of energy capture to the loading and thereby to reduce cost of energy, the use of specially tailored airfoils is needed. This work is focused on the design of an airfoil for marine application. Firstly, the requirements for this class of airfoils are illustrated and discussed with reference to the requirements for wind turbine airfoils. Then, the design approach is presented. This is a numerical optimization scheme in which a gradient based algorithm is used, coupled with RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints; in order to formalize in the most complete and effective way the design requirements, the effects of activating specific constraints are discussed. Particularly importance is given to the cavitation phenomenon. Finally, a numerical example regarding the design of a high efficiency, tidal turbine airfoil is illustrated and the results are compared with existing turbine airfoils.

  20. Airfoil flow instabilities induced by background flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Selerowicz, W.C.; Szumowski, A.P. [Technical Univ. Warsaw (Poland)

    2002-04-01

    The effect of background flow oscillations on transonic airfoil (NACA 0012) flow was investigated experimentally. The oscillations were generated by means of a rotating plate placed downstream of the airfoil. Owing to oscillating chocking of the flow caused by the plate, the airfoil flow periodically accelerated and decelerated. This led to strong variations in the surface pressure and the airfoil loading. The results are presented for two angles of attack, {alpha}=4 and {alpha}=8.5 , which correspond to the attached and separated steady airfoil flows, respectively. (orig.)

  1. VISUALISASI DISTRIBUSI TEKANAN PADA AIRFOIL JOUKOWSKY

    OpenAIRE

    Eddy Maryonoto

    2009-01-01

    The goal of this research is to develop a computer based system that can beused to visualize pressure distribution on the Joukowsky's airfoil and streamlinespattern around the airfoil. The pressure on the airfoil is calculdted usingformulasderived from potensial theory. Visualization of pressure distribution implementedby using color gradation technique and coded b.v using Borland Delphi 6programming language. The result of the test shotus lhat lhe system has performedperfectly. Pressure disl...

  2. The Dynamics of SecM-Induced Translational Stalling

    Directory of Open Access Journals (Sweden)

    Albert Tsai

    2014-06-01

    Full Text Available SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.

  3. Unsteady Aerodynamics of Deformable Thin Airfoils

    OpenAIRE

    Walker, William Paul

    2009-01-01

    Unsteady aerodynamic theories are essential in the analysis of bird and insect flight. The study of these types of locomotion is vital in the development of flapping wing aircraft. This paper uses potential flow aerodynamics to extend the unsteady aerodynamic theory of Theodorsen and Garrick (which is restricted to rigid airfoil motion) to deformable thin airfoils. Frequency-domain lift, pitching moment and thrust expressions are derived for an airfoil undergoing harmonic oscillations and def...

  4. An Integrated Method for Airfoil Optimization

    Science.gov (United States)

    Okrent, Joshua B.

    Design exploration and optimization is a large part of the initial engineering and design process. To evaluate the aerodynamic performance of a design, viscous Navier-Stokes solvers can be used. However this method can prove to be overwhelmingly time consuming when performing an initial design sweep. Therefore, another evaluation method is needed to provide accurate results at a faster pace. To accomplish this goal, a coupled viscous-inviscid method is used. This thesis proposes an integrated method for analyzing, evaluating, and optimizing an airfoil using a coupled viscous-inviscid solver along with a genetic algorithm to find the optimal candidate. The method proposed is different from prior optimization efforts in that it greatly broadens the design space, while allowing the optimization to search for the best candidate that will meet multiple objectives over a characteristic mission profile rather than over a single condition and single optimization parameter. The increased design space is due to the use of multiple parametric airfoil families, namely the NACA 4 series, CST family, and the PARSEC family. Almost all possible airfoil shapes can be created with these three families allowing for all possible configurations to be included. This inclusion of multiple airfoil families addresses a possible criticism of prior optimization attempts since by only focusing on one airfoil family, they were inherently limiting the number of possible airfoil configurations. By using multiple parametric airfoils, it can be assumed that all reasonable airfoil configurations are included in the analysis and optimization and that a global and not local maximum is found. Additionally, the method used is amenable to customization to suit any specific needs as well as including the effects of other physical phenomena or design criteria and/or constraints. This thesis found that an airfoil configuration that met multiple objectives could be found for a given set of nominal

  5. OUT Success Stories: Advanced Airfoils for Wind Turbines

    Science.gov (United States)

    Jones, J.; Green, B.

    2000-08-01

    New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.

  6. OUT Success Stories: Advanced Airfoils for Wind Turbines

    International Nuclear Information System (INIS)

    Jones, J.; Green, B.

    2000-01-01

    New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs

  7. Airfoil nozzle and shroud assembly

    Science.gov (United States)

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  8. Turbine airfoil to shroud attachment method

    Science.gov (United States)

    Campbell, Christian X; Kulkarni, Anand A; James, Allister W; Wessell, Brian J; Gear, Paul J

    2014-12-23

    Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) of the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.

  9. KNOW-Blade Task-2 report - Aerodynamic accessories[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J.; Soerensen, N.N.; Zahle, F.; Kang, S.; Nikolaou, I.; Politis, E.S.; Chaviaropoulos, P.K.; Ekaterinaris, J.

    2004-11-01

    In the EC project KNOW-BLADE a work package has been defined to investigate the possibility to numerically model aerodynamic accessories in existing Navier-Stokes solvers. Four different aerodynamic accessories have been investigated. Firstly, the potential of applying active flow control by means of a pulsating jet placed at the leading edge in order to enhance mean lift. The general trend is that increased pulsation frequency is beneficial, in that it reduces the oscillation amplitude and raises the mean lift level while lowering the mean drag level. An increased jet exit velocity has a tendency to increase the oscillation amplitude, which is not very attractive for load control on wind turbines. Secondly, the effect of vortex generators has been modelled using two phenomenological vortex generator models. The models have been applied to three airfoil configurations. For all cases investigated the models shows qualitatively the correct behaviour, even though there are a considerable spread in the degree of success. Thirdly, the influence of adding a stall strip for changing the airfoil characteristics was investigated. Stall strips at three different positions were directly modelled by changing the airfoil geometry. In general the 7mm stall strips placed at P00 and P-02 had the greatest effect on the max lift followed by stall strip P02. Unfortunately, there was not sufficient agreement between the experimental results and the simulations to draw any conclusions of optimum position and geometry of the stall strip. Finally, the effect of surface roughness was modelled by either modifying the boundary condition of the turbulence model or by modifying the airfoil geometry. Using the roughness model gave relatively good agreement with measurements and it must be concluded that the effect of using roughness tape can be better predicted with a roughness model compared to using a modified airfoil surface. (au)

  10. A numerical strategy for modelling rotating stall in core compressors

    Science.gov (United States)

    Vahdati, M.

    2007-03-01

    The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary

  11. Wind turbine airfoil catalogue

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel...... method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which airfoils it does not perform well compared to the experiments, as well as why, when it does so. Theairfoils are classified according to the agreement between the numerical results and experimental...... data. A study correlating the available data and this classification is performed. It is found that transition modelling is to a large extent responsible forthe poor quality of the computational results for most of the considered airfoils. The transition model mechanism that leads...

  12. An Extended Assessment of Fluid Flow Models for the Prediction of Two-Dimensional Steady-State Airfoil Aerodynamics

    Directory of Open Access Journals (Sweden)

    José F. Herbert-Acero

    2015-01-01

    Full Text Available This work presents the analysis, application, and comparison of thirteen fluid flow models in the prediction of two-dimensional airfoil aerodynamics, considering laminar and turbulent subsonic inflow conditions. Diverse sensitivity analyses of different free parameters (e.g., the domain topology and its discretization, the flow model, and the solution method together with its convergence mechanisms revealed important effects on the simulations’ outcomes. The NACA 4412 airfoil was considered throughout the work and the computational predictions were compared with experiments conducted under a wide range of Reynolds numbers (7e5≤Re≤9e6 and angles-of-attack (-10°≤α≤20°. Improvements both in modeling accuracy and processing time were achieved by considering the RS LP-S and the Transition SST turbulence models, and by considering finite volume-based solution methods with preconditioned systems, respectively. The RS LP-S model provided the best lift force predictions due to the adequate modeling of the micro and macro anisotropic turbulence at the airfoil’s surface and at the nearby flow field, which in turn allowed the adequate prediction of stall conditions. The Transition-SST model provided the best drag force predictions due to adequate modeling of the laminar-to-turbulent flow transition and the surface shear stresses. Conclusions, recommendations, and a comprehensive research agenda are presented based on validated computational results.

  13. Airfoil seal system for gas turbine engine

    Science.gov (United States)

    None, None

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  14. Advanced Airfoils Boost Helicopter Performance

    Science.gov (United States)

    2007-01-01

    Carson Helicopters Inc. licensed the Langley RC4 series of airfoils in 1993 to develop a replacement main rotor blade for their Sikorsky S-61 helicopters. The company's fleet of S-61 helicopters has been rebuilt to include Langley's patented airfoil design, and the helicopters are now able to carry heavier loads and fly faster and farther, and the main rotor blades have twice the previous service life. In aerial firefighting, the performance-boosting airfoils have helped the U.S. Department of Agriculture's Forest Service control the spread of wildfires. In 2003, Carson Helicopters signed a contract with Ducommun AeroStructures Inc., to manufacture the composite blades for Carson Helicopters to sell

  15. High-efficiency airfoil rudders applied to submarines

    Directory of Open Access Journals (Sweden)

    ZHOU Yimei

    2017-03-01

    Full Text Available Modern submarine design puts forward higher and higher requirements for control surfaces, and this creates a requirement for designers to constantly innovate new types of rudder so as to improve the efficiency of control surfaces. Adopting the high-efficiency airfoil rudder is one of the most effective measures for improving the efficiency of control surfaces. In this paper, we put forward an optimization method for a high-efficiency airfoil rudder on the basis of a comparative analysis of the various strengths and weaknesses of the airfoil, and the numerical calculation method is adopted to analyze the influence rule of the hydrodynamic characteristics and wake field by using the high-efficiency airfoil rudder and the conventional NACA rudder comparatively; at the same time, a model load test in a towing tank was carried out, and the test results and simulation calculation obtained good consistency:the error between them was less than 10%. The experimental results show that the steerage of a high-efficiency airfoil rudder is increased by more than 40% when compared with the conventional rudder, but the total resistance is close:the error is no more than 4%. Adopting a high-efficiency airfoil rudder brings much greater lifting efficiency than the total resistance of the boat. The results show that high-efficiency airfoil rudder has obvious advantages for improving the efficiency of control, giving it good application prospects.

  16. Prediction of induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J; Thomsen, K; Aagaard Madsen, H [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The main results from recent research in stall induced vibrations are presented. The focus is on the edgewise blade vibrations, which during the last decade have turned out to be a potential threat against the stable operation of stall regulated wind turbines and a fact, which must be dealt with by the designer. The basic physical explanation for the phenomenon and examples of design precaution, which can be taken, are presented. (au)

  17. Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.

  18. Modeling and Grid Generation of Iced Airfoils

    Science.gov (United States)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

  19. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2013-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and tip speed ratio, the optimal airfoils are designed based on the local speed ratios. To achieve high power performance at low cost, the airfoils are designed...... with an objective of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on the previous in-house airfoil family which were optimized at a Reynolds number of 3...... million. A novel shape perturbation function is introduced to optimize the geometry on the existing airfoils and thus simplify the design procedure. The viscos/inviscid code Xfoil is used as the aerodynamic tool for airfoil optimization where the Reynolds number is set at 16 million with a free...

  20. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2014-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed...... with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number...... of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million...

  1. Simulation of Entropy Generation under Stall Conditions in a Centrifugal Fan

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-06-01

    Full Text Available Rotating stalls are generally the first instability met in turbomachinery, before surges. This 3D phenomenon is characterized by one or more stalled flow cells which rotate at a fraction of the impeller speed. The goal of the present work is to shed some light on the entropy generation in a centrifugal fan under rotating stall conditions. A numerical simulation of entropy generation is carried out with the ANSYS Fluent software which solves the Navier-Stokes equations and user defined function (UDF. The entropy generation characteristics in the centrifugal fan for five typical conditions are presented and discussed, involving the design condition, conditions on occurrence and development of stall inception, the rotating stall conditions with two throttle coefficients. The results show that the entropy generation increases after the occurrence of stall inception. The high entropy generation areas move along the circumferential and axial directions, and finally merge into one stall cell. The entropy generation rate during circumferential propagation of the stall cell is also discussed, showing that the entropy generation history is similar to sine curves in impeller and volute, and the volute tongue has a great influence on entropy generation in the centrifugal fan.

  2. Airfoil optimization for morphing aircraft

    Science.gov (United States)

    Namgoong, Howoong

    Continuous variation of the aircraft wing shape to improve aerodynamic performance over a wide range of flight conditions is one of the objectives of morphing aircraft design efforts. This is being pursued because of the development of new materials and actuation systems that might allow this shape change. The main purpose of this research is to establish appropriate problem formulations and optimization strategies to design an airfoil for morphing aircraft that include the energy required for shape change. A morphing aircraft can deform its wing shape, so the aircraft wing has different optimum shapes as the flight condition changes. The actuation energy needed for moving the airfoil surface is modeled and used as another design objective. Several multi-objective approaches are applied to a low-speed, incompressible flow problem and to a problem involving low-speed and transonic flow. The resulting solutions provide the best tradeoff between low drag, high energy and higher drag, low energy sets of airfoil shapes. From this range of solutions, design decisions can be made about how much energy is needed to achieve a desired aerodynamic performance. Additionally, an approach to model aerodynamic work, which would be more realistic and may allow using pressure on the airfoil to assist a morphing shape change, was formulated and used as part of the energy objective. These results suggest that it may be possible to design a morphing airfoil that exploits the airflow to reduce actuator energy.

  3. First-stage high pressure turbine bucket airfoil

    Science.gov (United States)

    Brown, Theresa A.; Ahmadi, Majid; Clemens, Eugene; Perry, II, Jacob C.; Holiday, Allyn K.; Delehanty, Richard A.; Jacala, Ariel Caesar

    2004-05-25

    The first-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  4. Economic evaluation of stall stocking density of lactating dairy cows

    NARCIS (Netherlands)

    Vries, De Albert; Dechassa, Hailegziabher; Hogeveen, Henk

    2016-01-01

    An increase in stall stocking density (SSD), as measured by the number of lactating cows per stall in a freestall barn, reduces cow performance, such as milk yield and fertility, but may increase farm profitability. Our objectives were to calculate effects of varying SSD on profit per stall for a

  5. Multiple piece turbine engine airfoil with a structural spar

    Science.gov (United States)

    Vance, Steven J [Orlando, FL

    2011-10-11

    A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.

  6. Airfoil family design for large offshore wind turbine blades

    Science.gov (United States)

    Méndez, B.; Munduate, X.; San Miguel, U.

    2014-06-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  7. Airfoil family design for large offshore wind turbine blades

    International Nuclear Information System (INIS)

    Méndez, B; Munduate, X; Miguel, U San

    2014-01-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  8. Simulation model of an active-stall fixed-speed wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Sorensen, P.; Blaabjerg, F.

    2004-07-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i. e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (author)

  9. Wider stall space affects behavior, lesion scores, and productivity of gestating sows.

    Science.gov (United States)

    Salak-Johnson, J L; DeDecker, A E; Levitin, H A; McGarry, B M

    2015-10-01

    Limited space allowance within the standard gestation stall is an important welfare concern because it restricts the ability of the sow to make postural adjustments and hinders her ability to perform natural behaviors. Therefore, we evaluated the impacts of increasing stall space and/or providing sows the freedom to access a small pen area on sow well-being using multiple welfare metrics. A total of 96 primi- and multiparous crossbred sows were randomly assigned in groups of 4 sows/treatment across 8 replicates to 1 of 3 stall treatments (TRT): standard stall (CTL; dimensions: 61 by 216 cm), width-adjustable stall (flex stall [FLX]; dimensions: adjustable width of 56 to 79 cm by 216 cm), or an individual walk-in/lock-in stall with access to a small communal open-pen area at the rear of the stall (free-access stall [FAS]; dimensions: 69 by 226 cm). Lesion scores, behavior, and immune and productivity traits were measured at various gestational days throughout the study. Total lesion scores were greatest for sows in FAS and least for sows in FLX ( pregnancy progressed, lesion scores increased among sows in CTL ( postural behaviors and sham chew behavior were affected by TRT ( changes in postural behaviors, lesion severity scores, and other sow traits. Moreover, compromised welfare measures found among sows in various stall environments may be partly attributed to the specific constraints of each stall system such as restricted stall space in CTL, insufficient floor space in the open-pen area of the FAS system, and gate design of the FLX (e.g., direction of bars and feeder space). These results also indicate that parity and gestational day are additional factors that may exacerbate the effects of restricted stall space or insufficient pen space, further compromising sow well-being.

  10. Conducting Classroom Observations : Stallings 'Classroom Snapshot' Observation System for an Electronic Tablet

    OpenAIRE

    World Bank Group

    2017-01-01

    The “Stallings Classroom Snapshot” instrument, technically called the “Stanford Research Institute Classroom Observation System”, was developed by Professor Jane Stallings for research on the efficiency and quality of basic education teachers in the United States in the 1970s. (Stallings, 1977; Stallings and Mohlman, 1988). The Stallings instrument generates robust quantitative data on the interaction of teachers and students in the classroom, with a high degree of inter-rater rel...

  11. Acoustics of a Mixed Porosity Felt Airfoil

    Science.gov (United States)

    2016-06-06

    NUWC-NPT Technical Report 12,212 6 June 2016 Acoustics of a Mixed Porosity Felt Airfoil Aren M. Hellum Undersea Warfare Weapons...Felt Airfoil 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Aren M. Hellum 5.d PROJECT NUMBER 5e...existing literature. Geyer et al. [5] measured a sound reduction of 5 to 15 dB for airfoils made entirely of porous material. A 1973 patent

  12. Wind turbine airfoil design method with low noise and experimental analysis

    DEFF Research Database (Denmark)

    Wang, Quan; Chen, Jin; Cheng, Jiangtao

    2015-01-01

    In order to study the noise characteristic of wind turbine airfoils, the airfoil optimal design mathematic model was built based on airfoil functional integrated theory and noise calculated model. The new optimized objective function of maximizing lift/drag to noise was developed on the design......, though there is a certain difference between the theory results and experiment data. Compared with NACA-64-618 airfoil, the CQU-DTU-B18 airfoil exhibits lower noise, which validates the feasibility of this design method. It is a guide to design wind turbine airfoil with lower noise and to reduce airfoil...

  13. Inception mechanism and suppression of rotating stall in an axial-flow fan

    International Nuclear Information System (INIS)

    Nishioka, T

    2013-01-01

    Inception patterns of rotating stall at two stagger-angle settings for the highly loaded rotor blades were experimentally investigated in a low-speed axial-flow fan. Rotor-tip flow fields were also numerically investigated to clarify the mechanism behind the rotating stall inception. The stall inception patterns depended on the rotor stagger-angle settings. The stall inception from a rotating instability was confirmed at the design stagger-angle settings. The stall inception from a short length-scale stall cell (spike) was also confirmed at the small stagger-angle setting. The spillage of tip-leakage flow and the tip-leakage vortex breakdown influence the rotating stall inception. An air-separator has been developed based on the clarified inception mechanism of rotating stall. The rotating stall was suppressed by the developed air-separator, and the operating range of fan was extended towards low flow rate. The effect of developed air-separator was also confirmed by application to a primary air fan used in a coal fired power plant. It is concluded from these results that the developed air-separator can provide a wide operating range for an axial-flow fan

  14. Development and testing of airfoils for high-altitude aircraft

    Science.gov (United States)

    Drela, Mark (Principal Investigator)

    1996-01-01

    Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.

  15. Monitoring indices of cow comfort in free-stall-housed dairy herds.

    Science.gov (United States)

    Cook, N B; Bennett, T B; Nordlund, K V

    2005-11-01

    Indices of cow comfort are used widely by consultants in the dairy industry, with a general understanding that they are representative of lying behavior. This study examines the influence of stall base type (sand or a geotextile mattress filled with rubber crumbs) and time of measurement on 4 indices of comfort collected at hourly intervals in 12 herds, aligned by morning and afternoon milking. Stall base type significantly influenced all indices of comfort. For example, the least squares mean (SE) cow comfort index (proportion of cows touching a stall that are lying down) was 0.76 (0.015) in herds with mattresses compared with 0.86 (0.015) in herds with sand stalls. Significant hourly variation was also identified suggesting that timing of measurement is important. None of the indices of cow comfort derived from the high-yielding group pen was associated with the mean 24-h lying time of 10 sentinel cows whose time budgets were known in each herd. However, the cow comfort index was associated with the herd mean 24-h stall standing time, with the strongest relationships occurring 2 h before the morning and afternoon milking, when stall base type did not significantly influence the association. When measured at these times, we recommend use of the stall standing index (proportion of cows touching a stall that are standing), with values greater than 0.20 being associated with abnormally long herd mean stall standing times greater than 2 h/d.

  16. 14 CFR 33.65 - Surge and stall characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... stall characteristics. When the engine is operated in accordance with operating instructions required by...

  17. Improving a two-equation eddy-viscosity turbulence model to predict the aerodynamic performance of thick wind turbine airfoils

    Science.gov (United States)

    Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus

    2018-03-01

    Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.

  18. Wind turbine airfoil catalogue

    OpenAIRE

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe; Fuglsang, P.

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which airfoils it does not perform well compared to the experiments, as well as why, when it does so...

  19. Numerical optimization of circulation control airfoils

    Science.gov (United States)

    Tai, T. C.; Kidwell, G. H., Jr.; Vanderplaats, G. N.

    1981-01-01

    A numerical procedure for optimizing circulation control airfoils, which consists of the coupling of an optimization scheme with a viscous potential flow analysis for blowing jet, is presented. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse, and cambered ellipse with drooped and spiralled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the optimal airfoils are found to lie between those of cambered ellipse and the drooped trailing edge, towards the latter as the angle of attack increases. Results agree qualitatively with available experimental data.

  20. Symmetric airfoil geometry effects on leading edge noise.

    Science.gov (United States)

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  1. 尾缘加厚翼型的三维旋转特性研究%Study on 3D rotation characteristics of trailing edge enlarged airfoils

    Institute of Scientific and Technical Information of China (English)

    徐浩然; 杨华; 马桂超

    2016-01-01

    In this paper,Computational Fluid Dynamics (CFD) method was employed to predict the lift and drag coefficients of airfoils at different radii of MEXICO (Model EXperiments In Controlled cOnditions) experimental wind turbine,the computational results were compared with experimental results to validate the prediction accuracy of CFD,the results show that CFD can predict the lift and drag coefficients of airfoils under rotating conditions accurately.Then,CFD method was used to predict the aerodynamic characteristics of a rotor which is newly designed with trailing edge enlarged airfoil and the same chord length along the radial direction,so the characteristics of trailing edge enlarged airfoil under rotating conditions can be obtained which show that the lift coefficients of trailing edge enlarged airfoil is 10 percent larger than that of respectively original airfoil below an angle of attack of 15 degrees.What's more,the roughness sensitivity of trailing edge enlarged airfoil is better than that of respectively original airfoil under rotating conditions.At last,with the increase of radius,the lift coefficients of trailing edge enlarged and original airfoils both increase but stall occurs ahead,the increment of lift coefficients of trailing edge enlarged airfoil is larger than that of respectively original airfoil under rotating conditions.%采用计算流体动力学(CFD)方法对MEXICO试验风力机叶片不同部位翼型在旋转状态下的升阻力系数进行计算,并与试验数据进行比较分析,验证了CFD方法能够准确预测翼型在旋转状态下的升阻力系数.通过采用尾缘对称加厚到5%翼型弦长的DU 97-W-300-05翼型和对应的尾缘未加厚的DU 97-W-300翼型设计,得到沿叶片径向具有相同弦长的风力机叶片,并采用CFD方法对该叶片在旋转状态下的气动特性进行计算.结果表明:在旋转状态下,当攻角小于15.时,尾缘加厚翼型的升力系数比相对应的尾缘未加厚翼型大10

  2. Boundary layer development on turbine airfoil suction surfaces

    Science.gov (United States)

    Sharma, O. P.; Wells, R. A.; Schlinker, R. H.; Bailey, D. A.

    1981-01-01

    The results of a study supported by NASA under the Energy Efficient Engine Program, conducted to investigate the development of boundary layers under the influence of velocity distributions that simulate the suction sides of two state-of-the-art turbine airfoils, are presented. One velocity distribution represented a forward loaded airfoil ('squared-off' design), while the other represented an aft loaded airfoil ('aft loaded' design). These velocity distributions were simulated in a low-speed, high-aspect-ratio wind tunnel specifically designed for boundary layer investigations. It is intended that the detailed data presented in this paper be used to develop improved turbulence model suitable for application to turbine airfoil design.

  3. Research on improved design of airfoil profiles based on the continuity of airfoil surface curvature of wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Cheng, Jiangtao; Shen, Wenzhong

    2013-01-01

    Aerodynamic of airfoil performance is closely related to the continuity of its surface curvature, and airfoil profiles with a better aerodynamic performance plays an important role in the design of wind turbine. The surface curvature distribution along the chord direction and pressure distributio...

  4. Aeroacoustic Computations for Turbulent Airfoil Flows

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær

    2009-01-01

    a NACA 0015 airfoil at a Mach number of 0.2 and a Reynolds number of 1.6 x 10(5) for different angles of attack. The flow solutions are validated by comparing lift and drag characteristics with experimental data. The comparisons show good agreements between the computed and measured airfoil lift...

  5. Optimization design of airfoil profiles based on the noise of wind turbines

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao

    2012-01-01

    Based on design theory of airfoil profiles and airfoil self-noise prediction model, a new method with the target of the airfoil average efficiency-noise ratio of design ranges for angle of attack had been developed for designing wind turbine airfoils. The airfoil design method was optimized for a...

  6. Dairy Cows Produce Less Milk and Modify Their Behaviour during the Transition between Tie-Stall to Free-Stall

    Science.gov (United States)

    Broucek, Jan; Uhrincat, Michal; Mihina, Stefan; Soch, Miloslav; Mrekajova, Andrea; Hanus, Anton

    2017-01-01

    Simple Summary The purpose of this study was to evaluate the influence of moving cows from the barn with stanchion-stall housing to free-stall housing on their behaviour and production. Cows lay down up to ten hours after removing. The cows in their second lactation and open cows tended to lie sooner after removing than cows in their first lactation and pregnant cows. The times of total lying and rumination were increasing from the first day to the tenth day after removing. Cows produced 23.3% less milk at the first day following the transfer than at the last day prior to moving (23.76 ± 7.20 kg vs. 30.97 ± 7.26 kg, p cows achieved maximum production. The difference was found in milk losses due to the shift between cows in first and second lactation. Abstract Transfer of cattle to an unknown barn may result in a reduction in its welfare. Housing and management practices can result in signs of stress that include a long-term suppression of milk efficiency. The purpose of this study was to evaluate the influence of moving cows from the stanchion-stall housing to free-stall housing on their behaviour and production. The Holstein cows were moved into the new facility with free-stall housing from the old barn with stanchion-stall housing. Cows lay down up to ten hours (596.3 ± 282.7 min) after removing. The cows in their second lactation and open cows tended to lie sooner after removing than cows in their first lactation and pregnant cows. The times of total lying and rumination were increasing from the first day to the tenth day after removing (23.76 ± 7.20 kg vs. 30.97 ± 7.26 kg, p Cows produced 23.3% less milk at the first day following the transfer than at the last day prior to moving (p cows on the first and second lactation (p cows’ milk production. However, when the cows are moved to a better environment, they rapidly adapt to the change. PMID:28273810

  7. Dynamic stall and 3D effects

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Thor, S.E. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    1996-12-01

    The JOULE II project `Dynamic stall and 3D effects` started in January 1994 and was completed in September 1995. The objective of the project has been to increase the understanding of the three-dimensional and unsteady aerodynamics of stall controlled HAWT`s. The objectives have also been to develop `engineering models` suitable for inclusion into aero-elastic codes. The project included the participation of 13 parties within Europe. This paper describes an overview of the work carried out within the project and key results. 3 refs, 4 figs

  8. Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently

    Science.gov (United States)

    Yu, Chuanhe; Gan, Haiyun

    2017-01-01

    ABSTRACT Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal. PMID:28784720

  9. Geometrical effects on the airfoil flow separation and transition

    KAUST Repository

    Zhang, Wei

    2015-04-25

    We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10 degrees incidence. The two chosen airfoils are geometrically similar except for maximum camber (respectively 4%C and 0 with C the chord length), which results in a larger projection area with respect to the incoming flow for the NACA-4412 airfoil, and a larger leeward surface curvature at the leading edge for the NACA-0012-64 airfoil. The governing equations are discretized using an energy conservative fourth-order spatial discretization scheme. An assessment on the two-point correlation indicates that a spanwise domain size of 0.8C is sufficiently large for the present simulations. We discuss flow separation at the airfoil leading edge, transition of the separated shear layer to three-dimensional flow and subsequently to turbulence. Numerical results reveal a stronger adverse pressure gradient field in the leading edge region of the NACA-0012-64 airfoil due to the rapidly varying surface curvature. As a result, the flow experiences detachment at x/C=0.08, and the separated shear layer transition via Kelvin-Helmholtz mechanism occurs at x/C=0.29 with fully developed turbulent flow around x/C=0.80. These flow development phases are delayed to occur at much downstream positions, respectively, observed around x/C=0.25, 0.71 and 1.15 for the NACA-4412 airfoil. The turbulent intensity, measured by the turbulent fluctuations and turbulent Reynolds stresses, are much larger for NACA-0012-64 from the transition onset until the airfoil trailing edge, while turbulence develops significantly downstream of the trailing edge for the NACA-4412 airfoil. For both airfoils, our DNS results indicate that the mean Reynolds stress u\\'u\\'/U02 reaches its maximum value at a distance from the surface approximately equal to the displacement

  10. Drop "impact" on an airfoil surface.

    Science.gov (United States)

    Wu, Zhenlong

    2018-05-17

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Damping element for reducing the vibration of an airfoil

    Science.gov (United States)

    Campbell, Christian X; Marra, John J

    2013-11-12

    An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.

  12. Self-sustained Flow-acoustic Interactions in Airfoil Transitional Boundary Layers

    Science.gov (United States)

    2015-07-09

    AFRL-AFOSR-VA-TR-2015-0235 Self-sustained flow-acoustic interactions in airfoil transitional boundary layers Vladimir Golubev EMBRY-RIDDLE...From - To)      01-04-2012 to 31-03-2015 4.  TITLE AND SUBTITLE Self-sustained flow-acoustic interactions in airfoil transitional boundary layers 5a...complementary experimental and numerical studies of flow-acoustic resonant interactions in transitional airfoils and their impact on airfoil surface

  13. Supercritical Airfoil Coordinates

    Data.gov (United States)

    National Aeronautics and Space Administration — Rectangular Supercritical Wing (Ricketts) - design and measured locations are provided in an Excel file RSW_airfoil_coordinates_ricketts.xls . One sheet is with Non...

  14. A comparison of free-stall barns used by modernized Wisconsin dairies.

    Science.gov (United States)

    Bewley, J; Palmer, R W; Jackson-Smith, D B

    2001-02-01

    A primary objective of the Wisconsin Dairy Modernization Survey was to compare features of free-stall barns available to dairy producers. This study used data from a large random sample of expanding dairy farms to determine whether the theoretical benefits of particular free-stall configurations bear out under on-farm conditions. Comparisons were made among herds using free-stall barns as their primary housing for new versus remodeled facilities, barn design, bedding used, feed-delivery design, manure removal strategies, animal restraint, maternity areas, overcrowding, and cooling methods. Producers who made the transition from tie-stall housing to free-stall housing were satisfied with this decision. New free-stall barns provided a more desirable environment for the herds than remodeled free-stall barns, although initial investments were higher. When new free-stall barns were compared, herds with four-row barns had higher production, lower somatic cell count, and higher stocking rates than herds with six-row barns. Respondents were more satisfied with four- and six-row barns than with two- and three-row barns. Respondents felt sand provided some advantages for cow comfort, while satisfaction with bedding cost and manure handling was higher with mattresses. Dairy Herd Improvement data showed no difference in milk production or somatic cell count for producers who chose sand or mattress-based free stalls. Respondents were more satisfied with the use of drive-through feeding than other feed-delivery designs. Most producers chose to use tractor scrapers to remove manure; however, producers who used automated systems were more satisfied with manure management. Few differences were observed when comparing self-locking head gates to palpation rails. Overcrowding did not have any adverse affect on production or user satisfaction with feed intake or cow comfort. Using supplemental cooling appeared to facilitate higher production.

  15. Airfoil characteristics for wind turbines

    OpenAIRE

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.; Aagaard Madsen, Helge; Shen, W.Z.; Sørensen, Jens Nørkær

    1999-01-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scal...

  16. Associations between cow hygiene, hock injuries, and free stall usage on US dairy farms.

    Science.gov (United States)

    Lombard, J E; Tucker, C B; von Keyserlingk, M A G; Kopral, C A; Weary, D M

    2010-10-01

    This cross-sectional study evaluated cow comfort measures in free stall dairies across the United States as part of the National Animal Health Monitoring System's Dairy 2007 study. The study was conducted in 17 states and evaluations were completed between March 5 and September 5, 2007. Assessors recorded hygiene and hock scores, number of cows housed in the pen, the number of cows standing with only the front feet in a stall, standing fully in a stall, and lying in a stall. Facility design measures included bedding type, bedding quantity, stall length and width, presence of a neck rail or brisket locator, and relevant distances from the rear and bed of the stall. Of the 491 operations that completed the cow comfort assessment, 297 had Holstein cows housed in free stalls and were included in this analysis. Negative binomial models were constructed to evaluate the following outcomes: the number of cows that were very dirty, had severe hock injuries, stood with front feet in the stall, stood with all feet in the stall, and were lying in the stall. Hygiene was better on farms that did not tail dock cows compared with those that did (5.7 vs. 8.8% were dirty) and on farms located in the study's west region compared with those located in the east region (5.2 vs. 9.7% were dirty). Severe hock injuries were less common on farms in the west than those in the east (0.5 vs. 4.1%). In addition, severe hock injuries were less common on farms that used dirt as a stall base or sand as bedding compared with farms that did not. A higher percentage of cows was standing with front feet in the stall at higher ambient temperatures (incidence rate ratio=1.016) and as time since feeding increased (incidence rate ratio=1.030). A lower percentage of cows were standing with front feet in the stall when the stalls were shorter and when there were fewer cows per stall. Standing fully in a stall was performed by a higher percentage of cows during the summer than during the spring (13.6 vs. 8

  17. Measuring Lift with the Wright Airfoils

    Science.gov (United States)

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-01-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…

  18. Compressor airfoil tip clearance optimization system

    Science.gov (United States)

    Little, David A.; Pu, Zhengxiang

    2015-08-18

    A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.

  19. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  20. A Comparative Study of Three Methodologies for Modeling Dynamic Stall

    Science.gov (United States)

    Sankar, L.; Rhee, M.; Tung, C.; ZibiBailly, J.; LeBalleur, J. C.; Blaise, D.; Rouzaud, O.

    2002-01-01

    During the past two decades, there has been an increased reliance on the use of computational fluid dynamics methods for modeling rotors in high speed forward flight. Computational methods are being developed for modeling the shock induced loads on the advancing side, first-principles based modeling of the trailing wake evolution, and for retreating blade stall. The retreating blade dynamic stall problem has received particular attention, because the large variations in lift and pitching moments encountered in dynamic stall can lead to blade vibrations and pitch link fatigue. Restricting to aerodynamics, the numerical prediction of dynamic stall is still a complex and challenging CFD problem, that, even in two dimensions at low speed, gathers the major difficulties of aerodynamics, such as the grid resolution requirements for the viscous phenomena at leading-edge bubbles or in mixing-layers, the bias of the numerical viscosity, and the major difficulties of the physical modeling, such as the turbulence models, the transition models, whose both determinant influences, already present in static maximal-lift or stall computations, are emphasized by the dynamic aspect of the phenomena.

  1. Turbine airfoil with controlled area cooling arrangement

    Science.gov (United States)

    Liang, George

    2010-04-27

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  2. Aerodynamic loading on a cylinder behind an airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.J.; Huang, L.; Zhou, Y. [Hong Kong Polytechnic University, Department of Mechanical Engineering, Kowloon (Hong Kong)

    2005-05-01

    The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Re{sub d}=2,100-20,000, and the airfoil chord-length-based Reynolds numbers of Re{sub c}=14,700-140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as Tincreases. For Re{sub c}<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Re{sub c}>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding. (orig.)

  3. Aerodynamic shape optimization of Airfoils in 2-D incompressible flow

    Science.gov (United States)

    Rangasamy, Srinivethan; Upadhyay, Harshal; Somasekaran, Sandeep; Raghunath, Sreekanth

    2010-11-01

    An optimization framework was developed for maximizing the region of 2-D airfoil immersed in laminar flow with enhanced aerodynamic performance. It uses genetic algorithm over a population of 125, across 1000 generations, to optimize the airfoil. On a stand-alone computer, a run takes about an hour to obtain a converged solution. The airfoil geometry was generated using two Bezier curves; one to represent the thickness and the other the camber of the airfoil. The airfoil profile was generated by adding and subtracting the thickness curve from the camber curve. The coefficient of lift and drag was computed using potential velocity distribution obtained from panel code, and boundary layer transition prediction code was used to predict the location of onset of transition. The objective function of a particular design is evaluated as the weighted-average of aerodynamic characteristics at various angles of attacks. Optimization was carried out for several objective functions and the airfoil designs obtained were analyzed.

  4. Precautions against axial fan stall in reactor building to Tianwan NPP

    International Nuclear Information System (INIS)

    Liu Chunlong; Pei Junmin

    2011-01-01

    The paper introduces the mechanism and harm of rotating stall of axial fans, analyzes the necessity for prevention against axial fan stall in reactor building of Tianwan NPP, introduces the precautions, and then makes an assessment on anti-stall effect of flow separators. It can provide reference for model-selection or reconstruction of similar fans in power stations, and for operation and maintenance of axial fans. (authors)

  5. Turbine airfoil with outer wall thickness indicators

    Science.gov (United States)

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  6. Design of the LRP airfoil series using 2D CFD

    DEFF Research Database (Denmark)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D...... Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils....

  7. Design of the LRP airfoil series using 2D CFD

    International Nuclear Information System (INIS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N; Vronsky, Tomas; Gaudern, Nicholas

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils

  8. Numerical and experimental study on the ability of dynamic roughness to alter the development of a leading edge vortex

    Science.gov (United States)

    Griffin, Christopher D.

    Dynamic stall is an unsteady aerodynamic phenomenon garnering much research interest because it occurs in a variety of applications. For example, dynamic stall is known to occur on helicopter rotor blades, wind turbines, high maneuvering military aircraft, and flapping wings. Dynamic stall occurs when an aerodynamic lifting device, such as an airfoil, wing, or turbomachine blade, undergoes a rapid pitching motion. It also occurs on lifting devices that are impulsively started at high angles of attack. Dynamic stall can "delay" aerodynamic stall to angles of attack that are significantly beyond the static stall angle of attack. During dynamic stall a large leading edge vortex (LEV) is formed, which creates greater fluid acceleration over the wing or airfoil, thus sustaining lift. As this vortex is shed downstream stall eventually occurs and there is an abrupt increase in drag and a large shift in pitching moment. Research has been performed to better understand the mechanisms occurring during dynamic stall in an effort to find ways to best take advantage of the increased lift associated with dynamic stall, but avoid the downfalls that occur once stall is initiated. Few attempts have been made to alter the LEV, and these attempts have used methods associated with laminar boundary layer separation control. Although these methods have shown promise, they suffer from the drawback that they exhaust more energy than is gained by flow control, while also only being effective at certain flight regimes. The research described herein documents the first study on the ability of dynamic roughness to alter the LEV encountered on a rapidly pitching airfoil. Both numerical and experimental studies were performed, including two-dimensional and three-dimensional computational fluid dynamics (CFD) simulations as well as stereo and planar particle image velocimetry (PIV) experiments. Evidence for the ability of small scale dynamic roughness to alter the development of the LEV was

  9. Usage of Numerical Optimization in Wind Turbine Airfoil Design

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands)

    2011-01-15

    One important key element in the aerodynamic design of wind turbines is the use of specially tailored airfoils to increase the ratio of energy capture to the loading and thereby to reduce the cost of energy. This work is focused on the design of a wind turbine airfoil by using numerical optimization. First, the requirements for this class of airfoils are illustrated and discussed in order to have an exhaustive outline of the complexity of the problem. Then the optimization approach is presented; a gradient-based algorithm is used, coupled with RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints; to formalize the design requirements in the most complete and effective way, the effects of activating specific constraints are discussed. Finally, a numerical example regarding the design of a high-efficiency airfoil for the outer part of a blade is illustrated, and the results are compared with existing wind turbine airfoils.

  10. Airfoil shape for flight at subsonic speeds

    Science.gov (United States)

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  11. Profile catalogue for airfoil sections based on 3D computations

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe

    2006-01-01

    This report is a continuation of the Wind Turbine Airfoil Catalogue [1] which objective was, firstly to provide a database of aerodynamic characteristics for a wide range of airfoil profiles aimed at wind turbine applications, and secondly to test thetwo-dimensional Navier-Stokes solver EllipSys2D...... and the actual fluid flow, and thereby the incorrect prediction of airfoil characteristics. In addition, other features of the flow solver, such astransition and turbulence modelling, and their influence onto the numerical results are investigated. Conclusions are drawn regarding the evaluation of airfoil...

  12. Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence

    Science.gov (United States)

    Feroskhan, Mir Alikhan Bin Mohammad

    Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and

  13. Numerical simulation of airfoil trailing edge serration noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    In the present work, numerical simulations are carried out for a low noise airfoil with and without serrated Trailing Edge. The Ffowcs Williams-Hawkings acoustic analogy is implemented into the in-house incompressible flow solver EllipSys3D. The instantaneous hydrodynamic pressure and velocity...... field are obtained using Large Eddy Simulation. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FW-H approach. The extended length of the serration is about 16.7% of the airfoil chord and the geometric angle of the serration...... is 28 degrees. The chord based Reynolds number is around 1.5x106. Simulations are compared with existing wind tunnel experiments at various angles of attack. Even though the airfoil under investigation is already optimized for low noise emission, numerical simulations and wind tunnel experiments show...

  14. Simulation of Broadband Noise Sources of an Axial Fan under Rotating Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-11-01

    Full Text Available Study on the influence of rotating stall on the aerodynamic noise of axial fan has important value to warn of the occurrence of stall through monitoring the noise variations. The present work is to analyze the aerodynamic noise before and after the phenomenon of rotating stall by solving Navier-Stokes equations, coupled with the throttle condition and the broadband noise sources model. The impeller exit rotational Mach number and rotational Reynolds number are separately 0.407 and 8.332 × 106. The results show that the aerodynamic noise source of the fan is mainly the rotation noise under the design condition. The vortex noise accounts for the major part of fan noise after the occurrence of stall, and the maximum acoustic power level of the fan appears in the rotor domains. In the evolution process from the stall inception to the stall cell, the high noise regions of the rotor develop along the radial, circumferential, and axial directions, and the area occupied by high noise regions increases from 33% to 46% impeller channels area. On rotating stall condition, the high noise regions occupying about 46% impeller channels area propagate with the stall cell along the circumferential direction at a half of rotor speed.

  15. Airfoil shape optimization using non-traditional optimization technique and its validation

    Directory of Open Access Journals (Sweden)

    R. Mukesh

    2014-07-01

    Full Text Available Computational fluid dynamics (CFD is one of the computer-based solution methods which is more widely employed in aerospace engineering. The computational power and time required to carry out the analysis increase as the fidelity of the analysis increases. Aerodynamic shape optimization has become a vital part of aircraft design in the recent years. Generally if we want to optimize an airfoil we have to describe the airfoil and for that, we need to have at least hundred points of x and y co-ordinates. It is really difficult to optimize airfoils with this large number of co-ordinates. Nowadays many different schemes of parameter sets are used to describe general airfoil such as B-spline, and PARSEC. The main goal of these parameterization schemes is to reduce the number of needed parameters as few as possible while controlling the important aerodynamic features effectively. Here the work has been done on the PARSEC geometry representation method. The objective of this work is to introduce the knowledge of describing general airfoil using twelve parameters by representing its shape as a polynomial function. And also we have introduced the concept of Genetic Algorithm to optimize the aerodynamic characteristics of a general airfoil for specific conditions. A MATLAB program has been developed to implement PARSEC, Panel Technique, and Genetic Algorithm. This program has been tested for a standard NACA 2411 airfoil and optimized to improve its coefficient of lift. Pressure distribution and co-efficient of lift for airfoil geometries have been calculated using the Panel method. The optimized airfoil has improved co-efficient of lift compared to the original one. The optimized airfoil is validated using wind tunnel data.

  16. An Experimental Investigation of an Airfoil Traversing Across a Shear Flow

    Science.gov (United States)

    Hamedani, Borhan A.; Naguib, Ahmed; Koochesfahani, Manoochehr

    2017-11-01

    While the aerodynamics of an airfoil in a uniform approach flow is well understood, less attention has been paid to airfoils in non-uniform flows. An aircraft encounters such flow, for example, during landing through the air wake of an aircraft carrier. The present work is focused on investigating the fundamental aerodynamics of airfoils in such an environment using canonical flow experiments. To generate a shear approach flow, a shaped honeycomb block is employed in a wind tunnel setup. Direct force measurements are performed on a NACA 0012 airfoil, with an aspect ratio of 1.8, as the airfoil traverses steadily across the shear region. Measurements are conducted at a chord Reynolds number Rec 75k, based on the mean approach stream velocity at the center of the shear zone, for a range of airfoil traverse velocities and angles of attack (0 - 12 degree). The results are compared to those obtained for the same airfoil when placed statically at different points along the traverse path inside the shear zone. The comparison enables examination of the applicability of quasi-steady analysis in computing the forces on the moving airfoil. This work is supported by ONR Grant Number N00014-16-1-2760.

  17. Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2011-01-01

    The present work considers incompressible flow over a 2D airfoil with a deformable trailing edge. The aerodynamic characteristics of an airfoil with a trailing edge flap is numerically investigated using computational fluid dynamics. A novel hybrid immersed boundary (IB) technique is applied...... to simulate the moving part of the trailing edge. Over the main fixed part of the airfoil the Navier-Stokes (NS) equations are solved using a standard body-fitted finite volume technique whereas the moving trailing edge flap is simulated with the immersed boundary method on a curvilinear mesh. The obtained...... results show that the hybrid approach is an efficient and accurate method for solving turbulent flows past airfoils with a trailing edge flap and flow control using trailing edge flap is an efficient way to regulate the aerodynamic loading on airfoils....

  18. Preferences of dairy cows for three stall surface materials with small amounts of bedding.

    Science.gov (United States)

    Norring, M; Manninen, E; de Passillé, A M; Rushen, J; Saloniemi, H

    2010-01-01

    Farmers' concerns about the economy, cost of labor, and hygiene have resulted in reduced use of organic bedding in stalls for dairy cows; however, the reduced use of organic bedding possibly impairs cow comfort. The effects of different stall surface materials were evaluated in an unheated building in which only a small amount of bedding was used. The lying time and preferences of 18 cows using 3 stall surface materials (concrete, soft rubber mat, and sand) were compared. All materials were lightly bedded with a small amount of straw, and the amount of straw added to each stall was measured. The cows only had access to stalls of one surface type while their lying time was observed. Lying times were longest on the rubber mats compared with other surfaces (rubber mat 768; concrete 727; sand 707+/-16 min/d). In a preference test, cows had access to 2 of the 3 types of stalls for 10 d and their stall preference was measured. Cows preferred stalls with rubber mats to stalls with a concrete floor (median 73 vs. 18 from a total of 160 observations per day; interquartile range was 27 and 12, respectively), but showed no preference for sand stalls compared with stalls with a concrete floor or with rubber mats. More straw was needed on sand stalls compared with concrete or mat (638+/-13 g/d on sand, 468+/-10 g/d on concrete, and 464+/-8 g/d on rubber mats). Lying times on bedded mats indicated that mats were comfortable for the cows. If availability or cost of bedding material requires limiting the amount of bedding used, rubber mats may help maintain cow comfort. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Genetic Algorithms in Wind Turbine Airfoil Design

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, F. [ECN Wind Energy, Petten (Netherlands); Bizzarrini, N.; Coiro, D.P. [Department of Aerospace Engineering, University of Napoli ' Federico II' , Napoli (Italy)

    2011-03-15

    One key element in the aerodynamic design of wind turbines is the use of specially tailored airfoils to increase the ratio of energy capture to the loading and thereby to reduce cost of energy. This work is focused on the design of a wind turbine airfoil by using numerical optimization. Firstly, the optimization approach is presented; a genetic algorithm is used, coupled with RFOIL solver and a composite Bezier geometrical parameterization. A particularly sensitive point is the choice and implementation of constraints; in order to formalize in the most complete and effective way the design requirements, the effects of activating specific constraints are discussed. A numerical example regarding the design of a high efficiency airfoil for the outer part of a blade by using genetic algorithms is illustrated and the results are compared with existing wind turbine airfoils. Finally a new hybrid design strategy is illustrated and discussed, in which the genetic algorithms are used at the beginning of the design process to explore a wide domain. Then, the gradient based algorithms are used in order to improve the first stage optimum.

  20. Load alleviation on wind turbine blades using variable airfoil geometry

    Energy Technology Data Exchange (ETDEWEB)

    Basualdo, S.

    2005-03-01

    A two-dimensional theoretical study of the aeroelastic behaviour of an airfoil has been performed, whose geometry can be altered using a rear-mounted flap. This device is governed by a controller, whose objective is to reduce the airfoil displacements and, therefore, the stresses present in a real blade. The aerodynamic problem was solved numerically by a panel method using the potential theory, suitable for modelling attached flows. It is therefore mostly applicable for Pitch Regulated Variable Speed (PRVS) wind turbines, which mainly operate under this flow condition. The results show evident reductions in the airfoil displacements by using simple control strategies having the airfoil position and its first and second derivatives as input, especially at the system's eigenfrequency. The use of variable airfoil geometry is an effective means of reducing the vibration magnitudes of an airfoil that represents a section of a wind turbine blade, when subject to stochastic wind signals. The results of this investigation encourage further investigations with 3D aeroelastic models to predict the reduction in loads in real wind turbines. (author)

  1. Active Control of Flow Separation Over an Airfoil

    Science.gov (United States)

    Ravindran, S. S.

    1999-01-01

    Designing an aircraft without conventional control surfaces is of interest to aerospace community. In this direction, smart actuator devices such as synthetic jets have been proposed to provide aircraft maneuverability instead of control surfaces. In this article, a numerical study is performed to investigate the effects of unsteady suction and blowing on airfoils. The unsteady suction and blowing is introduced at the leading edge of the airfoil in the form of tangential jet. Numerical solutions are obtained using Reynolds-Averaged viscous compressible Navier-Stokes equations. Unsteady suction and blowing is investigated as a means of separation control to obtain lift on airfoils. The effect of blowing coefficients on lift and drag is investigated. The numerical simulations are compared with experiments from the Tel-Aviv University (TAU). These results indicate that unsteady suction and blowing can be used as a means of separation control to generate lift on airfoils.

  2. NUMERICAL INVESTIGATION OF TWO ELEMENT CAMBER MORPHING AIRFOIL IN LOW REYNOLDS NUMBER FLOWS

    Directory of Open Access Journals (Sweden)

    RAJESH SENTHIL KUMAR T.

    2017-07-01

    Full Text Available Aerodynamic performance of a two-element camber morphing airfoil was investigated at low Reynolds number using the transient SST model in ANSYS FLUENT 14.0 and eN method in XFLR5. The two-element camber morphing concept was employed to morph the baseline airfoil into another airfoil by altering the orientation of mean-line at 35% of the chord to achieve better aerodynamic efficiency. NACA 0012 was selected as baseline airfoil. NACA 23012 was chosen as the test case as it has the camber-line similar to that of the morphed airfoil and as it has the same thickness as that of the baseline airfoil. The simulations were carried out at chord based Reynolds numbers of 2.5×105 and 3.9×105. The aerodynamic force coefficients, aerodynamic efficiency and the location of the transition point of laminar separation bubble over these airfoils were studied for various angles of attack. It was found that the aerodynamic efficiency of the morphed airfoil was 12% higher than that of the target airfoil at 4° angle of attack for Reynolds number of 3.9×105 and 54% rise in aerodynamic performance was noted as Reynolds number was varied from 2.5×105 to 3.9×105. The morphed airfoil exhibited the nature of low Reynolds number airfoil.

  3. Aerodynamic and aeroacoustic performance of airfoils with morphing structures

    OpenAIRE

    Ai, Qing; Azarpeyvand, Mahdi; Lachenal, Xavier; Weaver, Paul M.

    2016-01-01

    Aerodynamic and aeroacoustic performance of airfoils fitted with morphing trailing edges are investigated using a coupled structure/fluid/noise model. The control of the flow over the surface of an airfoil using shape optimization techniques can significantly improve the load distribution along the chord and span lengths whilst minimising noise generation. In this study, a NACA 63-418 airfoil is fitted with a morphing flap and various morphing profiles are considered with two features that di...

  4. Airfoil gust response and the sound produced by airifoil-vortex interaction

    Science.gov (United States)

    Amiet, R. K.

    1986-01-01

    This paper contributes to the understanding of the noise generation process of an airfoil encountering an unsteady upwash. By using a fast Fourier transform together with accurate airfoil response functions, the lift-time waveform for an airfoil encountering a delta function gust (the indicial function) is calculated for a flat plate airfoil in a compressible flow. This shows the interesting property that the lift is constant until the generated acoustic wave reaches the trailing edge. Expressions are given for the magnitude of this constant and for the pressure distribution on the airfoil during this time interval. The case of an airfoil cutting through a line vortex is also analyzed. The pressure-time waveform in the far field is closely related to the left-time waveform for the above problem of an airfoil entering a delta function gust. The effects of varying the relevant parameters in the problem are studied, including the observed position, the core diameter of the vortex, the vortex orientation and the airfoil span. The far field sound varies significantly with observer position, illustrating the importance of non-compactness effects. Increasing the viscous core diameter tends to smooth the pressure-time waveform. For small viscous core radius and infinite span, changing the vortex orientation changes only the amplitude of the pressure-time waveform, and not the shape.

  5. Bacillus cereus in free-stall bedding.

    Science.gov (United States)

    Magnusson, M; Svensson, B; Kolstrup, C; Christiansson, A

    2007-12-01

    To increase the understanding of how different factors affect the bacterial growth in deep sawdust beds for dairy cattle, the microbiological status of Bacillus cereus and coliforms in deep sawdust-bedded free stalls was investigated over two 14-d periods on one farm. High counts of B. cereus and coliforms were found in the entire beds. On average, 4.1 log(10) B. cereus spores, 5.5 log(10) B. cereus, and 6.7 log(10) coliforms per gram of bedding could be found in the upper layers of the sawdust likely to be in contact with the cows' udders. The highest counts of B. cereus spores, B. cereus, and coliforms were found in the bedding before fresh bedding was added, and the lowest immediately afterwards. Different factors of importance for the growth of B. cereus in the bedding material were explored in laboratory tests. These were found to be the type of bedding, pH, and the type and availability of nutrients. Alternative bedding material such as peat and mixtures of peat and sawdust inhibited the bacterial growth of B. cereus. The extent of growth of B. cereus in the sawdust was increased in a dose-dependent manner by the availability of feces. Urine added to different bedding material raised the pH and also led to bacterial growth of B. cereus in the peat. In sawdust, a dry matter content greater than 70% was needed to lower the water activity to 0.95, which is needed to inhibit the growth of B. cereus. In an attempt to reduce the bacterial growth of B. cereus and coliforms in deep sawdust beds on the farm, the effect of giving bedding daily or a full replacement of the beds was studied. The spore count of B. cereus in the back part of the free stalls before fresh bedding was added was 0.9 log units lower in stalls given daily bedding than in stalls given bedding twice weekly. No effect on coliform counts was found. Replacement of the entire sawdust bedding had an effect for a short period, but by 1 to 2 mo after replacement, the counts of B. cereus spores in the

  6. Turbine airfoil fabricated from tapered extrusions

    Science.gov (United States)

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  7. Stall Recovery Guidance Algorithms Based on Constrained Control Approaches

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana

    2016-01-01

    Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.

  8. Sealing apparatus for airfoils of gas turbine engines

    Science.gov (United States)

    Jones, R.B.

    1998-05-19

    An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed. 17 figs.

  9. Prediction of active control of subsonic centrifugal compressor rotating stall

    Science.gov (United States)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.

  10. An archival analysis of stall warning system effectiveness during airborne icing encounters

    Science.gov (United States)

    Maris, John Michael

    An archival study was conducted to determine the influence of stall warning system performance on aircrew decision-making outcomes during airborne icing encounters. A Conservative Icing Response Bias (CIRB) model was developed to explain the historical variability in aircrew performance in the face of airframe icing. The model combined Bayes' Theorem with Signal Detection Theory (SDT) concepts to yield testable predictions that were evaluated using a Binary Logistic Regression (BLR) multivariate technique applied to two archives: the NASA Aviation Safety Reporting System (ASRS) incident database, and the National Transportation Safety Board (NTSB) accident databases, both covering the period January 1, 1988 to October 2, 2015. The CIRB model predicted that aircrew would experience more incorrect response outcomes in the face of missed stall warnings than with stall warning False Alarms. These predicted outcomes were observed at high significance levels in the final sample of 132 NASA/NTSB cases. The CIRB model had high sensitivity and specificity, and explained 71.5% (Nagelkerke R2) of the variance of aircrew decision-making outcomes during the icing encounters. The reliability and validity metrics derived from this study suggest indicate that the findings are generalizable to the population of U.S. registered turbine-powered aircraft. These findings suggest that icing-related stall events could be reduced if the incidence of stall warning Misses could be minimized. Observed stall warning Misses stemmed from three principal causes: aerodynamic icing effects, which reduced the stall angle-of-attack (AoA) to below the stall warning calibration threshold; tail stalls, which are not monitored by contemporary protection systems; and icing-induced system issues (such as frozen pitot tubes), which compromised stall warning system effectiveness and airframe envelope protections. Each of these sources of missed stall warnings could be addressed by Aerodynamic Performance

  11. Validation of the CQU-DTU-LN1 series of airfoils

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Fischer, Andreas

    2014-01-01

    The CQU-DTU-LN1 series of airfoils were designed with an objective of high lift and low noise emission. In the design process, the aerodynamic performance is obtained using XFOIL while noise emission is obtained with the BPM model. In this paper we present some validations of the designed CQU......, the designed Cl and Cl/Cd agrees well with the experiment and are in general higher than those of the NACA airfoil. For the acoustic features, the noise emission of the LN118 airfoil is compared with the acoustic measurements and that of the NACA airfoil. Comparisons show that the BPM model can predict...

  12. Dynamic Characteristics of Rotating Stall in Mixed Flow Pump

    Directory of Open Access Journals (Sweden)

    Xiaojun Li

    2013-01-01

    Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.

  13. AirborneWind Energy: Airfoil-Airmass Interaction

    OpenAIRE

    Zanon , Mario; Gros , Sebastien; Meyers , Johan; Diehl , Moritz

    2014-01-01

    The Airborne Wind Energy paradigm proposes to generate energy by flying a tethered airfoil across the wind flow at a high velocity. While Airborne Wind Energy enables flight in higher-altitude, stronger wind layers, the extra drag generated by the tether motion imposes a significant limit to the overall system efficiency. To address this issue, two airfoils with a shared tether can reduce overall system drag. A study proposed in Zanon et al. (2013) confirms this claim by showing that, in the ...

  14. OPTIMASI AIRFOIL MENGGUNAKAN PARTICLE SWARM DENGAN PARAMETERISASI CST (CLASS SHAPE TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    Eva Hertnacahyani Herraprastanti

    2017-11-01

    Full Text Available Airfoil merupakan profil penampang yang diaplikasikan pada sarana transportasi maupun pembangkit energi sebagai penampang sudu turbin. Airfoil yang dirancang diharapkan menghasilkan gaya angkat (lift maksimal namun gaya hambat (drag seminimal mungkin. Tujuan penelitian 1 Validasi aerodinamika metode panel dengan Interaksi Viskos-Tak Viskos; 2 Analisis aerodinamika airfoil untuk menentukan koefisien lift dan drag; 3 Menerapkan metode optimasi Particle Swarm Optimization untuk mendapatkan geometri airfoil dengan rasio koefisien lift dan drag maksimum (CL/CD maks. Tahap pertama menentukan profil airfoil Class Shape Transformation (CST. Airfoil akan dianalisis menggunakan metoda panel selanjutnya diterapkan model aliran singularitas source dan doublet. Solusi yang diperoleh dari metode panel merupakan kondisi aliran yang dianggap tak viskos. Apabila sudut serang cukup tinggi solusi yang diperoleh dengan pendekatan tersebut sudah tidak akurat lagi. Untuk memperbaiki hasil maka diterapkan metode interaksi viskos-tak viskos kuasi simultan. Proses ini diulang sampai konvergensi dan diperoleh koefisien lift, dan drag. Dengan menggunakan optimasi Particle Swarm Optimization (PSO akan didapat profil airfoil dengan  koefisien lift dan drag maksimum. Namun apabila prosedur optimasi belum optimal, akan dilakukan update geometri, sampai didapat konvergensi. Kesimpulan penelitian :1 Metode panel dengan interaksi viskos tak viskos memberikan hasil yang cukup baik dan akurat, dengan rata-rata kesalahan dibawah 9.5%;  2 Semakin besar bilangan Reynold maka nilai CL/CD maksimum akan semakin tinggi; 3 Ketebalan (thickness dan camber maksimum cenderung meningkat dengan peningkatan bilangan Reynold; 4 Untuk airfoil CST optimasi dengan PSO memberikan hasil yang lebih baik.

  15. RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.

    Science.gov (United States)

    Elia, Andrew E H; Wang, David C; Willis, Nicholas A; Boardman, Alexander P; Hajdu, Ildiko; Adeyemi, Richard O; Lowry, Elizabeth; Gygi, Steven P; Scully, Ralph; Elledge, Stephen J

    2015-10-15

    We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Near-wall serpentine cooled turbine airfoil

    Science.gov (United States)

    Lee, Ching-Pang

    2013-09-17

    A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.

  17. Experimental Studies of Flow Separation of the NACA 2412 Airfoil at Low Speeds

    Science.gov (United States)

    Seetharam, H. C.; Rodgers, E. J.; Wentz, W. H., Jr.

    1997-01-01

    Wind tunnel tests have been conducted on an NACA 2412 airfoil section at Reynolds number of 2.2 x 10(exp 6) and Mach number of 0.13. Detailed measurements of flow fields associated with turbulent boundary layers have been obtained at angles of attack of 12.4 degrees, 14.4 degrees, and 16.4 degrees. Pre- and post-separated velocity and pressure survey results over the airfoil and in the associated wake are presented. Extensive force, pressure, tuft survey, hot-film survey, local skin friction, and boundary layer data are also included. Pressure distributions and separation point locations show good agreement with theory for the two layer angles of attack. Boundary layer displacement thickness, momentum thickness, and shape factor agree well with theory up to the point of separation. There is considerable disparity between extent of flow reversal in the wake as measured by pressure and hot-film probes. The difference is attributed to the intermittent nature of the flow reversal.

  18. FBH1 Catalyzes Regression of Stalled Replication Forks

    Directory of Open Access Journals (Sweden)

    Kasper Fugger

    2015-03-01

    Full Text Available DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression of a model replication fork in vitro and promotes fork regression in vivo in response to replication perturbation. Cells respond to fork stalling by activating checkpoint responses requiring signaling through stress-activated protein kinases. Importantly, we show that FBH1, through its helicase activity, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose a model whereby FBH1 promotes early checkpoint signaling by remodeling of stalled DNA replication forks.

  19. An Experimental Comparison Between Flexible and Rigid Airfoils at Low Reynolds Numbers

    Science.gov (United States)

    Uzodinma, Jaylon; Macphee, David

    2017-11-01

    This study uses experimental and computational research methods to compare the aerodynamic performance of rigid and flexible airfoils at a low Reynolds number throughout varying angles of attack. This research can be used to improve the design of small wind turbines, micro-aerial vehicles, and any other devices that operate at low Reynolds numbers. Experimental testing was conducted in the University of Alabama's low-speed wind tunnel, and computational testing was conducted using the open-source CFD code OpenFOAM. For experimental testing, polyurethane-based (rigid) airfoils and silicone-based (flexible) airfoils were constructed using acrylic molds for NACA 0012 and NACA 2412 airfoil profiles. Computer models of the previously-specified airfoils were also created for a computational analysis. Both experimental and computational data were analyzed to examine the critical angles of attack, the lift and drag coefficients, and the occurrence of laminar boundary separation for each airfoil. Moreover, the computational simulations were used to examine the resulting flow fields, in order to provide possible explanations for the aerodynamic performances of each airfoil type. EEC 1659710.

  20. On the effect of leading edge blowing on circulation control airfoil aerodynamics

    Science.gov (United States)

    Mclachlan, B. G.

    1987-01-01

    In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge blowing.

  1. Design analysis of vertical wind turbine with airfoil variation

    Science.gov (United States)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad

    2016-03-01

    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  2. Prevalence of lameness among dairy cattle in Wisconsin as a function of housing type and stall surface.

    Science.gov (United States)

    Cook, Nigel B

    2003-11-01

    To determine the prevalence of lameness as a function of season (summer vs winter), housing type (free stalls vs tie stalls), and stall surface (sand vs any other surface) among lactating dairy cows in Wisconsin. Epidemiologic survey. 3,621 lactating dairy cows in 30 herds. Herds were visited once during the summer and once during the winter, and a locomotion score ranging from 1 (no gait abnormality) to 4 (severe lameness) was assigned to all lactating cows. Cows with a score of 3 or 4 were considered to be clinically lame. Mean +/- SD herd lameness prevalence was 21.1 +/- 10.5% during the summer and 23.9 +/- 10.7% during the winter; these values were significantly different. During the winter, mean prevalence of lameness in free-stall herds with non-sand stall surfaces (33.7%) was significantly higher than prevalences in free-stall herds with sand stall surfaces (21.2%), tie-stall herds with non-sand stall surfaces (21.7%), and tie-stall herds with sand stall surfaces (12.1%). Results suggest that the prevalence of lameness among dairy cattle in Wisconsin is higher than previously thought and that lameness prevalence is associated with season, housing type, and stall surface.

  3. Extraction of airfoil data using PIV and pressure measurements

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2011-01-01

    of the rotor. The extraction technique is verified by employing the derived airfoil characteristics as input to computations using the BEM technique and comparing the calculated axial and tangential forces to the measured data. The comparison also demonstrates that the used technique of determining the AOA...... airfoil data are compared to 2D data from wind tunnel experiments and XFOIL computations. The comparison suggests that the rotor is subject to severe 3D effects originating from the geometry of the rotor, and explains why the Blade Element Momentum technique with 2D airfoil data over‐predicts the loading......A newly developed technique for determining the angle of attack (AOA) on a rotating blade is used to extract AOAs and airfoil data from measurements obtained during the MEXICO (Model rotor EXperiments in COntrolled conditions) rotor experiment. Detailed surface pressure and Particle Image...

  4. Numerical investigation of airfoils for small wind turbine applications

    Directory of Open Access Journals (Sweden)

    Natarajan Karthikeyan

    2016-01-01

    Full Text Available A detailed numerical investigation of the aerodynamic performance on the five airfoils namely Mid321a, Mid321b, Mid321c, Mid321d, and Mid321e were carried out at Reynolds numbers ranging from 0.5×105 to 2.5×105. The airfoils used for small wind turbines are designed for Reynolds number ranges between 3×105 and 5×105 and the blades are tend to work on off-design conditions. The blade element moment method was applied to predict the aerodynamic loads, power coefficient, and blade parameters for the airfoils. Based on the evaluate data, it was found that Mid321c airfoil has better lift to drag ratio over the range of Reynolds numbers and attained maximum power coefficient of 0.4487 at Re = 2×105.

  5. The Effect of Aerodynamic Evaluators on the Multi-Objective Optimization of Flatback Airfoils

    Science.gov (United States)

    Miller, M.; Slew, K. Lee; Matida, E.

    2016-09-01

    With the long lengths of today's wind turbine rotor blades, there is a need to reduce the mass, thereby requiring stiffer airfoils, while maintaining the aerodynamic efficiency of the airfoils, particularly in the inboard region of the blade where structural demands are highest. Using a genetic algorithm, the multi-objective aero-structural optimization of 30% thick flatback airfoils was systematically performed for a variety of aerodynamic evaluators such as lift-to-drag ratio (Cl/Cd), torque (Ct), and torque-to-thrust ratio (Ct/Cn) to determine their influence on airfoil shape and performance. The airfoil optimized for Ct possessed a 4.8% thick trailing-edge, and a rather blunt leading-edge region which creates high levels of lift and correspondingly, drag. It's ability to maintain similar levels of lift and drag under forced transition conditions proved it's insensitivity to roughness. The airfoil optimized for Cl/Cd displayed relatively poor insensitivity to roughness due to the rather aft-located free transition points. The Ct/Cn optimized airfoil was found to have a very similar shape to that of the Cl/Cd airfoil, with a slightly more blunt leading-edge which aided in providing higher levels of lift and moderate insensitivity to roughness. The influence of the chosen aerodynamic evaluator under the specified conditions and constraints in the optimization of wind turbine airfoils is shown to have a direct impact on the airfoil shape and performance.

  6. Geometrical effects on the airfoil flow separation and transition

    KAUST Repository

    Zhang, Wei; Cheng, Wan; Gao, Wei; Qamar, Adnan; Samtaney, Ravi

    2015-01-01

    We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10

  7. Research on design methods and aerodynamics performance of CQUDTU-B21 airfoil

    DEFF Research Database (Denmark)

    Chen, Jin; Cheng, Jiangtao; Wen, Zhong Shen

    2012-01-01

    This paper presents the design methods of CQU-DTU-B21 airfoil for wind turbine. Compared with the traditional method of inverse design, the new method is described directly by a compound objective function to balance several conflicting requirements for design wind turbine airfoils, which based...... on design theory of airfoil profiles, blade element momentum (BEM) theory and airfoil Self-Noise prediction model. And then an optimization model with the target of maximum power performance on a 2D airfoil and low noise emission of design ranges for angle of attack has been developed for designing CQU......-DTU-B21 airfoil. To validate the optimization results, the comparison of the aerodynamics performance by XFOIL and wind tunnels test respectively at Re=3×106 is made between the CQU-DTU-B21 and DU93-W-210 which is widely used in wind turbines. © (2012) Trans Tech Publications, Switzerland....

  8. Visualization and PIV measurement of unsteady flow around a darrieus wind turbine in dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Satoshi; Fujisawa, Nobuyuki; Takano, Tsuyoshi [Dept. of Mechanical and Production Engineering, Niigata Univ., Niigata (Japan)

    1999-07-01

    Flow around a Darrieus wind turbine in dynamic stall is studied by flow visualization and PIV (particle image velocimeter) measurement in a rotating frame of reference, which allows the successive observation of the dynamic stall over the blade. The qualitative features of the flow field in dynamic stall observed by the flow visualization, such as the formation and shedding of the stall vortices, are quantitatively reproduced in the instantaneous velocity distributions near the blade by using PIV. These results indicate that two pairs of stall vortices are generated from the blade during one rotation of the blade and that the size and the generating blade angle of the stall vortices are enlarged as the tip-speed ratio decreases. These stall vortices are produced by the in-flow motion from the outer surface to the inner surface through the trailing edge of the blade and the flow separation over the inner surface of the blade. (author)

  9. Influences of surface temperature on a low camber airfoil aerodynamic performances

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2016-03-01

    Full Text Available The current note refers to the comparison between a NACA 2510 airfoil with adiabatic walls and the same airfoil with heated patches. Both suction and pressure sides were divided into two regions covering the leading edge (L.E. and trailing edge (T.E.. A RANS method sensitivity test has been performed in the preliminary stage while for the extended 3D cases a DES-SST approach was used. Results indicate that surface temperature distribution influences the aerodynamics of the airfoil, in particular the viscous drag component but also the lift of the airfoil. Moreover, the influence depends not only on the surface temperature but also on the positioning of the heated surfaces, particularly in the case of pressure lift and drag. Further work will be needed to optimize the temperature distribution for airfoil with higher camber.

  10. EUDP Project: Low Noise Airfoil - Final Report

    DEFF Research Database (Denmark)

    This document summarizes the scientific results achieved during the EUDP-funded project `Low-Noise Airfoil'. The goals of this project are, on one side to develop a measurement technique that permits the evaluation of trailing edge noise in a classical aerodynamic wind tunnel, and on the other side...... to develop and implement a design procedure to manufacture airfoil profiles with low noise emission. The project involved two experimental campaigns: one in the LM Wind Power wind tunnel, a classical aerodynamic wind tunnel, in Lunderskov (DK), the second one in the Virginia Tech Stability Wind Tunnel....... In particular, the so-called TNO trailing edge noise model could be significantly improved by introducing turbulence anisotropy in its formulation, as well as the influence of the boundary layer mean pressure gradient. This two characteristics are inherent to airfoil flows but were neglected in the original...

  11. Desirable airfoil features for smaller-capacity straight-bladed VAWT

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Mazharul; Ting, D.S.-K.; Fartaj, Amir

    2007-05-15

    In the small scale wind turbine market, the simple straight-bladed Darrieus type vertical axis wind turbine (SB-VAWT) is very attractive for its simple blade design. A detailed aerodynamic performance analysis was conducted on a smaller capacity fixed-pitch SB-VAWT. Brief analyses of the main aerodynamic challenges of this type of wind turbine were first discussed and subsequently the authors conducted further literature survey and computational analysis to shortlist aerodynamic characteristics of a desirable airfoil for a self-starting and better performing SB-VAWT. The required geometric features of the desirable airfoil to achieve the short listed characteristics were also discussed. It has been found out that conventionally used NACA symmetric airfoils are not suitable for smaller capacity SB-VAWT. Rather, it is advantageous to utilize a high-lift and low-drag asymmetric thick airfoil suitable for low speed operation typically encountered by SB-VAWT. (author)

  12. Airfoil

    Science.gov (United States)

    Ristau, Neil; Siden, Gunnar Leif

    2015-07-21

    An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.

  13. Analysis and modeling of unsteady aerodynamics with application to wind turbine blade vibration at standstill conditions

    Energy Technology Data Exchange (ETDEWEB)

    Skrzypinski, W.

    2012-02-15

    Wind turbine blade vibrations at standstill conditions were investigated in the present work. These included vortex-induced and stall-induced vibrations. Thus, it was investigated whether the stand still vibrations are vortex-induced, stall-induced or a combination of both types. The work comprised analyzes based on engineering models and Computational Fluid Dynamics. Two-dimensional, three-degree-of-freedom, elastically-mounted-airfoil engineering models were created. These models aimed at investigating the effect of temporal lag in the aerodynamic response of an airfoil on the aeroelastic stability limits. The motivation for it was that the standard aerodynamics existing in state-of-the-art aeroelastic codes is effectively quasi-steady in deep stall. If such an assumption was incorrect, these codes could predict stall-induced vibrations inaccurately. The main conclusion drawn from these analyses was that even a relatively low amount of temporal lag in the aerodynamic response may significantly increase the aerodynamic damping and therefore influence the aeroelastic stability limits, relative to quasisteady aerodynamic response. Two- and three-dimensional CFD computations included non-moving, prescribed-motion and elastically mounted airfoil suspensions. 2D and 3D prescribed-motion CFD computations performed on a DU96-W-180 airfoil predicted vortex-induced vibrations at 90 degrees angle of attack at the frequency close to the stationary vortex shedding frequency predicted by 2D CFD computations. Significant discrepancies were observed between 2D and 3D computations around 25 degrees angle of attack. 3D computations predicted occurrence of vortex-induced vibrations while the wind speed necessary for the occurrence of stall-induced vibrations was predicted too high to occur in normal conditions. Analysis of the dynamic lift and drag resulting from 2D and 3D CFD computations carried out around 25 degrees angle of attack showed loops with the slopes of opposite signs

  14. Leading-Edge Flow Sensing for Aerodynamic Parameter Estimation

    Science.gov (United States)

    Saini, Aditya

    ow over a at plate at different freestream velocities in the NCSU subsonic wind tunnel. Experiments were also conducted to characterize the directional sensitivity of the microstructures by creating ow reversal at the sensor location to assess the sensor response. The results show that the direction of microfence deflection correctly reflects the local ow behavior as the ow direction is reversed at the sensor location and the magnitude of deflection correlates qualitatively to an increase in the freestream velocity. The knowledge of the ow-separation location integrated with the LEFS algorithm allows the possibility of extending the LEFS analysis to post-stall flight regimes, which is explored in the current work. Finally, the application of the LEFS algorithm to unsteady aerodynamics is investigated to identify the critical sequence of events associated with the formation of leading-edge vortices. Signatures of vortex formation on the airfoil surface can be captured in the surface-pressure measurements. Real-time knowledge of the unsteady ow phenomena holds significant potential for exploiting the enhanced-lift characteristics related to vortex formation and inhibiting the detrimental effects of dynamic stall in engineering applications such as helicopters, wind turbines, bio-inspired flight, and energy harvesting devices. Computational data was used to assess the capability of the LEFS outputs to identity the signatures associated with vortex formation, i.e. onset of vortex shedding, detachment, and termination. The results demonstrate useful correlation between the LEFS outputs and the LEV signatures.

  15. Stall Margin Improvement in a Centrifugal Compressor through Inducer Casing Treatment

    Directory of Open Access Journals (Sweden)

    V. V. N. K. Satish Koyyalamudi

    2016-01-01

    Full Text Available The increasing trend of high stage pressure ratio with increased aerodynamic loading has led to reduction in stable operating range of centrifugal compressors with stall and surge initiating at relatively higher mass flow rates. The casing treatment technique of stall control is found to be effective in axial compressors, but very limited research work is published on the application of this technique in centrifugal compressors. Present research was aimed to investigate the effect of casing treatment on the performance and stall margin of a high speed, 4 : 1 pressure ratio centrifugal compressor through numerical simulations using ANSYS CFX software. Three casing treatment configurations were developed and incorporated in the shroud over the inducer of the impeller. The predicted performance of baseline compressor (without casing treatment was in good agreement with published experimental data. The compressor with different inducer casing treatment geometries showed varying levels of stall margin improvement, up to a maximum of 18%. While the peak efficiency of the compressor with casing treatment dropped by 0.8%–1% compared to the baseline compressor, the choke mass flow rate was improved by 9.5%, thus enhancing the total stable operating range. The inlet configuration of the casing treatment was found to play an important role in stall margin improvement.

  16. Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines

    Science.gov (United States)

    Migliore, P. G.

    1983-08-01

    The aerodynamic efficiency of Darrieus wind turbines as effected by blade airfoil geometry was investigated. Analysis was limited to curved-bladed machines having rotor solidities of 7-21 percent and operating at a Reynolds number of 3 x 10 to the 6th. Ten different airfoils, having thickness-to-chord ratios of 12, 15, and 18 percent, were studied. Performance estimates were made using a blade element/momentum theory approach. Results indicated that NACA 6-series airfoils yield peak power coefficients as great as NACA 4-digit airfoils and have broader and flatter power coefficient-tip speed ratio curves. Sample calculations for an NACA 63(2)-015 airfoil showed an annual energy output increase of 17-27 percent, depending on rotor solidity, compared to an NACA 0015 airfoil.

  17. Airfoils in Turbulent Inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse

    of resolved inflow turbulence on airfoil simulations in CFD. The detached-eddy simulation technique is used because it can resolve the inflow turbulence without becoming too computationally expensive due to its limited requirements for mesh resolution in the boundary layer. It cannot resolve the turbulence......Wind turbines operate in inflow turbulence whether it originates from the shear in the atmospheric boundary layer or from the wake of other wind turbines. Consequently, the airfoils of the wings experience turbulence in the inflow. The main topic of this thesis is to investigate the effect...... that is formed in attached boundary layers, but the freestream turbulence can penetrate the boundary layer. The idea is that the resolved turbulence from the freestream should mix high momentum flow into the boundary layer and thereby increase the resistance against separation and increase the maximum lift...

  18. Load prediction of stall regulated wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)

    1996-12-01

    Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs

  19. Thick airfoil designs for the root of the 10MW INNWIND.EU wind turbine

    Science.gov (United States)

    Mu≁oz, A.; Méndez, B.; Munduate, X.

    2016-09-01

    The main objective of the “INNWIND.EU” project is to investigate and demonstrate innovative designs for 10-20MW offshore wind turbines and their key components, such as lightweight rotors. In this context, the present paper describes the development of two new airfoils for the blade root region. From the structural point of view, the root is the region in charge of transmitting all the loads of the blade to the hub. Thus, it is very important to include airfoils with adequate structural properties in this region. The present article makes use of high-thickness and blunt trailing edge airfoils to improve the structural characteristics of the airfoils used to build this blade region. CENER's (National Renewable Energy Center of Spain) airfoil design tool uses the airfoil software XFOIL to compute the aerodynamic characteristics of the designed airfoils. That software is based on panel methods which show some problems with the calculation of airfoils with thickness bigger than 35% and with blunt trailing edge. This drawback has been overcome with the development of an empirical correction for XFOIL lift and drag prediction based on airfoil experiments. From the aerodynamic point of view, thick airfoils are known to be very sensitive to surface contamination or turbulent inflow conditions. Consequently, the design optimization takes into account the aerodynamic torque in both clean and contaminated conditions. Two airfoils have been designed aiming to improve the structural and the aerodynamic behaviour of the blade in clean and contaminated conditions. This improvement has been corroborated with Blade Element Momentum (BEM) computations.

  20. Thick airfoil designs for the root of the 10MW INNWIND.EU wind turbine

    International Nuclear Information System (INIS)

    Muñoz, A; Méndez, B; Munduate, X

    2016-01-01

    The main objective of the “INNWIND.EU” project is to investigate and demonstrate innovative designs for 10-20MW offshore wind turbines and their key components, such as lightweight rotors. In this context, the present paper describes the development of two new airfoils for the blade root region. From the structural point of view, the root is the region in charge of transmitting all the loads of the blade to the hub. Thus, it is very important to include airfoils with adequate structural properties in this region. The present article makes use of high-thickness and blunt trailing edge airfoils to improve the structural characteristics of the airfoils used to build this blade region. CENER's (National Renewable Energy Center of Spain) airfoil design tool uses the airfoil software XFOIL to compute the aerodynamic characteristics of the designed airfoils. That software is based on panel methods which show some problems with the calculation of airfoils with thickness bigger than 35% and with blunt trailing edge. This drawback has been overcome with the development of an empirical correction for XFOIL lift and drag prediction based on airfoil experiments. From the aerodynamic point of view, thick airfoils are known to be very sensitive to surface contamination or turbulent inflow conditions. Consequently, the design optimization takes into account the aerodynamic torque in both clean and contaminated conditions. Two airfoils have been designed aiming to improve the structural and the aerodynamic behaviour of the blade in clean and contaminated conditions. This improvement has been corroborated with Blade Element Momentum (BEM) computations. (paper)

  1. Alleviation of spike stall in axial compressors utilizing grooved casing treatment

    Directory of Open Access Journals (Sweden)

    Reza Taghavi-Zenouz

    2015-06-01

    Full Text Available This article deals with application of grooved type casing treatment for suppression of spike stall in an isolated axial compressor rotor blade row. The continuous grooved casing treatment covering the whole compressor circumference is of 1.8 mm in depth and located between 90% and 108% chord of the blade tip as measured from leading edge. The method of investigation is based on time-accurate three-dimensional full annulus numerical simulations for cases with and without casing treatment. Discretization of the Navier–Stokes equations has been carried out based on an upwind second-order scheme and k-ω-SST (Shear Stress Transport turbulence modeling has been used for estimation of eddy viscosity. Time-dependent flow structure results for the smooth casing reveal that there are two criteria for spike stall inception known as leading edge spillage and trailing edge backflow, which occur at specific mass flow rates in near-stall conditions. In this case, two dominant stall cells of different sizes could be observed. The larger one is caused by the spike stall covering roughly two blade passages in the circumferential direction and about 25% span in the radial direction. Spike stall disturbances are accompanied by lower frequencies and higher amplitudes of the pressure signals. Casing treatment causes flow blockages to reduce due to alleviation of backflow regions, which in turn reduces the total pressure loss and increases the axial velocity in the blade tip gap region, as well as tip leakage flow fluctuation at higher frequencies and lower amplitudes. Eventually, it can be concluded that the casing treatment of the stepped tip gap type could increase the stall margin of the compressor. This fact is basically due to retarding the movement of the interface region between incoming and tip leakage flows towards the rotor leading edge plane and suppressing the reversed flow around the blade trailing edge.

  2. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    DEFF Research Database (Denmark)

    Xu, Haoran; Shen, Wen Zhong; Zhu, Wei Jun

    2014-01-01

    characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase......The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL...... methods at a chord Reynolds number of 3 × 106. The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST...

  3. Profile catalogue for airfoil sections based on 3D

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, Niels N.; Johansen, Jeppe

    2006-12-15

    This report is a continuation of the Wind Turbine Airfoil Catalogue which objective was, firstly to provide a database of aerodynamic characteristics for a wide range of airfoil profiles aimed at wind turbine applications, and secondly to test the two-dimensional Navier-Stokes solver EllipSys2D by comparing its results with experimental data. In the present work, the original two-dimensional results are compared with three-dimensional calculations as it was surmised that the two-dimensional assumption might be in some cases responsible for discrepancies between the numerical flow solution and the actual fluid flow, and thereby the incorrect prediction of airfoil characteristics. In addition, other features of the flow solver, such as transition and turbulence modelling, and their influence onto the numerical results are investigated. Conclusions are drawn regarding the evaluation of airfoil aerodynamic characteristics, as well as the use of the Navier-Stokes solver for fluid flow calculations in general. (au)

  4. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  5. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  6. Unsteady flow model for circulation-control airfoils

    Science.gov (United States)

    Rao, B. M.

    1979-01-01

    An analysis and a numerical lifting surface method are developed for predicting the unsteady airloads on two-dimensional circulation control airfoils in incompressible flow. The analysis and the computer program are validated by correlating the computed unsteady airloads with test data and also with other theoretical solutions. Additionally, a mathematical model for predicting the bending-torsion flutter of a two-dimensional airfoil (a reference section of a wing or rotor blade) and a computer program using an iterative scheme are developed. The flutter program has a provision for using the CC airfoil airloads program or the Theodorsen hard flap solution to compute the unsteady lift and moment used in the flutter equations. The adopted mathematical model and the iterative scheme are used to perform a flutter analysis of a typical CC rotor blade reference section. The program seems to work well within the basic assumption of the incompressible flow.

  7. Stall inception and warning in a single-stage transonic axial compressor with axial skewed slot casing treatment

    International Nuclear Information System (INIS)

    Lim, Byeung Jun; Kwon, Se Jin; Park, Tae Choon

    2014-01-01

    Characteristic changes in the stall inception in a single-stage transonic axial compressor with an axial skewed slot casing treatment were investigated experimentally. A rotating stall occurred intermittently in a compressor with an axial skewed slot, whereas spike-type rotating stalls occurred in the case of smooth casing. The axial skewed slot suppressed stall cell growth and increased the operating range. A mild surge, the frequency of which is the Helmholtz frequency of the compressor system, occurred with the rotating stall. The irregularity in the pressure signals at the slot bottom increased decreasing flow rate. An autocorrelation-based stall warning method was applied to the measured pressure signals. Results estimate and warn against the stall margin in a compressor with an axial skewed slot.

  8. Stability Analysis for Rotating Stall Dynamics in Axial Flow Compressors

    Science.gov (United States)

    1999-01-01

    modes determines collectively local stability of the compressor model. Explicit conditions are obtained for local stability of rotating stall which...critical modes determines the stability for rotating stall collectively . We point out that although in a special case our stability condition for...strict crossing assumption implies that the zero solution changes its stability as ~, crosses ~’c. For instance, odk (yc ) > 0 implies that the zero

  9. Turbulence intensity measurement in the wind tunnel used for airfoil flutter investigation

    Directory of Open Access Journals (Sweden)

    Šidlof Petr

    2017-01-01

    Full Text Available The paper reports on hot wire turbulence intensity measurements performed in the entry of a suction-type wind tunnel, used for investigation of flow-induced vibration of airfoils and slender structures. The airfoil is elastically supported with two degrees of freedom (pitch and plunge in the test section of the wind tunnel with lateral optical access for interferometric measurements, and free to oscillate. The turbulence intensity was measured for velocities up to M = 0.3 i with the airfoil blocked, ii with the airfoil self-oscillating. Measurements were performed for a free inlet and further with two different turbulence grids generating increased turbulence intensity levels. For the free inlet and static airfoil, the turbulence intensity lies below 0.4%. The turbulence grids G1 and G2 increase the turbulence level up to 1.8% and 2.6%, respectively. When the airfoil is free to oscillate due to fluid-structure interaction, its motion disturbs the surrounding flow field and increases the measured turbulence intensity levels up to 5%.

  10. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott

    2016-01-01

    a reduced order dynamic stall model that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional two-dimensional, non-rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared...... Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D; and (3) data from...... with those from the dynamic stall model. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in two-dimensional flow to be investigated. Results indicated a good qualitative...

  11. Recent progress in the analysis of iced airfoils and wings

    Science.gov (United States)

    Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue

    1992-01-01

    Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  12. Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998

    Directory of Open Access Journals (Sweden)

    D. M. Kercher

    2000-01-01

    Full Text Available Film cooling for turbine airfoil leading edges has been a common practice for at least 35 years as turbine inlet gas temperatures and pressures have continually increased along with cooling air temperatures for higher engine cycle efficiency. With substantial engine cycle performance improvements from higher gas temperatures, it has become increasingly necessary to film cool nozzle and rotor blade leading edges since external heat transfer coefficients and thus heat load are the highest in this airfoil region. Optimum cooling air requirements in this harsh environment has prompted a significant number of film cooling investigations and analytical studies reported over the past 25 years from academia, industry and government agencies. Substantial progress has been made in understanding the complex nature of leading edge film cooling from airfoil cascades, simulated airfoil leading edges and environment. This bibliography is a report of the open-literature references available which provide information on the complex aero–thermo interaction of leading edge gaseous film cooling with mainstream flow. From much of this investigative information has come successful operational leading edge film cooling design systems capable of sustaining airfoil leading edge durability in very hostile turbine environments.

  13. Reduction of airfoil trailing edge noise by trailing edge blowing

    International Nuclear Information System (INIS)

    Gerhard, T; Carolus, T; Erbslöh, S

    2014-01-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length

  14. Numerical Simulation of Airfoil Aerodynamic Penalties and Mechanisms in Heavy Rain

    Directory of Open Access Journals (Sweden)

    Zhenlong Wu

    2013-01-01

    Full Text Available Numerical simulations that are conducted on a transport-type airfoil, NACA 64-210, at a Reynolds number of 2.6×106 and LWC of 25 g/m3 explore the aerodynamic penalties and mechanisms that affect airfoil performance in heavy rain conditions. Our simulation results agree well with the experimental data and show significant aerodynamic penalties for the airfoil in heavy rain. The maximum percentage decrease in CL is reached by 13.2% and the maximum percentage increase in CD by 47.6%. Performance degradation in heavy rain at low angles of attack is emulated by an originally creative boundary-layer-tripped technique near the leading edge. Numerical flow visualization technique is used to show premature boundary-layer separation at high angles of attack and the particulate trajectories at various angles of attack. A mathematic model is established to qualitatively study the water film effect on the airfoil geometric changes. All above efforts indicate that two primary mechanisms are accountable for the airfoil aerodynamic penalties. One is to cause premature boundary-layer transition at low AOA and separation at high AOA. The other occurs at times scales consistent with the water film layer, which is thought to alter the airfoil geometry and increase the mass effectively.

  15. Experimental verification of the new RISOe-A1 airfoil family for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, K S; Fuglsang, P; Antoniou, I [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper concerns the experimental verification of a new airfoil family for wind turbines. The family consist of airfoils in the relative thickness range from 15% to 30%. Three airfoils, Risoe-A1-18, Risoe-A1-21, and Risoe-A1-24 were tested in a wind tunnel. The verification consisted of both static and dynamic measurements. Here, the static results are presented for a Reynolds number of 1.6x10{sup 6} for the following airfoil configurations: smooth surface (all three airfoils) and Risoe-A1-24 mounted with leading edge roughness, vortex generators, and Gurney-flaps, respectively. All three airfoils have constant lift curve slope and almost constant drag coefficient until the maximum lift coefficient of about 1.4 is reached. The experimental results are compared with corresponding computational from the general purpose flow solver, EllipSys2D, showing good agreement. (au)

  16. Influence of Thickness Variation on the Flapping Performance of Symmetric NACA Airfoils in Plunging Motion

    Directory of Open Access Journals (Sweden)

    Liangyu Zhao

    2010-01-01

    Full Text Available In order to investigate the impact of airfoil thickness on flapping performance, the unsteady flow fields of a family of airfoils from an NACA0002 airfoil to an NACA0020 airfoil in a pure plunging motion and a series of altered NACA0012 airfoils in a pure plunging motion were simulated using computational fluid dynamics techniques. The “class function/shape function transformation“ parametric method was employed to decide the coordinates of these altered NACA0012 airfoils. Under specified plunging kinematics, it is observed that the increase of an airfoil thickness can reduce the leading edge vortex (LEV in strength and delay the LEV shedding. The increase of the maximum thickness can enhance the time-averaged thrust coefficient and the propulsive efficiency without lift reduction. As the maximum thickness location moves towards the leading edge, the airfoil obtains a larger time-averaged thrust coefficient and a higher propulsive efficiency without changing the lift coefficient.

  17. Enhancements to NURBS-Based FEA Airfoil Modeler: SABER

    Science.gov (United States)

    Saleeb, A. F.; Trowbridge, D. A.

    2003-01-01

    NURBS (Non-Uniform Rational B-Splines) have become a common way for CAD programs to fit a smooth surface to discrete geometric data. This concept has been extended to allow for the fitting of analysis data in a similar manner and "attaching" the analysis data to the geometric definition of the structure. The "attaching" of analysis data to the geometric definition allows for a more seamless sharing of data between analysis disciplines. NURBS have become a useful tool in the modeling of airfoils. The use of NURBS has allowed for the development of software that easily and consistently generates plate finite element models of the midcamber surface of a given airfoil. The resulting displacements can then be applied to the original airfoil surface and the deformed shape calculated.

  18. Investigation of Airfoil Aeroacoustics with Blowing Control Mechanism

    Directory of Open Access Journals (Sweden)

    Baha ZAFER

    2016-11-01

    Full Text Available In this investigation, it is dealt with computational aero-acoustic analysis of an airfoil with jet blowing. The airfoil shape is selected as NACA0015 profile with jet blowing on upper surface. The calculations of analysis are done by using commercial finite volume solver. The k-ε turbulence model is used for the turbulence modeling and the Ffowcs Williams and Hawking acoustic analogy model is run for determination of acoustic data. The numerical results are compared with experimental data for computed Sound Pressure Level without jet blowing and well agreement is observed. In the case of jet blowing, the effects of different jet angle, velocity ratio and angle of attack on airfoil are investigated and noise levels of non jet cases and jet blowing cases are studied.

  19. Airfoil design: Finding the balance between design lift and structural stiffness

    International Nuclear Information System (INIS)

    Bak, Christian; Gaudern, Nicholas; Zahle, Frederik; Vronsky, Tomas

    2014-01-01

    When upscaling wind turbine blades there is an increasing need for high levels of structural efficiency. In this paper the relationships between the aerodynamic characteristics; design lift and lift-drag ratio; and the structural characteristics were investigated. Using a unified optimization setup, airfoils were designed with relative thicknesses between 18% and 36%, a structural box height of 85% of the relative thickness, and varying box widths in chordwise direction between 20% and 40% of the chord length. The results from these airfoil designs showed that for a given flapwise stiffness, the design lift coefficient increases if the box length reduces and at the same time the relative thickness increases. Even though the conclusions are specific to the airfoil design approach used, the study indicated that an increased design lift required slightly higher relative thickness compared to airfoils with lower design lift to maintain the flapwise stiffness. Also, the study indicated that the lift-drag ratio as a function of flapwise stiffness was relatively independent of the airfoil design with a tendency that the lift-drag ratio decreased for large box lengths. The above conclusions were supported by an analysis of the three airfoil families Riso-C2, DU and FFA, where the lift-drag ratio as a function of flapwise stiffness was decreasing, but relatively independent of the airfoil design, and the design lift coefficient was varying depending on the design philosophy. To make the analysis complete also design lift and lift- drag ratio as a function of edgewise and torsional stiffness were shown

  20. New airfoil sections for straight bladed turbine

    Science.gov (United States)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine.

  1. New airfoil sections for straight bladed turbine

    International Nuclear Information System (INIS)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine

  2. Unsteady lift forces on highly cambered airfoils moving through a gust

    Science.gov (United States)

    Atassi, H.; Goldstein, M.

    1974-01-01

    An unsteady airfoil theory in which the flow is linearized about the steady potential flow of the airfoil is presented. The theory is applied to an airfoil entering a gust. After transformation to the W-plane, the problem is formulated in terms of a Poisson's equation. The solutions are expanded in a Fourier-Bessel series. The theory is applied to a circular arc with arbitrary camber. Closed form expressions for the velocity and pressure on the surface of the airfoil are obtained. The unsteady aerodynamic forces are then calculated and shown to contain two terms. One in an explicit closed analytical form represents the contribution of the oncoming vortical disturbance, the other depends on a single quadrature and accounts for the effect of the wake.

  3. The effect of variations in first- and second-order derivatives on airfoil aerodynamic performance

    Directory of Open Access Journals (Sweden)

    Penghui Yi

    2017-01-01

    Full Text Available The geometric factors which influence airfoil aerodynamic performance are attributed to variations in local first- and second-order curvature derivatives. Based on a self-developed computational fluid dynamics (CFD program called UCFD, the influence of local profile variations on airfoil aerodynamic performance in different pressure areas is investigated. The results show that variations in first- and second-order derivatives of the airfoil profiles can cause fluctuations in airfoil aerodynamic performance. The greater the variation in local first- and second-order derivatives, the greater the fluctuation amplitude of the airfoil aerodynamic coefficients. Moreover, at the area near the leading edge and the shock-wave position, the surface pressure is more sensitive to changes in first- and second-order derivatives. These results provide a reference for airfoil aerodynamic shape design.

  4. Active Subspaces of Airfoil Shape Parameterizations

    Science.gov (United States)

    Grey, Zachary J.; Constantine, Paul G.

    2018-05-01

    Design and optimization benefit from understanding the dependence of a quantity of interest (e.g., a design objective or constraint function) on the design variables. A low-dimensional active subspace, when present, identifies important directions in the space of design variables; perturbing a design along the active subspace associated with a particular quantity of interest changes that quantity more, on average, than perturbing the design orthogonally to the active subspace. This low-dimensional structure provides insights that characterize the dependence of quantities of interest on design variables. Airfoil design in a transonic flow field with a parameterized geometry is a popular test problem for design methodologies. We examine two particular airfoil shape parameterizations, PARSEC and CST, and study the active subspaces present in two common design quantities of interest, transonic lift and drag coefficients, under each shape parameterization. We mathematically relate the two parameterizations with a common polynomial series. The active subspaces enable low-dimensional approximations of lift and drag that relate to physical airfoil properties. In particular, we obtain and interpret a two-dimensional approximation of both transonic lift and drag, and we show how these approximation inform a multi-objective design problem.

  5. Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil

    Directory of Open Access Journals (Sweden)

    Sun Wei

    2015-06-01

    Full Text Available The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 104 to 106. In order to reveal the fundamental mechanism, the unsteady flow around a stationary two-dimensional elliptic airfoil with 16% relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt‾ transition turbulence model at different angles of attack for flow Reynolds number of 5 × 105. The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data, which indicates that the numerical method works well. Through this study, the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results. It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case. Furthermore, a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.

  6. Airfoil noise prediction from 2D3C PIV data

    NARCIS (Netherlands)

    De Santana, Leandro Dantas; Schram, C.; Desmet, W.

    2015-01-01

    The noise emitted by incoming turbulence interacting with an airfoil has many technological applications, and has accordingly received much attention in the literature. While numerous developments are focused on the determination of the airfoil response to a given incoming gust, the characterization

  7. Holography and LDV techniques, their status and use in airfoil research

    Science.gov (United States)

    Johnson, D. A.; Bachalo, W. D.

    1978-01-01

    The measurement capabilities of laser velocimetry and holographic interferometry in transonic airfoil testing were demonstrated. Presented are representative results obtained with these two nonintrusive techniques on a 15.24 cm chord airfoil section. These results include the density field about the airfoil, flow angles in the inviscid flow and viscous flow properties including the turbulent Reynolds stresses. The accuracies of the density fields obtained by interferometry were verified from comparisons with surface pressure and laser velocimeter measurements.

  8. Computation of viscous transonic flow about a lifting airfoil

    Science.gov (United States)

    Walitt, L.; Liu, C. Y.

    1976-01-01

    The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.

  9. Enhancing BEM simulations of a stalled wind turbine using a 3D correction model

    Science.gov (United States)

    Bangga, Galih; Hutomo, Go; Syawitri, Taurista; Kusumadewi, Tri; Oktavia, Winda; Sabila, Ahmad; Setiadi, Herlambang; Faisal, Muhamad; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus; Bumi, Ilmi

    2018-03-01

    Nowadays wind turbine rotors are usually employed with pitch control mechanisms to avoid deep stall conditions. Despite that, wind turbines often operate under pitch fault situation causing massive flow separation to occur. Pure Blade Element Momentum (BEM) approaches are not designed for this situation and inaccurate load predictions are already expected. In the present studies, BEM predictions are improved through the inclusion of a stall delay model for a wind turbine rotor operating under pitch fault situation of -2.3° towards stall. The accuracy of the stall delay model is assessed by comparing the results with available Computational Fluid Dynamics (CFD) simulations data.

  10. Boundary Layer Control on Airfoils.

    Science.gov (United States)

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  11. NUMERICAL INVESTIGATION OF TWO ELEMENT CAMBER MORPHING AIRFOIL IN LOW REYNOLDS NUMBER FLOWS

    OpenAIRE

    RAJESH SENTHIL KUMAR T.; V. SIVAKUMAR; BALAJEE RAMAKRISHNANANDA; ARJHUN A.K, SURIYAPANDIYAN

    2017-01-01

    Aerodynamic performance of a two-element camber morphing airfoil was investigated at low Reynolds number using the transient SST model in ANSYS FLUENT 14.0 and eN method in XFLR5. The two-element camber morphing concept was employed to morph the baseline airfoil into another airfoil by altering the orientation of mean-line at 35% of the chord to achieve better aerodynamic efficiency. NACA 0012 was selected as baseline airfoil. NACA 23012 was chosen as the test case as it has the camber-line s...

  12. EUDP project 'Low noise airfoil' - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F. (ed.)

    2012-06-15

    This document summarizes the scientific results achieved during the EUDP-funded project 'Low-Noise Airfoil'. The goals of this project are, on one side to develop a measurement technique that permits the evaluation of trailing edge noise in a classical aerodynamic wind tunnel, and on the other side to develop and implement a design procedure to manufacture airfoil profiles with low noise emission. The project involved two experimental campaigns: one in the LM Wind Power wind tunnel, a classical aerodynamic wind tunnel, in Lunderskov (Denmark), the second one in the Virginia Tech Stability Wind Tunnel at the Aerospace and Ocean Engineering Department of Virginia Tech (Blacksburg, VA, USA), also a classical aerodynamic wind tunnel but equipped with an anechoic chamber that allow to perform acoustic measurements. On the theoretical side, the above experiments yield a series of model validations and improvements. In particular, the so-called TNO trailing edge noise model could be significantly improved by introducing turbulence anisotropy in its formulation, as well as the influence of the boundary layer mean pressure gradient. This two characteristics are inherent to airfoil flows but were neglected in the original approach. In addition, the experimental results are confronted to detailed Large Eddy Simulations of the airfoil flow giving more insight into the flow turbulence characteristics. The methodology which consists in measuring surface pressure spectra directly on the airfoil surface using flush-mounted microphones in order to evaluate far-field noise emission using additional theoretical results has been validated. This technique presents the advantage that it can easily be used in a classical aerodynamic wind tunnel and does not require the use of an anechoic facility. It was developed as a substitute to the original plan that consisted in measuring acoustic waves using hot-wire velocimetry. This last technique proved ineffective in the LM Wind

  13. Numerical Investigation of an Oscillating Flat Plate Airfoil

    Science.gov (United States)

    Mohaghegh, Fazlolah; Janechek, Matthew; Buchholz, James; Udaykumar, Hs

    2017-11-01

    This research investigates the vortex dynamics of a plunging flat plate airfoil by analyzing the vorticity transport in 2D simulations. A horizontal airfoil is subject to a freestream flow at Re =10000. A prescribed vertical sinusoidal motion is applied to the airfoil. Smoothed Profile Method (SPM) models the fluid-structure interaction. SPM as a diffuse interface model considers a thickness for the interface and applies a smooth transition from solid to fluid. As the forces on the airfoil are highly affected by the interaction of the generated vortices from the surface, it is very important to find out whether a diffuse interface solver can model a flow dominated by vorticities. The results show that variation of lift coefficient with time agrees well with the experiment. Study of vortex evolution shows that similar to experiments, when the plate starts moving downward from top, the boundary layer is attached to the surface and the leading-edge vortex (LEV) is very small. By time, LEV grows and rolls up and a secondary vortex emerges. Meanwhile, the boundary layer starts to separate and finally LEV detaches from the surface. In overall, SPM as a diffuse interface model can predict the lift force and vortex pattern accurately.

  14. Ice Roughness and Thickness Evolution on a Swept NACA 0012 Airfoil

    Science.gov (United States)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching

    2017-01-01

    Several recent studies have been performed in the Icing Research Tunnel (IRT) at NASA Glenn Research Center focusing on the evolution, spatial variations, and proper scaling of ice roughness on airfoils without sweep exposed to icing conditions employed in classical roughness studies. For this study, experiments were performed in the IRT to investigate the ice roughness and thickness evolution on a 91.44-cm (36-in.) chord NACA 0012 airfoil, swept at 30-deg with 0deg angle of attack, and exposed to both Appendix C and Appendix O (SLD) icing conditions. The ice accretion event times used in the study were less than the time required to form substantially three-dimensional structures, such as scallops, on the airfoil surface. Following each ice accretion event, the iced airfoils were scanned using a ROMER Absolute Arm laser-scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger to determine the spatial roughness variations along the surfaces of the iced airfoils. The resulting measurements demonstrate linearly increasing roughness and thickness parameters with ice accretion time. Further, when compared to dimensionless or scaled results from unswept airfoil investigations, the results of this investigation indicate that the mechanisms for early stage roughness and thickness formation on swept wings are similar to those for unswept wings.

  15. Integration of Airfoil Design during the design of new blades

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, L.; Bottasso, L.; Croce, A. [Politecnico di Milano, Milan (Italy); Grasso, F. [ECN Wind Power, Petten (Netherlands)

    2013-09-15

    Despite the fact that the design of a new blade is a multidisciplinary task, often the different disciplines are combined together at later stage. Looking at the aerodynamic design, it is common practice design/select the airfoils first and then design the blade in terms of chord and twist based on the initial selection of the airfoils. Although this approach is quite diffused, it limits the potentialities of obtaining optimal performance. The present work is focused on investigating the benefits of designing the external shape of the blade including the airfoil shapes together with chord and twist. To accomplish this, a design approach has been developed, where an advanced gradient based optimization algorithm is able to control the shape of the blade. The airfoils described in the work are the NACA 4 digits, while the chord distribution and the twist distribution are described through Bezier curves. In this way, the complexity of the problem is limited while a versatile geometrical description is kept. After the details of the optimization scheme are illustrated, several numerical examples are shown, demonstrating the advantages in terms of performance and development time of integrating the design of the airfoils during the optimization of the blade.

  16. Quasisolutions of Inverse Boundary-Value Problem of Aerodynamics for Dense Airfoil Grids

    Directory of Open Access Journals (Sweden)

    A.M. Elizarov

    2016-12-01

    Full Text Available In the process of turbomachinery development, it is of great importance to accurately design impellers and select their blade shape. One of the promising approaches to solving this problem is based on the theory of inverse boundary-value problems in aerodynamics. It helps to develop methods for profiling airfoil grids with predetermined properties in the same way as it is done for isolated airfoils. In this paper, methods have been worked out to find quasisolutions of the inverse boundary-value problem in aerodynamics for a plane airfoil grid. Two methods of quasisolution have been described. The first “`formal” method is similar, in its essence, to the method used for construction of quasisolution for an isolated airfoil. It has been shown that such quasisolutions provide satisfactory results for grids having a sufficiently large relative airfoil pitch. If pitch values are low, this method is unacceptable, because “modified” velocity distribution in some areas is significantly different from the original one in this case. For this reason, areas with significant changes in the angle of the tangent line appear in the airfoil contour and the flow region becomes multivalent. To satisfy the conditions of solvability in the case of grids having a small airfoil pitch, a new quasisolution construction method taking into account the specifics of the problem has been suggested. The desired effect has been achieved due to changes in the weighting function of the minimized functional. The comparison of the results of construction of the new quasisolution with the results obtained by the “formal” method has demonstrated that the constructed airfoils are very similar when the pitch is large. In the case of dense grids, it is clear that preference should be given to the second method, as it brings less distortion to the initial velocity distribution and, thus, allows to physically find an actual airfoil contour.

  17. Overview of results from 2D airfoil testing at Risoe

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    This paper gives an overview of the results from two dimensional airfoil testing at Risoe. A two dimensional testing method was recently developed where a test rig is inserted into an open jet flow in a wind tunnel of the close return loop type with an open test section. Pressure measurements provide the lift and drag forces. Both stationary flow and dynamic inflow from pitch motion are possible. The wind tunnel static pressure and total dynamic pressures were calibrated and wind tunnel boundary corrections were found. So far, the testing method was verified by comparison of NACA 63-215 airfoil measurements to numerical predictions and to measurements. Furthermore, the Risoe-1, FFA-W3-241, FFA-W3-301 and NACA 63-430 airfoils were measured. Different types of leading edge roughness and vortex generators were investigated. For all airfoils, good agreements with predictions were obtained on both pressure distribution and on lift coefficient. The drag coefficients were slightly higher than predicted. (eg) 10 refs.

  18. Evaluating Classroom Interaction with the iPad®: An Updated Stalling's Tool

    Science.gov (United States)

    MacKinnon, Gregory; Schep, Lourens; Borden, Lisa Lunney; Murray-Orr, Anne; Orr, Jeff; MacKinnon, Paula

    2016-01-01

    A large study of classrooms in the Caribbean context necessitated the use of a validated classroom observation tool. In practice, the paper-version Stalling's instrument (Stallings & Kaskowitz 1974) presented specific challenges with respect to (a) facile data collection and (b) qualitative observations of classrooms. In response to these…

  19. Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue

    Science.gov (United States)

    Cambell, Christian X

    2013-09-17

    A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).

  20. Design and Wind Tunnel Testing of a Thick, Multi-Element High-Lift Airfoil

    DEFF Research Database (Denmark)

    Zahle, Frederik; Gaunaa, Mac; Sørensen, Niels N.

    2012-01-01

    In this work a 2D CFD solver has been used to optimize the shape of a leading edge slat with a chord length of 30% of the main airfoil which was 40% thick. The airfoil configuration was subsequently tested in a wind tunnel and compared to numerical predictions. The multi-element airfoil was predi...

  1. Linear Strength Vortex Panel Method for NACA 4412 Airfoil

    Science.gov (United States)

    Liu, Han

    2018-03-01

    The objective of this article is to formulate numerical models for two-dimensional potential flow over the NACA 4412 Airfoil using linear vortex panel methods. By satisfying the no penetration boundary condition and Kutta condition, the circulation density on each boundary points (end point of every panel) are obtained and according to which, surface pressure distribution and lift coefficients of the airfoil are predicted and validated by Xfoil, an interactive program for the design and analysis of airfoil. The sensitivity of results to the number of panels is also investigated in the end, which shows that the results are sensitive to the number of panels when panel number ranges from 10 to 160. With the increasing panel number (N>160), the results become relatively insensitive to it.

  2. Design of a 3 kW wind turbine generator with thin airfoil blades

    Energy Technology Data Exchange (ETDEWEB)

    Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath [Faculty of Mechanical Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan)

    2008-09-15

    Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performance characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)

  3. Unsteady two-dimensional potential-flow model for thin variable geometry airfoils

    DEFF Research Database (Denmark)

    Gaunaa, Mac

    2010-01-01

    In the present work, analytical expressions for distributed and integral unsteady two-dimensional forces on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by its camber line...... in their equivalent state-space form, allowing for use of the present theory in problems employing the eigenvalue approach, such as stability analysis. The analytical expressions for the integral forces can be reduced to Munk's steady and Theodorsen's unsteady results for thin airfoils, and numerical evaluation shows...

  4. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade...... for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel...... that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved....

  5. Active Suppression of Rotating Stall Inception with Distributed Jet Actuation

    Directory of Open Access Journals (Sweden)

    Huu Duc Vo

    2007-01-01

    Full Text Available An analytical and experimental investigation of the effectiveness of full-span distributed jet actuation for active suppression of long length-scale rotating stall inception is carried out. Detailed modeling and experimental verification highlight the important effects of mass addition, discrete injectors, and feedback dynamics, which may be overlooked in preliminary theoretical studies of active control with jet injection. A model of the compression system incorporating nonideal injection and feedback dynamics is verified with forced response measurements to predict the right trends in the movement of the critical pole associated with the stall precursor. Active control experiments with proportional feedback control show that the predicted stall precursors are suppressed to give a 5.5% range extension in compressor flow coefficient. In addition, results suggest that the proposed model could be used to design a more sophisticated controller to further improve performance while reducing actuator bandwidth requirements.

  6. LES tests on airfoil trailing edge serration

    International Nuclear Information System (INIS)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform of our in-house incompressible flow solver EllipSys3D. The flow solution is first obtained from the Large Eddy Simulation (LES), the acoustic part is then carried out based on the instantaneous hydrodynamic pressure and velocity field. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FWH approach. For all the simulations, the chord based Reynolds number is around 1.5x10 6 . In the test matrix, the effects from angle of attack, the TE flap angle, the length/width of the TES are investigated. Even though the airfoil under investigation is already optimized for low noise emission, most numerical simulations and wind tunnel experiments show that the noise level is further decreased by adding the TES device. (paper)

  7. Turbine airfoil manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

    1995-12-31

    The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

  8. Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil

    Science.gov (United States)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia

    2013-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.

  9. Turbine Airfoil Optimization Using Quasi-3D Analysis Codes

    Directory of Open Access Journals (Sweden)

    Sanjay Goel

    2009-01-01

    Full Text Available A new approach to optimize the geometry of a turbine airfoil by simultaneously designing multiple 2D sections of the airfoil is presented in this paper. The complexity of 3D geometry modeling is circumvented by generating multiple 2D airfoil sections and constraining their geometry in the radial direction using first- and second-order polynomials that ensure smoothness in the radial direction. The flow fields of candidate geometries obtained during optimization are evaluated using a quasi-3D, inviscid, CFD analysis code. An inviscid flow solver is used to reduce the execution time of the analysis. Multiple evaluation criteria based on the Mach number profile obtained from the analysis of each airfoil cross-section are used for computing a quality metric. A key contribution of the paper is the development of metrics that emulate the perception of the human designer in visually evaluating the Mach Number distribution. A mathematical representation of the evaluation criteria coupled with a parametric geometry generator enables the use of formal optimization techniques in the design. The proposed approach is implemented in the optimal design of a low-pressure turbine nozzle.

  10. Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream

    Science.gov (United States)

    Myers, Robert B.; Yagiela, Anthony S.

    1990-12-25

    An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member.

  11. Comparison of driven and simulated "free" stall flutter in a wind tunnel

    Science.gov (United States)

    Culler, Ethan; Farnsworth, John; Fagley, Casey; Seidel, Jurgen

    2016-11-01

    Stall flutter and dynamic stall have received a significant amount of attention over the years. To experimentally study this problem, the body undergoing stall flutter is typically driven at a characteristic, single frequency sinusoid with a prescribed pitching amplitude and mean angle of attack offset. This approach allows for testing with repeatable kinematics, however it effectively decouples the structural motion from the aerodynamic forcing. Recent results suggest that this driven approach could misrepresent the forcing observed in a "free" stall flutter scenario. Specifically, a dynamically pitched rigid NACA 0018 wing section was tested in the wind tunnel under two modes of operation: (1) Cyber-Physical where "free" stall flutter was physically simulated through a custom motor-control system modeling a torsional spring and (2) Direct Motor-Driven Dynamic Pitch at a single frequency sinusoid representative of the cyber-physical motion. The time-resolved pitch angle and moment were directly measured and compared for each case. It was found that small deviations in the pitch angle trajectory between these two operational cases generate significantly different aerodynamic pitching moments on the wing section, with the pitching moments nearly 180o out of phase in some cases. This work is supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program and by the National Defense Science and Engineering Graduate Fellowship Program.

  12. On the influence of airfoil deviations on the aerodynamic performance of wind turbine rotors

    International Nuclear Information System (INIS)

    Winstroth, J; Seume, J R

    2016-01-01

    The manufacture of large wind turbine rotor blades is a difficult task that still involves a certain degree of manual labor. Due to the complexity, airfoil deviations between the design airfoils and the manufactured blade are certain to arise. Presently, the understanding of the impact of manufacturing uncertainties on the aerodynamic performance is still incomplete. The present work analyzes the influence of a series of airfoil deviations likely to occur during manufacturing by means of Computational Fluid Dynamics and the aeroelastic code FAST. The average power production of the NREL 5MW wind turbine is used to evaluate the different airfoil deviations. Analyzed deviations include: Mold tilt towards the leading and trailing edge, thick bond lines, thick bond lines with cantilever correction, backward facing steps and airfoil waviness. The most severe influences are observed for mold tilt towards the leading and thick bond lines. By applying the cantilever correction, the influence of thick bond lines is almost compensated. Airfoil waviness is very dependent on amplitude height and the location along the surface of the airfoil. Increased influence is observed for backward facing steps, once they are high enough to trigger boundary layer transition close to the leading edge. (paper)

  13. Modeling the Aerodynamic Lift Produced by Oscillating Airfoils at Low Reynolds Number

    OpenAIRE

    Khalid, Muhammad Saif Ullah; Akhtar, Imran

    2014-01-01

    For present study, setting Strouhal Number (St) as control parameter, numerical simulations for flow past oscillating NACA-0012 airfoil at 1,000 Reynolds Numbers (Re) are performed. Temporal profiles of unsteady forces; lift and thrust, and their spectral analysis clearly indicate the solution to be a period-1 attractor for low Strouhal numbers. This study reveals that aerodynamic forces produced by plunging airfoil are independent of initial kinematic conditions of airfoil that proves the ex...

  14. The effect of acoustic forcing on an airfoil tonal noise mechanism.

    Science.gov (United States)

    Schumacher, Karn L; Doolan, Con J; Kelso, Richard M

    2014-08-01

    The response of the boundary layer over an airfoil with cavity to external acoustic forcing, across a sweep of frequencies, was measured. The boundary layer downstream of the cavity trailing edge was found to respond strongly and selectively at the natural airfoil tonal frequencies. This is considered to be due to enhanced feedback. However, the shear layer upstream of the cavity trailing edge did not respond at these frequencies. These findings confirm that an aeroacoustic feedback loop exists between the airfoil trailing edge and a location near the cavity trailing edge.

  15. Cross-Validation of Numerical and Experimental Studies of Transitional Airfoil Performance

    DEFF Research Database (Denmark)

    Frere, Ariane; Hillewaert, Koen; Sarlak, Hamid

    2015-01-01

    The aerodynamic performance characteristic of airfoils are the main input for estimating wind turbine blade loading as well as annual energy production of wind farms. For transitional flow regimes these data are difficult to obtain, both experimentally as well as numerically, due to the very high...... sensitivity of the flow to perturbations, large scale separation and performance hysteresis. The objective of this work is to improve the understanding of the transitional airfoil flow performance by studying the S826 NREL airfoil at low Reynolds numbers (Re = 4:104 and 1:105) with two inherently different...

  16. Numerical computation of gust aerodynamic response for realistic airfoils : Application of Amiet’s theory

    NARCIS (Netherlands)

    Miotto, Renato Fuzaro; Wolf, William Roberto; de Santana, Leandro Dantas

    2016-01-01

    Current knowledge on the noise generation mechanisms of an airfoil subjected to a turbulent flow indicates that an increment to the airfoil thickness leads to a reduction of the leading-edge noise. This effect is generally attributed to the turbulence distortion occurring close upstream the airfoil

  17. Effects of alley and stall surfaces on indices of claw and leg health in dairy cattle housed in a free-stall barn.

    Science.gov (United States)

    Vokey, F J; Guard, C L; Erb, H N; Galton, D M

    2001-12-01

    A 15-wk 2 x 3 factorial trial in a university dairy herd compared the effects of two alley surfaces and three free-stall beds on indices of lameness. Alley surfaces were grooved concrete (Ct) or 1.9-cm-thick interlocking rubber mats (R). Stalls were deep sand (S), rubber mattresses (M), or concrete (C). Mattress and concrete stalls were bedded with sawdust. At wk 1 and 15, the hind claws and hocks of 120 primi- (n = 69) and multiparous (n = 51) cows were scored for lesions and three claw measurements (dorsal wall length, heel depth, and toe angle) were recorded. Rates of lateral and medial claw growth and wear were calculated by measuring the migration of a reference mark away from the coronet. Digital photographs of claw surfaces were used to rescore claw lesions. Clinical lameness was evaluated by assigning a locomotion score from 1 to 4 to each cow during wk 1, 5, 10, and 14. Digital dermatitis (present/not present) and interdigital dermatitis (mild, moderate, or severe) were recorded at wk 15. The number of days that cows spent in a hospital barn was recorded. Before assignment, cows were professionally foot trimmed, sorted by initial claw lesion score, and then randomized in consecutive blocks of three to stall treatments. Photograph scores were highly repeatable. Nonparametric statistical techniques were used for analyses of rank data. Claw lesion score increased significantly for all treatment groups except RC and RS; however, when early lactation cows were excluded, no differences were found between treatment groups. Hock scores increased significantly more for cows in CtC than in CtS or RS. Significantly more animals from RC spent more than 10 d in the hospital pen compared with RM and RS. Groups did not significantly differ for clinical lameness. Cows in RS and RC had significantly lower rates for lateral claw net growth than those in CtM. Having moderate or severe interdigital dermatitis at wk 15 was associated with greater increases in claw lesion score

  18. Cow comfort in tie-stalls: increased depth of shavings or straw bedding increases lying time.

    Science.gov (United States)

    Tucker, C B; Weary, D M; von Keyserlingk, M A G; Beauchemin, K A

    2009-06-01

    Over half of US dairy operations use tie-stalls, but these farming systems have received relatively little research attention in terms of stall design and management. The current study tested the effects of the amount of 2 bedding materials, straw and shavings, on dairy cattle lying behavior. The effects of 4 levels of shavings, 3, 9, 15, and 24 kg/stall (experiment 1, n = 12), and high and low levels of straw in 2 separate experiments: 1, 3, 5, and 7 kg/stall (experiment 2, n = 12) and 0.5, 1, 2, and 3 kg/stall (experiment 3, n = 12) were assessed. Treatments were compared using a crossover design with lactating cows housed in tie-stalls fitted with mattresses. Treatments were applied for 1 wk. Total lying time, number of lying bouts, and the length of each lying bout was recorded with data loggers. In experiment 1, cows spent 3 min more lying down for each additional kilogram of shavings (11.0, 11.7, 11.6, and 12.1 +/- 0.24 h/d for 3, 9, 15, and 24 kg/stall shavings, respectively). In experiment 2, cows increased lying time by 12 min for every additional kilogram of straw (11.2, 12.0, 11.8, and 12.4 +/- 0.24 h/d for 1, 3, 5, and 7 kg/stall of straw, respectively). There were no differences in lying behavior among the lower levels of straw tested in experiment 3 (11.7 +/- 0.32 h/d). These results indicated that additional bedding above a scant amount improves cow comfort, as measured by lying time, likely because a well-bedded surface is more compressible.

  19. Airfoil boundary layer separation and control at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Yarusevych, S.; Sullivan, P.E. [University of Toronto, Department of Mechanical and Industrial Engineering, Toronto, ON (Canada); Kawall, J.G. [Ryerson University, Department of Mechanical and Industrial Engineering, Toronto, ON (Canada)

    2005-04-01

    The boundary layer separation on a NACA 0025 airfoil was studied experimentally via hot-wire anemometry and surface pressure measurements. The results provide added insight into periodic boundary layer control, suggesting that matching the excitation frequency with the most amplified disturbance in the separated shear layer is optimal for improving airfoil performance. (orig.)

  20. Experimental Investigation of Aerodynamic Performance of Airfoils Fitted with Morphing Trailing Edges

    OpenAIRE

    Ai, Qing; Kamliya Jawahar, Hasan; Azarpeyvand, Mahdi

    2016-01-01

    The aerodynamic performance and wake development of a NACA 0012 airfoil fitted with morphing trailing edges were studied using experimental and computational techniques. The NACA 0012 airfoil was tested with morphing trailing edges having various camber profiles with the same trailing edge tip deflection. The aerodynamic force measurements for the airfoil were carried out for a wide range of chord-based Reynolds number and angles of attack with trailing edge deflection angle of β= 5◦ and 10◦....

  1. Effect of artificial UV irradiation on spore content of stall air and fattening pig breeding

    International Nuclear Information System (INIS)

    Kalich, J.; Blendl, H.M.

    1978-01-01

    The influence of a continuous UV irradiation (emitter NN 33/89 original Hanau) during the fattening periods primarily in the bactericide region of 253.7 nm of various intensities on the spore content of air, on the state of health and on the fattening breeding of pigs was tested in two fattening procedures. The high spore number per m 3 air of over 700 000 upon occupying the stall in the first fattening procedure was reduced by 90.5% to about 70 000 after 1 week of UV irradiation, and in the second procedure, from 111 500 to 16 000, i.e. a reduction of 85.5%. The spore content of the stall air then exhibited large deviations reducing and increasing. The same deviations were recorded for dust content. There was no absolute correlation between dust and spore content of the air until the 11th week after starting UV irradiation in either test. The spore content sank in the reference stalls also without UV irradiation, by 29.9% in the first fattening procedure 1 week after occupying the stall and even by 75% in the second procedure. The spore content of the air in the reference stalls also then exhibited deviations sinking and rising as in the test stalls with UV irradiation. Here too, there was no correlation between dust and spore content of the air. The spore content in the air was 2 to 7 times higher in the reference stalls than in the test stalls. One may conclude from the tests that the promoting irradiation strength is between 15 and 20 μW/cm 2 and that short-term stool production in danish stalling, 60 μW/cm 2 are not harmful. Air disinfection with UV irradiation, can only be part of the total hygiene measures taken in veterinary medicine and may only be considered as an important link in the chain of the health promoting and increased efficient hygiene measures in the intensification of aggriculturally useful animals. (orig./AJ) [de

  2. Design of a family of new advanced airfoils for low wind class turbines

    International Nuclear Information System (INIS)

    Grasso, Francesco

    2014-01-01

    In order to maximize the ratio of energy capture and reduce the cost of energy, the selection of the airfoils to be used along the blade plays a crucial role. Despite the general usage of existing airfoils, more and more, families of airfoils specially tailored for specific applications are developed. The present research is focused on the design of a new family of airfoils to be used for the blade of one megawatt wind turbine working in low wind conditions. A hybrid optimization scheme has been implemented, combining together genetic and gradient based algorithms. Large part of the work is dedicated to present and discuss the requirements that needed to be satisfied in order to have a consistent family of geometries with high efficiency, high lift and good structural characteristics. For each airfoil, these characteristics are presented and compared to the ones of existing airfoils. Finally, the aerodynamic design of a new blade for low wind class turbine is illustrated and compared to a reference shape developed by using existing geometries. Due to higher lift performance, the results show a sensitive saving in chords, wetted area and so in loads in idling position

  3. Macro-Fiber Composite actuated simply supported thin airfoils

    International Nuclear Information System (INIS)

    Bilgen, Onur; Kochersberger, Kevin B; Inman, Daniel J; Ohanian, Osgar J III

    2010-01-01

    A piezoceramic composite actuator known as Macro-Fiber Composite (MFC) is used for actuation in the design of a variable camber airfoil intended for a ducted fan aircraft. The study focuses on response characterization under aerodynamic loads for circular arc airfoils with variable pinned boundary conditions. A parametric study of fluid–structure interaction is employed to find pin locations along the chordwise direction that result in high lift generation. Wind tunnel experiments are conducted on a 1.0% thick, 127 mm chord MFC actuated bimorph airfoil that is simply supported at 5% and 50% of the chord. Aerodynamic and structural performance results are presented for a flow rate of 15 m s −1 and a Reynolds number of 127 000. Non-linear effects due to aerodynamic and piezoceramic hysteresis are identified and discussed. A lift coefficient change of 1.46 is observed, purely due to voltage actuation. A maximum 2D L/D ratio of 17.8 is recorded through voltage excitation

  4. Virtual incidence effect on rotating airfoils in Darrieus wind turbines

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Balduzzi, Francesco; Ferrara, Giovanni; Ferrari, Lorenzo

    2016-01-01

    Highlights: • Novel methods to reduce CFD results into 1D aerodynamic parameters. • Assessment of the virtual incidence (VI) effect on Darrieus VAWT blades. • It is shown that blades experience a virtual AoA variation with respect to theoretical expectations. • Real AoAs are calculated for different airfoils in motion and compared to BEM predictions. - Abstract: Small Darrieus wind turbines are one of the most interesting emerging technologies in the renewable energies scenario, even if they still are characterized by lower efficiencies than those of conventional horizontal-axis wind turbines due to the more complex aerodynamics involved in their functioning. In case of small rotors, in which the chord-to-radius ratios are generally high not to limit the blade Reynolds number, the performance of turbine blades has been suggested to be moreover influenced by the so-called “flow curvature effects”. Recent works have indeed shown that the curved flowpath encountered by the blades makes them work like virtually cambered airfoils in a rectilinear flow. In the present study, focus is instead given to a further effect that is generated in reason of the curved streamline incoming on the blades, i.e. an extra-incidence seen by the airfoil, generally referred to as “virtual incidence”. In detail, a novel computational method to define the incidence angle has been applied to unsteady CFD simulations of three airfoils in a Darrieus-like motion and their effective angles of attack have been compared to theoretical expectations. The analysis confirmed the presence of an additional virtual incidence on the airfoils and quantified it for different airfoils, chord-to-radius ratios and tip-speed ratios. A comparative discussion on BEM prediction capabilities is finally reported in the study.

  5. Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces

    Science.gov (United States)

    Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W

    2012-10-23

    An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.

  6. Wind Tunnel and Numerical Analysis of Thick Blunt Trailing Edge Airfoils

    Science.gov (United States)

    McLennan, Anthony William

    Two-dimensional aerodynamic characteristics of several thick blunt trailing edge airfoils are presented. These airfoils are not only directly applicable to the root section of wind turbine blades, where they provide the required structural strength at a fraction of the material and weight of an equivalent sharp trailing edge airfoil, but are also applicable to the root sections of UAVs having high aspect ratios, that also encounter heavy root bending forces. The Reynolds averaged Navier-Stokes code, ARC2D, was the primary numerical tool used to analyze each airfoil. The UCD-38-095, referred to as the Pareto B airfoil in this thesis, was also tested in the University of California, Davis Aeronautical Wind Tunnel. The Pareto B has an experimentally determined maximum lift coefficient of 1.64 at 14 degrees incidence, minimum drag coefficient of 0.0385, and maximum lift over drag ratio of 35.9 at a lift coefficient of 1.38, 10 degrees incidence at a Reynolds number of 666,000. Zig-zag tape at 2% and 5% of the chord was placed on the leading edge pressure and suction side of the Pareto B model in order to determine the aerodynamic performance characteristics at turbulent flow conditions. Experimental Pareto B wind tunnel data and previous FB-3500-0875 data is also presented and used to validate the ARC2D results obtained in this study. Additionally MBFLO, a detached eddy simulation Navier-Stokes code, was used to analyze the Pareto B airfoil for comparison and validation purposes.

  7. Design and verification of the Risø-B1 airfoil family for wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, P.; Bak, C.; Gaunaa, M.

    2004-01-01

    This paper presents the design and experimental verification of the Risø-B1 airfoil family for MW-size wind turbines with variable speed and pitch control. Seven airfoils were designed with thickness-to-chord ratios between 15% and 53% to cover the entire span of a wind turbine blade. The airfoils...

  8. Improvement of airfoil trailing edge bluntness noise model

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2016-01-01

    In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks......, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989). It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed...

  9. Aerodynamics of S809 Airfoil at Low and Transitional Reynolds Numbers

    Science.gov (United States)

    Carreras, Jaime J.; Laal-Dehghani, Nader; Gorumlu, Serdar; Mehdi, Faraz; Castillo, Luciano; Aksak, Burak; Sheng, Jian

    2013-11-01

    The S809 is a thick airfoil extensively used in wind turbine design applications and model studies in wind tunnel. With increased interests in reducing energy production cost and understanding turbulence and turbine interactions, scaled down models (Re ~103) are often used as an alternative to full scale field experimentation (Re >106). This Reynolds number discrepancy raises the issue of scaling for the airfoil performance from laboratory studies to field scale applications. To the best of our knowledge, there are no studies existing in literature to characterize the lift- and drag-coefficients of S809 airfoil at Re less than 3 ×105 . This study is to fill the deficit in the current state of knowledge by performing high resolution force measurements. The lift and drag measurements are carried out in Texas Tech Wind Tunnel Facility using an in-house developed dual-cell force balance. The configuration eliminates the large torque and torsion often accompanied by conventional mounts. This unique design allows us to reach a measurement accuracy of 0.02N (0.1%). Comparative studies are performed on a two-dimensional airfoil with a smooth- as well as a well-engineered surface covered by micro-pillar array to simulate the surface conditions of a real life airfoil.

  10. Flow visualization over a thick blunt trailing-edge airfoil with base cavity at low Reynolds numbers using PIV technique.

    Science.gov (United States)

    Taherian, Gholamhossein; Nili-Ahmadabadi, Mahdi; Karimi, Mohammad Hassan; Tavakoli, Mohammad Reza

    2017-01-01

    In this study, the effect of cutting the end of a thick airfoil and adding a cavity on its flow pattern is studied experimentally using PIV technique. First, by cutting 30% chord length of the Riso airfoil, a thick blunt trialing-edge airfoil is generated. The velocity field around the original airfoil and the new airfoil is measured by PIV technique and compared with each other. Then, adding two parallel plates to the end of the new airfoil forms the desired cavity. Continuous measurement of unsteady flow velocity over the Riso airfoil with thick blunt trailing edge and base cavity is the most important innovation of this research. The results show that cutting off the end of the airfoil decreases the wake region behind the airfoil, when separation occurs. Moreover, adding a cavity to the end of the thickened airfoil causes an increase in momentum and a further decrease in the wake behind the trailing edge that leads to a drag reduction in comparison with the thickened airfoil without cavity. Furthermore, using cavity decreases the Strouhal number and vortex shedding frequency.

  11. Ice Accretions and Full-Scale Iced Aerodynamic Performance Data for a Two-Dimensional NACA 23012 Airfoil

    Science.gov (United States)

    Addy, Harold E., Jr.; Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Guffond, Didier; Montreuil, Emmanuel; Moens, Frederic

    2016-01-01

    in the IRT. From these molds, castings were made that closely replicated the features of the accreted ice. The castings were then mounted on the full-scale model in the F1 tunnel, and aerodynamic performance measurements were made using model surface pressure taps, the facility force balance system, and a large wake rake designed specifically for these tests. Tests were run over a range of Reynolds and Mach numbers. For each run, the model was rotated over a range of angles-of-attack that included airfoil stall. The benchmark data collected during these campaigns were, and continue to be, used for various purposes. The full-scale data form a unique, ice-accretion and associated aerodynamic performance dataset that can be used as a reference when addressing concerns regarding the use of subscale ice-accretion data to assess full-scale icing effects. Further, the data may be used in the development or enhancement of both ice-accretion prediction codes and computational fluid dynamic codes when applied to study the effects of icing. Finally, as was done in the wider study, the data may be used to help determine the level of geometric fidelity needed for artificial ice used to assess aerodynamic degradation due to aircraft icing. The structured, multifaceted approach used in this research effort provides a unique perspective on the aerodynamic effects of aircraft icing. The data presented in this report are available in electronic form upon formal approval by proper NASA and ONERA authorities.

  12. Insight into Rotational Effects on a Wind Turbine Blade Using Navier–Stokes Computations

    Directory of Open Access Journals (Sweden)

    Iván Herráez

    2014-10-01

    Full Text Available Rotational effects are known to influence severely the aerodynamic performance of the inboard region of rotor blades. The underlying physical mechanisms are however far from being well understood. The present work addresses this problem using Reynolds averaged Navier–Stokes computations and experimental results of the MEXICO (Model Experiments in Controlled Conditions rotor. Four axisymmetric inflow cases with wind speeds ranging from pre-stall to post-stall conditions are computed and compared with pressure and particle image velocimetry (PIV experimental data, obtaining, in general, consistent results. At low angles of attack, the aerodynamic behavior of all of the studied blade sections resembles the one from the corresponding 2D airfoils. However, at high angles of attack, rotational effects lead to stall delay and/or lift enhancement at inboard positions. Such effects are shown to occur only in the presence of significant radial flows. Interestingly, the way in which rotational effects influence the aerodynamics of the MEXICO blades differs qualitatively in certain aspects from the descriptions found in the literature about this topic. The presented results provide new insights that are useful for the development of advanced and physically-sound correction models.

  13. Study and Control of a Radial Vaned Diffuser Stall

    Directory of Open Access Journals (Sweden)

    Aurélien Marsan

    2012-01-01

    Full Text Available The aim of the present study is to evaluate the efficiency of a boundary layer suction technique in case of a centrifugal compressor stage in order to extend its stable operating range. First, an analysis of the flow pattern within the radial vaned diffuser is presented. It highlights the stall of the diffuser vanes when reaching a low massflow. A boundary layer separation in the hub-suction side corner grows when decreasing the massflow from the nominal operating point to the surge and finally leads to a massive stall. An aspiration strategy is investigated in order to control the stall. The suction slot is put in the vicinity of the saddle that originates the main separating skin-friction line, identified thanks to the analysis of the skin-friction pattern. Several aspiration massflow rates are tested, and two different modelings of the aspiration are evaluated. Finally, an efficient control is reached with a removal of only 0,1% of the global massflow and leads—from a steady-state calculations point of view—to an increase by 40% of the compressor operating range extent.

  14. Measurement of tonal-noise characteristics and periodic flow structure around NACA0018 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, T.; Fujisawa, N. [Niigata University, Department Mechanical Engineering, Niigata (Japan); Lee, S. [Inha University, Department Mechanical Engineering, Incheon (Korea)

    2006-03-15

    The characteristics of tonal noise and the variations of flow structure around NACA0018 airfoil in a uniform flow are studied by means of simultaneous measurement of noise and velocity field by particle-image velocimetry to understand the generation mechanism of tonal noise. Measurements are made on the noise characteristics, the phase-averaged velocity field with respect to the noise signal, and the cross-correlation contour of velocity fluctuations and noise signal. These experimental results indicate that the tonal noise is generated from the periodic vortex structure on the pressure surface of the airfoil near the trailing edge of the airfoil. It is found that the vortex structure is highly correlated with the noise signal, which indicates the presence of noise-source distribution on the pressure surface. The vorticity distribution on the pressure surface breaks down near the trailing edge of the airfoil and forms a staggered vortex street in the wake of the airfoil. (orig.)

  15. Vortex scale of unsteady separation on a pitching airfoil.

    Science.gov (United States)

    Fuchiwaki, Masaki; Tanaka, Kazuhiro

    2002-10-01

    The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment.

  16. Questionnaire-based study to assess the association between management practices and mastitis within tie-stall and free-stall dairy housing systems in Switzerland

    Science.gov (United States)

    2013-01-01

    Background Prophylactic measures are key components of dairy herd mastitis control programs, but some are only relevant in specific housing systems. To assess the association between management practices and mastitis incidence, data collected in 2011 by a survey among 979 randomly selected Swiss dairy farms, and information from the regular test day recordings from 680 of these farms was analyzed. Results The median incidence of farmer-reported clinical mastitis (ICM) was 11.6 (mean 14.7) cases per 100 cows per year. The median annual proportion of milk samples with a composite somatic cell count (PSCC) above 200,000 cells/ml was 16.1 (mean 17.3) %. A multivariable negative binomial regression model was fitted for each of the mastitis indicators for farms with tie-stall and free-stall housing systems separately to study the effect of other (than housing system) management practices on the ICM and PSCC events (above 200,000 cells/ml). The results differed substantially by housing system and outcome. In tie-stall systems, clinical mastitis incidence was mainly affected by region (mountainous production zone; incidence rate ratio (IRR) = 0.73), the dairy herd replacement system (1.27) and farmers age (0.81). The proportion of high SCC was mainly associated with dry cow udder controls (IRR = 0.67), clean bedding material at calving (IRR = 1.72), using total merit values to select bulls (IRR = 1.57) and body condition scoring (IRR = 0.74). In free-stall systems, the IRR for clinical mastitis was mainly associated with stall climate/temperature (IRR = 1.65), comfort mats as resting surface (IRR = 0.75) and when no feed analysis was carried out (IRR = 1.18). The proportion of high SSC was only associated with hand and arm cleaning after calving (IRR = 0.81) and beef producing value to select bulls (IRR = 0.66). Conclusions There were substantial differences in identified risk factors in the four models. Some of the factors were in agreement with the reported literature

  17. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics.

    Science.gov (United States)

    Jain, Shubham; Sitaram, Nekkanti; Krishnaswamy, Sriram

    2015-01-01

    The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty.

  18. Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine

    International Nuclear Information System (INIS)

    Chougule, Prasad; Nielsen, Søren R K

    2014-01-01

    Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved

  19. Design and Experimental Validation of Thick Airfoils for Large Wind Turbines

    DEFF Research Database (Denmark)

    Hrgovan, Iva; Shen, Wen Zhong; Zhu, Wei Jun

    2015-01-01

    In this chapter, two new airfoils with thickness to chord ratios of 30 and 36 % are presented, which were designed with an objective of good aerodynamic and structural features. Airfoil design is based on a direct method using shape perturbation function. The optimization algorithm is coupled wit...

  20. Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+

    Science.gov (United States)

    Bui, Trong

    2016-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.

  1. Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine

    Science.gov (United States)

    Fuchs, Roman; Nordborg, Henrik

    2012-11-01

    We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.

  2. Numerical optimization of circulation control airfoil at high subsonic speed

    Science.gov (United States)

    Tai, T. C.; Kidwell, G. H., Jr.

    1984-01-01

    A numerical procedure for optimizing the design of the circulation control airfoil for use at high subsonic speeds is presented. The procedure consists of an optimization scheme coupled with a viscous potential flow analysis for the blowing jet. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse and cambered ellipse with drooped and spiraled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the airfoil, optimized at free-stream Mach 0.54 and alpha = -2 degrees can be characterized as a cambered ellipse with a drooped trailing edge. Experimental tests support the performance improvement predicted by numerical optimization.

  3. Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Xu, Haoran

    2014-01-01

    Blade element momentum (BEM) theory with airfoil data is a widely used technique for prediction of wind turbine aerodynamic performance, but the reliability of the airfoil data is an important factor for the prediction accuracy of aerodynamic loads and power. The airfoil characteristics used in BEM...

  4. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    Science.gov (United States)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are

  5. Mechanism of Water Droplet Breakup Near the Leading Edge of an Airfoil

    Science.gov (United States)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida, Garcia

    2012-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 microns, and airfoil velocities of 70 and 90 m/sec.

  6. Transitory Control of Unsteady Separation using Pulsed Actuation

    International Nuclear Information System (INIS)

    Woo, George T K; Glezer, Ari

    2011-01-01

    The dynamic mechanisms of transitory flow attachment effected by pulsed actuation of the separated flow over a stalled airfoil are investigated experimentally. Actuation is effected by momentary pulsed jets generated by a spanwise array of combustion-based actuators such that the characteristic time of jet duration is nominally an order of magnitude shorter than the flow's convective time scale. The transitory flow field in the cross stream plane above the airfoil and in its near wake is investigated using multiple high-resolution PIV images that are obtained phase-locked to the actuation for continuous tracking of vorticity concentrations. The brief actuation pulse leads to severing of the separated vorticity layer and the subsequent shedding of large-scale vortical structures owing to the collapse of the separated flow domain which is accompanied by strong changes in the circulation about the entire airfoil. By exploiting the disparity between the characteristic times of flow response to actuation and relaxation, it is shown that successive actuation pulses can extend the flow attachment and enhance the global aerodynamic performance. It is also shown that coupling of the actuation to the airfoil's motion during cyclical pitch enhances the effect of transitory flow control and leads to a significant suppression of dynamic stall.

  7. Development of tooling suitable for stall regulated blades

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, M.

    2001-07-01

    The objectives of the project were to make significant improvements in the production of stall regulated blades in the areas of (a) the tip box, its housing, its mechanism and small GRP parts; (b) mould technology; (c) resins and glues and (d) root tooling. Although wood composite had been identified as a competitive technology for blades, compared with GRP blades, production volumes had been lower; reasons are given. The way in which the four areas identified for investigation were tackled are discussed. The study showed that the mould cycle time can be reduced to two days for a stall regulated blade and the blade quality can be improved by using the composite tip box and new resins. The time required for replication of moulds can be reduced by 40%.

  8. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section

    Science.gov (United States)

    Zaman, Khairul; Fagan, Amy; Mankbadi, Mina

    2016-01-01

    An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.

  9. Design and validation of the high performance and low noise CQU-DTU-LN1 airfoils

    DEFF Research Database (Denmark)

    Cheng, Jiangtao; Zhu, Wei Jun; Fischer, Andreas

    2014-01-01

    with the blade element momentum theory, the viscous-inviscid XFOIL code and an airfoil self-noise prediction model, an optimization algorithm has been developed for designing the high performance and low noise CQU-DTU-LN1 series of airfoils with targets of maximum power coefficient and low noise emission...... emission between the CQU-DTU-LN118 airfoil and the National Advisory Committee for Aeronautics (NACA) 64618 airfoil, which is used in modern wind turbine blades, are carried out. Copyright © 2013 John Wiley & Sons, Ltd....

  10. Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil

    Science.gov (United States)

    Kryštůfek, P.; Kozel, K.

    2014-03-01

    The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.

  11. Numerical Solution of Compressible Steady Flows around the NACA 0012 Airfoil

    Directory of Open Access Journals (Sweden)

    Kozel K

    2013-04-01

    Full Text Available The article presents results of a numerical solution of subsonic and transonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the NACA 0012 airfoil. Authors used Runge-Kutta method to numerically solve the flows around the NACA 0012 airfoil.

  12. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.

    Science.gov (United States)

    Wang, Chenglei; Tang, Hui

    2018-05-25

    In this study, we explore the use of synthetic jet (SJ) in manipulating the vortices around a rigid heaving airfoil, so as to enhance its aerodynamic performance. The airfoil heaves at two fixed pitching angles, with the Strouhal number, reduced frequency and Reynolds number chosen as St  =  0.3, k  =  0.25 and Re  =  100, respectively, all falling in the ranges for natural flyers. As such, the vortex force plays a dominant role in determining the airfoil's aerodynamic performance. A pair of in-phase SJs is implemented on the airfoil's upper and lower surfaces, operating with the same strength but in opposite directions. Such a fluid-structure interaction problem is numerically solved using a lattice Boltzmann method based numerical framework. It is found that, as the airfoil heaves with zero pitching angle, its lift and drag can be improved concurrently when the SJ phase angle [Formula: see text] relative to the heave motion varies between [Formula: see text] and [Formula: see text]. But this concurrent improvement does not occur as the airfoil heaves with [Formula: see text] pitching angle. Detailed inspection of the vortex evolution and fluid stress over the airfoil surface reveals that, if at good timing, the suction and blowing strokes of the SJ pair can effectively delay or promote the shedding of leading edge vortices, and mitigate or even eliminate the generation of trailing edge vortices, so as to enhance the airfoil's aerodynamic performance. Based on these understandings, an intermittent operation of the SJ pair is then proposed to realize concurrent lift and drag improvement for the heaving airfoil with [Formula: see text] pitching angle.

  13. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    Science.gov (United States)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  14. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  15. SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils

    Science.gov (United States)

    Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.

    2008-01-01

    The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.

  16. Application of an upwind Navier-Stokes code to two-dimensional transonic airfoil flow

    International Nuclear Information System (INIS)

    Rumsey, C.L.; Thomas, J.L.; Anderson, W.K.; Taylor, S.L.

    1987-01-01

    An upwind-biased implicit approximate factorization Navier-Stokes algorithm is applied to a variety of steady transonic airfoil cases, using the NACA 0012, RAE 2822, and Jones supercritical airfoils. The thin-layer form of the compressible Navier-Stokes equations is used. Both the CYBER 205 and CRAY 2 supercomputers are utilized, with average computational speeds of about 18 and 16 microsec/gridpoint/iteration, respectively. Lift curves, drag polars, and variations in drag coefficient with Mach number are determined for the NACA 0012 and Jones supercritical airfoils. Also, several cases are computed for comparison with experiment. The effect of grid density and grid extent on a typical turbulent airfoil solution is shown. An algebraic eddy-viscosity turbulence model is used for all of the computations. 10 references

  17. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    Science.gov (United States)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing

  18. Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil

    Directory of Open Access Journals (Sweden)

    Kryštůfek P.

    2014-03-01

    Full Text Available The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.

  19. Stability investigation of an airfoil section with active flap control

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Gaunaa, Mac

    2010-01-01

    function approximation. Stability of the full aeroservoelastic system is determined through eigenvalue analysis by state-space formulation of the indicial approximation. Validation is carried out against an implementation of the recursive method by Theodorsen and Garrick for flexure-torsion-aileron flutter...... for fatigue load alleviation. The structural model of the 2-D airfoil section contains three degrees of freedom: heave translation, pitch rotation and flap deflection. A potential flow model provides the aerodynamic forces and their distribution. The unsteady aerodynamics are described using an indicial...... on measurements of either heave displacement, local angle of attack or aerodynamic pressure difference measured over the airfoil. The purpose of the controlled deformable flap is to reduce fluctuations in the aerodynamic forces on the airfoil, which, according to recent studies, have a significant potential...

  20. SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    1999-01-01

    Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.

  1. Experimental study of boundary layer transition on an airfoil induced by periodically passing wake (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.C. [Seoul National University Graduate School, Seoul (Korea); Jeon, W.P.; Kang, S.H. [Seoul National University, Seoul (Korea)

    2001-06-01

    Hot-wire measurements are performed in boundary layers developing on a NACA0012 airfoil over which wakes pass periodically. The Reynolds number based on chord length of the airfoil is 2X10{sup 5} and the wakes are generated by circular cylinders rotating clockwise and counterclockwise around the airfoil. This paper and its companion Part II describe the phenomena of wake-induced transition of the boundary layers on the airfoil using measured data; phase- and time-averaged streamwise mean velocities, turbulent fluctuations, integral parameters and wall skin frictions. This paper describes the background and facility together with results of time-averaged quantities. Due to the passing wake with mean velocity defects and high turbulence intensities, the laminar boundary layer is periodically disturbed at the upstream station and becomes steady-state transitional boundary layer at the downstream station. The velocity defect in the passing wake changes the local pressure at the leading of the airfoil, significantly affects the time-mean pressure distribution on the airfoil and eventually, has influence on the transition process of the boundary layer. (author). 22 refs., 9 figs.

  2. Experimental benchmark and code validation for airfoils equipped with passive vortex generators

    DEFF Research Database (Denmark)

    Baldacchino, D.; Manolesos, M.; Ferreira, Célia Maria Dias

    2016-01-01

    Experimental results and complimentary computations for airfoils with vortex generators are compared in this paper, as part of an effort within the AVATAR project to develop tools for wind turbine blade control devices. Measurements from two airfoils equipped with passive vortex generators, a 30...

  3. A time-varying subjective quality model for mobile streaming videos with stalling events

    Science.gov (United States)

    Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.

    2015-09-01

    Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.

  4. A Numerical Study of Aerodynamic Performance and Noise of a Bionic Airfoil Based on Owl Wing

    Directory of Open Access Journals (Sweden)

    Xiaomin Liu

    2014-08-01

    Full Text Available Noise reduction and efficiency enhancement are the two important directions in the development of the multiblade centrifugal fan. In this study, we attempt to develop a bionic airfoil based on the owl wing and investigate its aerodynamic performance and noise-reduction mechanism at the relatively low Reynolds number. Firstly, according to the geometric characteristics of the owl wing, a bionic airfoil is constructed as the object of study at Reynolds number of 12,300. Secondly, the large eddy simulation (LES with the Smagorinsky model is adopted to numerically simulate the unsteady flow fields around the bionic airfoil and the standard NACA0006 airfoil. And then, the acoustic sources are extracted from the unsteady flow field data, and the Ffowcs Williams-Hawkings (FW-H equation based on Lighthill's acoustic theory is solved to predict the propagation of these acoustic sources. The numerical results show that the lift-to-drag ratio of bionic airfoil is higher than that of the traditional NACA 0006 airfoil because of its deeply concave lower surface geometry. Finally, the sound field of the bionic airfoil is analyzed in detail. The distribution of the A-weighted sound pressure levels, the scaled directivity of the sound, and the distribution of dP/dt on the airfoil surface are provided so that the characteristics of the acoustic sources could be revealed.

  5. Numerical solutions of the linearized Euler equations for unsteady vortical flows around lifting airfoils

    Science.gov (United States)

    Scott, James R.; Atassi, Hafiz M.

    1990-01-01

    A linearized unsteady aerodynamic analysis is presented for unsteady, subsonic vortical flows around lifting airfoils. The analysis fully accounts for the distortion effects of the nonuniform mean flow on the imposed vortical disturbances. A frequency domain numerical scheme which implements this linearized approach is described, and numerical results are presented for a large variety of flow configurations. The results demonstrate the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. The results show that mean flow distortion can have a very strong effect on the airfoil unsteady response, and that the effect depends strongly upon the reduced frequency, Mach number, and gust wave numbers.

  6. Influence of ice accretion on the noise generated by an airfoil section

    International Nuclear Information System (INIS)

    Szasz, Robert-Zoltan; Ronnfors, Matilda; Revstedt, Johan

    2016-01-01

    Highlights: • The noise generated by ice accreted airfoils is investigated using a hybrid approach. • The roughness of the ice surface is found to have an important effect on the radiated noise. • Ice was found to damp lower frequencies and amplify higher ones. - Abstract: We investigate the noise generated by an airfoil section. Three cases are considered, one with a clean airfoil and two cases with airfoils with ice accretion. The amount of ice is the same in the two cases with ice accretion, but the surface of the accreted ice layer is smoother in one of them. The noise is computed using a hybrid approach. First the flow and the acoustic sources are computed. Second, the noise propagation is predicted by solving an inhomogeneous wave equation. The results indicate that in this case the accreted ice layer leads to a decrease of the radiated noise levels, especially in the lower frequency range.

  7. Computations of droplet impingement on airfoils in two-phase flow

    International Nuclear Information System (INIS)

    Kim, Sang Dug; Song, Dong Joo

    2005-01-01

    The aerodynamic effects of leading-edge accretion can raise important safety concerns since the formulation of ice causes severe degradation in aerodynamic performance as compared with the clean airfoil. The objective of this study is to develop a numerical simulation strategy for predicting the particle trajectory around an MS-0317 airfoil in the test section of the NASA Glenn Icing Research Tunnel and to investigate the impingement characteristics of droplets on the airfoil surface. In particular, predictions of the mean velocity and turbulence diffusion using turbulent flow solver and continuous random walk method were desired throughout this flow domain in order to investigate droplet dispersion. The collection efficiency distributions over the airfoil surface in simulations with different numbers of droplets, various integration time-steps and particle sizes were compared with experimental data. The large droplet impingement data indicated the trends in impingement characteristics with respect to particle size; the maximum collection efficiency located at the upper surface near the leading edge, and the maximum value and total collection efficiency were increased as the particle size was increased. The extent of the area impinged on by particles also increased with the increment of the particle size, which is similar as compared with experimental data

  8. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Jin Di; Li Jun

    2013-01-01

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  9. Decomposing the aerodynamic forces of low-Reynolds flapping airfoils

    Science.gov (United States)

    Moriche, Manuel; Garcia-Villalba, Manuel; Flores, Oscar

    2016-11-01

    We present direct numerical simulations of flow around flapping NACA0012 airfoils at relatively small Reynolds numbers, Re = 1000 . The simulations are carried out with TUCAN, an in-house code that solves the Navier-Stokes equations for an incompressible flow with an immersed boundary method to model the presence of the airfoil. The motion of the airfoil is composed of a vertical translation, heaving, and a rotation about the quarter of the chord, pitching. Both motions are prescribed by sinusoidal laws, with a reduced frequency of k = 1 . 41 , a pitching amplitude of 30deg and a heaving amplitude of one chord. Both, the mean pitch angle and the phase shift between pitching and heaving motions are varied, to build a database with 18 configurations. Four of these cases are analysed in detail using the force decomposition algorithm of Chang (1992) and Martín Alcántara et al. (2015). This method decomposes the total aerodynamic force into added-mass (translation and rotation of the airfoil), a volumetric contribution from the vorticity (circulatory effects) and a surface contribution proportional to viscosity. In particular we will focus on the second, analysing the contribution of the leading and trailing edge vortices that typically appear in these flows. This work has been supported by the Spanish MINECO under Grant TRA2013-41103-P. The authors thankfully acknowledge the computer resources provided by the Red Española de Supercomputacion.

  10. Trailing edge noise model applied to wind turbine airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.

    2008-01-15

    The aim of this work is firstly to provide a quick introduction to the theory of noise generation that are relevant to wind turbine technology with focus on trailing edge noise. Secondly, the socalled TNO trailing edge noise model developed by Parchen [1] is described in more details. The model is tested and validated by comparing with other results from the literature. Finally, this model is used in the optimization process of two reference airfoils in order to reduce their noise signature: the RISOE-B1-18 and the S809 airfoils. (au)

  11. Wind tunel tests of Risoe-B1-18 and Risoe-B1-24

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Bak, C.; Gaunaa, M.; Antoniou, I.

    2003-01-01

    This report contains 2D measurements of the Risoe-B1-18 and Risoe-B1-24 airfoils. The aerodynamic properties were derived from pressure measurements on the airfoil surface and in the wake. The measurements were conducted in the VELUX open jet wind tunnel, which has a background turbulence intensity of 1%, and an inlet flow velocity of 42 m/s. The airfoil sections had a chord of 0.600 m giving a Reynolds number of 1.6Oe106. The span was 1.9 m and end plates were used to minimize 3D flow effects. The measurements comprised both static and dynamic inflow. Static inflow covered angles of attack from 5o to 30 deg. Dynamic inflow was obtained by pitching the airfoil in a harmonic motion around various mean angles of attack. The test matrix involved smooth flow, various kinds of leading edge roughness, stall strips, vortex generators and Gurney flaps in different combinations. The quality of the measurements was good and the agreement between measurements and numerical CFD predictions with EllipSys2D was good. For both airfoils predictions with turbulent flow captured very well the shapes of lift and drag curves as well as the magnitude of maximum lift. Measurements of Risoe-B1-18 showed that the maximum lift coefficient was 1.64 at an angle of attack of approximately 13 deg. The airfoil was not very sensitive to leading edge roughness despite its high maximum lift. Measurements with stall strips showed that stall strips could control the level of maximum lift. The Risoe-B1-24 measurements showed that the maximum lift coefficient was 1.62 at an angle of attack of approximately 14 deg. The airfoil was only little sensitive to leading edge roughness despite its high relative thickness and high maximum lift. Measurements with delta wing shaped vortex generators increased the maximum lift coefficient to 2.02 and measurements with Gurney flaps increased the maximum lift coefficient to 1.85. Measurements with combination of vortex generators and Gurney flaps showed a maximum

  12. Research in aeroelasticity EFP-2007-II

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, T. (ed.)

    2009-06-15

    This report contains results from the EFP-2007-II project 'Program for Research in Applied Aeroelasticity'. The main results can be summed up into the following bullets: 1) 2D CFD was used to investigate tower shadow effects on both upwind and downwind turbines, and was used to validate the tower shadow models implemented in the aeroelastic code HAWC2. 2) Using a streamlined tower reduces the tower shadow by 50% compared to a cylindrical tower. Similar reductions can be achieved using a four legged lattice tower. 3) The application of laminar/turbulent transition in CFD computations for airfoils is demonstrated. For attached flow over thin airfoils (18%) 2D computations provide good results while a combination of Detached Eddy Simulation and laminar/ turbulent transition modeling improve the results in stalled conditions for a thick airfoil. 4) The unsteady flow in the nacelle region of a wind turbine is dominated by large flow gradients caused by unsteady shedding of vortices from the root sections of the blades. 5) The averaged nacelle wind speed compares well to the freestream wind speed, whereas the nacelle flow angle is highly sensitive to vertical positioning and tilt in the inflow. 6) The trailing edge noise model, TNO, was implemented and validated. The results showed that the noise was not predicted accurately, but the model captured the trends and can be used in airfoil design. The model was implemented in the airfoil design tool AIRFOILOPT and existing airfoils can be adjusted to maintain the aerodynamic characteristics, but with reduced noise in the order of up to 3dB in total sound power level and up to 1dB with A-weighting. 7) 2D CFD simulations are performed to verify their capability in predicting multi element airfoil configurations. The present computations show good agreement with measured performance from wind tunnel experiments. 8) The stochastic fluctuations of the aerodynamic forces on blades in deep-stall have an insignificant

  13. Experimental study of the effect of a slat angle on double-element airfoil and application in vertical axis wind turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Rosendahl, Lasse; Nielsen, Søren R.K.

    2015-01-01

    A design of double-element airfoil is proposed for its use in the vertical axis wind turbine. The double-element airfoil system consists of a main airfoil and a slat airfoil. The design parameters of the double-element airfoil system are given by the position and orientation of the trailing edge......-element airfoil system designed in this paper. Further, the performance of new design of a vertical axis wind turbine shows considerable increase in the power coefficient and the total power output as compared to the reference wind turbine...

  14. A Novel Plasma-Based Compressor Stall Control System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern aircraft gas turbine engines utilize highly loaded airfoils in both the compressor and turbine to maximize performance while minimizing weight, cost, and...

  15. A Novel Plasma-Based Compressor Stall Control System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern aircraft gas turbine engines utilize highly loaded airfoils in both the compressor and turbine to maximize performance while minimizing weight, cost, and...

  16. Aerodynamic behaviour of NREL S826 airfoil at Re=100,000

    International Nuclear Information System (INIS)

    Sarlak, H; Mikkelsen, R; Sarmast, S; Sørensen, J N

    2014-01-01

    This paper presents wind tunnel measurements of the NREL S826 airfoil at Reynolds number Re = 100,000 for angles of attack in a range of -10° to 25° the corresponding Large Eddy Simulation (LES) for selected angles of attack. The measurements have been performed at the low speed wind tunnel located at Fluid Mechanics laboratory of the Technical University of Denmark (DTU). Lift coefficient is obtained from the forge gauge measurements while the drag is measured according to the integration of the wake profiles downstream of the airfoil. The pressure distribution is measured by a set of pressure taps on the airfoil surface. The lift and drag polars are obtained from the LES computations using DTU's inhouse CFD solver, EllipSys3D, and good agreement is found between the measurement and the simulations. At high angles of attack, the numerical computations tend to over-predict the lift coefficients, however, there is a better agreement between the drag measurements and computations. It is concluded that LES computations are able to capture the lift and drag polars as well as the pressure distribution around the airfoil with an acceptable accuracy

  17. Usage of advanced thick airfoils for the outer part of very large offshore turbines

    International Nuclear Information System (INIS)

    Grasso, F; Ceyhan, O

    2014-01-01

    Nowadays one of the big challenges in wind energy is connected to the development of very large wind turbines with 100 m blades and 8-10MW power production. The European project INNWIND.EU plays an important role in this challenge because it is focused on exploring and exploiting technical innovations to make these machines not only feasible but also cost effective. In this context, the present work investigates the benefits of adopting thick airfoils also at the outer part of the blade. In fact, if these airfoils are comparable to the existing thinner ones in terms of aerodynamics, the extra thickness would lead to a save in weight. Lightweight blades would visibly contribute to reduce the cost of energy of the turbines and make them cost effective. The reference turbine defined in INNWIND.EU project has been adjusted to use the new airfoils. The results show that the rotor performance is not sacrificed when the 24% airfoils are replaced by the ECN 30% thick airfoils, while 24% extra thickness can be obtained

  18. Time Accurate Unsteady Simulation of the Stall Inception Process in the Compression System of a US Army Helicopter Gas Turbine Engine

    National Research Council Canada - National Science Library

    Hathaway, Michael D; Herrick, Greg; Chen, Jenping; Webster, Robert

    2004-01-01

    .... Improved understanding of the stall inception process and how stall control technologies mitigate such will provide compressors with increased tolerance to stall, thereby expanding the operational...

  19. Unsteady 2D potential-flow forces and a thin variable geometry airfoil undergoing arbitrary motion

    Energy Technology Data Exchange (ETDEWEB)

    Gaunaa, M.

    2006-07-15

    In this report analytical expressions for the unsteady 2D force distribution on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by its camberline as in classic thin-airfoil theory, and the deflection of the airfoil is given by superposition of chordwise deflection mode shapes. It is shown from the expressions for the forces, that the influence from the shed vorticity in the wake is described by the same time-lag for all chordwise positions on the airfoil. This time-lag term can be approximated using an indicial function approach, making the practical calculation of the aerodynamic response numerically very efficient by use of Duhamel superposition. Furthermore, the indicial function expressions for the time-lag terms are formulated in their equivalent state-space form, allowing for use of the present theory in problems employing the eigenvalue approach, such as stability analysis. The analytical expressions for the forces simplify to all previously known steady and unsteady thin-airfoil solutions. Apart from the obvious applications within active load control/reduction, the current theory can be used for various applications which up to now have been possible only using much more computational costly methods. The propulsive performance of a soft heaving propulsor, and the influence of airfoil camberline elasticity on the flutter limit are two computational examples given in the report that highlight this feature. (au)

  20. Design Of An Aerodynamic Measurement System For Unmanned Aerial Vehicle Airfoils

    Directory of Open Access Journals (Sweden)

    L. Velázquez-Araque

    2012-10-01

    Full Text Available This paper presents the design and validation of a measurement system for aerodynamic characteristics of unmanned aerial vehicles. An aerodynamic balance was designed in order to measure the lift, drag forces and pitching moment for different airfoils. During the design process, several aspects were analyzed in order to produce an efficient design, for instance the range of changes of the angle of attack with and a small increment and the versatility of being adapted to different type of airfoils, since it is a wire balance it was aligned and calibrated as well. Wind tunnel tests of a two dimensional NACA four digits family airfoil and four different modifications of this airfoil were performed to validate the aerodynamic measurement system. The modification of this airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface. Therefore, four different locations along the cord line for this blowing outlet were analyzed. This analysis involved the aerodynamic performance which meant obtaining lift, drag and pitching moment coefficients curves as a function of the angle of attack experimentally for the situation where the engine of the aerial vehicle is turned off, called the no blowing condition, by means of wind tunnel tests. The experiments were performed in a closed circuit wind tunnel with an open test section. Finally, results of the wind tunnel tests were compared with numerical results obtained by means of computational fluid dynamics as well as with other experimental references and found to be in good agreement.

  1. Optimization Criteria and Sailplane Airfoil Design

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Matějka, Milan

    2007-01-01

    Roč. 30, č. 3 (2007), s. 74-78 ISSN 0744-8996 R&D Projects: GA AV ČR IAA2076403; GA AV ČR(CZ) IAA200760614 Institutional research plan: CEZ:AV0Z20760514 Keywords : aerodynamic optimization * airfoil Subject RIV: BK - Fluid Dynamics

  2. Nonlinear power flow feedback control for improved stability and performance of airfoil sections

    Science.gov (United States)

    Wilson, David G.; Robinett, III, Rush D.

    2013-09-03

    A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

  3. CFD simulation of flow-induced vibration of an elastically supported airfoil

    Directory of Open Access Journals (Sweden)

    Šidlof Petr

    2016-01-01

    Full Text Available Flow-induced vibration of lifting or control surfaces in aircraft may lead to catastrophic consequences. Under certain circumstances, the interaction between the airflow and the elastic structure may lead to instability with energy transferred from the airflow to the structure and with exponentially increasing amplitudes of the structure. In the current work, a CFD simulation of an elastically supported NACA0015 airfoil with two degrees of freedom (pitch and plunge coupled with 2D incompressible airflow is presented. The geometry of the airfoil, mass, moment of inertia, location of the centroid, linear and torsional stiffness was matched to properties of a physical airfoil model used for wind-tunnel measurements. The simulations were run within the OpenFOAM computational package. The results of the CFD simulations were compared with the experimental data.

  4. Steady and Unsteady Analysis of NACA 0018 Airfoil in Vertical-Axis Wind Turbine

    DEFF Research Database (Denmark)

    Rogowski, Krzysztof; Hansen, Martin Otto Laver; Maronski, Ryszard

    2018-01-01

    Numerical results are presented for aerodynamic unsteady and steady airfoil characteristtcs of the NACA 0018 airfoil of a two-dimensional vertical-axis wind turbine. A geometrical model of the Darrieus-type wind turbine and the rotor operating parameters used for nurnerieal simulation are taken...

  5. Airfoil data sensitivity analysis for actuator disc simulations used in wind turbine applications

    DEFF Research Database (Denmark)

    Nilsson, Karl; Breton, Simon-Philippe; Sørensen, Jens Nørkær

    2014-01-01

    To analyse the sensitivity of blade geometry and airfoil characteristics on the prediction of performance characteristics of wind farms, large-eddy simulations using an actuator disc (ACD) method are performed for three different blade/airfoil configurations. The aim of the study is to determine ...

  6. WIND TUNNEL RESEARCH ON THE INFLUENCE OF ACTIVE AIRFLOW ON THE LIFT FORCE GENERATED BY THE AIRFOIL

    Directory of Open Access Journals (Sweden)

    Paweł Magryta

    2013-09-01

    Full Text Available The paper discusses the results of wind tunnel tests of airfoils with additional active airflow applied to their upper surfaces. These studies were carried out for a range of velocities up to 28 m/s in an open wind tunnel. Several types of airfoils selected for the examination feature different geometries and are widely applied in today’s aviation industry. The changes in the lift and drag force generated by these airfoils were recorded during the study. The test bench for the tests was equipped with a compressor and a vacuum pump to enable airflow through some holes on the airfoil upper surface. A rapid prototyping method and a 3D printer based on a powder printing technique were applied to print the airfoils. All of their surfaces were subject to surface grinding to smooth their external surfaces. The wind tunnel tests with and without active airflow applied to airfoils are summarised in the paper.

  7. Some practical issues in the computational design of airfoils for the helicopter main rotor blades

    Directory of Open Access Journals (Sweden)

    Kostić Ivan

    2004-01-01

    Full Text Available Very important requirement for the helicopter rotor airfoils is zero, or nearly zero moment coefficient about the aerodynamic center. Unlike the old technologies used for metal blades, modern production involving application of plastic composites has imposed the necessity of adding a flat tab extension to the blade trailing edge, thus changing the original airfoil shape. Using computer program TRANPRO, the author has developed and verified an algorithm for numerical analysis in this design stage, applied it on asymmetrical reflex camber airfoils, determined the influence of angular tab positioning on the moment coefficient value and redesigned some existing airfoils to include properly positioned tabs that satisfy very low moment coefficient requirement. .

  8. Airfoil data sensitivity analysis for actuator disc simulations used in wind turbine applications

    International Nuclear Information System (INIS)

    Nilsson, Karl; Breton, Simon-Philippe; Ivanell, Stefan; Sørensen, Jens N

    2014-01-01

    To analyse the sensitivity of blade geometry and airfoil characteristics on the prediction of performance characteristics of wind farms, large-eddy simulations using an actuator disc (ACD) method are performed for three different blade/airfoil configurations. The aim of the study is to determine how the mean characteristics of wake flow, mean power production and thrust depend on the choice of airfoil data and blade geometry. In order to simulate realistic conditions, pre-generated turbulence and wind shear are imposed in the computational domain. Using three different turbulence intensities and varying the spacing between the turbines, the flow around 4-8 aligned turbines is simulated. The analysis is based on normalized mean streamwise velocity, turbulence intensity, relative mean power production and thrust. From the computations it can be concluded that the actual airfoil characteristics and blade geometry only are of importance at very low inflow turbulence. At realistic turbulence conditions for an atmospheric boundary layer the specific blade characteristics play an minor role on power performance and the resulting wake characteristics. The results therefore give a hint that the choice of airfoil data in ACD simulations is not crucial if the intention of the simulations is to compute mean wake characteristics using a turbulent inflow

  9. Stochastic estimation of flow near the trailing edge of a NACA0012 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sagrado, Ana [University of Cambridge, Whittle Laboratory, Department of Engineering, Cambridge (United Kingdom); Applied Modelling and Computation Group, Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London (United Kingdom); Hynes, Tom [University of Cambridge, Whittle Laboratory, Department of Engineering, Cambridge (United Kingdom)

    2011-10-15

    A stochastic estimation technique has been applied to simultaneously acquired data of velocity and surface pressure as a tool to identify the sources of wall-pressure fluctuations. The measurements have been done on a NACA0012 airfoil at a Reynolds number of Re{sub c} = 2 x 10 {sup 5}, based on the chord of the airfoil, where a separated laminar boundary layer was present. By performing simultaneous measurements of the surface pressure fluctuations and of the velocity field in the boundary layer and wake of the airfoil, the wall-pressure sources near the trailing edge (TE) have been studied. The mechanisms and flow structures associated with the generation of the surface pressure have been investigated. The ''quasi-instantaneous'' velocity field resulting from the application of the technique has led to a picture of the evolution in time of the convecting surface pressure generating flow structures and revealed information about the sources of the wall-pressure fluctuations, their nature and variability. These sources are closely related to those of the radiated noise from the TE of an airfoil and to the vibration issues encountered in ship hulls for example. The NACA0012 airfoil had a 30 cm chord and aspect ratio of 1. (orig.)

  10. Application of a Beamforming Technique to the Measurement of Airfoil Leading Edge Noise

    Directory of Open Access Journals (Sweden)

    Thomas Geyer

    2012-01-01

    Full Text Available The present paper describes the use of microphone array technology and beamforming algorithms for the measurement and analysis of noise generated by the interaction of a turbulent flow with the leading edge of an airfoil. Experiments were performed using a setup in an aeroacoustic wind tunnel, where the turbulent inflow is provided by different grids. In order to exactly localize the aeroacoustic noise sources and, moreover, to separate airfoil leading edge noise from grid-generated noise, the selected deconvolution beamforming algorithm is extended to be used on a fully three-dimensional source region. The result of this extended beamforming are three-dimensional mappings of noise source locations. Besides acoustic measurements, the investigation of airfoil leading edge noise requires the measurement of parameters describing the incident turbulence, such as the intensity and a characteristic length scale or time scale. The method used for the determination of these parameters in the present study is explained in detail. To demonstrate the applicability of the extended beamforming algorithm and the experimental setup as a whole, the noise generated at the leading edge of airfoils made of porous materials was measured and compared to that generated at the leading edge of a common nonporous airfoil.

  11. Assessment of the performance of various airfoil sections on power generation from a wind turbine using the blade element momentum theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaomin; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    It is well established that the power generated by a Horizontal-Axis Wind Turbine (HAWT) is a function of the number of blades, the tip speed ratio (blade tip speed/wind free stream velocity) and the lift to drag ratio (CL /CD) of the airfoil sections of the blade. The airfoil sections used in HAWT are generally thick airfoils such as the S, DU, FX, Flat-back and NACA 6-series of airfoils. These airfoils vary in (CL /CD) for a given blade and ratio and therefore the power generated by HAWT for different blade airfoil sections will vary. The goal of this paper is to evaluate the effect of different airfoil sections on HAWT performance using the Blade Element Momentum (BEM) theory. In this study, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given blade and ratio and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter.

  12. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  13. Turbine engine airfoil and platform assembly

    Science.gov (United States)

    Campbell, Christian X [Oviedo, FL; James, Allister W [Chuluota, FL; Morrison, Jay A [Oviedo, FL

    2012-07-31

    A turbine airfoil (22A) is formed by a first process using a first material. A platform (30A) is formed by a second process using a second material that may be different from the first material. The platform (30A) is assembled around a shank (23A) of the airfoil. One or more pins (36A) extend from the platform into holes (28) in the shank (23A). The platform may be formed in two portions (32A, 34A) and placed around the shank, enclosing it. The two platform portions may be bonded to each other. Alternately, the platform (30B) may be cast around the shank (23B) using a metal alloy with better castability than that of the blade and shank, which may be specialized for thermal tolerance. The pins (36A-36D) or holes for them do not extend to an outer surface (31) of the platform, avoiding stress concentrations.

  14. Application of unsteady airfoil theory to rotary wings

    Science.gov (United States)

    Kaza, K. R. V.; Kvaternik, R. G.

    1981-01-01

    A clarification is presented on recent work concerning the application of unsteady airfoil theory to rotary wings. The application of this theory may be seen as consisting of four steps: (1) the selection of an appropriate unsteady airfoil theory; (2) the resolution of that velocity which is the resultant of aerodynamic and dynamic velocities at a point on the elastic axis into radial, tangential and perpendicular components, and the angular velocity of a blade section about the deformed axis; (3) the expression of lift and pitching moments in terms of the three components; and (4) the derivation of explicit expressions for the components in terms of flight velocity, induced flow, rotor rotational speed, blade motion variables, etc.

  15. An efficient finite differences method for the computation of compressible, subsonic, unsteady flows past airfoils and panels

    Science.gov (United States)

    Colera, Manuel; Pérez-Saborid, Miguel

    2017-09-01

    A finite differences scheme is proposed in this work to compute in the time domain the compressible, subsonic, unsteady flow past an aerodynamic airfoil using the linearized potential theory. It improves and extends the original method proposed in this journal by Hariharan, Ping and Scott [1] by considering: (i) a non-uniform mesh, (ii) an implicit time integration algorithm, (iii) a vectorized implementation and (iv) the coupled airfoil dynamics and fluid dynamic loads. First, we have formulated the method for cases in which the airfoil motion is given. The scheme has been tested on well known problems in unsteady aerodynamics -such as the response to a sudden change of the angle of attack and to a harmonic motion of the airfoil- and has been proved to be more accurate and efficient than other finite differences and vortex-lattice methods found in the literature. Secondly, we have coupled our method to the equations governing the airfoil dynamics in order to numerically solve problems where the airfoil motion is unknown a priori as happens, for example, in the cases of the flutter and the divergence of a typical section of a wing or of a flexible panel. Apparently, this is the first self-consistent and easy-to-implement numerical analysis in the time domain of the compressible, linearized coupled dynamics of the (generally flexible) airfoil-fluid system carried out in the literature. The results for the particular case of a rigid airfoil show excellent agreement with those reported by other authors, whereas those obtained for the case of a cantilevered flexible airfoil in compressible flow seem to be original or, at least, not well-known.

  16. Leading-Edge Noise Prediction of General Airfoil Profiles with Spanwise-Varying Inflow Conditions

    NARCIS (Netherlands)

    Miotto, Renato Fuzaro; Wolf, William Roberto; De Santana, Leandro Dantas

    2018-01-01

    This paper presents a study of the leading-edge noise radiated by an airfoil undergoing a turbulent inflow. The noise prediction of generic airfoil profiles subjected to spanwise-varying inflow conditions is performed with the support of Amiet’s theory and the inverse strip technique. In the

  17. Leading-Edge Noise Prediction of General Airfoil Profiles with Spanwise-Varying Inflow Conditions

    NARCIS (Netherlands)

    Miotto, Renato Fuzaro; Wolf, William Roberto; De Santana, Leandro Dantas

    This paper presents a study of the leading-edge noise radiated by an airfoil undergoing a turbulent inflow. The noise prediction of generic airfoil profiles subjected to spanwise-varying inflow conditions is performed with the support of Amiet’s theory and the inverse strip technique. In the

  18. Effect of summer grazing on welfare of dairy cows reared in mountain tie-stall barns

    Directory of Open Access Journals (Sweden)

    Simonetta Dovier

    2010-09-01

    Full Text Available Traditional mountain farms have an important economic, social and environmental role. The Alps management system for dairy cows consists of animals kept indoors from autumn to spring, mostly in tie-stalls, and moved to mountain pasture in summer. The aim of our study was to assess the effect of mountain summer grazing on the welfare of dairy cows housed in tie-stall barns. Twenty-four farms were considered. In twelve of them, animals were reared in tie-stalls and moved to mountain pasture for three months in summer; they were visited three times: (i four weeks before grazing during the indoor period in the stall; (ii about three weeks after the start of grazing; and (iii in the stall, in autumn, at least three weeks after returning from grazing. The other twelve farms kept the animals in tie-stalls all year; they were visited once in autumn. Data were collected following a protocol that considers animal-based measures and structure information on the basis of Quality Welfare Consortium® indications. Data allowed the calculation of both the Animal Needs Index score (ANI 35L and an overall assessment of the cows’ welfare obtained from three general aspects: housing, animal’s physical condition, and animal’s behaviour. Summer grazing had a significant positive effect on injuries, lameness and animal’s rising duration but a negative effect on faeces consistency. Moreover, a reduction of tongue playing was observed. The ANI 35L and the overall assessment did not show significant differences linked to summer grazing, which tended to have a positive but temporary effect on animal behaviour.

  19. Airfoil optimization for noise emission problem on small scale turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gocmen, Tuhfe; Ozerdem, Baris [Mechanical Engineering Department, Yzmir Institute of Technology (Turkey)

    2011-07-01

    Wind power is a preferred natural resource and has had benefits for the energy industry and for the environment all over the world. However, noise emission from wind turbines is becoming a major concern today. This study paid close attention to small scale wind turbines close to urban areas and proposes an optimum number of six airfoils to address noise emission concerns and performance criteria. The optimization process aimed to decrease the noise emission levels and enhance the aerodynamic performance of a small scale wind turbine. This study determined the sources and the operating conditions of broadband noise emissions. A new design is presented which enhances aerodynamic performance and at the same time reduces airfoil self noise. It used popular aerodynamic functions and codes based on aero-acoustic empirical models. Through numerical computations and analyses, it is possible to derive useful improvements that can be made to commercial airfoils for small scale wind turbines.

  20. Skin design studies for variable camber morphing airfoils

    International Nuclear Information System (INIS)

    Gandhi, Farhan; Anusonti-Inthra, Phuriwat

    2008-01-01

    This paper identifies the desirable attributes of a flexible skin of a morphing wing. The study is conducted using airfoil camber morphing as an example. The ideal flex-skin would be highly anisotropic, having a low in-plane axial stiffness but a high out-of-plane flexural stiffness. Reduced skin axial stiffness allows morphing at low actuation cost. However, for some substructure and actuation designs, a lower limit on the skin's in-plane axial stiffness may be required to prevent unacceptable global camber deformation under aerodynamic loads. High flexural stiffness prevents local deformation of skin sections between supports due to aerodynamic pressure loads, and avoids buckling of skin sections under compression as the airfoil cambers under actuation force. For the camber morphing application the strain levels in the flex-skin are not expected to exceed around 2%. If the axial stiffness of the flex-skin is reduced significantly, it may be necessary to consider aerodynamic stiffness (negligible vis-à-vis structural stiffness for classical airfoils) to accurately calculate deformation under loading. The approach followed in the study can be used to identify specifications for the skin and then reverse engineer and design highly anisotropic composite skins that meet the specifications