WorldWideScience

Sample records for post combustion co2

  1. Gas permeation process for post combustion CO2 capture

    International Nuclear Information System (INIS)

    Pfister, Marc

    2017-01-01

    CO 2 Capture and Storage (CCS) is a promising solution to separate CO 2 from flue gas, to reduce the CO 2 emissions in the atmosphere, and hence to reduce global warming. In CCS, one important constraint is the high additional energy requirement of the different capture processes. That statement is partly explained by the low CO 2 fraction in the inlet flue gas and the high output targets in terms of CO 2 capture and purity (≥90%). Gas permeation across dense membrane can be used in post combustion CO 2 capture. Gas permeation in a dense membrane is ruled by a mass transfer mechanism and separation performance in a dense membrane are characterized by component's effective permeability and selectivity. One of the newest and encouraging type of membrane in terms of separation performance is the facilitated transport membrane. Each particular type of membrane is defined by a specific mass transfer law. The most important difference to the mass transfer behavior in a dense membrane is related to the facilitated transport mechanism and the solution diffusion mechanism and its restrictions and limitations. Permeation flux modelling across a dense membrane is required to perform a post combustion CO 2 capture process simulation. A CO 2 gas permeation separation process is composed of a two-steps membrane process, one drying step and a compression unit. Simulation on the energy requirement and surface area of the different membrane modules in the global system are useful to determine the benefits of using dense membranes in a post combustion CO 2 capture technology. (author)

  2. Corrosion in CO2 Post-Combustion Capture with Alkanolamines – A Review

    Directory of Open Access Journals (Sweden)

    Kittel J.

    2014-09-01

    Full Text Available CO2 capture and storage plays an important part in industrial strategies for the mitigation of greenhouse gas emissions. CO2 post-combustion capture with alkanolamines is well adapted for the treatment of large industrial point sources using combustion of fossil fuels for power generation, like coal or gas fired power plants, or the steel and cement industries. It is also one of the most mature technologies to date, since similar applications are already found in other types of industries like acid gas separation, although not at the same scale. Operation of alkanolamine units for CO2 capture in combustion fumes presents several challenges, among which corrosion control plays a great part. It is the aim of this paper to present a review of current knowledge on this specific aspect. In a first part, lessons learnt from several decades of use of alkanolamines for natural gas separation in the oil and gas industry are discussed. Then, the specificities of CO2 post-combustion capture are presented, and their consequences on corrosion risks are discussed. Corrosion mitigation strategies, and research and development efforts to find new and more efficient solvents are also highlighted. In a last part, concerns about CO2 transport and geological storage are discussed, with recommendations on CO2 quality and concentration of impurities.

  3. Feasibility Assessment of CO2 Capture Retrofitted to an Existing Cement Plant : Post-combustion vs. Oxy-fuel Combustion Technology

    NARCIS (Netherlands)

    Gerbelová, Hana; Van Der Spek, Mijndert; Schakel, Wouter

    2017-01-01

    This research presents a preliminary techno-economic evaluation of CO2 capture integrated with a cement plant. Two capture technologies are evaluated, monoethanolamine (MEA) post-combustion CO2 capture and oxy-fuel combustion. Both are considered potential technologies that could contribute to

  4. Comparison of pre and post-combustion CO{sub 2} adsorbent technologies

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Drage; A. Arenillas; K. Smith; C.E. Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2006-07-01

    Adsorption is considered to be one of the most promising techniques for the capture of CO{sub 2} from flue gases. The application of adsorption to both post-combustion capture at pressures close to ambient and for high pressure pre-combustion capture applications, for example IGCC, are explored. Adsorption capacities as a function of adsorbent properties as well as strategies for regeneration, both thermal swing and pressure swing are described. Adsorption at both low and high pressures requires chemical and physical adsorbents respectively. Adsorption at high pressure has the advantage of potential temperature swing regeneration whilst maintaining CO{sub 2} pressure, reducing the overall costs associated with re-compression of the gas for transportation.

  5. Water Vapor Adsorption on Biomass Based Carbons under Post-Combustion CO2 Capture Conditions: Effect of Post-Treatment

    Directory of Open Access Journals (Sweden)

    Nausika Querejeta

    2016-05-01

    Full Text Available The effect of post-treatment upon the H2O adsorption performance of biomass-based carbons was studied under post-combustion CO2 capture conditions. Oxygen surface functionalities were partially replaced through heat treatment, acid washing, and wet impregnation with amines. The surface chemistry of the final carbon is strongly affected by the type of post-treatment: acid treatment introduces a greater amount of oxygen whereas it is substantially reduced after thermal treatment. The porous texture of the carbons is also influenced by post-treatment: the wider pore volume is somewhat reduced, while narrow microporosity remains unaltered only after acid treatment. Despite heat treatment leading to a reduction in the number of oxygen surface groups, water vapor adsorption was enhanced in the higher pressure range. On the other hand acid treatment and wet impregnation with amines reduce the total water vapor uptake thus being more suitable for post-combustion CO2 capture applications.

  6. Facilitated transport in hydroxide-exchange membranes for post-combustion CO2 separation.

    Science.gov (United States)

    Xiong, Laj; Gu, Shuang; Jensen, Kurt O; Yan, Yushan S

    2014-01-01

    Hydroxide-exchange membranes are developed for facilitated transport CO2 in post-combustion flue-gas feed. First, a correlation between the basicity of fixed-site functional groups and CO2 -separation performance is discovered. This relationship is used to identify phosphonium as a promising candidate to achieve high CO2 -separation performance. Consequently, quaternary phosphonium-based hydroxide-exchange membranes are demonstrated to have a separation performance that is above the Robeson upper bound. Specifically, a CO2 permeability as high as 1090 Barrer and a CO2 /N2 selectivity as high as 275 is achieved. The high performance observed in the membranes can be attributed to the quaternary phosphonium moiety. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions

    Directory of Open Access Journals (Sweden)

    Elisa M Calvo-Muñoz

    2016-05-01

    Full Text Available A series of porous carbon materials obtained from biomass waste have been synthesized, with different morphologies and structural properties, and evaluated as potential adsorbents for CO2 capture in post-combustion conditions. These carbon materials present CO2 adsorption capacities, at 25 ºC and 101.3 kPa, comparable to those obtained by other complex carbon or inorganic materials. Furthermore, CO2 uptakes under these conditions can be well correlated to the narrow micropore volume, derived from the CO2 adsorption data at 0 ºC (VDRCO2. In contrast, CO2 adsorption capacities at 25 ºC and 15 kPa are more related to only pores of sizes lower than 0.7 nm. The capacity values obtained in column adsorption experiments were really promising. An activated carbon fiber obtained from Alcell lignin, FCL, presented a capacity value of 1.3 mmol/g (5.7 %wt. Moreover, the adsorption capacity of this carbon fiber was totally recovered in a very fast desorption cycle at the same operation temperature and total pressure and, therefore, without any additional energy requirement. Thus, these results suggest that the biomass waste used in this work could be successfully valorized as efficient CO2 adsorbent, under post-combustion conditions, showing excellent regeneration performance.

  8. Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, A.; Bonalumi, D.; Lozza, G.

    2013-01-01

    Highlights: • Hot fuel gas clean-up is a very favorable technology for IGCC concepts. • IGCC net efficiency reduces to 41.5% when realizing post-combustion CO 2 capture. • Complex IGCC layouts are necessary if exhaust gas recirculation is realized. • IGCC performance does not significantly vary with exhaust gas recirculation. - Abstract: This paper focuses on the thermodynamic performance of air-blown IGCC systems with post-combustion CO 2 capture by chemical absorption. Two IGCC technologies are investigated in order to evaluate two different strategies of coal-derived gas clean-up. After outlining the layouts of two power plants, the first with conventional cold gas clean-up and the second with hot gas clean-up, attention is paid to the CO 2 capture station and to issues related to exhaust gas recirculation in combined cycles. The results highlight that significant improvements in IGCC performance are possible if hot coal-derived gas clean-up is realized before the syngas fuels the combustion turbine, so the energy cost of CO 2 removal in an amine-based post-combustion mode is less strong. In particular, IGCC net efficiency as high as 41.5% is calculated, showing an interesting potential if compared to the one of IGCC systems with pre-combustion CO 2 capture. Thermodynamic effects of exhaust gas recirculation are investigated as well, even though IGCC performance does not significantly vary against a more complicated plant layout

  9. Polyethyleneimine-Functionalized Polyamide Imide (Torlon) Hollow-Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie

    2013-05-24

    Carbon dioxide emitted from existing coal-fired power plants is a major environmental concern due to possible links to global climate change. In this study, we expand upon previous work focused on aminosilane-functionalized polymeric hollow-fiber sorbents by introducing a new class of polyethyleneimine (PEI)-functionalized polymeric hollow-fiber sorbents for post-combustion carbon dioxide capture. Different molecular weight PEIs (Mn≈600, 1800, 10 000, and 60 000) were studied as functional groups on polyamide imide (PAI, Torlon) hollow fibers. This imide ring-opening modification introduces two amide functional groups and was confirmed by FTIR attenuated total reflectance spectroscopy. The carbon dioxide equilibrium sorption capacities of PEI-functionalized Torlon materials were characterized by using both pressure decay and gravimetric sorption methods. For equivalent PEI concentrations, PAI functionalized with lower molecular weight PEI exhibited higher carbon dioxide capacities. The effect of water in the ring-opening reaction was also studied. Up to a critical value, water in the reaction mixture enhanced the degree of functionalization of PEI to Torlon and resulted in higher carbon dioxide uptake within the functionalized material. Above the critical value, roughly 15 % w/w water, the fiber morphology was lost and the fiber was soluble in the solvent. PEI-functionalized (Mn≈600) PAI under optimal reaction conditions was observed to have the highest CO2 uptake: 4.9 g CO2 per 100 g of polymer (1.1 mmol g-1) at 0.1 bar and 35°C with dry 10 % CO2/90 % N2 feed for thermogravimetric analysis. By using water-saturated feeds (10 % CO2/90 % N2 dry basis), CO2 sorption was observed to increase to 6.0 g CO2 per 100 g of sorbent (1.4 mmol g-1). This material also demonstrated stability in cyclic adsorption-desorption operations, even under wet conditions at which some highly effective sorbents tend to lose performance. Thus, PEI-functionalized PAI fibers can be

  10. Nitrosamine degradation by UV light in post-combustion CO2 capture: effect of solvent matrix

    NARCIS (Netherlands)

    Miguel Mercader, F. de; Voice, A.K.; Trap, H.C.; Goetheer, E.L.V.

    2013-01-01

    Potential production and emission of nitrosamines during post-combustion CO2 capture has drawn some attention due to their toxicity and potential carcinogenicity. One of the possible ways to reduce the concentration of nitrosamines is irradiation of the liquid streams of the capture plant with UV

  11. W.A. Parish Post-Combustion CO{sub 2} Capture and Sequestration Project Phase 1 Definition

    Energy Technology Data Exchange (ETDEWEB)

    Armpriester, Anthony; Smith, Roger; Scheriffius, Jeff; Smyth, Rebecca; Istre, Michael

    2014-02-01

    For a secure and sustainable energy future, the United States (U.S.) must reduce its dependence on imported oil and reduce its emissions of carbon dioxide (CO{sub 2}) and other greenhouse gases (GHGs). To meet these strategic challenges, the U.S. wiU have to create fundamentally new technologies with performance levels far beyond what is now possible. Developing advanced post-combustion clean coal technologies for capturing CO{sub 2} from existing coal-fired power plants can play a major role in the country's transition to a sustainable energy future, especially when coupled with CO{sub 2}-enhanced oil recovery (CO{sub 2}-EOR). Pursuant to these goals, NRG Energy, Inc. (NRG) submitted an application and entered into a cost-shared collaboration with the U.S. Department of Energy (DOE) under Round 3 of the Clean Coal Power Initiative (CCPI) to advance low-emission coal technologies. The objective of the NRG W A Parish Post-Combustion CO{sub 2} Capture and Sequestration Demonstration Project is to establish the technical feasibility and economic viability of post-combustion CO{sub 2} capture using flue gas from an existing pulverized coal-fired boiler integrated with geologic sequestration via an enhanced oil recovery (EOR) process. To achieve these objectives, the project will be executed in three phases. Each phase represents a distinct aspect of the project execution. The project phases are: • Phase I. Project Definition/Front-End Engineering Design (FEED) • Phase ll. Detailed Engineering, Procurement & Construction • Phase III. Demonstration and Monitoring The purpose of Phase I is to develop the project in sufficient detail to facilitate the decision-making process in progressing to the next stage of project delivery. Phase n. This report provides a complete summary of the FEED study effort, including pertinent project background information, the scope of facilities covered, decisions, challenges, and considerations made regarding configuration and

  12. The growth response of Alternanthera philoxeroides in a simulated post-combustion emission with ultrahigh [CO2] and acidic pollutants

    International Nuclear Information System (INIS)

    Xu Chengyuan; Griffin, Kevin L.; Blazier, John C.; Craig, Elizabeth C.; Gilbert, Dominique S.; Sritrairat, Sanpisa; Anderson, O. Roger; Castaldi, Marco J.; Beaumont, Larry

    2009-01-01

    Although post-combustion emissions from power plants are a major source of air pollution, they contain excess CO 2 that could be used to fertilize commercial greenhouses and stimulate plant growth. We addressed the combined effects of ultrahigh [CO 2 ] and acidic pollutants in flue gas on the growth of Alternanthera philoxeroides. When acidic pollutants were excluded, the biomass yield of A. philoxeroides saturated near 2000 μmol mol -1 [CO 2 ] with doubled biomass accumulation relative to the ambient control. The growth enhancement was maintained at 5000 μmol mol -1 [CO 2 ], but declined when [CO 2 ] rose above 1%, in association with a strong photosynthetic inhibition. Although acidic components (SO 2 and NO 2 ) significantly offset the CO 2 enhancement, the aboveground yield increased considerably when the concentration of pollutants was moderate (200 times dilution). Our results indicate that using excess CO 2 from the power plant emissions to optimize growth in commercial green house could be viable. - Diluted post-combustion emission gas from fossil fuel fired power plants stimulate the growth of C 3 plant.

  13. Assessing the Potential of Utilization and Storage Strategies for Post-Combustion CO2 Emissions Reduction

    International Nuclear Information System (INIS)

    Armstrong, Katy; Styring, Peter

    2015-01-01

    The emissions reduction potential of three carbon dioxide handling strategies for post-combustion capture is considered. These are carbon capture and sequestration/storage (CCS), enhanced hydrocarbon recovery (EHR), and carbon dioxide utilization (CDU) to produce synthetic oil. This is performed using common and comparable boundary conditions including net CO 2 sequestered based on equivalent boundary conditions. This is achieved using a “cradle to grave approach” where the final destination and fate of any product is considered. The input boundary is pure CO 2 that has been produced using a post-combustion capture process as this is common between all processes. The output boundary is the emissions resulting from any product produced with the assumption that the majority of the oil will go to combustion processes. We also consider the “cradle to gate” approach where the ultimate fate of the oil is not considered as this is a boundary condition often applied to EHR processes. Results show that while CCS can make an impact on CO 2 emissions, CDU will have a comparable effect whilst generating income while EHR will ultimately increase net emissions. The global capacity for CDU is also compared against CCS using data based on current and planned CCS projects. Analysis shows that current CDU represent a greater volume of capture than CCS processes and that this gap is likely to remain well beyond 2020 which is the limit of the CCS projects in the database.

  14. Post-combustion CO2 capture with activated carbons using fixed bed adsorption

    Science.gov (United States)

    Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon

    2018-03-01

    In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.

  15. Assessing the Potential of Utilization and Storage Strategies for Post-Combustion CO{sub 2} Emissions Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Katy; Styring, Peter, E-mail: p.styring@sheffield.ac.uk [UK Centre for Carbon Dioxide Utilization, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield (United Kingdom)

    2015-03-03

    The emissions reduction potential of three carbon dioxide handling strategies for post-combustion capture is considered. These are carbon capture and sequestration/storage (CCS), enhanced hydrocarbon recovery (EHR), and carbon dioxide utilization (CDU) to produce synthetic oil. This is performed using common and comparable boundary conditions including net CO{sub 2} sequestered based on equivalent boundary conditions. This is achieved using a “cradle to grave approach” where the final destination and fate of any product is considered. The input boundary is pure CO{sub 2} that has been produced using a post-combustion capture process as this is common between all processes. The output boundary is the emissions resulting from any product produced with the assumption that the majority of the oil will go to combustion processes. We also consider the “cradle to gate” approach where the ultimate fate of the oil is not considered as this is a boundary condition often applied to EHR processes. Results show that while CCS can make an impact on CO{sub 2} emissions, CDU will have a comparable effect whilst generating income while EHR will ultimately increase net emissions. The global capacity for CDU is also compared against CCS using data based on current and planned CCS projects. Analysis shows that current CDU represent a greater volume of capture than CCS processes and that this gap is likely to remain well beyond 2020 which is the limit of the CCS projects in the database.

  16. OCTAVIUS: evaluation of flexibility and operability of amine based post combustion CO2 capture at the Brindisi Pilot Plant

    NARCIS (Netherlands)

    Mangiaracina, A.; Zangrilli, L.; Robinson, L.; Kvamsdal, H.M.; Os, P.J. van

    2014-01-01

    Solvent storage is an option for amine based post combustion capture that can be used to de-couple the capture of CO2 and the energy demand of the process. In this process, electricity output of a power station is temporarily increased by diverting steam from the CO2 capture plant back to the steam

  17. Process and Material Design for Micro-Encapsulated Ionic Liquids in Post-Combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bo [Univ. of Notre Dame, IN (United States); Brennecke, Joan F [Univ. of Notre Dame, IN (United States); McCready, Mark [Univ. of Notre Dame, IN (United States); Stadtherr, Mark [Univ. of Notre Dame, IN (United States)

    2016-11-18

    Aprotic Heterocyclic Anion (AHA) Ionic Liquids (ILs) have been identified as promising new solvents for post-combustion carbon capture due to their high CO2 uptake and the high tenability 1,2 of their binding energy with CO2. Some of these compounds change phase (solid to liquid) on absorption of CO2; these Phase Change ILs (PCILs)3 offer the additional advantage that part of the heat needed to desorb the CO2 from the absorbent is provided by the heat of fusion as the PCIL solidifies upon release of CO2. However, the relatively high viscosity of AHA ILs and the occurrence of a phase change in PCILs present challenges for conventional absorption equipment. To overcome these challenges we are pursuing the use of new technology to micro-encapsulate the AHA ILs and PCILs. Our partners at Lawrence Livermore National Laboratory have successfully demonstrated this technology in the application of post-combustion carbon capture with sodium and potassium carbonate solutions,4 and have recently shown the feasibility of micro-encapsulation of an AHA IL for carbon capture.5 The large effective surface area and high CO2 permeability of the micro-capsules is expected to offset the drawback of the high IL viscosity and to provide for a more efficient and cost-effective mass transfer operation involving AHA ILs and PCILs. These opportunities, however, present us with both process and materials design questions. For example, what is the target CO2 absorption strength (enthalpy of chemical absorption) for the tunable AHA IL? What is the target for micro-capsule diameter in order to obtain a high mass transfer rate and good fluidization performance? What are the appropriate temperatures and pressures for the absorber and stripper? In order to address these and other questions, we have developed a rate-based model of a post-combustion CO2 capture process using micro-encapsulated ILs. As a performance baseline

  18. Proceedings of the 12. meeting of the International Post-Combustion CO{sub 2} Capture Network

    Energy Technology Data Exchange (ETDEWEB)

    Topper, J. [IEA Greenhouse Gas R and D Programme, Cheltenham, Gloucestershire (United Kingdom)] (comp.)

    2009-07-01

    This conference provided a forum to discuss new developments in post combustion capture of carbon dioxide (CO{sub 2}) emissions from fossil-fueled power plants. Since the creation of the Post-Combustion Capture Network in 2000, these conferences have provided exposure to latest research findings, acted as a conduit for trial of latest ideas and served as a means of encouraging trans-national co-operation. As host of the conference, the University of Regina is among the leading institutions in the world with expertise in working on solvent based capture and promoting international activity through the International Test Centre. The topics of discussion ranged from amine based solvent investigations; ammonia as an alternative means of capture; pilot plant progress reports; simulation and modelling studies; latest developments by technology providers; national programs with a special interest in demonstration plant proposals; and more novel techniques such as membranes. The sessions of the conference were entitled: fundamental studies; pilot plant work and scale-up; modelling and plant studies; and commercial and other aspects. This meeting featured 49 presentations, of which 46 have been catalogued separately for inclusion in this database. refs., figs.

  19. NRG CO2NCEPT - Confirmation Of Novel Cost-effective Emerging Post-combustion Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Matthew [NRG Energy, Inc., Houston, TX (United States); Armpriester, Anthony [NRG Energy, Inc., Houston, TX (United States)

    2016-10-19

    Under DOE's solicitation DE-FOA-0001190, NRG and Inventys conceptualized a Large-Scale pilot (>10MWe) post-combustion CO2 capture project using Inventys' VeloxoThermTM carbon capture technology. The technology is comprised of an intensified thermal swing adsorption (TSA) process that uses a patented architecture of structured adsorbent and a novel process design and embodiment to capture CO2 from industrial flue gas streams. The result of this work concluded that the retrofit of this technology is economically and technically viable, but that the sorbent material selected for the program would need improving to meet the techno-economic performance requirements of the solicitation.

  20. Using 13X, LiX, and LiPdAgX zeolites for CO_2 capture from post-combustion flue gas

    International Nuclear Information System (INIS)

    Chen, S.J.; Zhu, M.; Fu, Y.; Huang, Y.X.; Tao, Z.C.; Li, W.L.

    2017-01-01

    Highlights: • We synthesized a novel adsorbent named LiPdAgX zeolite. • CCS was proposed from microstructure, selectivity and separation factor of zeolite. • The static and flowing adsorption using CO_2/N_2 mixture on X zeolites were studied. • LiPdAgX zeolite required less energy for regeneration compared to 13X and MEA. • LiPdAgX zeolite can effectively capture CO_2 from post-combustion flue gas. - Abstract: This work investigates the application of X zeolites for capturing CO_2 from post-combustion flue gas. LiX and LiPdAgX zeolites were prepared by an ion-exchange method using 13X zeolite. X-ray diffraction analysis showed that all samples exhibited characteristic peaks of X zeolites, where the peak intensities increased in the order: LiPdAgX > LiX > 13X. The enhanced intensity of the diffraction peaks can increase the activity of the X zeolites and improve their adsorption performance. Scanning electron microscopy imaging showed that the intergranular pore canals of LiPdAgX zeolite were more concentrated. Pore structure analysis indicated that addition of Li"+ to the 13X zeolite enhanced the specific surface areas and pore volumes of the zeolites. Among the 13X, LiX, and LiPdAgX zeolites, LiPdAgX showed the highest CO_2/N_2selectivity, where the difference in the CO_2 adsorption capacity was due to differences in the number of adsorption sites and thermal conductivities of the X zeolites. The CO_2 breakthrough time increased in succession for the 13X, LiX, and LiPdAgX zeolites. The CO_2/N_2 separation factor of the LiPdAgX zeolite was twice that of the 13X zeolite at a CO_2 concentration of 20 vol.%. The temperature variations during the adsorption process were used to determine the regeneration energy and adsorption capacity of the X zeolites. LiPdAgX zeolite required less energy for regeneration than 13X zeolite and MEA. After regeneration, the separation factor of LiPdAgX zeolite remained at 6.38 for 20 vol.% CO_2 in the flue gas. Therefore, Li

  1. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation

    International Nuclear Information System (INIS)

    Simpson, Adam P.; Simon, A.J.

    2007-01-01

    To define 2nd law efficiency targets for novel separation technologies, a simplified model of a power plant with two forms of CO 2 capture was developed. In this investigation, oxy-fuel combustion and post-combustion CO 2 separation were compared on an exergetic basis. Using exergy balances and black-box models of power plant components, multiple scenarios were run to determine the impact of plant configuration and separation unit efficiency on overall plant performance. Second law efficiency values from the literature were used to set the baseline performance of various CO 2 separation configurations. Assumed advances in 2nd law efficiency were used to determine the potential for overall system performance improvement. It was found that the 2nd law efficiency of air separation must reach a critical value before the thermodynamics of oxy-fuel combustion become favorable. Changes in operating equivalence ratio significantly move the tipping-point between post-combustion and oxy-fuel strategies

  2. Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances

    International Nuclear Information System (INIS)

    Johansson, Daniella; Franck, Per-Åke; Pettersson, Karin; Berntsson, Thore

    2013-01-01

    The impact on CO 2 emissions of integrating new technologies (a biomass-to-Fischer–Tropsch fuel plant and a post-combustion CO 2 capture plant) with a complex refinery has previously been investigated separately by the authors. In the present study these designs are integrated with a refinery and evaluated from the point-of-view of economics and GHG (greenhouse gas emissions) emissions and are compared to a reference refinery. Stand-alone Fischer–Tropsch fuel production is included for comparison. To account for uncertainties in the future energy market, the assessment has been conducted for different future energy market conditions. For the post-combustion CO 2 capture process to be profitable, the present study stresses the importance of a high charge for CO 2 emission. A policy support for biofuels is essential for the biomass-to-Fischer–Tropsch fuel production to be profitable. The level of the support, however, differs depending on scenario. In general, a high charge for CO 2 economically favours Fischer–Tropsch fuel production, while a low charge for CO 2 economically favours Fischer–Tropsch fuel production. Integrated Fischer–Tropsch fuel production is most profitable in scenarios with a low wood fuel price. The stand-alone alternative shows no profitability in any of the studied scenarios. Moreover, the high investment costs make all the studied cases sensitive to variations in capital costs. - Highlights: • Comparison of Fischer–Tropsch (FT) fuel production and CO 2 capture at a refinery. • Subsidies for renewable fuels are essential for FT fuel production to be profitable. • A high charge for CO 2 is essential for post-combustion CO 2 capture to be profitable. • A low charge for CO 2 economically favours FT fuel production. • Of the studied cases, CO 2 capture shows the greatest reduction in GHG emissions

  3. Field study of a Brownian Demister Unit to reduce aerosol based emission from a Post Combustion CO2 Capture plant

    NARCIS (Netherlands)

    Khakharia, P.M.; Kvamsdal, H.M.; Da Silva, E.F.; Vlugt, T.J.H.; Goetheer, E.L.V.

    2014-01-01

    Emission of solvent and its degradation products from a typical absorption-desorption based Post Combustion CO2 Capture (PCCC) process is inevitable and thus, an area of growing concern. Recently, it has been pointed out that emissions can also occur by means of aerosol droplets. Conventional

  4. A generic analysis of energy use and solvent selection for CO2 separation from post-combustion flue gases

    Science.gov (United States)

    Lu, Y.; Chen, S.; Rostam-Abadi, M.

    2008-01-01

    A thermodynamic calculation was performed to determine the theoretical minimum energy used to separate CO2 from a coal combustion flue gas in a typical adsorption-desorption system. Under ideal conditions, the minimum energy required to separate CO2 from post-combustion flue gas and produce pure CO2 at 1 atmospheric pressure was only about 1183 kJ/kg CO2. This amount could double with the addition of the driving forces of mass and heat transfer and the adverse impacts of absorption heat release on adsorption capacity. Thermodynamic analyses were also performed for the aqueous amine-based absorption process. Two CO2 reaction mechanisms, the carbamate formation reaction with primary/secondary amines and the CO2 hydration reaction with tertiary amines, were included in the absorption reaction. The reaction heat, sensible heat, and stripping heat were all important to the total heat requirement. The heat use of an ideal tertiary amine amounted to 2786 kJ/kg, compared to 3211 kJ/kg for an ideal primary amine. The heat usage of an ideal amine was about 20% lower than that of commercially available amines. Optimizing the absorption process configuration could further reduce energy use. This is an abstract of a paper presented at the 2008 AIChE Spring National Meeting (New Orleans, LA 4/6-10/2008).

  5. Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Maginn, Edward

    2012-09-30

    This is the final report for DE-FC26-07NT43091 Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture. A detailed summary is provided of the ionic liquid (IL) discovery process, synthesis and testing results, process / systems modeling, lab-scale operational testing, corrosion testing and commercialization possibilities. The work resulted in the discovery of a new class of ionic liquids (ILs) that efficiently react with CO{sub 2} in a 1:1 stoichiometry with no water present and no increase in viscosity. The enthalpy of reaction was tuned to optimize process economics. The IL was found to have excellent corrosion behavior with and without CO{sub 2} present. In lab-scale tests, the IL was able to effectively remove CO{sub 2} from a simulated flue gas stream, although mass transfer was slower than with aqueous monoethanolamine (MEA) due to higher viscosities. The non-volatile nature of the solvent and its high thermal stability, however, make it an intriguing option. An independent systems analysis indicates that the economics of using the best IL discovered to date (NDIL0157), are at least comparable to and potentially slightly better than - the Fluor Econamine FG PlusTM process (DOE Case 12). Further work should be directed at improving mass transfer / lowering viscosity and developing commercial synthesis routes to make these ILs at scale in an inexpensive manner. Demonstration of the process at larger scales is also warranted, as is the exploration of other process configurations that leverage the anhydrous nature of the solvent and its extremely low volatility.

  6. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO2) Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan; Degnan, Thomas; McCready, Mark; Stadtherr, Mark; Stolaroff, Joshuah; Ye, Congwang

    2016-09-30

    Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 μm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO2-permeable polymer shells. Here we report on the synthesis of the IL and PCIL materials, measurements of thermophysical properties including CO2 capacity and reprotonation equilibrium and kinetics, encapsulation of the ILs and PCILs, mechanical and thermodynamic testing of the encapsulated materials, development of a rate based model of the absorber, and the design of a laboratory scale unit to test the encapsulated particles for CO2 capture ability and efficiency. We show that the IL/PCIL materials can be successfully encapsulated, that they retain CO2 uptake capacity, and that the uptake rates are increased relative to a stagnant sample of IL liquid or PCIL powder.

  7. Integration between a demo size post-combustion CO2 capture and full size power plant: an integral approach on energy penalty for different process options

    NARCIS (Netherlands)

    Miguel Mercader, F. de; Magneschi, G.; Sanchez Fernandez, E.; Stienstra, G.J.; Goetheer, E.L.V.

    2012-01-01

    CO2 capture based on post-combustion capture has the potential to significantly reduce the CO2 emissions from coal-fired power plants. However, this capture process reduces considerably the energy efficiency of the power plant. To reduce this energy penalty, this paper studies different

  8. Technico-economical assessment of MFI-type zeolite membranes for CO2 capture from post-combustion flue gases

    International Nuclear Information System (INIS)

    Sublet, J.; Pera-Titus, M.; Guilhaume, N.; Farrusseng, D.; Schrive, L.; Chanaud, P.; Siret, B.; Durecu, S.

    2012-01-01

    A detailed survey of the effect of moisture on the CO 2 /N 2 permeation and separation performance of Mobile Five (MFI) zeolite membranes in view of downstream post-combustion CO 2 capture applications in power plants and incinerators is presented. The membranes, displaying a nano-composite architecture, have been prepared on α-alumina tubes by pore-plugging hydrothermal synthesis at 443 K for 89 h using a precursor clear solution with molar composition 1 SiO 2 :0.45 tetrapropylammonium hydroxide:27.8 H 2 O. The synthesized membranes present reasonable permeation and CO 2 /N 2 separation properties even in the presence of high water concentrations in the gas stream. A critical discussion is also provided on the technico-economical feasibility (i.e., CO 2 recovery, CO 2 purity in the permeate, module volume, and energy consumption) of a membrane cascade unit for CO 2 capture and liquefaction/supercritical storage from standard flue gases emitted from an incinerator. Our results suggest that the permeate pressure should be kept under primary vacuum to promote the CO 2 driving force within the membrane. (authors)

  9. Formation of Co2P in the combustion regime

    International Nuclear Information System (INIS)

    Muchaik, S.V.; Dubrov, A.N.; Lynchak, K.A.

    1983-01-01

    Combustion of the system Co-P produces the compounds Co 2 P, CoP and CoP 3 , the first two being producible in the combustion regime, while for synthesis of stoichiometric Co 2 P at normal argon pressure, an original mixture with a certain excess of phosphorus is required. The present experiments were performed with electrolytic cobalt powder and red phosphorus. As the Co-P mixture is diluted by the final product (Co 2 P) there is a decrease in combustion temperature and rate, unaccompanied by any of the anomalies seen with dilution by cobalt. It can be suggested that although the combustion in the Co-P system and, possibly, i-- other phosphide systems, is not gasless in its kinetic aspects the combustion mechanism is similar to that in gasless systems. It is shown that formation of the phosphide Co=3''P and specimens wyth composition Co-Co 2 P in the combustion regime occurs with participation of a lIqui] phase of eutectic composition. Combustion occurs in a self-oscillating regime. The temperature for Co 2 P formation is close to its melting point, and the process activation energy comprises 205 kJ/mole

  10. Impact of CO_2-enriched combustion air on micro-gas turbine performance for carbon capture

    International Nuclear Information System (INIS)

    Best, Thom; Finney, Karen N.; Ingham, Derek B.; Pourkashanian, Mohamed

    2016-01-01

    Power generation is one of the largest anthropogenic greenhouse gas emission sources; although it is now reducing in carbon intensity due to switching from coal to gas, this is only part of a bridging solution that will require the utilization of carbon capture technologies. Gas turbines, such as those at the UK Carbon Capture Storage Research Centre's Pilot-scale Advanced CO_2 Capture Technology (UKCCSRC PACT) National Core Facility, have high exhaust gas mass flow rates with relatively low CO_2 concentrations; therefore solvent-based post-combustion capture is energy intensive. Exhaust gas recirculation (EGR) can increase CO_2 levels, reducing the capture energy penalty. The aim of this paper is to simulate EGR through enrichment of the combustion air with CO_2 to assess changes to turbine performance and potential impacts on complete generation and capture systems. The oxidising air was enhanced with CO_2, up to 6.29%vol dry, impacting mechanical performance, reducing both engine speed by over 400 revolutions per minute and compression temperatures. Furthermore, it affected complete combustion, seen in changes to CO and unburned hydrocarbon emissions. This impacted on turbine efficiency, which increased specific fuel consumption (by 2.9%). CO_2 enhancement could therefore result in significant efficiency gains for the capture plant. - Highlights: • Experimental investigation of the impact of exhaust gas recirculation (EGR) on GT performance. • Combustion air was enhanced with CO_2 to simulate EGR. • EGR impact was ascertained by CO and unburned hydrocarbon changes. • Primary factor influencing performance was found to be oxidiser temperature. • Impact of CO_2 enhancement on post-combustion capture efficiency.

  11. Oxy combustion with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    An update for oxyfuel-combustion carbon capture in the power industry is provided. The report was developed by the Electric Power Research Institute (EPRI) on behalf of the Global CCS Institute. In the oxyfuel-combustion processes, the bulk nitrogen is removed from the air before combustion. The resulting combustion products will have CO2 content up to about 90 per cent (dry basis). The flue gas impurities (predominantly O2, N2, and Ar) may be removed by reducing the flue gas (at moderate pressure) to a temperature at which the CO2 condenses and the impurities do not. Oxyfuel-combustion may be employed with solid fuels such as coal, petroleum coke, and biomass, as well as liquid and gaseous fuels. Some key points raised in the oxyfuel-combustion carbon capture report are: The oxyfuel-combustion/CO2 capture power plant designs being developed and deployed for service in the next four or five years are based on individual component technologies and arrangements which have demonstrated sufficient maturity, with the greatest remaining technical challenge being integrating the systems into a complete steam-electric power plant; By its nature, an oxyfuel-coal power plant is likely to be a 'near zero' emitter of all criteria pollutants; Existing air-fired power plants might be retrofitted with an air separation unit, oxyfuel-fired burners, flue gas recycle, and a CO2 processing unit, with the large fleet of air-fired power plants in service calling for more study of this option; and, Future efficiency improvements to the oxyfuel-combustion process for power generation point toward an oxyfuel-combustion plant with near zero emissions of conventional pollutants, up to 98 per cent CO2 capture, and efficiency comparable to the best power plants currently being built.

  12. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97

  13. Aqueous amine solution characterization for post-combustion CO_2 capture process

    International Nuclear Information System (INIS)

    El Hadri, Nabil; Quang, Dang Viet; Goetheer, Earl L.V.; Abu Zahra, Mohammad R.M.

    2017-01-01

    Highlights: • The CO_2 solubility of 30 aqueous amine solutions was measured at 30 wt% and 313.15 K. • The CO_2 loading of HMD is the highest, and that of TEA is the lowest. • 2DMAE, 3DMA1P, 1DMA2P, MDEA, TMPAD and 2EAE have a low heat of absorption with CO_2. • 2EAE can be used as an alternative to MEA in the CO_2 capture process. - Abstract: This article presents a thermodynamic and kinetic characterization of CO_2 absorption by 30 aqueous amine solutions. A solvent screening setup (S.S.S.) was used to find the CO_2 loading (α) for 30 different aqueous amine solutions (30 wt%) at a pressure of 1 bar with feed gas containing 15 vol% CO_2 and 85 vol% N_2 at 313.15 K to provide reliable absorber parameters. The structures of various amines (linear, non-linear, polyamines, sterically hindered, etc.) were tested and the S.S.S. results showed that hexamethylenediamine (HMD) has higher CO_2 loading at 1.35 moles of CO_2/mole of amine, and triethanolamine (TEA) has the lowest at 0.39 mole of CO_2/mole of amine. The heat of absorption indicates that MDEA has the lowest and HMD has the highest at −52.51 kJ/mole of CO_2 and −98.39 kJ/mole of CO_2, respectively. The combined data for the CO_2 loading and the absorption heat generated 6 amines that have good properties for the post-combustion CO_2 capture process in comparison with that of MEA. These amines are made up of one secondary amine (2-ethylaminoethanol, 2EAE) and 5 tertiary amines (N-methyldiethanolamine, MDEA, 1-dimethylamino-2-propanol, 1DMA2P, 2-dimethylaminoethanol, 2DMAE, 3-dimethylamino-1-propanol, 3DMA1P and N,N,N′,N′-tetramethyl-1,3-propanediamine, TMPDA). In comparison with the amine reference MEA (ΔH = −85.13 kJ/mole of CO_2 and α = 0.58 mole CO_2/mole of amine), the 6 amines have heats of absorption that are between −68.95 kJ/mole of CO_2 and −52.51 kJ/mole of CO_2, and their CO_2 loading is between 0.52 and 1.16 mole of CO_2/mole amine. The third important parameter, namely the

  14. Modelling of EAF off-gas post combustion in dedusting systems using CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.; Kirschen, M.; Pfeifer, H. [Inst. for Industrial Furnaces and Heat Engineering in Metallurgy, RWTH Aachen, Aachen (Germany); Abel, M. [VAI-Fuchs GmbH, Willstaett (Germany)

    2003-04-01

    To comply with the increasingly strict environmental regulations, the poisonous off-gas species, e.g. carbon monoxide (CO), produced in the electric arc furnace (EAF) must be treated in the dedusting system. In this work, gas flow patterns of the off-gas post combustion in three different dedusting system units were simulated with a computational fluid dynamics (CFD) code: (1) post combustion in a horizontal off-gas duct, (2) post combustion in a water cooled post combustion chamber without additional energy supply (no gas or air/oxygen injectors) and (3) post combustion in a post combustion chamber with additional energy input (gas, air injectors and ignition burner, case study of VAI-Fuchs GmbH). All computational results are illustrated with gas velocity, temperature distribution and chemical species concentration fields for the above three cases. In case 1, the effect of different false air volume flow rates at the gap between EAF elbow and exhaust gas duct on the external post combustion of the off-gas was investigated. For case 2, the computed temperature and chemical composition (CO, CO{sub 2} and O{sub 2}) of the off-gas at the post chamber exit are in good agreement with additional measurements. Various operating conditions for case 3 have been studied, including different EAF off-gas temperatures and compositions, i. e. CO content, in order to optimize oxygen and burner gas flow rates. Residence time distributions in the external post combustion chambers have been calculated for cases 2 and 3. Derived temperature fields of the water cooled walls yield valuable information on thermally stressed parts of post combustion units. The results obtained in this work may also gain insight to future investigation of combustion of volatile organic components (VOC) or formation of nitrogen oxide (NO{sub x}) and permit the optimization of the operation and design of the off-gas dedusting system units. (orig.)

  15. A technical and economic study on solar-assisted ammonia-based post-combustion CO_2 capture of power plant

    International Nuclear Information System (INIS)

    Liu, Liangxu; Zhao, Jun; Deng, Shuai; An, Qingsong

    2016-01-01

    Highlights: • We examine the probability of solar energy in different locations for SPCC technology. • Numerical relationship between STC areas, the SF, and the APCM were analyzed. • Economic strategies were analyzed under different sensitive factor prices. • The critical price of STCs which causing benefits shift in policy priorities was identified. - Abstract: The market of solar-assisted post-combustion CO_2 capture (SPCC) is emerging globally in recent years. It is considered as a promising technology to apply the ammonia as the absorbent to implement the SPCC technology in view of its low regeneration temperature and low regeneration heat duty. However, few literatures indicate which type of solar thermal collectors (STCs) involved in the ammonia-based SPCC power plant is more applicable. Therefore, in this paper, the maximum theoretical potential price of STCs which make the value of the levelized costs of electricity (LCOE) and the cost of CO_2 removed (COR) lower than that of the reference post-combustion CO_2 capture (PCC) power plant is estimated. The potential of ammonia-based SPCC technology in the selected locations is also estimated, based on the detailed solar radiation resource assessment (i.e. DNI, sunshine time) and the STCs performance. It would be more attractive to adopt the vacuum tube (VT) as the STC involved into the ammonia-based PCC power plant to capture CO_2 than parabolic trough collector (PTC). In order to achieve lower LCOE and COR than that of the reference PCC system, the price of the vacuum tube (VT) has to be reduced to 131.02 $/m"2, 91.76 $/m"2 and 57.10 $/m"2 for the location of M1(Lhasa), M2(Tianjin) and M3(Xi’an), respectively. And the price of the parabolic trough collector (PTC) has to be reduced to 139.09 $/m"2, 89.83 $/m"2 and 50.84 $/m"2, respectively.

  16. Comparisons of amine solvents for post-combustion CO{sub 2} capture: A multi-objective analysis approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Anita S; Eslick, John C; Miller, David C; Kitchin, John R

    2013-10-01

    Amine solvents are of great interest for post-combustion CO{sub 2} capture applications. Although the development of new solvents is predominantly conducted at the laboratory scale, the ability to assess the performance of newly developed solvents at the process scale is crucial to identifying the best solvents for CO{sub 2} capture. In this work we present a methodology to evaluate and objectively compare the process performance of different solvents. We use Aspen Plus, with the electrolyte-NRTL thermodynamic model for the solvent CO{sub 2} interactions, coupled with a multi-objective genetic algorithm optimization to determine the best process design and operating conditions for each solvent. This ensures that the processes utilized for the comparison are those which are best suited for the specific solvent. We evaluate and compare the process performance of monoethanolamine (MEA), diethanolamine (DEA), and 2-amino-2-methyl-1-propanol (AMP) in a 90% CO{sub 2} capture process from a 550 MW coal fired power plant. From our analysis the best process specifications are amine specific and with those specific, optimized specifications DEA has the potential to be a better performing solvent than MEA, with a lower energy penalty and lower capital cost investment.

  17. Oxidation inhibitors for aqueous MEA solutions used in a post-combustion CO{sub 2} capture process

    Energy Technology Data Exchange (ETDEWEB)

    Carrette, P.L.; Bonnard, L. [IFP, Solaize (France); Delfort, B. [IFP, Rueil-Malmaison (France)

    2009-07-01

    This study examined the feasibility of using an aqueous solution of MEA as a solvent for post- combustion capture of carbon dioxide (CO{sub 2}). MEA is inexpensive, largely available, non toxic and highly effective because of its high capacity for CO{sub 2} capture and its fast reaction kinetics. However, significant oxidative degradation occurs when MEA is exposed to oxygen. Oxidation of MEA is not only a source of solvent consumption but also creates volatile compounds such as ammonia and carboxylic acids that can cause corrosion. As such, degradation control is a major challenge. Oxidative degradation can potentially be solved by the use of antioxidant additives. This presentation reported on a laboratory scale evaluation test of MEA degradation associated with analysis of degradation products. Different antioxidant additives were then evaluated. Conventional antioxidant additives were found to be poorly active or inactive, and some even exhibited a pronounced effect upon degradation. New classes of additives have been found to be effective in considerably reducing degradation.

  18. ACACIA Project - Development of a Post-Combustion CO2 Capture Process. Case of the DMXTM Process

    International Nuclear Information System (INIS)

    Gomez, A.; Briot, P.; Raynal, L.; Broutin, P.; Gimenez, M.; Soazic, M.; Cessat, P.; Saysset, S.

    2014-01-01

    The objective of the ACACIA project was to develop processes for post-combustion CO 2 capture at a lower cost and with a higher energetic efficiency than first generation processes using amines such as Monoethanolamine (MEA) which are now considered for the first Carbon Capture and Storage (CCS) demonstrators. The partners involved in this project were: Rhodia (Solvay since then), Arkema, Lafarge, GDF SUEZ, Veolia Environnement, IFP Energies nouvelles, IRCE Lyon, LMOPS, LTIM, LSA Armines. To validate the relevance of the breakthrough processes studied in this project, techno-economic evaluations were carried out with comparison to the reference process using a 30 wt% MEA solvent. These evaluation studies involved all the industrial partners of the project, each partner bringing specific cases of CO 2 capture on their industrial facilities. From these studies, only the process using de-mixing solvent, DMX TM , developed by IFPEN appears as an alternative solution to the MEA process. (authors)

  19. Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant

    International Nuclear Information System (INIS)

    Liu, Hao; Shao, Yingjuan

    2010-01-01

    Whilst all three main carbon capture technologies (post-combustion, pre-combustion and oxy-fuel combustion) can produce a CO 2 dominant stream, other impurities are expected to be present in the CO 2 stream. The impurities in the CO 2 stream can adversely affect other processes of the carbon capture and storage (CCS) chain including the purification, compression, transportation and storage of the CO 2 stream. Both the nature and the concentrations of potential impurities expected to be present in the CO 2 stream of a CCS-integrated power plant depend on not only the type of the power plant but also the carbon capture method used. The present paper focuses on the predictions of impurities expected to be present in the CO 2 stream of an oxy-coal combustion plant. The main gaseous impurities of the CO 2 stream of oxy-coal combustion are N 2 /Ar, O 2 and H 2 O. Even the air ingress to the boiler and its auxiliaries is small enough to be neglected, the N 2 /Ar concentration of the CO 2 stream can vary between ca. 1% and 6%, mainly depending on the O 2 purity of the air separation unit, and the O 2 concentration can vary between ca. 3% and 5%, mainly depending on the combustion stoichiometry of the boiler. The H 2 O concentration of the CO 2 stream can vary from ca. 10% to over 40%, mainly depending on the fuel moisture and the partitioning of recycling flue gas (RFG) between wet-RFG and dry-RFG. NO x and SO 2 are the two main polluting impurities of the CO 2 stream of an oxy-coal combustion plant and their concentrations are expected to be well above those found in the flue gas of an air-coal combustion plant. The concentration of NO x in the flue gas of an oxy-coal combustion plant can be up to ca. two times to that of an equivalent air-coal combustion plant. The amount of NO x emitted by the oxy-coal combustion plant, however, is expected to be much smaller than that of the air-coal combustion plant. The reductions of the recirculated NO x within the combustion

  20. Oxyfuel combustion for below zero CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Boeg Toftegaard, M; Hansen, Kim G; Fisker, D [DONG Energy Power, Hvidovre (Denmark); Brix, J; Brun Hansen, B; Putluru, S S.R.; Jensen, Peter Arendt; Glarborg, Peter; Degn Jensen, A [Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark); Montgomery, M [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark)

    2011-07-01

    The reduction of CO{sub 2} emissions is of highest concern in relation to limiting the anthropogenic impacts on the environment. Primary focus has gathered on the large point sources of CO{sub 2} emissions constituted by large heat and power stations and other heavy, energy-consuming industry. Solutions are sought which will enable a significant reduction of the anthropogenic CO{sub 2} emissions during the transformation period from the use of fossil fuels to renewable sources of energy. Carbon capture and storage (CCS) has the potential to significantly reduce CO{sub 2} emissions from power stations while allowing for the continuous utilisation of the existing energy producing system in the transformation period. Oxyfuel combustion is one of the possible CCS technologies which show promising perspectives for implementation in industrial scale within a relatively short period of time. Oxyfuel combustion deviates from conventional combustion in air by using a mixture of pure oxygen and recirculated flue gas as the combustion medium thereby creating a flue gas highly concentrated in CO{sub 2} making the capture process economically more feasible compared to technologies with capture from more dilute CO{sub 2} streams. This project has investigated a number of the fundamental and practical issues of the oxyfuel combustion process by experimental, theoretical, and modelling investigations in order to improve the knowledge of the technology. The subjects investigated cover: general combustion characteristics of coal and biomass (straw) and mixtures thereof, formation and emission of pollutants, ash characteristics, flue gas cleaning for SO{sub 2} by wet scrubbing with limestone and for NO{sub x} by selective catalytic reduction (SCR), corrosion of boiler heat transfer surfaces, operation and control of large suspension-fired boilers, and the perspectives for the implementation of oxyfuel combustion s a CO{sub 2} sequestration solution in the Danish power production

  1. Study of Adsorbents for the Capture of CO2 in Post-combustion. Contribution of CIEMAT to Module 4 of the CENITCO2 Project

    International Nuclear Information System (INIS)

    Ruiz, E.; Marono, M.; Sanchez-Hervas, J. M.

    2010-01-01

    The main goal of CIEMAT within the CENIT-CO 2 project has been the development of a process for CO 2 capture from combustion flue gases by physical adsorption. In the first stage, screening studies to select promising adsorbents were carried out at laboratory scale, using simplified gas compositions. After that, pilot plant studies were performed using appropriate configurations of promising adsorbents under realistic conditions. CO 2 adsorption cyclic capacity of different adsorbents has been studied. Lastly, for the adsorbent selected as most promising, its cyclic efficiency and selectivity for CO 2 adsorption in the presence of other gaseous components (SO 2 , H 2 O, NO) of the combustion gas has been determined, as well as its performance along multiple sorption-desorption cycles in the presence of simulated combustion gas. None of the studied adsorbents, though being promising since they all have a capture efficiency of about 90%, seem to be susceptible of direct application to CO 2 capture by physical adsorption under conditions representative of gases exiting the desulphurization tower of conventional pulverized coal combustion plants. As an alternative, the development of hybrid and regenerable solid sorbents (physical-chemical adsorption) is proposed or the application of new technologies under development such as the electrochemical promotion in capturing CO 2 . (Author) 33 refs.

  2. Large Pilot CAER Heat Integrated Post-combustion CO2 Capture Technology for Reducing the Cost of Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kunlei [Univ. of Kentucky Research Foundation, Lexington, KY (United States); Nikolic, Heather [Univ. of Kentucky Research Foundation, Lexington, KY (United States); Placido, Andrew [Univ. of Kentucky Research Foundation, Lexington, KY (United States); Richburg, Lisa [Univ. of Kentucky Research Foundation, Lexington, KY (United States); Thompson, Jesse [Univ. of Kentucky Research Foundation, Lexington, KY (United States)

    2017-10-20

    The goal of this final project report is to comprehensively summarize the work conducted on project DE-FE0026497. In accordance with the Statement of Project Objectives (SOPO), the University of Kentucky Center for Applied Energy Research (UKy-CAER) (Recipient) has developed an advanced, versatile, 10 MWe post-combustion CO2 capture system (CCS) for a coal-fired power plant, Louisville Gas and Electric Company’s Trimble County Generating Station, using a heat integrated process combined with two-stage stripping and any advanced solvent to enhance the CO2 absorber performance. The proposed project (Phase 1 and 2) will involve the design, fabrication, installation and testing of a large pilot scale facility that will demonstrate the UKy-CAER innovative carbon capture system integrated with an operating supercritical power plant. Specifically during Phase 1, the Recipient has provided all necessary documentation to support its Phase 2 down-selection including: the Project Narrative, the updated Project Management Plan (PMP), the preliminary engineering design, the Technical and Economic Analysis report (TEA) (including the Case 12 – Major Equipment List and submitted as a Topical Report), a Phase 1 Technology Gap Analysis (TGA), an Environmental Health and Safety (EH&S) Assessment on the 10 MWe unit, and updated Phase 2 cost estimates (including the detailed design, procurement, construction, operation, and decommissioning costs) with a budget justification. Furthermore, the Recipient has proposed a combined modular and freestanding column configuration with an advanced absorber gas/liquid distribution system, an advanced solvent, with the integration of discrete packing, a smart cross-over heat exchanger, and a load and ambient condition following control strategy, all to address ten of 12 technology gaps identified during the Phase I work. If successful, the proposed heat integrated post-combustion CCS will pave the way to achieve the

  3. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Gao, Shan; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2014-01-01

    Highlights: • Superfine pulverized coal combustion in O 2 /CO 2 atmosphere is a new promising technology. • NO emissions of superfine pulverized coal combustion in O 2 /CO 2 mixture were focused. • Coal particle sizes have significant effects on NO emissions in O 2 /CO 2 combustion. - Abstract: The combination of O 2 /CO 2 combustion and superfine pulverized coal combustion technology can make full use of their respective merits, and solve certain inherent disadvantages of each technology. The technology of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere is easy and feasible to be retrofitted with few reconstructions on the existing devices. It will become a useful and promising method in the future. In this paper, a one-dimensional drop-tube furnace system was adopted to study the NO emission characteristics of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere. The effects of coal particle size, coal quality, furnace temperature, stoichiometric ratio, etc. were analyzed. It is important to note that coal particle sizes have significant influence on NO emissions in the O 2 /CO 2 combustion. For the homogeneous NO reduction, smaller coal particles can inhibit the homogeneous NO formations under fuel-rich combustion conditions, while it becomes disadvantageous for fuel-lean combustion. However, under any conditions, heterogeneous reduction is always more significant for smaller coal particle sizes, which have smoother pore surfaces and simpler pore structures. The results from this fundamental research will provide technical support for better understanding and developing this new combustion process

  4. Environmental impact of atmospheric fugitive emissions from amine based post combustion CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Attalla, M.I.; Azzi, M.; Jackson, P.; Angove, D. [CSIRO, Newcastle, NSW (Australia). Energy Technology Div

    2009-07-01

    Amine solvent-based chemical absorption of CO{sub 2} is the most mature technology for post combustion capture (PCC) and will likely to be the first to reach commercial scale application. As such, potentially millions of tonnes of solvent will be used per year. In order to ensure the viability of PCC, the potential environmental impacts of fugitive emissions on terrestrial, aquatic and atmospheric environments must be investigated. This study used controlled laboratory/ pilot scale experiments to determine the major chemical components emitted under different operating conditions. As well, the atmospheric photo-oxidation products of amines were studied in a smog chamber under ambient conditions. The environmental concerns associated with these emissions include entrainment of the amine/ammonia with the treated flue gas and their associated atmospheric chemical reaction pathways; formation of ammonia and other amine degradation products can be entrained with the flue gas to the atmosphere; nitrosamines may form as a result of the reaction between an amine and nitrogen oxide; and the mounting evidence of the presence of amines in particulate phase. The chemical compositions of potential fugitive emissions in the flue gases from the CO{sub 2} capture system were estimated. The CSIRO smog chamber was then used to assess the potential environmental impact of selected relevant compounds in terms of their reactivities to produce secondary products. These secondary products were then characterized to determine their potential health risk factors. An air quality model was used to evaluate the potential impact of using amine solutions for CO{sub 2} capture and to determine the trade-off between CO{sub 2} capture and local and regional air quality.

  5. Co-firing coal and biomass blends and their influence on the post-combustion CO2 capture installation

    Directory of Open Access Journals (Sweden)

    Więckol-Ryk Angelika

    2017-01-01

    Research proved that co-firing of biomass in fossil fuel power plants is beneficial for PCC process. It may also reduce the corrosion of CO2 capture installation. The oxygen concentration in the flue gases from hard coal combustion was comparable with the respective value for a fuel blend of biomass content of 20% w/w. It was also noted that an increase in biomass content in a sample from 20 to 40 % w/w increased the concentration of oxygen in the flue gas streams. However, this concentration should not have a significant impact on the rate of amine oxidative degradation.

  6. Oxygen isotopic signature of CO2 from combustion processes

    Directory of Open Access Journals (Sweden)

    W. A. Brand

    2011-02-01

    Full Text Available For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires, and human induced (fossil fuel combustion, biomass burning in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature, sample geometries (e.g. texture and surface-volume ratios and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio

  7. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO2) Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan F [Univ. of Texas, Austin, TX (United States); Degnan, Jr, Thomas Francis [Univ. of Notre Dame, IN (United States); McCready, Mark J. [Univ. of Notre Dame, IN (United States); Stadtherr, Mark A. [Univ. of Texas, Austin, TX (United States); Stolaroff, Joshua K [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ye, Congwang [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-03

    Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 µm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO2-permeable polymer shells. Here we report on the encapsulation of the IL and PCIL materials, thermodynamic testing of the encapsulated materials, mass transfer measurements in both a fluidized bed and a packed bed, determination of the effect of impurities (SO2, NOx and water) on the free and encapsulated IL and PCIL, recyclability of the CO2 uptake, selection and synthesis of kg quantities of the IL and PCIL, identification of scale-up methods for encapsulation and production of a kg quantity of the PCIL, construction and shakedown of the laboratory scale unit to test the encapsulated particles for CO2 capture ability and efficiency, use of our mass transfer model to predict mass transfer and identify optimal properties of the encapsulated particles, and initial testing of the encapsulated particles in the laboratory scale unit. We also show our attempts at developing shell materials that are resistant to water permeation. Overall, we have shown that the selected IL and PCIL can be successfully encapsulated in polymer shells and the methods scaled up to production levels. The IL/PCIL and encapsulated IL/PCIL react irreversibly with SO2 and NOx so the CO2 capture unit would need to be placed after the flue gas desulfurization and NOx reduction units. However

  8. Emissions to the Atmosphere from Amine-Based Post Combustion CO2 Capture Plant - Regulatory Aspects

    International Nuclear Information System (INIS)

    Azzi, Merched; Angove, Dennys; Dave, Narendra; Day, Stuart; Do, Thong; Feron, Paul; Sharma, Sunil; Attalla, Moetaz; Abu Zahra, Mohammad

    2014-01-01

    Amine-based Post Combustion Capture (PCC) of CO 2 is a readily available technology that can be deployed to reduce CO 2 emissions from coal fired power plants. However, PCC plants will likely release small quantities of amine and amine degradation products to the atmosphere along with the treated flue gas. The possible environmental effects of these emissions have been examined through different studies carried out around the world. Based on flue gas from a 400 MW ultra-supercritical coal fired power plant Aspen-Plus PCC process simulations were used to predict the potential atmospheric emissions from the plant. Different research initiatives carried out in this area have produced new knowledge that has significantly reduced the risk perception for the release of amine and amine degradation products to the atmosphere. In addition to the reduction of the CO 2 emissions, the PCC technology will also help in reducing SO x and NO 2 emissions. However, some other pollutants such as NH 3 and aerosols will increase if appropriate control technologies are not adopted. To study the atmospheric photo-oxidation of amines, attempts are being made to develop chemical reaction schemes that can be used for air quality assessment. However, more research is still required in this area to estimate the reactivity of amino solvents in the presence of other pollutants such as NO x and other volatile organic compounds in the background air. Current air quality guidelines may need to be updated to include limits for the additional pollutants such as NH 3 , nitrosamines and nitramines once more information related to their emissions is available. This paper focuses on describing the predicted concentrations of major pollutants that are expected to be released from a coal fired power plant obtained by ASPEN-Plus PCC process simulations in terms of current air quality regulations and other regulatory aspects. (authors)

  9. Pre-Combustion Capture of CO2 in IGCC Plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    Pre-combustion capture involves reacting a fuel with oxygen or air and/or steam to give mainly a 'synthesis gas (syngas)' or 'fuel gas' composed of carbon monoxide and hydrogen. The carbon monoxide is reacted with steam in a catalytic reactor, called a shift converter, to produce CO2 and more hydrogen. CO2 is then separated, usually by a physical or chemical absorption process, resulting in a hydrogen-rich fuel which can be used in many applications, such as boilers, furnaces, gas turbines, engines and fuel cells. Pre-combustion capture is suitable for use in integrated gasification combined cycle (IGCC) plants especially since the CO2 partial pressures in the fuel gas are higher than in the flue gas. After the introduction there follows a short discussion of the water-gas shift (WGS) reaction. This is followed by chapters on the means of CO2 capture by physical and chemical solvents, solid sorbents, and membranes. The results and conclusions of techno-economic studies are introduced followed by a look at some of the pilot and demonstration plants relevant to pre-combustion capture in IGCC plants.

  10. Assessment of coal combustion in O{sub 2}+CO{sub 2} by equilibrium calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ligang [Natural Resources Canada, CANMET Energy Technology Centre, 1 Haanel Drive, Nepean, ON (Canada); Furimsky, Edward [IMAF Group, 184 Marlborough Avenue, Ottawa, ON (Canada)

    2003-04-15

    The facility for analysis of chemical thermodynamics (F*A*C*T) method based on the Gibbs energy minimization principle was used for the environmental assessment of coal combustion in O{sub 2}+CO{sub 2} mixture compared with that in air. For the former case, the calculations predict higher emissions of CO and lower emissions of NO{sub x}. For both combustion media, SO{sub x} emissions are governed by O{sub 2} concentration, whereas distribution of trace metals was unaffected when O{sub 2} concentration in the O{sub 2}+CO{sub 2} mixture approached that in air. The effect of O{sub 2}+CO{sub 2} mixture on the distribution of chlorine- and alkali-containing compounds in the vapor phase was minor compared with that in air. In spite of the large excess of CO{sub 2} in combustion medium, sulfation was the predominant reaction occurring in ash.

  11. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  12. The hybrid MPC-MINLP algorithm for optimal operation of coal-fired power plants with solvent based post-combustion CO2 capture

    Directory of Open Access Journals (Sweden)

    Norhuda Abdul Manaf

    2017-03-01

    Full Text Available This paper presents an algorithm that combines model predictive control (MPC with MINLP optimization and demonstrates its application for coal-fired power plants retrofitted with solvent based post-combustion CO2 capture (PCC plant. The objective function of the optimization algorithm works at a primary level to maximize plant economic revenue while considering an optimal carbon capture profile. At a secondary level, the MPC algorithm is used to control the performance of the PCC plant. Two techno-economic scenarios based on fixed (capture rate is constant and flexible (capture rate is variable operation modes are developed using actual electricity prices (2011 with fixed carbon prices ($AUD 5, 25, 50/tonne-CO2 for 24 h periods. Results show that fixed operation mode can bring about a ratio of net operating revenue deficit at an average of 6% against the superior flexible operation mode.

  13. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  14. Holey graphene frameworks for highly selective post-combustion carbon capture

    Science.gov (United States)

    Chowdhury, Shamik; Balasubramanian, Rajasekhar

    2016-02-01

    Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications.

  15. Capture, transport and storage of CO2

    International Nuclear Information System (INIS)

    De Boer, B.

    2008-01-01

    The emission of greenhouse gas CO2 in industrial processes and electricity production can be reduced on a large scale. Available techniques include post-combustion, pre-combustion, the oxy-fuel process, CO2 fixation in industrial processes and CO2 mineralization. In the Netherlands, plans for CO2 capture are not developing rapidly (CCS - carbon capture and storage). [mk] [nl

  16. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  17. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  18. In-depth numerical analysis on the determination of amount of CO2 recirculation in LNG/O2/CO2 combustion

    International Nuclear Information System (INIS)

    Kim, Hey-Suk; Shin, Mi-Soo; Jang, Dong-Soon; Lee, Dae Keun

    2010-01-01

    The determination of proper amount of CO 2 recirculation is one of the critical issues in oxy-fuel combustion technology for the reduction of CO 2 emissions by the capture and sequestration of CO 2 species in flue gas. The objective of this study is to determine the optimum value of O 2 fraction in O 2 /CO 2 mixture to obtain similar flame characteristics with LNG-air combustion. To this end, a systematic numerical investigation has been made in order to resolve the physical feature of LNG/O 2 /CO 2 combustion. For this, SIMPLEC algorithm is used for the resolution of pressure velocity coupling. And for the Reynolds stresses and turbulent reaction the popular two-equation (k-ε) model by Launder and Spalding and eddy breakup model by Magnussen and Hjertager were incorporated, respectively. The radiative heat transfer is calculated from the volumetric energy loss rate from flame, considering absorption coefficient of H 2 O, CO 2 and CO gases. A series of parametric investigation has been made as function of oxidizer type, O 2 fraction and fuel type for the resolution of combustion characteristics such as flame temperature, turbulent mixing and species concentration. Further the increased effect of CO 2 species on the flame temperature is carefully examined by the consideration of change of specific heat and radiation effect. Based on this study, it was observed that the same mass flow rate of CO 2 with N 2 appears as the most adequate value for the amount of CO 2 recirculation for LNG fuel since the lower C p value for the CO 2 relative to N 2 species at lower temperatures cancels the effect of the higher C p value at higher temperatures over the range of flame temperatures present in this study. However, for the fuel with high C/H ratio, for example of coal, the reduced amount of CO 2 recirculation is recommended in order to compensate the increased radiation heat loss. In general, the calculation results were physically acceptable and consistent with reported data

  19. LE CAPTAGE DU CO2 DANS LES CENTRALES THERMIQUES

    Directory of Open Access Journals (Sweden)

    Chakib Bouallou

    2010-04-01

    Full Text Available This review is devoted to assess and compare various processes aiming at recover CO2 from power plants fed with natural gas (NGCC and pulverized coal (PC. These processes are post combustion CO2 capture using chemical solvents, natural gas reforming for pre-combustion capture and oxy-fuel combustion with cryogenic recovery of CO2. These processes were evaluated to give some clues for choosing the best option for each type of power plant. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents.

  20. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Gel-combustion synthesis of CoSb2O6 and its reduction to powdery Sb2Co alloy

    Directory of Open Access Journals (Sweden)

    MAJA JOVIC

    2009-01-01

    Full Text Available Sb2Co alloy in powdery form was synthesized via reduction with gaseous hydrogen of the oxide CoSb2O6, obtained by the citrate gel-combustion technique. The precursor was an aqueous solution of antimony nitrate, cobalt nitrate and citric acid. The precursor solution with mole ratio Co(II/Sb(V of 1:2 was gelatinized by evaporation of water. The gel was heated in air up to the temperature of self-ignition. The product of gel combustion was a mixture of oxides and it had to be additionally thermally treated in order to be converted to pure CoSb2O6. The reduction of CoSb2O6 by gaseous hydrogen yielded powdery Sb2Co as the sole phase. The process of oxide reduction to alloy was controlled by thermogravimetry, while X-ray diffractometry was used to control the phase compositions of both the oxides and alloys.

  2. Hollow Fiber Membrane Contactors for Post-Combustion CO2 Capture: A Scale-Up Study from Laboratory to Pilot Plant

    Directory of Open Access Journals (Sweden)

    Chabanon E.

    2014-11-01

    Full Text Available Membrane contactors have been proposed for decades as a way to achieve intensified mass transfer processes. Post-combustion CO2 capture by absorption into a chemical solvent is one of the currently most intensively investigated topics in this area. Numerous studies have already been reported, unfortunately almost systematically on small, laboratory scale, modules. Given the level of flue gas flow rates which have to be treated for carbon capture applications, a consistent scale-up methodology is obviously needed for a rigorous engineering design. In this study, the possibilities and limitations of scale-up strategies for membrane contactors have been explored and will be discussed. Experiments (CO2 absorption from a gas mixture in a 30%wt MEA aqueous solution have been performed both on mini-modules and at pilot scale (10 m2 membrane contactor module based on PTFE hollow fibers. The results have been modelled utilizing a resistance in series approach. The only adjustable parameter is in fitting the simulations to experimental data is the membrane mass transfer coefficient (km, which logically plays a key role. The difficulties and uncertainties associated with scaleup computations from lab scale to pilot scale modules, with a particular emphasis on the km value, are presented and critically discussed.

  3. Study of CO2 capture processes in power plants

    International Nuclear Information System (INIS)

    Amann, J.M.

    2007-12-01

    The aim of the present study is to assess and compare various processes aiming at recover CO 2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post-combustion CO 2 capture using chemical solvents, natural gas reforming for pre-combustion capture by methanol and oxy-fuel combustion with cryogenic recovery of CO 2 . These processes were evaluated using the process software Aspen PlusTM to give some clues for choosing the best option for each type of power plant. With regard to post-combustion, an aqueous solution based on a mixture of amines (N-methyldiethanolamine (MDEA) and triethylene tetramine (TETA)) was developed. Measurements of absorption were carried out between 298 and 333 K in a Lewis cell. CO 2 partial pressure at equilibrium, characteristic of the CO 2 solubility in the solvent, was determined up to 393 K. The solvent performances were compared with respect to more conventional solvents such as MDEA and monoethanolamine (MEA). For oxy-fuel combustion, a recovery process, based on a cryogenic separation of the components of the flue gas, was developed and applied to power plants. The study showed that O 2 purity acts on the CO 2 concentration in the flue gas and thus on the performances of the recovery process. The last option is natural gas reforming with CO 2 pre-combustion capture. Several configurations were assessed: air reforming and oxygen reforming, reforming pressure and dilution of the synthesis gas. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents. (author)

  4. Modeling CO2 emissions from fossil fuel combustion using the logistic equation

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2011-01-01

    CO 2 emissions from fossil fuel combustion have been known to contribute to the greenhouse effect. Research on emission trends and further forecasting their further values is important for adjusting energy policies, particularly those relative to low carbon. Except for a few countries, the main figures of CO 2 emission from fossil fuel combustion in other countries are S-shaped curves. The logistic function is selected to simulate the S-shaped curve, and to improve the goodness of fit, three algorithms were provided to estimate its parameters. Considering the different emission characteristics of different industries, the three algorithms estimated the parameters of CO 2 emission in each industry separately. The most suitable parameters for each industry are selected based on the criterion of Mean Absolute Percentage Error (MAPE). With the combined simulation values of the selected models, the estimate of total CO 2 emission from fossil fuel combustion is obtained. The empirical analysis of China shows that our method is better than the linear model in terms of goodness of fit and simulation risk. -- Highlights: → Figures of CO 2 emissions from fossil fuel combustion in most countries are S-shape curves. → Using the logistic function to model the S-shape curve. → Three algorithms are offered to estimate the parameters of the logistic function. → The empirical analysis from China shows that the logistic equation has satisfactory simulation results.

  5. Study of CO{sub 2} capture processes in power plants; Etude de procedes de captage du CO{sub 2} dans les centrales thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Amann, J.M

    2007-12-15

    The aim of the present study is to assess and compare various processes aiming at recover CO{sub 2} from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post-combustion CO{sub 2} capture using chemical solvents, natural gas reforming for pre-combustion capture by methanol and oxy-fuel combustion with cryogenic recovery of CO{sub 2}. These processes were evaluated using the process software Aspen PlusTM to give some clues for choosing the best option for each type of power plant. With regard to post-combustion, an aqueous solution based on a mixture of amines (N-methyldiethanolamine (MDEA) and triethylene tetramine (TETA)) was developed. Measurements of absorption were carried out between 298 and 333 K in a Lewis cell. CO{sub 2} partial pressure at equilibrium, characteristic of the CO{sub 2} solubility in the solvent, was determined up to 393 K. The solvent performances were compared with respect to more conventional solvents such as MDEA and monoethanolamine (MEA). For oxy-fuel combustion, a recovery process, based on a cryogenic separation of the components of the flue gas, was developed and applied to power plants. The study showed that O{sub 2} purity acts on the CO{sub 2} concentration in the flue gas and thus on the performances of the recovery process. The last option is natural gas reforming with CO{sub 2} pre-combustion capture. Several configurations were assessed: air reforming and oxygen reforming, reforming pressure and dilution of the synthesis gas. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents. (author)

  6. Technology options for clean coal power generation with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Song; Bergins, Christian; Kikkawa, Hirofumi; Kobayashi, Hironobu; Kawasaki, Terufumi

    2010-09-15

    The state-of-the-art coal-fired power plant today is about 20% more efficient than the average operating power plants, and can reduce emissions such as SO2, NOx, and mercury to ultra-low levels. Hitachi is developing a full portfolio of clean coal technologies aimed at further efficiency improvement, 90% CO2 reduction, and near-zero emissions, including 700 deg C ultrasupercritical boilers and turbines, post-combustion CO2 absorption, oxyfuel combustion, and IGCC with CCS. This paper discusses the development status, performance and economic impacts of these technologies with focus on post combustion absorption and oxyfuel combustion - two promising CO2 solutions for new and existing power plants.

  7. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yongqi

    2014-02-01

    This report summarizes the methodology and preliminary results of a techno-economic analysis on a hot carbonate absorption process (Hot-CAP) with crystallization-enabled high pressure stripping for post-combustion CO{sub 2} capture (PCC). This analysis was based on the Hot-CAP that is fully integrated with a sub-critical steam cycle, pulverized coal-fired power plant adopted in Case 10 of the DOE/NETL’s Cost and Performance Baseline for Fossil Energy Plants. The techno-economic analysis addressed several important aspects of the Hot-CAP for PCC application, including process design and simulation, equipment sizing, technical risk and mitigation strategy, performance evaluation, and cost analysis. Results show that the net power produced in the subcritical power plant equipped with Hot-CAP is 611 MWe, greater than that with Econoamine (550 MWe). The total capital cost for the Hot-CAP, including CO{sub 2} compression, is $399 million, less than that for the Econoamine PCC ($493 million). O&M costs for the power plant with Hot-CAP is $175 million annually, less than that with Econoamine ($178 million). The 20-year levelized cost of electricity (LCOE) for the power plant with Hot-CAP, including CO2 transportation and storage, is 119.4 mills/kWh, a 59% increase over that for the plant without CO2 capture. The LCOE increase caused by CO{sub 2} capture for the Hot-CAP is 31% lower than that for its Econoamine counterpart.

  8. Studying heat integration options for steam-gas power plants retrofitted with CO2 post-combustion capture

    International Nuclear Information System (INIS)

    Carapellucci, Roberto; Giordano, Lorena; Vaccarelli, Maura

    2015-01-01

    Electricity generation from fossil fuels has become a focal point of energy and climate change policies due to its central role in modern economics and its leading contribution to greenhouse gas emissions. Carbon capture and sequestration (CCS) is regarded by the International Energy Agency as an essential part of the technology portfolio for carbon mitigation, as it can significantly reduce CO 2 emissions while ensuring electricity generation from fossil fuel power plants. This paper studies the retrofit of natural gas combined cycles (NGCCs) with an amine-based post-combustion carbon capture system. NGCCs with differently rated capacities were analysed under the assumptions that the heat requirement of the capture system was provided via a steam extraction upstream of the low-pressure steam turbine or by an auxiliary unit that was able to reduce the power plant derating related to the energy needs of the CCS system. Different types of auxiliary units were investigated based on power plant size, including a gas turbine cogeneration plant and a supplementary firing unit or boiler fed by natural gas or biomass. Energy and economic analyses were performed in order to evaluate the impact of type and layout of retrofit option on energy, environmental and economic performance of NGCCs with the CCS system. - Highlights: • Steam-gas power plants with an amine-based CO 2 capture unit are examined. • The study concerns three combined cycles with different capacity and plant layout. • Several options to fulfil the heat requirement of the CCS system are explored. • Steam extraction significantly reduces the capacity of steam-gas power plant. • An auxiliary combined heat and power unit allows to reduce power plant derating

  9. Post-combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M.

    2009-01-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. 340 refs., 21 figs., 8 tabs.

  10. Increase in efficiency and reduction of generation cost at hard coal-fired power plants. Post-combustion of combustion residues from co-firing of RDF and biomass during dry ash removal

    Energy Technology Data Exchange (ETDEWEB)

    Baur, Guenter [Magaldi Power GmbH, Esslingen (Germany); Spindeldreher, Olaf [RWE Generation SE, Werne (Germany); RWE Generation SE, Essen (Germany)

    2013-09-01

    Secondary as well as substitute fuels are being used in hard coal-fired power plants to improve efficiency and to enlarge fuel flexibility. However, grinding and firing systems of the existing coal-fired plants are not designed for those co-fuels. Any deterioration of the combustion performance would reduce the power output and increase ash disposal costs by increased content of combustion residues. The application of air-cooled ash removal, with simultaneous and controlled post-combustion of unburned residues on the conveyor belt, enlarges the furnace and maintains combustion efficiency even with different fuel qualities. Plant efficiency can also be increased through heat recovery. (orig.)

  11. Recent enlightening strategies for co2 capture: a review

    Science.gov (United States)

    Yuan, Peng; Qiu, Ziyang; Liu, Jia

    2017-05-01

    The global climate change has seriously affected the survival and prosperity of mankind, where greenhouse effect owing to atmospheric carbon dioxide (CO2) enrichment is a great cause. Accordingly, a series of down-to-earth measures need to be implemented urgently to control the output of CO2. As CO2 capture appears as a core issue in developing low-carbon economy, this review provides a comprehensive introduction of recent CO2 capture technologies used in power plants or other industries. Strategies for CO2 capture, e.g. pre-combustion, post-combustion and oxyfuel combustion, are covered in this article. Another enlightening technology for CO2 capture based on fluidized beds is intensively discussed.

  12. Post combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M. [IEA Clean Coal Centre, London (United Kingdom)

    2009-04-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. The report is available from IEA Clean Coal Centre as report no. CCC/144. See Coal Abstracts entry April 2009 00406. 340 refs., 21 figs., 8 tabs.

  13. Simulation and multivariable optimization of post-combustion capture using piperazine

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Fosbøl, Philip Loldrup

    2016-01-01

    Piperazine presents a great potential to develop an energy efficient solvent based CO2 post-combustion capture process. Recently 8 molal piperazine (PZ) has shown promising results, however it faces operational challenges due to limited solid solubility. The operating range can be extended......, to avoid clogging from solid formation. 5 m PZ is the most promising trade-off between energy efficiency and solid-free operation with a specific reboiler duty of 3.22 GJ/t CO2 at 0.34 lean loading. The performance of the process can be further improved by assuming a minimum temperature of 30 °C which...... gives an optimal specific reboiler duty of 3.09 GJ/t CO2 (8 m PZ, 0.334 lean loading) for conditions without advanced heat integration....

  14. Combustion synthesis of micron-sized Sm2Co17 particles via mechanochemical processing

    International Nuclear Information System (INIS)

    Liu, W.; McCormick, P.G.

    1998-01-01

    Full text: The spontaneous formation of Sm 2 Co 17 micron-sized particles via a mechanically induced combustion reaction has been investigated. Sm 2 Co 17 alloy particles of 0.1--2 μm in size embedded in a CaO matrix formed directly via a combustion reaction induced by milling the powder mixture of Sm 2 O 3 , CoO, CaO and Ca over a critical time. The micron-sized Sm 2 Co 17 particles were found to have the TbCu 7 -type structure and characterized by a coercivity value of 7.8 kOe while embedded in the CaO matrix. The effect of subsequent heat treatment on the structure and magnetic properties of as-milled samples was also investigated. Removal of the CaO by a carefully controlled washing process yielded micron-sized Sm 2 Co 17 particles without significant oxidation of the particles. These fine Sm 2 Co 17 particles can be used to produce anisotropic bulk or bonded magnets

  15. W.A. Parish Post Combustion CO2 Capture and Sequestration Project Final Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Armpriester, Anthony [Petra Nova Parish Holdings, Washington, DC (United States)

    2017-02-17

    The Petra Nova Project is a commercial scale post-combustion carbon dioxide capture project that is being developed by a joint venture between NRG Energy (NRG) and JX Nippon Oil and Gas Exploration (JX). The project is designed to separate and capture carbon dioxide from an existing coal-fired unit's flue gas slipstream at NRG's W.A. Parish Generation Station located southwest of Houston, Texas. The captured carbon dioxide will be transported by pipeline and injected into the West Ranch oil field to boost oil production. The project, which is partially funded by financial assistance from the U.S. Department of Energy will use Mitsubishi Heavy Industries of America, Inc.'s Kansai Mitsubishi Carbon Dioxide Recovery (KM-CDR(R)) advanced amine-based carbon dioxide absorption technology to treat and capture at least 90% of the carbon dioxide from a 240 megawatt equivalent flue gas slipstream off of Unit 8 at W.A. Parish. The project will capture approximately 5,000 tons of carbon dioxide per day or 1.5 million tons per year that Unit 8 would otherwise emit, representing the largest commercial scale deployment of post-combustion carbon dioxide capture at a coal power plant to date. The joint venture issued full notice to proceed in July 2014 and when complete, the project is expected to be the world's largest post-combustion carbon dioxide capture facility on an existing coal plant. The detailed engineering is sufficiently complete to prepare and issue the Final Public Design Report.

  16. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shiaoguo

    2015-09-30

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references. In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.

  17. Chemical-looping combustion as a new CO{sub 2} management technology

    Energy Technology Data Exchange (ETDEWEB)

    Mattisson, Tobias; Lyngfelt, Anders [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy and Environment; Zafar, Qamar; Johansson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2006-05-15

    Chemical-looping combustion (CLC) is a combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, a fuel reactor and an air reactor, are used in the process. In the fuel reactor, the metal oxide is reduced by the reaction with the fuel and in the air reactor; the reduced metal oxide is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, and almost pure stream of CO{sub 2} is obtained when water is condensed. Considerable research has been conducted on CLC in the last decade with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. The technique has been demonstrated successfully with both natural gas and syngas as fuel in continuous prototype reactors based on interconnected fluidized beds within the size range 0.3-50 kW, using different types of oxygen carriers based on the metals Ni, Co, Fe, Cu and Mn. From these tests it can be established that almost complete conversion of the fuel can be obtained and 100% CO{sub 2} capture is possible at a low cost. Further, work is going on to adapt the technique for use with solid fuels and for hydrogen production. This paper presents an overview of the research performed on CLC and highlights the current status of the technology.

  18. Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery

    International Nuclear Information System (INIS)

    Hwang, Kyung-Ran; Park, Jin-Woo; Lee, Sung-Wook; Hong, Sungkook; Lee, Chun-Boo; Oh, Duck-Kyu; Jin, Min-Ho; Lee, Dong-Wook; Park, Jong-Soo

    2015-01-01

    The CCR (catalytic combustion reaction) of the retentate gas, consisting of 90% CO 2 and 10% H 2 obtained from a CO 2 /H 2 separation membrane reactor, was investigated using a porous Ni metal catalyst in order to recover energy and further enrich CO 2 . A disc-shaped porous Ni metal catalyst, namely Al[0.1]/Ni, was prepared by a simple method and a compact MCR (micro-channel reactor) equipped with a catalyst plate was designed for the CCR. CO 2 and H 2 concentrations of 98.68% and 0.46%, respectively, were achieved at an operating temperature of 400 °C, GHSV (gas-hourly space velocity) of 50,000 h −1 and a H 2 /O 2 ratio (R/O) of 2 in the unit module. In the case of the MCR, a sheet of the Ni metal catalyst was easily installed along with the other metal plates and the concentration of CO 2 in the retentate gas increased up to 96.7%. The differences in temperatures measured before and after the CCR were 31 °C at the product outlet and 19 °C at the N 2 outlet in the MCR. The disc-shaped porous metal catalyst and MCR configuration used in this study exhibit potential advantages, such as high thermal transfer resulting in improved energy recovery rate, simple catalyst preparation, and easy installation of the catalyst in the MCR. - Highlights: • The catalytic combustion of a retentate gas obtained from the H 2 /CO 2 separation membrane. • A disc-shaped porous nickel metal catalyst and a micro-channel reactor for catalytic hydrogen combustion. • CO 2 enrichment up to 98.68% at 400 °C, 50,000 h −1 and H 2 /O 2 ratio of 2.

  19. Multivariable Optimization of the Piperazine CO2 Post-Combustion Process

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; von Solms, Nicolas; Thomsen, Kaj

    2016-01-01

    of the lean solvent. However, optimal solvent composition must be determined taking into account the solvent circulation rate and the heat demand of the solvent regeneration.In this paper, we determine and generalize trends of performance for a broad range of operating conditions: 1.8 to 9mol PZ/ kg water, 0.......2 to 0.6 lean loading, and for two flue gas sources: natural gas combined cycle power plant (NGCC, 3.9 mol% CO2) and a coal based power plant (ASC, 13.25 mol% CO2). Special attention is given to the boundaries where precipitation may occur. The results are created by the hybrid CAPCO2 rate-based model...... which accounts for precipitation when estimating the heat and mass transfer rates. The results show that the 7 molal piperazine gives the lowest specific reboiler duty at 0.40 CO2 lean loading: 3.32 GJ/t CO2 and 4.05 GJ/t CO2 for the ASC case and NGCC cases. The analysis also reveals that the capture...

  20. A methodology of the assessment of environmental and human health risks from amine emissions from post combustion CO2 capture technology

    Science.gov (United States)

    Korre, Anna; Manzoor, Saba; Simperler, Alexandra

    2015-04-01

    Post combustion CO2 capture (PCCC) technology in power plants using amines as solvent for CO2 capture, is one of the reduction technologies employed to combat escalating levels of CO2 in the atmosphere. However, amine solvents used for capturing CO2 produce negative emissions such as, nitrosamines and nitramines, which are suspected to be potent carcinogens. It is therefore essential to assess the atmospheric fate of these amine emissions in the atmosphere by studying their atmospheric chemistry, dispersion and transport pathways away from the source and deposition in the environment, so as to be able to assess accurately the risk posed to human health and the natural environment. An important knowledge gap until recently has been the consideration of the atmospheric chemistry of these amine emissions simultaneously with dispersion and deposition studies so as to perform reliable human health and environmental risk assessments. The authors have developed a methodology to assess the distribution of such emissions away from a post-combustion facility by studying the atmospheric chemistry of monoethanolamine, the most commonly used solvent for CO2 capture, and those of the resulting degradation amines, methylamine and dimethylamine. This was coupled with dispersion modeling calculations (Manzoor, et al., 2014; Manzoor et al,2015). Rate coefficients describing the entire atmospheric chemistry schemes of the amines studied were evaluated employing quantum chemical theoretical and kinetic modeling calculations. These coefficients were used to solve the advection-dispersion-chemical equation using an atmospheric dispersion model, ADMS 5. This methodology is applicable to any size of a power plant and at any geographical location. In this paper, the humman health risk assessment is integrated in the modelling study. The methodology is demonstrated on a case study on the UK's largest capture pilot plant, Ferrybridge CCPilot 100+, to estimate the dispersion, chemical

  1. Near wall combustion modeling in spark ignition engines. Part B: Post-flame reactions

    International Nuclear Information System (INIS)

    Demesoukas, Sokratis; Caillol, Christian; Higelin, Pascal; Boiarciuc, Andrei; Floch, Alain

    2015-01-01

    Highlights: • Models for the post flame reactions (CO and hydrocarbons) and heat release rate are proposed. • ‘Freezing’ effect of CO kinetics is captured but equilibrium CO concentrations are low. • Reactive–diffusive processes are modeled for hydrocarbons and the last stage of combustion is captured. - Abstract: Reduced fuel consumption, low pollutant emissions and adequate output performance are key features in the contemporary design of spark ignition engines. Zero-dimensional numerical simulation is an attractive alternative to engine experiments for the evaluation of various engine configurations. Both flame front reaction and post-flame processes contribute to the heat release rate. The contribution of this work is to highlight and model the role of post-flame reactions (CO and hydrocarbons) in the heat release rate. The modeling approach to CO kinetics used two reactions considered to be dominant and thus more suitable for the description of CO chemical mechanism. Equilibrium concentrations of all the species involved were calculated by a two-zone thermodynamic model. The computed characteristic time of CO kinetics was found to be of a similar order to the results of complex chemistry simulations. The proposed model captured the ‘freezing’ effect (reaction rate is almost zero) for temperatures lower than 1800 K and followed the trends of the measured values at exhaust. However, a consistent underestimation of CO levels at the exhaust was observed. The impact of the remaining CO on the combustion efficiency is considerable especially for rich mixtures. For a remaining 0.4% CO mass fraction, the impact on combustion inefficiency is 0.1%. Unburnt hydrocarbon, which have not reacted within the flame front before quenching, diffuse in the burnt gas and react. In this work, a global reaction rate models the kinetic behavior of hydrocarbon. The diffusion process was modeled by a relaxation equation applied on the calculated kinetic concentration

  2. An Overview of CO{sub 2} capture technologies. What are the challenges ahead?

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Stanley (IEA Greenhouse Gas R& amp; D Programme)

    2008-07-15

    In this paper it is described what the program of R&D of the International Energy Agency consists of, for the reduction of greenhouse effect gasses. Some of the factors that have impelled the policy of the development of technologies for the CO{sub 2} capture are synthesized. Also an overview is given of the 3 main technologies for the capture and storage of CO{sub 2} that are the capture post-combustion, the capture oxy-combustion and the capture pre-combustion; finally several aspects related to the capture and sequestration of CO{sub 2} are mentioned. [Spanish] En esta ponencia se describe en que consiste el programa de I&D para la reduccion de gases de efecto invernadero de la Agencia Internacional de Energia. Se sintetizan algunos de los factores que han impulsado a la politica del desarrollo de tecnologias para la captura de CO{sub 2}. Tambien se da un panorama de las 3 principales tecnologias para la captura y almacenamiento de CO{sub 2} que son la captura post-combustion, la captura oxi-combustion y la captura pre-combustion; finalmente se mencionan varios aspectos relacionados con la captura y secuestro de CO{sub 2}.

  3. Synthesis and characterization of reactions by nanoferrites Co2Fe2O4 combustion

    International Nuclear Information System (INIS)

    Santos, P.T.A.; Dantas, B.B.; Costa, A.C.F.M.; Araujo, P.M.A.G.

    2012-01-01

    In this work CoFe 2 O 4 of magnetic nanoparticles were synthesized by combustion reaction and the structural and morphological characteristics of the synthesized samples as well as the parameters of synthesis temperature and reaction time were investigated in order to assess the reproducibility of the synthesis. The maximum temperature and time of the combustion flame were obtained with pyrometer coupled to a computer with online measurement and a stopwatch. The resulting samples were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The maximum temperature achieved during synthesis for all reactions ranged from 623 deg C and 755 deg C. The combustion flame time varied between 18 and 23 seconds. The XRD showed the formation of only CoFe 2 O 4 inverse spinel phase, with crystallite size 28 nm and crystallinity 78%, with typical morphology of the formation of agglomerates of uniform size, brittle and comprising nanoparticles together by weak forces. (author)

  4. Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion

    International Nuclear Information System (INIS)

    Singh, D.; Croiset, E.; Douglas, P.L.; Douglas, M.A.

    2003-01-01

    The existing fleet of modern pulverised coal fired power plants represents an opportunity to achieve significant reductions in greenhouse gas emissions in the coming years providing that efficient and economical CO 2 capture technologies are available for retrofit. One option is to separate CO 2 from the products of combustion using conventional approaches such as amine scrubbing. An emerging alternative, commonly known as O 2 /CO 2 recycle combustion, involves burning the coal with oxygen in an atmosphere of recycled flue gas. Both approaches can be retrofitted to existing units, however they consume significant amounts of energy to capture, purify and compress the CO 2 for subsequent sequestration. This paper presents a techno-economic comparison of the performance of the two approaches. The comparison was developed using the commercial process simulation packages, Hysys and Aspen Plus. The results show that both processes are expensive options to capture CO 2 from coal power plants, however O 2 /CO 2 appears to be a more attractive retrofit than MEA scrubbing. The CO 2 capture cost for the MEA case is USD 53/ton of CO 2 avoided, which translates into 3.3 cents/kW h. For the O 2 /CO 2 case the CO 2 capture cost is lower at USD 35/ton of CO 2 avoided, which translates into 2.4 cents/kW h. These capture costs represent an approximate increase of 20-30% in current electricity prices

  5. CO2 Emissions From Fuel Combustion. Highlights. 2013 Edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    In the lead-up to the UN climate negotiations in Warsaw, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process, the IEA is making available for free download the ''Highlights'' version of CO2 Emissions from Fuel Combustion now for sale on IEA Bookshop. This annual publication contains, for more than 140 countries and regions: estimates of CO2 emissions from 1971 to 2011; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; a decomposition of CO2 emissions into driving factors; and CO2emissions from international marine and aviation bunkers, key sources, and other relevant information. The nineteenth session of the Conference of the Parties to the Climate Change Convention (COP-19), in conjunction with the ninth meeting of the Parties to the Kyoto Protocol (CMP 9), met in Warsaw, Poland from 11 to 22 November 2013. This volume of ''Highlights'', drawn from the full-scale study, was specially designed for delegations and observers of the meeting in Warsaw.

  6. E25 stratified torch ignition engine performance, CO_2 emission and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Moreira, Thiago Augusto Araujo; Valle, Ramon Molina; Baêta, José Guilherme Coelho; Pontoppidan, Michael; Teixeira, Alysson Fernandes

    2016-01-01

    Highlights: • A torch ignition engine prototype was built and tested. • Significant reduction of BSFC was achieved due to the use of the torch ignition system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine prototype. • The torch ignition system allowed an average reduction of 8.21% at the CO_2 specific emissions. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and the greenhouse effect. This fact associated with the fast growth of the global motor vehicle fleet demands technological solutions from the scientific community in order to achieve a decrease in fuel consumption and CO_2 emission, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition engine was designed from a commercial baseline engine. In this system, the combustion starts in a pre-combustion chamber where the pressure increase pushes the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy being able to promote a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for low fuel flow rate. During the compression stroke, lean mixture coming from the main chamber is forced into the pre-combustion chamber and, a few degrees before the spark timing, fuel is injected into the pre-combustion chamber aiming at forming a slightly rich mixture cloud around the spark plug which is suitable for the ignition and kernel development. The performance of the torch ignition engine running with E25 is presented for different mixture stratification levels, engine speed and load. The performance data such as combustion phasing

  7. Adsorption of CO2 and H2O on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Zhao, W.; Li, Z.; Cai, N.; Brilman, Derk Willem Frederik

    2014-01-01

    In this work we have evaluated the H2O and CO2 adsorption characteristics of Lewatit VP OC 1065 in view of the potential application of solid sorbents in post combustion CO2 capture. Here we present single component adsorption isotherms for H2O and CO2 as well as co-adsorption experiments. It was

  8. Study of Adsorbents for the Capture of CO{sub 2} in Post-combustion. Contribution of CIEMAT to Module 4 of the CENITCO{sub 2} Project; Estudio de Adsorbentes para la Captura de CO{sub 2} en Postcombustion. Contribucion del CIEMAT al Modulo 4 del Proyecto CENITCO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E; Marono, M; Sanchez-Hervas, J M

    2010-07-01

    The main goal of CIEMAT within the CENIT-CO{sub 2} project has been the development of a process for CO{sub 2} capture from combustion flue gases by physical adsorption. In the first stage, screening studies to select promising adsorbents were carried out at laboratory scale, using simplified gas compositions. After that, pilot plant studies were performed using appropriate configurations of promising adsorbents under realistic conditions. CO{sub 2} adsorption cyclic capacity of different adsorbents has been studied. Lastly, for the adsorbent selected as most promising, its cyclic efficiency and selectivity for CO{sub 2} adsorption in the presence of other gaseous components (SO{sub 2}, H{sub 2}O, NO) of the combustion gas has been determined, as well as its performance along multiple sorption-desorption cycles in the presence of simulated combustion gas. None of the studied adsorbents, though being promising since they all have a capture efficiency of about 90%, seem to be susceptible of direct application to CO{sub 2} capture by physical adsorption under conditions representative of gases exiting the desulphurization tower of conventional pulverized coal combustion plants. As an alternative, the development of hybrid and regenerable solid sorbents (physical-chemical adsorption) is proposed or the application of new technologies under development such as the electrochemical promotion in capturing CO{sub 2}. (Author) 33 refs.

  9. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    Science.gov (United States)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  10. 2007 CO2 emissions due to energy combustion in the world

    International Nuclear Information System (INIS)

    2010-01-01

    Worldwide energy combustion contributes to more than 95% of the global CO 2 emissions. According to the last International Energy Agency (IEA) results, these emissions have raised by 3.3% with respect to 2006 and by 38% with respect to 1990 with a total of about 29 Gt of CO 2 . After a new 8% boom in 2007, China's emissions have tripled since 1990 with a total exceeding 6 Gt of CO 2 . China has become the first CO 2 emitter in front of the USA. When compared to the number of inhabitants, China's emissions are comparable to the world average (4.4 t CO 2 /hab) but remain four times lower than the ones of the USA. (J.S.)

  11. A kinetic study on the catalysis of KCl, K2SO4, and K2CO3 during oxy-biomass combustion.

    Science.gov (United States)

    Deng, Shuanghui; Wang, Xuebin; Zhang, Jiaye; Liu, Zihan; Mikulčić, Hrvoje; Vujanović, Milan; Tan, Houzhang; Duić, Neven

    2018-07-15

    Biomass combustion under the oxy-fuel conditions (Oxy-biomass combustion) is one of the approaches achieving negative CO 2 emissions. KCl, K 2 CO 3 and K 2 SO 4 , as the major potassium species in biomass ash, can catalytically affect biomass combustion. In this paper, the catalysis of the representative potassium salts on oxy-biomass combustion was studied using a thermogravimetric analyzer (TGA). Effects of potassium salt types (KCl, K 2 CO 3 and K 2 SO 4 ), loading concentrations (0, 1, 3, 5, 8 wt%), replacing N 2 by CO 2 , and O 2 concentrations (5, 20, 30 vol%) on the catalysis degree were discussed. The comparison between TG-DTG curves of biomass combustion before and after water washing in both the 20%O 2 /80%N 2 and 20%O 2 /80%CO 2 atmospheres indicates that the water-soluble minerals in biomass play a role in promoting the devolatilization and accelerating the char-oxidation; and the replacement of N 2 by CO 2 inhibits the devolatilization and char-oxidation processes during oxy-biomass combustion. In the devolatilization stage, the catalysis degree of potassium monotonously increases with the increase of potassium salt loaded concentration. The catalysis degree order of the studied potassium salts is K 2 CO 3  > KCl > K 2 SO 4 . In the char-oxidation stage, with the increase of loading concentration the three kinds of potassium salts present inconsistent change tendencies of the catalysis degree. In the studied loading concentrations from 0 to 8 wt%, there is an optimal loading concentration for KCl and K 2 CO 3 , at 3 and 5 wt%, respectively; while for K 2 SO 4 , the catalysis degree on char-oxidation monotonically increases with the loading potassium concentration. For most studied conditions, regardless of the potassium salt types or the loading concentrations or the combustion stages, the catalysis degree in the O 2 /CO 2 atmosphere is stronger than that in the O 2 /N 2 atmosphere. The catalysis degree is also affected by the O 2

  12. Capture and geologic storage of carbon dioxide (CO2)

    International Nuclear Information System (INIS)

    2004-11-01

    This dossier about carbon sequestration presents: 1 - the world fossil fuels demand and its environmental impact; 2 - the solutions to answer the climatic change threat: limitation of fossil fuels consumption, development of nuclear and renewable energies, capture and storage of CO 2 (environmental and industrial advantage, cost); 3 - the CO 2 capture: post-combustion smokes treatment, oxi-combustion techniques, pre-combustion techniques; 4 - CO 2 storage: in hydrocarbon deposits (Weyburn site in Canada), in deep saline aquifers (Sleipner and K12B (North Sea)), in non-exploitable coal seams (Recopol European project); 5 - international and national mobilization: IEA R and D program, USA (FutureGen zero-emission coal-fired power plant, Carbon Sequestration Leadership forum), European Union (AZEP, GRACE, GESTCO, CO2STORE, NASCENT, RECOPOL, Castor, ENCAP, CO2sink etc programs), French actions (CO 2 club, network of oil and gas technologies (RTPG)), environmental stake, competitiveness, research stake. (J.S.)

  13. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel.

    Science.gov (United States)

    Huang, Limao; Liu, Jingyong; He, Yao; Sun, Shuiyu; Chen, Jiacong; Sun, Jian; Chang, KenLin; Kuo, Jiahong; Ning, Xun'an

    2016-10-01

    Thermodynamics and kinetics of sewage sludge (SS) and water hyacinth (WH) co-combustion as a blend fuel (SW) for bioenergy production were studied through thermogravimetric analysis. In CO2/O2 atmosphere, the combustion performance of SS added with 10-40wt.% WH was improved 1-1.97 times as revealed by the comprehensive combustion characteristic index (CCI). The conversion of SW in different atmospheres was identified and their thermodynamic parameters (ΔH,ΔS,ΔG) were obtained. As the oxygen concentration increased from 20% to 70%, the ignition temperature of SW decreased from 243.1°C to 240.3°C, and the maximum weight loss rate and CCI increased from 5.70%·min(-1) to 7.26%·min(-1) and from 4.913%(2)·K(-3)·min(-2) to 6.327%(2)·K(-3)·min(-2), respectively, which corresponded to the variation in ΔS and ΔG. The lowest activation energy (Ea) of SW was obtained in CO2/O2=7/3 atmosphere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Adsorption of H2O and CO2 on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Frigka, Natalia; Zhao, Wenying; Li, Zhenshan; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2015-01-01

    In this work the adsorption of H2O and CO2 on Lewatit VP OC 1065 was studied in view of the potential application of this sorbent in post combustion CO2 capture. Both CO2 and H2O were found to adsorb on the amine active sites present on the pore surface of the sorbent material. However, where the

  15. Recent development of capture of CO2

    CERN Document Server

    Chavez, Rosa Hilda

    2014-01-01

    "Recent Technologies in the capture of CO2" provides a comprehensive summary on the latest technologies available to minimize the emission of CO2 from large point sources like fossil-fuel power plants or industrial facilities. This ebook also covers various techniques that could be developed to reduce the amount of CO2 released into the atmosphere. The contents of this book include chapters on oxy-fuel combustion in fluidized beds, gas separation membrane used in post-combustion capture, minimizing energy consumption in CO2 capture processes through process integration, characterization and application of structured packing for CO2 capture, calcium looping technology for CO2 capture and many more. Recent Technologies in capture of CO2 is a valuable resource for graduate students, process engineers and administrative staff looking for real-case analysis of pilot plants. This eBook brings together the research results and professional experiences of the most renowned work groups in the CO2 capture field...

  16. Polyether based block copolymer membranes for CO2 separation

    NARCIS (Netherlands)

    Reijerkerk, Sander

    2010-01-01

    The work described in this thesis is dedicated to the development of polymeric membrane materials for the separation of CO2 from light gases, and in particular to the separation of CO2 from nitrogen as required in a post-combustion capture conguration for the separation of CO2 from flue gases. An

  17. The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion

    International Nuclear Information System (INIS)

    Quadrelli, Roberta; Peterson, Sierra

    2007-01-01

    Fossil fuel combustion is the single largest human influence on climate, accounting for 80% of anthropogenic greenhouse gas emissions. This paper presents trends in world carbon dioxide (CO 2 ) emissions from fossil fuel combustion worldwide, based on the estimates of the International Energy Agency (IEA) [IEA, 2006a. CO 2 Emissions from Fuel Combustion 1971-2004. International Energy Agency, Paris, France]. Analyzing the drivers of CO 2 emissions, the paper considers regions, types of fuel, sectors, and socio-economic indicators. The paper then examines the growing body of climate change mitigation policies and measures, both multinational and federal. Policies discussed include the Kyoto Protocol, the European Union Emissions Trading Scheme, and the potential measures to be implemented in 2012 and beyond. CO 2 emissions of recent years have grown at the highest rates ever recorded, an observed trend incompatible with stabilizing atmospheric concentrations of greenhouse gases and avoiding long-term climate change. Within this aggregate upward trend, a comparison of emissions sources proves dynamic: while industrialized countries have so far dominated historical emissions, rapid growth in energy demand of developing economies, led by China, may soon spur their absolute emissions beyond those of industrialized countries. To provide context for the drivers of CO 2 emissions, the paper examines fuel sources, from coal to biofuels, and fuel use in the production of heat and electricity, in transport, in industrial production and in households. The sectoral analysis illustrates the primacy, in terms of emissions growth and absolute emissions, of two sectors: electricity and heat generation, and transport. A discussion of several socio-economic emissions drivers complements the paper's analysis of mitigation mechanisms. As illustrated, emissions per capita and emissions per unit of economic production, as measured in gross domestic product (GDP), vary widely between

  18. CO2 emissions due to energy combustion in the World in 2011

    International Nuclear Information System (INIS)

    Wong, Florine

    2014-01-01

    This publication presents and comments data, graphs and tables which illustrate the evolution of CO 2 emissions in the world (data are given for different countries and regions of the World), and more particularly those due to energy combustion. These emissions increased in 2011. It also discusses the evolution of CO 2 emission intensity with respect to GDP (1 pc decrease in 2011). When studying emission data with respect to the number of inhabitants, it appears that USA are emitting 20 times more CO 2 per inhabitant than Africa

  19. Novel process concept for cryogenic CO2 capture

    NARCIS (Netherlands)

    Tuinier, M.J.

    2011-01-01

    Carbon capture and storage (CCS) is generally considered as one of the necessary methods to mitigate anthropogenic CO2 emissions to combat climate change. The costs of CCS can for a large extent be attributed to the capture process. Several post-combustion CO2 capture processes have been developed,

  20. Development of pre-combustion decarbonization technologies for zero-CO{sub 2} power generation

    Energy Technology Data Exchange (ETDEWEB)

    Werner Renzenbrink; Karl-Josef Wolf; Frank Hannemann; Gerhard Zimmermann; Erik Wolf [RWE Power AG, Essen (Germany)

    2006-07-01

    The drastic rise in power generation that is expected on a global scale will also lead to a strong increase in CO{sub 2} emissions due to the high share of fossil energy sources used, which is quite contrary to the objectives of climate protection. In this dilemma, zero-CO{sub 2} power generation technologies might permit to make a decisive step on the road toward a necessary CO{sub 2} reduction. In the integrated ENCAP project (EU FP 6), a consortium of engineering companies, power plant manufacturers and research institutes lead-managed by RWE Power is drawing up technical IGCC/IRCC concepts including CO{sub 2} capture and spurring the necessary development of new gas turbine burners for the combustion of hydrogen-rich gases. Based on the working structure within ENCAP, this paper is divided into two parts. In the first part, the results of the process development for the different concepts based on hard coal, lignite and natural gas including CO{sub 2} capture is presented giving the technical and economic key figures of the processes. In the second part, the current status of burner development for the combustion of H{sub 2}-rich gases within ENCAP is given. 1 ref., 9 figs., 2 tabs.

  1. Possibility of reducing CO2 emissions from internal combustion engines

    Science.gov (United States)

    Drabik, Dawid; Mamala, Jarosław; Śmieja, Michał; Prażnowski, Krzysztof

    2017-10-01

    Article defines on the possibility of reduction CO2 of the internal combustion engine and presents the analysis based on originally conducted studies. The increase in overall engine efficiency is sought after by all engineers dealing with engine construction, one of the major ways to reduce CO2 emissions is to increase the compression ratio. The application of the compression ratio that has been increased constructional in the engine will, on one hand, bring about the increase in the theoretical efficiency, but, on the other hand, require a system for pressure control at a higher engine load in order to prevent engine knocking. For the purposes of the article there was carried out a number of studies and compiled results, and on their basis determined what have a major impact on the reducing CO2.

  2. WMU Power Generation Study Task 2.0 Corn Cob Co-Combustion Study: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Folkedahl, Bruce [Folkedahl Consulting, Inc., Willmar, MN (United States)

    2009-12-01

    Much attention has been focused on renewable energy use in large-scale utilities and very small scale distributed energy systems. However, there is little information available regarding renewable energy options for midscale municipal utilities. The Willmar Municipal Utilities Corn Cob-Coal Co-Combustion Project was initiated to investigate opportunities available for small to midscale municipal utilities to "go green". The overall goal of the Project was to understand the current renewable energy research and energy efficiency projects that are or have been implemented at both larger and smaller scale and determine the applicability to midscale municipal utilities. More specific objectives for Task 2.0 of this project were to determine the technical feasibility of co-combusting com cobs with coal in the existing WMU boiler, and to identify any regulatory issues that might need to be addressed if WMU were to obtain a significant portion of its heat from such co-combustion. This report addresses the issues as laid out in the study proposal. The study investigated the feasibility of and demonstrated the technical effectiveness of co-combusting corn cobs with coal in the Willmar Municipal Utilities stoker boiler steam generation power plant. The results of the WMU Co-Combustion Project will serve as a model for other midscale utilities who wish to use corn cobs to generate renewable electrical energy. As a result of the Co-Combustion Project, the WMU plans to upgrade their stoker boiler to accept whole corn cobs as well as other types of biomass, while still allowing the fuel delivery system to use 100% coal as needed. Benefits of co-combustion will include: energy security, reduced Hg and CO2 air emissions, improved ash chemistry, potential future carbon credit sales, an immediate positive effect on the local economy, and positive attention focused on the WMU and the City of Willmar. The first step in the study was to complete a feasibility analysis. The

  3. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  4. Fluidized bed combustion of single coal char particles at high CO{sub 2} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R. [CNR, Naples (Italy)

    2010-12-15

    Combustion of single coal char particles was studied at 850{sup o}C in a lab-scale fluidized bed at high CO{sub 2} concentration, typical of oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O{sub 2} concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO{sub 2} in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to that of the bed up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO{sub 2} gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be much more important than under combustion conditions.

  5. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Glarborg, Peter; Bentzen, L.L.B.

    2008-01-01

    The oxidation of methane in an atmospheric-pres sure flow reactor has been studied experimentally under highly diluted conditions in N-2 and CO2, respectively. The stoichiometry was varied from fuel-lean to fuel-rich, and the temperatures covered the range 1200-1800 K. The results were interpreted...... CO2. The high local CO levels may have implications for near-burner corrosion and stagging, but increased problems with CO emission in oxy-fuel combustion are not anticipated....

  6. Exergy Analysis of a Syngas-Fueled Combined Cycle with Chemical-Looping Combustion and CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Álvaro Urdiales Montesino

    2016-08-01

    Full Text Available Fossil fuels are still widely used for power generation. Nevertheless, it is possible to attain a short- and medium-term substantial reduction of greenhouse gas emissions to the atmosphere through a sequestration of the CO2 produced in fuels’ oxidation. The chemical-looping combustion (CLC technique is based on a chemical intermediate agent, which gets oxidized in an air reactor and is then conducted to a separated fuel reactor, where it oxidizes the fuel in turn. Thus, the oxidation products CO2 and H2O are obtained in an output flow in which the only non-condensable gas is CO2, allowing the subsequent sequestration of CO2 without an energy penalty. Furthermore, with shrewd configurations, a lower exergy destruction in the combustion chemical transformation can be achieved. This paper focus on a second law analysis of a CLC combined cycle power plant with CO2 sequestration using syngas from coal and biomass gasification as fuel. The key thermodynamic parameters are optimized via the exergy method. The proposed power plant configuration is compared with a similar gas turbine system with a conventional combustion, finding a notable increase of the power plant efficiency. Furthermore, the influence of syngas composition on the results is investigated by considering different H2-content fuels.

  7. Developments and innovation in carbon dioxide (CO{sub 2}) capture and storage technology. Volume 1: carbon dioxide (CO{sub 2}) capture, transport and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Mercedes Maroto-Valer, M. (ed.)

    2010-07-01

    This volume initially reviews the economics, regulation and planning of CCS for power plants and industry, and goes on to explore developments and innovation in post- and pre-combustion and advanced combustion processes and technologies for CO{sub 2} capture in power plants. This coverage is extended with sections on CO{sub 2} compression, transport and injection and industrial applications of CCS technology, including in the cement and concrete and iron and steel industries.

  8. Techno-economic study of CO{sub 2} capture from an existing coal-fired power plant: MEA scrubbing vs. O{sub 2}/CO{sub 2} recycle combustion

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D; Croiset, E; Douglas, P L [Waterloo Univ., Dept. of Chemical Engineering, Waterloo, ON (Canada); Douglas, M A [Natural Resources Canada, CANMET Energy Technology Centre, Nepean, ON (Canada)

    2003-11-01

    The existing fleet of modern pulverised coal fired power plants represents an opportunity to achieve significant reductions in greenhouse gas emissions in the coming years providing that efficient and economical CO{sub 2} capture technologies are available for retrofit. One option is to separate CO{sub 2} from the products of combustion using conventional approaches such as amine scrubbing. An emerging alternative, commonly known as O{sub 2}/CO{sub 2} recycle combustion, involves burning the coal with oxygen in an atmosphere of recycled flue gas. Both approaches can be retrofitted to existing units, however they consume significant amounts of energy to capture, purify and compress the CO{sub 2} for subsequent sequestration. This paper presents a techno-economic comparison of the performance of the two approaches. The comparison was developed using the commercial process simulation packages, Hysys and Aspen Plus. The results show that both processes are expensive options to capture CO{sub 2} from coal power plants, however O{sub 2}/CO{sub 2} appears to be a more attractive retrofit than MEA scrubbing. The CO{sub 2} capture cost for the MEA case is USD 53/ton of CO{sub 2} avoided, which translates into 3.3 cent/kW h. For the O{sub 2}/CO{sub 2} case the CO{sub 2} capture cost is lower at USD 35/ton of CO{sub 2} avoided, which translates into 2.4 cent/kW h. These capture costs represent an approximate increase of 20-30% in current electricity prices. (Author)

  9. Emissions of NO and CO from counterflow combustion of CH4 under MILD and oxyfuel conditions

    International Nuclear Information System (INIS)

    Cheong, Kin-Pang; Li, Pengfei; Wang, Feifei; Mi, Jianchun

    2017-01-01

    This paper reports on the NO and CO emission characteristics of counterflow combustion of methane simulated under MILD or/and oxyfuel conditions. Simulations using CHEMKIN are conducted for various injection conditions of fuel and oxidizer. Note that the terms “oxyfuel”, “MILD-N 2 ” and “MILD-CO 2combustion adopted hereafter represent the conventional oxy-combustion and those MILD combustions diluted by N 2 and CO 2 , respectively. It is observed that the NO emission of MILD-CO 2 combustion is ultra-low for all cases of investigation, even when increasing the combustion temperature up to 2000 K or adding more N 2 (up to 20%) to either the fuel stream (to simulate nitrogen-containing fuels like biomass) or the oxidizer stream (to simulate the air-ingress). A higher temperature allowed under MILD-CO 2 combustion suggests the improvement of energy efficiency for the MILD combustion technology. Moreover, the presence of steam in the oxidant reduces both NO and CO emissions of combustion for all cases. The relative importance analysis reveals that the N 2 O-intermediate mechanism for producing NO prevails in MILD-CO 2 combustion while the prompt and thermal mechanisms predominate MILD-N 2 and oxyfuel combustion, respectively. In addition, the sensitivity analysis identifies those main reactions that play important roles for the NO emission under these combustion conditions. - Highlights: • Assessing the NO and CO emissions from MILD combustion diluted by CO 2 . • Examining the possibility of higher combustion intensity in MILD-CO 2 combustion than in MILD-N 2 combustion. • Differentiating the contributions from each NO mechanism to the total NO emission. • Revealing major NO mechanisms under different combustion conditions. • Better understanding the NO formation mechanisms under MILD combustion.

  10. Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery

    International Nuclear Information System (INIS)

    Iribarren, Diego; Petrakopoulou, Fontina; Dufour, Javier

    2013-01-01

    This study evaluates the environmental and thermodynamic performance of six coal-fired power plants with CO 2 capture and storage. The technologies examined are post-combustion capture using monoethanolamine, membrane separation, cryogenic fractionation and pressure swing adsorption, pre-combustion capture through coal gasification, and capture performing conventional oxy-fuel combustion. The incorporation of CO 2 capture is evaluated both on its own and in combination with CO 2 transport and geological storage, with and without beneficial use. Overall, we find that pre-combustion CO 2 capture and post-combustion through membrane separation present relatively low life-cycle environmental impacts and high exergetic efficiencies. When accounting for transport and storage, the environmental impacts increase and the efficiencies decrease. However, a better environmental performance can be achieved for CO 2 capture, transport and storage when incorporating beneficial use through enhanced oil recovery. The performance with enhanced coal-bed methane recovery, on the other hand, depends on the impact categories evaluated. The incorporation of methane recovery results in a better thermodynamic performance, when compared to the incorporation of oil recovery. The cumulative energy demand shows that the integration of enhanced resource recovery strategies is necessary to attain favourable life-cycle energy balances. - Highlights: ► Evaluation of six different CO 2 capture technologies for coal-fired power plants. ► Calculation of life-cycle environmental impacts and exergetic efficiencies. ► Suitability of post-combustion capture with membrane separation. ► Suitability of pre-combustion capture through coal gasification. ► Improved performance when incorporating enhanced resource recovery

  11. MgO-based adsorbents for CO2 adsorption: Influence of structural and textural properties on the CO2 adsorption performance.

    Science.gov (United States)

    Elvira, Gutiérrez-Bonilla; Francisco, Granados-Correa; Víctor, Sánchez-Mendieta; Alberto, Morales-Luckie Raúl

    2017-07-01

    A series of MgO-based adsorbents were prepared through solution-combustion synthesis and ball-milling process. The prepared MgO-based powders were characterized using X-ray diffraction, scanning electron microscopy, N 2 physisorption measurements, and employed as potential adsorbents for CO 2 adsorption. The influence of structural and textural properties of these adsorbents over the CO 2 adsorption behaviour was also investigated. The results showed that MgO-based products prepared by solution-combustion and ball-milling processes, were highly porous, fluffy, nanocrystalline structures in nature, which are unique physico-chemical properties that significantly contribute to enhance their CO 2 adsorption. It was found that the MgO synthesized by solution combustion process, using a molar ratio of urea to magnesium nitrate (2:1), and treated by ball-milling during 2.5hr (MgO-BM2.5h), exhibited the maximum CO 2 adsorption capacity of 1.611mmol/g at 25°C and 1atm, mainly via chemisorption. The CO 2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area, total pore volume, pore size distribution and crystallinity. The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO 2 adsorption-desorption times, without any significant loss of performance, that supports the potential of MgO-based adsorbent. The results confirmed that the special features of MgO prepared by solution-combustion and treated by ball-milling during 2.5hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO 2 capture technologies. Copyright © 2016. Published by Elsevier B.V.

  12. Study of the O2/CO2 combustion technology; Sanso nensho gijutsu ni kakawaru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M [Center for Coal Utilization, Japan, Tokyo (Japan); Kiga, T; Yamada, T [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Arai, K [Nippon Sanso K.K., Tokyo (Japan); Mori, T [Inst. of Research and Innovation, Tokyo (Japan); Kimura, N; Okawa, M [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    This study is being progressed during a period from 1992 to 1999 as part of the NEDO`s clean coal technology program. This paper describes what has been discussed to date. The absorption method and the adsorption method may be used to recover CO2 as means to deal with the problem of global warming resulted from burning coals. These methods, however, have problems in economy caused from concentration of CO2 in flue gas being low. The present study is intended to raise the CO2 concentration in flue gas by using oxygen plus circulated flue gas in the place of combustion air, so that CO2 may be recovered as it is without being separated from the flue gas. Therefore, an oxygen-blown pulverized coal fired power generation plant having a cryogenic oxygen manufacturing equipment was designed to discuss the plant operability and economy, and the pulverized coal combustion technology by using a dynamic simulation. A large number of findings have been obtained already, and the study has reached a level at which grasping the whole image is now possible. 13 figs.

  13. Novel Solvent System for Post Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alfred; Brown, Nathan

    2013-09-30

    The purpose of this project was to evaluate the performance of ION’s lead solvent and determine if ION’s solvent candidate could potentially meet DOE’s target of achieving 90% CO{sub 2} Capture from a 550 MWe Pulverized Coal Plant without resulting in an increase in COE greater than 35%. In this project, ION’s lead solvent demonstrated a 65% reduction in regeneration energy and a simultaneous 35% reduction in liquid to gas ratio (L/G) in comparison to aqMEA at 90% CO{sub 2} capture using actual flue gas at 0.2 MWe. Results have clearly demonstrated that the ION technology is in line with DOE performance expectations and has the potential to meet DOE’s performance targets in larger scale testing environments.

  14. Co-combustion of Fossil Fuels and Waste

    DEFF Research Database (Denmark)

    Wu, Hao

    The Ph.D. thesis deals with the alternative and high efficiency methods of using waste-derived fuels in heat and power production. The focus is on the following subjects: 1) co-combustion of coal and solid recovered fuel (SRF) under pulverized fuel combustion conditions; 2) dust-firing of straw...

  15. Analysis of the danger potential of H2/CO-combustion in the event of core meltdown

    International Nuclear Information System (INIS)

    Fischer, M.; Wagler, K.; Schwarzott, W.; Reineke, H.H.

    1987-01-01

    Based on an evaluation of the present state of knowledge and the experiments performed, several computing programs for the simulation of H 2 /CO combustion processes were developed within the scope of this project. Besides the one-compartment-model MOPED, based on the formulation of empirical and phenomenological connections, which was also used later to perform the pressure buildup analyses during various core meltdown (CM) scenarios, these were the first two attempts in respect of a fluid-dynamic description of the combustion processes that also takes the reaction kinetics into account (VERLA code, PISCES code). The analysis of the low (LP) and high (HP) pressure path CM conditions showed that no additional risk arises on the HP path due to potential H 2 combustion. In opposition to this maximum combustion gas fractions of 15% by vol. H 2 and 2.5% by vol. CO with assumption of complete enrichment in the containment result on the LP path. With 37 refs., 3 tabs., 78 figs [de

  16. CMS: CO2 Emissions from Fossil Fuels Combustion, ACES Inventory for Northeastern USA

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides estimates of annual and hourly carbon dioxide (CO2) emissions from the combustion of fossil fuels (FF) for 13 states across the Northeastern...

  17. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O' Brien, Kevin

    2014-03-31

    demonstrated. In addition to the experimental studies, the technical challenges pertinent to fouling of slurry-handling equipment and the design of the crystallizer and stripper were addressed through consultation with vendors and engineering analyses. A process flow diagram of the Hot-CAP was then developed and a TEA was performed to compare the energy use and cost performance of a nominal 550-MWe subcritical pulverized coal (PC)-fired power plant without CO{sub 2} capture (DOE/NETL Case 9) with the benchmark MEA-based post-combustion CO{sub 2} capture (PCC; DOE/NETL Case 10) and the Hot-CAP-based PCC. The results revealed that the net power produced in the PC + Hot-CAP is 609 MWe, greater than the PC + MEA (550 MWe). The 20-year levelized cost of electricity (LCOE) for the PC + Hot-CAP, including CO{sub 2} transportation and storage, is 120.3 mills/kWh, a 60% increase over the base PC plant without CO{sub 2} capture. The LCOE increase for the Hot-CAP is 29% lower than that for MEA. TEA results demonstrated that the Hot-CAP is energy-efficient and cost-effective compared with the benchmark MEA process.

  18. Research and development of methods and technologies for CO2 capture in fossil fuel power plants and storage in geological formations in the Czech Republic, stage E2: Methods of and technologies for CO2 capture from flue gas and a draft conceptual design of 2 selected variants of a CO2 capture system for a Czech coal fired power plant unit. Final report for Stage 2. Revision 0

    International Nuclear Information System (INIS)

    Ubra, Olga

    2010-12-01

    The following topics are summarised: Aim and scope of Stage 2. List of research reports developed within Stage 2. Stage 2.1: Methods of and technologies for post-combustion CO 2 capture from the flue gas. Status of research and development worldwide. Stage 2.2: Oxyfuel method and technology. Status of research and development worldwide. Stage 2.3: Selection of a chemical absorption based method for post-combustion CO 2 separation; and Stage 2.4: Conceptual proposals for a technological solution for the selected chemical absorption based method and for application of the oxyfuel method. (P.A.)

  19. Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging.

    Science.gov (United States)

    Guo, Feihong; Zhong, Zhaoping

    2018-08-01

    This work presents studies on the co-combustion of anthracite coal and wood pellets in fluidized bed. Prior to the fluidized bed combustion, thermogravimetric analysis are performed to investigate the thermodynamic behavior of coal and wood pellets. The results show that the thermal decomposition of blends is divided into four stages. The co-firing of coal and wood pellets can promote the combustion reaction and reduce the emission of gaseous pollutants, such as SO 2 and NO. It is important to choose the proportion of wood pellets during co-combustion due to the low combustion efficiency caused by large pellets with poor fluidization. Wood pellets can inhibit the volatilization of trace elements, especially for Cr, Ni and V. In addition, the slagging ratio of wood pellets ash is reduced by co-firing with coal. The research on combustion of coal and wood pellets is of great significance in engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres.

    Science.gov (United States)

    Tahmasebi, Arash; Kassim, Mohd Asyraf; Yu, Jianglong; Bhattacharya, Sankar

    2013-12-01

    The combustion characteristics of microalgae, brown coal and their blends under O2/N2 and O2/CO2 atmospheres were studied using thermogravimetry. In microalgae combustion, two peaks at 265 and 485°C were attributable to combustion of protein and carbohydrate with lipid, respectively. The DTG profile of coal showed one peak with maximum mass loss rate at 360°C. Replacement of N2 by CO2 delayed the combustion of coal and microalgae. The increase in O2 concentration did not show any effect on combustion of protein at the first stage of microalgae combustion. However, between 400 and 600°C, with the increase of O2 partial pressure the mass loss rate of microalgae increased and TG and DTG curves of brown coal combustion shifted to lower temperature zone. The lowest and highest activation energy values were obtained for coal and microalgae, respectively. With increased microalgae/coal ratio in the blends, the activation energy increased due to synergy effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Chemical looping combustion. Fuel conversion with inherent CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Brandvoll, Oeyvind

    2005-07-01

    Chemical looping combustion (CLC) is a new concept for fuel energy conversion with CO2 capture. In CLC, fuel combustion is split into separate reduction and oxidation processes, in which a solid carrier is reduced and oxidized, respectively. The carrier is continuously recirculated between the two vessels, and hence direct contact between air and fuel is avoided. As a result, a stoichiometric amount of oxygen is transferred to the fuel by a regenerable solid intermediate, and CLC is thus a variant of oxy-fuel combustion. In principle, pure CO2 can be obtained from the reduction exhaust by condensation of the produced water vapour. The thermodynamic potential and feasibility of CLC has been studied by means of process simulations and experimental studies of oxygen carriers. Process simulations have focused on parameter sensitivity studies of CLC implemented in 3 power cycles; CLC-Combined Cycle, CLC-Humid Air Turbine and CLC-Integrated Steam Generation. Simulations indicate that overall fuel conversion ratio, oxidation temperature and operating pressure are among the most important process parameters in CLC. A promising thermodynamic potential of CLC has been found, with efficiencies comparable to, - or better than existing technologies for CO2 capture. The proposed oxygen carrier nickel oxide on nickel spinel (NiONiAl) has been studied in reduction with hydrogen, methane and methane/steam as well as oxidation with dry air. It has been found that at atmospheric pressure and temperatures above 600 deg C, solid reduction with dry methane occurs with overall fuel conversion of 92%. Steam methane reforming is observed along with methane cracking as side reactions, yielding an overall selectivity of 90% with regard to solid reduction. If steam is added to the reactant fuel, coking can be avoided. A methodology for long-term investigation of solid chemical activity in a batch reactor is proposed. The method is based on time variables for oxidation. The results for Ni

  2. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and

  3. Membrane Systems Engineering for Post-combustion Carbon Capture

    KAUST Repository

    Alshehri, Ali; Khalilpour, Rajab; Abbas, Ali; Lai, Zhiping

    2013-01-01

    This study proposes a strategy for optimal design of hollow fiber membrane networks for post combustion carbon capture from power plant multicomponent flue gas. A mathematical model describing multicomponent gas permeation through a separation membrane was customized into the flowsheet modeling package ASPEN PLUS. An N-stage membrane network superstructure was defined considering all possible flowsheeting configurations. An optimization formulation was then developed and solved using an objective function that minimizes the costs associated with operating and capital expenses. For a case study of flue gas feed flow rate of 298 m3/s with 13% CO2 and under defined economic parameters, the optimization resulted in the synthesis of a membrane network structure consisting of two stages in series. This optimal design was found while also considering feed and permeate pressures as well as recycle ratios between stages. The cost of carbon capture for this optimal membrane network is estimated to be $28 per tonne of CO2 captured, considering a membrane permeance of 1000 GPU and membrane selectivity of 50. Following this approach, a reduction in capture cost to less than $20 per tonne CO2 captured is possible if membranes with permeance of 2000 GPU and selectivity higher than 70 materialize.

  4. Membrane Systems Engineering for Post-combustion Carbon Capture

    KAUST Repository

    Alshehri, Ali

    2013-08-05

    This study proposes a strategy for optimal design of hollow fiber membrane networks for post combustion carbon capture from power plant multicomponent flue gas. A mathematical model describing multicomponent gas permeation through a separation membrane was customized into the flowsheet modeling package ASPEN PLUS. An N-stage membrane network superstructure was defined considering all possible flowsheeting configurations. An optimization formulation was then developed and solved using an objective function that minimizes the costs associated with operating and capital expenses. For a case study of flue gas feed flow rate of 298 m3/s with 13% CO2 and under defined economic parameters, the optimization resulted in the synthesis of a membrane network structure consisting of two stages in series. This optimal design was found while also considering feed and permeate pressures as well as recycle ratios between stages. The cost of carbon capture for this optimal membrane network is estimated to be $28 per tonne of CO2 captured, considering a membrane permeance of 1000 GPU and membrane selectivity of 50. Following this approach, a reduction in capture cost to less than $20 per tonne CO2 captured is possible if membranes with permeance of 2000 GPU and selectivity higher than 70 materialize.

  5. Effect of silver addition on the properties of combustion synthesized nanocrystalline LiCoO2

    International Nuclear Information System (INIS)

    Ghosh, Paromita; Mahanty, S.; Basu, R.N.

    2008-01-01

    Nanocrystalline (∼50 nm) LiCoO 2 powders containing 0-10 mol% of Ag have been prepared by combustion synthesis using citrate-nitrate combustion route. Thermal analyses show a sharp decomposition of the gel at ∼177 deg. C for pristine LiCoO 2 . With addition of silver, the decomposition becomes sluggish and it completes only above 430 deg. C. X-ray powder diffraction analyses show an increase in lattice parameter, c, with increasing Ag content suggesting the occupation of Ag within LiCoO 2 interlayer spacings. Transmission electron microscopy indicates diffusion of Ag into LiCoO 2 grains. It has been observed that adding 1.0 mol% silver increases the room temperature electrical conductivity by more than two orders of magnitude (1.5 x 10 -3 S cm -1 ). Galvanostatic charge-discharge profiles of coin cells fabricated with the synthesized powders show a two-fold enhancement in the discharge capacity for 1.0 mol% Ag-added LiCoO 2 cathode (140 mAh g -1 ) compared to that for pristine LiCoO 2 (70 mAh g -1 )

  6. Co-combustion of waste materials using fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    M. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Boavida; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2004-07-01

    There is growing interest in using renewable fuels in order to sustain the CO{sub 2} accumulation. Several waste materials can be used as coal substitutes as long as they contain significant combustible matter, as for example MSW and sewage sludge. Besides the outcome of the energetic valorization of such materials, combustion must be regarded as a pre-treatment process, contributing to the safe management of wastes. Landfilling is an expensive management option and requires a previous destruction of the organic matter present in residues, since its degradation generates greenhouse gases and produces acidic organic leachates. Fluidized bed combustion is a promising technology for the use of mixtures of coal and combustible wastes. This paper presents INETI's experience in the co-combustion of coal with this kind of residues performed in a pilot fluidized bed. Both the RDF (from MSW and sewage sludge) and sewage sludge combustion problems were addressed, relating the gaseous emissions, the behaviour of metals and the leachability of ashes and a comparison was made between co-combustion and mono-combustion in order to verify the influence of the utilization of coal. 9 refs., 1 fig., 3 tabs.

  7. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-12-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  8. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  9. Co-combustion performance of coal with rice husks and bamboo

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, P.C.W.; Chao, C.Y.H.; Wang, J.H.; Cheung, C.W.; Kendall, G. [Hong Kong University of Science & Technology, Kowloon (China). Dept. of Mechanical Engineering

    2007-11-15

    Biomass has been regarded as an important form of renewable energy due to the reduction of greenhouse gas emission such as carbon dioxide. An experimental study of co-combustion of coal and biomass was performed in a laboratory-scale combustion facility. Rice husks and bamboo were the selected biomass fuels in this study due to their abundance in the Asia-Pacific region. Experimental parameters including the biomass blending ratio in the fuel mixture, relative moisture content and biomass grinding size were investigated. Both energy release data and pollutant emission information were obtained. Due to the decrease in the heating value from adding biomass in the fuel mixture, the combustion temperature and energy output from the co-firing process were reduced compared with coal combustion. On the other hand, gaseous pollutant emissions including carbon monoxide (CO), carbon dioxide (CO{sub 2}), nitrogen oxides (NOx) and sulfur dioxide (SO{sub 2}) were reduced and minimum energy-based emission factors were found in the range of 10-30% biomass blending ratio. With an increase in the moisture content in the biomass, decreases in combustion temperature, SO{sub 2}, NOx and CO{sub 2} emissions were observed, while an increase in CO emissions was found. It has also been observed that chemical kinetics may play an important role compared to mass diffusion in the co-firing process and the change in biomass grinding size does not have much effect on the fuel burning rate and pollutant emissions tinder the current experimental conditions.

  10. Coal char combustion under a CO{sub 2}-rich atmosphere: Implications for pulverized coal injection in a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Borrego, A.G.; Casal, M.D. [Instituto Nacional del Carbon, CSIC. P.O. Box 73, 33080 Oviedo (Spain); Osorio, E.; Vilela, A.C.F. [Laboratorio de Siderurgia, DEMET/PPGEM - Universidade Federal do Rio Grande do Sul. P.O. Box 15021, 91501-970 Porto Alegre (Brazil)

    2008-11-15

    Pulverized coal injection (PCI) is employed in blast furnace tuyeres attempting to maximize the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. When coal is injected with air through the injection lance, the resolidified char will burn in an atmosphere with a progressively lower oxygen content and higher CO{sub 2} concentration. In this study an experimental approach was followed to separate the combustion process into two distinct devolatilization and combustion steps. Initially coal was injected into a drop tube furnace (DTF) operating at 1300 C in an atmosphere with a low oxygen concentration to ensure the combustion of volatiles and prevent the formation of soot. Then the char was refired into the DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in atmospheres typical for both combustion and oxy-combustion. The fuels tested comprised a petroleum coke and coals currently used for PCI injection ranging from high volatile to low volatile bituminous rank. Thermogravimetric analyses and microscopy techniques were used to establish the reactivity and appearance of the chars. Overall similar burnouts were achieved with N{sub 2} and CO{sub 2} for similar oxygen concentrations and therefore no loss in burnout should be expected as a result of enrichment in CO{sub 2} in the blast furnace gas. The advantage of increasing the amount of oxygen in a reacting atmosphere during burnout was found to be greater, the higher the rank of the coal. (author)

  11. Developing a zero-CO{sub 2}-emission coal combustion process for power generation; Entwicklung eines CO{sub 2}-emissionsfreien Kohleverbrennungsprozesses zur Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Kneer, R.; Abel, D.; Niehuis, R.; Meier, H.R.; Modigell, M.; Peters, N. [RWTH Aachen (Germany)

    2005-07-01

    Besides measures for efficiency improvements by means of increased steam parameters, research on oxyfuel cycles in the main strategy for reduction of CO{sub 2}-emissions from fossil coal-fired power plants. The largest publicity founded German oxyfuel project is the so-called OXYCOAL-AC project, where 6 institutes from RWTH Aachen University and 5 industrial partners collaborate in the development of a CO{sub 2}-free coal combustion power plant cycle. This will be achieved by sing pure oxygen and recirculated CO{sub 2} for the combustion process. The oxygen is provided by a high temperature ceramic membrane module, which separates oxygen from an air feed flow. The challenges of this project and the related research topics are presented by discussing the main components of the OXYCOAL-AC cycle. While this description of the cycle is based on a 400 MW reference power plant, its realisation at the existing test facility at RWTH Aachen University will also be explained. Finally, an outlook on future activities is presented. (orig.)

  12. Thermodynamic analysis of CO2 capture processes for power plants

    OpenAIRE

    Biyouki, Zeinab Amrollahi

    2014-01-01

    This thesis work presents an evaluation of various processes for reducing CO2 emissions from natural-gas-fired combined cycle (NGCC) power plants. The scope of the thesis is to focus mainly on post-combustion chemical absorption for NGCC. For the post-combustion capture plant, an important interface is the steam extraction from the steam turbine in order to supply the heat for solvent regeneration. The steam extraction imposes a power production penalty. The thesis includes analysis and compa...

  13. Supersonic Post-Combustion Inertial CO2 Extraction System Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Balepin, Vladimir [Alliant Techsystems Operations LLC, Ronkonkoma, NY (United States)

    2017-04-05

    This report summarizes the effort carried out under NETL contract DE- FE0013122 from 1 October 2013 to 31 March 2017. As described in this document, technical challenges realized during the performance of this project resulted in completion of only the first two of three planned budget periods. Despite this outcome, substantial progress was made toward understanding and maturing the CO2 capture technology under consideration and considerable future promise remains for applications requiring lower CO2 capture and/or lower CO2.

  14. Combustion and co-combustion of biomass in a bubbling fluidized bed boiler

    NARCIS (Netherlands)

    Khan, A.A.

    2007-01-01

    This PhD dissertation concerns the study of different aspects of biomass (co)-combustion in small-scale fluidized bed boilers for heat generation. The most renowned gaseous emissions from fluidized bed combustion, namely, CO and NO, are investigated with the help of experimental and theoretical

  15. Co-combustion of agricultural wastes in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Huseyin Topal; Aysel T. Atimtay [Gazi University, Ankara (Turkey). Dept. of Mechanical Engineering

    2005-07-01

    In this study a circulating fluidized bed combustion (CFBC) of 125 mm inside diameter and 1800 mm height was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry, and sunflower stems produced as a waste from the edible oil industry with a lignite coal. Lignite coal is a coal most widely used in Turkey. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NOx and total hydrocarbons (C{sub m}H{sub n}) were measured in the flue gas during combustion experiments. By changing the operating parameters the variation of emissions of various pollutants were studied. During combustion tests, it was observed that the volatile matter from agro-wastes quickly volatilizes and mostly burn in the riser. The temperature profiles along the bed and the rise also confirmed this phenomenon. It was found that as the volatile matter content of agro-waste increases, the combustion efficiency increases and the combustion takes place more in the upper region of the riser. These results suggest that agro-wastes are potential fuels that can be utilized for clean energy production by using CFBC in countries where agricultural activities are heavy. 3 refs., 4 figs., 5 tabs.

  16. Pre-Combustion Carbondioxide Capture in Integrated Gasification Combined Cycles

    Directory of Open Access Journals (Sweden)

    M. Zeki YILMAZOĞLU

    2010-02-01

    Full Text Available Thermal power plants have a significant place big proportion in the production of electric energy. Thermal power plants are the systems which converts heat energy to mechanical energy and also mechanical energy to electrical energy. Heat energy is obtained from combustion process and as a result of this, some harmful emissions, like CO2, which are the reason for global warming, are released to atmosphere. The contribution of carbondioxide to global warming has been exposed by the previous researchs. Due to this fact, clean energy technologies are growing rapidly all around the world. Coal is generally used in power plants and when compared to other fossil energy sources unit electricity production cost is less than others. When reserve rate is taken into account, coal may be converted to energy in a more efficient and cleaner way. The aim for using the clean coal technologies are to eradicate the harmful emissions of coal and to store the carbondioxide, orginated from combustion, in different forms. In line with this aim, carbondioxide may be captured by either pre-combustion, by O2/CO2 recycling combustion systems or by post combustion. The integrated gasification combined cycles (IGCC are available in pre-combustion capture systems, whereas in O2/CO2 recycling combustion systems there are ultrasuper critical boiler technologies and finally flue gas washing systems by amines exists in post combustion systems. In this study, a pre-combustion CO2 capture process via oxygen blown gasifiers is compared with a conventional power plant in terms of CO2 emissions. Captured carbondioxide quantity has been presented as a result of the calculations made throughout the study.

  17. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie

    2014-03-01

    Organic-inorganic hybrid materials functionalized with amine-containing reagents are emerging as an important class of materials for capturing carbon dioxide from flue gas. Polymeric silica hollow fiber sorbents are fabricated through the proven dry-jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly(ethyleneimine) to the polymeric silica hybrid material support to improve the CO2 sorption capacity due to the added amine groups. The poly(ethyleneimine) infused and functionalized hollow fiber sorbents are also characterized by a thermal gravimetric analyzer (TGA) to assess their CO2 sorption capacities. © 2014 Elsevier Ltd. All rights reserved.

  18. Co-combustion: A summary of technology

    Directory of Open Access Journals (Sweden)

    Leckner Bo

    2007-01-01

    Full Text Available Co-combustion of biomass or waste together with a base fuel in a boiler is a simple and economically suitable way to replace fossil fuels by biomass and to utilize waste. Co-combustion in a high-efficiency power station means utilization of biomass and waste with a higher thermal efficiency than what otherwise had been possible. Due to transport limitations, the additional fuel will only supply a minor part (less than a few hundreds MW fuel of the energy in a plant. There are several options: co-combustion with coal in pulverized or fluidized bed boilers, combustion on added grates inserted in pulverized coal boilers, combustors for added fuel coupled in parallel to the steam circuit of a power plant, external gas producers delivering its gas to replace an oil, gas or pulverized fuel burner. Furthermore biomass can be used for reburning in order to reduce NO emissions or for afterburning to reduce N2O emissions in fluidized bed boilers. Combination of fuels can give rise to positive or negative synergy effects, of which the best known are the interactions between S, Cl, K, Al, and Si that may give rise to or prevent deposits on tubes or on catalyst surfaces, or that may have an influence on the formation of dioxins. With better knowledge of these effects the positive ones can be utilized and the negative ones can be avoided.

  19. Biomass utilization for green environment: Co-combustion of diesel fuel and producer gas in thermal application

    International Nuclear Information System (INIS)

    Hussain, A.; Ani, F.N.; Mehamed, A.F.

    2007-01-01

    Study of co-combustion of diesel oil and producer gas from a gasifier, individually as well as combined, in an experimental combustion chamber revealed that the producer gas can be co-combusted with liquid fuel. The process produced more CO, NO/sub x/, SO/sub 2/ and CO/sub 2/ as compared to the combustion of diesel oil alone; the exhaust temperature for the process was higher than the diesel combustion alone. (author)

  20. Novel process concept for cryogenic CO2 capture

    OpenAIRE

    Tuinier, M.J.

    2011-01-01

    Carbon capture and storage (CCS) is generally considered as one of the necessary methods to mitigate anthropogenic CO2 emissions to combat climate change. The costs of CCS can for a large extent be attributed to the capture process. Several post-combustion CO2 capture processes have been developed, such as scrubbing, membrane processes and pressure swing adsorption. Amine scrubbing is currently the state of the art technology, in which CO2 is being removed by contacting the flue gas with a so...

  1. Ash quality and environmental quality assurance system in co-combustion - Co-combustion of forest industry waste

    International Nuclear Information System (INIS)

    Laine-Ylijoki, J.; Wahlstroem, M.

    2000-01-01

    The environmental acceptability and possible utilization of co-combustion ashes will have a significant influence on the wider use of co-combustion in the future. At present the correlation between currently used fuels, their mixture ratios, and quality variations in ashes are not known, which complicates the assessment of possible utilization and environmental acceptability of co-combustion ashes. The composition of ashes has also been found to vary significantly. Effective utilization requires that process variations to alter ash composition and quality variations are known in advance. The aim of the research was to characterize the fly ash from co- combustion of peat, wood and biological paper mill sludge produced under different fuel loadings, especially with and without sludge addition, ant to identify critical parameters influencing on the ash composition. The variations in the leaching properties of ashes collected daily were followed up. The environmental acceptability of the ashes produced under different fuel loadings, especially their suitability for use in road constructions, were evaluated. The project included also the preparation of laboratory reference material from ash material. Guidelines were developed for sampling, sample preparation and analysis, and leaching tests. Furthermore, a quality control system, including sampling strategies, sample analysis and leaching testing, was established

  2. Co-combustion of risk husk with coal in a fluidized bed

    International Nuclear Information System (INIS)

    Ghani, A.K.; Alias, A.B.; Savory, R.M.; Cliffe, K.R.

    2006-01-01

    Power generation from biomass is an attractive technology which utilizes agricultural residue waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk) was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and CO emissions were studied and compared with those for pure coal combustion. Biomass waste with up to 70% mass fraction can be co-combusted in a fluidized bed combustor designed for coal combustion with a maximum drop of efficiency of 20% depending upon excess air levels. CO levels fluctuated between 200-700 ppm were observed when coal is added. It is evident from this research that efficient co-firing of rice husk with coal can be achieved with minimum modification of existing coal-fired boilers. (Author)

  3. Experimental Studies of CO2 Capturing from the Flue Gases

    Directory of Open Access Journals (Sweden)

    Ehsan Rahmandoost

    2014-10-01

    Full Text Available CO2 emissions from combustion flue gases have turned into a major factor in global warming. Post-combustion carbon capture (PCC from industrial utility flue gases by reactive absorption can substantially reduce the emissions of the greenhouse gas CO2. To test a new solvent (AIT600 for this purpose, a small pilot plant was used. This paper presents the results of studies on chemical methods of absorbing CO2 from flue gases with the new solvent, and evaluates the effects of operating conditions on CO2 absorption efficiency. CO2 removal rate of the AIT600 solvent was higher in comparison to the conventional monoethanolamine (MEA solvent. The optimized temperature of the absorber column was 60 °C for CO2 absorption in this pilot plant. The overall absorption rate (Φ and the volumetric overall mass transfer coefficient (KGaV were also investigated.

  4. CO2 emissions due to energy combustion in the world in 2012

    International Nuclear Information System (INIS)

    Wong, Florine

    2015-01-01

    Illustrated by tables and graphs of data, this publication addresses and discusses the evolution of greenhouse gas emissions due to fossil energy combustion and consumption in the world (in the different continents, and in the main regions and countries). It outlines that these CO 2 emissions have increase of 1.2 per cent in 2012 (data are compared on the 1970-2012 period). The evolution of CO 2 emission intensity with respect to GDP is also presented and commented: a 2.1 per cent decrease has been noticed for 2012. The comparison between main geographic and economic areas indicates a 1 to 20 ratio between Africa and the USA for the emission level per capita

  5. Effect of CO_2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Bo; Cong, Xiaoyu; Liu, Xiaolong

    2016-01-01

    CO_2 (Carbon dioxide) dilution is a feasible way for controlling NOx (Nitrogen oxides) emissions and loads of the internal combustion engines. This paper investigated the effect of CO_2 dilution on the combustion and emissions characteristics of a hydrogen-enriched gasoline engine. The experiment was conducted on a 1.6 L spark-ignition engine with electronically controlled hydrogen and gasoline injection systems. At two hydrogen volume fractions of 0 and 3%, the CO_2 volume fraction in the intake was gradually increased from 0 to 4%. The fuel-air mixtures were kept at the stoichiometric. The experimental results demonstrated that brake mean effective pressure of the gasoline engine was quickly reduced after adopting CO_2 dilution. Comparatively, Bmep (Brake mean effective pressure) of the 3% hydrogen-enriched engine was gently decreased with the increase of CO_2 dilution level. Thermal efficiency of the 3% hydrogen-enriched gasoline engine was raised under properly increased CO_2 dilution levels. However, thermal efficiency of the pure gasoline engine was generally dropped after the CO_2 dilution. The addition of hydrogen could shorten flame development and propagation durations under CO_2 diluent conditions for the gasoline engine. Increasing CO_2 fraction in the intake caused the dropped NOx and raised HC (Hydrocarbon) emissions. Increasing hydrogen fraction in the intake could effectively reduce HC emissions under CO_2 diluent conditions. - Highlights: • CO_2 dilution reduces cooling loss and NOx of H_2-enriched gasoline engines. • H_2-blended gasoline engine gains better efficiency after CO_2 dilution. • CoVimep of H_2-blended gasoline engine is kept at low level after CO_2 addition. • CO_2 dilution has small effect on reducing Bmep of H_2-blended gasoline engine.

  6. Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants

    International Nuclear Information System (INIS)

    Kunze, Christian; Spliethoff, Hartmut

    2012-01-01

    Highlights: ► Hot gas cleanup is a highly favorable technology for all selected IGCC concepts. ► Proposed high pressure IGCC with membrane reactor enables direct CO 2 condensation. ► IGCC with OTM and carbonate looping enable significant synergy effects. ► Combining IGCC and oxy-fuel is technically challenging but energetically favorable. ► All selected IGCC concepts are able to realize CO 2 capture rates up to 99%. -- Abstract: Environmental damage due to the emission of greenhouse gases from conventional coal-based power plants is a growing concern. Various carbon capture strategies to minimize CO 2 emissions are currently being investigated. Unfortunately, the efficiency drop due to de-carbonization is still significant and the capture rate is limited. Therefore three future hard coal IGCC concepts are assessed here, applying emerging technologies and various carbon capture approaches. The advanced pre-combustion capture concept is based on hot gas clean-up, membrane-enhanced CO conversion and direct CO 2 condensation. The concept reached a net efficiency of 45.1% (LHV), representing an improvement of 6.46% compared to the conventional IGCC base case. The second IGCC concept, based on post-combustion capture via calcination–carbonation loops, hot gas clean-up and oxygen membranes, showed a net efficiency of 45.87% (LHV). The third IGCC concept applies hot gas clean-up and combustion of the unconverted fuel gas using pure oxygen. The oxygen is supplied by an integrated oxygen membrane. The combination of IGCC and oxy-fuel process reached a net efficiency of 45.74% (LHV). In addition to their increased efficiency, all of the concepts showed significantly improved carbon capture rates up to 99%, resulting in virtually carbon-free fossil power plants.

  7. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  8. Characterisation of ashes produced by co-combustion of recovered fuels and peat

    Energy Technology Data Exchange (ETDEWEB)

    Frankenhaeuser, M. [Borealis Polymers Oy, Porvoo (Finland)

    1997-10-01

    The current project focuses on eventual changes in ash characteristics during co-combustion of refuse derived fuel with coal, peat, wood or bark, which could lead to slagging, fouling and corrosion in the boiler. Ashes were produced at fluidised bed (FB) combustion conditions in the 15 kW reactor at VTT Energy, Jyvaeskylae, the fly ash captured by the cyclone was further analysed by XRF at Outokumpu Geotechnical Laboratory, Outokumpu. The sintering behaviour of these ashes was investigated using a test procedure developed at the Combustion Chemistry Research Group at Aabo Akademi University. The current extended programme includes a Danish refuse-derived fuel (RDF), co-combusted with bark/coal (5 tests) and wood/coal (2 tests), a RF from Jyvaskyla (2 tests with peat/coal) and de-inking sludges co- combusted at full-scale with wood waste or paper mill sludge (4 ashes provided by IVO Power). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 deg C, significant changes in sintering are seen with pellets treated at 1000 deg C. Ash from 100 % RDF combustion does not sinter, 25 % RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Contrary to the earlier hypothesis a 25 % coal addition seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows, that (again), in general, an increased level of alkali chlorides and sulphates gives increased sintering. Finally, some results on sintering tendency measurements on ashes from full-scale CFB co-combustion of deinking sludge with wood waste and paper mill sludge are given. This shows that these ashes show very little, if any, sintering tendency, which can be explained from ash chemistry

  9. Experimental research concerning waste co-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, I.

    2007-07-01

    The paper focuses on a lab facility designed for the co-combustion of low calorific Lignite with waste. Also a technology for the potential removal of principal pollutants such as NO{sub x}, Hg and SO{sub 2}, including particles in the fuel gases is described. The novelty of the paper consists in the lay out of the experimental rigs, as well as the application of renewable energy resource in order to generate energy, with lower CO{sub 2} emission. (orig.)

  10. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making

  11. Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie

    2013-07-03

    Increasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO 2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (∼810 cm-1) for Si-C stretching. A cross-linked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 ± 0.1 and 3.3 ± 0.3 GPUs for the coated fibers. The selected lumen layer formation materials

  12. Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie; Lively, Ryan P.; Lee, Jong Suk; Koros, William J.

    2013-01-01

    Increasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO 2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (∼810 cm-1) for Si-C stretching. A cross-linked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 ± 0.1 and 3.3 ± 0.3 GPUs for the coated fibers. The selected lumen layer formation materials

  13. Demonstration of CO2 capture for flue gas of a glass factory

    NARCIS (Netherlands)

    Linders, M.J.G.; Huizinga, A.; Goetheer, E.L.V.

    2012-01-01

    In the project "Connecting CO2 the next step - Carbon Capture and Use", two pilot demonstrations with a post-combustion CO2 capture setup of TNO were carried out at Ardagh Glass (Moerdijk) and Zeeland Refinery (Vlissingen). This article describes the demonstration at Ardagh, but the demonstration at

  14. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Steven M. Masutani

    2001-08-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  15. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  16. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report is the summary first year report covering the reporting period 1 October 2000 to 30 September 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  17. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    International Nuclear Information System (INIS)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO(sub 2) from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO(sub 2) sequestration. University of Hawaii initiated effort on system optimization of the CO(sub 2) sequestration system

  18. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre-combustion

  19. Investigating co-combustion characteristics of bamboo and wood.

    Science.gov (United States)

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2017-11-01

    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. CO2 capture. Two new structures in the 2-amino-2-methyl-1-propanol (AMP) – water – CO2 system

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Neerup, Randi; Fosbøl, Philip Loldrup

    2016-01-01

    Energy production and transportation is responsible for more than 60 % of our CO2 emission. In particular coal-fired power plants are big contributors. However, these large scale facilities offer the possibility to effective CO2 capture through post-combustion processes. There are several options...... studied the 2-amino-2-methyl-1-propanol (AMP) and the AMP-water phase diagramand its ability for CO2 capture. The first crystal structure in the AMP – water system has been solved from powder diffraction data: AMP trihydrate (triclinic, P-1, a = 6.5897(3), b = 6.399 (2), c = 6.3399(2) Å and α = 92.40 (3...... for such CO2 capture. The problem is to make the absorption/desorption processes energetically and thereby economically viable. One process under investigation involves alkanoamines as absorbents in aqueous solutions. In these systems CO2 is captured either by carbonate and/orcarbamate formation. We have...

  1. Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion.

    Science.gov (United States)

    Singhania, Amit; Gupta, Shipra Mital

    2017-01-01

    Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.

  2. CO2 emissions due to energy combustion in the World in 2008

    International Nuclear Information System (INIS)

    2010-12-01

    This brief document presents and comments tables and figures of statistics about CO 2 emissions due to energy combustion in the World, as these emissions represent more than 95% of the whole CO 2 emissions. Data and statistics are given for different countries, notably the main Western and Asian countries. These emissions are considered globally, but they are also related to the GDP or to the population. If a slight increase (1,5%) of the global emissions has been noticed in 2008, they have decreased when they are related to the GDP (-2%). When emissions are related to the number of inhabitants, it appears that an African emits 20 times less than an inhabitant of the United States of America

  3. Modeling and Simulation on NOx and N2O Formation in Co-combustion of Low-rank Coal and Palm Kernel Shell

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2012-12-01

    Full Text Available NOx and N2O emissions from coal combustion are claimed as the major contributors for the acid rain, photochemical smog, green house and ozone depletion problems. Based on the facts, study on those emissions formation is interest topic in the combustion area. In this paper, theoretical study by modeling and simulation on NOx and N2O formation in co-combustion of low-rank coal and palm kernel shell has been done. Combustion model was developed by using the principle of chemical-reaction equilibrium. Simulation on the model in order to evaluate the composition of the flue gas was performed by minimization the Gibbs free energy. The results showed that by introduced of biomass in coal combustion can reduce the NOx concentration in considerably level. Maximum NO level in co-combustion of low-rank coal and palm kernel shell with fuel composition 1:1 is 2,350 ppm, low enough compared to single low-rank coal combustion up to 3,150 ppm. Moreover, N2O is less than 0.25 ppm in all cases. Keywords: low-rank coal, N2O emission, NOx emission, palm kernel shell

  4. Multifunctional (NOx/CO/O2) Solid-State Sensors For Coal Combustion Control

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2006-12-31

    Solid-state sensors were developed for coal combustion control and the understanding of sensing mechanisms was advanced. Several semiconducting metal oxides (p-type and n-type) were used to fabricate sensor electrodes. The adsorption/desorption characteristics and catalytic activities of these materials were measured with Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction (TPR) experiments. The sensitivity, selectivity, and response time of these sensors were measured for steps of NO, NO{sub 2}, CO, CO{sub 2}, O{sub 2}, and H{sub 2}O vapor in simple N{sub 2}-balanced and multi-component, simulated combustion-exhaust streams. The role of electrode microstructure and fabrication parameters on sensing performance was investigated. Proof for the proposed sensing mechanism, Differential Electrode Equilibria, was demonstrated by relating the sensing behavior (sensitivities and cross-sensitivities) of the various electrode materials to their gas adsorption/desorption behaviors and catalytic activities. A multifunctional sensor array consisting of three sensing electrodes and an integrated heater and temperature sensors was fabricated with tape-casting and screen-printing and its NO{sub x} sensing performance was measured. The multifunctional sensor demonstrated it was possible to measure NO{sub 2} independent of NO by locally heating one of the sensing electrodes. The sensor technology was licensed to Fuel FX International, Inc. Fuel FX has obtained investor funding and is developing prototype sensors as a first step in their commercialization strategy for this technology.

  5. Catalytic combustion of methane over mixed oxides derived from Co-Mg/Al ternary hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zheng [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Research Centre of Eco-Environmental Sciences, CAS, Beijing 100085 (China); Jesus College, University of Oxford, OX1 3DW (United Kingdom); Yu, Junjie; Cheng, Jie; Hao, Zhengping [Research Centre of Eco-Environmental Sciences, CAS, Beijing 100085 (China); Xiao, Tiancun; Edwards, Peter P. [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Jones, Martin O. [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)

    2010-01-15

    Co{sub x}Mg{sub 3-x} /Al composite oxides (xCoMAO-800) were prepared by calcination of Co{sub x}Mg{sub 3-x}/Al hydrotalcites (x=0.0,0.5,1.0,1.5,2.0,2.5,3.0, respectively) at 800 C. The materials were characterized using XRD, TG-DSC, N{sub 2} adsorption-desorption and TPR. The methane catalytic combustion over the xCoMAO-800 was assessed in a fixed bed micro-reactor. The results revealed that cobalt can be homogenously dispersed into the matrices of the hydrotalcites and determines the structure, specific surface areas and porosity of the derived xCoMAO-800 oxide catalysts. The thermal stability and homogeneity of the hydrotalcites markedly depends on the cobalt concentration in the hydrotalcites. The Co-based hydrotalcite-derived oxides exhibit good activity in the catalytic combustion of methane. The catalytic activity over the xCoMAO-800 oxides enhances with increasing x up to 1.5, but subsequently decreases dramatically as cobalt loadings are further increased. The 1.5CoMAO-800 catalyst shows the best methane combustion activity, igniting methane at 450 C and completing methane combustion around 600 C. The catalytic combustion activity over the xCoMAO-800 oxides are closely related to the strong Co-Mg/Al interaction within the mixed oxides according to the TG-DSC, TPR and activity characteristics. (author)

  6. Characterization of soft-combustion-derived NASICON-type Li2Co2(MoO4)3 for lithium batteries

    International Nuclear Information System (INIS)

    Prabaharan, S.R.S.; Ramesh, S.; Michael, M.S.; Begam, K.M.

    2004-01-01

    This work describes the synthesis of a new polyanion material, Li 2 Co 2 (MoO 4 ) 3 , belonging to the NASICON family. A low-temperature soft-combustion method using glycine as a soft-combustion fuel was adopted to obtain single-phase powders of the new material at a temperature as low as 300 deg. C. Li 2 Co 2 (MoO 4 ) 3 was found to crystallize in an orthorhombic structure (space group Pmmm) with lattice parameters a = 17.584(7) A, b 10.464(4) A and c = 5.102(9) A. The electronic state of each element present in the new material was confirmed by X-ray photoelectron spectroscopic analysis. The powders were analyzed using inductively coupled plasma emission spectroscopy. The microstructural analysis revealed that the particles (5-10 μm) have a rather columnar shape. The electrochemistry redox behavior of the new material was studied, for the first time, and the material as positive electrode was found to exhibit topotactic Li + extraction/insertion in lithium-containing test cells

  7. Research and Education of CO{sub 2} Separation from Coal Combustion Flue Gases with Regenerable Magnesium Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Youp

    2013-09-30

    A novel method using environment-friendly chemical magnesium hydroxide (Mg(OH){sub 2}) solution to capture carbon dioxide from coal-fired power plants flue gas has been studied under this project in the post-combustion control area. The project utilizes the chemistry underlying the CO{sub 2}-Mg(OH){sub 2} system and proven and well-studied mass transfer devices for high levels of CO{sub 2} removal. The major goals of this research were to select and design an appropriate absorber which can absorb greater than 90% CO{sub 2} gas with low energy costs, and to find and optimize the operating conditions for the regeneration step. During the project period, we studied the physical and chemical characteristics of the scrubbing agent, the reaction taking place in the system, development and evaluation of CO{sub 2} gas absorber, desorption mechanism, and operation and optimization of continuous operation. Both batch and continuous operations were performed to examine the effects of various parameters including liquid-to-gas ratio, residence time, lean solvent concentration, pressure drop, bed height, CO{sub 2} partial pressure, bubble size, pH, and temperature on the absorption. The dissolution of Mg(OH){sub 2} particles, formation of magnesium carbonate (MgCO{sub 3}), and vapor-liquid-solid equilibrium (VLSE) of the system were also studied. The dissolution of Mg(OH){sub 2} particles and the steady release of magnesium ions into the solution was a crucial step to maintain a level of alkalinity in the CO{sub 2} absorption process. The dissolution process was modeled using a shrinking core model, and the dissolution reaction between proton ions and Mg(OH){sub 2} particles was found to be a rate-controlling step. The intrinsic surface reaction kinetics was found to be a strong function of temperature, and its kinetic expression was obtained. The kinetics of MgCO{sub 3} formation was also studied in terms of different pH values and temperatures, and was enhanced under high p

  8. Total chain dynamical assessment with an integrated model of a Post Combustion Capture Plant at a Pulverized Coal Plant and CO2 downstream infrastructure

    NARCIS (Netherlands)

    Kler, R.C.F. de; Haar, A.M. van de

    2013-01-01

    The application of Post Combustion Capture has a significant advantage for mitigating the anthropogenic greenhouse gases in our atmosphere, in comparison to other capture technologies, since it is a so called “End of the Pipe” retrofit and therefore potentially applicable to existing power plants.

  9. Co-combustion of coal and meat and bone meal

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; D. Boavida; P. Abelha; M.H. Lopes; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2005-12-01

    Feeding meat and bone meal (MBM) to cattle, sheep or other animals has been banned within the EU since 1 of July 1994. The quantities to be eliminated are measured in millions of tons. Disposal to landfill is not an option, as simply burying the material cannot destroy any potential bovine spongiform encephalopathy (BSE) pathogens. One disposal option is the co-combustion of coal and MBM, to ensure that any living organism is totally thermally destroyed and at the same time valorising its energetic potential. Fluidised bed co-combustion of MBM is considered a viable technological option as it has the flexibility to burn coal with different materials in an efficient way, at relatively low temperatures (750-850{sup o}C) with lower environmental impact. For this purpose, co-combustion tests of coal and MBM were carried out on a pilot scale FBC, to investigate the implications of the results. This involved the determination of the emissions of pollutants like NOx, N{sub 2}O, VOC, CO{sub 2}, as well as the composition and the valorisation of the ashes produced. The ashes from the bed, the cyclones and the stack were collected and analyzed for biological activity, ecotoxicity, heavy metal concentration and leachability. The results obtained suggest that the ashes were suitable to be deposited in municipal landfills. 23 refs., 10 figs., 10 tabs.

  10. Development of a simple computer code to obtain relevant data on H2 and CO combustion in severe accidents and to aid in PSA-2 assessments

    International Nuclear Information System (INIS)

    Robledo, F.; Martin-Valdepenas, J.M.; Jimenez, M.A.; Martin-Fuertes, F.

    2007-01-01

    By following Consejo de Seguridad Nuclear (CSN) requirements, all of the Spanish NPPs performed plant specific PSA level 2 studies and implemented Severe Accident Management Guidelines during the first years of this century. CSN and contractors made an independent detailed review of these PSA level 2 studies. This independent review included the performance of plant specific calculations by using the MELCOR code and some other stand-alone codes and the calculation of the fission product release frequencies for each plant. One of the aspects treated in detail by CSN evaluations was the calculation of the containment failure probability due to the burn of combustible gases generated during a severe accident. It was shown that it would be useful to have a fast running code with capability to provide the most relevant data concerning H 2 and CO combustion. Therefore, the Polytechnic University of Madrid (UPM) developed the CPPC code for the CSN. This stand-alone module makes fast calculations on maximum static pressures in the containment building generated from H 2 and CO combustion in severe accidents, considering well-mixed atmospheres and includes the most recent advances and developments in the field of H 2 and CO combustion. Code input is simple: mass of H 2 and CO, initial environmental conditions inside the containment before the combustion and simple geometric data, such as the volume of the building enclosing the combustible gases. The code calculates the containment temperature assuming steam saturated atmosphere and provides the following output: - Combustion completeness (CC); - Adiabatic and isochoric combustion pressure (p AICC ); - Chapman-Jouguet pressure (p CJ ); - Chapman-Jouguet reflected pressure (p Cjrefl ). When the combustion regime results in dynamic pressure loads, the CPPC code calculates the equivalent static pressure (effective pressure p eff ) by modeling the containment structure as a simple harmonic oscillator. Additionally, the code

  11. Co-combustion of peach and apricot stone with coal in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T.; Kaynak, Burcak [Department of Environmental Engineering, Middle East Technical University, Ankara 06531 (Turkey)

    2008-02-15

    In this study a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry with coal. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub X} and total hydrocarbons (C{sub m}H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity, and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. For co-combustion of apricot and peach fruit stones with a lignite coal, various ratios of biomass to coal ranging from 0 to 100 wt.% were tested. For the peach stone co-combustion tests, efficiencies are about 98% and for the apricot stone co-combustion tests, efficiencies ranged between 94.7% and 96.9% for 25%, 50% and 75% of apricot stone in the fuel mixture. The results of this study have shown that as the biomass ratio in the fuel mixture increases, the combustion takes place at the upper regions of the main column. This causes higher temperatures in the freeboard than the bed. Also the CO and hydrocarbon (C{sub m}H{sub n}) emissions increase as the biomass percentage increases in the fuel mixture. This causes decrease in the combustion efficiency. These results suggest that peach and apricot stones are potential fuels that can be utilized for clean energy production in small-scale fruit juice industries by using BFBC. The percentage of peach stones or apricot stones in the fuel mixture is suggested to be below 50 wt.% in order to obtain the emission limits of EU. During the design of the BFBC, one has to be careful about the volatile matter (VM) content of the biomass. For the complete combustion of the VM, longer freeboard or secondary air addition should be

  12. ASSESSMENT OF CO2 EMISSION MITIGATION FOR A BRAZILIAN OIL REFINERY

    Directory of Open Access Journals (Sweden)

    W. N. Chan

    Full Text Available Abstract Currently the oil refining sector is responsible for approximately 5% of the total Brazilian energy related CO2 emissions. Possibilities to reduce CO2 emissions and related costs at the largest Brazilian refinery have been estimated. The abatement costs related to energy saving options are negative, meaning that feasibility exists without specific income due to emission reductions. The assessment shows that short-term mitigation options, i.e., fuel substitution and energy efficiency measures, could reduce CO2 emissions by 6% of the total current refinery emissions. It is further shown that carbon capture and storage offers the greatest potential for more significant emission reductions in the longer term (up to 43%, but costs in the range of 64 to162 US$/t CO2, depending on the CO2 emission source (regenerators of FCC units or hydrogen production units and the CO2 capture technology considered (oxyfuel combustion or post-combustion. Effects of uncertainties in key parameters on abatement costs are also evaluated via sensitivity analysis.

  13. C2A2 Project - CO2 Capture by Advances Amines process

    International Nuclear Information System (INIS)

    Thybaud, Nathalie

    2014-06-01

    This publication presents the operation principles and the obtained results for a research demonstrator developed in Le Havre by EDF and Alstom for CO 2 capture by post-combustion. The implemented technology, developed by Alstom and DOX Chemical is named Advanced Amines Processes (AAP). This process comprises the use of solvent and a specific process scheme (the Advanced Flow Scheme or AFS). The smoke treatment chain of the installation is described, and the valorisation of combustion by-products and of smoke processing operations is indicated. The capacities of the installation are given. Systems aimed at increasing the solvent lifetime are described, and some operational parameters are indicated. Various aspects related to the demonstrator design, construction and operation are discussed. Results obtained during tests between October 2013 and March 2014 are given and discussed in terms of quantity of captured CO 2 , of energy performance, of solvent management and consumption, of emissions, of corrosion, of exploitation organisation, and of instrumentation verification and data quality

  14. Calcium looping technology using improved stability nanostructured sorbent for cyclic CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Cong; Zheng, Ying; Ding, Ning; Zheng, Chu-guang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    One of the post-combustion CO{sub 2} capture technologies that have sufficiently been proved to be the best candidates for practical large scale post-combustion application is the calcium looping cycle. However, the CO{sub 2} capture capacity of a calcium-based sorbent derived from natural limestone decays through long-term cyclic utilization; thus, the development of novel sorbents to achieve a high CO{sub 2} capture capacity is an critical challenge for the calcium looping cycle technology. In this paper, we report the preparation and character of a new calcium-based sorbent produced via the combustion of a dry gel. The results show that the novel calcium-based sorbent has a much higher residual carbonation conversion as well as a better performance of anti-sintering when compared with the calcium-based sorbent derived from commercial micrometer grade CaCO{sub 3} and nanometer grade CaCO{sub 3}. It is reasonable to propose that the different final carbonation performances are induced by their different pore structures and BET surface areas rather than by different particle sizes. Compared with the commercial nano CaO, the morphology of the new sorbent shows a more rough porous appearance with hollow nanostructure. During carbonation, CO{sub 2} diffused more easily through the hollow structure than through a solid structure to reach the unreacted CaO. Besides, there is less chance for the hollow nanostructured particles to be merged together during the high temperature reactions.

  15. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    International Nuclear Information System (INIS)

    Miedema, Jan H.; Benders, René M.J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Highlights: • Coal mining is more energy and CO_2 efficient than biomass production. • Co-combustion of 60% biomass with coal doubles mass transport compared to 100% coal. • Low co-combustion levels reduce GHG emissions, but the margins are small. • Total supply chain efficiency is the highest for the coal reference at 41.2%. - Abstract: Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain scenario, for a Dutch situation. The 60% biomass co-combustion supply chain scenarios show possibilities to reduce emissions up to 48%. The low co-combustion levels are effective to reduce GHG emissions, but the margins are small. Currently co-combustion of pellets is the norm. Co-combustion of combined torrefaction and pelleting (TOP) shows the best results, but is also the most speculative. The indicators from the renewable energy directive cannot be aligned. When biomass is regarded as scarce, co-combustion of small shares or no co-combustion is the best option from an energy perspective. When biomass is regarded as abundant, co-combustion of large shares is the best option from a GHG reduction perspective.

  16. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    Science.gov (United States)

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Heavy metals behaviour during mono-combustion and co-combustion of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Abelha, Pedro; Olieveira, J.F. Santos; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI-DEECA, Lisboa (Portugal)

    2005-03-01

    This paper presents the study of the combustion of granular dry sewage sludge performed on a pilot fluidized bed system. The results of mono-combustion of sludge and co-combustion with coal were compared with those of coal combustion for ash partitioning, the formation of gaseous pollutants and heavy metals behaviour. It was found that the mineral matter of sludge was essentially retained as bottom ashes. The production of fines ashes was small during the mono-combustion due to the tendency of coal to produce fine ashes which also contained unburned char. The degree of heavy metal volatilization was found to be slightly higher during co-combustion than in mono-combustion; however, most of them were retained in ashes and their emissions were found to be below the regulated levels. Hg was completely volatilized; however, during combustion trials involving coal it was captured by cyclone ashes at temperatures below 300 deg C. During sludge mono-combustion the retention of Hg in cyclone ashes containing low LOI was not enough to decrease emissions below the regulated levels; hence, it is necessary to install dedicated flue gas treatment for Hg removal. The leachability and ecotoxicity of sludge and ashes was compared with the new regulatory limits for landfill disposal in the EU. It was found that the release of organic matter and heavy metals found in the sludge was low from granular bed ashes; hence, except for sulphate release, bed ashes were converted into inert and non-ecotoxic materials. Ashes from test with limestone and cyclone ashes seemed to be more problematic because of pH effects and contamination with steel corrosion products. The recovery and reutilization of sludge bed ashes could, therefore, be possible, as long as the release of sulphate do not interfere with the process.

  18. Forecasting of CO2 emissions from fuel combustion using trend analysis

    International Nuclear Information System (INIS)

    Koene, Aylin Cigdem; Bueke, Tayfun

    2010-01-01

    The accelerating use of fossil fuels since the Industrial Revolution and the rapid destruction of forests causes a significant increase in greenhouse gases. The increasing threat of global warming and climate change has been the major, worldwide, ongoing concern especially in the last two decades. The impacts of global warming on the world economy have been assessed intensively by researchers since the 1990s. Worldwide organizations have been attempting to reduce the adverse impacts of global warming through intergovernmental and binding agreements. Carbon dioxide (CO 2 ) is one of the most foremost greenhouse gases in the atmosphere. The energy sector is dominated by the direct combustion of fuels, a process leading to large emissions of CO 2 . CO 2 from energy represents about 60% of the anthropogenic greenhouse gas emissions of global emissions. This percentage varies greatly by country, due to diverse national energy structures. The top-25 emitting countries accounted 82.27% of the world CO 2 emissions in 2007. In the same year China was the largest emitter and generated 20.96% of the world total. Trend analysis is based on the idea that what has happened in the past gives traders an idea of what will happen in the future. In this study, trend analysis approach has been employed for modelling to forecast of energy-related CO 2 emissions. To this aim first, trends in CO 2 emissions for the top-25 countries and the world total CO 2 emissions during 1971-2007 are identified. On developing the regression analyses, the regression analyses with R 2 values less than 0.94 showing insignificant influence in statistical tests have been discarded. Statistically significant trends are indicated in eleven countries namely, India, South Korea, Islamic Republic of Iran, Mexico, Australia, Indonesia, Saudi Arabia, Brazil, South Africa, Taiwan, Turkey and the world total. The results obtained from the analyses showed that the models for those countries can be used for CO 2

  19. Alternative solvents for post combustion carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Udara S.P.R. [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The process model of post combustion chemical absorption is developed in Aspen Plus for both coal and gas fired power plant flue gas treating. The re-boiler energy requirement is considered as the most important factor to be optimized. Two types of solvents, mono-ethylamine (MEA) and di-ethylamine (DEA), are used to implement the model for three different efficiencies. The re-boiler energy requirement for regeneration process is calculated. Temperature and concentration profiles in absorption column are analyzed to understand the model behavior. Re-boiler energy requirement is considerably lower for DEA than MEA as well as impact of corrosion also less in DEA. Therefore, DEA can be recommended as a better solvent for post combustion process for carbon capture plants in fossil fuel fired power industries.

  20. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. C.L. Senior

    2001-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period from 1 October to 31 December 2000. During this period planning of chemostat experiments at Aquasearch was initiated. These experiments will be used to select microalgae for the photobioreactor demonstrations. An initial survey of techniques for removing CO{sub 2} from coal-fired flue gas was begun. Chemical adsorption using MEA is the most mature technology and looks to be the most economically viable in the near future.

  1. CO2 capture by chemical looping combustion

    International Nuclear Information System (INIS)

    Forero, Carmen R; Adanez, Juan; Gayan, Pilar; Garcia L, Francisco; Abad, Alberto

    2010-01-01

    NiO and CuO based oxygen carriers (OCs) supported on Al 2 O 3 prepared by impregnation were selected for its evaluation in a continuous pilot plant of 500 Wth of two interconnected fluidized beds, where both methane and syngas were used as fuel gas. In addition, the effect of possible impurities in the fuel gas such as sulphur compounds and other hydrocarbons in the combustion efficiency of the process and the behaviour of the OCs were studied. Based on these results, it can be concluded that both OCs are suitable for a chemical looping combustion (CLC) process with methane, syngas and methane with impurities such as light hydrocarbons or sulphur.

  2. Synthesis and characterization of reactions by nanoferrites Co{sub 2}Fe{sub 2}O{sub 4} combustion; Sintese por reacao de combustao e caracterizacao de nanoparticulas de Co{sub 2}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Santos, P.T.A.; Dantas, B.B.; Costa, A.C.F.M.; Araujo, P.M.A.G., E-mail: polyanaquimica@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2012-07-01

    In this work CoFe{sub 2}O{sub 4} of magnetic nanoparticles were synthesized by combustion reaction and the structural and morphological characteristics of the synthesized samples as well as the parameters of synthesis temperature and reaction time were investigated in order to assess the reproducibility of the synthesis. The maximum temperature and time of the combustion flame were obtained with pyrometer coupled to a computer with online measurement and a stopwatch. The resulting samples were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The maximum temperature achieved during synthesis for all reactions ranged from 623 deg C and 755 deg C. The combustion flame time varied between 18 and 23 seconds. The XRD showed the formation of only CoFe{sub 2}O{sub 4} inverse spinel phase, with crystallite size 28 nm and crystallinity 78%, with typical morphology of the formation of agglomerates of uniform size, brittle and comprising nanoparticles together by weak forces. (author)

  3. CO2 capture in a continuous gas–solid trickle flow reactor

    NARCIS (Netherlands)

    Veneman, Rens; Hilbers, T.J.; Brilman, Derk Willem Frederik; Kersten, Sascha R.A.

    2016-01-01

    This paper describes the selection, design and experimental validation of a gas–solid trickle flow adsorber for post-combustion CO2 capture using a supported amine sorbents (Lewatit® VP OC 1065). The experimental work presented here summarizes over 300 h of operating experience, which is equivalent

  4. Model Research of Gas Emissions From Lignite and Biomass Co-Combustion in a Large Scale CFB Boiler

    Directory of Open Access Journals (Sweden)

    Krzywański Jarosław

    2014-06-01

    Full Text Available The paper is focused on the idea of a combustion modelling of a large-scale circulating fluidised bed boiler (CFB during coal and biomass co-combustion. Numerical computation results for three solid biomass fuels co-combustion with lignite are presented in the paper. The results of the calculation showed that in previously established kinetics equations for coal combustion, some reactions had to be modified as the combustion conditions changed with the fuel blend composition. Obtained CO2, CO, SO2 and NOx emissions are located in borders of ± 20% in the relationship to the experimental data. Experimental data was obtained for forest biomass, sunflower husk, willow and lignite cocombustion tests carried out on the atmospheric 261 MWe COMPACT CFB boiler operated in PGE Turow Power Station in Poland. The energy fraction of biomass in fuel blend was: 7%wt, 10%wt and 15%wt. The measured emissions of CO, SO2 and NOx (i.e. NO + NO2 were also shown in the paper. For all types of biomass added to the fuel blends the emission of the gaseous pollutants was lower than that for coal combustion.

  5. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    T. Nakamura; C.L. Senior

    2005-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October 2000 to 31 March 2005 in which PSI, Aquasearch and University of Hawaii conducted their tasks. This report discusses results of the work pertaining to five tasks: Task 1--Supply of CO2 from Power Plant Flue Gas to Photobioreactor; Task 2--Selection of Microalgae; Task 3--Optimization and Demonstration of Industrial Scale Photobioreactor; Task 4--Carbon Sequestration System Design; and Task 5--Economic Analysis. Based on the work conducted in each task summary conclusion is presented.

  6. CO2 and its correlation with CO at a rural site near Beijing: implications for combustion efficiency in China

    Directory of Open Access Journals (Sweden)

    H. Ma

    2010-09-01

    Full Text Available Although China has surpassed the United States as the world's largest carbon dioxide emitter, in situ measurements of atmospheric CO2 have been sparse in China. This paper analyzes hourly CO2 and its correlation with CO at Miyun, a rural site near Beijing, over a period of 51 months (Dec 2004 through Feb 2009. The CO2-CO correlation analysis evaluated separately for each hour of the day provides useful information with statistical significance even in the growing season. We found that the intercept, representing the initial condition imposed by global distribution of CO2 with influence of photosynthesis and respiration, exhibits diurnal cycles differing by season. The background CO2 (CO2,b derived from Miyun observations is comparable to CO2 observed at a Mongolian background station to the northwest. Annual growth of overall mean CO2 at Miyun is estimated at 2.7 ppm yr−1 while that of CO2,b is only 1.7 ppm yr−1 similar to the mean growth rate at northern mid-latitude background stations. This suggests a relatively faster increase in the regional CO2 sources in China than the global average, consistent with bottom-up studies of CO2 emissions. For air masses with trajectories through the northern China boundary layer, mean winter CO2/CO correlation slopes (dCO2/dCO increased by 2.8 ± 0.9 ppmv/ppmv or 11% from 2005–2006 to 2007–2008, with CO2 increasing by 1.8 ppmv. The increase in dCO2/dCO indicates improvement in overall combustion efficiency over northern China after winter 2007, attributed to pollution reduction measures associated with the 2008 Beijing Olympics. The observed CO2/CO ratio at Miyun is 25% higher than the bottom-up CO2/CO emission ratio, suggesting a contribution of respired CO2 from urban residents as well as agricultural soils and livestock in the observations and uncertainty in the emission estimates.

  7. Detection of spontaneous combustion underground by measuring CO levels

    Energy Technology Data Exchange (ETDEWEB)

    Boutonnat, M; Jeger, M

    1980-01-01

    It is essential to detect spontaneous combustion as soon as it occurs so as to prevent such outbreaks from becoming a serious conflagration. At present CO detection is the basic method used. States the need for setting up additional measuring points (in air returns from working palces and in return airways in general). Where possible measuring instruments should be placed near zones where there is a particularly high risk of spontaneous combustion. Measurement should be undertaken on a continuous basis or as frequently as possible and must be capable of distinguishing between extraneous CO (shotfiring and diesel motors) and CO emanating from outbreaks of spontaneous combustion. The article describes two instruments developed by CERCHAR: the remote-control CO monitors type C and CSD. Both devices make use of a UNOR analyser.

  8. On the limits of CO2 capture capacity of carbons

    OpenAIRE

    Fernández Martín, Claudia; González Plaza, Marta; Pis Martínez, José Juan; Rubiera González, Fernando; Pevida García, Covadonga; Álvarez Centeno, Teresa

    2010-01-01

    This study shows that standard techniques used for carbons characterization, such as physical adsorption of CO2 at 273 K and N2 at 77 K, can be used to assess, with a good accuracy, the maximum capacity of carbons to capture CO2 under post- and pre-combustion conditions. The analysis of the corresponding adsorption isotherms, within the general theoretical framework of Dubinin's theory, leads to the values of the micropore volume, Wo, and the characteristic energy, Eo, of the carbons, which p...

  9. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1997-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  10. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K. [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1996-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  11. A study of structure–activity relationships of commercial tertiary amines for post-combustion CO_2 capture

    International Nuclear Information System (INIS)

    Xiao, Min; Liu, Helei; Idem, Raphael; Tontiwachwuthikul, Paitoon; Liang, Zhiwu

    2016-01-01

    Highlights: • Ethyl group is beneficial for tertiary amines of CO_2 absorption. • The existence of side carbon chain may promote the activity of tertiary amine. • Hydroxyl group reduces the equilibrium CO_2 solubility, k_2 and pKa. • Heterocyclic structure decrease the equilibrium CO_2 solubility, k_2 and pKa. • Hydroxyl group results in higher CO_2 absorption heat. - Abstract: This work examined the relationship between the structure of various commercial tertiary amines and their activity in CO_2 absorption/desorption in terms of rate of CO_2 absorption, equilibrium CO_2 loading, pKa and heat of CO_2 absorption in order to establish possible guidelines for selection of tertiary amine components for amine blends. Results show that any electron donating group linked directly to the nitrogen atom increases their reactivity with CO_2. In addition, the presence of steric hindrance effect and good water solubility also show enhancements in activity. In contrast, the existence of a hydroxyl group leads to a decrease in all the activity of the tertiary amine. The heat of CO_2 absorption of tertiary amines, which is closely related to the regeneration energy, can be reduced by decreasing the number of hydroxyethyl groups or by positing the hydroxyl group at the proper carbon relative to the nitrogen atom.

  12. Deposit Formation in a 150 MWe Utility PF-Boiler during Co-combustion of Coal and Straw

    DEFF Research Database (Denmark)

    Andersen, Karin Hedebo; Frandsen, Flemming; Hansen, P. F. B.

    2000-01-01

    A conventional pc-fired boiler at the Danish energy company I/S Midtkraft has been converted to coal-straw co-combustion, and a 2 year demonstration program was initiated in January 1996, addressing several aspects of coal-straw co-combustion. Deposition trials were performed as part of the demon......A conventional pc-fired boiler at the Danish energy company I/S Midtkraft has been converted to coal-straw co-combustion, and a 2 year demonstration program was initiated in January 1996, addressing several aspects of coal-straw co-combustion. Deposition trials were performed as part...... problematic deposits. Go-firing straw also caused a change in the structure of the upstream deposits. During coal combustion an ordered, "finger" structure of the larger particles with small particles between was observed, whereas during co-combustion a more random deposition of the larger particles among...... arise when burning other coals, particularly coals with a high S or alkali metal content or a low content of ash. The behavior of K, Ca, S, and Cl was evaluated by use of thermodynamic calculations. The thermodynamically stable species agree with the observed behavior in the experiments, i.e. formation...

  13. Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

    2012-05-02

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  14. Influence of catalysts on co-combustion of sewage sludge and water hyacinth blends as determined by TG-MS analysis.

    Science.gov (United States)

    Huang, Limao; Xie, Candie; Liu, Jingyong; Zhang, Xiaochun; Chang, KenLin; Kuo, Jiahong; Sun, Jian; Xie, Wuming; Zheng, Li; Sun, Shuiyu; Buyukada, Musa; Evrendilek, Fatih

    2018-01-01

    Effects of the three metal carbonates (K 2 CO 3 , Na 2 CO 3 , and MgCO 3 ) were quantified on catalytic co-combustion of the sewage sludge and water hyacinth (SW) blend using a thermogravimetric-mass spectrometric (TG-MS) analysis and kinetics modeling. The main dominating steps of the catalysts were the organic volatile matter release and combustion stage. Weighted mean values of activation energy (E m ) were estimated at 181.18KJ·mol -1 , 199.76KJ·mol -1 , 138.76KJ·mol -1 , and 177.88KJ·mol -1 for SW, SW+5% K 2 CO 3 , SW+5% Na 2 CO 3 , and SW+5% MgCO 3 , respectively. The lowest E m occurred with SW+5% Na 2 CO 3 . Overall, catalyst effect on co-combustion appeared to be negligible as indicated by Gibbs free energy (ΔG). The normalized intensities of SW+MgCO 3 were strongest. The addition of Na 2 CO 3 and MgCO 3 to SW increased flue gases emissions (CO 2 , NO 2 , SO 2 , HCN, and NH 3 ) of SW, whereas the addition of K 2 CO 3 to SW reduced flue gases emissions from the entire combustion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ameliorer les performances environnementales des centrales a charbon pulverise via la co-combustion de combustible derive de dechets

    Science.gov (United States)

    Vekemans, Odile Geraldine

    Coal supplies around 28% of the world's energy needs and produces some 40% of the world's electricity. In the United States, close to 650 coal power plants currently produce electricity from coal, the majority of witch are equipped with pulverized coal boilers build in the 80's. Due to coal's intrinsic content in nitrogen and sulfur, its combustion is associated with high levels of NOx and SO2 emissions, that are responsible, among other thing, for acid rains. In order to help reduce SO2 emissions of coal power plant, this thesis focuses on the behaviour of a novel feedstock called ReEF(TM) or ReEngineered Feedstock(TM), developed by the company Accordant Energy LLCRTM, that combines non recyclable waste and alkaline sorbent. Since waste have a high calorific value and do not contain sulfur, and since alkaline sorbents (such as limestone) are able to react with SO2 and capture it in solid state, co-combustion of ReEF(TM) and coal could reduce SO2 emissions inside the furnace chamber itself. This technology easy to implement, as it requires a limited initial investment and limited additional space, could help avoid the construction of costly flue gas treatment unit downstream from the furnace. However, careless combustion of this engineered fuel could have disastrous consequences for the coal power plant owners. This thesis, then, deliver one among the first experimental study of co-combustion of coal and ReEF(TM) in conditions characteristic of pulverized coal boilers. As a first step, in order to get familiarize with the feedstock under study, the thermal degradation of a ReEF(TM) without sorbent and of its components is analyzed by thermogravimetry. With the analysis of more than 70 samples at heating rates ranging from 5°C/min to 400°C/min we are able to conclude that ReEF(TM) thermal degradation can be seen as the independent thermal degradation of its components, as long as heat transfer limitations are taken into account. Thus, no substantial chemical

  16. Present status and perspectives of Co-combustion in German power plants

    Energy Technology Data Exchange (ETDEWEB)

    Richers, U.; Seifert, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Technische Chemie]|[Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Programm Nachhaltigkeit, Energie- und Umwelttechnik; Scheurer, W.; Hein, K.R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    2002-05-01

    Various approaches to the future waste management policy in Germany are currently under discussion. One problem arising in this connection is the suitability of existing furnaces for the co-combustion of waste. The use of sewage treatment sludge in power plants is already being practiced on a technical scale. Co-combustion in power plants is of interest also because of the CO{sub 2} problem, as renewable resources can also be used for this purpose. This article documents the technical status of co-combustion in Germany and the available quantities of selected supplementary fuels. Moreover, experience accumulated in German coal fired power plants in using supplementary fuels is compiled. Future possibilities are assessed. (orig.) [German] Fuer die zukuenftige Ausrichtung der Abfallentsorgung gibt es verschiedene Moeglichkeiten, die in der Bundesrepublik Deutschland diskutiert werden. Eine Fragestellung in diesem Zusammenhang ist die Eignung bestehender Feuerungsanlagen fuer die Mitverbrennung von Abfallstoffen. Der Einsatz von Klaerschlamm in Kraftwerken wird bereits grosstechnisch praktiziert. Die Mitverbrennung in Kraftwerken ist zusaetzlich aufgrund der CO{sub 2}-Problematik von Interesse, denn nachwachsende Rohstoffe eignen sich ebenfalls zur Mitverbrennung. In dieser Arbeit werden der technische Stand der Mitverbrennung in der Bundesrepublik Deutschland und die dort zur Verfuegung stehenden Mengen ausgewaehlter Zusatzbrennstoffe dokumentiert. Ausserdem werden die Erfahrungen aus deutschen Kraftwerken beim Einsatz von Zusatzbrennstoffen zusammengestellt. Die zukuenftigen Moeglichkeiten werden abgeschaetzt. (orig.)

  17. Assessment of Ademe's R and D actions for the CO2 capture and storage sector

    International Nuclear Information System (INIS)

    2015-05-01

    This publication presents research actions and projects supported by the ADEME in the field of CO 2 capture and storage. This programme aims at promoting the emergence of significant innovations, at developing the national technology portfolio, at identifying and reducing uncertainties related to exploitation, and at developing and strengthening its technological integration in manufacturing industry and energy sectors. While indicating the invested amount, research demonstrator projects are mentioned. Results obtained between 2007 and 2013 in different fields are briefly described: technical-economic studies or pre-feasibility studies, CO 2 capture (capture in post-combustion or in oxy-combustion), CO 2 geological storage (site selection, knowledge development on storage site sustainability, safety of CO 2 storage sites, monitoring of CO 2 storage sites, environmental impacts of storage sites), and issue of social feasibility of CO 2 capture and storage

  18. Properties and Developments of Combustion and Gasification of Coal and Char in a CO2-Rich and Recycled Flue Gases Atmosphere by Rapid Heating

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2012-01-01

    Full Text Available Combustion and gasification properties of pulverized coal and char have been investigated experimentally under the conditions of high temperature gradient of order 200°C·s−1 by a CO2 gas laser beam and CO2-rich atmospheres with 5% and 10% O2. The laser heating makes a more ideal experimental condition compared with previous studies with a TG-DTA, because it is able to minimize effects of coal oxidation and combustion by rapid heating process like radiative heat transfer condition. The experimental results indicated that coal weight reduction ratio to gases followed the Arrhenius equation with increasing coal temperature; further which were increased around 5% with adding H2O in CO2-rich atmosphere. In addition, coal-water mixtures with different water/coal mass ratio were used in order to investigate roles of water vapor in the process of coal gasification and combustion. Furthermore, char-water mixtures with different water/char mass ratio were also measured in order to discuss the generation ratio of CO/CO2, and specified that the source of Hydrocarbons is volatile matter from coal. Moreover, it was confirmed that generations of CO and Hydrocarbons gases are mainly dependent on coal temperature and O2 concentration, and they are stimulated at temperature over 1000°C in the CO2-rich atmosphere.

  19. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    Energy Technology Data Exchange (ETDEWEB)

    George Rizeq; Janice West; Arnaldo Frydman; Vladimir Zamansky; Linda Denton; Hana Loreth; Tomasz Wiltowski

    2001-07-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program

  20. Economic evaluation of pre-combustion CO2-capture in IGCC power plants by porous ceramic membranes

    International Nuclear Information System (INIS)

    Franz, Johannes; Maas, Pascal; Scherer, Viktor

    2014-01-01

    Highlights: • Process simulations of IGCC with pre-combustion capture via membranes were done. • Most promising technology is the water–gas-shift-membrane-reactor (WGSMR). • Energetic evaluations showed minimum efficiency loss of 5.8%-points for WGSMR. • Economic evaluations identified boundary limits of membrane technology. • Cost of electricity for optimum WGSMR-case is 57 €/MW h under made assumptions. - Abstract: Pre-combustion-carbon-capture is one of the three main routes for the mitigation of CO 2 -emissions by fossil fueled power plants. Based on the data of a detailed technical evaluation of CO 2 -capture by porous ceramic membranes (CM) and ceramic membrane reactors (WGSMR) in an Integrated-Gasification-Combined-Cycle (IGCC) power plant this paper focuses on the economic effects of CO 2 -abatement. First the results of the process simulations are presented briefly. The analysis is based on a comparison with a reference IGCC without CO 2 -capture (dry syngas cooling, bituminous coal, efficiency of 47.4%). In addition, as a second reference, an IGCC process with CO 2 removal based on standard Selexol-scrubbing is taken into account. The most promising technology for CO 2 -capture by membranes in IGCC applications is the combination of a water gas shift reactor and a H 2 -selective membrane into one water gas shift membrane reactor. For the WGSRM-case efficiency losses can be limited to about 6%-points (including losses for CO 2 compression) for a CO 2 separation degree of 90%. This is a severe reduction of the efficiency loss compared to Selexol (10.3% points) or IGCC–CM (8.6% points). The economic evaluation is based on a detailed analysis of investment and operational costs. Parameters like membrane costs and lifetime, costs of CO 2 -certificates and annual operating hours are taken into account. The purpose of these evaluations is to identify the minimum cost of electricity for the different capture cases for the variation of the boundary

  1. An innovative European integrated project: Castor-CO2 from capture to storage

    NARCIS (Netherlands)

    Thiez, P.L.; Mosditchian, G.; Torp, T.; Feron, P.; Ritsema, I.; Zweigel, P.; Lindeberg, E.

    2005-01-01

    This chapter gives an overview of the CASTOR (CO2, from Capture to Storage) R and D project, funded by the European Union (EU) under the 6th Framework Program. With a partnership involving Industry and Research organizations, CASTOR aims at developing new technologies for post-combustion capture and

  2. Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler

    Science.gov (United States)

    Wasielewski, Ryszard; Głód, Krzysztof; Telenga-Kopyczyńska, Jolanta

    2018-01-01

    The results of industrial research on co-combustion of solid recovered fuel (SRF) with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds) in refer to the legislative requirements (2 seconds) for the thermal conversion of waste.

  3. Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler

    Directory of Open Access Journals (Sweden)

    Wasielewski Ryszard

    2018-01-01

    Full Text Available The results of industrial research on co-combustion of solid recovered fuel (SRF with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds in refer to the legislative requirements (2 seconds for the thermal conversion of waste.

  4. Trace elements partitioning during coal combustion in fluidized bed under O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haixin; Zhao, Changsui; Liang, Cai; Duan, Lunbo; Chen, Huichao [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Experiments were conducted to investigate the effects of temperature and O{sub 2}/CO{sub 2} atmosphere on trace elements (Cr, Mn, Co, Ni, Cd, Pb, Hg, As, Se) partitioning during combustion of Xuzhou bituminous coal in a 6 kWth fluidized bed. Inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) were used to determine trace elements contents in raw coal, bottom ash, fly ash and flue gas. The results indicate that with bed temperature increase, the relative enrichment of all the trace elements except Cr in bottom ash decreases suggesting that their volatility is enhanced. The relative enrichments of hardly volatile elements, like Cr and Mn in fly ash increase with bed temperature increase while those of partially volatile and highly volatile elements in fly ash are opposite. The relative enrichments of trace elements except Cr and Mn in fly ash are higher than those in bottom ash. Increasing bed temperature promotes elements like As, Se and Hg to migrate to vapor phase, Mn to migrate to fly ash and Cr to migrate to both bottom ash and fly ash. 21%O{sub 2}/79%CO{sub 2} atmosphere improves the volatility of Cr, Mn, Co, Se and their migration to fly ash, while restrains the volatility of As, Ni, Pb. It has little effect on the volatility of Hg but improves its migration to fly ash. Mass balance ratio was also calculated to observe trace elements distribution in bottom ash, fly ash and flue gas. There is no much difference in trace elements distribution between the two atmospheres. It can be seen that the trace elements proportion in fly ash is much greater, and more than 40% of Hg is distributed in the gas phase. Most of Hg and Se volatilize during combustion. The mass balance ratios are 87 {proportional_to} 129% which is considered acceptable.

  5. Separating Direct and Indirect Turbofan Engine Combustion Noise While Estimating Post-Combustion (Post-Flame) Residence Time Using the Correlation Function

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2011-01-01

    A previous investigation on the presence of direct and indirect combustion noise for a full-scale turbofan engine using a far-field microphone at 130 is extended by also examining signals obtained at two additional downstream directions using far-field microphones at 110 deg and 160 deg. A generalized cross-correlation function technique is used to study the change in propagation time to the far field of the combined direct and indirect combustion noise signal as a sequence of low-pass filters are applied. The filtering procedure used produces no phase distortion. As the low-pass filter frequency is decreased, the travel time increases because the relative amount of direct combustion noise is reduced. The indirect combustion noise signal travels more slowly because in the combustor entropy fluctuations move with the flow velocity, which is slow compared to the local speed of sound. The indirect combustion noise signal travels at acoustic velocities after reaching the turbine and being converted into an acoustic signal. The direct combustion noise is always propagating at acoustic velocities. The results show that the estimated indirect combustion noise time delay values (post-combustion residence times) measured at each angle are fairly consistent with one another for a relevant range of operating conditions and demonstrate source separation of a mixture of direct and indirect combustion noise. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting turbofan engine core noise.

  6. The integrated CO{sub 2} pilot in the SW of France (oxycombustion and geological storage) : a potential answer to CO{sub 2} mitigation in bitumen production

    Energy Technology Data Exchange (ETDEWEB)

    Aimard, N.; Prebende, C. [Total, Pau (France); Cieutat, D.; Sanchez-Molinero, I.; Tsiava, R. [Air Liquide, Jouy-en-Josas (France)

    2008-10-15

    Carbon capture and storage technologies are promising options in the reduction of greenhouse gas emissions in extra heavy oil production fields. The research centre at Total launched an integrated carbon capture and storage project at Lacq in the southwest of France. It involves the conversion of a steam boiler into an oxy-fuel combustion unit. The pilot plant is expected to emit up to 120,000 tons of carbon dioxide (CO{sub 2}) over a 2-year period. The CO{sub 2} rich flue gas will be cleaned up and compressed and the resulting CO{sub 2} will be conveyed via pipeline to a depleted gas field, where it will be injected into a deep carbonate reservoir. This paper demonstrated that oxycombustion could have some advantages compared to post-combustion for CO{sub 2} capture in terms of energy efficiency for steam generation. It discussed a pilot plant whose objectives were to demonstrate the technical feasibility and reliability of an integrated scheme for steam production including CO{sub 2} capture, transportation, injection and storage, at a reduced scale, typically one tenth of future larger scale facilities. This paper also described how to develop and apply geological storage qualification methodologies, monitoring and verification techniques in a real operational situation to prepare future larger scale long term storage projects. It also presented the characteristics of one of the world's first industrial oxy-combustion units, the 30MWth oxy-gas boiler. It was concluded that the Lacq CO{sub 2} pilot project is a unique challenging project as it integrates both industrial CO{sub 2} capture facilities within an existing gas treatment complex with CO{sub 2} compression, transportation, injection and storage into an onshore gas depleted reservoir. 5 refs., 3 tabs., 9 figs.

  7. Assessment of technologies for CO{sub 2} capture and storage. Final report; Verfahren zur CO{sub 2}-Abscheidung und -Speicherung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Radgen, Peter; Cremer, Clemens; Warkentin, Sebastian [Fraunhofer-Inst. fuer Systemtechnik und Innovationsforschung, Karlsruhe (Germany); Gerling, Peter; May, Franz; Knopf, Stephan [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

    2006-08-15

    The aim of this study was to summarize the actual status for carbon capture, transport and storage for CO{sub 2} emissions from power stations. Special interest was given to the implications from the introduction of carbon capture and storage in power stations on the efficiency, emissions and cost for electricity generation. In the beginning a detailed analyses of the national, European and international activities in this field have been conducted. The analysis focussed on the identification of main actors and the different co-operation of actors. To do so, the available literature has been studied and analysed with a bibliometric approach, which has taken also presentations at national and international conferences into account. In a second step a technical analysis has been undertaken for the three main routes for carbon capture (pre-combustion capture; post-combustion capture, oxy-fuel combustion) with a special emphasis on the impact to the Environment. Truck, ship and pipeline transport have been analysed as means for transporting the CO{sub 2} from the power station to the storage site. In addition the different storage options for a secure long term storage of the captured CO{sub 2} are studied in the report. Special attention was given to the storage options in gasfields and saline aquifers which will be the most promising options in Germany. The report gives an actual overview on the status of carbon capture and storage in the world. It therefore supports the decision making process when introducing this new technology, taking into account the environmental effects. (orig.)

  8. Tolerancia al co en celdas de combustible

    Directory of Open Access Journals (Sweden)

    BIBIAN HOYOS

    2008-01-01

    Full Text Available El entendimiento completo del proceso de adsorción y posterior oxidación de moléculas de CO en platino es de fundamental importancia para el desarrollo de celdas de combustible poliméricas que operan a baja temperatura. En este trabajo se presenta una revisión de las cinco estrategias experimentales más importantes en la búsqueda de mejorar la tolerancia al CO: disminución del potencial de inicio de la reacción de oxidación, reducción de la cantidad de CO adsorbido, utilización de pequeñas cantidades de oxígeno en la corriente de alimentación al ánodo, aumento de la temperatura de operación y limpieza del CO a la entrada. Aunque se han desarrollado catalizadores bastante promisorios (PtMo y PdAu, todavía se sigue considerando a la mezcla Pt-Ru como el catalizador anódico más eficiente para combustibles que contienen 10 ppm de CO o más. La estrategia de inyectar oxígeno al ánodo parece promisoria pero requiere el desarrollo de nuevas membranas más resistentes y de la implementación de condiciones más seguras de operación de la celda. El diseño estructural de ánodos especiales con múltiples capas soportando catalizadores específicos para cada tipo de combustible puede ser una estrategia muy atractiva.

  9. Fuel effect on solution combustion synthesis of Co(Cr,Al)2O4 pigments; Efecto del combustible en la síntesis de pigmentos Co(Cr,Al)2O4 por combustión de una disolución

    Energy Technology Data Exchange (ETDEWEB)

    Gilabert, J.; Palacios, M.D.; Sanz, V.; Mestre, S.

    2017-11-01

    The fuel effect on the synthesis of a ceramic pigment with a composition CoCr22ΨAl2ΨO4 (0≤Ψ≤1) by means of solution combustion synthesis process (SCS) has been studied. Three different fuels were selected to carry out the synthesis (urea, glycine and hexamethylentetramine (HMT)). Highly foamy pigments with very low density were obtained. Fd-3m spinel-type structure was obtained in all the experiments. Nevertheless, crystallinity and crystallite size of the spinels show significant differences with composition and fuel. The use of glycine along with the chromium-richest composition favours ion rearrangement to obtain the most ordered structure. Lattice parameter does not seem to be affected by fuel, although it evolves with Ψ according to Vegard's law. Colouring power in a transparent glaze shows important variations with composition. On the other hand, fuel effect presents a rather low influence since practically the same shades are obtained. However, it exerts certain effect on luminosity (L*). [Spanish] Se ha estudiado el efecto del combustible en la síntesis de pigmentos cerámicos tipo CoCr2-2ΨAl2ΨO4 (0≤Ψ≤1), obtenidos mediante síntesis por combustión de una disolución. Se seleccionaron 3 tipos de combustible diferentes: urea, glicina y hexametilentetramina. Todos los pigmentos obtenidos presentaron una textura altamente esponjosa y con muy baja densidad. Las estructuras cristalinas desarrolladas en todos los casos fueron tipo espinela Fd-3m. Sin embargo, tanto la cristalinidad como el tamaño de cristalito presentaron diferencias significativas dependiendo de la composición y del combustible utilizado. El uso de glicina, junto con las composiciones más ricas en cromo, favorece la reorganización de los iones para obtener estructuras más ordenadas y con mayor cristalinidad. El parámetro de red no parece verse afectado por el combustible, aunque sí evoluciona con Ψ de acuerdo con la Ley de Vegard. El poder colorante desarrollado

  10. Control of combustion generated emissions from spark ignition engines: a review

    International Nuclear Information System (INIS)

    Mansha, M.; Shahid, E.M.; Qureshi, A.H.

    2012-01-01

    For the past several decades automobiles have been a major source of ground level emissions of various pollutants like CO, HC, NO/sub x/, SO/sub x/ CO/sub 2/, etc. Due to their dangerous effects on human health, vegetation and on climate, various pre combustion, in-cylinder and post. combustion techniques have been tried for their abatement. This paper reviews all of the workable measures taken so far to controlling the combustion generated emissions from 4-stroke Spark Ignition Vehicular Engines ever since the promulgation of emission control legislation/standards and their subsequent enforcement in the late 1960s. (author)

  11. Forecasting of CO{sub 2} emissions from fuel combustion using trend analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koene, Aylin Cigdem [Mugla University, Faculty of Economics and Administrative Sciences, Department of Economics, 48000 Mugla (Turkey); Bueke, Tayfun [Mugla University, Faculty of Arts and Sciences, Department of Physics, 48000 Mugla (Turkey)

    2010-12-15

    The accelerating use of fossil fuels since the Industrial Revolution and the rapid destruction of forests causes a significant increase in greenhouse gases. The increasing threat of global warming and climate change has been the major, worldwide, ongoing concern especially in the last two decades. The impacts of global warming on the world economy have been assessed intensively by researchers since the 1990s. Worldwide organizations have been attempting to reduce the adverse impacts of global warming through intergovernmental and binding agreements. Carbon dioxide (CO{sub 2}) is one of the most foremost greenhouse gases in the atmosphere. The energy sector is dominated by the direct combustion of fuels, a process leading to large emissions of CO{sub 2}. CO{sub 2} from energy represents about 60% of the anthropogenic greenhouse gas emissions of global emissions. This percentage varies greatly by country, due to diverse national energy structures. The top-25 emitting countries accounted 82.27% of the world CO{sub 2} emissions in 2007. In the same year China was the largest emitter and generated 20.96% of the world total. Trend analysis is based on the idea that what has happened in the past gives traders an idea of what will happen in the future. In this study, trend analysis approach has been employed for modelling to forecast of energy-related CO{sub 2} emissions. To this aim first, trends in CO{sub 2} emissions for the top-25 countries and the world total CO{sub 2} emissions during 1971-2007 are identified. On developing the regression analyses, the regression analyses with R{sup 2} values less than 0.94 showing insignificant influence in statistical tests have been discarded. Statistically significant trends are indicated in eleven countries namely, India, South Korea, Islamic Republic of Iran, Mexico, Australia, Indonesia, Saudi Arabia, Brazil, South Africa, Taiwan, Turkey and the world total. The results obtained from the analyses showed that the models for

  12. H{sub 2}S and CO{sub 2} filtration of biogas used in internal combustion engines for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Huertas, Jose Ignacio; Izquierdo, Sebastian [Instituto Tecnologico y de Estudios Superiores de Monterrey, (Mexico)]. E-mail: jhuertas@itesm.mx

    2009-09-15

    Currently, there is an increasing interest in connecting thousands of small electrical plants powered by renewable energy sources to national electrical grids. The use of biogas as fuel for internal combustion engines connected to an electric generator is emerging as one of the most attractive alternatives because of its very low cost benefit ratio and very high positive impact on the environment. However, the use of biogas to generate electricity has been limited by its high content of H{sub 2}S ({approx}3500 ppm) and CO{sub 2} ({approx}40%). CO{sub 2} presence reduces the energetic density of the fuel and therefore the power output of the system. The high content of H{sub 2}S corrodes important components of the engine like the combustion chamber, bronze gears and the exhaust system. This work aims to design and manufacture a low-cost industrial filter for this application. Among the different available methodologies, CaO, NaOH and amines where selected as the most appropriate for a typical farm application of 100 kW electric generations. Since there is not reported data for the H{sub 2}S absorbing capacity of these substances, it was proposed to measure it by means of a bubbler. It is an experimental set up where the gas stream passes through a fixed amount of the absorbing substance until it becomes saturated. The absorbing capacity is determined as the amount of substance being trapped divided by the mass of the absorbing substance being used. Results showed an absorbing capacity of 2.8, 41.4 and 124.8 g of H{sub 2}S per Kg of NaOH, CaO and monoethanolamine respectively. A gas absorbing system of amines was designed and manufactured for H{sub 2}S and CO{sub 2} biogas filtration. Three different types of amines were evaluated: Monoethanolamine, Diethanolamine, and methyldiethanolamine. Results show that all the amines require a ratio of amines to biogas flow of 0.7 to obtain a 95% of H{sub 2}S filtering efficiency. This data represent only a 30% of H{sub 2}S

  13. Morphologic and structural characterization of the CoFe2O4 synthesized by combustion reaction

    International Nuclear Information System (INIS)

    Lima, M.S.; Sousa, J.-P.L.M.L.; Vieira, D.A.; Lira, H.L.; Costa, A.C.F.M.; Sasaki, J.M.

    2009-01-01

    CoFe 2 O 4 powders were synthesized by combustion reaction using glycine as fuel, aiming obtaining nanosized and monophase powders. Thus, different conditions of external heating during the synthesis were investigated. The powders were prepared according to the propellants and explosives theory, using glycine as fuel in the stoichiometric proportion (Φe = 1). During the synthesis the flame temperature and time were measured. The resulting powders were characterized by X-rays diffraction and scanning electronic microscopy (SEM). The results show that the condition in which the synthesis was realized it influences in the combustion flame temperature and time and contributes for the obtainment of powders with majority phase without secondary phases. Crystallite size varied of 33 to 50 nm. All powders presented morphology constituted by soft agglomerated formed by nanoparticles. (author). (author)

  14. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Carl [URS Group, Inc., Austin, TX (United States); Steen, William [URS Group, Inc., Austin, TX (United States); Triana, Eugenio [URS Group, Inc., Austin, TX (United States); Machalek, Thomas [URS Group, Inc., Austin, TX (United States); Davila, Jenny [URS Group, Inc., Austin, TX (United States); Schmit, Claire [URS Group, Inc., Austin, TX (United States); Wang, Andrew [URS Group, Inc., Austin, TX (United States); Temple, Brian [URS Group, Inc., Austin, TX (United States); Lu, Yongqi [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Lu, Hong [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Zhang, Luzheng [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ruhter, David [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Rostam-Abadi, Massoud [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Sayyah, Maryam [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ito, Brandon [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Suslick, Kenneth [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States)

    2013-09-30

    This document summarizes the work performed on Cooperative Agreement DE-FE0000465, “Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture,” during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO{sub 2} from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO{sub 2} capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO{sub 2}) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO{sub 2} from a gas stream containing CO{sub 2}, carbon monoxide (CO), and hydrogen (H{sub 2}) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO{sub 2}, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO{sub 2} capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent

  15. Rational design of temperature swing adsorption cycles for post-combustion CO2 capture

    NARCIS (Netherlands)

    Joss, Lisa; Gazzani, Matteo; Mazzotti, Marco

    2017-01-01

    The design of temperature swing adsorption (TSA) cycles aimed at recovering the heavy product at high purity is investigated by model-based design and applied to the capture of CO2 from flue gases. This model based design strategy and an extensive parametric analysis enables gaining an understanding

  16. Benchmarking and comparing first and second generation post combustion CO2 capture technologies

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gaspar, Jozsef; Ehlers, Sören

    2014-01-01

    The Octavius FP7 project focuses on demonstration of CO2 capture for zero emission power generation. As part of this work many partners are involved using different rate based simulation tools to develop tomorrow’s new power plants. A benchmarking is performed, in order to synchronize accuracy...

  17. Thermodynamic assessment of amine based CO2 capture technologies in power plants based on European Benchmarking Task Force methodology

    NARCIS (Netherlands)

    Sanchez Fernandez, E.; Goetheer, E.L.V.; Manzolini, G.; Macchi, E.; Rezvani, S.; Vlugt, T.J.H.

    2014-01-01

    Post combustion CO2 capture (PCC) with amine solvents is seen as one of the possible technologies which can be implemented in the near term to significantly reduce CO2 emissions from fossil fuel power plants. One of the major concerns for its implementation at large scale in power plants is the high

  18. Combustion synthesis of LiMn{sub 2}O{sub 4} with citric acid and the effect of post-heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Han, Y.S. [Korea Advanced Istitute of Science and Technology, Taejeon (Korea); Son, J.T. [Dong-A Electric Equipment Co. LTD., Seoul (Korea); Kim, H.G. [Korea Advanced Istitute of Science and Technology, Taejeon (Korea); Jung, H.T. [Dongshin University, Chonnam (Korea)

    2001-04-01

    Combustion process with citrate was used to produce the LiMn{sub 2}O{sub 4} powder. Precursors are pre-ignited in open air followed by post-heating in the range from 600 deg. C to 800 deg. C for 4 h. With varying the molar ration (R) of ethylene glycol (EG) to citric acid (CA) from 0 to 4, the effect of EG content on powder characteristics is evaluated. Vacuum drying promote the auto-ignition at room temperature. With small addition of EG metal ion was selectively segregated with organic substances and undesired lithium evaporation occurred during post-heating. LiMn {sub 2}O{sub 4} phase which is produced by combustion reaction was decomposed back to Mn {sub 3}O{sub 4} because the reaction temperature was higher than 950 deg. C. With increasing EG content, the homogeneity of LiMn {sub 2}O{sub 4} powder increased and specific surface area increased. And lithium evaporation during vacuum drying and/or ignition also increased. (author). 18 refs., 1 tab., 11 figs.

  19. A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry

    International Nuclear Information System (INIS)

    Park, Sangwon; Jo, Hoyong; Kang, Dongwoo; Park, Jinwon

    2014-01-01

    CCS (carbon capture and storage) is the most popular technology used for the reduction of CO 2 in the post-combustion stage. However, the CCS process has some disadvantages including uncertainty about the stability of the land that is used to store the separated CO 2 . Consequently, CCU (carbon capture and utilization) technologies have recently received increased attention as a possible replacement for CCS. In this study, we utilized CO 2 fixation methods by using the metal carbonate mechanism. We selected 5 and 30 wt% MEA (mono-ethanolamine) solutions to rapidly make a carbonate and Ca(OH) 2 slurry. In all of the experiments, normal temperature and pressure conditions were maintained (except during desorption to check for residual CO 2 in the MEA solution). Consequently, most of the CO 2 was converted to carbonate. The MEA converted CO 2 to ionic CO 2 and rapidly created calcium carbonate. Also the formed solids that were observed were determined to be CaCO 3 and Ca(OH) 2 by X-ray diffractometry. Also, the MEA solution could be reused to absorb CO 2 . Therefore, we have confirmed the development of our suggested CCS process. This process has the ability not only to reuse emitted CO 2 , but it can also be employed to reuse construction wastes that include heavy metals. - Highlights: • We propose novel CO 2 conversion technology by utilizing an amine solution. • In this study, alkaline solutions were used to produce CO 2 precipitate. • The MEA (mono-ethanolamine) solution has a sufficient potential to fix CO 2 with metal sources under moderate condition. • Also, the Ca(OH) 2 slurry yielded enough Ca 2+ ions to make carbonate

  20. Aerosol-based emission, solvent degradation, and corrosion in post combustion CO2 capture

    NARCIS (Netherlands)

    Khakharia, P.

    2015-01-01

    Global greenhouse gas emissions, especially of CO2, have been increasing tremendously over the past century. This is known to cause not only an increase of temperature, but also a change in our climate. Along with a shift to renewable sources of energy, Carbon Capture and Storage is necessary to

  1. Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system

    International Nuclear Information System (INIS)

    Li, H.; Yan, J.; Yan, J.; Anheden, M.

    2009-01-01

    Based on the requirements of CO 2 transportation and storage, non-condensable gases, such as O 2 , N 2 and Ar should be removed from the CO 2 -stream captured from an oxy-fuel combustion process. For a purification process, impurities have great impacts on the design, operation and optimization through their impacts on the thermodynamic properties of CO 2 -streams. Study results show that the increments of impurities will make the energy consumption of purification increase; and make CO 2 purity of separation product and CO 2 recovery rate decrease. In addition, under the same operating conditions, energy consumptions have different sensitivities to the variation of the impurity mole fraction of feed fluids. The isothermal compression work is more sensitive to the variation of SO 2 ; while the isentropic compression work is more sensitive to the variation of Ar. In the flash system, the energy consumption of condensation in is more sensitive to the variation of Ar; but in the distillation system, the energy consumption of condensation is more sensitive to the variation of SO 2 , and CO 2 purity of separation is more sensitive to the variation of SO 2 . (author)

  2. Reducing of CO2 emissions and its depositing into underground

    Directory of Open Access Journals (Sweden)

    Jaroslava Koudelková

    2005-11-01

    Full Text Available Increasing CO2 emissions caused especially by the combustion of fossil fuels rises a question of how this can be problem solved in the long term. There is several solutions which differ technically and financially. This paper deals with the CO2 capture from combustion processes or power plant processes, (CO2 can be captured from the flue gas, after combustion in oxygen and recirculated flue gas or from a synthesis gas before combustion. This paper presents possibilities of CO2 storagex captured in this way into underground (deep ocean, oil and gas fields, coal bed, aquifers.

  3. Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Cai, Ruixian

    2013-01-01

    Based on the principle of cascade utilization of multiple energy resources, a gas-steam combined cycle power system integrated with solar thermo-chemical fuel conversion and CO 2 capture has been proposed and analyzed. The collected solar heat at 550 °C drives the endothermic methane reforming and is converted to the produced syngas chemical exergy, and then released as high-temperature thermal energy via combustion for power generation, achieving its high-efficiency heat-power conversion. The reforming reaction is integrated with a hydrogen separation membrane, which continuously withdraws hydrogen from the reaction zone and enables nearly full methane conversion. The CO 2 enriched gas being concentrated in the retentate zone is collected and processed with pre-combustion decarbonization. The system is thermodynamically simulated using the ASPEN PLUS code. The results show that with 91% CO 2 captured, the specific CO 2 emission is 25 g/kWh. An exergy efficiency of 58% and thermal efficiency of 51.6% can be obtained. A fossil fuel saving ratio of 31.2% is achievable with a solar thermal share of 28.2%, and the net solar-to-electricity efficiency based on the gross solar heat incident on the collector is about 36.4% compared with the same gas-steam combined cycle system with an equal CO 2 removal ratio obtained by post-combustion decarbonization. - Highlights: ► A solar-assisted hybrid combined cycle power system has been proposed and analyzed. ► The system integrates power generation with solar-driven reforming and CO 2 capture. ► solar heat upgrading and high-efficiency heat-to-power conversion are achieved. ► membrane reforming enables high CH 4 conversion and pre-combustion CO 2 capture. ► The system thermodynamic performances have been investigated and compared

  4. Co-combustion of biodiesel with oxygenated fuels in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2017-01-01

    Full Text Available The paper presents results of experimental investigation of cocombustion process of biodiesel (B100 blended with oxygenated fuels with 20% in volume. As the alternative fuels ware used hydrated ethanol, methanol, 1-butanol and 2-propanol. It was investigated the influence of used blends on operating parameters of the test engine and exhaust emission (NOx, CO, THC, CO2. It is observed that used blends are characterized by different impact on engine output power and its efficiency. Using biodiesel/alcohol blend it is possible to improve engine efficiency with small drop in indicated mean effective pressure (IMEP. Due to combustion characteristic of biodiesel/alcohol obtained a slightly larger specific NOx emission. It was also observed some differences in combustion phases due to various values of latent heat of evaporation of used alcohols and various oxygen contents. Test results confirmed that the combustion process occurring in the diesel engine powered by blend takes place in a shorter time than in the typical diesel engine.

  5. ENGINEERING FEASIBILITY AND ECONOMICS OF CO2 SEQUESTRATION/USE ON AN EXISTING COAL-FIRED POWER PLANT: A LITERATURE REVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Bozzuto; Nsakala ya Nsakala

    2000-01-31

    The overall objective of this study is to evaluate the technical feasibility and the economics of alternate CO{sub 2} capture and sequestration/use technologies for retrofitting an existing pulverized coal-fired power plant. To accomplish this objective three alternative CO{sub 2} capture and sequestration systems will be evaluated to identify their impact on an existing boiler, associated boiler auxiliary components, overall plant operation and performance and power plant cost, including the cost of electricity. The three retrofit technologies that will be evaluated are as follows: (1) Coal combustion in air, followed by CO{sub 2} separation from flue gas with Kerr-McGee/ABB Lummus Global's commercial MEA-based absorption/stripping process. (2) Coal combustion in an O{sub 2}/CO{sub 2} environment with CO{sub 2} recycle. (3) Coal combustion in air with oxygen removal and CO{sub 2} captured by tertiary amines In support of this objective and execution of the evaluation of the three retrofit technologies a literature survey was conducted. It is presented in an ''annotated'' form, consistent with the following five sections: (1) Coal Combustion in O{sub 2}/CO{sub 2} Media; (2) Oxygen Separation Technologies; (3) Post Combustion CO{sub 2} Separation Technologies; (4) Potential Utilization of CO{sub 2}; and (5) CO{sub 2} Sequestration. The objective of the literature search was to determine if the three retrofit technologies proposed for this project continue to be sound choices. Additionally, a review of the literature would afford the opportunity to determine if other researchers have made significant progress in developing similar process technologies and, in that context, to revisit the current state-of-the-art. Results from this literature survey are summarized in the report.

  6. N2O emission under fluidized bed combustion condition

    International Nuclear Information System (INIS)

    Shen, B.X.; Yao, Q.; Mi, T.; Liu, D.C.; Feng, B.; Winter, Franz

    2003-01-01

    In this paper, many rules about N 2 O and NO x emission under fluidized bed combustion conditions were found by experiments. The research results indicate that CaO, CaSO 4 , Fe 2 O 3 and char have important influence on decomposition of N 2 O; co-combustion of coal and biomass are effective measures to low N 2 O and NO x emission

  7. Data for modern boilers used in co-combustion; Moderna panndata inom samfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Thorson, Ola [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2004-04-01

    This project is a survey and a description of today's technical status and future development trends in the field of co-combustion. The survey is done from an energy production company's point of view and two technical questions have been studied; the possibilities for high steam data and the possibilities for a wide load range. These parameters are limited by the corrosive properties of the fuel and the environmental requirements in the EU directive for combustion of waste. In the report following issues are discussed: Examples of and experiences from co-combustion plants and plants that combust problematic fuels and have high steam data. A future prospect of high steam data in co-combustion plants by the usage of modern technical solutions and a description of these solutions. Important research and development results from combustion of problematic fuels in combination with high steam data. Choice of firing technology, boiler design and auxiliary systems and its affection on the load range in a boiler for co-combustion. A literature survey has been done to get the latest results from combustion of problematic fuels. Then a number of interesting plants have been identified and facts about them have been collected by contacts with plant owners, suppliers and professional researchers and also through publications. The report shows that Sweden, Finland and Denmark are in the front line of using high steam data for co-combustion of biomass and waste fuels. There are/have been problems with superheater corrosion in many of these plants but a number of ways how to handle high steam data have been identified: Adjust the fuel mix or add additives; Use high alloy materials; Consider the final super heater as a part that is worn out by time; Place the final super heater in the particle loop seal/sand locker; Use an external separate fired super heater; Gasification and then co-combustion of the pyrolysis gas in a conventional existing boiler; Place the

  8. CO{sub 2} capture from oil refinery process heaters through oxyfuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    M.B. Wilkinson; J.C. Boden; T. Gilmartin; C. Ward; D.A. Cross; R.J. Allam; N.W.Ivens [BP, Sunbury-on-Thames (United Kingdom)

    2003-07-01

    BP has a programme to develop technologies that could reduce greenhouse gas emissions, by the capture and storage of CO{sub 2} from existing industrial boilers and process heaters. One generic technology under development is oxyfuel combustion, with flue gas recycle. Previous studies, by three of the authors, have concluded that refinery steam boilers could be successfully converted to oxyfuel firing. Fired heaters, however, differ from boilers in several respects and so it was decided to study the feasibility of converting process heaters. Three heaters, located on BP s Grangemouth refinery, were chosen as examples, as they are typical of large numbers of heaters worldwide. In establishing the parameters of the study, it was decided that the heat fluxes to the process tubes should not be increased, compared to conventional air firing. For two of the heaters this was achieved by proposing a slightly higher recycle rate than for the boiler conversion studied earlier - the heater duty would be retained with no changes to the tubes. For the third heater, where the process duty uses only the radiant section, the CO{sub 2} capture cost and the firing rate could be reduced by lowering the recycle rate. Some air in leakage to these heaters was considered inevitable, despite measures to control it, and therefore plant to remove residual inerts from the CO{sub 2} product was designed. Cryogenic oxygen production was selected for two heaters, but for the smallest heater vacuum swing adsorption was more economic. 3 refs., 2 figs., 2 tabs.

  9. Considerations on valorization of biomass origin materials in co-combustion with coal in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; H. Lopes; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2007-07-01

    Co-combustion of biomass materials with coal is currently gaining increasing importance, in order to meet the targets on greenhouse gas emissions, defined in the Kyoto protocol. Co-firing of coal with biomass materials could be the short-term solution in reducing CO{sub 2} emissions from power stations. The work undertaken studied co-firing of meat and bone meal (MBM), olive cake and straw pellets with bituminous coals from Colombia (CC) and Poland (PC), which are commonly used in European power stations. The co-combustion studies were carried out on the pilot fluidized bed installation of INETI. Gaseous pollutants and solid concentration in flue gases and ashes from different locations were monitored. Results obtained indicate that the co-feeding of biomass materials did not present any problem and ensured stable combustion conditions and high efficiency. However, for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass species studied. Most of the combustion of biomass material, contrary to that of coal, was observed to take place in the riser where the temperature was as high as 150-250{sup o}C above that of the bed. SO{sub 2} and NOx levels were found to be lower. The emissions of dioxins could be considerable with fuels with high Cl as is the case with straw. However, mixing of fuels with high S content could lead to a strong reduction in dioxin emissions. Ashes produced from biomass combustion may be considered for further reutilization or landfilling. Other options depend on their characteristics, chemical composition and leaching behaviour. This was evaluated in this study.

  10. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  11. Environmental evaluation of sewage sludge co-combustion in a pilot FBC

    Energy Technology Data Exchange (ETDEWEB)

    M. Helena Lopes; P. Abelha; I. Cabrita; J.F.Santos Oliveira; I. Gulyurtlu [INETI/DEECA, Lisbon (Portugal)

    2003-07-01

    This paper presents a comparison of combustion of coal alone with that of a mixture of coal with sewage sludge with respect to flue gas emissions, the behaviour of heavy metals and potential environmental consequences of disposal of ashes produced. Co-combustion with sludge did not result in greater NOx, SO{sub 2}, HCl and CO emissions and the use of air staging and the addition of limestone proved to be effective to reduce NOx and SO{sub 2}. The mixing of sludge gave rise to an increase in amounts of heavy metals released, especially for Cd, Pb and Hg. However, as they were associated with particles greater than 1 {micro}m, the application of efficient flue gas treatment devices could decrease their emissions to the atmosphere. Metals were essentially retained in ashes captured in the bed and in the cyclones and most of the Hg was adsorbed in fly ashes that contained unburned carbon. The leachability of metals and organic matter present in the sludge decreased with combustion. The evaluation of the acid neutralization capacity (ANC) showed that ashes became more resistant to acidification than the parent sludge. Globally, this study concludes that the implication of the combustion of sludge is that it can reduce the negative impact on the environment compared with the traditional direct use of sludge in soils. 22 refs., 4 figs., 5 tabs.

  12. Study on CO{sub 2} absorption enhancement by adding active carbon particles into MEA solution

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Juan; Sun, Rui; Ma, Lian; Sun, Shaozeng [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2013-07-01

    The chemical absorption of CO{sub 2} is generally recognized as the most efficient post-combustion technology of CO{sub 2} separation at present. A study on CO{sub 2} absorption enhancement by adding small particles of active carbon into MEA solution is investigated within a self-designed glass stirring tank. Experiments of different particle loadings and different particle sizes have been conducted. When active carbon particle concentration is fewer, compared to the absorption rate of CO{sub 2} gas absorbed by MEA aqueous solution, the role of active carbon adsorption CO{sub 2} gas is negligible. The enhancement efficiency of CO{sub 2} absorption could be improved by 10% to the upmost in this liquid-particle system.

  13. Control issues in oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Snarheim, Dagfinn

    2009-08-15

    Combustion of fossil fuels is the major energy source in todays society. While the use of fossil fuels is a necessity for our society to function, there has been an increasing concern on the emissions of CO{sub 2} resulting from human activities. Emissions of CO{sub 2} are considered to be the main cause for the global warming and climate changes we have experienced in recent years. To fight the climate changes, the emissions of CO{sub 2} must be reduced in a timely fashion. Strategies to achieve this include switching to less carbon intensive fuels, renewable energy sources, nuclear energy and combustion with CO{sub 2} capture. The use of oxy-fuel combustion is among the alternative post- and pre combustion capture concepts, a strategy to achieve power production from fossil fuels with CO{sub 2} capture. In an oxy-fuel process, the fuel is burned in a mixture of oxygen and CO{sub 2} (or steam), leaving the exhaust consisting mainly of CO{sub 2} and steam. The steam can be removed by use of a condenser, leaving (almost) pure CO{sub 2} ready to be captured. The downside to CO{sub 2} capture is that it is expensive, both in capital cost of extra equipment, and in operation as it costs energy to capture the CO{sub 2}. Thus it is important to maximize the efficiency in such plants. One attractive concept to achieve CO{sub 2} capture by use of oxy-fuel, is a semi-closed oxy-fuel gas turbine cycle. The dynamics of such a plant are highly integrated, involving energy and mass recycle, and optimizing efficiency might lead to operational (control) challenges. In these thesis we investigate how such a power cycle should be controlled. By looking at control at such an early stage in the design phase, it is possible to find control solutions otherwise not feasible, that leads to better overall performance. Optimization is used on a nonlinear model based on first principles, to compare different control structures. Then, closed loop simulations using MPC, are used to validate

  14. Comparison of MEA capture cost for low CO{sub 2} emissions sources in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Ho, M.T.; Allinson, G.W.; Wiley, D.E. [University of New South Wales, Sydney, NSW (Australia). School of Chemical Engineering

    2011-01-15

    This paper estimates the cost of CO{sub 2} capture for three Australian industrial emission sources: iron and steel production, oil refineries and cement manufacturing. It also compares the estimated capture costs with those of post-combustion capture from a pulverised black coal power plant. The cost of capture in 2008 using MEA solvent absorption technology ranges from less than A$60 per tonne CO{sub 2} avoided for the iron and steel production to over A$70 per tonne CO{sub 2} avoided for cement manufacture and over A$100 per tonne CO{sub 2} avoided for oil refineries. The costs of capture for the iron and steel and cement industries are comparable to or less than that for post-combustion capture from a pulverised black coal power plant. This paper also investigates costs for converting low partial pressure CO{sub 2} streams from iron and steel production to a more concentrated stream using pressurisation and the water-gas shift reaction. In those cases, the costs were found to be similar to or less than the cost estimates without conversion. The analyses in this paper also show that estimated costs are highly dependent on the characteristics of the industrial emission source, the assumptions related to the type and price of energy used by the capture facilities and the economic parameters of the project such as the discount rate and capital costs.

  15. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    International Nuclear Information System (INIS)

    George Rizeq; Ravi Kumar; Janice West; Vitali Lissianski; Neil Widmer; Vladimir Zamansky

    2001-01-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE-EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H(sub 2) and sequestration-ready CO(sub 2) from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE-EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE-EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO(sub 2), and (3) high temperature/pressure oxygen depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H(sub 2) energy outputs relative to the higher heating value of coal. The three-year R and D program will determine the operating conditions that maximize separation of CO(sub 2) and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the 1st quarterly progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program

  16. On-road assessment of light duty vehicles in Delhi city: Emission factors of CO, CO2 and NOX

    Science.gov (United States)

    Jaiprakash; Habib, Gazala

    2018-02-01

    This study presents the technology based emission factors of gaseous pollutants (CO, CO2, and NOX) measured during on-road operation of nine passenger cars of diesel, gasoline, and compressed natural gas (CNG). The emissions from two 3-wheelers, and three 2-wheelers were measured by putting the vehicles on jacks and operating them according to Modified Indian Driving Cycle (MIDC) at no load condition. The emission factors observed in the present work were significantly higher than values reported from dynamometer study by Automotive Research Association of India (ARAI). Low CO (0.34 ± 0.08 g km-1) and high NOX (1.0 ± 0.4 g km-1) emission factors were observed for diesel passenger cars, oppositely high CO (2.2 ± 2.6 g km-1) and low NOX (1.0 ± 1.6 g km-1) emission factors were seen for gasoline powered cars. The after-treatment technology in diesel vehicles was effective in CO reduction. While the use of turbocharger in diesel vehicles to generate high combustion temperature and pressure produces more NOx, probably which may not be effectively controlled by after-treatment device. The after-treatment devices in gasoline powered Post-2010, Post-2005 vehicles can be acclaimed for reduced CO emissions compared to Post-2000 vehicles. This work presents a limited data set of emission factors from on-road operations of light duty vehicles, this limitation can be improved by further measurements of emissions from similar vehicles.

  17. Operational experiences of (in)direct co-combustion in coal and gas fired power plants in Europe

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Meijer, R.; Konings, T.; Van Aart, F.

    2001-02-01

    The operational experiences of direct and indirect co-combustion of biomass/waste in European coal and natural gas fired power plants are addressed. The operational experiences of mainly Dutch direct co-combustion activities in coal fired power plants are discussed; whereas an overview of European indirect co-combustion activities is presented. The technical, environmental, and economic feasibility of different indirect co-combustion concepts (i.e. upstream gasification, pyrolysis, combustion with steam-side integration) is investigated, and the results are compared with the economic preferable concept of direct co-combustion. Main technical constraints that limit the co-combustion capacity of biomass/waste in conventional coal fired power plants are: the grindability of the biomass/coal blend, the capacity of available unit components, and the danger of severe slagging, fouling, corrosion and erosion. The main environmental constraints that have to be taken into account are the quality of produced solid waste streams (fly ash, bottom ash, gypsum) and the applicable air emission regulations. 6 refs

  18. Influence of doping of Mn{sup +2} and Co{sup +2} in ZnO synthesized by combustion reaction for use in DMS; Influencia da dopagem do Mn{sup +2} e Co{sup +2} no ZnO sintetizado por reacao de combustao para uso em SMD

    Energy Technology Data Exchange (ETDEWEB)

    Torquato, R.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Departamento de Engenharia de Materiais; Shirsath, S.E. [Department of Physics, Vivekanand College, Aurangabad, MS (India); Kiminami, R.H.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2011-07-01

    ZnO is a semiconducting ceramics used for development of electrical devices such as varistors, chemical sensors, piezoelectric transducers and diluted magnetic semiconductors. So this paper proposes to investigate the influence of doping of 0.1 mol of Mn{sup +2} and Co{sup +2} on the structure, morphology and magnetic measurements of ZnO synthesized by combustion reaction in DMS applications. The resulting samples were characterized by XRD, SEM, BET, VSM. The combustion temperature for samples doped with Mn and Co were 512 deg C and 397 °C, respectively. XRD results for both samples showed the formation of ZnO as the major phase, with crystallite size of 21nm and 23nm and a surface area of 59 and 17 m2/g for samples doped with Mn{sup +2} and Co{sup +2}, respectively. The magnetic measurements showed values of saturation magnetization and coercive force of 12 and 3 emu/g, and 94 and 237Oe, respectively. (author)

  19. Controllability and flexibility analysis of CO2 post-combustion capture using piperazine and MEA

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Ricardez-Sandoval, Luis; Jørgensen, John Bagterp

    2016-01-01

    In this study, we developed a decentralized control scheme and investigate the performance of the piperazine (PZ) and monoethanolamine (MEA) CO2 capture process for industrially-relevant operation scenarios. The base for the design of the control schemes is Relative Gain Array (RGA) analysis...... indicates that the proposed PI-based control structure can handle large changes in the load provided that the manipulated variables, i.e. lean solvent flow or reboiler duty, do not reach their saturation limit. Additionally, we observed that shortage in the steam supply (reboiler duty) may represent...... a critical operational bottleneck, especially when PZ is being used. The MEA plant controllers drive the system towards drying out/flooding while the CO2 capture rate performance of the PZ plant reduces drastically in the presence of constraints in the availability of steam. These findings suggest the need...

  20. EVs and post 2020 CO2 targets for passenger cars

    NARCIS (Netherlands)

    Smokers, R.T.M.; Verbeek, M.; Zyl, S. van

    2013-01-01

    This paper analyses what post 2020 targets may be necessary for the European CO2 legislation for passenger cars in order to reach the overall sectoral goal of 60% reduction of transport's greenhouse gas emissions by 2050 relative to 1990, as defined in the European Commission's White Paper. The

  1. Heavy metals behavior during monocombustion and co-combustion of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M.H.; Abelha, P.; Oliveira, J.F.S.; Cabrita, I.; Gulyurtlu, I. [DEECA, INETI, Lisbon (Portugal)

    2005-04-01

    This paper presents the study of the combustion of granular dry sewage sludge performed on a pilot fluidized bed system. The results of monocombustion of sludge and co-combustion with coal were compared with those of coal combustion for ash partitioning, the formation of gaseous pollutants, and heavy metals behavior. It was found that the mineral matter of sludge was essentially retained as bottom ash. The production of fine ash was small during the monocombustion but was high during co-combustion due to the tendency of coal to produce fine ash, which also contained unburned char. The degree of heavy metal volatilization was found to be slightly higher during co-combustion than in monocombustion; however, most of the metals were retained in the ash and their emissions were found to be below the regulated levels. Hg was completely volatilized. However, during combustion trials involving coal, Hg was captured in the cyclone ash at temperatures below 300{sup o}C. During sludge monocombustion the retention of Hg in cyclone ash containing low loss on ignition (LOI) was not enough to decrease emissions below the EU regulated levels; hence, it is necessary to install dedicated flue gas treatment for Hg removal. The leachability and ecotoxicity of sludge and ash were also compared with the new regulatory limits for landfill disposal in the European Union (EU).

  2. Improvement of NO and CO predictions for a homogeneous combustion SI engine using a novel emissions model

    International Nuclear Information System (INIS)

    Karvountzis-Kontakiotis, Apostolos; Ntziachristos, Leonidas

    2016-01-01

    Highlights: • Presentation of a novel emissions model to predict pollutants formation in engines. • Model based on detailed chemistry, requires no application-specific calibration. • Combined with 0D and 1D combustion models with low additional computational cost. • Demonstrates accurate prediction of cyclic variability of pollutants emissions. - Abstract: This study proposes a novel emissions model for the prediction of spark ignition (SI) engine emissions at homogeneous combustion conditions, using post combustion analysis and a detailed chemistry mechanism. The novel emissions model considers an unburned and a burned zone, where the latter is considered as a homogeneous reactor and is modeled using a detailed chemical kinetics mechanism. This allows detailed emission predictions at high speed practically based only on combustion pressure and temperature profiles, without the need for calibration of the model parameters. The predictability of the emissions model is compared against the extended Zeldovich mechanism for NO and a simplified two-step reaction kinetic model for CO, which both constitute the most widespread existing approaches in the literature. Under various engine load and speed conditions examined, the mean error in NO prediction was 28% for the existing models and less than 1.3% for the new model proposed. The novel emissions model was also used to predict emissions variation due to cyclic combustion variability and demonstrated mean prediction error of 6% and 3.6% for NO and CO respectively, compared to 36% (NO) and 67% (CO) for the simplified model. The results show that the emissions model proposed offers substantial improvements in the prediction of the results without significant increase in calculation time.

  3. Comparative study of coal and biomass co-combustion with coal burning separately through emissions analysis

    International Nuclear Information System (INIS)

    Siddique, M.; Asadullah, A.; Khan, G.; Soomro, S.A.

    2016-01-01

    Appropriate eco-friendly methos to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal and coal biomass co-combustion on the gaseous emissions. Different biomass were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves Various ratios of coal and biomass were used to investigate the combustion behavior of coal cow dung and 100% banana tree leaves emits less emission of CO, CO/sub 2/, NOx and SO/sub 2/ as compared to 100% coal, Maximum amount of CO emission were 1510.5 ppm for bannana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30) of 684.667 leaves (90:10) and minimum amount of SO/sub 2/ present in samples is in lakhra coal-banana tree waste (80:20). The maximum amount of NO obtained for banana tree waste were 68 ppm whereas amount from cow dung manure (30.83 ppm). The study concludes that utilization of biomass with coal could make remedial action against environment pollution. (author)

  4. Co-Optima Project E2.2.2: Accelerate Development of ACI/LTC Fuel Effects on RCCI Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Musculus, Mark P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    Many advanced combustion approaches have demonstrated potential for achieving diesel-like thermal efficiency but with much lower pollutant emissions of particulate matter (PM) and nitrogen oxides (NOx). RCCI is one advanced combustion concept, which makes use of in-cylinder blending of two fuels with differing reactivity for improved control of the combustion phasing and rate (Reitz et al., 2015). Previous research and development at ORNL has demonstrated successful implementation of RCCI on a light-duty multi-cylinder engine over a wide range of operating conditions (Curran et al., 2015). Several challenges were encountered when extending the research to practical applications, including limits to the operating range, both for high and low loads. Co-optimizing the engine and fuel aspects of the RCCI approach might allow these operating limits to be overcome. The in-cylinder mechanisms by which fuel properties interact with engine operating condition variables is not well understood, however, in part because RCCI is a new combustion concept that is still being developed, and limited data have been acquired to date, especially using in-cylinder optical/imaging diagnostics. The objective of this work is to use in-cylinder diagnostics in a heavy-duty single-cylinder optical engine at SNL to understand the interplay between fuel properties and engine hardware and operating conditions for RCCI in general, and in particular for the light-duty multi-cylinder all-metal RCCI engine experiments at ORNL.

  5. In situ synthesis and formation mechanism of ZrC and ZrB2 by combustion synthesis from the Co-Zr-B4C system

    Directory of Open Access Journals (Sweden)

    Mengxian Zhang

    2015-09-01

    Full Text Available ZrC-ZrB2-based composites were prepared by combustion synthesis (CS reaction from 10 wt.% to 50 wt.% Co-Zr-B4C powder mixtures. With increasing Co contents, the particle sizes of near-spherical ZrC and platelet-like ZrB2 decreased from 1 μm to 0.5 μm and from 5 μm to 2 μm, respectively. In addition, the formation mechanism of ZrC and ZrB2 was explored by the phase transition and microstructure evolution on the combustion wave quenched sample in combination with differential scanning calorimeter analysis. The results showed that the production of ZrC was ascribed to the solid-solid reaction between Zr and C and the precipitation from the Co-Zr-B-C melt, while ZrB2 was prepared from the saturated liquid. The low B concentration in the Co-Zr-B-C liquid and high cooling rate during the CS process led to the presence of Co2B and ZrCo3B2 in the composites. The addition of Co in the Co-Zr-B4C system not only prevented ZrC and ZrB2 particulates from growing, but also promoted the occurrence of ZrC-ZrB2-forming reaction.

  6. Next-generation coal utilization technology development study. Environmentally-friendly coal combustion technology; O2/CO2 combustion technology; Sekitan riyo jisedai gijutsu kaihatsu chosa. Kankyo chowagata sekitan nensho gijutsu (sanso nensho gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    For the purpose of developing combustion systems in which environmental pollutants are less emitted from coal-fired boilers, conducted in fiscal 1994 were a study of load followability of oxygen producing equipment, and element and basic tests on oxygen combustion systems. Dynamic simulations were made to confirm load followability of low-purity oxygen producing equipment. Further, a test was made on starting time of oxygen producing equipment. As a result of the simulation, favorable load followability was confirmed except for some of the process. The width of variation of the product oxygen purity was {plus_minus} 0.7% at maximum. In the element test on oxygen combustion systems, an experiment on the oxygen combustion using pulverized coal was conducted to study heat collection characteristics of furnace and response to multi-kind of coal. A study of balance of S content, experiments on characteristics of crushing/transporting pulverized coal, etc. were added. There were seen no peculiar differences in CO2 transport and air transport. 216 figs., 31 tabs.

  7. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  8. Soot and NOx simultaneous reduction by use of CO2 mixed fuel; Ekika CO2 yokai nenryo ni yoru diesel kikan no susu, NOx no doji teigen

    Energy Technology Data Exchange (ETDEWEB)

    Senda, J; Yokoyama, T; Ikeda, M; Fujimoto, H [Doshisha University, Kyoto (Japan); Ifuku, Y [Kubota Corp., Osaka (Japan)

    1997-10-01

    We propose the new fuel injection system by use of diesel fuel dissolved with CO2 to reduce both soot and NOx simultaneously. In this paper spray combustion characteristics of CO2 mixed fuel is reported. It is revealed that flame temperature and KL factor at the CO2 mixed fuel combustion are lower than at the only n-tridecane combustion due to separation or partly flashing of CO2component. And the result of exhaust gas measurement shows the capability that CO2 mixed fuel is able to reduce both soot and NOx simultaneously. 12 refs., 7 figs., 1 tab.

  9. Modelling of a tubular membrane contactor for pre-combustion CO2 capture using ionic liquids: Influence of the membrane configuration, absorbent properties and operation parameters

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-10-01

    Full Text Available A membrane contactor using ionic liquids (ILs as solvent for pre-combustion capture CO2 at elevated temperature (303–393 K and pressure (20 bar has been studied using mathematic model in the present work. A comprehensive two-dimensional (2D mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO2 removal efficiency were systematically studied. The simulation results show that CO2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range. Keywords: CO2 capture, Pre-combustion, Membrane contactor, Ionic liquids, Modelling

  10. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  11. Microporous metal organic framework [M2(hfipbb)2(ted)] (M=Zn, Co; H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine): Synthesis, structure analysis, pore characterization, small gas adsorption and CO2/N2 separation properties

    Science.gov (United States)

    Xu, William W.; Pramanik, Sanhita; Zhang, Zhijuan; Emge, Thomas J.; Li, Jing

    2013-04-01

    Carbon dioxide is a greenhouse gas that is a major contributor to global warming. Developing methods that can effectively capture CO2 is the key to reduce its emission to the atmosphere. Recent research shows that microporous metal organic frameworks (MOFs) are emerging as a promising family of adsorbents that may be promising for use in adsorption based capture and separation of CO2 from power plant waste gases. In this work we report the synthesis, crystal structure analysis and pore characterization of two microporous MOF structures, [M2(hfipbb)2(ted)] (M=Zn (1), Co (2); H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine). The CO2 and N2 adsorption experiments and IAST calculations are carried out on [Zn2(hfipbb)2(ted)] under conditions that mimic post-combustion flue gas mixtures emitted from power plants. The results show that the framework interacts with CO2 strongly, giving rise to relatively high isosteric heats of adsorption (up to 28 kJ/mol), and high adsorption selectivity for CO2 over N2, making it promising for capturing and separating CO2 from CO2/N2 mixtures.

  12. Application of CO{sub 2} selective membrane reactors in pre-combustion decarbonisation systems for power production

    Energy Technology Data Exchange (ETDEWEB)

    Steven C.A. Kluiters; Virginie C. Feuillade; Jan Wilco Dijkstra; Daniel Jansen; Wim G. Haije [Energy research Centre of the Netherlands (ECN), Petten (Netherlands)

    2006-07-01

    For pre-combustion decarbonisation of fuels for large-scale power production or H{sub 2} generation both CO{sub 2} and H{sub 2} selective membranes are viable candidates for use in steam reforming and water gas shift membrane reactors. It will be shown that the choice between either option is not a matter of taste, but dictated by the fuel used and, to a lesser extent, the total system layout. Hydrotalcites, clay-like materials, are shown to be promising candidates as membrane material for low temperature, below 400{sup o}C, membrane shift reactors. 7 refs., 6 figs., 1 tab.

  13. Nanoporous amide networks based on tetraphenyladamantane for selective CO2capture

    KAUST Repository

    Zulfiqar, Sonia; Mantione, Daniele; El Tall, Omar; Sarwar, Muhammad Ilyas; Ruipé rez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    Reduction of anthropogenic CO2 emissions and CO2 separation from post-combustion flue gases are among the imperative issues in the spotlight at present. Hence, it is highly desirable to develop efficient adsorbents for mitigating climate change with possible energy savings. Here, we report the design of a facile one pot catalyst-free synthetic protocol for the generation of three different nitrogen rich nanoporous amide networks (NANs) based on tetraphenyladamantane. Besides the porous architecture, CO2 capturing potential and high thermal stability, these NANs possess notable CO2/N2 selectivity with reasonable retention while increasing the temperature from 273 K to 298 K. The quantum chemical calculations also suggest that CO2 interacts mainly in the region of polar amide groups (-CONH-) present in NANs and this interaction is much stronger than that with N2 thus leading to better selectivity and affirming them as promising contenders for efficient gas separation. © The Royal Society of Chemistry 2016.

  14. Nanoporous amide networks based on tetraphenyladamantane for selective CO2capture

    KAUST Repository

    Zulfiqar, Sonia

    2016-04-19

    Reduction of anthropogenic CO2 emissions and CO2 separation from post-combustion flue gases are among the imperative issues in the spotlight at present. Hence, it is highly desirable to develop efficient adsorbents for mitigating climate change with possible energy savings. Here, we report the design of a facile one pot catalyst-free synthetic protocol for the generation of three different nitrogen rich nanoporous amide networks (NANs) based on tetraphenyladamantane. Besides the porous architecture, CO2 capturing potential and high thermal stability, these NANs possess notable CO2/N2 selectivity with reasonable retention while increasing the temperature from 273 K to 298 K. The quantum chemical calculations also suggest that CO2 interacts mainly in the region of polar amide groups (-CONH-) present in NANs and this interaction is much stronger than that with N2 thus leading to better selectivity and affirming them as promising contenders for efficient gas separation. © The Royal Society of Chemistry 2016.

  15. An experimental study on premixed CNG/H2/CO2 mixture flames

    Science.gov (United States)

    Yilmaz, Ilker; Yilmaz, Harun; Cam, Omer

    2018-03-01

    In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW). All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  16. Co-Combustion of Animal Waste in a Commercial Waste-to-Energy BFB Boiler

    Directory of Open Access Journals (Sweden)

    Farzad Moradian

    2013-11-01

    Full Text Available Co-combustion of animal waste, in waste-to-energy boilers, is considered a method to produce both heat and power and to dispose of possibly infected animal wastes. This research conducted full-scale combustion tests to identify the impact of changed fuel composition on a fluidized-bed boiler. The impact was characterized by analyzing the deposit formation rate, deposit composition, ash composition, and emissions. Two combustion tests, denoted the reference case and animal waste case, were performed based on different fuel mixes. In the reference case, a normal solid waste fuel mix was combusted in the boiler, containing sorted industry and household waste. In the animal waste case, 20 wt% animal waste was added to the reference fuel mix. The collected samples, comprising sampling probe deposits, fuel mixes, bed ash, return sand, boiler ash, cyclone ash and filter ash, were analyzed using chemical fractionation, SEM-EDX and XRD. The results indicate decreased deposit formation due to animal waste co-combustion. SEM-EDX and chemical fractionation identified higher concentrations of P, Ca, S, and Cl in the bed materials in the animal waste case. Moreover, the risk of bed agglomeration was lower in the animal waste case and also a decreased rate of NOx and SO2 emissions were observed.

  17. Thermoeconomic cost analysis of CO_2 compression and purification unit in oxy-combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    Highlights: • Thermoeconomic cost analysis for CO_2 compression and purification unit is conducted. • Exergy cost and thermoeconomic cost occur in flash separation and mixing processes. • Unit exergy costs for flash separator and multi-stream heat exchanger are identical. • Multi-stage CO_2 compressor contributes to the minimum unit exergy cost. • Thermoeconomic performance for optimized CPU is enhanced. - Abstract: High CO_2 purity products can be obtained from oxy-combustion power plants through CO_2 compression and purification unit (CPU) based on phase separation method. To identify cost formation process and potential energy savings for CPU, detailed thermoeconomic cost analysis based on structure theory of thermoeconomics is applied to an optimized CPU (with double flash separators). It is found that the largest unit exergy cost occurs in the first separation process while the multi-stage CO_2 compressor contributes to the minimum unit exergy cost. In two flash separation processes, unit exergy costs for the flash separator and multi-stream heat exchanger are identical but their unit thermoeconomic costs are different once monetary cost for each device is considered. For cost inefficiency occurring in CPU, it mainly derives from large exergy costs and thermoeconomic costs in the flash separation and mixing processes. When compared with an unoptimized CPU, thermoeconomic performance for the optimized CPU is enhanced and the maximum reduction of 5.18% for thermoeconomic cost is attained. To achieve cost effective operation, measures should be taken to improve operations of the flash separation and mixing processes.

  18. Determination of {sup 60} Co by means of Neutron Activation Analysis in the sorption of Co in synthesized porous oxides by the combustion method; Determinacion de {sup 60} Co por medio de AAN en la sorcion de Co en oxidos porosos sintetizados por metodo de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, V.; Bulbulian, S.; Urena, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: violelugo@yahoo.es

    2005-07-01

    Recently inorganic materials are investigating as sorbent of radioactive pollutants present in water. The inorganic oxides belong to this group of materials. A quick method exists for the obtaining of inorganic oxides, denominated combustion method that could be used to produce porous oxides successfully with good properties for the sorption of radioactive ions. In this investigation, iron oxides, magnesium and zinc were synthesized obtained by the combustion method, comparing them with those synthesized by the calcination method, using two different synthesis temperatures. The obtained solids were characterized by scanning electron microscopy (Sem), by X-ray diffraction (XRD) and by semiquantitative elemental analysis (EDS). After the characterization, the crystalline oxides synthesized by both methods, to temperature of 800 C, were evaluated as sorbents in the removal of Co{sup 2+} ions, through experiments in batch, and using neutron activation analysis, determining the sorption percentage, with this it was concluded that the magnesium oxide produced by combustion it is more effective in the removal of Co{sup 2+} ions than that synthesized by calcination. It was determined the surface area of the magnesium oxides, obtaining a surface area greater for the synthesized oxide by combustion method. (Author)

  19. Use of nitrogen stable isotope analysis to understand char nitrogen evolution during the fluidized-bed co-combustion of coal and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Ana Arenillas; Roberto Garcia; Chenggong Sun; Colin E. Snape; Angel H. Moreno; Fernando Rubiera; Jose J. Pis [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-04-01

    NOx emissions from sewage sludge combustion are a concern, because of the usually high nitrogen content of this fuel. The interactions during co-combustion in a fluidized-bed reactor of sewage sludge and a bituminous coal were evaluated, in relation to the nitrogen evolution during the combustion process. The nitrogen stable isotope measurements provide novel results regarding the tracing of nitrogen during combustion. Our preliminary results show that the co-combustion chars retain more nitrogen than expected, with the additional nitrogen being mainly derived from the sludge. Additional measurements are planned on the resultant co-combustion gases, to aid source apportionment of the NOx arising from coal/sewage interactions. 14 refs., 3 figs., 2 tabs.

  20. Use of artificial intelligence techniques for optimisation of co-combustion of coal with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.K.; Wilcox, S.J.; Ward, J. [University of Glamorgan, Pontypridd (United Kingdom). Division of Mechanical Engineering

    2006-03-15

    The optimisation of burner operation in conventional pulverised-coal-fired boilers for co-combustion applications represents a significant challenge This paper describes a strategic framework in which Artificial Intelligence (AI) techniques can be applied to solve such an optimisation problem. The effectiveness of the proposed system is demonstrated by a case study that simulates the co-combustion of coal with sewage sludge in a 500-kW pilot-scale combustion rig equipped with a swirl stabilised low-NOx burner. A series of Computational Fluid Dynamics (CFD) simulations were performed to generate data for different operating conditions, which were then used to train several Artificial Neural Networks (ANNs) to predict the co-combustion performance. Once trained, the ANNs were able to make estimations of unseen situations in a fraction of the time taken by the CFD simulation. Consequently, the networks were capable of representing the underlying physics of the CFD models and could be executed efficiently for a large number of iterations as required by optimisation techniques based on Evolutionary Algorithms (EAs). Four operating parameters of the burner, namely the swirl angles and flow rates of the secondary and tertiary combustion air were optimised with the objective of minimising the NOx and CO emissions as well as the unburned carbon at the furnace exit. The results suggest that ANNs combined with EAs provide a useful tool for optimising co-combustion processes.

  1. Modeling char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres

    DEFF Research Database (Denmark)

    Brix, Jacob; Jensen, Peter Arendt; Jensen, Anker Degn

    2011-01-01

    The aim of this investigation has been to model combustion under suspension fired conditions in O2/N2 and O2/CO2 mixtures. Experiments used for model validation have been carried out in an electrically heated Entrained Flow Reactor (EFR) at temperatures between 1173 K and 1673 K with inlet O2...... concentrations between 5 and 28 vol.%. The COal COmbustion MOdel, COCOMO, includes the three char morphologies: cenospheric char, network char and dense char each divided between six discrete particle sizes. Both combustion and gasification with CO2 are accounted for and reaction rates include thermal char...

  2. Comparison of structural and luminescence properties of Dy2O3 nanopowders synthesized by co-precipitation and green combustion routes

    International Nuclear Information System (INIS)

    Chandrasekhar, M.; Nagabhushana, H.; Sudheerkumar, K.H.; Dhananjaya, N.; Sharma, S.C.; Kavyashree, D.; Shivakumara, C.; Nagabhushana, B.M.

    2014-01-01

    Highlights: • Dy 2 O 3 nanopowders were prepared by co-precipitation and eco-friendly green combustion route using plant latex. • Both the products show excellent chromaticity coordinates in the white region, which were quite useful for white LED’s. • Thermoluminescence response of the Dy 2 O 3 product prepared by green synthesis was higher when compared to co-precipitation route. • Structural parameters of Dy 2 O 3 were estimated using Rietveld refinement. • The development of nanosize materials using eco-friendly resources was an attractive non-hazardous chemical route. - Abstract: Dysprosium oxide (Dy 2 O 3 ) nanopowders were prepared by co-precipitation (CP) and eco-friendly green combustion (GC) routes. SEM micrographs prepared by CP route show smooth rods with various lengths and diameters while, GC route show porous, agglomerated particles. The results were further confirmed by TEM. Thermoluminescence (TL) responses of the nanopowder prepared by both the routes were studied using γ-rays. A well resolved glow peak at 353 °C along with less intense peak at 183 °C was observed in GC route while, in CP a single glow peak at 364 °C was observed. The kinetic parameters were estimated using Chen’s glow peak route. Photoluminescence (PL) of Dy 2 O 3 shows peaks at 481, 577, 666 and 756 nm which were attributed to Dy 3+ transitions of 4 F 9/2 ⟶ 6 H 15/2 , 6 H 13/2 , 6 H 11/2 and 6 H 9/2 , respectively. Color co-ordinate values were located in the white region as a result the product may be useful for the fabrication of WLED’S

  3. An experimental study on premixed CNG/H2/CO2 mixture flames

    Directory of Open Access Journals (Sweden)

    Yilmaz Ilker

    2018-03-01

    Full Text Available In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW. All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  4. Infrared emissions in MgSrAl10O17:Er3+ phosphor co-doped with Yb3+/Ba2+/Ca2+ obtained by solution combustion route

    International Nuclear Information System (INIS)

    Singh, Vijay; Kumar Rai, Vineet; Venkatramu, V.; Chakradhar, R.P.S.; Hwan Kim, Sang

    2013-01-01

    An intense infrared emitting MgSrAl 10 O 17 :Er 3+ phosphor co-doped with Yb 3+ , Ba 2+ and Ca 2+ ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl 10 O 17 phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed upon excitation at 980 nm. Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: ► The hexagonal phase of MgSrAl 10 O 17 could be obtained by the low temperature combustion method. ► The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed. ► Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ were reported.

  5. Effect of calcination temperature on the H{sub 2}O{sub 2} decomposition activity of nano-crystalline Co{sub 3}O{sub 4} prepared by combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf, M.Th. [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Abu-Zied, B.M., E-mail: babuzied@aun.edu.eg [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Mansoure, T.H. [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt)

    2013-06-01

    Cobalt oxide nano-particles were prepared by combustion method using urea as a combustion fuel. The effects of calcination temperature, 350–1000 °C, on the physicochemical, surface and catalytic properties of the prepared Co{sub 3}O{sub 4} nano-particles were studied. The products were characterized by thermal analyses (TGA and DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Textural features of the obtained catalysts were investigated using nitrogen adsorption at −196 °C. X-ray diffraction confirmed that the resulting oxide was pure single-crystalline Co{sub 3}O{sub 4} nano-particles. Transmission electron microscopy indicating that, the crystallite size of Co{sub 3}O{sub 4} nano-crystals was in the range of 8–34 nm. The catalytic activities of prepared nano-crystalline Co{sub 3}O{sub 4} catalysts were tested for H{sub 2}O{sub 2} decomposition at 35–50 °C temperature range. Experimental results revealed that, the catalytic decomposition of H{sub 2}O{sub 2} decreases with increasing the calcination temperature. This was correlated with the observed particle size increase accompanying the calcination temperature rise.

  6. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation

    KAUST Repository

    Nugent, Patrick S.

    2013-02-27

    The energy costs associated with the separation and purification of industrial commodities, such as gases, fine chemicals and fresh water, currently represent around 15 per cent of global energy production, and the demand for such commodities is projected to triple by 2050 (ref. 1). The challenge of developing effective separation and purification technologies that have much smaller energy footprints is greater for carbon dioxide (CO2) than for other gases; in addition to its involvement in climate change, CO 2 is an impurity in natural gas, biogas (natural gas produced from biomass), syngas (CO/H 2, the main source of hydrogen in refineries) and many other gas streams. In the context of porous crystalline materials that can exploit both equilibrium and kinetic selectivity, size selectivity and targeted molecular recognition are attractive characteristics for CO 2 separation and capture, as exemplified by zeolites 5A and 13X (ref. 2), as well as metal-organic materials (MOMs). Here we report that a crystal engineering or reticular chemistry strategy that controls pore functionality and size in a series of MOMs with coordinately saturated metal centres and periodically arrayed hexafluorosilicate (SiF 6 2-) anions enables a \\'sweet spot\\' of kinetics and thermodynamics that offers high volumetric uptake at low CO2 partial pressure (less than 0.15 bar). Most importantly, such MOMs offer an unprecedented CO 2 sorption selectivity over N2, H 2 and CH 4, even in the presence of moisture. These MOMs are therefore relevant to CO2 separation in the context of post-combustion (flue gas, CO2/N2), pre-combustion (shifted synthesis gas stream, CO 2/H 2) and natural gas upgrading (natural gas clean-up, CO2/CH 4). © 2013 Macmillan Publishers Limited. All rights reserved.

  7. MULTIFUNCTIONAL (NOx/CO/O2) SOLID-STATE SENSORS FOR COAL COMBUSTION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2005-05-29

    We have made great progress in both developing solid state sensors for coal combustion control and understanding the mechanism by which they operate. We have fabricated and tested numerous sensors and identified the role electrode microstructure plays in sensor response. We have developed both p-type (La{sub 2}CuO{sub 4}) and n-type (WO{sub 3}) semiconducting NO{sub x} sensing electrodes. We have demonstrated their respective sensing behavior (sensitivities and cross-sensitivities), related this behavior to their gas adsorption/desorption behavior and catalytic activity, and in so doing verified that our proposed Differential Electrode Equilibria is a more comprehensive sensing mechanism. These investigations and their results are summarized below. The composition and microstructure of the sensing electrode is the key parameters that influence the sensing performance. We investigated the effect of electrode microstructure on the NO{sub x} sensitivity and response time using a La{sub 2}CuO{sub 4}-based potentiometric sensor. Temperature dependence, cross-sensitivity and selectivities of a La{sub 2}CuO{sub 4}- and WO{sub 3}-based potentiometric NO{sub x} sensor were investigated both in N{sub 2} and in a simulated exhaust gas. We performed temperature programmed reaction (TPR) and desorption (TPD) experiments to determine the reaction and adsorption characteristics of O{sub 2}, NO{sub x}, CO, CO{sub 2}, and their mixtures on the electrodes, and related the results to sensor performance. In order to optimize the sensor electrode microstructure, powders were prepared using four different powder synthesis routes, resulting in different particle size distributions and BET surface areas. Different sintering conditions were also applied. The microstructure of electrodes, synthesized with the same composition, has a dramatic effect on both sensitivity and response time of potentiometric NO sensors, showing that large surface areas generate a porous morphology with smaller

  8. Supported modified hydrotalcites as sorbent for CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Meis, N.

    2010-02-15

    presence of Na{sup +}/K{sup +} on the surface of Mg(Al)O{sub x}. Due to the larger size of these alkali ions, incorporation in an activated HT would therefore be difficult and it is proposed that the K{sup +}/Na{sup +} are located at the surface and not in the 'bulk' of the MgAlO{sub x}. The tentative mechanism is that K{sup +} substitutes an Mg{sup 2+} and additional oxygen vacancies at the surface are created. Finally, a new developed sorbent, i.e. potassium carbonate (K{sub 2}CO{sub 3}) deposited on carbon nanofibers for CO2 capture at low temperatures (373K, post-combustion capture), was compared with potassium carbonate deposited on activated coal (AC) and alumina (Al{sub 2}O{sub 3}). K{sub 2}CO{sub 3} loaded on the CNF support revealed excellent properties as CO2 sorbent compared to the K{sub 2}CO{sub 3}-AC and K{sub 2}CO{sub 3}-Al{sub 2}O{sub 3} sorbents, having the highest capacity and fast desorption kinetics at low desorption temperatures (423-523K). These favorable properties of K{sub 2}CO{sub 3}-CNF are considered to originate from relatively small K{sub 2}CO{sub 3} particles combined with a good accessibility of these particles surrounded by the CNF. Moreover, the K{sub 2}CO{sub 3}-CNF could be regenerated with a low energy input estimated at 2-3 MJ/ton CO2, far below the energy needed for the currently used amine- scrubbers, which shows this sorbent's potential to become competitive with established post-combustion sorbents.

  9. CO2 supply from an integrated network : the opportunities and challenges

    International Nuclear Information System (INIS)

    Heath, M.

    2006-01-01

    Strategies for using carbon dioxide (CO 2 ) from an integrated network were discussed. The oil and gas industry is currently considering carbon capture and storage (CCS) scenarios for Alberta. Integrated scenarios are aimed at providing business solution for CO 2 currently being produced in the province as well as optimizing the amounts of CO 2 that can be stored in geologic sinks. The scenarios hope to transform CCS into a value-added market capable of providing optimal returns to stakeholders along the CO 2 supply chain through the creation of an infrastructure designed to transport CO 2 in sufficient volumes. The storage of CO 2 in geologic sinks is expected to remove optimal amounts of anthropogenic CO 2 from larger stationary point sources. Interest in an integrated CO 2 market in Alberta has arisen from both economic and environmental concerns. The most effective CO 2 sources are fertilizer, gas processing, and hydrogen plants. Petrochemical facilities also produce high purity CO 2 . CO 2 capture approaches include post- and pre-combustion capture technologies as well as oxyfuel conversion. It was concluded that the cost of capturing CO 2 depends on concentration and purity levels obtained at the point of capture. Major CO 2 sources in the Western Canadian Sedimentary Basin (WCSB) were provided. tabs., figs

  10. NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture

    DEFF Research Database (Denmark)

    Botheju, Deshai; Glarborg, Peter; Tokheim, Lars-Andre

    2012-01-01

    Amine reclaimer wastes (ARW) generated in CO2 capture processes demand suitable disposal means. Such wastes contain remaining amine, NH3 and other degradation compounds. This study investigated the potential of using ARW as a NOx reducing agent, under laboratory conditions in a flow reactor....../NO ratios (waste product, together with its demonstrated NOx reduction capability and its calorific value contribution, makes it attractive as an additive...

  11. Results concerning a clean co-combustion technology of waste biomass with fossil fuel, in a pilot fluidised bed combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, Ioana; Trif-Tordai, Gavril; Ungureanu, Corneliu; Popescu, Francisc; Lontis, Nicolae [Politehnica Univ. Timisoara (Romania). Faculty for Mechanical Engineering

    2008-07-01

    The research focuses on a facility, the experimental results, interpretation and future plans concerning a new developed technology of using waste renewable energy by applying the cocombustion of waste biomass with coal, in a fluidised bed system. The experimental facility is working entirely in accordance to the allowed limits for the exhaust flue gas concentration, with special concern for typical pollutants. The experiments conclude that the technology is cleaner, has as main advantage the possibility to reduce both the SO{sub 2} and CO{sub 2} exhaust in comparison to standard fossil fuel combustion, under comparable circumstances. The combustion is occurring in a stable fluidised bed. (orig.)

  12. CO2 sorption on surface-modified carbonaceous support: Probing the influence of the carbon black microporosity and surface polarity

    International Nuclear Information System (INIS)

    Gargiulo, Valentina; Alfè, Michela; Ammendola, Paola; Raganati, Federica; Chirone, Riccardo

    2016-01-01

    Graphical abstract: - Highlights: • CO 2 -sorbent materials preparation by surface modification of CB. • CB functionalization (amino-groups), CB coating (Fe 3 O 4 ), CB impregnation (ionic liquid). • Sorbents bearing basic functionalities exhibit the higher CO 2 sorption capacity. • Microporous supporting material limits the CO 2 accessibility toward the adsorbing material. - Abstract: The use of solid sorbents is a convenient option in post-combustion CO 2 capture strategies. Sorbents selection is a key point because the materials are required to be both low-cost and versatile in typical post-combustion conditions in order to guarantee an economically advantageous overall process. This work compares strategies to tailor the chemico-physical features of carbon black (CB) by surface-modification and/or coating with a CO 2 -sorbent phase. The influence of the CB microporosity, enhanced by chemical/thermal treatments, is also taken into account. Three CB surface modifications are performed and compared: (i) oxidation and functionalization with amino-groups, (ii) coating with iron oxides and (iii) impregnation with an ionic liquid (IL). The CO 2 capture performance is evaluated on the basis of the breakthrough curves measured at atmospheric pressure and room temperature in a lab-scale fixed bed micro-reactor. Most of tested solids adsorb a CO 2 amount significantly higher than a 13X zeolite and DARCO FGD (Norit) activated carbon (up to 4 times more in the best case). The sorbents bearing basic functionalities (amino-groups and IL) exhibit the highest CO 2 sorption capacity. The use of a microporous carbonaceous support limits the accessibility of CO 2 toward the adsorbing phase (IL or FM) lowering the number of accessible binding sites for CO 2 .

  13. Matrimid-JUC-62 and Matrimid-PCN-250 mixed matrix membranes displaying light-responsive gas separation and beneficial ageing characteristics for CO2/N2 separation.

    Science.gov (United States)

    Prasetya, Nicholaus; Teck, Anastasia A; Ladewig, Bradley P

    2018-02-13

    The performance of two generation-3 light-responsive metal-organic framework (MOF), namely JUC-62 and PCN-250, was investigated in a mixed matrix membrane (MMM) form. Both of them were incorporated inside the matrimid as the polymer matrix. Using our custom-designed membrane testing cell, it was observed that the MMMs showed up to 9% difference in CO 2 permeability between its pristine and UV-irradiated condition. This shows that the light-responsive ability of the light-responsive MOFs could still be maintained. Thus, this finding is applicable in designing a smart material. Apart from that, the MMMs also has the potential to be applied for post-combustion carbon capture. At loadings up to 15 wt%, both CO 2 permeability and CO 2 /N 2 ideal selectivity could be significantly improved and surpassed the value exhibited by most of the MOF-matrimid MMM. Lastly the long term performance of the MMM was also evaluated and it was observed that both MMM could maintain their performance up to 1 month with only a slight decrease in CO 2 permeability observed for 10 wt% PCN-250-matrimid. This study then opens up the possibility to fabricate a novel anti-aging multifunctional membrane material that is applicable as a smart material and also in post combustion carbon capture applications.

  14. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    Science.gov (United States)

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Takashi Nakamura

    2004-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  16. CO{sub 2} capture using some fly ash-derived carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    A. Arenillas; K.M. Smith; T.C. Drage; C.E. Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-12-01

    Adsorption is considered to be one of the more promising technologies for capturing CO{sub 2} from flue gases. For post-combustion capture, the success of such an approach is however dependent on the development of an adsorbent that can operate competitively at relatively high temperatures. In this work, low cost carbon materials derived from fly ash, are presented as effective CO{sub 2} sorbents through impregnation these with organic bases, for example, polyethylenimine aided by polyethylene glycol. The results show that for samples derived from a fly ash carbon concentrate, the CO{sub 2} adsorption capacities were relatively high (up to 4.5 wt%) especially at high temperatures (75{sup o}C), where commercial active carbons relying on physi-sorption have low capacities. The addition of PEG improves the adsorption capacity and reduces the time taken for the sample to reach the equilibrium. No CO{sub 2} seems to remain after desorption, suggesting that the process is fully reversible. 24 refs., 6 figs., 2 tabs.

  17. Conversion of char nitrogen to N2 under incomplete combustion conditions; Fukanzen nensho jokenka ni okeru char chuchisso no N2 eno tenka

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Q.; Yamauchi, A.; Oshima, Y.; Wu, Z.; Otsuka, Y. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    The effect of combustion conditions on conversion of char nitrogen to N2 was studied in the combustion experiment of char obtained by pyrolysis of coal. Char specimen was prepared by holding ZN coal of Chinese lignite in Ar atmosphere at 1123K for one hour. A batch scale quartz-made fluidized bed reactor was used for combustion experiment. After the specimen was fluidized in reaction gas, it was rapidly heated to start combustion reaction. CO, CO2 and N2 in produced gases were online measured by gas chromatography (GC). As the experimental result, under the incomplete combustion condition where a large amount of CO was produced by consuming almost all of O2, no NOx and N2O produced from char were found, and almost all of N-containing gas was N2. At the final stage of combustion, pyridinic-N disappeared completely, and pyrrolic-N decreased, while O-containing nitrogen complexes became a main component. It was thus suggested that O-containing nitrogen complexes are playing the role of intermediate product in combustion reaction. 7 refs., 4 figs., 1 tab.

  18. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  19. Development of a Novel Gas Pressurized Process-Based Technology for CO2 Capture from Post-Combustion Flue Gases Preliminary Year 1 Techno-Economic Study Results and Methodology for Gas Pressurized Stripping Process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shiaoguo

    2013-03-01

    Under the DOE’s Innovations for Existing Plants (IEP) Program, Carbon Capture Scientific, LLC (CCS) is developing a novel gas pressurized stripping (GPS) process to enable efficient post-combustion carbon capture (PCC) from coal-fired power plants. A technology and economic feasibility study is required as a deliverable in the project Statement of Project Objectives. This study analyzes a fully integrated pulverized coal power plant equipped with GPS technology for PCC, and is carried out, to the maximum extent possible, in accordance to the methodology and data provided in ATTACHMENT 3 – Basis for Technology Feasibility Study of DOE Funding Opportunity Number: DE-FOA-0000403. The DOE/NETL report on “Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity (Original Issue Date, May 2007), NETL Report No. DOE/NETL-2007/1281, Revision 1, August 2007” was used as the main source of reference to be followed, as per the guidelines of ATTACHMENT 3 of DE-FOA-0000403. The DOE/NETL-2007/1281 study compared the feasibility of various combinations of power plant/CO2 capture process arrangements. The report contained a comprehensive set of design basis and economic evaluation assumptions and criteria, which are used as the main reference points for the purpose of this study. Specifically, Nexant adopted the design and economic evaluation basis from Case 12 of the above-mentioned DOE/NETL report. This case corresponds to a nominal 550 MWe (net), supercritical greenfield PC plant that utilizes an advanced MEAbased absorption system for CO2 capture and compression. For this techno-economic study, CCS’ GPS process replaces the MEA-based CO2 absorption system used in the original case. The objective of this study is to assess the performance of a full-scale GPS-based PCC design that is integrated with a supercritical PC plant similar to Case 12 of the DOE/NETL report, such that it corresponds to a nominal 550 MWe

  20. Size-dependent magnetic and structural properties of CoCrFeO4 nano-powder prepared by solution self-combustion

    Science.gov (United States)

    Sijo, A. K.; Dutta, Dimple P.

    2018-04-01

    The study reports the tuning of magnetic and structural properties of nano-sized CoCrFeO4 via post-annealing treatment. CoCrFeO4 nano-powder has been prepared by solution self-combustion method. The structural and magnetic properties have been studied over a range of annealing temperatures (300-900 °C). The formation of the phase pure CoCrFeO4 spinel has been confirmed from powder XRD analysis. The crystallite size is observed to increase with an increase in annealing temperature. On annealing, the value of magnetic parameters-remanence, coercivity and saturation magnetization have enhanced. All the samples exhibit irreversibility at low-temperature measurements.

  1. Effects of nano-TiO2 on combustion and desulfurization

    International Nuclear Information System (INIS)

    Zhao, Yi; Wang, Shuqin; Shen, Yanmei; Lu, Xiaojuan

    2013-01-01

    Nanosized titanium oxide powder was prepared via the sol–gel process and characterized by transmission electron microscope. The effects of nano-TiO 2 on combustion characteristics of lignite, desulfurization in combustion and the properties of ashes were investigated. The calorific value of coals and the fusion point of the coal ashes were measured by calorimeter and ash fusion point determination meter; the components of coal ashes and the contents of combustible matters in ash were determined by chemical methods; the pore-size distribution and specific surface area of the coal ash were analyzed by surface area analyzer. A thermogravimetric analyzer was used to investigate the effect of nano-TiO 2 on combustion. The results showed that the calorific value of the coal and the fusion temperature of the coal ash were lowered by adding CaO, while on the other hand adding nano-TiO 2 to coal increased the calorific value and the melting temperature effectively. Meanwhile, the coal combustion efficiency and desulfurization in combustion could be effectively improved by the co-action of TiO 2 . - Highlights: • The burn-off rate of coals was raised and the combustible contents were reduced by adding nano-TiO 2 . • The desulfurization in combustion can be achieved by adding CaO, but the combustion efficiency was inhibited. • Nano-TiO 2 can promote the transfer rate of oxygen from gas phase to the surface of char

  2. On-road emissions of CO, CO2 and NOX from four wheeler and emission estimates for Delhi.

    Science.gov (United States)

    Jaiprakash; Habib, Gazala; Kumar, Anil; Sharma, Akash; Haider, Minza

    2017-03-01

    This study presents the emission factor of gaseous pollutants (CO, CO 2 , and NO X ) from on-road tailpipe measurement of 14 passenger cars of different types of fuel and vintage. The trolley equipped with stainless steel duct, vane probe velocity meter, flue gas analyzer, Nondispersive infra red (NDIR) CO 2 analyzer, temperature, and relative humidity (RH) sensors was connected to the vehicle using a towing system. Lower CO and higher NO X emissions were observed from new diesel cars (post 2010) compared to old cars (post 2005), which implied that new technological advancement in diesel fueled passenger cars to reduce CO emission is a successful venture, however, the use of turbo charger in diesel cars to achieve high temperature combustion might have resulted in increased NO X emissions. Based on the measured emission factors (g/kg), and fuel consumption (kg), the average and 95% confidence interval (CI) bound estimates of CO, CO 2 , and NO X from four wheeler (4W) in Delhi for the year 2012 were 15.7 (1.4-37.1) , 6234 (386-12,252) , and 30.4 (0.0-103) Gg/year, respectively. The contribution of diesel, gasoline and compressed natural gas (CNG) to total CO, CO 2 and NO X emissions were 7:84:9, 50:48:2 and 58:41:1 respectively. The present work indicated that the age and the maintenance of vehicle both are important factors in emission assessment therefore, more systematic repetitive measurements covering wide range of vehicles of different age groups, engine capacity, and maintenance level is needed for refining the emission factors with CI. Copyright © 2016. Published by Elsevier B.V.

  3. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2016-06-01

    Full Text Available Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their emissions. The study revealed that the ratio of 80:20 of coal (lignite-cow dung and 100% banana tree leaves emits less emissions of CO, CO2, NOx and SO2 as compared to 100% coal. Maximum amount of CO emissions were 1510.5 ppm for banana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30 of 684.667 ppm. Maximum percentage of SO2 (345.33 ppm was released from blend of lakhra coal and tree leaves (90:10 and minimum amount of SO2 present in samples is in lakhra coal-banana tree waste (80:20. The maximum amount of NO obtained for banana tree waste were 68 ppm whereas maximum amount of NOx was liberated from lakhra coal-tree leaves (60:40 and minimum amount from cow dung manure (30.83 ppm. The study concludes that utilization of biomass with coal could make remedial action against environment pollution.

  4. Characterization of hydrotalcite materials for CO2 selective membranes

    Energy Technology Data Exchange (ETDEWEB)

    Feuillade, V.C.; Haije, W.G. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2006-07-15

    The present concern about climate change has urged researchers and engineers all over the world to go and look for ways of reducing greenhouse gas emissions. Largescale CO2 emissions occur at power plants burning fossil fuels or e.g. the production of hydrogen from carbonaceous feed. In these cases pre- or post-combustion CO2 capture techniques followed by CO2 storage seems a promising route for reducing emissions. Prerequisite in these processes is the effective separation of CO2 from mixed gaseous process streams. The purpose of this work is to develop CO2 membranes to allow for the combination of natural gas reforming with separation of H2 and CO2 in separation enhanced reactors, i.e. membrane reactors, for carbon-free hydrogen production or electricity generation. This paper describes the materials' properties of hydrotalcites, a promising class of compounds for CO2 membranes. They have already proven their applicability as CO2 sorbent in sorption enhanced reaction processes. It is of fundamental importance to know the structural stability of this compound in the operational window of a chosen membrane reactor prior to any membrane fabrication. To this end, in-situ XRPD and DRIFTS as well as TGA-MS and SEM-EDX measurements have been performed on commercial (Pural) and hydrothermally synthesized homemade samples.

  5. Influence of Mn and Co on structural and morphological characteristics of ZnO synthesized by combustion reaction

    International Nuclear Information System (INIS)

    Torquato, R.A.; Costa, C.F.M.; Kiminami, R.H.A.

    2010-01-01

    This study aims to evaluate the effect of doping of 0.2 mol of Mn and Co on structural and morphological characteristics of ZnO synthesized by combustion reaction. During the synthesis was the measurement of temperature and time of the combustion flame. The samples were characterized by XRD, SEM, particle size distribution and nitrogen adsorption (BET). The maximum temperature the reactions were 428 deg C and 436 deg C, reaction time, and 115 and 0 seconds for the samples doped with Mn and Co, respectively. The XRD data showed that for both impurities were formed only ZnO phase. For Co were formed secondary phase CoO. The crystallite size and surface area were 18 nm and 22 nm, and 52 and 38 m2/g for ZnO doped with Mn and Co, respectively. (author)

  6. Trace elements in co-combustion of solid recovered fuel and coal

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Jappe Frandsen, Flemming

    2013-01-01

    Trace element partitioning in co-combustion of a bituminous coal and a solid recovered fuel (SRF) was studied in an entrained flow reactor. The experiments were carried out at conditions similar to pulverized coal combustion, with SRF shares of 7.9 wt.% (wet basis), 14.8 wt.% and 25.0 wt.......%. In addition, the effect of additives such as NaCl, PVC, ammonium sulphate, and kaolinite on trace element partitioning was investigated. The trace elements studied were As, Cd, Cr, Pb, Sb and Zn, since these elements were significantly enriched in SRF as compared to coal. During the experiments, bottom ash...... was collected in a chamber, large fly ash particles were collected by a cyclone with a cut-off diameter of ~2.5 μm, and the remaining fly ash particles were gathered in a filter. It was found that when coal was co-fired with SRF, the As, Cd, Pb, Sb and Zn content in filter ash/cyclone ash increased almost...

  7. Effects of post-annealing and cobalt co-doping on superconducting properties of (Ca,Pr)Fe{sub 2}As{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T., E-mail: 8781303601@mail.ecc.u-tokyo.ac.jp; Ogino, H.; Yakita, H.; Yamamoto, A.; Kishio, K.; Shimoyama, J.

    2014-10-15

    Highlights: • Post-annealing at 400 °C killed superconductivity for Co-free sample. • Pr,Co co-doped samples maintained superconductivity even after annealing. • Two-step superconducting transition was observed via magnetization measurement. • Bulk superconductivity of low-T{sub c} component was confirmed. • Superconducting volume fraction of high-T{sub c} component was always small. - Abstract: In order to clarify the origin of anomalous superconductivity in (Ca,RE)Fe{sub 2}As{sub 2} system, Pr doped and Pr,Co co-doped CaFe{sub 2}As{sub 2} single crystals were grown by the FeAs flux method. These samples showed two-step superconducting transition with T{sub c1} = 25–42 K, and T{sub c2} < 16 K, suggesting that (Ca,RE)Fe{sub 2}As{sub 2} system has two superconducting components. Post-annealing performed for these crystals in evacuated quartz ampoules at various temperatures revealed that post-annealing at ∼400 °C increased the c-axis length for all samples. This indicates that as-grown crystals have a certain level of strain, which is released by post-annealing at ∼400 °C. Superconducting properties also changed dramatically by post-annealing. After annealing at 400 °C, some of the co-doped samples showed large superconducting volume fraction corresponding to the perfect diamagnetism below T{sub c2} and high J{sub c} values of 10{sup 4}–10{sup 5} A cm{sup −2} at 2 K in low field, indicating the bulk superconductivity of (Ca,RE)Fe{sub 2}As{sub 2} phase occurred below T{sub c2}. On the contrary, the superconducting volume fraction above T{sub c2} was always very small, suggesting that 40 K-class superconductivity observed in this system is originating in the local superconductivity in the crystal.

  8. Characterisation of supplementary fuels for co-combustion with pulverised coal

    NARCIS (Netherlands)

    Heikkinen, J.M.

    2005-01-01

    The current and future energy policy aims at increasing the share of renewable energy in worlds energy supply. One possibility to enhance energy production by renewable sources within a short term is co-combustion. This means co-firing biomass and waste with fossil fuels at existing power plants

  9. A scanning electron microscopy study of ash, char, deposits and fuels from straw combustion and co-combustion of coal and straw

    Energy Technology Data Exchange (ETDEWEB)

    Sund Soerensen, H.

    1998-07-01

    The SEM-study of samples from straw combustion and co-combustion of straw and coal have yielded a reference selection of representative images that will be useful for future comparison. The sample material encompassed potential fuels (wheat straw and grain), bottom ash, fly ash and deposits from straw combustion as well as fuels (coal and wheat straw), chars, bottom ash, fly ash and deposits from straw + coal co-combustion. Additionally, a variety of laboratory ashes were studied. SEM and CCSEM analysis of the samples have given a broad view of the inorganic components of straw and of the distribution of elements between individual ash particles and deposits. The CCSEM technique does, however, not detect dispersed inorganic elements in biomass, so to get a more complete visualization of the distribution of inorganic elements additional analyses must be performed, for example progressive leaching. In contrast, the CCSEM technique is efficient in characterizing the distribution of elements in ash particles and between ash fractions and deposits. The data for bottom ashes and fly ashes have indicated that binding of potassium to silicates occurs to a significant extent. The silicates can either be in the form of alumino-silicates or quartz (in co-combustion) or be present as straw-derived amorphous silica (in straw combustion). This process is important for two reasons. One is that potasium lowers the melting point of silica in the fly ash, potentially leading to troublesome deposits by particle impaction and sticking to heat transfer surfaces. The other is that the reaction between potassium and silica in the bottom ash binds part of the potassium meaning that it is not available for reaction with chlorine or sulphur to form KCl or K{sub 2}SO{sub 4}. Both phases are potentially troublesome because they can condense of surfaces to form a sticky layer onto which fly ash particles can adhere and by inducing corrosion beneath the deposit. It appears that in the studied

  10. The Possible Role of CO2 in Producing A Post-Stimulus CBF and BOLD Undershoot

    Science.gov (United States)

    Yücel, Meryem A.; Devor, Anna; Akin, Ata; Boas, David A.

    2009-01-01

    Comprehending the underlying mechanisms of neurovascular coupling is important for understanding the pathogenesis of neurodegenerative diseases related to uncoupling. Moreover, it elucidates the casual relation between the neural signaling and the hemodynamic responses measured with various imaging modalities such as functional magnetic resonance imaging (fMRI). There are mainly two hypotheses concerning this mechanism: a metabolic hypothesis and a neurogenic hypothesis. We have modified recent models of neurovascular coupling adding the effects of both NO (nitric oxide) kinetics, which is a well-known neurogenic vasodilator, and CO2 kinetics as a metabolic vasodilator. We have also added the Hodgkin–Huxley equations relating the membrane potentials to sodium influx through the membrane. Our results show that the dominant factor in the hemodynamic response is NO, however CO2 is important in producing a brief post-stimulus undershoot in the blood flow response that in turn modifies the fMRI blood oxygenation level-dependent post-stimulus undershoot. Our results suggest that increased cerebral blood flow during stimulation causes CO2 washout which then results in a post-stimulus hypocapnia induced vasoconstrictive effect. PMID:20027233

  11. Combustion of pulverized fuel under oxycoal conditions at low oxygen concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Toporov D.; Foerster M.; Kneer R. [RWTH Aachen University, Aachen (Germany). Institute of Heat and Mass Transfer

    2007-07-01

    Oxycoal combustion followed by post-combustion CO{sub 2} sequestration has gained justified interest as an option for significant and relatively quick reduction of emissions from fossil fuel power generation, while taking advantage of the existing power plant infrastructure. Burning pulverised coal in a mixture of CO{sub 2}/O{sub 2} instead of air, however, will lead to modified distributions of temperature, species, and radiation fluxes inside the combustion chamber causing a retroaction on the homogeneous and heterogeneous reactions. Utilizing a burner design, which was optimised for coal combustion in air, for oxycoal combustion will lead to flame instability and poor burnout. Stabilisation of the combustion process can be obtained by: i) an increased oxygen concentration (more than 21% vol.) in the oxidiser mixture, thus achieving similar reaction rates and temperature levels to a pulverised fuel-air flame without significant changes to the flame aerodynamics. ii) modifications to the burner aerodynamics, as presented here. The results in this study are obtained in the frame of OXYCOAL-AC, the research project, having the aim to burn a pulverised coal in a CO{sub 2}/O{sub 2}-atmosphere with oxygen, produced from high-temperature ceramic membrane thus leading to higher efficiency of the whole oxycoal process. Numerical and experimental investigations of a stable oxycoal flame, obtained with {le} 21% oxygen concentration in the burning mixture at the RWTH test facility are reported. Two different burner designs are considered, conclusions concerning the achievement of a stable oxycoal flame at O{sub 2} volume concentrations equal and less to the one of oxygen in air are derived. 8 refs., 7 figs., 1 tab.

  12. Novel Inorganic/Polymer Composite Membranes for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.S. Winston [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Dutta, Prabir K. [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Schmit, Steve J. [Gradient Technology, Elk River, MN (United States)

    2016-10-01

    The objective of this project is to develop a cost-effective design and manufacturing process for new membrane modules that capture CO2 from flue gas in coal-fired power plants. The membrane consisted of a thin selective layer including inorganic (zeolite) embedded in a polymer structure so that it can be made in a continuous manufacturing process. The membrane was incorporated in spiral-wound modules for the field test with actual flue gas at the National Carbon Capture Center (NCCC) in Wilsonville, AL and bench scale tests with simulated flue gas at the Ohio State University (OSU). Using the modules for post-combustion CO2 capture is expected to achieve the DOE target of $40/tonne CO2 captured (in 2007 dollar) for 2025. Membranes with the amine-containing polymer cover layer on zeolite-Y (ZY) nanoparticles deposited on the polyethersulfone (PES) substrate were successfully synthesized. The membranes showed a high CO2 permeance of about 1100 GPU (gas permeation unit, 1 GPU = 10-6 cm3 (STP)/(cm2 • s • cm Hg), 3000 GPU = 10-6 mol/(m2 • s • Pa)) with a high CO2/N2 selectivity of > 200 at the typical flue gas conditions at 57°C (about 17% water vapor in feed gas) and > 1400 GPU CO2 permeance with > 500 CO2/N2 selectivity at 102°C (~ 80% water vapor). The synthesis of ZY nanoparticles was successfully scaled up, and the pilot-scale membranes were also successfully fabricated using the continuous membrane machine at OSU. The transport performance of the pilot-scale membranes agreed reasonably well with the lab-scale membranes. The results from both the lab-scale and scale-up membranes were used for the techno-economic analysis. The scale-up membranes were fabricated into prototype spiral-wound membrane modules for continuous testing with simulated or real flue gas. For real flue gas testing, we worked with NCCC, in

  13. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie Lucero Konopa; James A. Mulholland; Matthew J. Realff; Paul M. Lemieux [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering

    2008-08-15

    The use of post-consumer carpet as a potential fuel substitute in cement kilns and other high-temperature processes is being considered to address the problem of huge volumes of carpet waste and the opportunity of waste-to-energy recovery. Carpet represents a high volume waste stream, provides high energy value, and contains other recoverable materials for the production of cement. This research studied the emission characteristics of burning 0.46-kg charges of chopped nylon carpet squares, pulverized coal, and particle-board pellets in a pilot-scale natural gas-fired rotary kiln. Carpet was tested with different amounts of water added. Emissions of oxygen, carbon dioxide, nitric oxide (NO), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), and total hydrocarbons and temperatures were continuously monitored. It was found that carpet burned faster and more completely than coal and particle board, with a rapid volatile release that resulted in large and variable transient emission peaks. NO emissions from carpet combustion ranged from 0.06 to 0.15 g/MJ and were inversely related to CO emissions. Carpet combustion yielded higher NO emissions than coal and particleboard combustion, consistent with its higher nitrogen content. S{sub 2} emissions were highest for coal combustion, consistent with its higher sulfur content than carpet or particle board. Adding water to carpet slowed its burn time and reduced variability in the emission transients, reducing the CO peak but increasing NO emissions. Results of this study indicate that carpet waste can be used as an effective alternative fuel, with the caveats that it might be necessary to wet carpet or chop it finely to avoid excessive transient puff emissions due to its high volatility compared with other solid fuels, and that controlled mixing of combustion air might be used to control NO emissions from nylon carpet. 13 refs., 5 figs., 1 tab.

  14. CO2 emissions in the World in 2013

    International Nuclear Information System (INIS)

    Ecoiffier, Mathieu

    2015-12-01

    This publication presents and comments data of CO 2 emissions in the world and their evolution. It more particularly addresses CO 2 emissions due to energy combustion which represent more than 80 per cent of these emissions or 62 per cent of greenhouse gas emissions, and which increased in 2013 with respect to 2012 (+ 2.2 pc). The distribution of CO 2 emissions due to energy combustion in different continents and regions is indicated (levels in 1990, 2012 and 2013, evolutions). The decrease of the CO 2 emission intensity with respect to the GDP is briefly commented (evolution since 1970), as well as the level of CO 2 emissions per inhabitant in China with respect to that in the EU (evolutions since 1970). The evolution of CO 2 emissions is then analysed with respect to different determining parameters according to the Kaya equation (population, GDP, primary energy consumption and their evolution or relationship one to each other)

  15. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.

    2010-01-01

    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  16. Co-combustion of household waste in small-scale energy supply and waste disposal plants; Co-Verbrennung von Siedlungsabfaellen in Kleinanlagen zur dezentralen Energieversorgung und Abfallentsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Schroeer, Ramona

    2012-07-01

    The studies described in this book demonstrate that the co-combustion of household waste in small-scale combustion plants constitutes an alternative disposal concept which facilitates the operation of decentralised waste disposal and heat supply systems. The basic idea of the concept is the co-combustion of different waste fractions in common household logwood heating systems. The experiments performed have shown that this is technically feasible using currently available technology without further modification and that these plants are capable of combusting various waste fractions at low emission levels. Several co-combustion systems were compared with basic oil, pellet and logwood heating systems in both economic and ecological respects. For this purpose cost-effectiveness calculations and a life cycle assessment were performed and brought together in an eco-efficiency analysis. The results show that the most cost-effective and eco-efficient solution is achieved when the co-combustion system is operated for high energy yield and simultaneous reduction of incombustible fractions.

  17. An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation

    International Nuclear Information System (INIS)

    Belaissaoui, Bouchra; Cabot, Gilles; Cabot, Marie-Sophie; Willson, David; Favre, Eric

    2012-01-01

    Post-combustion Carbon Capture and Storage (CCS) is currently intensively investigated as a key issue for the mitigation of greenhouse gases emissions. A very large number of studies is dedicated to coal power plants. In this paper, the possibility to achieve carbon capture on a gas turbine, based on a combination of flue gas recycle and membrane separation is reported. Membrane processes are effectively known to offer attractive performances in terms of energy efficiency, as soon as concentrated and/or pressure mixtures have to be treated. Two different flow schemes have been simulated and compared: flue gas recycle with air combustion and flue gas recycle with an oxygen enriched feed mixture. The energy requirement of the different processes, expressed in GJ (thermal basis) per ton of recovered CO 2 , and the size of the membrane capture process (expressed in m 2 of membrane area) have been systematically estimated for different membrane separation performances. It is shown that an overall energy requirement down to 2.6 GJ per ton can possibly be achieved when optimal operating conditions, based on oxygen enriched air (OEA) combustion together with a highly selective membrane (CO 2 /N 2 selectivity of 200) are combined. Additional possibilities in order to minimise the energy penalty of the process are discussed. -- Highlights: ► A carbon capture process for gas turbine has been investigated for the first time, with membrane separation unit. ► Air combustion systematically induces CO 2 capture specific energy requirement far above alternative capture processes. ► Remarkably, a very low energy requirement can be achieved (down to 2.6 GJ/ton) with Oxygen Enriched Air combustion. ► Target membrane selectivities and optimal oxygen content for combustion have been identified.

  18. An Experimental and Modeling Study of NOx-CO Formation in High Hydrogen Content (HHC) Fuels Combustion in Gas Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Farouk, Tanvir [Univ. of South Carolina, Columbia, SC (United States); Padak, Bihter [Univ. of South Carolina, Columbia, SC (United States); Dryer, Frederick [Univ. of South Carolina, Columbia, SC (United States)

    2013-10-01

    Species concentration measurements specifically those associated with NOx can act as important validation targets for developing kinetic models to predict NOx emissions under syngas as well as natural gas combustion accurately. In this collaborative research effort that included both experimental measurements, model development and simulations a comprehensive kinetic model and a multiphysics computational fluid dynamics platform has been developed and validated against the experimental data available in the literature as well as those acquired under this project. The experimental data provide the necessary NOx and speciation data for conditions relevant to gas turbine operations but are not readily available in the literature. The comprehensive chemical kinetic model consists of CO/H2/NOx oxidation with the full implementation of NOx evolution pathways, including thermal, prompt, N2O and NNH paths. The experiments conducted included NOx perturbed oxidation of natural gas at elevated pressure in laminar flow reactor and syngas/air combustion in a McKenna Burner – Flow Tube setup. A wide range of equivalence ratio, operating pressure as well as H2/CO ratio (for syngas only) was investigated. Temperature and NOx concentrations were measured in the flame and post-combustion zone. Experiments were also conducted for seeded syngas where trace hydrocarbon was introduced. The proposed model has been extensively tested. Predictions from the model are compared against multiple experimental datasets over a wide range of venues and operating conditions. The experimental venues include shock tube, plug flow reactor, and stirred reactor experiments that cover pressures from 1 to 100 bar and equivalence ratios from 0.5 to 1.5. In general, the overall model predictions are in good agreement with global combustion targets, such as ignition delay time, as well as with more

  19. Flue gas CO{sub 2} capture by a green liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Trachtenberg; Lihong Bao; Stefanie L. Goldman; David A. Smith; Xiaoqiu Wu [Carbozyme, Inc., Monmouth Junction, NJ (United States)

    2005-07-01

    We have designed, developed, modeled and tested several different membrane-based, facilitated transport carbonate / bicarbonate reactors (conjoint absorber-strippers) for the post-combustion extraction of CO{sub 2} from both air and flue gas. We have assessed separately the reactive chemistry, the reactor design and the process engineering. Facilitation is achieved by means of the most efficient CO{sub 2} conversion catalyst, the enzyme carbonic anhydrase. Experimental data mirror model predictions very closely. CO{sub 2} permeance value for 10% feed stream (balanced dry air) is 3.35E-8 mole/m{sup 2} s Pa, and the selectivity vs. N{sub 2} and vs. O{sub 2} were 250 and 150. The only moving elements in this design are the feed gas and the sweep gas streams. Gas separation is driven by partial pressure difference alone. As a consequence, this design is extremely energy efficient. 10 refs., 4 figs., 1 tab.

  20. Determination of 60 Co by means of Neutron Activation Analysis in the sorption of Co in synthesized porous oxides by the combustion method

    International Nuclear Information System (INIS)

    Lugo, V.; Bulbulian, S.; Urena, F.

    2005-01-01

    Recently inorganic materials are investigating as sorbent of radioactive pollutants present in water. The inorganic oxides belong to this group of materials. A quick method exists for the obtaining of inorganic oxides, denominated combustion method that could be used to produce porous oxides successfully with good properties for the sorption of radioactive ions. In this investigation, iron oxides, magnesium and zinc were synthesized obtained by the combustion method, comparing them with those synthesized by the calcination method, using two different synthesis temperatures. The obtained solids were characterized by scanning electron microscopy (Sem), by X-ray diffraction (XRD) and by semiquantitative elemental analysis (EDS). After the characterization, the crystalline oxides synthesized by both methods, to temperature of 800 C, were evaluated as sorbents in the removal of Co 2+ ions, through experiments in batch, and using neutron activation analysis, determining the sorption percentage, with this it was concluded that the magnesium oxide produced by combustion it is more effective in the removal of Co 2+ ions than that synthesized by calcination. It was determined the surface area of the magnesium oxides, obtaining a surface area greater for the synthesized oxide by combustion method. (Author)

  1. Co-combustion for fossil fuel replacement and better environment

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Gulyurtlu, Ibrahim; Abelha, Pedro; Teixeira, P.; Crujeira, Teresa; Boavida, Dulce; Marques, F.; Cabrita, Isabel [INETI/DER, Lisboa (Portugal)

    2006-07-01

    The growing demand for energy and the requirements regarding CO{sub 2} emissions to comply with the Kyoto targets, together with crisis associated with the fuel supply, can be, to some degree, met by the use of renewable fuel sources, such as biomass. Although the use of biomass, originating from forests, could be beneficial, particularly in preventing fires, there are obstacles to achieve a sustainable supply of biomass in most European countries. In addition, there are also technical barriers as biomass combustion conditions may differ from those of coal, which could mean significant retrofitting of existing installations. The significance of this problem was recognized in the EU and a Project is being financed by the 6th Framework Programme, INETI from Portugal being the coordinator. Five EU countries plus Turkey participate in the project which aims at evaluating both the sustainable chain supply in the several countries, taking profit of the experience of northern European countries and the technical issues related with the co-combustion process, pollutant emission control and operational problems, such as fouling and slagging inside the boilers. At INETI, experimental work is being carried out, involving the characterization of several types of biomass and non-toxic residues. These materials are being burned on a pilot fluidized bed combustor, in order to evaluate combustion performance and improve conditions and synergies of fuel blends to control pollutant emissions and slagging tendency. Ashes produced are also being characterized, for composition and leachability, in order to evaluate possibilities of reutilization and compliance with landfilling regulations. In this paper a description of the project is presented, along with some of the results already obtained.

  2. Co-combustion for fossil fuel replacement and better environment

    Energy Technology Data Exchange (ETDEWEB)

    M. Helena Lopes; I. Gulyurtlu; P. Abelha; P. Teixeira; T. Crujeira; D. Boavida; F. Marques; I. Cabrita [INETI, Lisbon (Portugal)

    2006-07-01

    The growing demand for energy and the requirement regarding CO{sub 2} emissions, to comply with the Kyoto targets, together with crisis associated with the fuel supply, can be, to some degree, met by the use of renewable fuel sources, such as biomass. Although the use of biomass, originating from forests, could be beneficial, there are obstacles to achieve a sustainable supply of biomass in most European countries. In addition, there are also technical barriers as biomass combustion conditions may differ from those of coal, which could mean significant retrofitting of existing installations. The significance of this problem was recognized in the EU and a Project is being financed by the 6th Framework Programme, INETI from Portugal being the coordinator. Five EU countries plus Turkey participate in the project which aims at evaluating both the sustainable chain supply in the several countries, taking profit of the experience of northern European countries and the technical issues related with the co-combustion process, pollutant emission control and operational problems, such as fouling and slagging inside the boilers. At INETI, experimental work is being carried out, involving the characterization of several types of biomass and non-toxic residues. These materials are being burned on a pilot fluidized bed combustor, in order to evaluate combustion performance and improve conditions and synergies of fuel blends to control pollutant emissions and slagging tendency. Ashes produced are also being characterized, for composition and leachability, in order to evaluate possibilities of reutilization and compliance with landfilling regulations. In this paper a description of the project is presented, along with some of the results already obtained. 19 refs., 5 figs., 7 tabs.

  3. Experimental study on the mechanism of SO2 emission and calcium-based desulfurization in the coal oxygen-enriched combustion

    International Nuclear Information System (INIS)

    Tian, Luning; Chen, Hanping; Yang, Haiping; Wang, Xianhua; Zhang, Shihong

    2010-01-01

    Full text: The emission of SO 2 , CO 2 brings serious harm to the ecological environment, human health and the global climate change. The largest source of SO 2 , CO 2 is the combustion of fossil fuels for power generation. So developing the new technology for controlling pollutants emissions from coal combustion was imperative. Oxygen-enriched combustion technology is such a new technology which can realize CO 2 zero emission, enhance the combustion efficiency and reduce pollutants emission. Due to the high concentration of CO 2 , it has many different aspects in the SO 2 emission and calcium-based desulfurization compare with the conventional combustion. In this article, experiments have been done to investigate the behavior and mechanism of SO 2 emissions and removal in oxygen-enriched combustion. First, in TGA and fixed bed reactor, the SO 2 emission characteristics were investigated under various bed temperature, particle size and O 2 / CO 2 concentration. It was observed that SO 2 released faster and the emission peak was higher than air atmosphere. SO 2 emission concentration increased with the reaction temperature increasing. Simultaneously, the mechanism of SO 2 emission was obtained by analyzing the sulfur compounds in the gas products and solid products in different reaction times. Then, the impacts of reaction temperature, particle size, O 2 / CO 2 concentration and SO 2 concentration etc. on the efficiency of SO 2 removal were analyzed. The phase analysis, pore diameter distribution and microstructure of the solid product were investigated. The experimental results showed that the sulphur capture takes place by direct sulphation reaction at high CO 2 concentration which attributes to light sinter, better porous structure, higher optimal desulfurization temperature and high desulfurization efficiency of calcium-based sorbent. (author)

  4. Toxic emissions during co-combustion of biomass-waste wood-lignite blends in an industrial boiler.

    Science.gov (United States)

    Samaras, P; Skodras, G; Sakellaropoulos, G P; Blumenstock, M; Schramm, K W; Kettrup, A

    2001-01-01

    The objectives of this work were to study the PCDD/F emissions during the co-combustion of waste wood/coal co-combustion in an industrial boiler and to determine the relation of the toxic emissions to the fuel properties. Co-combustion experiments were performed in a 13.8 MWthermal industrial moving grate combustor. The fuels which were examined in this study included Greek lignite, natural uncontaminated wood, power poles and medium density fibers (MDFs) which were by-products of the plant production process. Fuel blends were prepared by mixing single components in various concentrations. PCDD/F emissions were collected during experimental runs and were analyzed according to standard methods. Low PCDD/F emissions were obtained during the co-combustion tests, lower than the limit value of 0.1 ng TEQ/Nm3. The lowest values were observed during the combustion of fuel blends containing MDF, possibly due to the inhibitory action of some of the N-containing MDF ingredients, such as urea. No direct correlation was found between the PCDD/F and the copper emissions, while examination of the PCDD/F homologue patterns revealed the predominance of the lower chlorinated isomers over the higher ones.

  5. Fuel effect on solution combustion synthesis of Co(Cr,Al)2O4 pigments

    International Nuclear Information System (INIS)

    Gilabert, J.; Palacios, M.D.; Sanz, V.; Mestre, S.

    2017-01-01

    The fuel effect on the synthesis of a ceramic pigment with a composition CoCr22ΨAl2ΨO4 (0≤Ψ≤1) by means of solution combustion synthesis process (SCS) has been studied. Three different fuels were selected to carry out the synthesis (urea, glycine and hexamethylentetramine (HMT)). Highly foamy pigments with very low density were obtained. Fd-3m spinel-type structure was obtained in all the experiments. Nevertheless, crystallinity and crystallite size of the spinels show significant differences with composition and fuel. The use of glycine along with the chromium-richest composition favours ion rearrangement to obtain the most ordered structure. Lattice parameter does not seem to be affected by fuel, although it evolves with Ψ according to Vegard's law. Colouring power in a transparent glaze shows important variations with composition. On the other hand, fuel effect presents a rather low influence since practically the same shades are obtained. However, it exerts certain effect on luminosity (L*). [es

  6. Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture

    International Nuclear Information System (INIS)

    Chen, Shiyi; Lior, Noam; Xiang, Wenguo

    2015-01-01

    Highlights: • A novel power system integrating coal gasification with SOFC and chemical looping combustion. • The plant net power efficiency reaches 49.8% with complete CO 2 separation. • Energy and exergy analysis of the entire plant is conducted. • Sensitivity analysis shows a nearly constant power output when SOFC temperature and pressure vary. • NiO oxygen carrier shows higher plant efficiency than using Fe 2 O 3 and CuO. - Abstract: Since solid oxide fuel cells (SOFC) produce electricity with high energy conversion efficiency, and chemical looping combustion (CLC) is a process for fuel conversion with inherent CO 2 separation, a novel combined cycle integrating coal gasification, solid oxide fuel cell, and chemical looping combustion was configured and analyzed. A thermodynamic analysis based on energy and exergy was performed to investigate the performance of the integrated system and its sensitivity to major operating parameters. The major findings include that (1) the plant net power efficiency reaches 49.8% with ∼100% CO 2 capture for SOFC at 900 °C, 15 bar, fuel utilization factor = 0.85, fuel reactor temperature = 900 °C and air reactor temperature = 950 °C, using NiO as the oxygen carrier in the CLC unit. (2) In this parameter neighborhood the fuel utilization factor, the SOFC temperature and SOFC pressure have small effects on the plant net power efficiency because changes in pressure and temperature that increase the power generation by the SOFC tend to decrease the power generation by the gas turbine and steam cycle, and v.v.; an advantage of this system characteristic is that it maintains a nearly constant power output even when the temperature and pressure vary. (3) The largest exergy loss is in the gasification process, followed by those in the CO 2 compression and the SOFC. (4) Compared with the CLC Fe 2 O 3 and CuO oxygen carriers, NiO results in higher plant net power efficiency. To the authors’ knowledge, this is the first

  7. FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kenison, LaVesta [URS, Pittsburgh, PA (United States); Flanigan, Thomas [URS, Pittsburgh, PA (United States); Hagerty, Gregg [URS, Pittsburgh, PA (United States); Gorrie, James [Air Liquide, Kennesaw, GA (United States); Leclerc, Mathieu [Air Liquide, Kennesaw, GA (United States); Lockwood, Frederick [Air Liquide, Kennesaw, GA (United States); Falla, Lyle [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Macinnis, Jim [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Fedak, Mathew [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Yakle, Jeff [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Williford, Mark [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States); Wood, Paul [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States)

    2016-04-01

    The primary objectives of the FutureGen 2.0 CO2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO2 capture in steady-state operations. The project was to be fully integrated in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will

  8. PSO 7171 - Oxyfuel Combustion for below zero CO2 emissions

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Hansen, Brian Brun

    for the continuous utilisation of the existing energy producing system in the transformation period. Oxyfuel combustion is one of the possible CCS technologies which show promising perspectives for implementation in industrial scale within a relatively short period of time. Oxyfuel combustion deviates from...

  9. Effects of O{sub 2} and SO{sub 2} on the Capture Capacity of a Primary-Amine Based Polymeric CO{sub 2} Sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, Alexander P; Kitchin, John R

    2013-08-01

    Post combustion CO{sub 2} capture is most commonly carried out using an amine solution that results in a high parasitic energy cost in the stripper unit due to the need to heat the water which comprises a majority of the amine solution. It is also well known that amine solvents suffer from stability issues due to amine leaching and poisoning by flue gas impurities. Solid sorbents provide an alternative to solvent systems that would potentially reduce the energy penalty of carbon capture. However, the cost of using a particular sorbent is greatly affected by the usable lifetime of the sorbent. This work investigated the stability of a primary amine-functionalized ion exchange resin in the presence of O{sub 2} and SO{sub 2}, both of which are constituents of flue gas that have been shown to cause degradation of various amines in solvent processes. The CO{sub 2} capture capacity was measured over multiple capture cycles under continuous exposure to two simulated flue gas streams, one containing 12 vol% CO{sub 2}, 4% O{sub 2}, 84% N{sub 2}, and the other containing 12.5 vol% CO{sub 2}, 4% O{sub 2}, 431 ppm SO{sub 2}, balance N{sub 2} using a custom-built packed bed reactor. The resin maintained its CO{sub 2} capture capacity of 1.31 mol/kg over 17 capture cycles in the presence of O{sub 2} without SO{sub 2}. However, the CO{sub 2} capture capacity of the resin decreased rapidly under exposure to SO{sub 2} by an amount of 1.3 mol/kg over 9 capture cycles. Elemental analysis revealed the resin adsorbed 1.0 mol/kg of SO{sub 2}. Thermal regeneration was determined to not be possible. The poisoned resin was, however, partially regenerated with exposure to 1.5M NaOH for 3 days resulting in a 43% removal of sulfur, determined through elemental analysis, and a 35% recovery of CO{sub 2} capture capacity. Evidence was also found for amine loss upon prolonged (7 days) continuous exposure to high temperatures (120 C) in air. It is concluded that desulfurization of the flue gas

  10. Characterization of ultra-fast deposited polycrystalline graphite by a CO{sub 2} laser-assisted combustion-flame method

    Energy Technology Data Exchange (ETDEWEB)

    McKindra, Travis, E-mail: mckindra@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Patil, Sandeep; O' Keefe, Matthew J. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Han Yaoxuan; Ling Hao; Lu Yongfeng [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2009-02-15

    High deposition rate, 750 {mu}m/min, crystalline graphite was deposited on WC substrates by a CO{sub 2} laser-assisted combustion-flame method at laser powers between 300 and 800 W. The structures, which were identified as pillars, were characterized by various methods. The pillars were cylindrical in shape and grew to a size of approximately 3 mm in length and in a few minutes. The laser power did not affect the overall length of the pillar, but caused changes in the physical shape. X-ray and electron diffraction results revealed the pillars to be crystalline graphite regardless of the laser power. Investigation of the pillars by scanning electron microscopy showed two distinct microstructural areas: an inner core of dense material surrounded by an outer shell of lamellar-like material. The core/shell microstructure was unaffected by the level of CO{sub 2} laser power.

  11. Attestation in self-propagating combustion approach of spinel AFe_2O_4 (A = Co, Mg and Mn) complexes bearing mixed oxidation states: Magnetostructural properties

    International Nuclear Information System (INIS)

    Bennet, J.; Tholkappiyan, R.; Vishista, K.; Jaya, N. Victor; Hamed, Fathalla

    2016-01-01

    Highlights: • Spinel type ferrite compounds AFe_2O_4 (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel. • To investigate and confirms the presence of phases in the synthesized ferrite nanoparticles by XRD and FTIR analysis. • The formation of mixed oxidation state of cobalt (Co"2"+ and Co"3"+), iron (Fe"2"+ and Fe"3"+) and manganese (Mn"2"+ and Mn"3"+) ions were studied and confirmed from XPS analysis. • The magnetic properties of the synthesized ferrites were studied by VSM measurement. - Abstract: Spinel type nano-sized ferrite compounds AFe_2O_4 (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel at 400 °C under air atmosphere for 4 h. The crystal structure, chemical composition, morphology and magnetic properties of the synthesized samples were characterized by X−ray diffraction, Fourier transform infrared spectroscopy, X−ray photoelectron spectroscopy, Energy dispersive X−ray, Scanning and Transmission electron microscopy and vibrating sample magnetometer. The chemical reaction and role of fuel on the nanoparticles formation were discussed. The XRD pattern of the synthesized samples shows the formation of pure phase with average crystallite size of 97, 57 and 98 nm from Scherrer formula and 86, 54 and 87 nm from Williamson and Hall (W–H) formula respectively. FTIR absorption spectra revealed that the presence of strong absorption peaks near 400–600 cm"−"1 corresponds to tetrahedral and octahedral complex of spinel ferrites. The relative concentrations of electronic states of elements such as cobalt (Co"2"+ and Co"3"+), iron (Fe"2"+ and Fe"3"+) and manganese (Mn"2"+ and Mn"3"+) oxidation states were studied from XPS and it is found that 55% of Fe ions are in Fe"2"+ state and the remaining is in Fe"3"+ state and thus the cationic distribution of Fe ions occurred in both tetrahedral and octahedral sites. SEM analysis

  12. CO{sub 2} sorption on surface-modified carbonaceous support: Probing the influence of the carbon black microporosity and surface polarity

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Valentina [Istituto di Ricerche sulla Combustione (IRC)-CNR, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Alfè, Michela, E-mail: alfe@irc.cnr.it [Istituto di Ricerche sulla Combustione (IRC)-CNR, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Ammendola, Paola [Istituto di Ricerche sulla Combustione (IRC)-CNR, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Raganati, Federica [Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Chirone, Riccardo [Istituto di Ricerche sulla Combustione (IRC)-CNR, Piazzale V. Tecchio 80, 80125 Napoli (Italy)

    2016-01-01

    Graphical abstract: - Highlights: • CO{sub 2}-sorbent materials preparation by surface modification of CB. • CB functionalization (amino-groups), CB coating (Fe{sub 3}O{sub 4}), CB impregnation (ionic liquid). • Sorbents bearing basic functionalities exhibit the higher CO{sub 2} sorption capacity. • Microporous supporting material limits the CO{sub 2} accessibility toward the adsorbing material. - Abstract: The use of solid sorbents is a convenient option in post-combustion CO{sub 2} capture strategies. Sorbents selection is a key point because the materials are required to be both low-cost and versatile in typical post-combustion conditions in order to guarantee an economically advantageous overall process. This work compares strategies to tailor the chemico-physical features of carbon black (CB) by surface-modification and/or coating with a CO{sub 2}-sorbent phase. The influence of the CB microporosity, enhanced by chemical/thermal treatments, is also taken into account. Three CB surface modifications are performed and compared: (i) oxidation and functionalization with amino-groups, (ii) coating with iron oxides and (iii) impregnation with an ionic liquid (IL). The CO{sub 2} capture performance is evaluated on the basis of the breakthrough curves measured at atmospheric pressure and room temperature in a lab-scale fixed bed micro-reactor. Most of tested solids adsorb a CO{sub 2} amount significantly higher than a 13X zeolite and DARCO FGD (Norit) activated carbon (up to 4 times more in the best case). The sorbents bearing basic functionalities (amino-groups and IL) exhibit the highest CO{sub 2} sorption capacity. The use of a microporous carbonaceous support limits the accessibility of CO{sub 2} toward the adsorbing phase (IL or FM) lowering the number of accessible binding sites for CO{sub 2}.

  13. Efficient Regeneration of Physical and Chemical Solvents for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Tande, Brian [Univ. of North Dakota, Grand Forks, ND (United States); Seames, Wayne [Univ. of North Dakota, Grand Forks, ND (United States); Benson, Steve [Univ. of North Dakota, Grand Forks, ND (United States)

    2013-12-01

    The objective of this project was to evaluate the use of composite polymer membranes and porous membrane contactors to regenerate physical and chemical solvents for capture of carbon dioxide (CO2) from synthesis gas or flue gas, with the goal of improving the energy efficiency of carbon capture. Both a chemical solvent (typical for a post-combustion capture of CO2 from flue gas) and a physical solvent (typical for pre- combustion capture of CO2 from syngas) were evaluated using two bench-scale test systems constructed for this project. For chemical solvents, polytetrafluoroethylene and polypropylene membranes were found to be able to strip CO2 from a monoethanolamine (MEA) solution with high selectivity without significant degradation of the material. As expected, the regeneration temperature was the most significant parameter affecting the CO2 flux through the membrane. Pore size was also found to be important, as pores larger than 5 microns lead to excessive pore wetting. For physical solvents, polydimethyl-siloxane (PDMS)-based membranes were found to have a higher CO2 permeability than polyvinylalcohol (PVOH) based membranes, while also minimizing solvent loss. Overall, however, the recovery of CO2 in these systems is low – less than 2% for both chemical and physical solvents – primarily due to the small surface area of the membrane test apparatus. To obtain the higher regeneration rates needed for this application, a much larger surface area would be needed. Further experiments using, for example, a hollow fiber membrane module could determine if this process could be commercially viable.

  14. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics.

    Science.gov (United States)

    Xie, Wenhao; Wen, Shaoting; Liu, Jingyong; Xie, Wuming; Kuo, Jiahong; Lu, Xingwen; Sun, Shuiyu; Chang, Kenlin; Buyukada, Musa; Evrendilek, Fatih

    2018-05-01

    Thermodynamic and kinetic parameters of co-combustion of textile dyeing sludge (TDS) and sugarcane bagasse (SB) were studied using thermogravimetric analysis in CO 2 /O 2 and N 2 /O 2 atmospheres. Our results showed that the comprehensive combustion characteristic index (CCI) of the blends was improved by 1.71-4.32 times. With the increased O 2 concentration, co-combustion peak temperature decreased from 329.7 to 318.2 °C, with an increase in its maximum weight loss rate from 10.04 to 14.99%/min and its CCI by 1.31 times (β = 20 °C·min -1 ). To evaluate the co-combustion characteristics, thermodynamic and kinetic parameters (entropy, Gibbs free energy and enthalpy changes, and apparent activation energy) were obtained in the five atmospheres. The lowest apparent activation energy of the TB64 blend was obtained in oxy-fuel atmosphere (CO 2 /O 2  = 7/3). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Fuel-Flexible Combustion System for Co-production Plant Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  16. Characterisation and prediction of deposits in biomass co-combustion

    NARCIS (Netherlands)

    Tortosa Masiá, A.A.

    2010-01-01

    This PhD thesis deals with the theoretical, experimental and modeling work which was performed to study deposition during biomass and waste co-combustion in pulverised coal facilities. Fossil fuels dominate the current energy scenario. Increasing concerns about fossil fuels availability and about

  17. Results from trialling aqueous NH{sub 3} based post combustion capture in a pilot plant at Munmorah power station. Desorption

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hai; Morgan, Scott; Allport, Andrew; Cottrell, Aaron; Do, Thong; McGregor, James; Wardhaugh, Leigh; Feron, Paul [CSIRO Energy Centre, Mayfield West, NSW (Australia)

    2013-07-01

    Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) and Delta Electricity have tested an aqueous ammonia based post combustion capture (PCC) process in a pilot plant at Munmorah black coal fired power station. This paper presents and discusses the experimental results obtained and primarily focuses on the desorption section. A high purity of CO{sub 2} product was obtained at the stripper gas outlet with the CO{sub 2} volumetric concentration generally between 99-100% and the remainder being water and NH{sub 3}. An increase in stripper pressure/temperature can lead to a decrease in NH{sub 3} concentration in the CO{sub 2} product. The NH{sub 3} concentration can be controlled within 200 ppm without wash at a stripper pressure of 850 kPa (the maximum pressure tested) at a stripper gas outlet temperatures of 20-25 C. The solid precipitation occurred in the stripper condenser and reflux lines. Due to the low ammonia content in the solution, CO{sub 2} content in the solution was low and generally more than 50% of regeneration energy was used to heat up the solvent under the pilot plant conditions. The lowest regeneration energy obtained from the pilot plant trials is 4-4.2 MJ/kg CO{sub 2} captured. The effect of various parameters including solvent flow-rate and stripper temperature/pressure in the solvent on the regeneration energy was investigated.

  18. CO{sub 2} emissions - sequestration, costs; Emisja CO{sub 2} - sekwestracja, koszty

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, J. [Inst. of Power Industry, Warsaw (Poland). Thermal Process Department

    2004-07-01

    The paper discusses and compares costs of technologies for limiting emissions of carbon dioxide in both before and after combustion in power generation - natural gas combined cycle; coal power unit with pulverised fuel boiler at both supercritical conditions and ultra supercritical conditions; and integrated gasification combined cycle. It then discusses in some detail the concept of an IGCC unit adapted to the removal of CO{sub 2} with the simultaneous production of hydrogen, and the use of an oxygen plant with CO{sub 2} recycling. 17 refs., 2 figs., 10 tabs.

  19. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-05-01

    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  20. CO2 capture using aqueous ammonia: kinetic study and process simulation

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; van Well, Willy J.M.; Stenby, Erling Halfdan

    2011-01-01

    to 0.6. The results were compared with those found for 30 wt% mono-ethanolamine (MEA) solutions.The capture process was simulated successfully using the simulator Aspen Plus coupled with the extended UNIQUAC thermodynamic model available for the NH3–CO2–H2O system. For this purpose, a user model......Carbon dioxide capture using aqueous ammonia is a post-combustion technology that has shown a good potential. Therefore this process is studied by measuring the rate of absorption of carbon dioxide by aqueous ammonia and by performing process simulation. The rate of absorption of carbon dioxide...

  1. Comparing post-combustion CO2 capture operation at retrofitted coal-fired power plants in the Texas and Great Britain electric grids

    Science.gov (United States)

    Cohen, Stuart M.; Chalmers, Hannah L.; Webber, Michael E.; King, Carey W.

    2011-04-01

    This work analyses the carbon dioxide (CO2) capture system operation within the Electric Reliability Council of Texas (ERCOT) and Great Britain (GB) electric grids using a previously developed first-order hourly electricity dispatch and pricing model. The grids are compared in their 2006 configuration with the addition of coal-based CO2 capture retrofits and emissions penalties from 0 to 100 US dollars per metric ton of CO2 (USD/tCO2). CO2 capture flexibility is investigated by comparing inflexible CO2 capture systems to flexible ones that can choose between full- and zero-load CO2 capture depending on which operating mode has lower costs or higher profits. Comparing these two grids is interesting because they have similar installed capacity and peak demand, and both are isolated electricity systems with competitive wholesale electricity markets. However, differences in capacity mix, demand patterns, and fuel markets produce diverging behaviours of CO2 capture at coal-fired power plants. Coal-fired facilities are primarily base load in ERCOT for a large range of CO2 prices but are comparably later in the dispatch order in GB and consequently often supply intermediate load. As a result, the ability to capture CO2 is more important for ensuring dispatch of coal-fired facilities in GB than in ERCOT when CO2 prices are high. In GB, higher overall coal prices mean that CO2 prices must be slightly higher than in ERCOT before the emissions savings of CO2 capture offset capture energy costs. However, once CO2 capture is economical, operating CO2 capture on half the coal fleet in each grid achieves greater emissions reductions in GB because the total coal-based capacity is 6 GW greater than in ERCOT. The market characteristics studied suggest greater opportunity for flexible CO2 capture to improve operating profits in ERCOT, but profit improvements can be offset by a flexibility cost penalty.

  2. Comparing post-combustion CO2 capture operation at retrofitted coal-fired power plants in the Texas and Great Britain electric grids

    International Nuclear Information System (INIS)

    Cohen, Stuart M; Webber, Michael E; Chalmers, Hannah L; King, Carey W

    2011-01-01

    This work analyses the carbon dioxide (CO 2 ) capture system operation within the Electric Reliability Council of Texas (ERCOT) and Great Britain (GB) electric grids using a previously developed first-order hourly electricity dispatch and pricing model. The grids are compared in their 2006 configuration with the addition of coal-based CO 2 capture retrofits and emissions penalties from 0 to 100 US dollars per metric ton of CO 2 (USD/tCO 2 ). CO 2 capture flexibility is investigated by comparing inflexible CO 2 capture systems to flexible ones that can choose between full- and zero-load CO 2 capture depending on which operating mode has lower costs or higher profits. Comparing these two grids is interesting because they have similar installed capacity and peak demand, and both are isolated electricity systems with competitive wholesale electricity markets. However, differences in capacity mix, demand patterns, and fuel markets produce diverging behaviours of CO 2 capture at coal-fired power plants. Coal-fired facilities are primarily base load in ERCOT for a large range of CO 2 prices but are comparably later in the dispatch order in GB and consequently often supply intermediate load. As a result, the ability to capture CO 2 is more important for ensuring dispatch of coal-fired facilities in GB than in ERCOT when CO 2 prices are high. In GB, higher overall coal prices mean that CO 2 prices must be slightly higher than in ERCOT before the emissions savings of CO 2 capture offset capture energy costs. However, once CO 2 capture is economical, operating CO 2 capture on half the coal fleet in each grid achieves greater emissions reductions in GB because the total coal-based capacity is 6 GW greater than in ERCOT. The market characteristics studied suggest greater opportunity for flexible CO 2 capture to improve operating profits in ERCOT, but profit improvements can be offset by a flexibility cost penalty.

  3. A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures

    Science.gov (United States)

    Manikandan, A.; Sridhar, R.; Arul Antony, S.; Ramakrishna, Seeram

    2014-11-01

    Nanocrystalline magnetic spinel CoFe2O4 was synthesized by a simple microwave combustion method (MCM) using ferric nitrate, cobalt nitrate and Aloe vera plant extracted solution. For the comparative study, it was also prepared by a conventional combustion method (CCM). Powder X-ray diffraction, energy dispersive X-ray and selected-area electron diffraction results indicate that the as-synthesized samples have only single-phase spinel structure with high crystallinity and without the presence of other phase impurities. The crystal structure and morphology of the powders were revealed by high resolution scanning electron microscopy and transmission electron microscopy, show that the MCM products of CoFe2O4 samples contain sphere-like nanoparticles (SNPs), whereas the CCM method of samples consist of flake-like nanoplatelets (FNPs). The band gap of the samples was determined by UV-Visible diffuse reflectance and photoluminescence spectroscopy. The magnetization (Ms) results showed a ferromagnetic behavior of the CoFe2O4 nanostructures. The Ms value of CoFe2O4-SNPs is higher i.e. 77.62 emu/g than CoFe2O4-FNPs (25.46 emu/g). The higher Ms value of the sample suggest that the MCM technique is suitable for preparing high quality nanostructures for magnetic applications. Both the samples were successfully tested as catalysts for the conversion of benzyl alcohol. The resulting spinel ferrites were highly selective for the oxidation of benzyl alcohol and exhibit important difference among their activities. It was found that CoFe2O4-SNPs catalyst show the best performance, whereby 99.5% selectivity of benzaldehyde was achieved at close to 93.2% conversion.

  4. Development and Study of Electrochemical Promotion Systems for CO2 Capture and Valorization in Combustion Gases. PROMOCAP Project Final Report

    International Nuclear Information System (INIS)

    Ruiz, E.; Cillero, D.; Martinez, P. J.; Morales, A.; San Vicente, G.; Diego, G. de; Sanchez, J. M.

    2014-01-01

    The ultimate goal of the project PROMOCAP was the development and study of electrochemical promotion systems for the capture and valorization of CO 2 in combustion flue gases. To achieve this objective, electrocatalysts consisting of tubes or monoliths of solid electrolyte (K-βAl 2 O 3 or YSZ), coated by the corresponding active metal (Pt, Pd, Ni, Cu, Fe-TiO 2 , Pt-Ru - C, Pt-C, etc.), were prepared using both conventional (painting) and improved (dip-coating, electroless or spray-coating) procedures. Both physico-chemical and volt amperometric characterization of the electrocatalysts was carried out both as prepared and after use in electro promoted CO 2 capture and valorization processes (study of chemisorption, reaction, inhibition, deactivation phenomena, etc.). Pilot plant studies were carried out under realistic conditions for identifying the best electro catalyst and the operating conditions more suitable for CO 2 electro promoted capture and valorization. Finally, the electrocatalysts identified as the most promising for electro promoted CO 2 capture (Pt/K-βAl 2 O 3 ) and valorization (Cu/K-βAl 2 O 3 ) were prepared using the developed optimized procedures and their behavior over multiple cycles of electro promoted CO 2 capture and in long term operation against electro promoted CO 2 hydrogenation, respectively, was studied under real or realistic conditions. (Author)

  5. Post-Synthesis Functionalization of Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Al Otaibi, Mona S.

    2014-07-01

    Solid porous materials are network materials that contain space void. Porous Organic Polymers (POPs) are porous materials, which are constructed from organic building blocks and exhibit large surface area with low densities. Due to these characteristics, POPs have attracted attentions because of their potential use in application such as gas storage and chemical separation. This thesis presents a study of the synthesis of novel POP being a network based on 2,5- dibromobenzaldehyde and 1,3,5-triethynylbenzene linked together via Sonogashira- Hagihara (SH) coupling. This network showed a relatively good surface area of 770 m2/g and total pore volume of 0.59 cc/g. In addition, it proved to be chemically and thermally stable, maintaining the thermal stability up to 350oC. In addition to synthesize novel aldehyde-POP network, it was also possible to post synthetically modify a network via one-step post synthetic functionalization by amine. Ethelynediamine (EDA), Diethylenetriamine (DETA), and Tris(2-aminoethyl)amine (Tris-amine) are three different amines used for aldehyde-POP functionalization. The produced networks were aminated via different amine species substitution the aldehyde group present within the network. Modification to these networks resulted in a decrease in surface area from 770 m2.g-1 to 333 m2.g-1, 162 m2.g-1, and 211 m2.g-1 in respective to EDA, DETA, and Tris-amine. Although the surface areas were decreased, the CO2 adsorption was enhanced as evidenced by the increase of Qst (i.e., from 25 to 45 kJ.mol-1 for DETA at low coverage). Our findings are expected to strengthen existing research areas of the influence of different type of amines (e.g aromatic amine) on CO2 adsorption. Although amine grafting has been studied in other systems (e.g., PAFs and MOFs), we are the first to reported amine functionalized POPs using a novel one-step amine grafting PSM procedure. Future research might extend to study the interaction between CO2 and amine species under

  6. CO2 Capture Dynamic and Steady-State Model Development, Optimization and Control: Applied to Piperazine and Enzyme Promoted MEA/MDEA

    DEFF Research Database (Denmark)

    Gaspar, Jozsef

    the market in the coming decades. However, the growing focus on mitigation of anthropogenic CO2 requires integration of fossil-fuel fired power plant with CO2 capture units. Post-combustion capture is the most mature capture technology and it is suitable for various processes in power plants, steel industry......, cement production, and bio-chemical industry. However, to make CO2 capture economically attractive, design of innovative solvents, optimization of operation conditions/process configuration and operational flexibility are of crucial importance. This thesis aims to contribute to the development...

  7. Sol-gel auto-combustion synthesis and properties of Co2Z-type hexagonal ferrite ultrafine powders

    Science.gov (United States)

    Liu, Junliang; Yang, Min; Wang, Shengyun; Lv, Jingqing; Li, Yuqing; Zhang, Ming

    2018-05-01

    Z-type hexagonal ferrite ultrafine powders with chemical formulations of (BaxSr1-x)3Co2Fe24O41 (x varied from 0.0 to 1.0) have been synthesized by a sol-gel auto-combustion technique. The average particle sizes of the synthesized powders ranged from 2 to 5 μm. The partial substitution of Ba2+ by Sr2+ led to the shrinkage of the crystal lattices and resulted in changes in the magnetic sub-lattices, which tailored the static and dynamic magnetic properties of the as-synthesized powders. As the substitution ratio of Ba2+ by Sr2+, the saturation magnetization of the synthesized powders almost consistently increased from 43.3 to 56.1 emu/g, while the real part of permeability approached to a relatively high value about 2.2 owing to the balance of the saturation magnetization and magnetic anisotropy field.

  8. Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon [Ada-Es, Inc., Highlands Ranch, CO (United States)

    2016-06-02

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was

  9. Engineering and Economic Analysis of an Advanced Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture Task 7. Design and Economic Studies

    Energy Technology Data Exchange (ETDEWEB)

    Booras, George [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Powers, J. [General Electric, Schenectady, NY (United States); Riley, C. [General Electric, Schenectady, NY (United States); Hendrix, H. [Hendrix Engineering Solutions, Inc., Calera, AL (United States)

    2015-09-01

    This report evaluates the economics and performance of two A-USC PC power plants; Case 1 is a conventionally configured A-USC PC power plant with superior emission controls, but without CO2 removal; and Case 2 adds a post-combustion carbon capture (PCC) system to the plant from Case 1, using the design and heat integration strategies from EPRI’s 2015 report, “Best Integrated Coal Plant.” The capture design basis for this case is “partial,” to meet EPA’s proposed New Source Performance Standard, which was initially proposed as 500 kg-CO2/MWh (gross) or 1100 lb-CO2/MWh (gross), but modified in August 2015 to 635 kg-CO2/MWh (gross) or 1400 lb-CO2/MWh (gross). This report draws upon the collective experience of consortium members, with EPRI and General Electric leading the study. General Electric provided the steam cycle analysis as well as v the steam turbine design and cost estimating. EPRI performed integrated plant performance analysis using EPRI’s PC Cost model.

  10. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

    2003-12-15

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane

  11. CO2 capture technologies: current status and new directions using supported ionic liquid phase (SILP) absorbers

    DEFF Research Database (Denmark)

    Kolding, Helene; Fehrmann, Rasmus; Riisager, Anders

    2012-01-01

    Current state-of-the-art techniques for CO2 capture are presented and discussed. Post-combustion capture of CO2 by absorption is the technology most easily retrofitted to existing installations, but at present this is not economically viable to install and run. Using ionic liquids instead...... of aqueous amine solutions overcomes the major thermodynamic issues. By applying SILP technology further advances, in terms of ease of handling and sorption dynamics, are obtained. Initial experimental studies showed that ionic liquids such as tetrahexylammonium prolinate, [N6666][Pro], provide a good...... candidate for CO2 absorption using SILP technology. Thus a solid SILP absorber comprised of 40 wt% [N6666][Pro] loaded on precalcined silica quantitatively takes up about 1.2 mole CO2 per mole of ionic liquid in consecutive absorption-desorption cycles in a flow-experiment performed with 0.09 bar of CO2 (9...

  12. Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO2 Capture

    Directory of Open Access Journals (Sweden)

    Shareq Mohd Nazir

    2018-01-01

    Full Text Available In this paper, a gas-fired combined cycle power plant subjected to a pre-combustion CO2 capture method has been analysed under different design conditions and different heat integration options. The power plant configuration includes the chemical looping reforming (CLR of natural gas (NG, water gas shift (WGS process, CO2 capture and compression, and a hydrogen fuelled combined cycle to produce power. The process is denoted as a CLR-CC process. One of the main parameters that affects the performance of the process is the pressure for the CLR. The process is analysed at different design pressures for the CLR, i.e., 5, 10, 15, 18, 25 and 30 bar. It is observed that the net electrical efficiency increases with an increase in the design pressure in the CLR. Secondly, the type of steam generated from the cooling of process streams also effects the net electrical efficiency of the process. Out of the five different cases including the base case presented in this study, it is observed that the net electrical efficiency of CLR-CCs can be improved to 46.5% (lower heating value of NG basis by producing high-pressure steam through heat recovery from the pre-combustion process streams and sending it to the Heat Recovery Steam Generator in the power plant.

  13. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste.

    Science.gov (United States)

    Hedman, Björn; Burvall, Jan; Nilsson, Calle; Marklund, Stellan

    2005-01-01

    In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.

  14. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste

    International Nuclear Information System (INIS)

    Hedman, Bjoern; Burvall, Jan; Nilsson, Calle; Marklund, Stellan

    2005-01-01

    In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations

  15. Characterization of diamond thin films deposited by a CO{sub 2} laser-assisted combustion-flame method

    Energy Technology Data Exchange (ETDEWEB)

    McKindra, Travis, E-mail: mckindra@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); O' Keefe, Matthew J. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Xie Zhiqiang; Lu Yongfeng [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2010-06-15

    Diamond thin films were deposited by a CO{sub 2} laser-assisted O{sub 2}/C{sub 2}H{sub 2}/C{sub 2}H{sub 4} combustion-flame process. The effect of the deposition parameters, in particular the laser wavelength and power, on the film surface morphology, microstructure and phases present was the primary focus of the work. The laser power was set at 100, 400 and 800 W while the wavelength was varied and set at 10.591 {mu}m in the untuned condition and set at 10.532 {mu}m to resonantly match the CH{sub 2}-wagging vibrational mode of the C{sub 2}H{sub 4} molecule when in the tuned condition. When the laser was coupled to the combustion flame during deposition the diamond film growth was enhanced as the lateral grain size increased from 1 {mu}m to greater than 5 {mu}m. The greatest increase in grain size occurred when the wavelength was in the tuned condition. Scanning transmission electron microscopy images from focused-ion beam cross-sectioned samples revealed a sub-layer of smaller grains less than 1 {mu}m in size near the substrate surface at the lower laser powers and untuned wavelength. X-ray diffraction results showed a more intense Diamond (111) peak as the laser power increased from 100 to 800 W for the films deposited with the tuned laser wavelength. Micro-Raman spectra showed a diamond peak nearly twice as intense from the films with the tuned laser wavelength.

  16. Capturing and storing CO2 to combat the greenhouse effect. What IFP is doing

    International Nuclear Information System (INIS)

    2009-01-01

    The growing awareness of the international community and the convergence of the scientific data concerning climate change make it urgent to deploy, throughout the world, technologies to reduce emissions of greenhouse gases. Indeed, the growth of the world energy demand will prevent any rapid reduction of the use of fossil fuels - oil, natural gas, and coal - that are the main sources of greenhouse gas emissions. To reconcile the use of these resources with control of the emissions responsible for global warming, the capture and storage of CO 2 are a very promising approach; the economic and industrial stakes are high. To meet the objective of reducing CO 2 emissions, IFP is exploring three approaches: The first approach is to reduce energy consumption by improving the efficiency of energy converters, in particular internal combustion engines. A second approach is to reduce the carbon content of energy by favoring the use of natural gas or by incorporating in the fuel recycled carbon (biofuels and synfuels) and by developing hydrogen as an energy carrier. The third approach is to capture the CO 2 from industrial processes used for electricity, steel, and cement production, which emit it in large quantities, then store it underground so as to keep it out of the atmosphere. This approach for reducing the CO 2 emissions consists in capturing the CO 2 (Post-combustion, oxy-combustion), transporting it to the place of storage, then injecting it underground to store it. Storage sites are selected and evaluated prior to injection in order to estimate the injectivity, the propagation of CO 2 in the subsoil and the impact of geochemical and geomechanical transformations on the tightness of the overburden and of the injection well. The injection phase is followed by a phase of monitoring to ensure the safety and long-term viability of CO 2 storage facilities. IFP, through the research it is conducting either alone or in partnership with universities, research centers, and the

  17. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Møller, Jacob; Fruergaard, Thilde

    2009-01-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N2O emissions, fuel and material consumptions at the plants, energy recovery, and soli...

  18. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Yang, Yu; Lu, Xiaofeng; Wang, Quanhai

    2017-01-01

    Highlights: • The co-combustion characteristic parameters were studied. • The co-combustion of oil shale and semi-coke could be expressed roughly by the addition of individual components. • Activation energy was calculated by Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. - Abstract: In the present work, thermogravimetric analysis was employed to investigate co-combustion behaviors of Fushun low calorific oil shale and its semi-coke. The synergy effect was estimated by using the interaction coefficient and the relative error of mean square root. In addition, activation energy was also calculated by means of Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. Results indicated that with the increase of oil shale mass fraction and oxygen concentration, combustion characteristics of the samples were improved. And some little interaction did occur during the co-combustion process, but it was relatively slight. Consequently, the co-combustion of oil shale and semi-coke still could be expressed roughly by the addition of individual components of the mixtures. Furthermore, activation energy of the samples decreased slowly at the initial stage attributed to the minerals’ catalytic effects, and in the final stage, it jumped to a high value, suggesting that the burnout of the samples was difficult. Besides, the mix proportion of oil shale which was added to stabilize the combustion in the circulating fluidized bed was also theoretically calculated.

  19. Development and Study of Electrochemical Promotion Systems for CO{sub 2} Capture and Valorization in Combustion Gases. PROMOCAP Project Final Report; Desarrollo y Estudio de Sistemas de Promocion Electroquimica para la Captura y Valorizacion de CO{sub 2} en Gases de Combustion. Informe Final Proyecto PROMOCAP

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E.; Cillero, D.; Martinez, P. J.; Morales, A.; San Vicente, G.; Diego, G. de; Sanchez, J. M.

    2014-02-01

    The ultimate goal of the project PROMOCAP was the development and study of electrochemical promotion systems for the capture and valorization of CO{sub 2} in combustion flue gases. To achieve this objective, electrocatalysts consisting of tubes or monoliths of solid electrolyte (K-{beta}Al{sub 2}O{sub 3} or YSZ), coated by the corresponding active metal (Pt, Pd, Ni, Cu, Fe-TiO{sub 2}, Pt-Ru - C, Pt-C, etc.), were prepared using both conventional (painting) and improved (dip-coating, electroless or spray-coating) procedures. Both physico-chemical and volt amperometric characterization of the electrocatalysts was carried out both as prepared and after use in electro promoted CO{sub 2} capture and valorization processes (study of chemisorption, reaction, inhibition, deactivation phenomena, etc.). Pilot plant studies were carried out under realistic conditions for identifying the best electro catalyst and the operating conditions more suitable for CO{sub 2} electro promoted capture and valorization. Finally, the electrocatalysts identified as the most promising for electro promoted CO{sub 2} capture (Pt/K-{beta}Al{sub 2}O{sub 3}) and valorization (Cu/K-{beta}Al{sub 2}O{sub 3}) were prepared using the developed optimized procedures and their behavior over multiple cycles of electro promoted CO{sub 2} capture and in long term operation against electro promoted CO{sub 2} hydrogenation, respectively, was studied under real or realistic conditions. (Author)

  20. OxyFuel combustion of Coal and Biomass

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg

    The power and heat producing sector is facing a continuously increasing demand to reduce its emissions of CO2. Oxyfuel combustion combined with CO2 storage is suggested as one of the possible, promising technologies which will enable the continuous use of the existing fleet of suspension-fired po......The power and heat producing sector is facing a continuously increasing demand to reduce its emissions of CO2. Oxyfuel combustion combined with CO2 storage is suggested as one of the possible, promising technologies which will enable the continuous use of the existing fleet of suspension......-fired power plants burning coal or other fuels during the period of transition to renewable energy sources. The oxyfuel combustion process introduces several changes to the power plant configuration. Most important, the main part of the flue gas is recirculated to the boiler and mixed with pure oxygen....... The oxidant thus contains little or no nitrogen and a near-pure CO2 stream can be produced by cooling the flue gas to remove water. The change to the oxidant composition compared to combustion in air will induce significant changes to the combustion process. This Ph.D. thesis presents experimental...

  1. EMISSIONS FROM CO-COMBUSTION OF COAL AND MUNICIPAL SOLID WASTE IN DOMESTIC CENTRAL HEATING BOILER

    Directory of Open Access Journals (Sweden)

    Ewelina Maria Cieślik

    2017-04-01

    The results were analyzed in terms of combustion efficiency, emissions of major pollutants (NOx, CO, SO2 and fly ash with adsorbed of PAHs on its surface. The average concentration of emitted particulate matter was 764 mg m-3, and CO - 1944, SO2 - 1256 NOx - 555 mg m-3 (STP, 3% O2, dry gas. The flue gases contain fly ash, with a significant carbon content EC (average 31% and a high proportion of PM10 and PM2.5 - respectively 100 and 75% by volume.

  2. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  3. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  4. CO2-Dissolved - A Novel Approach to Combining CCS and Geothermal Heat Recovery

    International Nuclear Information System (INIS)

    Kervevan, C.; Bugarel, F.; Galiegue, X.; Le Gallo, Y.; May, F.; O'Neil, K.; Sterpenich, J.

    2013-01-01

    This paper presents the outline of the CO 2 -Dissolved project whose objective is to assess the technical-economic feasibility of a novel CCS concept integrating geothermal energy recovery, aqueous dissolution of CO 2 and injection via a doublet system, and an innovative post-combustion CO 2 capture technology. Compared to the use of a supercritical phase, this approach offers substantial benefits in terms of storage safety, due to lower brine displacement risks, lower CO 2 escape risks, and the potential for more rapid mineralization. However, the solubility of CO 2 in brine will be a limiting factor to the amount of CO 2 that can be injected. Consequently, and as another contributing novel factor, this proposal targets low to medium range CO 2 emitters (ca. 10-100 kt/yr), that could be compatible with a single doublet installation. Since it is intended to be a local solution, the costs related to CO 2 transport would then be dramatically reduced, provided that the local underground geology is favorable. Finally, this project adds the potential for energy and/or revenue generation through geothermal heat recovery. This constitutes an interesting way of valorization of the injection operations, demonstrating that an actual synergy between CO 2 storage and geothermal activities may exist. (authors)

  5. Membrane Separation Processes for Post-Combustion Carbon Dioxide Capture: State of the Art and Critical Overview

    Directory of Open Access Journals (Sweden)

    Belaissaoui Bouchra

    2014-11-01

    Full Text Available Membrane processes have been initially seldom considered within a post-combustion carbon dioxide capture framework. More traditional processes, particularly gas-liquid absorption in chemical solvents, are often considered as the most appropriate solution for the first generation of technologies. In this paper, a critical state of the art of gas separation membranes for CO2 capture is proposed. In a first step, the key performances (selectivity, permeability of different membrane materials such as polymers, inorganic membranes, hybrid matrices and liquid membranes, including recently reported results, are reviewed. In a second step, the process design characteristics of a single stage membrane unit are studied. Purity and energy constraints are analysed as a function of operating conditions and membrane materials performances. The interest of multistage and hybrid systems, two domains which have not sufficiently investigated up to now, are finally discussed. The importance of technico-economical analyses is highlighted in order to better estimate the optimal role of membranes for CCS applications.

  6. Chemical basics of spray tower's development for separation of CO{sub 2} from flue gases. New process. Known technology; Chemische Grundlagen der Entwicklung eines Spruehwaeschers zur Abtrennung von CO{sub 2} aus Rauchgasen. Neues Verfahren. Bekannte Technik

    Energy Technology Data Exchange (ETDEWEB)

    Brechtel, Kevin; Schaeffer, Anke; Galindo Cifre, Paula; Seyboth, Oliver [Stuttgart Univ. (Germany). Abt. Brennstoffe und Rauchgasreinigung; Scheffknecht, Guenter [Stuttgart Univ. (DE). Inst. fuer Feuerungs- und Kraftwerkstechnik (IFK)

    2011-07-01

    Post-combustion capture by amine scrubbing is one technology for CO{sub 2} capture from flue gases. The basic process is well known from industrial applications and is suitable for retrofitting to power plants. Besides the development of new solvents, the IFK is currently investigating the use of open spray towers as alternative concepts to packed columns. Therefore, different operational parameters for several solvents have been determined within lab scale tests. Based on these data and the knowledge from wet FGD systems show that the use of spray towers for CO{sub 2} capture is a promising alternative. (orig.)

  7. Technical study of the CO{sub 2} capture process with monoethanolamine for a thermoelectric plant; Estudio tecnico del proceso de captura de CO{sub 2} con monoetanolamina para una planta termoelectrica

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Diaz, Abigail; Franco Nava, Jose Manuel; Peralta Martinez, Maria Vita; Gonzalez Santalo, Jose Miguel [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Franco Lopez, Rogelio; Carreon Silva, Ramon [Comision Federal de Electricidad (Mexico)

    2010-07-01

    Within the frame of the Special Program of Climatic Change (PECC) emitted by the Federal Government, the study of the process of CO{sub 2} capture is carried out post-combustion for application in generating power stations, as a possible alternative to reduce the CO{sub 2} emissions in Mexico. The simulation of the process of CO{sub 2} capture of gases generated by a thermoelectric power plant of 350 MW was carried out, that would use coal as fuel, in the processes simulator ASPEN HYSYS. For this process two columns are required: one of absorption, in which the gases and the solvent enter, that in this case were a solution of monoethanolamine (MEA) at 30%. MEA reacts with the CO{sub 2} contained in gases, retaining it, so that the remaining gases that are emitted to the atmosphere contain no longer MEA and the captured CO{sub 2} passes to the second column where these two components are separated, using thermal energy to regenerate the MEA releasing the CO{sub 2}. The released CO{sub 2} leaves though the upper part of the column and the MEA recovered that is reused in the absorption column, through the bottom. The CO{sub 2} concentration in gases of the combustion is of 14.54% by volume. The simulation was realized defining a capture efficiency of 90%, which threw a thermal power consumption to regenerate MEA of 4.75 GJt/ton CO{sub 2} that would be provided by the thermoelectric power station. Considering a capacity of 280 ton/h (by train) of the gas to be treated the height of the desertion and absorption columns was determined, as well as the MEA solution flow. [Spanish] Dentro del marco del Programa Especial de Cambio Climatico (PECC) emitido por el Gobierno Federal, se lleva a cabo el estudio del proceso de captura de CO{sub 2} poscombustion para aplicacion en centrales generadoras, como una posible alternativa para reducir las emisiones de CO{sub 2} en Mexico. Se llevo a cabo la simulacion del proceso de captura de CO{sub 2} de los gases generados por una

  8. Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID.

    Science.gov (United States)

    Puydinger Dos Santos, Marcos Vinicius; Szkudlarek, Aleksandra; Rydosz, Artur; Guerra-Nuñez, Carlos; Béron, Fanny; Pirota, Kleber Roberto; Moshkalev, Stanislav; Diniz, José Alexandre; Utke, Ivo

    2018-01-01

    Non-noble metals, such as Cu and Co, as well as noble metals, such as Au, can be used in a number modern technological applications, which include advanced scanning-probe systems, magnetic memory and storage, ferroelectric tunnel junction memristors, metal interconnects for high performance integrated circuits in microelectronics and nano-optics applications, especially in the areas of plasmonics and metamaterials. Focused-electron-beam-induced deposition (FEBID) is a maskless direct-write tool capable of defining 3-dimensional metal deposits at nanometre scale for above applications. However, codeposition of organic ligands when using organometallic precursors is a typical problem that limits FEBID of pure metal nanostructures. In this work, we present a comparative study using a post-growth annealing protocol at 100, 200, and 300 °C under high vacuum on deposits obtained from Co 2 (CO) 8 , Cu(II)(hfac) 2 , and Me 2 Au(acac) to study improvements on composition and electrical conductivity. Although the as-deposited material was similar for all precursors, metal grains embedded in a carbonaceous matrix, the post-growth annealing results differed. Cu-containing deposits showed the formation of pure Cu nanocrystals at the outer surface of the initial deposit for temperatures above 100 °C, due to the migration of Cu atoms from the carbonaceous matrix containing carbon, oxygen, and fluorine atoms. The average size of the Cu crystals doubles between 100 and 300 °C of annealing temperature, while the composition remains constant. In contrast, for Co-containing deposits oxygen release was observed upon annealing, while the carbon content remained approximately constant; the cobalt atoms coalesced to form a metallic film. The as-deposited Au-containing material shows subnanometric grains that coalesce at 100 °C, maintaining the same average size at annealing temperatures up to 300 °C. Raman analysis suggests that the amorphous carbonaceous matrix of the as-written Co

  9. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.

    Science.gov (United States)

    Peng, Xiaowei; Ma, Xiaoqian; Xu, Zhibin

    2015-03-01

    The synergistic interaction and kinetics of microalgae, textile dyeing sludge and their blends were investigated under combustion condition by thermogravimetric analysis. The textile dyeing sludge was blended with microalgae in the range of 10-90wt.% to investigate their co-combustion behavior. Results showed that the synergistic interaction between microalgae and textile dyeing sludge improved the char catalytic effect and alkali metals melt-induced effect on the decomposition of textile dyeing sludge residue at high temperature of 530-800°C. As the heating rate increasing, the entire combustion process was delayed but the combustion intensity was enhanced. The lowest average activation energy was obtained when the percentage of microalgae was 60%, which was 227.1kJ/mol by OFW and 227.4kJ/mol by KAS, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. EOSLT Consortium Biomass Co-firing. WP 4. Biomass co-firing in oxy-fuel combustion. Part 1. Lab- Scale Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fryda, L.E. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2011-07-15

    In the frame of WP4 of the EOS LT Co-firing program, the ash formation and deposition of selected coal/biomass blends under oxyfuel and air conditions were studied experimentally in the ECN lab scale coal combustor (LCS). The fuels used were Russian coal, South African coal and Greek Lignite, either combusted separately or in blends with cocoa and olive residue. The first trial period included tests with the Russian and South African coals and their blends with cocoa, the second trial period included Lignite with olive residue tests and a final period firing only Lignite and Russian coal, mainly to check and verify the observed results. During the testing, also enriched air combustion was applied, in order to establish conclusions whether a systematic trend on ash formation and deposition exists, ranging from conventional air, to enriched air (improving post combustion applications) until oxyfuel conditions. A horizontal deposition probe equipped with thermocouples and heat transfer sensors for on line data acquisition, and a cascade impactor (staged filter) to obtain size distributed ash samples including the submicron range at the reactor exit were used. The deposition ratio and the deposition propensity measured for the various experimental conditions were higher in all oxyfuel cases. No significant variations in the ash formation mechanisms and the ash composition were established. Finally the data obtained from the tests performed under air and oxy-fuel conditions were utilised for chemical equilibrium calculations in order to facilitate the interpretation of the measured data; the results indicate that temperature dependence and fuels/blends ash composition are the major factors affecting gaseous compound and ash composition rather than the combustion environment, which seems to affect neither the ash and fine ash (submicron) formation, nor the ash composition. The ash deposition mechanisms were studied in more detail in Part II of this report.

  11. The effect of biomass on pollutant emission and burnout in co-combustion with coal

    Energy Technology Data Exchange (ETDEWEB)

    Kruczek, H.; Raczka, P.; Tatarek, A. [Wroclaw Technical University, Wroclaw (Poland)

    2006-08-15

    This paper presents experimental and numerical results on the co-combustion of different types of biomass with hard and brown coal. The main aim of this work was to assess the impact of the cocombustion of biomass in brown and hard coal-fired systems on the combustion process itself and on the level of pollutant formation and its dependence on combustion temperature stoichiometry. The experimental results obtained have shown that in general biomass addition leads to decreased NO and SO{sub 2} emissions, except with the hard coal Bogdanka. In addition, the biomass has a beneficial effect on the burnout of the coal/biomass mixture. To help to account for this effect, the behaviour of coal and biomass, the coal/biomass mixture and of fuel-N was studied by thermal analysis, in nitrogen and in air. The results obtained have shown that gas phase interactions are dominant in the combustion of biomass/coal mixtures.

  12. An experimental and mathematical modeling study comparing the reactivity and burnout of pulverized coal in air (O{sub 2}/N{sub 2}) and oxyfuel (O{sub 2}/CO{sub 2}) environments

    Energy Technology Data Exchange (ETDEWEB)

    Liza Elliott; Yinghui Liu; Bart Buhre; Jennifer Martin; Raj Gupta; Terry Wall [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development, Chemical Engineering

    2005-07-01

    Carbon dioxide in flue gas from conventional combustion processes is present as a dilute gas. CO{sub 2} capture is more easily achieved from a concentrated CO{sub 2} stream, which can be achieved by firing fuels with oxygen to obtain a sequestration ready gas stream, called oxy-fuel combustion. In this technology, the oxygen stream is usually diluted by recycled flue gas (RFG), so that the coal burns in an environment which is primarily O{sub 2}/CO{sub 2}. A size cut of a number of pulverised coals were devolatalised in N{sub 2} and CO{sub 2}. These sized coals were also combusted in a drop-tube furnace in an O{sub 2}/N{sub 2} environment simulating air combustion, and O{sub 2}/CO{sub 2} simulating oxyfuel combustion, with varying O{sub 2} levels from 3 to 30% v/v. Measurements of the extent of devolatilisation and coal burnout were completed. The detailed data provided for one coal indicated that the devolatilisation process in the O{sub 2}/CO{sub 2} environments is influenced by char gasification, and the char reaction rates are fitted better by a fractional order rate than first order in oxygen. Combustion rates in the oxyfuel environment were slightly higher. Estimates of the burnout for furnaces retrofitted from air to oxyfuel indicate that a better burnout can be expected. These trends were common for all coals. 14 refs., 4 figs., 5 tabs.

  13. The Heat of Combustion of Tobacco and Carbon Oxide Formation

    Directory of Open Access Journals (Sweden)

    Norman AB

    2014-12-01

    Full Text Available Recent studies demonstrated a relationship between mass burn rates of straight-grade cigarettes and heats of combustion of the tobacco materials. In the present work, relationships between measured heats of combustion and elemental composition of the tobacco materials were further analyzed. Heats of combustion measured in oxygen were directly correlated with the carbon and hydrogen content of the tobacco materials tested. Ash content of the materials was inversely related to the heats of combustion. The water insoluble residues from exhaustively extracted tobacco materials showed higher heats of combustion and higher carbon content than the non-extracted materials, confirming a direct relationship between carbon content and heat of combustion. A value for the heat of formation of tobacco was estimated (1175 cal/g from the heat of combustion data and elemental analysis results. The estimated value for heat of formation of tobacco appears to be constant regardless of the material type. Heat values measured in air were uniformly lower than the combustion heats in oxygen, suggesting formation of CO and other reaction products. Gases produced during bomb calorimetry experiments with five tobacco materials were analyzed for CO and CO2 content. When the materials were burned in oxygen, no CO was found in the gases produced. Measured heats of combustion matched estimates based on CO2 found in the gas and conversion of the sample hydrogen content to water. Materials burned in air produced CO2 (56% to 77% of the sample carbon content and appreciable amounts of CO (7% to 16% of the sample carbon content. Unburned residue containing carbon and hydrogen was found in the air combustion experiments. Estimated heat values based on amounts of CO and CO2 found in the gas and water formed from the hydrogen lost during combustion in air were higher than the measured values. These observations indicate formation of products containing hydrogen when the materials

  14. Comprehensive investigation of process characteristics for oxy-steam combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zou, Chun; Zheng, Chuguang

    2015-01-01

    Highlights: • Oxy-steam combustion exhibits better performance than oxy-CO 2 combustion. • Cost of electricity in oxy-steam combustion is 6.62% less than oxy-CO 2 combustion. • The increase of oxygen concentration in oxidant can improve its system performance. • The decrease of excess oxygen coefficient can be helpful for its system performance. • Integration with solar technology can enhance its thermodynamic performance. - Abstract: Oxy-steam combustion, as an alternative option of oxy-fuel combustion technology, is considered as a promising CO 2 capture technology for restraining CO 2 emissions from power plants. To attain its comprehensive process characteristics, process simulation, thermodynamic assessment, and sensitivity analysis for oxy-steam combustion pulverized-coal-fired power plants are investigated whilst its corresponding CO 2 /O 2 recycled combustion (oxy-CO 2 combustion) power plant is served as the base case for comparison. Techno-economic evaluation and integration with solar parabolic trough collectors are also discussed to justify its economic feasibility and improve its thermodynamic performance further, respectively. It is found that oxy-steam combustion exhibits better performance than oxy-CO 2 combustion on both thermodynamic and economic aspects, in which the cost of electricity decreases about 6.62% whilst the net efficiency and exergy efficiency increase about 0.90 and 1.01 percentage points, respectively. The increment of oxygen concentration in oxidant (20–45 mol.%) and decrease of excess oxygen coefficient (1.01–1.09) in a certain range are favorable for improving oxy-steam combustion system performance. Moreover, its thermodynamic performance can be improved when considering solar parabolic trough collectors for heating recycled water, even though its cost of electricity increases about 2 $/(MW h)

  15. On the causal links between health indicator, output, combustible renewables and waste consumption, rail transport, and CO2 emissions: the case of Tunisia.

    Science.gov (United States)

    Ben Jebli, Mehdi

    2016-08-01

    This study employs the autoregressive distributed lag (ARDL) approach and Granger causality test to investigate the short- and long-run relationships between health indicator, real GDP, combustible renewables and waste consumption, rail transport, and carbon dioxide (CO2) emissions for the case of Tunisia, spanning the period of 1990-2011. The empirical findings suggest that the Fisher statistic of the Wald test confirm the existence of a long-run relationship between the variables. Moreover, the long-run estimated elasticities of the ARDL model provide that output and combustible renewables and waste consumption have a positive and statistically significant impact on health situation, while CO2 emissions and rail transport both contribute to the decrease of health indicator. Granger causality results affirm that, in the short-run, there is a unidirectional causality running from real GDP to health, a unidirectional causality from health to combustible renewables and waste consumption, and a unidirectional causality from all variables to CO2 emissions. In the long-run, all the computed error correction terms are significant and confirm the existence of long-run association among the variables. Our recommendations for the Tunisian policymakers are as follows: (i) exploiting wastes and renewable fuels can be a good strategy to eliminate pollution caused by emissions and subsequently improve health quality, (ii) the use of renewable energy as a main source for national rail transport is an effective strategy for public health, (iii) renewable energy investment projects are beneficial plans for the country as this contributes to the growth of its own economy and reduce energy dependence, and (iii) more renewable energy consumption leads not only to decrease pollution but also to stimulate health situation because of the increase of doctors and nurses numbers.

  16. Evaluation and Modeling of Vapor-Liquid Equilibrium and CO2 Absorption Enthalpies of Aqueous Designer Diamines for Post Combustion Capture Processes.

    Science.gov (United States)

    Luo, Weiliang; Yang, Qi; Conway, William; Puxty, Graeme; Feron, Paul; Chen, Jian

    2017-06-20

    Novel absorbents with improved characteristics are required to reduce the existing cost and environmental barriers to deployment of large scale CO 2 capture. Recently, bespoke absorbent molecules have been specifically designed for CO 2 capture applications, and their fundamental properties and suitability for CO 2 capture processes evaluated. From the study, two unique diamine molecules, 4-(2-hydroxyethylamino)piperidine (A4) and 1-(2-hydroxyethyl)-4-aminopiperidine (C4), were selected for further evaluation including thermodynamic characterization. The solubilities of CO 2 in two diamine solutions with a mass fraction of 15% and 30% were measured at different temperatures (313.15-393.15 K) and CO 2 partial pressures (up to 400 kPa) by thermostatic vapor-liquid equilibrium (VLE) stirred cell. The absorption enthalpies of reactions between diamines and CO 2 were evaluated at different temperatures (313.15 and 333.15 K) using a CPA201 reaction calorimeter. The amine protonation constants and associated protonation enthalpies were determined by potentiometric titration. The interaction of CO 2 with the diamine solutions was summarized and a simple mathematical model established that could make a preliminary but good prediction of the VLE and thermodynamic properties. Based on the analyses in this work, the two designer diamines A4 and C4 showed superior performance compared to amines typically used for CO 2 capture and further research will be completed at larger scale.

  17. Environmental Performance of Hypothetical Canadian Pre-Combustion Carbon Dioxide Capture Processes Using Life-Cycle Techniques

    Directory of Open Access Journals (Sweden)

    Lakkana Piewkhaow

    2016-03-01

    Full Text Available The methodology of life-cycle assessment was applied in order to evaluate the environmental performance of a hypothetical Saskatchewan lignite-fueled Integrated Gasification Combined Cycle (IGCC electricity generation, with and without pre-combustion carbon dioxide (CO2 capture from a full life-cycle perspective. The emphasis here is placed on environmental performance associated with air contaminants of the comparison between IGCC systems (with and without CO2 capture and a competing lignite pulverized coal-fired electricity generating station in order to reveal which technology offers the most positive environmental effects. Moreover, ambient air pollutant modeling was also conducted by using American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD air dispersion modeling to determine the ground-level concentration of pollutants emitted from four different electricity generating stations. This study assumes that all stations are located close to Estevan. The results showed a significant reduction in greenhouse gas (GHG emissions and acidification potential by applying both post-combustion and pre-combustion CO2 capture processes. The GHG emissions were found to have reduced by 27%–86%, and IGCC systems were found to compare favorably to pulverized coal systems. However, in other environmental impact categories, there are multiple environmental trade-offs depending on the capture technology used. In the case of post-combustion capture, it was observed that the environmental impact category of eutrophication potential, summer smog, and ozone depletion increased due to the application of the CO2 capture process and the surface mining coal operation. IGCC systems, on the other hand, showed the same tendency as the conventional coal-fired electricity generation systems, but to a lesser degree. This is because the IGCC system is a cleaner technology that produces lower pollutant emission levels than the electricity

  18. High temperature magnetic properties of Co(FeY){sub 2}O{sub 4} synthesized by combustion reaction

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Thiago Eduardo Pereira, E-mail: thiago.ifgo@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias (IFGO), Goiania (Brazil); Franco Junior, Adolfo [Universidade Federal de Goias (UFG), Goiania (Brazil)

    2016-07-01

    Full text: Cobalt ferrite is widely studied due to its interesting magnetic behavior at room temperature. However, many technical applications require temperatures that are above that. Thus, it is necessary to understand how some magnetic properties, such as saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc), may behave at high temperatures [1]. Among several methods to synthesize cobalt ferrites, combustion reaction method is intensively used because it is inexpensive, fast and has good control on the stoichiometry. This method is based on the chemistry of propellants and explosives [2]. Therefore, we have prepared a series of nanoparticles of CoFe{sub (2-x)}Y{sub x}O{sub 4}, with x ranging from 0.00 to 0.04, by combustion reaction method. The crystal structure and morphology were characterized by X-ray diffraction (XRD) using Rietveld refinement and transmission electron microscopy (TEM), respectively. Nanocrystalline particles structures in the typical phase of spinel were observed on diffractograms. Micrographies showed high crystalline powders for the particles and particles size within nanoscale range. The magnetic properties were measured by vibrating sample magnetometry (VSM) in broad range of temperature (300-850K). Saturation magnetization (Ms) decreases with Y doping increase, while Hc increases, being about 1.8 higher than the undoped sample. Furthermore, Curie temperature increases with Y doping increase. These magnetic properties were discussed in terms of the particle interactions induced by the thermal fluctuations, cation distribution, and ions exchange between yttrium and cobalt atoms in A-B sites in the cubic structure [3]. References: [1] A. Franco, Jr. and F. C. e Silva, Applied Physics Letters 96, 172505, (2010). 525 [2] S.R. Jain, et al, Combustion and flame 40, 71-79, (1981). [3] A. Franco Jr. et al. Journal of Alloys and Compounds 680, 198-205, (2016). (author)

  19. Pushing forward IGCC and CO{sub 2}-free power plant technology at Siemens

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, E.; Vortmeyer, N.; Zimmermann, G. [Siemens AG, Erlangen (Germany). Power Generation

    2004-07-01

    Siemens Power Generation has entered into several R & D projects within the European Commissions' 5th and 6th Framework Programs. One objective of those projects is to develop advanced modular IGCC concepts for in-refinery energy and hydrogen supply. Additional projects are dealing with pre- and post-combustion decarbonisation technologies, which should achieve high carbon dioxide capture at low costs. In parallel, the development of advanced combustion systems including enhanced fuel flexibility and application of low BTU gases in the highly efficient Siemens V94.3A gas turbine are in progress. In further step the technology for burning hydrogen enriched gases resulting from decarbonisation in CO{sub 2} free power plants will be provided. This report documents the current status of these activities. 9 refs., 12 figs.

  20. COMBUSTION HEAT RELEASE RATE ANALYSIS OF C.I. ENGINE WITH SECONDARY CO-INJECTION OF DEE-H2O SOLUTION - A VIBRATIONAL APPROACH

    Directory of Open Access Journals (Sweden)

    Y. V. V. SATYANARAYANA MURTHY

    2015-08-01

    Full Text Available This paper discusses the combustion propensity of single cylinder direct injection engine fueled with palm kernel methyl ester (PKME, which is non- edible oil and a secondary co-injection of saturated Diethyl ether (DEE with water. DEE along with water is fumigated through a high pressure nozzle fitted to the inlet manifold of the engine and the flow rate of the secondary injection was electronically controlled. DEE is known to improve the cold starting problem in engines when used in straight diesel fuel. However, its application in emulsion form is little known. Experimental results show that for 5% DEE- H2O solution injection, occurrence of maximum net heat release rate is delayed due to controlled premixed combustion, which normally helped in better torque conversion when the piston is in accelerated mode. Vibration measurements in the frequency range of 900Hz to 1300Hz revealed that a new mode of combustion has taken place with different excitation frequencies.

  1. Effects of Operating Conditions and Dusty Fuel on the NOx, N2O and CO Emissions in PFB Co-Combustion of Coal and Wood

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Pohořelý, Michael; Hartman, Miloslav

    2003-01-01

    Roč. 17, č. 4 (2003), s. 1091-1099 ISSN 0887-0624 R&D Projects: GA AV ČR IAA4072801 Institutional research plan: CEZ:AV0Z4072921 Keywords : pressurized fluidized bed * co-combustion * wood Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 1.303, year: 2003

  2. Characterisation of ashes produced by co-combustion of recovered fuels and peat

    Energy Technology Data Exchange (ETDEWEB)

    Frankenhaeuser, M.; Zevenhoven, R. [Borealis Polymers Oy, Porvoo (Finland); Skrifvars, B.J. [Aabo Akademi, Turku (Finland); Orjala, M. [VTT Energy, Espoo (Finland); Peltola, K. [Foster Wheeler Energy (Finland)

    1996-12-01

    Source separation of combustible materials from household or municipal solid waste yields a raw material for the production of Packaging Derived Fuel (PDF). This fuel can substitute the traditional fuels in heat and power generation and is also called recycled fuel. Co-combustion of these types of fuels with coal has been studied in several LIEKKI-projects and the results have been both technically and environmentally favourable. (author)

  3. Experimental analysis of a combustion reactor under co-firing coal with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fabyo Luiz; Bazzo, Edson; Oliveira Junior, Amir Antonio Martins de [Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil). LabCET], e-mail: ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Complexo Termeletrico Jorge Lacerda, Capivari de Baixo, SC (Brazil)], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Mitigation of greenhouse gases emission is one of the most important issues in energy engineering. Biomass is a potential renewable source but with limited use in large scale energy production because of the relative smaller availability as compared to fossil fuels, mainly to coal. Besides, the costs concerning transportation must be well analysed to determine its economic viability. An alternative for the use of biomass as a primary source of energy is the co-firing, that is the possibility of using two or more types of fuels combined in the combustion process. Biomass can be co-fired with coal in a fraction between 10 to 25% in mass basis (or 4 to 10% in heat-input basis) without seriously impacting the heat release characteristics of most boilers. Another advantage of cofiring, besides the significant reductions in fossil CO{sub 2} emissions, is the reduced emissions of NO{sub x} and SO{sub x}. As a result, co-firing is becoming attractive for power companies worldwide. This paper presents results of some experimental analysis on co-firing coal with rice straw in a combustion reactor. The influence of biomass thermal share in ash composition is also discussed, showing that alkali and earth alkaline compounds play the most important role on the fouling and slagging behavior when co-firing. Some fusibility correlations that can assist in the elucidation of these behavior are presented and discussed, and then applied to the present study. Results show that for a biomass thermal share up to 20%, significant changes are not expected in fouling and slagging behavior of ash. (author)

  4. The rate constant for the CO + H2O2 reaction

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2009-01-01

    The rate constant for the reaction CO + H2O2 -> HOCO + OH (R1) at 713 K is determined based on the batch reactor experiments of Baldwin et al. [ R. R. Baldwin, R. W. Walker, S. J. Webster, Combust. Flame 15 (1970) 167] on decomposition of H2O2 sensitized by CO. The value, k(1) (713 K) = 8.1 x 10...

  5. Combustion and gasification of coal and straw under pressurized conditions. Task 2: Determination of kinetic parameters in PTGA

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, O; Hald, P; Bak, J; Boll Illerup, J; Gjernes, E; Fjellerup, J; Olsen, A

    1995-10-01

    The reactivities of pulverized coal and straw fuels were investigated regarding pyrolysis, combustion and gasification with CO{sub 2} and H{sub 2}O by thermogravimetric analysis under pressurized conditions. The fuels were a Colombian coal, pulverized to 45-90 {mu}m particles, and wheat straw pulverized to 0-200 {mu}m particles. The pyrolysis studies were performed at 150-1000 deg. C in pure N{sub 2} at 1.5 to 40 bar. The combustion studies were performed at 300-550 deg. C, 1.5-40 bar total pressure with 0.08-0.8 bar of O{sub 2} partial pressure. The CO{sub 2} gasification studies were performed at 850-1200 deg. C, 4-40 bar of total pressure with 0.7-4 bar of CO{sub 2} partial pressure, also including studies with CO in combination with CO{sub 2}. A minor H{sub 2}O gasification study with straw was performed at 900-1050 deg. C at 1.5-2.0 bar of total pressure in an atmosphere containing partial pressures up to 0.32 bar of H{sub 2}O, o.2 bar of CO{sub 2}, 0.28 bar of CO and 0.12 bar of H{sub 2}. For combustion and CO{sub 2} gasification the results were analyzed with regard to reaction kinetics, and kinetic parameters that represent the experimental results were found. (AU) 11 tabs., 26 ills., 10 refs.

  6. Experimental evaluation of main emissions during coal processing waste combustion.

    Science.gov (United States)

    Dmitrienko, Margarita A; Legros, Jean C; Strizhak, Pavel A

    2018-02-01

    The total volume of the coal processing wastes (filter cakes) produced by Russia, China, and India is as high as dozens of millions of tons per year. The concentrations of CO and CO 2 in the emissions from the combustion of filter cakes have been measured directly for the first time. They are the biggest volume of coal processing wastes. There have been many discussions about using these wastes as primary or secondary components of coal-water slurries (CWS) and coal-water slurries containing petrochemicals (CWSP). Boilers have already been operationally tested in Russia for the combustion of CWSP based on filter cakes. In this work, the concentrations of hazardous emissions have been measured at temperatures ranging from 500 to 1000°С. The produced CO and CO 2 concentrations are shown to be practically constant at high temperatures (over 900°С) for all the coal processing wastes under study. Experiments have shown the feasibility to lowering the combustion temperatures of coal processing wastes down to 750-850°С. This provides sustainable combustion and reduces the CO and CO 2 emissions 1.2-1.7 times. These relatively low temperatures ensure satisfactory environmental and energy performance of combustion. Using CWS and CWSP instead of conventional solid fuels significantly reduces NO x and SO x emissions but leaves CO and CO 2 emissions practically at the same level as coal powder combustion. Therefore, the environmentally friendly future (in terms of all the main atmospheric emissions: CO, CO 2 , NO x , and SO x ) of both CWS and CWSP technologies relies on low-temperature combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A new integration model of the calcium looping technology into coal fired power plants for CO_2 capture

    International Nuclear Information System (INIS)

    Ortiz, C.; Chacartegui, R.; Valverde, J.M.; Becerra, J.A.

    2016-01-01

    Highlights: • A CaL-CFPP (coal fired power plant) integration model is proposed and efficiency penalty is estimated. • Carbonation in the diffusion stage is considered to predict the capture efficiency. • Low efficiency penalty may be achieved by operating with longer particles’ residence time. • Simulation results show that the energy penalty ranges between 4% and 7% points. - Abstract: The Ca-Looping (CaL) process is at the root of a promising 2nd generation technology for post-combustion CO_2 capture at coal fired power plants. The process is based on the reversible and quick carbonation/calcination reaction of CaO/CaCO_​_3 at high temperatures and allows using low cost, widely available and non toxic CaO precursors such as natural limestone. In this work, the efficiency penalty caused by the integration of the Ca-looping technology into a coal fired power plant is analyzed. The results of the simulations based on the proposed integration model show that efficiency penalty varies between 4% and 7% points, which yields lower energy costs than other more mature post-combustion CO_2 capture technologies such as the currently commercial amine scrubbing technology. A principal feature of the CaL process at CO_2 capture conditions is that it produces a large amount of energy and therefore an optimized integration of the systems energy flows is essential for the feasibility of the integration at the commercial level. As a main novel contribution, CO_2 capture efficiency is calculated in our work by considering the important role of the solid-state diffusion controlled carbonation phase, which becomes relevant when CaO regeneration is carried out under high CO_2 partial pressure as is the case with the CaL process for CO_2 capture. The results obtained based on the new model suggest that integration energy efficiency would be significantly improved as the solids residence time in the carbonator reactor is increased.

  8. Ash chemistry and behavior in advanced co-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M; Skrifvars, B J [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The purpose of this LIEKKI 2 project is to report results achieved within the EU/JOULE/OPTEB project to the Finnish combustion research community through the LIEKKI program. The purpose of the EU/JOULE/OPTEB project is to find prediction methods for evaluating ash behavior, such as slagging, fouling and corrosion propensity, in full scale combustion systems through chemical or mineralogical analyses, intelligent laboratory tests and chemistry calculations. The project focuses on coals, coal mixtures and coal biomass mixtures fired in advanced combustion systems, such as fluidized bed boilers, pulverized fuel boilers with critical steam values etc. The project will make use of (1) advanced multi-component combustion equilibrium calculations, (2) ash sintering tendency laboratory tests and (3) chemical evaluations of slagging, fouling and corrosion measurements in full scale units. (orig.)

  9. Steam-moderated oxy-fuel combustion

    International Nuclear Information System (INIS)

    Seepana, Sivaji; Jayanti, Sreenivas

    2010-01-01

    The objective of the present paper is to propose a new variant of the oxy-fuel combustion for carbondioxide (CO 2 ) sequestration in which steam is used to moderate the flame temperature. In this process, pure oxygen is mixed with steam and the resulting oxidant mixture is sent to the boiler for combustion with a fossil fuel. The advantage of this method is that flue gas recirculation is avoided and the volumetric flow rates through the boiler and auxiliary components is reduced by about 39% when compared to the conventional air-fired coal combustion power plant leading to a reduction in the size of the boiler. The flue gas, after condensation of steam, consists primarily of CO 2 and can be sent directly for compression and sequestration. Flame structure analysis has been carried out using a 325-step reaction mechanism of methane-oxidant combustion to determine the concentration of oxygen required to ensure a stable flame. Thermodynamic exergy analysis has also been carried out on SMOC-operated CO 2 sequestration power plant and air-fired power plant, which shows that though the gross efficiency increases the absolute power penalty of ∼8% for CO 2 sequestration when compared to air-fired power plant.

  10. Steam-moderated oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seepana, Sivaji; Jayanti, Sreenivas [Department of Chemical Engineering, IIT Madras, Adyar, Chennai 600 036 (India)

    2010-10-15

    The objective of the present paper is to propose a new variant of the oxy-fuel combustion for carbondioxide (CO{sub 2}) sequestration in which steam is used to moderate the flame temperature. In this process, pure oxygen is mixed with steam and the resulting oxidant mixture is sent to the boiler for combustion with a fossil fuel. The advantage of this method is that flue gas recirculation is avoided and the volumetric flow rates through the boiler and auxiliary components is reduced by about 39% when compared to the conventional air-fired coal combustion power plant leading to a reduction in the size of the boiler. The flue gas, after condensation of steam, consists primarily of CO{sub 2} and can be sent directly for compression and sequestration. Flame structure analysis has been carried out using a 325-step reaction mechanism of methane-oxidant combustion to determine the concentration of oxygen required to ensure a stable flame. Thermodynamic exergy analysis has also been carried out on SMOC-operated CO{sub 2} sequestration power plant and air-fired power plant, which shows that though the gross efficiency increases the absolute power penalty of {proportional_to}8% for CO{sub 2} sequestration when compared to air-fired power plant. (author)

  11. Thermodynamic modeling of NH_3-CO_2-SO_2-K_2SO_4-H_2O system for combined CO_2 and SO_2 capture using aqueous NH_3

    International Nuclear Information System (INIS)

    Qi, Guojie; Wang, Shujuan

    2017-01-01

    Highlights: • A new application of aqueous NH_3 based combined CO_2 and SO_2 process was proposed. • A thermodynamic model simulated the heat of absorption and the K_2SO_4 precipitation. • The CO_2 content can be regenerated in a stripper with lower heat of desorption. • The SO_2 content can be removed by K_2SO_4 precipitation from the lean NH_3 solvent. - Abstract: A new application of aqueous NH_3 based post-combustion CO_2 and SO_2 combined capture process was proposed to simultaneously capture CO_2 and SO_2, and remove sulfite by solid (K_2SO_4) precipitation method. The thermodynamic model of the NH_3-CO_2-SO_2-K_2SO_4-H_2O system for the combined CO_2 and SO_2 capture process was developed and validated in this work to analyze the heat of CO_2 and SO_2 absorption in the NH_3-CO_2-SO_2-H_2O system, and the K_2SO_4 precipitation characteristics in the NH_3-CO_2-SO_2-K_2SO_4-H_2O system. The average heat of CO_2 absorption in the NH_3-CO_2-H_2O system at 40 °C is around −73 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N. The average heat of SO_2 absorption in the NH_3-SO_2-H_2O system at 40 °C is around −120 kJ/mol SO_2 in 2.5 wt% NH_3 with SO_2 loading between 0 and 0.5 S/N. The average heat of CO_2 absorption in the NH_3-CO_2-SO_2-H_2O system at 40 °C is 77, 68, and 58 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N, when SO_2 loading is 0, 0.1, 0.2 S/N, respectively. The solubility of K_2SO_4 increases with temperature, CO_2 and SO_2 loadings, but decreases with NH_3 concentration in the CO_2 and SO_2 loaded aqueous NH_3. The thermodynamic evaluation indicates that the combined CO_2 and SO_2 capture process could employ the typical absorption/regeneration process to simultaneously capture CO_2 and SO_2 in an absorber, thermally desorb CO_2 in a stripper, and feasibly remove sulfite (oxidized to sulfate) content by precipitating K_2SO_4 from the lean NH_3 solvent after the lean/rich heat exchanger.

  12. Capturing and storing CO{sub 2} to combat the greenhouse effect. What IFP is doing; Capter et stocker le CO{sub 2} pour lutter contre l'effet de serre. L'action de l'IFP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The growing awareness of the international community and the convergence of the scientific data concerning climate change make it urgent to deploy, throughout the world, technologies to reduce emissions of greenhouse gases. Indeed, the growth of the world energy demand will prevent any rapid reduction of the use of fossil fuels - oil, natural gas, and coal - that are the main sources of greenhouse gas emissions. To reconcile the use of these resources with control of the emissions responsible for global warming, the capture and storage of CO{sub 2} are a very promising approach; the economic and industrial stakes are high. To meet the objective of reducing CO{sub 2} emissions, IFP is exploring three approaches: The first approach is to reduce energy consumption by improving the efficiency of energy converters, in particular internal combustion engines. A second approach is to reduce the carbon content of energy by favoring the use of natural gas or by incorporating in the fuel recycled carbon (biofuels and synfuels) and by developing hydrogen as an energy carrier. The third approach is to capture the CO{sub 2} from industrial processes used for electricity, steel, and cement production, which emit it in large quantities, then store it underground so as to keep it out of the atmosphere. This approach for reducing the CO{sub 2} emissions consists in capturing the CO{sub 2} (Post-combustion, oxy-combustion), transporting it to the place of storage, then injecting it underground to store it. Storage sites are selected and evaluated prior to injection in order to estimate the injectivity, the propagation of CO{sub 2} in the subsoil and the impact of geochemical and geomechanical transformations on the tightness of the overburden and of the injection well. The injection phase is followed by a phase of monitoring to ensure the safety and long-term viability of CO{sub 2} storage facilities. IFP, through the research it is conducting either alone or in partnership with

  13. Co-Optimization of Internal Combustion Engines and Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.

    2016-03-08

    The development of advanced engines has significant potential advantages in reduced aftertreatment costs for air pollutant emission control, and just as importantly for efficiency improvements and associated greenhouse gas emission reductions. There are significant opportunities to leverage fuel properties to create more optimal engine designs for both advanced spark-ignition and compression-ignition combustion strategies. The fact that biofuel blendstocks offer a potentially low-carbon approach to fuel production, leads to the idea of optimizing the entire fuel production-utilization value chain as a system from the standpoint of life cycle greenhouse gas emissions. This is a difficult challenge that has yet to be realized. This presentation will discuss the relationship between chemical structure and critical fuel properties for more efficient combustion, survey the properties of a range of biofuels that may be produced in the future, and describe the ongoing challenges of fuel-engine co-optimization.

  14. Attestation in self-propagating combustion approach of spinel AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) complexes bearing mixed oxidation states: Magnetostructural properties

    Energy Technology Data Exchange (ETDEWEB)

    Bennet, J., E-mail: b.eenneett@gmail.com [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Tholkappiyan, R. [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Department of Physics, College of Science, UAE University, Al Ain 15551 (United Arab Emirates); Vishista, K.; Jaya, N. Victor [Department of Physics, College of Engineering, Guindy, Anna University, Sardar Patel Road, Chennai,600025 (India); Hamed, Fathalla [Department of Physics, College of Science, UAE University, Al Ain 15551 (United Arab Emirates)

    2016-10-15

    Highlights: • Spinel type ferrite compounds AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel. • To investigate and confirms the presence of phases in the synthesized ferrite nanoparticles by XRD and FTIR analysis. • The formation of mixed oxidation state of cobalt (Co{sup 2+} and Co{sup 3+}), iron (Fe{sup 2+} and Fe{sup 3+}) and manganese (Mn{sup 2+} and Mn{sup 3+}) ions were studied and confirmed from XPS analysis. • The magnetic properties of the synthesized ferrites were studied by VSM measurement. - Abstract: Spinel type nano-sized ferrite compounds AFe{sub 2}O{sub 4} (A = Co, Mg and Mn) have been successfully prepared by self-propagating combustion method using glycine as fuel at 400 °C under air atmosphere for 4 h. The crystal structure, chemical composition, morphology and magnetic properties of the synthesized samples were characterized by X−ray diffraction, Fourier transform infrared spectroscopy, X−ray photoelectron spectroscopy, Energy dispersive X−ray, Scanning and Transmission electron microscopy and vibrating sample magnetometer. The chemical reaction and role of fuel on the nanoparticles formation were discussed. The XRD pattern of the synthesized samples shows the formation of pure phase with average crystallite size of 97, 57 and 98 nm from Scherrer formula and 86, 54 and 87 nm from Williamson and Hall (W–H) formula respectively. FTIR absorption spectra revealed that the presence of strong absorption peaks near 400–600 cm{sup −1} corresponds to tetrahedral and octahedral complex of spinel ferrites. The relative concentrations of electronic states of elements such as cobalt (Co{sup 2+} and Co{sup 3+}), iron (Fe{sup 2+} and Fe{sup 3+}) and manganese (Mn{sup 2+} and Mn{sup 3+}) oxidation states were studied from XPS and it is found that 55% of Fe ions are in Fe{sup 2+} state and the remaining is in Fe{sup 3+} state and thus the cationic distribution

  15. Thermal analysis and kinetics of coal during oxy-fuel combustion

    Science.gov (United States)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  16. Computational Modeling of Mixed Solids for CO2 CaptureSorbents

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua

    2015-01-01

    Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.

  17. Co-combustion of low rank coal/waste biomass blends using dry air or oxygen

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S.

    2013-01-01

    Biomass species such as the rice husk and the olive milling residue, and a low quality Turkish coal, Soma Denis lignite, were burned in a thermal analyzer under pure oxygen and dry air up to 900 °C, and differential thermal analysis (DTA) and derivative thermogravimetric (DTG) analysis profiles were obtained. Co-combustion experiments of lignite/biomass blends containing 5–20 wt% of biomass were also performed. The effects of the oxidizer type and the blending ratio of biomass were evaluated considering some thermal reactivity indicators such as the maximum burning rate and its temperature, the maximum heat flow temperature, and the burnout levels. FTIR (Fourier transform infrared) spectroscopy and SEM (scanning electron microscopy) were used to characterize the samples, and the variations in the combustion characteristics of the samples were interpreted based on the differences in the intrinsic properties of the samples. - Highlights: ► Co-combustion of lignite/biomass blends. ► The effects of the oxidizer type and the blending ratio. ► Effects of intrinsic properties on combustion characteristics.

  18. CO2 Capture Rate Sensitivity Versus Purchase of CO2 Quotas. Optimizing Investment Choice for Electricity Sector

    Directory of Open Access Journals (Sweden)

    Coussy Paula

    2014-09-01

    Full Text Available Carbon capture technology (and associated storage, applied to power plants, reduces atmospheric CO2 emissions. This article demonstrates that, in the particular case of the deployment phase of CO2 capture technology during which CO2 quota price may be low, capturing less than 90% of total CO2 emissions from power plants can be economically attractive. Indeed, for an electric power company capture technology is interesting, only if the discounted marginal cost of capture is lower than the discounted marginal cost of purchased quotas. When CO2 price is low, it is interesting to have flexibility and reduce the overall capture rate of the site, by stopping the capture system of one of the combustion trains if the site has multiple ones, or by adopting less than 90% CO2 capture rate.

  19. Faecal-wood biomass co-combustion and ash composition analysis.

    Science.gov (United States)

    Somorin, Tosin Onabanjo; Kolios, Athanasios J; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean

    2017-09-01

    Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14-18 L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400 °C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.

  20. N2O formation in combustion systems

    International Nuclear Information System (INIS)

    1989-11-01

    The objective of this project is to characterize N 2 O emissions from combustion sources emphasizing N 2 O emissions from post-combustion selective gas phase NO x reduction processes and reburning. The processes to be evaluated include ammonia, urea and cyanuric acid injection and reburning. The project includes pilot-scale testing at two facilities supported by chemical kinetic modeling. Testing will be performed on both a gas-fired plug flow combustor and a pulverized-coal fired combustor. Work performed to date has included the performance of the initial detailed chemical kinetics calculations. These calculations showed that both urea and cyanuric acid produce significant quantities of N 2 O, while NH 3 injection produced negligible amounts. These kinetics data support limited test results reported for cyanuric acid and ammonia injection. Laboratory work to evaluate the selective gas phase NO x reduction processes listed above will begin in the gas-fired facility early in CY 1990. Testing to evaluate reburning at the coal-fired facility is currently planned to be performed in parallel with the testing at the gas-fired facility. Following completion of that work, additional kinetics calculations will be performed

  1. Fabrication and spectroscopic properties of Co:MgAl2O4 transparent ceramics by the HIP post-treatment

    Science.gov (United States)

    Luo, Wei; Ma, Peng; Xie, Tengfei; Dai, Jiawei; Pan, Yubai; Kou, Huamin; Li, Jiang

    2017-07-01

    Cobalt-doped magnesium aluminate spinel (Co:MgAl2O4) is one of the most important saturable absorbers for the passive Q-switching of solid-state lasers operating at eye-safe wavelength of 1.5 μm. In this work, highly transparent Co:MgAl2O4 ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment, using the mixture of the commercial spinel and the lab-made Co:MgAl2O4 powder as the raw materials. The densification mechanism of Co:MgAl2O4 transparent ceramics was discussed. The microstructure and optical properties of the samples were investigated. The ground state absorption cross section (σGSA) was calculated from the fitted curve of the absorption coefficient spectrum. The results show that Co:MgAl2O4 ceramics fabricated by vacuum sintering at 1500 °C for 5 h and then HIP post-treatment at 1650 °C for 3 h perform good transparency, whose in-line transmittance exceeds 80% at 2500 nm. Moreover, the ground state absorption cross section of 0.02 at.% Co:MgAl2O4 ceramics is calculated to be 3.35 × 10-19 cm2 at the wavelength of 1540 nm, which is promising for the application to the passive Q-switching of solid-state laser operating in the near infrared region (NIR).

  2. Modelling of NOx emissions from pressurized fluidized bed combustion - A parameter study

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik

    1997-01-01

    velocity, the bubble size, the bubble rise velocity and the gas interchange coefficient between bubble and dense phase. The most important combustion parameters are the rates of CO and CH4 combustion and the CO/(CO + CO2) ratio from char combustion. (C) 1997 Elsevier Science Ltd....

  3. Developing strategies for the regeneration of polyethylenimine based CO{sub 2} adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Trevor C. Drage; Karl M. Smith; Ana Arenillas; Colin E. Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2007-07-01

    Adsorption is considered to be one of the more promising technologies for capturing CO{sub 2} from flue gases. The efficient adsorption of CO{sub 2} at low partial pressures, associated with post-combustion capture, require chemical type adsorbents containing basic amine functional groups. It has been demonstrated that amine polymers, for example polyethylenimine (PEI), immobilised on various porous substrates, silica, zeolites and fly ash, are effective adsorbents for CO{sub 2}. When considering the use of adsorption for large scale CO{sub 2} capture, the ease of regeneration and the lifetime of the adsorbents are critical factors in determining their efficiency, cost and therefore feasibility for use. In this paper two approaches, thermal swing adsorption (TSA) cycles over a range of temperatures and time in an atmosphere of CO{sub 2} and thermally assisted pressure swing desorption, are explored for the regeneration of the PEI based adsorbents. The reactions occurring during the TSA regeneration of PEI based adsorbents in an atmosphere of CO{sub 2}, especially the formation of a thermostable complex between PEI and CO{sub 2} above 130{sup o}C are described. Identification of the complex by FTIR, XPS and 13C NMR and its attempted regeneration will be described. Overall, the results from this research have implications for the selection of regeneration strategies of all amine based CO{sub 2} adsorbents. 5 refs., 1 figs., 1 tab.

  4. Demonstration project: Oxy-fuel combustion at Callide-A plant

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Keiji; Misawa, Nobuhiro; Kiga, Takashi; Spero, Chris

    2007-07-01

    Oxy-fuel combustion is expected to be one of the promising systems on CO2 recovery from pulverized-coal power plant, and enable the CO2 to be captured in a more cost-effective manner compared to other CO2 recover process. An Australia-Japan consortium was established in 2004 specifically for the purpose of conducting a feasibility study on the application of oxy-fuel combustion to an existing pulverized-coal power plant that is Callide-A power plant No.4 unit at 30MWe owned by CS Energy in Australia. One of the important components in this study has been the recent comparative testing of three Australian coals under both oxy-fuel and air combustion conditions using the IHI combustion test facilities. The tests have yielded a number of important outcomes including a good comparison of normal air with oxy-fuel combustion, significant reduction in NOx mass emission rates under oxy-fuel combustion. On the basis of the feasibility study, the project under Australia-Japan consortium is now under way for applying oxy-fuel combustion to an existing plant by way of demonstration. In this project, a demonstration plant of oxy-fuel combustion will be completed by the end of 2008. This project aims at recovering CO2 from an actual power plant for storage. (auth)

  5. Gas-phase reactions at combustion and gasification

    International Nuclear Information System (INIS)

    Hupa, M.; Kilpinen, P.; Chowdhury, K.; Brink, A.; Mueller, C.

    1995-01-01

    Formation and destruction of gaseous nitrogen pollutants at combustion (NO x , N 2 O) and gasification (NH 3 , HCN) are studied based on detailed chemical kinetic modelling and experiments in laboratory reactors. During 1994 the following topics have been studied: (a) nitrogen reactions in pressurized combustion processes (in co-operation with the LIEKKI projects 202 and 204), (b) NO x reduction by staging techniques in CO 2 , rich combustion processes, (c) HCN reactions at pyrolysis, (d) formation of soot precursors in a blast furnace (in co-operation with the SULA project 103) (e) incorporation of better NO x description into furnace models, (in co-operation with the LIEKKI project Y01). NH 3 conversion to N 2 in gasification product gases, (in co-operation with the LIEKKI project 203). In this report, some results of the items (a-c) will be presented. The results of items (d-f) are described in the reports by the co-operation projects. (author)

  6. Performance of CO2 enrich CNG in direct injection engine

    Science.gov (United States)

    Firmansyah, W. B.; Ayandotun, E. Z.; Zainal, A.; Aziz, A. R. A.; Heika, M. R.

    2015-12-01

    This paper investigates the potential of utilizing the undeveloped natural gas fields in Malaysia with high carbon dioxide (CO2) content ranging from 28% to 87%. For this experiment, various CO2 proportions by volume were added to pure natural gas as a way of simulating raw natural gas compositions in these fields. The experimental tests were carried out using a 4-stroke single cylinder spark ignition (SI) direct injection (DI) compressed natural gas (CNG) engine. The tests were carried out at 180° and 300° before top dead centre (BTDC) injection timing at 3000 rpm, to establish the effects on the engine performance. The results show that CO2 is suppressing the combustion of CNG while on the other hand CNG combustion is causing CO2 dissociation shown by decreasing CO2 emission with the increase in CO2 content. Results for 180° BTDC injection timing shows higher performance compared to 300° BTDC because of two possible reasons, higher volumetric efficiency and higher stratification level. The results also showed the possibility of increasing the CO2 content by injection strategy.

  7. New technologies reducing emissions from combustion of biofuels

    International Nuclear Information System (INIS)

    Oravainen, H.

    1997-01-01

    In reducing CO 2 emissions, bioenergy will be the most important source of renewable energy in the next few decades. In principle, combustion of biomass is friendly to the environment because CO 2 released during combustion is recycled back into natural circulation. Biofuels normally contain little nitrogen and sulphur. However, depending on the combustion technology used, emissions may be quite high. This is true of combustion of biomass fuels in small appliances like wood stoves, fireplaces, small boilers etc. When fuels having high content of volatile matter are burnt in appliances using batch type combustion, the process is rather an unsteady-state combustion. Emissions of carbon monoxide, other combustible gases and particulates are quite difficult to avoid. With continuous combustion processes this is not normally a problem. This conference paper presents some means of reducing emissions from combustion of biofuels. 5 refs., 4 figs

  8. Co-combustion of sewage sludge; Mitverbrennung von Klaerschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, K.J. [Technische Univ. Berlin (Germany). Fachgebiet Abfallwirtschaft

    1998-09-01

    Thermal sewage disposal pursues the following aims: destruction of organic pollutants contained in the sludge; concentration and removal or almost complete fixation of inorganic pollutants in the residue matrix; minimisation of the mass solid residue; production of useful products; utilisation of the caloric content. The thermal treatment chain should be as short as possible; intermediate stages in separate reactors such as digestion, drying, degasification or gasification should be avoided if the material is ultimately to be combusted. The present paper examines and assesses the co-combustion of sewage sludge. [Deutsch] Mit der thermischen Klaerschlammentsorgung werden folgende Ziele verfolgt: - Zerstoerung der im Schlamm enthaltenen organischen Schadstoffe, - Konzentration und Ausschleusung oder weitestgehende Fixierung der anorganischen Schadstoffe in die Reststoffmatrix, - Minimierung der Masse an festen Restabfaellen, - Herstellung verwertbarer Produkte, - Nutzung des Waermeeinhalts. Die thermische Behandlungskette sollte moeglichst kurz sein; Zwischenschritte wie Faulung, Trocknung, Ent- oder Vergasung in getrennten Reaktoren sollten vermieden werden, wenn letztendlich doch verbrannt wird. Das Verfahren der Mitverbrennung von Klaerschlamm wird hier untersucht und bewertet. (orig./SR)

  9. Policy options to reduce passenger car CO2 emissions after 2020

    Energy Technology Data Exchange (ETDEWEB)

    De Wilde, H.P.J.; Kroon, P. [ECN Beleidsstudies, Petten (Netherlands)

    2013-02-15

    The EU has set emission targets for new cars up to 2020 and is now preparing the post 2020 legislation. The present study aims to give insight in the design of policies to further reduce passenger car emissions after 2020. Internal combustion engine (ICE) vehicles are now expected to enable deeper and less costly CO2 emission reductions than envisioned until recently. However, even advanced ICE vehicles will not enable to meet the very stringent long term emission reduction targets for passenger cars. Therefore transport policies need not only to reduce emissions of ICE vehicles, but also ensure that electric and hydrogen vehicles are phased in timely, along with low-CO2 electricity and hydrogen. Current legislation to regulate tank-to-wheel vehicle emissions is based on CO2-limits, expressed in g CO2/km. On the short term it is important to maximize the efficiency of conventional vehicles. At the same time it is essential to foster the market introduction of electric and hydrogen vehicles, given their potential to reach eventually much deeper overall CO2-reductions. When the market share of electric and hydrogen vehicles grows it becomes increasingly important to maximize their efficiency and to minimize their upstream CO2 emissions. Maximizing both efficiency and overall CO2-performance of all vehicle types - ICE, electric, and hydrogen - will be complicated to achieve with a single CO2-based standard. At this point an efficiency-based standard is more effective, and may offer some additional benefits too. The current report provides basic directions of how such legislation could be shaped.

  10. Infrared monitoring of combustion

    International Nuclear Information System (INIS)

    Bates, S.C.; Morrison, P.W. Jr.; Solomon, P.R.

    1991-01-01

    In this paper, the use of Fourier Transform Infrared (FT-IR) spectroscopy for combustion monitoring is described. A combination of emission, transmission, and reflection FT-IR spectroscopy yields data on the temperature and composition of the gases, surfaces and suspended particles in the combustion environment. Detection sensitivity of such trace exhaust gases as CO, CO 2 , SO 2 , NO x , and unburned hydrocarbons is at the ppm level. Tomographic reconstruction converts line-of-sight measurements into spatially resolved temperature and concentration data. Examples from various combustion processes are used to demonstrate the capabilities of the technique. Industrial measurements are described that have been performed directly in the combustion zone and in the exhaust duct of a large chemical recovery boiler. Other measurements of hot slag show how FT-IR spectroscopy can determine the temperature and optical properties of surfaces. In addition, experiments with water droplets show that transmission FT-IR data yield spectra that characterize particle size and number density

  11. Ab initio Thermodynamic Approach to Identify Mixed Solid Sorbents for CO2 Capture Technology

    Directory of Open Access Journals (Sweden)

    Yuhua eDuan

    2015-10-01

    Full Text Available Because the current technologies for capturing CO2 are still too energy intensive, new materials must be developed that can capture CO2 reversibly with acceptable energy costs. At a given CO2 pressure, the turnover temperature (Tt of the reaction of an individual solid that can capture CO2 is fixed. Such Tt may be outside the operating temperature range (ΔTo for a practical capture technology. To adjust Tt to fit the practical ΔTo, in this study, three scenarios of mixing schemes are explored by combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations. Our calculated results demonstrate that by mixing different types of solids, it’s possible to shift Tt to the range of practical operating temperature conditions. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the mixed solids of interest, we were able to identify the mixing ratios of two or more solids to form new sorbent materials for which lower capture energy costs are expected at the desired pressure and temperature conditions.

  12. Simulasi Numeris Karakteristik Pembakaran CH4/CO2/Udara dan CH4/CO2/O2 pada Counterflow Premixed Burner

    Directory of Open Access Journals (Sweden)

    Hangga Wicaksono

    2017-08-01

    Full Text Available The high amount of CO2 produced in a conventional biogas reactor needs to be considered. A further analysis is needed in order to investigate the effect of CO2 addition especially in thermal and chemical kinetics aspect. This numerical study has been held to analyze the effect of CO2 in CH4/CO2/O­2 and CH4/CO2/Air premixed combustion. In this study one dimensional analisys in a counterflow burner has been performed. The volume fraction of CO2 used in this study was 0%-40% from CH4’s volume fraction, according to the amount of CO2 in general phenomenon. Based on the flammability limits data, the volume fraction of CH4 used was 5-61% in O2 environment and 5-15% in air environment. The results showed a decreasing temperature along with the increasing percentage of CO2 in each mixtures, but the effect was quite smaller especially in stoichiometric and lean mixture. CO2 could affects thermally (by absorbing heat due to its high Cp and also made the production of unburnt fuel species such as CO relatively higher.

  13. Alstom's Chemical Looping Combustion Prototype for CO2 Capture from Existing Pulverized Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Jr., Herbert E. [Alstom Power Inc., Windsor, CT (United States); Chiu, John H. [Alstom Power Inc., Windsor, CT (United States); Edberg, Carl D. [Alstom Power Inc., Windsor, CT (United States); Thibeault, Paul R. [Alstom Power Inc., Windsor, CT (United States); Turek, David G. [Alstom Power Inc., Windsor, CT (United States)

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO2 from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO2 for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration

  14. Combustion of agro-waste with coal in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T. [Middle East Technical University, Department of Environmental Engineering, Ankara (Turkey)

    2010-02-15

    In this study, a review of the studies done on the co-combustion of some agro-waste in a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm is given. The agro-waste used to investigate the co-combustion characteristics were peach and apricot stones produced as a waste from the fruit juice industry, and olive cake produced as a waste from the olive oil industry. These are typical wastes for a Mediterranean country. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub x} and total hydrocarbons (C{sub m} H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. Emissions were also monitored from the exhaust. Various combinations of coal and biomass mixtures were tested. During the combustion tests, it was observed that the volatile matter from the biomass quickly volatilizes and mostly burns in the freeboard. The temperature profiles along the bed and the freeboard also confirmed this phenomenon. It was found that as the volatile matter of the biomass increases, combustion takes place more in the freeboard region. Better combustion conditions occur at higher excess air ratios. The results showed that co-combustion with these three proposed biomasses lowers the SO{sub 2} and NO{sub x} emissions considerably. CO and hydrocarbon emissions are lower at the higher excess air ratios. (orig.)

  15. Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics.

    Science.gov (United States)

    Masunov, Artëm E; Wait, Elizabeth E; Atlanov, Arseniy A; Vasu, Subith S

    2017-05-18

    In oxy-fuel combustion, the pure oxygen (O 2 ), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2 O) are free from pollution by nitrogen oxides. Moreover, high pressures result in the near-liquid density of CO 2 at supercritical state (sCO 2 ). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. To assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of the carbon dioxide molecule. All transition states and reactant and product complexes are reported for three reactions: H 2 CO + HO 2 → HCO + H 2 O 2 (R1), 2HO 2 → H 2 O 2 + O 2 (R2), and CO + OH → CO 2 + H (R3). In reaction R3, covalent binding of CO 2 to the OH radical and then the CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to the bimolecular OH + CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol and is expected to accelerate the reaction. In the case of hydroperoxyl self-reaction 2HO 2 → H 2 O 2 + O 2 the intermediates, containing covalent bonds to CO 2 are found not to be competitive. However, the spectator CO 2 molecule can stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates is also discovered in the H 2 CO + HO 2 → HCO + H 2 O 2 reaction, but these species lead to substantially higher activation barriers, which makes them unlikely to play a role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilizes the transition state and reduces the reaction barrier. These results indicate that the CO 2 environment is likely to have a catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2 .

  16. Effect of phosphorous transformation on the reduction of PM{sub 10} formation during Co-combustion of coal and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, J.K.; Dong, M.; Li, G.D.; Li, S.Q.; Song, Q.; Yao, Q. [Tsinghua Univ., Beijing (China). Key Lab. of Thermal Science and Power Engineering; Duan, L. [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering

    2013-07-01

    Co-combustion of Municipal Sewage Sludge with coal will become increasingly widely used, regarded as an important incineration method with the high thermal efficiency, low emissions, low investment and operating costs. However, the presence of phosphorus in fine particle has gained increased attention due to its environmental adverse affection and deactivation of SCR DeNOx catalysts. Therefore, the behavior of phosphorus in fine particles during co-combustion of coal and sewage sludge was investigated in a 25 kW quasi one-dimensional down-fired pulverized coal combustor, where PM{sub 10} was collected from the furnace centerline in the outlet of flue gas cooler by using a two-stage nitrogen-aspirated, water-cooling isokinetic sampling probe followed a 13-stage electric low pressure impactor. Then the formation mechanism of PM{sub 10} was investigated by observing the different fractions of sewage sludge in the coal. Similar to the coal combustion, the particle-size-distributions (PSD) of PM{sub 10} mass concentration by co-combustion of sewage sludge with coal exhibit two distinct modes separated by a fraction of 0.157-0.263 {mu}m, ultrafine mode and intermediate mode. With the sewage sludge blended sludge up to 15% (thermal ratio), the mass concentration of the total fly ash and PM{sub 10+} (Dp > 10 {mu}m) vastly increased from 1,088 and 547 mg/Nm{sup 3} (during coal combustion) to 5,059 and 4,403 mg/Nm{sup 3}. However, the mass concentration of fine particulates, such as PM{sub 1}, PM{sub 2.5} and PM{sub 10} was maintained at the emission level of coal combustion. When the fraction of sewage sludge less than 15%, the mass concentration of fine particle is higher than the emission during coal combustion, while the growth rate is only by the 3.6, 7.9 and 4.8% of the total concentration of fly ash (5% thermal). The change of the PSD of mass concentration during co- combustion of sewage sludge and coal, mainly was caused by the interaction between Si, Al and Ca, Fe

  17. Co-combustion of cultivable raw materials in existing power supply plants -a study on the potential for such plants in the eastern Laender. Final report

    International Nuclear Information System (INIS)

    Grosskopf, W.; Kappelmann, K.H.

    1996-04-01

    The present study is dedicated to an analysis of co-combustion of biomass in existing power supply plants in the eastern Laender. The question to be resolved is whether the existing substantial potential for substituting fossil energy carriers for biomass in the short term and at low cost also offers a viable option from the viewpoint of political economy. In its final assessment the study also takes agropolitical and ecopolitical interests into account. A further basic question posed by this impact analysis is in what way the increased use of biomass as an energy carrier can contribute to farmers; income and thus help improve employment in rural area. Implicated in this is the question whether the conservation of developed land resulting from large-area biomass cultivation is desirable from the sociopolitical viewpoint. Another important aspect concerning the impact analysis is the question as to the environmental efficiency of biomass co-combustion given the Federal Government's aims regarding CO 2 abatement. The study examines how biomas co-combustion compares with other alternatives to this end in terms of CO 2 abatement costs. These deliberations provide the basis for the study's concluding recommendations to political decision makers who are confronted with the question whether and under what conditions public promotion of biomass co-combustion in the new Laender makes sociopolitical sense. (orig./SR) [de

  18. Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor- General combustion and ash behavior

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming

    2011-01-01

    .9 wt.%, 14.8 wt.% and 25 wt.%, respectively. The effect of additives was evaluated by maintaining the share of secondary fuel (mixture of SRF and additive) at 14.8 wt.%. The experimental results showed that the fuel burnout, NO and SO2 emission in co-combustion of coal and SRF were decreased...... with increasing share of SRF. The majority of the additives inhibited the burnout, except for NaCl which seemed to have a promoting effect. The impact of additives on NO emission was mostly insignificant, except for ammonium sulphate which greatly reduced the NO emission. For SO2 emission, it was found that all...

  19. Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions

    DEFF Research Database (Denmark)

    Álvarez, L.; Yin, Chungen; Riaza, J.

    2013-01-01

    The deployment of oxy-fuel combustion in utility boilers is one of the major options for CO2 capture. However, combustion under oxy-firing conditions differs from conventional air-firing combustion, e.g., in the aspect of radiative heat transfer, coal conversion and pollutants formation....... In this work, a numerical study on pulverised coal combustion was conducted to verify the applicability and accuracy of several sub-models refined for oxy-fuel conditions, e.g., gaseous radiative property model, gas-phase combustion mechanism and heterogeneous char reaction model. The sub-models were...... implemented in CFD (Computational Fluid Dynamics) simulations of combustion of three coals under air-firing and various oxy-firing (21-35% vol O2 in O2/CO2 mixture) conditions in an EFR (entrained flow reactor). The predicted coal burnouts and gaseous emissions were compared against experimental results...

  20. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...... of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably until 2007 resulting in increased emission of PAH and particulate matter. The emission of NMVOC has increased since 1990 as a result of both the increased...... combustion of wood in residential plants and the increased emission from lean-burn gas engines. The PCDD/F emission decreased since 1990 due to flue gas cleaning on waste incineration plants....

  1. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  2. Adiabatic burning velocity of H2-O2 mixtures diluted with CO2/N2/Ar

    International Nuclear Information System (INIS)

    Ratna Kishore, V.; Muchahary, Ringkhang; Ray, Anjan; Ravi, M.R.

    2009-01-01

    Global warming due to CO 2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO 2 , N 2 , and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO 2 , N 2 , and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H 2 /O 2 /CO 2 flames with 65% CO 2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H 2 /O 2 /CO 2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame. (author)

  3. Research and development of CO2 Capture and Storage Technologies in Fossil Fuel Power Plants

    Directory of Open Access Journals (Sweden)

    Lukáš Pilař

    2012-01-01

    Full Text Available This paper presents the results of a research project on the suitability of post-combustion CCS technology in the Czech Republic. It describes the ammonia CO2 separation method and its advantages and disadvantages. The paper evaluates its impact on the recent technology of a 250 MWe lignite coal fired power plant. The main result is a decrease in electric efficiency by 11 percentage points, a decrease in net electricity production by 62 MWe, and an increase in the amount of waste water. In addition, more consumables are needed.

  4. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    OpenAIRE

    Mohammad Siddique; Suhail Ahmed Soomro; Aziza Aftab; Zahid Naeem Qaisrani; Abdul Sattar Jatoi; Asadullah; Ghulamullah Khan; Ehsanullah Kakar

    2016-01-01

    Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their ...

  5. The ignition delay, laminar flame speed and adiabatic temperature characteristics of n-pentane, n-hexane and n-heptane under O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ran [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Wuhan Textile Univ. (China). School of Environment and Urban Construction; Liu, Hao; Zhong, Xiaojiao; Wang, Zijian; Jin, Ziqin; Qiu, Jianrong [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Chen, Yingming [Wuhan Textile Univ. (China). School of Environment and Urban Construction

    2013-07-01

    Oxy-fuel (O{sub 2}/CO{sub 2}) combustion is one of the several promising new technologies which can realize the integrated control of CO{sub 2}, SO{sub 2}, NO{sub X} and other pollutants. However, when fuels are burned in the high CO{sub 2} concentration environment, the combustion characteristics can be very different from conventional air-fired combustion. Such changes imply that the high CO{sub 2} concentration atmosphere has impacts on the combustion processes. In this paper, the ignition time, laminar flame speed and adiabatic temperature property of C{sub 5} {proportional_to} C{sub 7} n-alkane fuels were studied under both ordinary air atmosphere and O{sub 2}/CO{sub 2} atmospheres over a wide range of CO{sub 2} concentration in the combustion systems. A new unified detailed chemical kinetic model was validated and used to simulate the three liquid hydrocarbon fuel's flame characteristics. Based on the verified model, the influences of various parameters (atmosphere, excess oxygen ratio, O{sub 2} concentration, CO{sub 2} concentration, and alkane type) on the C{sub 5} {proportional_to} C{sub 7} n-alkane's flame characteristics were systematically investigated. It can be concluded that high CO{sub 2} concentration atmosphere has negative effect on n-pentane, n-hexane and n-heptane flame's ignition, laminar flame speed and adiabatic temperature. Besides, this work confirms that high CO{sub 2} concentration atmosphere's chemical effects play a pronounced role on the flame characteristics, especially for the ignition time property.

  6. Oxy-Fuel Combustion of Coal

    DEFF Research Database (Denmark)

    Brix, Jacob

    This Ph.D. thesis describes an experimental and modeling investigation of the thermal conversion of coal and an experimental investigation of the emission of NO from char combustion in O2/N2 and O2/CO2 atmospheres. The motivation for the work has been the prospective use of the technology “Oxy......-Fuel Combustion” as a mean of CO2 abatement in large scale energy conversion. Entrained Flow Reactor (EFR) experiments have been conducted in O2/N2 and O2/CO2 mixtures in the temperature interval 1173 K – 1673 K using inlet O2 concentrations between 5 – 28 vol. %. Bituminous coal has been used as fuel in all....... % it was found that char conversion rate was lowered in O2/CO2 compared to O2/N2. This is caused by the lower diffusion coefficient of O2 in CO2 (~ 22 %) that limits the reaction rate in zone III compared to combustion in O2/N2. Using char sampled in the EFR experiments ThermoGravimetric Analyzer (TGA...

  7. Impact of ignition temperature on particle size and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles prepared by self-propagated MILD combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Kaliyamoorthy, Venkatesan; Rajan Babu, D., E-mail: drajanbabu@vit.ac.in; Saminathan, Madeswaran

    2016-11-15

    We prepared nanocrystalline CoFe{sub 2}O{sub 4} by changing its ignition temperatures, using moderate and intense low-oxygen dilution (MILD) combustion technique. The effect of ignition temperature on the particle size and its magnetic behavior was investigated by HR-TEM and VSM respectively. We observed a vast change in the structural behavior and the magnetic properties of the prepared samples. X-ray diffraction studies revealed that the resultant samples had single phase with different grain sizes from 23±5 nm to 16±5 nm, which was understood by observing the growth of the grains through heat released from the combustion reaction. FE-SEM analysis showed high porosity with heterogeneous distribution of the pore size based on the adiabatic temperature and EPMA analysis, which confirmed the elemental compositions of the prepared samples. The saturation magnetization values measured at room temperature, employing vibrating sample magnetometer (VSM) decreased gradually from 50 to 34 emu/g when the ignition temperature was increased from 243 °C to 400 °C. Some of Fe ions on the B sites moved periodically to the A sites because of quenching treatment. The presence of Fe{sup 2+} ions in the existing ferrite structure ruled the magnetic behavior of the sample, as confirmed by the Mössbauer analysis. - Highlights: • CoFe{sub 2}O{sub 4} magnetic nanoparticles were prepared by MILD combustion technique. • Structural behavior and magnetic properties were changed by ignition temperature. • Formation of ferrite complex was confirmed by using FT-IR spectroscopy. • FE-SEM image confirmed the combustion nature by exhibiting the pores and voids. • The cationic distributions were investigated by the Mössbauer analysis.

  8. Mercury speciation in air-coal and oxy-coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Duan, Yufeng; Mao, Yongqiu [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    To study the effect of air-coal and oxy-coal combustion on mercury emission, Xuzhou bituminous coal was burnt in a 6 kWth fluidized bed at 800 and 850 C in four atmospheres: air, 21%O{sub 2}/79%CO{sub 2}, 30%O{sub 2}/70%CO{sub 2}, 40%O{sub 2}/60%CO{sub 2} analysed with an online flue gas analyzer. Ontario Hydro method (OHM) was employed to measure mercury speciation in flue gas. The result indicated that more elemental mercury and oxidized mercury are released when burned in O{sub 2}/CO{sub 2} atmosphere than in air at 800 C, while the situation is just opposite, when coal was burnt at 850 C, less Hg{sup 0} and Hg{sup 2+} in O{sub 2}/CO{sub 2} atmosphere than in air. The concentration of Hg{sup 0} rises as temperature increases both in the conditions of the air combustion and oxy-coal combustion, but the concentration of Hg{sup 2+} increases with the increase of temperature only in the condition of air combustion and decreases in the oxy-coal combustion. With the increase of the oxygen concentration which is in the range of 21-40%, the concentrations of Hg{sup 0} and Hg{sup 2+} decrease first and then increase. When excess air coefficient increases, the oxygen content is higher and the vaporization rate of Hg{sup 0} and Hg{sup 2+} decrease.

  9. The IFP and the CO{sub 2}; L'IFP et le CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The IFP (french petroleum institute) developed research programs on the CO{sub 2} emissions decrease. This colloquium presents the IFP research programs in the domain the greenhouse effect fight (regulations framework implementation, the European Union actions); the carbon dioxide emissions fight (motors combustion improvement, the alternative fuels) and the carbon dioxide capture storage. (A.L.B.)

  10. The reduction of air pollution by improved combustion

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, S.W. [Pennsylvania Univ., Chemical Engineering Dept., Philadelphia, PA (United States)

    1997-12-31

    The contributions of combustion to air pollution and possible remedies are discussed. Control and reduction of air pollution from combustion is more feasible than from other sources because of its discrete localization. The gaseous products of combustion inevitably include H{sub 2}O and CO{sub 2}, NO and/or NO{sub 2} and may include N{sub 2}O, SO{sub 2}, SO{sub 3} and unburned and partially burned hydrocarbons. Soot, ash and other dispersed solids may also be present, but are not considered herein. Unburned and partially burned hydrocarbons are prima facie evidence of poor mechanics of combustion and should not be tolerated. On the other hand, NO{sub x}, SO{sub 2} and SO{sub 3} are unavoidable if the fuel contains nitrogen and sulfur. The best remedy in this latter case is to remove these species from the fuel. Otherwise their products of combustion must be removed by absorption, adsorption or reaction. NO{sub x} from the fixation of N{sub 2} in the air and CO may be minimized by advanced techniques of combustion. One such method is described in some detail. If CO{sub 2} must be removed this can be accomplished by absorption, adsorption or reaction, but precooling is necessary and the quantity is an order of magnitude greater than that of any of the other pollutants. (Author)

  11. Cyclic carbonation calcination studies of limestone and dolomite for CO{sub 2} separation from combustion flue gases - article no. 011801

    Energy Technology Data Exchange (ETDEWEB)

    Senthoorselvan, S.; Gleis, S.; Hartmut, S.; Yrjas, P.; Hupa, M. [TUM, Garching (Germany)

    2009-01-15

    Naturally occurring limestone and dolomite samples, originating from different geographical locations, were tested as potential sorbents for carbonation/calcination based CO{sub 2} capture from combustion flue gases. Samples have been studied in a thermogravimetric analyzer under simulated flue gas conditions at three calcination temperatures, viz., 750{sup o}C, 875{sup o}C, and 930{sup o}C for four carbonation calcination reaction (CCR) cycles. The dolomite sample exhibited the highest rate of carbonation than the tested limestones. At the third cycle, its CO{sub 2} capture capacity per kilogram of the sample was nearly equal to that of Gotland, the highest reacting limestone tested. At the fourth cycle it surpassed Gotland, despite the fact that the CaCO{sub 3} content of the Sibbo dolomite was only 2/3 of that of the Gotland. Decay coefficients were calculated by a curve fitting exercise and its value is lowest for the Sibbo dolomite. That means, most probably its capture capacity per kilogram of the sample would remain higher well beyond the fourth cycle. There was a strong correlation between the calcination temperature, the specific surface area of the calcined samples, and the degree of carbonation. It was observed that the higher the calcination temperature, the lower the sorbent reactivity. For a given limestone/dolomite sample, sorbents CO{sub 2} capture capacity depended on the number of CCR cycles and the calcination temperature. According to the equilibrium thermodynamics, the CO{sub 2} partial pressure in the calciner should be lowered to lower the calcination temperature. This can be achieved by additional steam supply into the calciner. Steam could then be condensed in an external condenser to single out the CO{sub 2} stream from the exit gas mixture of the calciner. A calciner design based on this concept is illustrated.

  12. LIEKKI 2 - Combustion and gasification research programme 1993- 1998. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M [ed.

    1999-12-31

    The six-year Combustion and Gasification Research Programme LIEKKI 2 (1993-1998) was oriented towards research serving the development of energy production technologies based on combustion and gasification. The programme was divided into six research areas: 1. Modelling of the furnace processes (39 projects); 2. Chemistry of gaseous emission components (28); 3. Particle behaviour, ash, aerosols (42); 4. New combustion and gasification technologies (27); 5. Black liquor (33) and 6. Conventional combustion technologies, waste incineration (19). The main aim of the research has been to develop new, more efficient and environmentally friendly techniques. The development of conventional combustion technology has also been an important part of the programme. Another important goal has been to maintain and develop maintain the competence of the research organisations in the combustion area and to intensify their collaboration. Concerning its research contents and its objectives LIEKKI 2, like its forerunner, has not been fuel-specific. The programme has investigated the thermal conversion of oil, gas, black liquor, and coal as well as that of peat, biofuels, and various waste materials, and it has further advanced the know-how concerning the utilisation of these fuels. This approach differs from the usual fuel-specific differentiation, which, for instance, IEA (International Energy Agency) and EU have applied in their research activities. This approach seems in retrospect to have been the right choice. It has been appropriate to stimulate co-operation between parties who would not seek co-operation spontaneously. One example of this is the development of a steelmaking process by a Finnish steel manufacturer under the LIEKKI programme. The programme has also provided synergetic advantages to the development of the recovery boiler processes of the pulp industry. Assessing the impact of the programme is a matter of many facets. The six-year research work and a total

  13. LIEKKI 2 - Combustion and gasification research programme 1993- 1998. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. [ed.

    1998-12-31

    The six-year Combustion and Gasification Research Programme LIEKKI 2 (1993-1998) was oriented towards research serving the development of energy production technologies based on combustion and gasification. The programme was divided into six research areas: 1. Modelling of the furnace processes (39 projects); 2. Chemistry of gaseous emission components (28); 3. Particle behaviour, ash, aerosols (42); 4. New combustion and gasification technologies (27); 5. Black liquor (33) and 6. Conventional combustion technologies, waste incineration (19). The main aim of the research has been to develop new, more efficient and environmentally friendly techniques. The development of conventional combustion technology has also been an important part of the programme. Another important goal has been to maintain and develop maintain the competence of the research organisations in the combustion area and to intensify their collaboration. Concerning its research contents and its objectives LIEKKI 2, like its forerunner, has not been fuel-specific. The programme has investigated the thermal conversion of oil, gas, black liquor, and coal as well as that of peat, biofuels, and various waste materials, and it has further advanced the know-how concerning the utilisation of these fuels. This approach differs from the usual fuel-specific differentiation, which, for instance, IEA (International Energy Agency) and EU have applied in their research activities. This approach seems in retrospect to have been the right choice. It has been appropriate to stimulate co-operation between parties who would not seek co-operation spontaneously. One example of this is the development of a steelmaking process by a Finnish steel manufacturer under the LIEKKI programme. The programme has also provided synergetic advantages to the development of the recovery boiler processes of the pulp industry. Assessing the impact of the programme is a matter of many facets. The six-year research work and a total

  14. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    Science.gov (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  15. Comparative Environmental Life Cycle Assessment of Oxyfuel and Post-combustion Capture with MEA and AMP/PZ - Case Studies from the EDDiCCUT Project

    NARCIS (Netherlands)

    Oreggioni, Gabriel D.; Singh, Bhawna; Hung, Christine Roxanne; Van Der Spek, Mijndert W.; Skagestad, Ragnhild; Eldrup, Nils Henrik; Ramirez, Andrea; Strømman, Anders Hammer

    2017-01-01

    This work presents the results of a comparative life cycle assessment study for three CCS technologies applied to a coal-fired power plant: post-combustion capture with MEA, post combustion capture with AMP/PZ and cryogenic oxy-fuel. This study has been performed in the context of the EDDiCCUT

  16. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm

    KAUST Repository

    Ren, Wei; Farooq, Aamir; Davidson, David Frank; Hanson, Ronald Kenneth

    2012-01-01

    A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′ = 1 ← v″ = 0) and (v′ = 2 ← v″ = 1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100-2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″ = 0, R(12) and v″ = 1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″ = 0, P(20) and v″ = 1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies. © 2012 Springer-Verlag.

  17. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm

    KAUST Repository

    Ren, Wei

    2012-05-25

    A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′ = 1 ← v″ = 0) and (v′ = 2 ← v″ = 1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100-2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″ = 0, R(12) and v″ = 1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″ = 0, P(20) and v″ = 1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies. © 2012 Springer-Verlag.

  18. Infrared emissions in MgSrAl{sub 10}O{sub 17}:Er{sup 3+} phosphor co-doped with Yb{sup 3+}/Ba{sup 2+}/Ca{sup 2+} obtained by solution combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [Physical Chemistry, Institute for Pure and Applied Chemistry and Center of Interface Science, University of Oldenburg, 26129 Oldenburg (Germany); Kumar Rai, Vineet [Department of Applied Physics, Indian School of Mines, Dhanbad 826 004 (India); Venkatramu, V. [Department of Physics, Yogi Vemana University, Kadapa 516 003 (India); Chakradhar, R.P.S. [CSIR-National Aerospace, Bangalore 560 017 (India); Hwan Kim, Sang [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2013-02-15

    An intense infrared emitting MgSrAl{sub 10}O{sub 17}:Er{sup 3+} phosphor co-doped with Yb{sup 3+}, Ba{sup 2+} and Ca{sup 2+} ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl{sub 10}O{sub 17} phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed upon excitation at 980 nm. Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: Black-Right-Pointing-Pointer The hexagonal phase of MgSrAl{sub 10}O{sub 17} could be obtained by the low temperature combustion method. Black-Right-Pointing-Pointer The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed. Black-Right-Pointing-Pointer Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} were reported.

  19. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants

    International Nuclear Information System (INIS)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-01-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

  20. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2003-01-01

    The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder...... temperature and quench-cooling of the flame tend to increase the dispersion of the phases and the specific surface area of the particles. Properties of both the ternary composition, the three binary compositions and the pure oxides are discussed. The calculation of simultaneous phase and chemical equilibrium...

  1. Preparation of cobalt-zinc ferrite (Co0.8Zn0.2Fe2O4) nanopowder via combustion method and investigation of its magnetic properties

    International Nuclear Information System (INIS)

    Yousefi, M.H.; Manouchehri, S.; Arab, A.; Mozaffari, M.; Amiri, Gh. R.; Amighian, J.

    2010-01-01

    Research highlights: → Cobalt-zinc ferrite was prepared by combustion method. → Properties of the sample were characterized by several techniques. → Curie temperature was determined to be 350 o C. -- Abstract: Cobalt-zinc ferrite (Co 0.8 Zn 0.2 Fe 2 O 4 ) was prepared by combustion method, using cobalt, zinc and iron nitrates. The crystallinity of the as-burnt powder was developed by annealing at 700 o C. Crystalline phase was investigated by XRD. Using Williamson-Hall method, the average crystallite sizes for nanoparticles were determined to be about 27 nm before and 37 nm after annealing, and residual stresses for annealed particles were omitted. The morphology of the annealed sample was investigated by TEM and the mean particle size was determined to be about 30 nm. The final stoichiometry of the sample after annealing showed good agreement with the initial stoichiometry using atomic absorption spectrometry. Magnetic properties of the annealed sample such as saturation magnetization, remanence magnetization, and coercivity measured at room temperature were 70 emu/g, 14 emu/g, and 270 Oe, respectively. The Curie temperature of the sample was determined to be 350 o C using AC-susceptibility technique.

  2. Novel CO2 Separation and Methanation for Oxygen and Fuel Production, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes a novel efficient, compact, and lightweight MicrolithREG-based CO2 separator and methanation reactor to separate CO2 from...

  3. Spatial Disaggregation of CO2 Emissions for the State of California

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; de la Rue du Can, Stephane; Wenzel, Tom; Fischer, Marc

    2008-06-11

    This report allocates California's 2004 statewide carbon dioxide (CO2) emissions from fuel combustion to the 58 counties in the state. The total emissions are allocated to counties using several different methods, based on the availability of data for each sector. Data on natural gas use in all sectors are available by county. Fuel consumption by power and combined heat and power generation plants is available for individual plants. Bottom-up models were used to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft. All other sources of CO2 emissions were allocated to counties based on surrogates for activity. CO2 emissions by sector were estimated for each county, as well as for the South Coast Air Basin. It is important to note that emissions from some sources, notably electricity generation, were allocated to counties based on where the emissions were generated, rather than where the electricity was actually consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported from other states and international marine bunker fuels, were not included in the analysis. California Air Resource Board (CARB) does not include CO2 emissions from interstate and international air travel, in the official California greenhouse gas (GHG) inventory, so those emissions were allocated to counties for informational purposes only. Los Angeles County is responsible for by far the largest CO2 emissions from combustion in the state: 83 Million metric tonnes (Mt), or 24percent of total CO2 emissions in California, more than twice that of the next county (Kern, with 38 Mt, or 11percent of statewide emissions). The South Coast Air Basin accounts for 122 MtCO2, or 35percent of all emissions from fuel combustion in the state. The distribution of emissions by sector varies considerably by county, with on-road motor vehicles dominating most counties, but large stationary sources and rail travel

  4. Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation.

    Science.gov (United States)

    Buyukada, Musa

    2016-09-01

    Co-combustion of coal and peanut hull (PH) were investigated using artificial neural networks (ANN), particle swarm optimization, and Monte Carlo simulation as a function of blend ratio, heating rate, and temperature. The best prediction was reached by ANN61 multi-layer perception model with a R(2) of 0.99994. Blend ratio of 90 to 10 (PH to coal, wt%), temperature of 305°C, and heating rate of 49°Cmin(-1) were determined as the optimum input values and yield of 87.4% was obtained under PSO optimized conditions. The validation experiments resulted in yields of 87.5%±0.2 after three replications. Monte Carlo simulations were used for the probabilistic assessments of stochastic variability and uncertainty associated with explanatory variables of co-combustion process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Study on Characteristics of Co-firing Ammonia/Methane Fuels under Oxygen Enriched Combustion Conditions

    Science.gov (United States)

    Xiao, Hua; Wang, Zhaolin; Valera-Medina, Agustin; Bowen, Philip J.

    2018-06-01

    Having a background of utilising ammonia as an alternative fuel for power generation, exploring the feasibility of co-firing ammonia with methane is proposed to use ammonia to substitute conventional natural gas. However, improvement of the combustion of such fuels can be achieved using conditions that enable an increase of oxygenation, thus fomenting the combustion process of a slower reactive molecule as ammonia. Therefore, the present study looks at oxygen enriched combustion technologies, a proposed concept to improve the performance of ammonia/methane combustion. To investigate the characteristics of ammonia/methane combustion under oxygen enriched conditions, adiabatic burning velocity and burner stabilized laminar flame emissions were studied. Simulation results show that the oxygen enriched method can help to significantly enhance the propagation of ammonia/methane combustion without changing the emission level, which would be quite promising for the design of systems using this fuel for practical applications. Furthermore, to produce low computational-cost flame chemistry for detailed numerical analyses for future combustion studies, three reduced combustion mechanisms of the well-known Konnov's mechanism were compared in ammonia/methane flame simulations under practical gas turbine combustor conditions. Results show that the reduced reaction mechanisms can provide good results for further analyses of oxygen enriched combustion of ammonia/methane. The results obtained in this study also allow gas turbine designers and modellers to choose the most suitable mechanism for further combustion studies and development.

  6. Green Synthesis Methods of CoFe_2O_4 and Ag-CoFe_2O_4 Nanoparticles Using Hibiscus Extracts and Their Antimicrobial Potential

    International Nuclear Information System (INIS)

    Gingasu, D.; Mindru, I.; Patron, L.; Caleron-Moreno, J.M.; Mocioiu, O.C.; Preda, S.; Stanica, N.; Nita, S.; Dobre, N.; Popa, M.; Gradisteanu, G.; Chifiriuc, M. C.

    2016-01-01

    The cobalt ferrite (CoFe_2O_4) and silver-cobalt ferrite (Ag-CoFe_2O_4) nanoparticles were obtained through self-combustion and wet ferritization methods using aqueous extracts of Hibiscus rosa-sinensis flower and leaf. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and magnetic measurements were used for the characterization of the obtained oxide powders. The antimicrobial activity of the cobalt ferrite and silver-cobalt ferrite nanoparticles against Gram-positive and Gram-negative bacteria, as well as fungal strains, was investigated by qualitative and quantitative assays. The most active proved to be the Ag-CoFe_2O_4 nanoparticles, particularly those obtained through self-combustion using hibiscus leaf extract, which exhibited very low minimal inhibitory concentration values (0.031-0.062 mg/ml) against all tested microbial strains, suggesting their potential for the development of novel antimicrobial agents.

  7. Green Synthesis Methods of CoFe2O4 and Ag-CoFe2O4 Nanoparticles Using Hibiscus Extracts and Their Antimicrobial Potential

    Directory of Open Access Journals (Sweden)

    Dana Gingasu

    2016-01-01

    Full Text Available The cobalt ferrite (CoFe2O4 and silver-cobalt ferrite (Ag-CoFe2O4 nanoparticles were obtained through self-combustion and wet ferritization methods using aqueous extracts of Hibiscus rosa-sinensis flower and leaf. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and magnetic measurements were used for the characterization of the obtained oxide powders. The antimicrobial activity of the cobalt ferrite and silver-cobalt ferrite nanoparticles against Gram-positive and Gram-negative bacteria, as well as fungal strains, was investigated by qualitative and quantitative assays. The most active proved to be the Ag-CoFe2O4 nanoparticles, particularly those obtained through self-combustion using hibiscus leaf extract, which exhibited very low minimal inhibitory concentration values (0.031–0.062 mg/mL against all tested microbial strains, suggesting their potential for the development of novel antimicrobial agents.

  8. Influence of pH and fuels on the combustion synthesis, structural, morphological, electrical and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugavani, A. [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Selvan, R.Kalai, E-mail: selvankram@buc.edu.in [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Layek, Samar [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Vasylechko, Leonid [Semiconductor Electronics Department, Lviv Polytechnic National University, 12 Bandera Street, Lviv 79013 (Ukraine); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi 630 004 (India)

    2015-11-15

    Nanocrystalline spinel cobalt ferrite particles are synthesized by simple combustion method using aspartic acid and glycine as fuels. The single phase cubic structure of CoFe{sub 2}O{sub 4} is revealed through X-ray diffraction analysis (XRD). Further the Rietveld refinement confirms the formation of inverse spinel structure of CoFe{sub 2}O{sub 4}. The characteristic functional groups of Co–O and Fe–O are identified from Fourier Transform Infrared (FT-IR) analysis. Uniform distribution of of nearly spherical particles with the size range of 40–80 nm is identified through field emission scanning electron microscope (FESEM) images. The calculated DC conductivity is 1.469 × 10{sup −7} and 2.214 × 10{sup −8} S cm{sup −1}, for CoFe{sub 2}O{sub 4} synthesized using aspartic acid and glycine, respectively. The dielectric behavior obeys the Maxwell–Wagner interfacial polarization. The ferromagnetic behavior of CoFe{sub 2}O{sub 4} is identified using VSM analysis and the calculated coercivity is 27 Oe and saturation magnetization is 68 emu/g.

  9. Use and co-combustion of straw in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, J S [SK Power, Ballerup (Denmark)

    1997-12-31

    Coal has in more decades been the backbone of the Danish energy production. As a consequence of a political wish to utilize domestic fuel and reduce the massive use of coal and the CO{sub 2} emission, straw has since 1989 been used in Denmark at small-scale combined heat and power plants. All straw-fired combined heat and power plants in Denmark are owned by the power stations. Furthermore some district heating plants owned by the municipalities, consumers or privately owned, also use straw as a fuel, as in the middle of the eighties it was prohibited to use coal as fuel in district heating plants. Different rules of subsidies and duties made natural gas or biomass the most competitive fuel for the district heating plants. For various other reasons there are also some oil-fired district heating plants in operation. Today five straw-fired combined heat and power plants in Denmark are in commercial operation. Three of these plants exclusively use straw as a fuel, one uses both straw, wood chips and natural gas, and one straw and coal. These five combined heat and power plants, having a total annual consumption of straw of approx. 200 000 tonnes, supply district heating to five medium-sized towns. On 14 June 1993 an agreement was made in the Danish Parliament ordering the power stations to reach an annual volume input of 1.2 mill. tonnes of straw and 0.2 mill. tonnes of wood chips in year 2000. Therefore two new plants are under construction and co-combustion with straw is being installed at an existing coal-fired power station. In addition, two large plants are under consideration. With the two plants under construction and with the co-combustion plant, the straw consumption is expected to increase to 430 000 tons of straw per year. These two plants will start operations in 1995 and 1997 respectively. All the operating straw-fired combined heat and power stations show an economic loss. Besides the price of fuel, this is due to the efficiency of the plants, which with

  10. Use and co-combustion of straw in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, J.S. [SK Power, Ballerup (Denmark)

    1996-12-31

    Coal has in more decades been the backbone of the Danish energy production. As a consequence of a political wish to utilize domestic fuel and reduce the massive use of coal and the CO{sub 2} emission, straw has since 1989 been used in Denmark at small-scale combined heat and power plants. All straw-fired combined heat and power plants in Denmark are owned by the power stations. Furthermore some district heating plants owned by the municipalities, consumers or privately owned, also use straw as a fuel, as in the middle of the eighties it was prohibited to use coal as fuel in district heating plants. Different rules of subsidies and duties made natural gas or biomass the most competitive fuel for the district heating plants. For various other reasons there are also some oil-fired district heating plants in operation. Today five straw-fired combined heat and power plants in Denmark are in commercial operation. Three of these plants exclusively use straw as a fuel, one uses both straw, wood chips and natural gas, and one straw and coal. These five combined heat and power plants, having a total annual consumption of straw of approx. 200 000 tonnes, supply district heating to five medium-sized towns. On 14 June 1993 an agreement was made in the Danish Parliament ordering the power stations to reach an annual volume input of 1.2 mill. tonnes of straw and 0.2 mill. tonnes of wood chips in year 2000. Therefore two new plants are under construction and co-combustion with straw is being installed at an existing coal-fired power station. In addition, two large plants are under consideration. With the two plants under construction and with the co-combustion plant, the straw consumption is expected to increase to 430 000 tons of straw per year. These two plants will start operations in 1995 and 1997 respectively. All the operating straw-fired combined heat and power stations show an economic loss. Besides the price of fuel, this is due to the efficiency of the plants, which with

  11. Enhancement of exergy efficiency in combustion systems using flameless mode

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Exergy efficiency in flameless combustion mode is 13% more than conventional combustion. • The maximum exergy efficiency in flameless combustion mode is achieved when oxidizer contains 10% oxygen. • Exergy destruction of flameless combustion is maximized when CO 2 is used for dilution of oxidizer. - Abstract: An exergitic-based analysis of methane (CH 4 ) conventional and flameless combustion in a lab-scale furnace is performed to determine the rate of pollutant formation and the effective potential of a given amount of fuel in the various combustion modes. The effects of inlet air temperature on exergy efficiency and pollutant formation of conventional combustion in various equivalence ratios are analyzed. The rate of exergy destruction in different conditions of flameless combustion (various equivalence ratios, oxygen concentration in the oxidizer and the effects of diluent) are computed using three-dimensional (3D) computational fluid dynamic (CFD). Fuel consumption reduction and exergy efficiency augmentation are the main positive consequences of using preheated air temperature in conventional combustion, however pollutants especially NO x formation increases dramatically. Low and moderate temperature inside the chamber conducts the flameless combustion system to low level pollutant formation. Fuel consumption and exergy destruction reduce drastically in flameless mode in comparison with conventional combustion. Exergy efficiency of conventional and flameless mode is 75% and 88% respectively in stoichiometric combustion. When CO 2 is used for dilution of oxidizer, chemical exergy increases due to high CO 2 concentration in the combustion products and exergy efficiency reduces around 2% compared to dilution with nitrogen (N 2 ). Since the rate of irreversibilities in combustion systems is very high in combined heat and power (CHP) generation and other industries, application of flameless combustion could be effective in terms of pollutant

  12. Reactivity of micas and cap-rock in wet supercritical CO_2 with SO_2 and O_2 at CO_2 storage conditions

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Dawson, Grant K.W.; Law, Alison C.K.; Biddle, Dean; Golding, Suzanne D.

    2016-01-01

    Seal or cap-rock integrity is a safety issue during geological carbon dioxide capture and storage (CCS). Industrial impurities such as SO_2, O_2, and NOx, may be present in CO_2 streams from coal combustion sources. SO_2 and O_2 have been shown recently to influence rock reactivity when dissolved in formation water. Buoyant water-saturated supercritical CO_2 fluid may also come into contact with the base of cap-rock after CO_2 injection. Supercritical fluid-rock reactions have the potential to result in corrosion of reactive minerals in rock, with impurity gases additionally present there is the potential for enhanced reactivity but also favourable mineral precipitation. The first observation of mineral dissolution and precipitation on phyllosilicates and CO_2 storage cap-rock (siliciclastic reservoir) core during water-saturated supercritical CO_2 reactions with industrial impurities SO_2 and O_2 at simulated reservoir conditions is presented. Phyllosilicates (biotite, phlogopite and muscovite) were reacted in contact with a water-saturated supercritical CO_2 containing SO_2, or SO_2 and O_2, and were also immersed in the gas-saturated bulk water. Secondary precipitated sulfate minerals were formed on mineral surfaces concentrated at sheet edges. SO_2 dissolution and oxidation resulted in solution pH decreasing to 0.74 through sulfuric acid formation. Phyllosilicate dissolution released elements to solution with ∼50% Fe mobilized. Geochemical modelling was in good agreement with experimental water chemistry. New minerals nontronite (smectite), hematite, jarosite and goethite were saturated in models. A cap-rock core siltstone sample from the Surat Basin, Australia, was also reacted in water-saturated supercritical CO_2 containing SO_2 or in pure supercritical CO_2. In the presence of SO_2, siderite and ankerite were corroded, and Fe-chlorite altered by the leaching of mainly Fe and Al. Corrosion of micas in the cap-rock was however not observed as the pH was

  13. Emission characteristics of kerosene-air spray combustion with plasma assistance

    Directory of Open Access Journals (Sweden)

    Xingjian Liu

    2015-09-01

    Full Text Available A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.

  14. Shea meal and cotton stalk as potential fuels for co-combustion with coal.

    Science.gov (United States)

    Munir, S; Nimmo, W; Gibbs, B M

    2010-10-01

    The efficient management of waste biomass is an important environmental problem in agricultural countries. Often land-fill is the main disposal route with ramifications including CH(4) release having 21 times greater global warming potential per molecule than CO(2). Biomasses are considered to be CO(2)-neutral fuels when combusted. Moreover, they are renewable and covered by the renewable obligation scheme and eligible for certificates in the UK. The overall objective of the investigation is to assess the performance of selected biomass and coal co-firing under two different modes of operation, air-staging and fuel-staging with the benefit of reduced-NO(x) and SO(2) emissions in power plant. The biomasses chosen for the study, shea meal (SM) and cotton stalk (CS) have very different cellulose/lignin compositions and different reported thermal behaviour. A series of experiments have been carried out in a 20 kW, down fired combustor using coal, shea meal-coal and cotton stalk-coal blends under un-staged, air-staged and fuel-staged co-combustion configurations. For air-staging, an optimum value of primary zone stoichiometry SR(1)=0.9 was found. Keeping it fixed, the shea meal and cotton stalk content in the coal-biomass blends was set to 5%, 10% and 15% on thermal basis. NO reductions of 51% and 60% were achieved using SM and CS, respectively, with an optimum thermal biomass blending ratio (BBR) of 10%. The results obtained were compared with un-staged and air-staged results for coal without the addition of biomass. Similarly for fuel-staging, keeping the length of the reburn and burnout zone fixed, SM and CS were evaluated as reductive fuel using different reburn fuel fractions (R(ff)) of 5%, 10%, 15% and 20%. NO reductions of 83% and 84% were obtained with an optimum R(ff) of 15% with an optimum reburn zone stoichiometry of SR(2)=0.8 for both SM and CS, respectively. SO(2) reduction and char burnout efficiency were also evaluated. It was found that addition of

  15. The effect of sulfur on the inhibition of PCDD/F formation during co-combustion of coal and solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Palladas, A. [Laboratory of Environmental and Energy Processes, Thermi-Thessaloniki (Greece). Chemical Process Engineering Research Institute; Samaras, P. [TEI of Western Macedonia, Kozani (Greece). Dept. of Environmental Technology; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki (Greece). Dept. of Chemical Engineering

    2004-09-15

    Co-combustion of solid wastes with coal is a promising technique used to reduce landfilled wastes, utilizing waste the energy content. However, solid wastes often contain chlorine and other substances, which upon combustion may result in the production of extremely toxic compounds like polychlorinated dibenzo-p-dioxins and dibenzofurans. Various compounds have been proposed for their inhibition ability of PCDD/F formation, including sulphuric and nitrogen containing substances. Sulfur compounds may form some kind of complexes with metal species, reducing thus their ability for catalysing the PCDD/F formation pathways. Sulfur inhibitory capacity has been attributed to reaction with copper catalytic sites, altering their form and presumably their ability to produce Cl{sub 2} through the Deacon process reaction. Another second postulated role of sulfur is to undergo homogeneous reactions, converting the primary chlorinating agent, Cl{sub 2}, into a form (HCl) less likely to undergo aromatic substitution reactions forming PCDD/F precursors. The objectives of this work were the measurement of PCDD/F emissions during co-combustion of different fuel mixtures, and the study of the effect of sulfur addition to the fuel on PCDD/F formation.

  16. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of various...... coal/biomass blends in a pilot scale pf-boiler. The produced data provide information on the melting of the ash and its flow characteristics, as a function of temperature, which may be used to modify the temperature profile of the boiler in order to avoid slagging. Straw co-firing lowers the ash...... viscosity leading to higher stickiness of the ash particles. Wood co-firing has only minor effects, due to the composition of wood ash and the low percentage of wood in the coal/biomass blend....

  17. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements.

    Science.gov (United States)

    Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun

    2013-03-01

    The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Measurements of Gasification Characteristics of Coal and Char in CO2-Rich Gas Flow by TG-DTA

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-01-01

    Full Text Available Pyrolysis, combustion, and gasification properties of pulverized coal and char in CO2-rich gas flow were investigated by using gravimetric-differential thermal analysis (TG-DTA with changing O2%, heating temperature gradient, and flow rate of CO2-rich gases provided. Together with TG-DTA, flue gas generated from the heated coal, such as CO, CO2, and hydrocarbons (HCs, was analyzed simultaneously on the heating process. The optimum O2% in CO2-rich gas for combustion and gasification of coal or char was discussed by analyzing flue gas with changing O2 from 0 to 5%. The experimental results indicate that O2% has an especially large effect on carbon oxidation at temperature less than 1100°C, and lower O2 concentration promotes gasification reaction by producing CO gas over 1100°C in temperature. The TG-DTA results with gas analyses have presented basic reference data that show the effects of O2 concentration and heating rate on coal physical and chemical behaviors for the expected technologies on coal gasification in CO2-rich gas and oxygen combustion and underground coal gasification.

  19. Alstom's development of advanced CFB based technologies for CO{sub 2} mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; David G. Turek; Gregory N. Liljedahl; Herbert E. Andrus; John H. Chiu; Jean-Xavier Morin [Alstom Power Inc., Windsor, CT (United States)

    2005-07-01

    ALSTOM Power Inc. (ALSTOM) is actively working to develop advanced circulating fluidized bed (CFB) based technologies for the purpose of CO{sub 2} mitigation. Two of the more promising ideas currently being investigated at ALSTOM are the oxygen-fired CFB and chemical looping technologies. The oxygen-fired CFB is a near-term CO{sub 2} capture technology, which uses pure oxygen tempered with recirculated flue gas to combust the fuel. The oxygen for combustion may be supplied by a cryogenic air separation unit, or in the future by more efficient processes such as oxygen transport membrane. This produces a flue gas stream comprising mostly CO{sub 2} and water vapor. Simple condensation of most of the water vapor leaves a CO{sub 2}-rich product stream which can be simply compressed for sequestration or purified for use in enhanced oil recovery or enhanced coal bed methane. Chemical looping is a longer-term development path towards CO{sub 2} mitigation. In ALSTOM's processes, a regenerable solid carrier extracts oxygen from air and transports it for combustion or gasification of the fuel. The chemical looping combustion process produces a high CO{sub 2} flue gas stream (similar to the O{sub 2} fired CFB flue gas stream) and steam for a Rankine cycle. The chemical looping gasification process captures CO{sub 2} in a separate chemical loop and produces hydrogen-rich synthesis gas for use in IGCCs, fuel cells, or for other industrial uses. This paper discusses ALSTOM's latest test work in these areas and the technical, economic and environmental implications of these advanced CFB-based systems. These advanced power generation units can be built from proven fluid bed design features and systems. 6 refs., 15 figs., 6 tabs.

  20. Sulfur Chemistry in Combustion I

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Glarborg, Peter

    2000-01-01

    of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...... process by reaction between SO2 and calcium containing sorbents and the influence on the NOx chemistry will be treated....

  1. MULTIFUNCTIONAL (NOx/CO/O2) SOLID-STATE SENSORS FOR COAL COMBUSTION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2005-03-21

    Sensing properties of a La{sub 2}CuO{sub 4}- and WO{sub 3}-based potentiometric NO{sub x} sensor were investigated both in N{sub 2} and in a simulated exhaust gas. We performed temperature programmed reaction (TPR) and desorption (TPD) experiments to determine the reaction and adsorption characteristics of O{sub 2}, NO{sub x}, CO, CO{sub 2}, and their mixtures on the electrodes, and related the results to sensor performance. The relative responses of the La{sub 2}CuO{sub 4}-based sensor under varied concentrations of NO, NO{sub 2}, CO, CO{sub 2} and O{sub 2} were studied. The results showed a very high sensitivity to CO and NO{sub 2} at 450 C in 3% O{sub 2}, whereas the response to O{sub 2} and CO{sub 2} gases was negligible. The NO response at 400-500 C agreed with the NO adsorption behavior. The high NO{sub 2} sensitivity at 450 C was probably related to heterogeneous catalytic activity of La{sub 2}CuO{sub 4}. The adsorption of NO was not affected by the change of O{sub 2} concentration and thus the sensor showed selective detection of NO over O{sub 2}. However, the NO sensitivity was strongly influenced by the existence of CO, H{sub 2}O, NO{sub 2}, and CO{sub 2}, as the adsorption behavior of NO was influenced by these gases. The WO{sub 3}-based sensor was able to selectively detect NO in the presence of CO{sub 2} in 3% O{sub 2} and at 650 C. The NO sensitivity, however, was affected by the variation of the NO{sub 2}, CO, and H{sub 2}O concentration. No gas-solid reactions were observed using TPR in the NO containing gas mixture, indicating that the NO response was not obtained by the conventionally accepted mixed-potential mechanism. At the same condition the sensor had high sensitivity to {approx}10 ppm NO{sub 2} and selectivity in the presence of CO, CO{sub 2}, and H{sub 2}O, showing it to be applicable to the monitoring of NO{sub 2}. Significantly different sensing properties of NO in simulated exhaust gas suggested the occurrence of gas composition change

  2. Experimental investigation of the oxy-fuel combustion of hard coal in a circulating fluidized-bed combustion; Experimentelle Untersuchung der Oxy-Fuel-Verbrennung von Steinkohle in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Gerrit Arne

    2017-03-16

    The United Nations Framework Convention on Climate Change (UNFCCC) in 1992 first illustrated the social, economic and politic focus being placed on combating climate change caused by anthropogenic greenhouse gases. From there onwards research and development efforts have particularly centred on the reduction of CO{sub 2} emissions in the production of electrical power through the use of carbonaceous fossil fuels. The long-term goal is a conversion to sustainable and CO{sub 2} free means of producing power, utilizing in the main part renewable forms of energy such as solar, wind and hydro power. Currently, such renewable ways of creating electricity only represent a small percentage of global energy production. The technological and economic hurdles that are associated with a substantial increase of renewable energy production have greatly slowed their increased implementation. However, the goal of keeping the atmospheric CO{sub 2} concentration below 450 ppm requires a significantly faster reduction in the amount of greenhouse gas emissions. Therefore, considerations are being given to bridge technologies which would be able to capture and store the CO{sub 2} emissions from fossil fired power plants. These technologies are referred to as CCS (carbon capture and storage). Oxy-fuel combustion, combustion with pure oxygen instead of air, is one of those technologies and forms the focus of investigation of this work. The Institute of Combustion and Power Plant Technology in Stuttgart, Germany, have researched this matter, carrying out combustion experiments in its 150 kW{sub th} circulating fluidized bed pilot facility. The experiments were aimed at investigating the influence of excess oxygen, combustion temperature and inlet oxygen concentration on the combustion process and comparing air to oxy-fuel combustion. These results were compared to the results of fundamental investigations and combustion experiments carried out by other research groups. The relationship

  3. Oxy-fuel combustion of pulverized fuels

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  4. Review of Membrane Oxygen Enrichment for Efficient Combustion

    Science.gov (United States)

    Ariono, Danu; Kusuma Wardani, Anita

    2017-07-01

    Oxygen enrichment from air is a simple way of increasing the efficiency of combustion process, as in oxy-combustion. Oxy-combustion has become one of the most attracting combustion technologies because of its potential to address both pollutant reduction and CO2 capture. In oxy-combustion, the fuel and recycled flue gas are combusted with oxygen enriched air (OEA). By using OEA, many benefits can be obtained, such as increasing available heat, improving ignition characteristics, flue gas reduction, increasing productivity, energy efficiency, turndown ratio, and flame stability. Membrane-based gas separation for OEA production becomes an attractive technology over the conventional technology due to the some advantages, including low capital cost, low energy consumption, compact size, and modularity. A single pass through membrane usually can enrich O2 concentration in the air up to 35% and a 50% concentration can be achieved with a double pass of membrane. The use of OEA in the combustion process eliminates the presence of nitrogen in the flue gas. Hence, the flue gas is mainly composed of CO2 and condensable water that can be easily separated. This paper gives an overview of oxy-combustion with membrane technology for oxygen enrichment process. Special attention is given to OEA production and the effect of OEA to the efficiency of combustion.

  5. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants.

    Science.gov (United States)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-03-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500°C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.

    Science.gov (United States)

    Chen, Chunxiang; Lu, Ziguang; Ma, Xiaoqian; Long, Jun; Peng, Yuning; Hu, Likun; Lu, Quan

    2013-09-01

    Oxy-fuel or O2/CO2 combustion technology was used to investigate the combustion of Chlorella vulgaris by thermogravimetric analysis (TGA). Oxy-fuel combustion occurs in an O2/CO2 atmosphere instead of an O2/N2 atmosphere and offers an alternative method of C. vulgaris preparation for biofuels processing. Our results show that three stages were observed during C. vulgaris combustion and the main combustion process occurred at the second stage. Compared with a 20%O2/80%N2 atmosphere, the mass loss rate at the DTG peaks (Rp) and the average reaction rate (Rv) in a 20%O2/80%CO2 atmosphere was lower, while the ignition temperature (TI) was higher. As oxygen concentration increases in an O2/CO2 atmosphere, Rp, Rv and the apparent activation energy (E) increases, while TI, the final temperature detected as mass stabilization (Tf) and the residue mass (Mr) decreases; As the heating rate (β) increases, TI, Tf and Rp increase, while Mr decreases. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    International Nuclear Information System (INIS)

    George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Tomasz Wiltowski; Tom Miles; Bruce Springsteen

    2002-01-01

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applications and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished

  8. Influence of post-Tehuano oceanographic processes in the dynamics of the CO2 system in the Gulf of Tehuantepec, Mexico

    Science.gov (United States)

    Chapa-Balcorta, Cecilia; Hernandez-Ayon, J. Martin; Durazo, Reginaldo; Beier, Emilio; Alin, Simone R.; López-Pérez, Andrés.

    2015-12-01

    This investigation reports, for the first time, results of CO2 system variables in the Gulf of Tehuantepec, located in the Mexican tropical Pacific. We quantified the post-Tehuano concentration of dissolved inorganic carbon (DIC) and pH (April 2013). These values were used to calculate pCO2, aragonite saturation (ΩAr), and air-sea CO2 fluxes (FCO2). The intense vertical stratification was found to contribute to the biogeochemical processes in surface waters (<70 m). However, in post-Tehuano conditions, high pCO2 (˜1000 µatm) and DIC concentrations (2200 µmol kg-1), as well as low ΩAr (˜1.1) and pH (˜7.5), remain in surface waters for a few days after Tehuano winds have weakened. We identified four oceanographic areas: (a) a highly mixed region due to previous Tehuano events; (b) coastal upwelling in the western region; (c) mesoscale eddies; (d) a poleward surface coastal current. The first three promoted the influence of Subtropical Subsurface Water in the chemistry of surface waters, whereas the coastal current contributed to the horizontal advection of DIC. The calculated CO2 fluxes ranged from -2.3 mmol m-2 d-1 in areas with stratified waters to over 25 mmol m-2 d-1 for mixed areas. Positive values indicate an ocean-to-atmosphere flux. Our findings suggest that the Gulf of Tehuantepec is a major source of CO2 into the atmosphere.

  9. Research concepts to reduce CO2 emissions at technical conditions

    International Nuclear Information System (INIS)

    Geigle, K.P.; Lammel, O.; Kutne, P.; Schutz, H.; Luckerath, R.; Aigner, M.

    2009-01-01

    Carbon dioxide (CO 2 ) emissions are thought to contribute to climate change and therefore, there is a significant motivation for current gas turbine burner development to reduce those emissions. In order to support burner development, the German Aerospace Center (DLR) utilizes high pressure testing in combination with optical diagnostics enabled by good optical access and numerical simulation. This paper discussed 3 primary activities on CO 2 reduction that have been accomplished recently, notably the simulation of burner development based on the flameless oxidation concept, characterization of syngas combustion behaviour and studying parameters influencing oxyfuel combustion. Enhanced FLOX burner development and flameless oxidation were illustrated and an experimental realization of DLR FLOX burner V1 for operation up to 30 bars was discussed. Several experiments were illustrated and outlined. Computational fluid dynamics and other simulation models were presented. It was concluded that optical diagnostics applicable to high pressure combustion and numerical simulation proved to be extremely helpful for design optimization. 14 refs., 9 figs.

  10. Combustion's impact on the global atmosphere

    International Nuclear Information System (INIS)

    Prather, M.J.; Logan, J.A.

    1994-01-01

    The combustion of a hydrocarbon fuel removes molecular oxygen (O 2 ) from the atmosphere and releases equivalent amounts of water (H 2 ) and carbon dioxide (CO 2 ), almost always with trace amounts of numerous other compounds including hydrocarbon (CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 8 , C 6 H 6 , CH 3 CHO, etc.), carbon monoxide (CO), nitrogen oxides (NO, N 2 O) and reduced nitrogen (NH 3 and HCN), sulfur gases (SO 2 , OCS, CS 2 ), halocarbons (CH 3 Al and CH 3 Br), and particles. A review of the atmospheric budgets of these gases shows that burning of fossil fuels and recent biomass has led to global alterations in the composition of the atmosphere. Combustion is clearly responsible for most of the enhanced greenhouse forcing to date (through CO 2 , tropospheric O 3 , soot) and also some counteracting effects (through SO 2 ). It has had minimal impact on stratospheric O 3 (through CH 3 Cl, CH 3 Br, CH 4 ), but has likely changed the tropospheric oxidant levels (through CO, NO x , NMHC), at least over the northern hemisphere. Most of the important greenhouse gases and tropospheric oxidant gases have significant natural sources, which are not well defined today and may be changing; and thus, quantifying the role of combustion is difficult. 113 refs

  11. Removal of CO2 in closed loop off-gas treatment systems

    International Nuclear Information System (INIS)

    Clemens, M.K.; Nelson, P.A.; Swift, W.M.

    1994-01-01

    A closed loop test system has been installed at Argonne National Laboratory (ANL) to demonstrate off-gas treatment, absorption, and purification systems to be used for incineration and vitrification of hazardous and mixed waste. Closed loop systems can virtually eliminate the potential for release of hazardous or toxic materials to the atmosphere during both normal and upset conditions. In initial tests, a 250,000 Btu/h (75 kW thermal) combustor was operated in an open loop to produce a combustion product gas. The CO 2 in these tests was removed by reaction with a fluidized bed of time to produce CaCO 3 . Subsequently, recirculation system was installed to allow closed loop operation with the addition of oxygen to the recycle stream to support combustion. Commercially marketed technologies for removal of CO 2 can be adapted for use on closed loop incineration systems. The paper also describes the Absorbent Solution Treatment (AST) process, based on modifications to commercially demonstrated gas purification technologies. In this process, a side loop system is added to the main loop for removing CO 2 in scrubbing towers using aqueous-based CO 2 absorbents. The remaining gas is returned to the incinerator with oxygen addition. The absorbent is regenerated by driving off the CO 2 and water vapor, which are released to the atmosphere. Contaminants are either recycled for further treatment or form precipitates which are removed during the purification and regeneration process. There are no direct releases of gases or particulates to the environment. The CO 2 and water vapor go through two changes of state before release, effectively separating these combustion products from contaminants released during incineration. The AST process can accept a wide range of waste streams. The system may be retrofitted to existing Facilities or included in the designs for new installations

  12. PSynthesis, characterization and electromagnetic properties of Zn-substituted CoFe{sub 2}O{sub 4} via sucrose assisted combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Gabal, M.A., E-mail: mgabalabdonada@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Juaid, A.A.; Al-Rashed, S.M.; Hussein, M.A. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Marzouki, F. [Physics Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia)

    2017-03-15

    Nanocrystalline Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} ferrites (0.0≤x≤0.1) were synthesized via simple, economic and environmentally friend sucrose auto-combustion method. An appropriate mechanism for complexation process as well as ferrites formation was suggested and discussed. The detailed structural studies were estimated through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) measurements. The results confirmed the formation of mixed spinel phase with cubic structure and exhibited a gradual decrease in the crystal size from 58 nm to 20 nm by the addition of zinc. Based on the obtained structural parameters, an appropriate cation distribution was suggested and reinforced via electrical and magnetic properties measurements. Hysteresis loops measurements, indicated ferromagnetic characteristics, with hard magnetic properties, for the samples with 0.0≤x≤0.6. The samples with higher Zn-content exhibited paramagnetic properties. The changes in the magnetization and coercivity by the addition of zinc can be discussed in the view of the influence of cationic stoichiometry and magneto-crystalline anisotropy, respectively. The huge decrease in the magnetization value at x≥0.8 suggested a shift from ferromagnetic to paramagnetic characteristics. Ac-conductivity as well as dielectric constant behaviors reinforced this magnetic transition. The obtained Curie transition temperatures (T{sub C}) were gradually shifted to lower temperatures by the addition of zinc. The addition of zinc results in the substitution of Co{sup 2+} ions in the octahedral sites thus, decreases B-B hopping probability, decreases conductivity and consequently increases activation energy. The most predominant conduction mechanisms in the ferromagnetic and paramagnetic regions are expected to be due to electron hoppings between different valence state ions and small positive polaron migration, respectively. - Graphical

  13. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    Science.gov (United States)

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  14. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    Science.gov (United States)

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  15. Carbon monoxide - hydrogen combustion characteristics in severe accident containment conditions. Final report

    International Nuclear Information System (INIS)

    2000-03-01

    Carbon monoxide can be produced in severe accidents from interaction of ex-vessel molten core with concrete. Depending on the particular core-melt scenario, the type of concrete and geometric factors affecting the interaction, the quantities of carbon monoxide produced can vary widely, up to several volume percent in the containment. Carbon monoxide is a combustible gas. The carbon monoxide thus produced is in addition to the hydrogen produced by metal-water reactions and by radiolysis, and represents a possibly significant contribution to the combustible gas inventory in the containment. Assessment of possible accident loads to containment thus requires knowledge of the combustion properties of both CO and H 2 in the containment atmosphere. Extensive studies have been carried out and are still continuing in the nuclear industry to assess the threat of hydrogen in a severe reactor accident. However the contribution of carbon monoxide to the combustion threat has received less attention. Assessment of scenarios involving ex-vessel interactions require additional attention to the potential contribution of carbon monoxide to combustion loads in containment, as well as the effectiveness of mitigation measures designed for hydrogen to effectively deal with particular aspects of carbon monoxide. The topic of core-concrete interactions has been extensively studied; for more complete background on the issue and on the physical/thermal-hydraulics phenomena involved, the reader is referred to Proceedings of CSNI Specialists Meetings (Ritzman, 1987; Alsmeyer, 1992) and a State-of-Art Report (European Commission, 1995). The exact amount of carbon monoxide present in a reactor pit or in various compartments (or rooms) in a containment building is specific to the type of concrete and the accident scenario considered. Generally, concrete containing limestone and sand have a high percentage of CaCO 3 . Appendix A provides an example of results of estimates of CO and CO 2

  16. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy

    Science.gov (United States)

    Sterman, John D.; Siegel, Lori; Rooney-Varga, Juliette N.

    2018-01-01

    Bioenergy is booming as nations seek to cut their greenhouse gas emissions. The European Union declared biofuels to be carbon-neutral, triggering a surge in wood use. But do biofuels actually reduce emissions? A molecule of CO2 emitted today has the same impact on radiative forcing whether it comes from coal or biomass. Biofuels can only reduce atmospheric CO2 over time through post-harvest increases in net primary production (NPP). The climate impact of biofuels therefore depends on CO2 emissions from combustion of biofuels versus fossil fuels, the fate of the harvested land and dynamics of NPP. Here we develop a model for dynamic bioenergy lifecycle analysis. The model tracks carbon stocks and fluxes among the atmosphere, biomass, and soils, is extensible to multiple land types and regions, and runs in ≈1s, enabling rapid, interactive policy design and sensitivity testing. We simulate substitution of wood for coal in power generation, estimating the parameters governing NPP and other fluxes using data for forests in the eastern US and using published estimates for supply chain emissions. Because combustion and processing efficiencies for wood are less than coal, the immediate impact of substituting wood for coal is an increase in atmospheric CO2 relative to coal. The payback time for this carbon debt ranges from 44-104 years after clearcut, depending on forest type—assuming the land remains forest. Surprisingly, replanting hardwood forests with fast-growing pine plantations raises the CO2 impact of wood because the equilibrium carbon density of plantations is lower than natural forests. Further, projected growth in wood harvest for bioenergy would increase atmospheric CO2 for at least a century because new carbon debt continuously exceeds NPP. Assuming biofuels are carbon neutral may worsen irreversible impacts of climate change before benefits accrue. Instead, explicit dynamic models should be used to assess the climate impacts of biofuels.

  17. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....

  18. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...

  19. Effect of Gas Recycling on the Performance of a Moving Bed Temperature-Swing (MBTSA Process for CO2 Capture in a Coal Fired Power Plant Context

    Directory of Open Access Journals (Sweden)

    Giorgia Mondino

    2017-05-01

    Full Text Available A mathematical model of a continuous moving-bed temperature-swing adsorption (MBTSA process for post-combustion CO2 capture in a coal-fired power plant context has been developed. Process simulations have been done using single component isotherms and measured gas diffusion parameters of an activated carbon adsorbent. While a simple process configuration with no gas re-circulation gives quite low capture rate and CO2 purity, 86% and 65%, respectively, more advanced process configurations where some of the captured gas is recirculated to the incoming flue gas drastically increase both the capture rate and CO2 purity, the best configuration reaching capture rate of 86% and CO2 purity of 98%. Further improvements can be achieved by using adsorbents with higher CO2/N2 selectivity and/or higher temperature of the regeneration section.

  20. Co-combustion of coal and non-recyclable paper & plastic waste in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, D.; Abelha, P.; Gulyurtlu, I.; Cabrita, I. [DEECA-INETI, Lisbon (Portugal)

    2002-07-01

    Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials could present serious problems which could render conditions for a stable combustion difficult to achieve. The waste was fed mixed with coal and there was some difference observed in results regarding the combustion efficiency and emissions. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150{degree}C above that of the bed. 6 refs., 8 figs., 8 tabs.

  1. Catalytic Combustion of Low Concentration Methane over Catalysts Prepared from Co/Mg-Mn Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Hongfeng Liu

    2014-01-01

    Full Text Available A series of Co/Mg-Mn mixed oxides were synthesized through thermal decomposition of layered double hydroxides (LDHs precursors. The resulted catalysts were then subjected for catalytic combustion of methane. Experimental results revealed that the Co4.5Mg1.5Mn2LDO catalyst possessed the best performance with the T90=485°C. After being analyzed via XRD, BET-BJH, SEM, H2-TPR, and XPS techniques, it was observed that the addition of cobalt had significantly improved the redox ability of the catalysts whilst certain amount of magnesium was essential to guarantee the catalytic activity. The presence of Mg was helpful to enhance the oxygen mobility and, meanwhile, improved the dispersion of Co and Mn oxides, preventing the surface area loss after calcination.

  2. Analysis of {sup 14}CO{sub 2} trapped {sup 14}C Sorbent, and {sup 14}C and {sup 3}H Radioactivity Determination in Resins and Oils from Nuclear Power Plants Using a Combustion Method

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Gun; Kim, Chang Jong; Choi, Geun Sik; Chung, Kun Ho; Kang, Mun Ja [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Tritium ({sup 3}H, T) generated in the heavy water and C fourteen ({sup 14}C) originated from the graphite moderator or structural materials of the nuclear power plant can cause acute and/or chronic harmful effects by inhalation and ingestion of these radionuclides owing to their binding affinity toward biomolecules and gas phase. {sup 3}H and {sup 14}C radioactivity in ion exchange resins and oils from nuclear power plants were determined by an oxidation (combustion) method. The 0.1 M HNO{sub 3} solution and the {sup 14}C sorbent trapped the {sub 3}H and {sup 14}C respectively in the gas from the combustion of samples. All samples were burned without ash in the combustion system. The reaction of CO{sub 2} and {sup 14}C sorbent was investigated by FT-IR analysis. The study demonstrated the different reaction mechanism according to the CO{sub 2} concentration. In the FT-IR study, it is clearly confirmed that CO{sub 2} from the burned 1 g of sample can be trapped in the {sup 14}C sorbent completely. During the reaction of CO{sub 2} and {sup 14}C sorbent, the temperature and the viscosity of {sup 14}C sorbent increased due to the decrease of enthalpy change and the bonding between each molecules of the sorbent. We expect that our FT-IR study could motivate the development of {sup 14}C sorbent and confirm the {sup 14}C trapping performance of the {sup 14}C sorbent.

  3. Oxyfuel technologies for CO{sub 2} capture : a techno-economic overview

    Energy Technology Data Exchange (ETDEWEB)

    Simmonds, M. [BP Exploration, Sunbury on Thames (United Kingdom); Miracca, I. [Snamprogetti SPA, San Donato Milanese (Italy); Gerdes, K. [ChevronTexaco, Richmond, CA (United States)

    2005-07-01

    This paper reviewed various oxyfuel combustion technologies developed by the CO{sub 2} Capture Project (CCP), a joint partnership of 8 major energy companies. Over the last 3 years, the CCP has conducted several studies focusing on oxyfuel combustion in order to assess the potential application of oxyfuel combustion technologies for heat and power production systems. Studies on oxyfuel firing using cryogenically supplied oxygen and flue gas recycle as a means of moderating combustion temperature have been proven, and are now being used as a baseline case for the retrofitting of process heaters and boilers. The cost of CO{sub 2} capture using cryogenically supplied oxygen is expected to range between $35 to $45 per tonne. Studies examining the application of pure oxygen firing to gas turbines have suggested that significant development is needed by turbine manufacturers to incorporate the use of new materials capable of operating at the high temperatures needed to avoid unacceptable reductions in energy efficiency. A new generation of oxygen production techniques using ceramic membrane technologies may significantly reduce the unit cost of oxygen production, which will in turn have an impact on the cost of CO{sub 2} capture. An additional CCP study suggested that significant markets for exported power are needed to ensure the commercialization of ion transport membranes in the retrofitting of existing heaters and boilers. The most significant research and development effort in oxyfuel technologies to date has centred on the development of a chemical looping combustion (CLC) concept. The CLC technology is based on using mixed metal oxide pellets as a carrier for transferring oxygen from combustion air to the fuel. The technology uses 2 fluidized bed reactors for a continuous circulation of solids. Key risks associated with the technology centre on the production of mixed metal oxide materials which are capable of withstanding repeated oxidation and reduction cycles

  4. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    DEFF Research Database (Denmark)

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik

    This report sums up the findings in PSO-project 010069, “Advanced Diagnostics in Oxy- Fuel Combustion Processes”. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory...... technique was an invaluable tool in the discussion of data obtained by gas analysis, and it allowed for estimation of combustion times in O2/CO2 where the high CO2 concentration prevents the use of the carbon mass balance for that purpose. During the project the data have been presented at a conference......, formed the basis of a publication and it is part of two PhD dissertations. The name of the conference the journal and the dissertations are listed below. - Joint Meeting of the Scandinavian-Nordic and French Sections of the Combustion Institute, Combustion of Char Particles under Oxy-Fuel Conditions...

  5. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

    International Nuclear Information System (INIS)

    Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

    2002-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

  6. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  7. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  8. Investigation of the combustion kinetics and polycyclic aromatic hydrocarbon emissions from polycaprolactone combustion.

    Science.gov (United States)

    Chien, Y C; Yang, S H

    2013-01-01

    Polycaprolactone (PCL) is one of the most attractive biodegradable plastics that has been widely used in medicine and agriculture fields. Because of the large increase in biodegradable plastics usage, the production of waste biodegradable plastics will be increasing dramatically, producing a growing environmental problem. Generally, waste PCL is collected along with municipal solid wastes and then incinerated. This study investigates the combustion kinetics and emission factors of 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) in the PCL combustion. Experimentally, two reactions are involved in the PCL combustion process, possibly resulting in the emission of carbon dioxide, propanal, protonated caprolactone and very small amounts of PAH produced by incomplete combustion. The intermediate products may continuously be oxidized to form CO2. The emission factors for 16 US EPA priority PAHs are n.d. -2.95 microg/g, which are much lower than those of poly lactic acid and other plastics combustion. The conversion of PCL is 100%. Results from this work suggest that combustion is a good choice for the waste PCL disposal.

  9. A rapid microwave-assisted synthesis of a sodium-cadmium metal-organic framework having improved performance as a CO2 adsorbent for CCS.

    Science.gov (United States)

    Palomino Cabello, Carlos; Arean, Carlos Otero; Parra, José B; Ania, Conchi O; Rumori, P; Turnes Palomino, G

    2015-06-07

    We report on a facile and rapid microwave-assisted method for preparing a sodium-cadmium metal-organic framework (having coordinatively unsaturated sodium ions) that considerably shortens the conventional synthesis time from 5 days to 1 hour. The obtained (Na,Cd)-MOF showed an excellent volumetric CO2 adsorption capacity (5.2 mmol cm(-3) at 298 K and 1 bar) and better CO2 adsorption properties than those shown by the same metal-organic framework when synthesized following a more conventional procedure. Moreover, the newly prepared material was found to display high selectivity for adsorption of carbon dioxide over nitrogen, and good regenerability and stability during repeated CO2 adsorption-desorption cycles, which are the required properties for any adsorbent intended for carbon dioxide capture and sequestration (CSS) from the post-combustion flue gas of fossil fuelled power stations.

  10. Low emission turbulent technology for fuel combustion

    International Nuclear Information System (INIS)

    Finker, F. Z.; Kubyshkin, I. B.; Zakharov, B. Yu.; Akhmedov, D. B.; Sobchuk, Ch.

    1997-01-01

    The company 'POLITEKHENERGO' in co-operation and the Russian-Poland firm 'EnergoVIR' have performed investigations for modernization of the current existing boilers. A low emission turbulent technology has been used for the modernization of 10 industrial boilers. The reduction of NO x emissions is based on the following processes: 1) multistage combustion assured by two counter-deviated fluxes; 2) Some of the combustion facilities have an abrupt slope and a reduced air supply which leads to an intense separation of the fuel in the bottom part and a creation of a low-temperature combustion zone where the active restoration of the NO x takes part; 3) The influence of the top high-temperature zone on the NO x formation is small. Thus the 'sandwich' consisting of 'cold' and'hot' combustion layers provides a full rate combustion. This technique permits to: decrease of the NO x and CO x down to the European standard values;increase of the efficiency in 1-2%; obtain a stable coal combustion up to 97-98%; assure the large loading range (30 -100%); modernize and use the old boilers

  11. Combustion synthesis of nanocrystalline ceria (CeO2) powders by a dry route

    International Nuclear Information System (INIS)

    Hwang, C.-C.; Huang, T.-H.; Tsai, J.-S.; Lin, C.-S.; Peng, C.-H.

    2006-01-01

    In this study, ceria (CeO 2 ) powders were synthesized with 50 g per batch via a combustion technique using two kinds of starting materials-urea [(NH 2 ) 2 CO] (as a fuel) and ceric ammonium nitrate [Ce(NH 4 ) 2 (NO 3 ) 6 ] (acting as both the source of cerium ion and an oxidizer). The starting materials were mixed thoroughly without adding water, and then ignited in the air at room temperature. It underwent a self-combustion process with a large amount of smoke, a voluminous loose product. The as-synthesized powders were characterized by X-ray diffraction (XRD) analysis, transmission electron microscope (TEM), scanning electron microscope (SEM), CHN elemental analyzer, surface area measurements, and sinterability. Experimental results revealed that the nanocrystalline CeO 2 powders with low impurity content ( 2 /g and ∼25 nm, respectively, through the stoichiometric fuel/oxidizer ratio reaction. The powder, when cold pressed and sintered in the air at 1250 deg. C for 1 h, was measured to attain the sintered density ∼92% of theoretical density having submicron grain size. In addition, the thermal decomposition and combustion process of the reactant mixture were investigated using thermogravimetry (TG), differential scanning calorimetry (DSC), and mass spectrometry (MS) techniques simultaneously. Based on the results of thermal analysis, a possible mechanism concerning the combustion reaction is proposed

  12. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    Science.gov (United States)

    Ochs, Thomas L [Albany, OR; Summers, Cathy A [Albany, OR; Gerdemann, Steve [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul [Independence, OR; Patrick, Brian R [Chicago, IL

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  13. Research and development of methods and technologies for CO2 capture in fossil fuel power plants and storage in geological formations in the Czech Republic. Substage E2.1: Methods of and technologies for post-combustion CO2 capture from the flue gas. Substage E2.3: Selection of a chemical absorption based method for post-combustion CO2 capture. Revision 0

    International Nuclear Information System (INIS)

    Vavrova, Jana

    2010-12-01

    The following topics are described: Overview of CO 2 capture methods; Overview of absorption technologies (Amine technologies; Ammonia technologies); and the Research & Development stage (Absorption processes, chemical/carbonate loop; Membranes). (P.A.)

  14. Retrospective of CO{sub 2} emissions of the Mexican industrial sector; Retrospectiva de emisiones de CO{sub 2} del sector industrial mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Domingo; Martinez, Manuel [Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2006-11-15

    The carbon dioxide emissions of the Mexican Industrial Sector throughout the period of 1965-2003 are analyzed, in terms of 16 branches of the industrial economic activity, as it is marked by the proposed disintegration of the Sistema de Cuentas Nacionales of the Intituto Nacional de Estadistica, Geografia e Informatica (INEGI) and the National Balance of Energy 2003 (BNE-2003). The CO{sub 2} emissions by the energy use have a behavior very similar to the one of the consumption of the final energy, which reflects that non significant changes in the composition of used fuels have existed. During this period the CO{sub 2} emissions increased 230%. The industrial branches that have shown significant changes in the CO{sub 2} emission are Construction, Bottled Water, Rubber, Cement, Beer and Malta and Chemistry. In order to evaluate the effects of the Activity, Structure, Power Intensity, fuel Mixture of final use and fuel Mixture used in electricity generation the decomposition model of CO{sub 2} is used based on the Laspeyres index. The calculated effects show that the main increase of total carbon dioxide of the SIM is referred to the Activity with an average rate of annual growth (TMCA) of 4.32%; whereas the effect that mitigates more the CO{sub 2} emission is the one described by the power Intensity and is equivalent to a TMCA of -0.85%. [Spanish] Se analizan las emisiones de bioxido de carbono del Sector Industrial Mexicano a lo largo del periodo de 1965-2003, en termino de 16 ramas de actividad economica industrial como lo marca la desagregacion propuesta por el Sistema de Cuentas Nacionales del Instituto Nacional de Estadistica, Geografia e Informatica (INEGI) y el Balance Nacional de Energia 2003 (BNE-2003). Las emisiones de CO{sub 2} por el uso de energia tienen un comportamiento muy similar al de consumo de energia final, lo que refleja que no han existido cambios significativos en la composicion de los combustibles empleados. Durante este periodo las

  15. Synthesis and characterization of BaAl{sub 2}O{sub 4}:Eu{sup 2+} co-doped with different rare earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Lephoto, M.A. [Department of Physics, University of the Free State, Private bag X 13, Phuthaditjaba 9866, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Ntwaeaborwa, O.M., E-mail: ntwaeab@ufs.ac.za [Department of Physics, University of the Free State, Private bag X 13, Phuthaditjaba 9866, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Pitale, Shreyas S.; Swart, H.C. [Department of Physics, University of the Free State, Private bag X 13, Phuthaditjaba 9866, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth, ZA 6031 (South Africa); Mothudi, B.M. [Department of Physics, University of South Africa, P.O Box 392, Pretoria, ZA 6031 (South Africa)

    2012-05-15

    Combustion method was used in this study to prepare BaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphors co-doped with different trivalent rare-earths (Re{sup 3+}=Dy{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, Sm{sup 3+}, Ce{sup 3+}, Er{sup 3+}, Pr{sup 3+} and Tb{sup 3+}) ions at an initiating temperature of 600 Degree-Sign C. The phosphors were annealed at 1000 Degree-Sign C for 3 h. As confirmed from the X-ray diffraction (XRD) data, both as prepared and post annealed samples crystallized in the well known hexagonal structure of BaAl{sub 2}O{sub 4}. All samples exhibited bluish-green emission associated with the 4f{sup 6}5d{sup 1}{yields}4f{sup 7} transitions of Eu{sup 2+} at {approx}500 nm. Although the highest intensity was observed from Er{sup 3+} co-doping, the longest afterglow (due to trapping and detrapping of charge carriers) was observed from Nd{sup 3+} followed by Dy{sup 3+} co-doping. The traps responsible for the long afterglow were studied using thermoluminescence (TL) spectroscopy.

  16. Experimental Investigation into the Combustion Characteristics on the Co-firing of Biomass with Coal as a Function of Particle Size and Blending Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lkhagvadorj, Sh; Kim, Sang In; Lim, Ho; Kim, Seung Mo; Jeon, Chung Hwan [Pusan National Univ., Busan (Korea, Republic of); Lee, Byoung Hwa [Doosan Heavy Industries and Construction, Ltd., Changwon (Korea, Republic of)

    2016-01-15

    Co-firing of biomass with coal is a promising combustion technology in a coal-fired power plant. However, it still requires verifications to apply co-firing in an actual boiler. In this study, data from the Thermogravimetric analyzer(TGA) and Drop tube furnace(DTF) were used to obtain the combustion characteristics of biomass when co-firing with coal. The combustion characteristics were verified using experimental results including reactivity from the TGA and Unburned carbon(UBC) data from the DTF. The experiment also analyzed with the variation of the biomass blending ratio and biomass particle size. It was determined that increasing the biomass blending ratio resulted in incomplete chemical reactions due to insufficient oxygen levels because of the rapid initial combustion characteristics of the biomass. Thus, the optimum blending condition of the biomass based on the results of this study was found to be 5 while oxygen enrichment reduced the increase of UBC that occurred during combustion of blended biomass and coal.

  17. Combustion Characterization of Bio-derived Fuels and Additives

    DEFF Research Database (Denmark)

    Hashemi, Hamid

    Climate change has become a serious concern nowadays. The main reason is believed to be the high emission of greenhouse gases, namely CO2 which is mainly produced from the combustion of fossil fuels. At the same time, energy demand has increased exponentially while the energy supply mainly depends...... on fossil fuels, especially for transportation. The practical strategy to address such problems in medium term is to increase the efficiency of combustion-propelled energy-production systems, as well as to reduce the net release of CO2 and other harmful pollutants, likely by using nonconventional fuels....... Modern internal combustion engines such as Homogeneous Charge Compression Ignition (HCCI) engines are more efficient and fuel-flexible compared to the conventional engines, making opportunities to reduce the release of greenhouse and other polluting gases to the environment. Combustion temperature...

  18. Numerical investigations of combustion and emissions of syngas as compared to methane in a 200 MW package boiler

    International Nuclear Information System (INIS)

    Habib, Mohamed A.; Mokheimer, Esmail M.A.; Sanusi, Sofihullahi Y.; Nemitallah, Medhat A.

    2014-01-01

    Highlights: • Syngas combustion is numerically investigated in a two-burner 200 MW package boiler. • Different syngas compositions were considered for combustion with air. • The 33% CO:67% H 2 syngas composition was found to have the shortest flame. • The boiler exit temperature was found to increase with the increase of hydrogen contents. • The 50% CO:50% H 2 syngas composition had the best combustion characteristics. - Abstract: During the last decades, focus has been made on the use of syngas instead of conventional hydrocarbon fuels targeting NO x emission reduction in the exhaust gases. With advances in solar-steam methane reforming for the production of synthesis gas, the applicability of syngas at industrial scale becomes imperative. In the present work, syngas combustion and emission characteristics are numerically investigated and compared with the case of pure methane combustion in a two-burner 200 MW package boiler. A detailed reaction kinetics mechanism of 21 steps and 11 species was considered for the modeling of syngas–air combustion. Different syngas compositions were considered for combustion with air including 67% CO:33% H 2 , 50% CO:50% H 2 and 33% CO:67% H 2 . The results showed a combustion delay in case of pure methane combustion as compared to syngas combustion. The case of 33% CO:67% H 2 syngas composition was found to have the shortest flame as compared to that of other syngas compositions. The case of 50% CO:50% H 2 syngas resulted in lowest maximum boiler temperature while 67% CO:33% H 2 syngas resulted in highest maximum boiler temperature. The boiler exit temperature was found to increase with the increase of hydrogen content in the syngas. The excess air factor was found to have a significant effect on both CO and NO x emissions. NO x emission decreases by about 30% when the amount of excess air is increased from 5% to 25%, which is very promising. Among the tested syngas compositions, the 50% CO:50% H 2 syngas composition

  19. SO2 emission reducing by Ca(OH)2 using at combustion of coal from East-Maritsa basin

    International Nuclear Information System (INIS)

    Batov, S.; Gadzhanov, P.; Popov, D.; Panchev, T.; Mikhajlov, Ya.; Shushulov, D.; Grozev, A.

    1997-01-01

    The 'Maritsa-Iztok' coal field contains about 65% of the lignite and 57% of the Bulgarian coal resources.The 'Maritsa-Iztok' lignite coal have a low combustion temperature and high concentration of ashes, moisture and sulfur. The concentration of sulphur oxides emitted is about 800 000 t per year, which is among the highest concentrations for Europe. In order to reduce the sulphur concentration, theoretical and experimental studies have been performed. A determination of the efficiency of some new methods for SO 2 reduction has been done. In this paper the results from experiments using Ca(OH) 2 as reagent, are presented. The experimental facility is a non-cooled combustion chamber which provides the same conditions as in the lignite coal boilers. In the experiments ground and dried lignite coal have been used. The controlled values are O 2 , CO, NO x , SO 2 , as well as the temperature of the hot and cold air and the combustion products after the cooler and absorber. Four different technologies have been performed. The first is adding of Ca(OH) 2 which give about 30% maximal SO 2 reducing for grain size 45μm and Ca/S=1.6. The obtaining of this small size is now difficult. The second technology is introduction of Ca(OH) 2 in the combustion chamber at a temperature 900-1050 o C. The cleaning efficiency is about 48.5% for the optimal concentration of the additive. As a washing of the combustion product with water in the absorber after the desulfurization. The second phase give 20% additional cleaning. Thus the total cleaning effect is 65-70%. The third method used lime washing of the combustion products. For the Bulgarian coal with a great S content it is the most suitable method. It gives a SO 2 cleaning up to 95%. Lime wash with pH=12.3 has been used with various amounts of the reagent. Experiments with different amounts of lime wash and different quality of the coal are performed and the specific reagent consumption has been determined

  20. Development of a NO/x/-free combustion system

    Science.gov (United States)

    Sadakata, M.; Furusawa, T.; Kunii, D.; Imagawa, M.; Nawada, M.

    1980-04-01

    The development of a NO(x)-free combustion-heating system realizing both pollution control and energy savings is described. An experiment was carried out by using a small model plant. The system consists of a combustion furnace and a new-type multifunctional heat exchanger. The heat exchanger is a rotary continuous type designed for soot collection and for catalytic combustion of CO and H2 as well as for preheating combustion air.

  1. Nanoferrites of nickel doped with cobalt: Influence of Co{sup 2+} on the structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A.P.G. [Federal University of Rio Grande do Norte, Chemical Institute, Natal-RN 59078-970 (Brazil); Gomes, D.K.S., E-mail: dkarinne@yahoo.com.br [Federal University of Rio Grande do Norte, Graduate Program in Materials Science and Engineering, Laboratory of Catalysis and Materials, Natal-RN 59078-970 (Brazil); Coordination of Improvement of Higher Education Personnel, CAPES/PNPD (Brazil); Araújo, J.H., E-mail: humberto@dfte.ufrn.br [Federal University of Rio Grande do Norte, Department of Theoretical and Experimental Physics, Laboratory of Magnetism and Magnetic Materials, Natal-RN 59078-970 (Brazil); Melo, D.M.A., E-mail: daraujomelo@gmail.com [Federal University of Rio Grande do Norte, Chemical Institute, Natal-RN 59078-970 (Brazil); Oliveira, N.A.S. [Federal University of Rio Grande do Norte, Chemical Institute, Natal-RN 59078-970 (Brazil); Braga, R.M., E-mail: renata@cear.ufpb.br [Federal University of Paraíba, DEER-CEAR, João Pessoa–PB 58051-970 (Brazil)

    2015-01-15

    Nanoferrites of nickel substituted with cobalt of composition Ni{sub 1−x}Co{sub x}Fe{sub 2}O{sub 4} (0≤x≤0.75), were synthesized by combustion reaction assisted in microwaves. The influence of the substitution of Ni{sup 2+} by Co{sup 2+} content and the concentration of Co{sup 2+} in the structural and magnetic properties was investigated. The powders were prepared by combustion according to the concept of chemical propellants and heated in a microwave oven with a power of 7000 kW. The synthesized powders were characterized by absorption spectroscopy in the infrared region (FTIR), X-ray diffraction (XRD) together with Rietveld refinement, surface area (BET) method, scanning electron microscopy (MEV) and magnetic measurements (MAV). The results indicated that it was possible to obtain nickel ferrite doped with cobalt in all compositions and that an increase of cobalt concentration caused an increase in particle size (9.78–21.63 nm), a reduction in surface area, and reduction in magnetic concentrations greater than 50%. - Highlights: • Nanoferrites Ni{sub 1–x}Co{sub x}Fe{sub 2}O{sub 4}(0≤x≤0.75) synthesized by combustion reaction assisted. • The structural and magnetic properties of substitution of Ni{sup 2+} by Co{sup 2+} were investigate. • Combustion reaction takes spinel phase with suitable magnetic properties. • The ferrites presented characteristics of soft and intermediate magnetic materials.

  2. Fluidized bed combustion with the use of Greek solid fuels

    Directory of Open Access Journals (Sweden)

    Kakaras Emmanuel

    2003-01-01

    Full Text Available The paper is an overview of the results obtained up to date from the combustion and co-combustion activities with Greek brown coal in different installations, both in semi-industrial and laboratory scale. Combustion tests with Greek lignite were realized in three different Circulating Fluidized Bed Combustion (CFBC facilities. Low rank lignite was burned in a pilot scale facility of approx. 100kW thermal capacity, located in Athens (NTUA and a semi-industrial scale of 1.2 MW thermal capacity, located at RWE's power station Niederaussem in Germany. Co-combustion tests with Greek xylitic lignite and waste wood were carried out in the 1 MWth CFBC installation of AE&E, in Austria. Lab-scale co-combustion tests of Greek pre-dried lignite with biomass were accomplished in a bubbling fluidized bed in order to investigate ash melting problems. The obtained results of all aforementioned activities showed that fluidized bed is the appropriate combustion technology to efficiently exploit the low quality Greek brown coal either alone or in conjunction with biomass species.

  3. Co-combustion of coal and non-recyclable paper and plastic waste in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    D. Boavida; P. Abelha; I. Gulyurtlu; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2003-10-01

    Co-combustion of waste with coal was carried out using a fluidised bed combustor with the aim of achieving a fuel mixture with little variations in its heating value and simultaneously reducing the accumulation of non-toxic waste material by upgrading them for energy purposes. Results obtained indicate that the feeding of waste materials plays an important role to achieve conditions for a stable combustion. The form in which the fuel is fed to the combustor makes a significant contribution to achieve desirable combustion performance and differences were observed in results regarding the combustion efficiency and emissions when waste was fed densified or in a fluffy state when it was burned mixed with coal. Part of the combustion of waste material, contrary to that of coal, was observed to take place in the freeboard where the temperature was as much as 150{sup o}C above that of the bed. 15 refs., 8 figs., 8 tabs.

  4. Combustion synthesis of CoCrMo orthopedic implant alloys: microstructure and properties

    International Nuclear Information System (INIS)

    Li, Bingyun; Mukasyan, Alexander; Varma, Arvind

    2003-01-01

    Because of their excellent properties, such as corrosion resistance, fatigue strength and biocompatibility, cobalt-based alloys are widely used in total hip and knee replacements, dental devices and support structures for heart valves. In this work, CoCrMo alloys were synthesized using a novel method based on combustion synthesis (CS), an advanced technique to produce a wide variety of materials including alloys and near-net shape articles. This method possesses several advantages over conventional processes, such as low energy requirements, short processing times and simple equipment. The evaluated material properties included density and yield measurements, composition and microstructure analysis, hardness, friction and tensile tests. It was shown that microstructure of CS-material is finer and more uniform as compared to the conventional standard. It was also found that among various additives, Cr 3 C 2 is the most effective one for increasing material hardness. In addition, synthesized CoCrMo alloys exhibited good friction and mechanical properties. (orig.)

  5. Aspen Simulation of Diesel-Biodiesel Blends Combustion

    Directory of Open Access Journals (Sweden)

    Pérez-Sánchez Armando

    2015-01-01

    Full Text Available Biodiesel is a fuel produced by transesterification of vegetable oils or animal fats, which currently is gaining attention as a diesel substitute. It represents an opportunity to reduce CO2, SO2, CO, HC, PAH and PM emissions and contributes to the diversification of fuels in Mexico's energetic matrix. The results of the simulation of the combustion process are presented in this paper with reference to an engine specification KUBOTA D600-B, operated with diesel-biodiesel blends. The physicochemical properties of the compounds and the operating conditions of equipment were developed using the simulator Aspen® and supplementary information. The main aspects of the engine working conditions were considered such as diesel-biodiesel ratio, air/fuel mixture, temperature of the combustion gases and heat load. Diesel physicochemical specifications were taken from reports of PEMEX and SENER. Methyl esters corresponding to the transesterification of fatty acids that comprise castor oil were regarded as representative molecules of biodiesel obtained from chromatographic analysis. The results include CO2, water vapor, combustion efficiency, power and lower calorific value of fuels.

  6. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis.

    Science.gov (United States)

    Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin

    2015-12-01

    The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Flow Distribution Measurement Feasibility in Supercritical CO2

    Energy Technology Data Exchange (ETDEWEB)

    Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Supercritical CO2 (sCO2) is a fluid of interest for advanced power cycles that can reach thermal to electric energy conversion efficiencies of 50% or higher. Of particular interest for fossil-fired natural gas is the Allam cycle that captures nearly all CO2 emissions and exports it as a fluid stream where it may be of value. The combustion process conditions are unlike any before realized with 90-95% CO2 concentration, temperatures around 1000°C, and pressures near 300 bar. This work outlines the experimental feasibility of flow measurements to acquire the first known data in pure sCO2 at similar but reduced temperature and pressure conditions.

  8. Coral reefs - sources or sinks of atmospheric CO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J R; Smith, S V; Reakakudla, M L [Hawaii University, Honolulu, HI (USA). Dept. of Oceanography

    1992-09-01

    Because the precipitation of calcium carbonate results in the sequestering of carbon, it frequently has been thought that coral reefs function as sinks of global atmospheric CO[sub 2]. However, the precipitation of calcium carbonate is accompanied by a shift of pH that results in the release of CO[sub 2]. This release of CO[sub 2] is less in buffered sea water than fresh water systems; nevertheless, coral reefs are sources, not sinks, of atmospheric carbon. Using estimated rates of coral reef carbonate production, we compute that coral reefs release 0.02 to 0.08 Gt C as CO[sub 2] annually. This is approximately 0.4% to 1.4% of the current anthropogenic CO[sub 2] production due to fossil fuel combustion.

  9. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Paul [General Electric Global Research, Niskayuna, NY (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, NY (United States); Narang, Kristi [General Electric Global Research, Niskayuna, NY (United States); McCloskey, Pat [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); Ananthasayanam, Balajee [General Electric Global Research, Niskayuna, NY (United States); Howson, Paul [General Electric Global Research, Niskayuna, NY (United States); Lee, Julia [General Electric Global Research, Niskayuna, NY (United States); Wroczynski, Ron [General Electric Global Research, Niskayuna, NY (United States); Stewart, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); McNally, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rownaghi, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Lu, Liu [Georgia Inst. of Technology, Atlanta, GA (United States); Koros, William [Georgia Inst. of Technology, Atlanta, GA (United States); Goizueta, Roberto [Georgia Inst. of Technology, Atlanta, GA (United States); Sethi, Vijay [Western Research Inst., Laramie, WY (United States)

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  10. Mixed-Matrix Membranes containing an Azine-Linked Covalent Organic Framework: Influence of the polymeric matrix on Post-Combustion CO 2 -capture

    KAUST Repository

    Shan, Meixia; Seoane, Beatriz; Andres-Garcia, Eduardo; Kapteijn, Freek; Gascon, Jorge

    2017-01-01

    with the good adhesion between the ACOF-1 particles and the polymer matrices were confirmed by scanning electron microscopy. In mixed-gas CO2/N2 separation a clear influence of the polymer used was observed on the performance of the composite membranes. While

  11. CO{sub 2} capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Ren, Q.Q.; Duan, L.B. [Southeast University, Nanjing (China). School of Energy & Environment

    2011-03-15

    This paper examines the average carbonation conversion, CO{sub 2} capture efficiency and energy requirement for post-combustion CO{sub 2} capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO{sub 2} capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO{sub 2} capture efficiency. Achieving 0.95 of CO{sub 2} capture efficiency without sulfation, 272 kJ/mol CO{sub 2} is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO{sub 2} for the modified sorbent. The modified limestone possesses greater advantages in CO{sub 2} capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO{sub 2} from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

  12. Hollow fiber adsorbents for CO2 capture: Kinetic sorption performance

    KAUST Repository

    Lively, Ryan P.

    2011-07-01

    We describe a CO 2 capture platform based on hollow polymeric fibers with sorbent particles embedded in the porous fiber wall for post-combustion CO 2 capture. These fibers are intended for use in a rapid temperature swing adsorption (RTSA) process. The RTSA system utilizes the hollow fiber morphology by flowing cooling water on the bore-side of the fibers during sorption to prevent temperature rise associated with the sorption enthalpy. Steam or hot water is flowed through the bores during desorption to desorb CO 2 rapidly. To minimize material transfer between the bore and the fiber wall, a dense Neoprene ® lumen layer is cast on the bore-side of the fiber wall. In this paper, the key sorption step and associated kinetic resistances for the uncooled fibers are examined and evaluated for this portion of the RTSA process. Chopped fibers in a packed bed, as well as fibers assembled into a parallel flow module, have been tested in a simulated flue gas stream. Kinetic limitations in the hollow fiber modules are largely overcome by increasing the superficial gas velocity and the fiber packing in the module-indicating that film diffusion is the controlling mass transfer limitation in the fiber system. The un-cooled fiber modules lose apparent capacity as superficial velocities are increased, likely indicating non-isothermal operation, whereas the actively-cooled fibers in the packed bed maintain apparent capacity at all flowrates studied. © 2011 Elsevier B.V.

  13. CO{sub 2} solubility in brines of sedimentary basins. Application to CO{sub 2} sequestration (greenhouse gas); Solubilite de CO{sub 2} dans les saumures des bassins sedimentaires. Application au stockage de CO{sub 2} (gaz a effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Portier, S.

    2005-04-01

    Large scale combustion of fossil energy leads today to a production of 20 billions tons of CO{sub 2} annually. This increases continuously the CO{sub 2} concentration in the atmosphere, responsible of the observed climatic increase of the temperature since one century. One of the most acceptable solutions consists in the so called CO{sub 2} sequestration in natural geological formations. The control of the process and the prediction of the final quantity of CO{sub 2} trapped in the deep saline aquifers depend on the knowledge of the solubility of acid gas in natural brines in the in situ temperature and pressure conditions. The possible dissolution of acid gases in aqueous phases brings a new complexity, owing to the fact that they behave like electrolytes in aqueous mediums A thermodynamic model for CO{sub 2} solubility is presented. The vapour phase is described by a cubic state equation. The aqueous phase is described by apparent constants of CO{sub 2} dissolution and dissociation, adjusted on literature data. This model is validated by measurements of the British Geological Survey (CO{sub 2} sequestration at Sleipner oil field, North Sea). The results of this study made it possible to calculate the impact of a CO{sub 2} injection on the solubility of calcite by acidification of formation water. The consequences in terms of CO{sub 2} storage capacity of deep saline aquifers are estimated. (author)

  14. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie; Labreche, Ying; Lively, Ryan P.; Lee, Jong Suk; Jones, Christopher W.; Koros, William J.

    2014-01-01

    -jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly

  15. Combustion aerosols from co-firing of coal and solid recovered fuel in a 400 mw pf-fired power plant

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Wu, Hao; Jappe Frandsen, Flemming

    2010-01-01

    In this work, combustion aerosols (i.e. fine particles fired power plant was sampled with a low-pressure impactor, and analysed by transmission and scanning electron microscopy. The power plant was operated at both dedicated coal combustion conditions...... and under conditions with cofiring of up to 10% (thermal basis) of solid recovered fuel (SRF). The SRFs were characterized by high contents of Cl, Ca, Na and trace metals, while the coal had relatively higher S, Al, Fe and K content. The mass-based particle size distribution of the aerosols was found...... to be bi-modal, with an ultrafine (vaporization) mode centered around 0.1 μm, and a coarser (finefragmentation) mode above 2 μm. Co-firing of SRF tended to increase the formation of ultrafine particles as compared with dedicated coal combustion, while the coarse mode tended to decrease. The increased...

  16. Thermogravimetric Analysis of Textile Dyeing Sludge (TDS) in N₂/CO₂/O₂ Atmospheres and its Combustion Model with Coal.

    Science.gov (United States)

    Zhuo, Zhongxu; Liu, Jingyong; Sun, Shuiyu; Kuo, Jiahong; Sun, Jian; Chang, Ken-Lin; Fu, Jiewen

    2018-01-01

      The combustion characteristics of textile dyeing sludge (TDS) in N2/O2, CO2/O2, and N2/CO2 atmospheres, and blends of TDS with coal were analyzed using TGA (thermogravimetric analysis). Results showed that the replacement of N2 by CO2 resulted in negative effects on the combustion and pyrolysis of TDS. Comparing N2/O2 and CO2/O2 atmospheres, combustion of TDS was easier in a N2/O2 atmosphere, but the residual mass after TDS pyrolysis in pure CO2 was less than that in N2 by approximately 4.51%. When the proportion of TDS was 30-50% in the blends of coal with TDS, a synergistic interaction clearly occurred, and it significantly promoted combustion. In considering different combustion parameters, the optimal proportion of TDS may be between 20-30%. The activation energy Ea value decreased from 155.6 kJ/mol to 53.35 kJ/mol with an increasing TDS proportion from 0% to 50%, and it rapidly decreased when the TDS proportion was below 20%.

  17. Achieving Negative CO2 Emissions by Protecting Ocean Chemistry

    Science.gov (United States)

    Cannara, A.

    2016-12-01

    Industrial Age CO2 added 1.8 trillion tons to the atmosphere. About ¼ has dissolved in seas. The rest still dissolves, bolstered by present emissions of >30 gigatons/year. Airborne & oceanic CO2 have induced sea warming & ocean acidification*. This paper suggests a way to induce a negative CO2-emissions environment for climate & oceans - preserve the planet`s dominant CO2-sequestration system ( 1 gigaton/year via calcifying sea life**) by promptly protecting ocean chemistry via expansion of clean power for both lime production & replacement of CO2-emitting sources. Provide natural alkali (CaO, MgO…) to oceans to maintain average pH above 8.0, as indicated by marine biologists. That alkali (lime) is available from past calcifying life's limestone deposits, so can be returned safely to seas once its CO2 is removed & permanently sequestered (Carbfix, BSCP, etc.***). Limestone is a dense source of CO2 - efficient processing per mole sequestered. Distribution of enough lime is possible via cargo-ship transits - 10,000 tons lime/transit, 1 million transits/year. New Panamax ships carry 120,000 tons. Just 10,000/transit allows gradual reduction of present & past CO2 emissions effects, if coupled with combustion-power reductions. CO2 separation from limestone, as in cement plants, consumes 400kWHrs of thermal energy per ton of output lime (or CO2). To combat yearly CO2 dissolution in seas, we must produce & distribute about 10gigatons of lime/year. Only nuclear power produces the clean energy (thousands of terawatt hours) to meet this need - 1000 dedicated 1GWe reactors, processing 12 cubic miles of limestone/year & sequestering CO2 into a similar mass of basalt. Basalt is common in the world. Researchers*** report it provides good, mineralized CO2 sequestration. The numbers above allow gradual CO2 reduction in air and seas, if we return to President Kennedy's energy path: http://tinyurl.com/6xgpkfa We're on an environmental precipice due to failure to eliminate

  18. Software design space exploration for exascale combustion co-design

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Cy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Unat, Didem [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lijewski, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Weiqun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bell, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shalf, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-09-26

    The design of hardware for next-generation exascale computing systems will require a deep understanding of how software optimizations impact hardware design trade-offs. In order to characterize how co-tuning hardware and software parameters affects the performance of combustion simulation codes, we created ExaSAT, a compiler-driven static analysis and performance modeling framework. Our framework can evaluate hundreds of hardware/software configurations in seconds, providing an essential speed advantage over simulators and dynamic analysis techniques during the co-design process. Our analytic performance model shows that advanced code transformations, such as cache blocking and loop fusion, can have a significant impact on choices for cache and memory architecture. Our modeling helped us identify tuned configurations that achieve a 90% reduction in memory traffic, which could significantly improve performance and reduce energy consumption. These techniques will also be useful for the development of advanced programming models and runtimes, which must reason about these optimizations to deliver better performance and energy efficiency.

  19. Quantifying emissions from spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    Spontaneous combustion can be a significant problem in the coal industry, not only due to the obvious safety hazard and the potential loss of valuable assets, but also with respect to the release of gaseous pollutants, especially CO2, from uncontrolled coal fires. This report reviews methodologies for measuring emissions from spontaneous combustion and discusses methods for quantifying, estimating and accounting for the purpose of preparing emission inventories.

  20. Effect of co-combustion on the burnout of lignite/biomass blends: a Turkish case study.

    Science.gov (United States)

    Haykiri-Acma, H; Yaman, S

    2008-11-01

    Co-combustion of Turkish Elbistan lignite and woody shells of hazelnut was performed in a TGA up to 1173 K with a heating rate of 20 K/min. SEM images of each fuel revealed the differences in their physical appearances. Hazelnut shell was blended with lignite in the range of 2-20 wt% to observe the co-combustion properties. Maximum burning rates (Rmax), temperatures of the maximum burning rates (T(R-max)), and the final burnout values of the parent samples and the blends were compared. The results were interpreted considering lignite properties and the major biomass ingredients such as cellulosics, hemicellulosics, and lignin. Deviations between the theoretical and experimental burnout values were evaluated at various temperatures. Burnout characteristics of the blends up to 10 wt% were concluded to have a synergistic effect so the addition of hazelnut shell up to 8 wt% provided higher burnouts than the expected theoretical ones, whereas addition of as much as 10 wt% led to a decrease in the burnout. However, the additive effects were more favorable for the blend having a biomass content of 20 wt%. Apparent activation energy, Rmax, and T(R-max), were found to follow the additive behavior for the blend samples.