WorldWideScience

Sample records for positron volume imaging

  1. Design of a volume-imaging positron emission tomograph

    International Nuclear Information System (INIS)

    Harrop, R.; Rogers, J.G.; Coombes, G.H.; Wilkinson, N.A.; Pate, B.D.; Morrison, K.S.; Stazyk, M.; Dykstra, C.J.; Barney, J.S.; Atkins, M.S.; Doherty, P.W.; Saylor, D.P.

    1988-11-01

    Progress is reported in several areas of design of a positron volume imaging tomograph. As a means of increasing the volume imaged and the detector packing fraction, a lens system of detector light coupling is considered. A prototype layered scintillator detector demonstrates improved spatial resolution due to a unique Compton rejection capability. The conceptual design of a new mechanism for measuring scattered radiation during emission scans has been tested by Monte Carlo simulation. The problem of how to use effectively the resulting sampled scattered radiation projections is presented and discussed

  2. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  3. Towards high-resolution positron emission tomography for small volumes

    International Nuclear Information System (INIS)

    McKee, B.T.A.

    1982-01-01

    Some arguments are made regarding the medical usefulness of high spatial resolution in positron imaging, even if limited to small imaged volumes. Then the intrinsic limitations to spatial resolution in positron imaging are discussed. The project to build a small-volume, high resolution animal research prototype (SHARP) positron imaging system is described. The components of the system, particularly the detectors, are presented and brief mention is made of data acquisition and image reconstruction methods. Finally, some preliminary imaging results are presented; a pair of isolated point sources and 18 F in the bones of a rabbit. Although the detector system is not fully completed, these first results indicate that the goals of high sensitivity and high resolution (4 mm) have been realized. (Auth.)

  4. PET imaging of thin objects: measuring the effects of positron range and partial-volume averaging in the leaf of Nicotiana tabacum

    Energy Technology Data Exchange (ETDEWEB)

    Alexoff, David L., E-mail: alexoff@bnl.gov; Dewey, Stephen L.; Vaska, Paul; Krishnamoorthy, Srilalan; Ferrieri, Richard; Schueller, Michael; Schlyer, David J.; Fowler, Joanna S.

    2011-02-15

    Introduction: PET imaging in plants is receiving increased interest as a new strategy to measure plant responses to environmental stimuli and as a tool for phenotyping genetically engineered plants. PET imaging in plants, however, poses new challenges. In particular, the leaves of most plants are so thin that a large fraction of positrons emitted from PET isotopes ({sup 18}F, {sup 11}C, {sup 13}N) escape while even state-of-the-art PET cameras have significant partial-volume errors for such thin objects. Although these limitations are acknowledged by researchers, little data have been published on them. Methods: Here we measured the magnitude and distribution of escaping positrons from the leaf of Nicotiana tabacum for the radionuclides {sup 18}F, {sup 11}C and {sup 13}N using a commercial small-animal PET scanner. Imaging results were compared to radionuclide concentrations measured from dissection and counting and to a Monte Carlo simulation using GATE (Geant4 Application for Tomographic Emission). Results: Simulated and experimentally determined escape fractions were consistent. The fractions of positrons (mean{+-}S.D.) escaping the leaf parenchyma were measured to be 59{+-}1.1%, 64{+-}4.4% and 67{+-}1.9% for {sup 18}F, {sup 11}C and {sup 13}N, respectively. Escape fractions were lower in thicker leaf areas like the midrib. Partial-volume averaging underestimated activity concentrations in the leaf blade by a factor of 10 to 15. Conclusions: The foregoing effects combine to yield PET images whose contrast does not reflect the actual activity concentrations. These errors can be largely corrected by integrating activity along the PET axis perpendicular to the leaf surface, including detection of escaped positrons, and calculating concentration using a measured leaf thickness.

  5. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang

    2015-06-01

    This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.

  6. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging

    International Nuclear Information System (INIS)

    Dong, Xinzhe; Wu, Peipei; Yu, Jinming; Xing, Ligang; Sun, Xiaorong; Li, Wenwu; Wan, Honglin

    2015-01-01

    This study aims to explore whether the intra-tumour 18 F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received 18 F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV) ) were delineated on the CT images (GTV CT ), the fused PET/CT images (GTV PET-CT ) and the PET images, using a threshold at 40% SUV max (GTV PET40% ) or the SUV cut-off value of 2.5 (GTV PET2.5 ). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV CT , GTV PET-CT , GTV PET40% and GTV PET2.5 was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system.

  7. Positron emission tomography imaging--technical considerations

    International Nuclear Information System (INIS)

    Muehllehner, G.; Karp, J.S.

    1986-01-01

    Positron imaging instrumentation has improved rapidly in the last few years. Scanners currently under development are beginning to approach fundamental limits set by positron range and noncolinearity effects. This report reviews the latest developments in positron emission tomography (PET) instrumentation, emphasizing the development of coding schemes that reduce the complexity and cost of high-resolution scanners. The relative benefits of using time-of-flight (TOF) information is discussed as well. 68 references

  8. Positron in nuclear medicine imaging

    International Nuclear Information System (INIS)

    Basu, S.

    2012-01-01

    The last two decades have witnessed a rapid expansion of clinical indications of positron emission tomography (PET) based imaging in assessing a wide range of disorders influencing their clinical management. This is primarily based upon a large dataset of evidence that has been generated over the years. The impact has been most remarkable in the field of cancer, where it takes a pivotal role in the decision making (at initial diagnosis, early response assessment and following completion of therapeutic intervention) of a number of important malignancies. The concept of PET based personalized cancer medicine is an evolving and attractive proposition that has gained significant momentum in recent years. The non-oncological applications of PET and PET/CT are in (A) Cardiovascular Diseases (e.g. Myocardial Viability, Flow reserve with PET Perfusion Imaging and atherosclerosis imaging); (B) Neuropsychiatric disorders (e.g. Dementia, Epileptic Focus detection, Parkinson's Disease, Hyperkinetic Movement Disorders and Psychiatric diseases); (C) Infection and Inflammatory Disorders (e.g. Pyrexia of Unknown origin, complicated Diabetic Foot, Periprosthetic Infection, Tuberculosis, Sarcoidosis, Vasculitic disorders etc). Apart from these, there are certain novel clinical applications where it is undergoing critical evaluation in various large and small scale studies across several centres across the world. The modality represents a classical example of a successful translational research of recent times with a revolutionary and far-reaching impact in the field of medicine. (author)

  9. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading.

    Science.gov (United States)

    Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki

    2017-10-01

    This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.

  10. Positron emission tomography imaging of gene expression

    International Nuclear Information System (INIS)

    Tang Ganghua

    2001-01-01

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  11. Brain dopaminergic systems : imaging with positron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J C [University of Caen/INSERM U, Caen (France). CYCERON; Comar, D [E.E.C. Concerted Action on P.E.T. Investigations of Cellular Regeneration and Degeneration, Orsay (France) CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot; Farde, L [Karolinska Sjukhuset, Stockholm (Sweden); Martinot, J L; Mazoyer, B [CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot Paris-

    1991-01-01

    Imaging of the dopaminergic system in the human brain with the in vivo use of Positron Emission Tomography emerged in the late 1980s as a tool of major importance in clinical neurosciences and pharmacology. The last few years have witnessed rapid development of new radiotracers specific to receptors, reuptake sites and enzymes of the dopamine system; the application of these radiotracers has led to major break-troughs in the pathophysiology and therapy of movement disorders and schizophrenic-like psychoses. This book is the first to collect, in a single volume, state-of-the-art contributions to the various aspects of this research. Its contents address methodological issues related to the design, labelling, quantitative imaging and compartmental modeli-sation of radioligands of the post-synaptic, pre-synaptic and enzyme sites of the dopamine system and to their use in clinical research in the fields of Parkinson's disease as well as other movement disorders, psychoses and neuroleptic receptor occupancy. The chapters were written by leading European scientists in the field of PET, gathered together in Caen (France, November 1990) under the aegis of the EEC Concerted Action on PET Investigations of Cellular Regeneration and Degeneration. This book provides a current and comprehensive overview on PET studies of the brain dopamine system which should aid and interest neurologists , psychiatrists, pharmacologists and medical imaging scientists. (author). refs.; figs.; tabs.

  12. Image reconstruction methods in positron tomography

    International Nuclear Information System (INIS)

    Townsend, D.W.; Defrise, M.

    1993-01-01

    In the two decades since the introduction of the X-ray scanner into radiology, medical imaging techniques have become widely established as essential tools in the diagnosis of disease. As a consequence of recent technological and mathematical advances, the non-invasive, three-dimensional imaging of internal organs such as the brain and the heart is now possible, not only for anatomical investigations using X-ray but also for studies which explore the functional status of the body using positron-emitting radioisotopes. This report reviews the historical and physical basis of medical imaging techniques using positron-emitting radioisotopes. Mathematical methods which enable three-dimensional distributions of radioisotopes to be reconstructed from projection data (sinograms) acquired by detectors suitably positioned around the patient are discussed. The extension of conventional two-dimensional tomographic reconstruction algorithms to fully three-dimensional reconstruction is described in detail. (orig.)

  13. Movable collimator for positron annihilation imaging device

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1982-01-01

    A positron annihilation imaging device has two or more rings of detectors from which three or more slices through the object being scanned can be determined at once. A technique is provided for adjusting the slice widths. One slice may be imaged by all detectors in adjacent planes simultaneously, and reconstructed as if all detectors were in the same plane. The single slice facility is provided without the necessity of rotating the detector array or moving it in any way during data collection, allowing the possibility of doing physiologically gated imaging of a single slice

  14. Positron annihilation imaging device having movable collimator

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    This patent application relates to a positron annihilation imaging device comprising two circular arrays of detectors disposed in spaced apart parallel planes and circumferentially offset by half the detector spacing, axially movable annular outer collimator rings, generally disposed in a pair of opposite planes outside the associated planes of the detectors, each collimator being movable toward the opposite collimator. An inner collimator of annular configuration is disposed between the two rows of detectors and is formed in two rings which may be separated axially. The outer and inner collimators serve to enhance data readout and imaging. (author)

  15. Movable collimator for positron annihilation imaging device

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    A positron annihilation imaging device having two circular arrays of detectors disposed in spaced apart parallel planes wherein axially movable annular collimator rings are generally disposed in a pair of opposite planes outside the associated planes of the collimators to each collimator being movable toward the opposite collimator and a central collimator of annular configuration generally disposed between the two rows of detectors but being split into two rings which may be separated, the outer and inner collimators serving to enhance data readout and imaging

  16. Image-reconstruction methods in positron tomography

    CERN Document Server

    Townsend, David W; CERN. Geneva

    1993-01-01

    Physics and mathematics for medical imaging In the two decades since the introduction of the X-ray scanner into radiology, medical imaging techniques have become widely established as essential tools in the diagnosis of disease. As a consequence of recent technological and mathematical advances, the non-invasive, three-dimensional imaging of internal organs such as the brain and the heart is now possible, not only for anatomical investigations using X-rays but also for studies which explore the functional status of the body using positron-emitting radioisotopes and nuclear magnetic resonance. Mathematical methods which enable three-dimentional distributions to be reconstructed from projection data acquired by radiation detectors suitably positioned around the patient will be described in detail. The lectures will trace the development of medical imaging from simpleradiographs to the present-day non-invasive measurement of in vivo boichemistry. Powerful techniques to correlate anatomy and function that are cur...

  17. Comparison of primary tumour volumes delineated on four-dimensional computed tomography maximum intensity projection and 18F-fluorodeoxyglucose positron emission tomography computed tomography images of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Duan, Yili; Li, Jianbin; Zhang, Yingjie; Wang, Wei; Fan, Tingyong; Shao, Qian; Xu, Min; Guo, Yanluan; Sun, Xiaorong; Shang, Dongping

    2015-01-01

    The study aims to compare the positional and volumetric differences of tumour volumes based on the maximum intensity projection (MIP) of four-dimensional CT (4DCT) and 18 F-fluorodexyglucose ( 18 F-FDG) positron emission tomography CT (PET/CT) images for the primary tumour of non-small cell lung cancer (NSCLC). Ten patients with NSCLC underwent 4DCT and 18 F-FDG PET/CT scans of the thorax on the same day. Internal gross target volumes (IGTVs) of the primary tumours were contoured on the MIP images of 4DCT to generate IGTV MIP . Gross target volumes (GTVs) based on PET (GTV PET ) were determined with nine different threshold methods using the auto-contouring function. The differences in the volume, position, matching index (MI) and degree of inclusion (DI) of the GTV PET and IGTV MIP were investigated. In volume terms, GTV PET2.0 and GTV PET20% approximated closely to IGTV MIP with mean volume ratio of 0.93 ± 0.45 and 1.06 ± 0.43, respectively. The best MI was between IGTV MIP and GTV PET20% (0.45 ± 0.23). The best DI of IGTV MIP in GTV PET was IGTV MIP in GTV PET20% (0.61 ± 0.26). In 3D PET images, the GTVPET contoured by standardised uptake value (SUV) 2.0 or 20% of maximal SUV (SUV max ) approximate closely to the IGTV MIP in target size, while the spatial mismatch is apparent between them. Therefore, neither of them could replace IGTV MIP in spatial position and form. The advent of 4D PET/CT may improve the accuracy of contouring the perimeter for moving targets.

  18. Application of position-sensitive detectors to positron imaging

    International Nuclear Information System (INIS)

    Yamashita, Takaji; Uchida, Hiroshi; Watanabe, Mitsuo; Omura, Tomohide

    1994-01-01

    Positron imaging including positron emission tomography (PET) is expected to be a promising tool for basic and clinical research, because it makes possible the study of regional chemistry within multiple organs of the body in living human beings and experimental animals. New schemes of high resolution block detectors have been developed to improve the performance of positron imaging systems, which employ small segments of bismuth germanate (BGO) arrays and position-sensitive photomultiplier tubes (PS-PMT). The coincidence detector resolution of less than 2.0 mm in full width at half maximum was achieved with the detectors, which is very close to the theoretical resolution limit in positron imaging. (author)

  19. Positron emission tomography tracers for imaging angiogenesis

    International Nuclear Information System (INIS)

    Haubner, Roland; Beer, Ambros J.; Wang, Hui; Chen, Xiaoyuan

    2010-01-01

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or α v β 3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging α v β 3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. (orig.)

  20. Functional cardiac imaging: positron emission tomography

    International Nuclear Information System (INIS)

    Mullani, N.A.; Gould, K.L.

    1984-01-01

    Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures

  1. Biological imaging in radiation therapy: role of positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Ursula; Hentschel, Michael; Grosu, Anca-Ligia [Departments of Radiation Oncology, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg (Germany); Weber, Wolfgang [Nuclear Medicine, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg (Germany)], E-mail: ursula.nestle@uniklinik-freiburg.de

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required. (topical review)

  2. Biological imaging in radiation therapy: role of positron emission tomography.

    Science.gov (United States)

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  3. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    1979-01-01

    A system with improved count rate capability for detecting the radioactive distribution of positron events within an organ of interest in a living subject is described. Objects of the invention include improving the scintillation crystal and pulse processing electronics, avoiding the limitations of collimators and provide an Arger camera positron imaging system that avoids the use of collimators. (U.K.)

  4. Geometrical differences in target volumes based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography and four-dimensional computed tomography maximum intensity projection images of primary thoracic esophageal cancer.

    Science.gov (United States)

    Guo, Y; Li, J; Wang, W; Zhang, Y; Wang, J; Duan, Y; Shang, D; Fu, Z

    2014-01-01

    The objective of the study was to compare geometrical differences of target volumes based on four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of primary thoracic esophageal cancer for radiation treatment. Twenty-one patients with thoracic esophageal cancer sequentially underwent contrast-enhanced three-dimensional computed tomography (3DCT), 4DCT, and 18F-FDG PET/CT thoracic simulation scans during normal free breathing. The internal gross target volume defined as IGTVMIP was obtained by contouring on MIP images. The gross target volumes based on PET/CT images (GTVPET ) were determined with nine different standardized uptake value (SUV) thresholds and manual contouring: SUV≥2.0, 2.5, 3.0, 3.5 (SUVn); ≥20%, 25%, 30%, 35%, 40% of the maximum (percentages of SUVmax, SUVn%). The differences in volume ratio (VR), conformity index (CI), and degree of inclusion (DI) between IGTVMIP and GTVPET were investigated. The mean centroid distance between GTVPET and IGTVMIP ranged from 4.98 mm to 6.53 mm. The VR ranged from 0.37 to 1.34, being significantly (P<0.05) closest to 1 at SUV2.5 (0.94), SUV20% (1.07), or manual contouring (1.10). The mean CI ranged from 0.34 to 0.58, being significantly closest to 1 (P<0.05) at SUV2.0 (0.55), SUV2.5 (0.56), SUV20% (0.56), SUV25% (0.53), or manual contouring (0.58). The mean DI of GTVPET in IGTVMIP ranged from 0.61 to 0.91, and the mean DI of IGTVMIP in GTVPET ranged from 0.34 to 0.86. The SUV threshold setting of SUV2.5, SUV20% or manual contouring yields the best tumor VR and CI with internal-gross target volume contoured on MIP of 4DCT dataset, but 3DPET/CT and 4DCT MIP could not replace each other for motion encompassing target volume delineation for radiation treatment. © 2014 International Society for Diseases of the Esophagus.

  5. Positron imaging in the evaluation of ischemia and myocardial infarction

    International Nuclear Information System (INIS)

    Goldstein, R.A.

    1985-01-01

    Positron emission tomography (PET) is a unique imaging approach since it allows quantification of regional myocardial radioactivity by virtue of its decay characteristics. Studies of regional myocardial metabolism are possible since there are positron emitting isotopes of carbon, oxygen and nitrogen that can be used to synthesize labeled fatty acids, amino acids or carbohydrate. Recent studies from the author's group have focused on Rb-82, a diffusible cation with a short half-life that is obtained from a generator and thus, has the potential for routine clinical use without a cyclotron. In this chapter, the basic principles of positron imaging and their application to imaging of acute myocardial infarction are discussed

  6. Free volume of cyanate resins studied by positron annihilation

    International Nuclear Information System (INIS)

    Suzuki, T.; Oki, Y.; Numajiri, M.; Miura, T.; Kondo, K.; Oshima, N.; Hayashi, T.; Nakamura, H.; Ito, Y.

    1996-01-01

    The polymerization process of bisphenol-A dicyanate (BADCy) has been studied using a positron-annihilation lifetime technique (PAL). The polymerization was conducted at 150 deg C, and the process was followed by PAL. Seven kinds of samples with different curing times were also formed at 150 deg C, and the relation between the period of the curing time and the degree of polymerization was studied. It has been shown that the ο-Ps lifetime increases in samples with a higher polymerization than 85%, which is consistent with measurements of the specific volume of BADCy. (author)

  7. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Derenzo, Stephen

    2003-01-01

    The goal of this project is to construct a functioning compact positron tomography, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  8. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer

    2004-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  9. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer S

    2005-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  10. The practicality of high magnification imaging by positron emission

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Pendyala, S.

    1988-01-01

    The positron emission microscope has the capability of contrasting areas having high concentrations of monatomic vacancies and other defects. Since the positrons traveling through the specimen will have energies of the same magnitude as that of valence electrons, image contrast will be sensitive to the chemistry of the specimen. In the near future resolutions of 10 nm or lower will be achieved. Whether or not optical aberrations will permit one atom resolution is not clear. For one atom resolution to be obtained positron emission fluxes must be brightness enhanced to 10 11 sec/sup/minus/1/cm/sup/minus/2/ or greater. 5 refs., 1 fig

  11. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Fowler, Kathryn J.; Narra, Vamsi [Department of Diagnostic Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Garcia-Ramirez, Jose L.; Schwarz, Julie K. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Grigsby, Perry W., E-mail: pgrigsby@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Gynecologic Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri (United States)

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  12. Positrons as imaging agents and probes in nanotechnology

    International Nuclear Information System (INIS)

    Smith, Suzanne V

    2009-01-01

    Positron emission tomography (PET) tracks a positron emitting radiopharmaceutical injected into the body and generates a 3-dimensional image of its location. Introduced in the early 70s, it has now developed into a powerful medical diagnostic tool for routine clinical use as well as in drug development. Unrivalled as a highly sensitive, specific and non-invasive imaging tool, PET unfortunately lacks the resolution of Computer Tomography (CT) and Magnetic Resonance Imaging (MRI). As the resolution of PET depends significantly on the energy of the positron incorporated in the radiopharmaceutical and its interaction with its surrounding tissue, there is growing interest in expanding our understanding of how positrons interact at the atomic and molecular level. A better understanding of these interactions will contribute to improving the resolution of PET and assist in the design of better imaging agents. Positrons are also used in Positron Annihilation Lifetime Spectroscopy (PALS) to determine electron density and or presence and incidence of micro- and mesopores (0.1 to 10 nm) in materials. The control of porosity in engineered materials is crucial for applications such as controlled release or air and water resistant films. Equally important to the design of nano and microtechnologies, is our understanding of the microenvironments within these pores and on surfaces. Hence as radiopharmaceuticals are designed to track disease, nuclear probes (radioactive molecules) are synthesized to investigate the chemical properties within these pores. This article will give a brief overview of the present role of positrons in imaging as well as explore its potential to contribute in the engineering of new materials to the marketplace.

  13. Positron annihilation imaging device using multiple offset rings of detectors

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    This patent application relates to a positron annihilation imaging device comprising two or more coaxial circular arrays of detectors (2,2'), with the detectors in one array angularly offset with respect to the detectors in the adjacent array to detect more than one tomographic image simultaneously through different cross-sections of a patient. (author)

  14. Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter

    2010-01-01

    , and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI...

  15. Simulated annealing image reconstruction for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sundermann, E; Lemahieu, I; Desmedt, P [Department of Electronics and Information Systems, University of Ghent, St. Pietersnieuwstraat 41, B-9000 Ghent, Belgium (Belgium)

    1994-12-31

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors). 11 refs., 2 figs.

  16. Simulated annealing image reconstruction for positron emission tomography

    International Nuclear Information System (INIS)

    Sundermann, E.; Lemahieu, I.; Desmedt, P.

    1994-01-01

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors)

  17. Development of positron emitting radionuclides for imaging with improved positron detectors

    International Nuclear Information System (INIS)

    Yano, Y.

    1976-10-01

    Recent advances in positron cameras and positron ring detectors for transverse section reconstruction have created renewed interest in positron emitting radionuclides. This paper reports on: generator-produced 82 Rb; cyclotron-produced 62 Zn; and reactor-produced 64 Cu. Investigation of the 82 Sr (25 d)-- 82 Rb (75 s) generator determined the elution characteristics for Bio-Rex 70, a weakly acidic carboxylic cation exchanger, using 2% NaCl as the eluent. The yield of 82 Rb and the breakthrough of 82 Sr were determined for newly prepared columns and for long term elution conditions. Spallation-produced 82 Sr was used to charge a compact 82 Rb generator to obtain multi-millicurie amounts of 82 Rb for myocardial imaging. Zinc accumulates in the islet cells of the pancreas and in the prostate. Zinc-62 was produced by protons on Cu foil and separated by column chromatography. Zinc-62 was administered as the amino acid chelates and as the ZnCl 2 to tumor and normal animals. Tissue distribution was determined for various times after intravenous injection. Pancreas-liver images of 62 Zn-histidine uptake were obtained in animals with the gamma camera and the liver uptake of /sup 99m/Tc sulfur colloid was computer subtracted to image the pancreas alone. The positron camera imaged uptake of 62 Zn-histidine in the prostate of a dog at 20 h. 64 Cu was chelated to asparagine, a requirement of leukemic cells, and administered to lymphoma mice. Uptake in tumor and various tissues was determined and compared with the uptake of 67 Ga citrate under the same conditions. 64 Cu-asparagine had better tumor-to-soft tissue ratios than 67 Ga-citrate

  18. MR imaging and positron emission tomography of cortical heterotopia

    Energy Technology Data Exchange (ETDEWEB)

    Bairamian, D.; Di Chiro, G.; Theodore, W.H.; Holmes, M.D.; Dorwart, R.H.; Larson, S.M.

    1985-11-01

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using YF-2-deoxyglucose.

  19. MR imaging and positron emission tomography of cortical heterotopia

    International Nuclear Information System (INIS)

    Bairamian, D.; Di Chiro, G.; Theodore, W.H.; Holmes, M.D.; Dorwart, R.H.; Larson, S.M.

    1985-01-01

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using 18 F-2-deoxyglucose

  20. Amyloid-β positron emission tomography imaging probes

    DEFF Research Database (Denmark)

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt

    2013-01-01

    , a number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate...

  1. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both...

  2. Images to visualize the brain. PET: Positron Emission Tomography

    International Nuclear Information System (INIS)

    1992-01-01

    Diagnosis instrument and research tool, Positron Emission Tomography permits advanced technological developments on positron camera, on molecule labelling and principally on very complex 3D image processing. Cyceron Centre in Caen-France works on brain diseases and try to understand the mechanism of observed troubles and to assess the treatment efficiency with PET. Service Hospitalier Frederic Joliot of CEA-France establishes a mapping of cognitive functions in PET as vision areas, anxiety regions, brain organization of language, different attention forms, voluntary actions and motor functions

  3. Variation in radiotherapy target volume definition, dose to organs at risk and clinical target volumes using anatomic (computed tomography) versus combined anatomic and molecular imaging (positron emission tomography/computed tomography): intensity-modulated radiotherapy delivered using a tomotherapy Hi Art machine: final results of the VortigERN study.

    Science.gov (United States)

    Chatterjee, S; Frew, J; Mott, J; McCallum, H; Stevenson, P; Maxwell, R; Wilsdon, J; Kelly, C G

    2012-12-01

    Contrast-enhanced computed tomography (CECT) is the current standard for delineating tumours of the head and neck for radiotherapy. Although metabolic imaging with positron emission tomography (PET) has been used in recent years, the studies were non-confirmatory in establishing its routine role in radiotherapy planning in the modern era. This study explored the difference in gross tumour volume and clinical target volume definitions for the primary and nodal volumes when FDG PET/CT was used as compared with CECT in oropharyngeal cancer cases. Twenty patients with oropharyngeal cancers had a PET/CT scan in the treatment position after consent. Target volumes were defined on CECT scans by a consultant clinical oncologist who was blind to the PET scans. After obtaining inputs from a radiologist, another set of target volumes were outlined on the PET/CT data set. The gross and clinical target volumes as defined on the two data sets were then analysed. The hypothesis of more accurate target delineation, preventing geographical miss and comparative overlap volumes between CECT and PET/CT, was explored. The study also analysed the volumes of intersection and analysed whether there was any TNM stage migration when PET/CT was used as compared with CECT for planning. In 17 of 20 patients, the TNM stage was not altered when adding FDG PET information to CT. PET information prevented geographical miss in two patients and identified distant metastases in one case. PET/CT gross tumour volumes were smaller than CECT volumes (mean ± standard deviation: 25.16 cm(3) ± 35.8 versus 36.56 cm(3) ± 44.14; P standard deviation: CECT versus PET/CT 32.48 cm(3) ± 36.63 versus 32.21 cm(3) ± 37.09; P > 0.86) were not statistically different. Similarity and discordance coefficients were calculated and are reported. PET/CT as compared with CECT could provide more clinically relevant information and prevent geographical miss when used for radiotherapy planning for advanced oropharyngeal

  4. Positron emission tomography and optical tissue imaging

    Science.gov (United States)

    Falen, Steven W [Carmichael, CA; Hoefer, Richard A [Newport News, VA; Majewski, Stanislaw [Yorktown, VA; McKisson, John [Hampton, VA; Kross, Brian [Yorktown, VA; Proffitt, James [Newport News, VA; Stolin, Alexander [Newport News, VA; Weisenberger, Andrew G [Yorktown, VA

    2012-05-22

    A mobile compact imaging system that combines both PET imaging and optical imaging into a single system which can be located in the operating room (OR) and provides faster feedback to determine if a tumor has been fully resected and if there are adequate surgical margins. While final confirmation is obtained from the pathology lab, such a device can reduce the total time necessary for the procedure and the number of iterations required to achieve satisfactory resection of a tumor with good margins.

  5. Positron range in PET imaging: non-conventional isotopes

    International Nuclear Information System (INIS)

    Jødal, L; Le Loirec, C; Champion, C

    2014-01-01

    In addition to conventional short-lived radionuclides, longer-lived isotopes are becoming increasingly important to positron emission tomography (PET). The longer half-life both allows for circumvention of the in-house production of radionuclides, and expands the spectrum of physiological processes amenable to PET imaging, including processes with prohibitively slow kinetics for investigation with short-lived radiotracers. However, many of these radionuclides emit ‘high-energy’ positrons and gamma rays which affect the spatial resolution and quantitative accuracy of PET images. The objective of the present work is to investigate the positron range distribution for some of these long-lived isotopes. Based on existing Monte Carlo simulations of positron interactions in water, the probability distribution of the line of response displacement have been empirically described by means of analytic displacement functions. Relevant distributions have been derived for the isotopes 22 Na, 52 Mn, 89 Zr, 45 Ti, 51 Mn, 94m Tc, 52m Mn, 38 K, 64 Cu, 86 Y, 124 I, and 120 I. It was found that the distribution functions previously found for a series of conventional isotopes (Jødal et al 2012 Phys. Med. Bio. 57 3931–43), were also applicable to these non-conventional isotopes, except that for 120 I, 124 I, 89 Zr, 52 Mn, and 64 Cu, parameters in the formulae were less well predicted by mean positron energy alone. Both conventional and non-conventional range distributions can be described by relatively simple analytic expressions. The results will be applicable to image-reconstruction software to improve the resolution. (paper)

  6. Measurement of regional extravascular lung density and of pulmonary blood volume with positron emitting isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Larock, M.P.; Quaglia, L.; Lamotte, D.; De Landsheere, C.; Del Fiore, G.; Chevigne, M.; Peters, J.M.; Rigo, P. (Universite de Liege (Belgium))

    1982-01-01

    Studies of pulmonary blood volume changes with exercise can be performed after labelling of the blood pool by /sup 11/CO inhalation. Positron transaxial tomography permits the quantitative study of density distribution of the chest and of the pulmonary blood volume. This paper represents our preliminary experience with these techniques on models and control patients. We have first verified the linearity of transmission for density distribution below one. The tomographic examination first records a transmission image, then an emission image on the same section. We next normalize emission and transmission values on a region of unit density corresponding to blood: then we substract the emission from the transmission values to measure the extravascular pulmonary density. With crystal probes we record pulmonary blood volume variations before, during and after exercise. Peripheral hemodynamic variations explain the change recorded at the begining and at the end of exercise. Combination of these two techniques should help us to better study the importance of the acute changes in the ''formation'' of pulmonary oedema and its influence on regional pulmonary blood volume.

  7. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    NARCIS (Netherlands)

    Schinagl, D.A.X.; Vogel, W.V.; Hoffmann, A.L.; Dalen, J.A. van; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2007-01-01

    PURPOSE: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may

  8. Imaging optimizations with non-pure and high-energy positron emitters in small animal positron computed tomography

    International Nuclear Information System (INIS)

    Harzmann, Sophie

    2014-01-01

    The contribution on imaging optimizations with non-pure and high-energy positron emitters in small animal positron emission tomography (PET) covers the following topics: physical fundamentals of PET, mathematical image reconstruction and data analyses, Monte-Carlo simulations and implemented correction scheme, quantification of cascade gamma coincidences based on simulations and measurements, sinogram based corrections, restoration of the spatial resolution, implementation of full corrections.

  9. The imaging science of positron emission tomography

    International Nuclear Information System (INIS)

    Jones, T.

    1996-01-01

    To meet the goals of converging molecular imaging with molecular biology and molecular medicine, there is a need to define the strategy and structure for perfecting the accuracy of functional images derived using PET. This also relates directly to how clinical research, diagnostic questions and challenges from the pharmaceutical industry are addressed. In order to exploit the sensitivity and specificity of PET, an integrated, multidisciplinary approach is imperative. The structure to provide this needs to been seen in the context of an institutional approach, collaborations within the academic and industrial sectors and the funding needed to meet the challenges of addressing difficult questions. (orig.)

  10. Free-volume characterization of nanostructurized substances by positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Shpotyuk, O.; Ingram, A.; Shpotyuk, Ya.

    2018-02-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy are examined to parameterize free-volume structural evolution processes in some nanostructurized substances obeying conversion from positronium (Ps) decaying to positron trapping. Unlike conventional x3-term fitting analysis based on admixed positron trapping and Ps decaying, the effect of nanostructurization is considered as occurring due to conversion from preferential Ps decaying in initial host matrix to positron trapping in modified (nanostructurized) host-guest matrix. The developed approach referred to as x3-x2-CDA (coupling decomposition algorithm) allows estimation defect-free bulk and defect-specific positron lifetimes of free-volume elements responsible for nanostructurization. The applicability of this approach is proved for some nanostructurized materials allowing free-volume changes through Ps-to-positron trapping conversion, such as (i) metallic Ag nanoparticles embedded in polymer matrix, (ii) structure-modification processes caused by swift heavy ions irradiation in polystyrene, and (iii) host-guest chemistry problems like water immersion in alumomagnesium spinel ceramics. This approach is considered to be used as test-indicator, separating processes of host-matrix nanostructurization due to embedded nanoparticles from uncorrelated changes in positron-trapping and Ps-decaying channels.

  11. Evaluation of scintillators and semiconductor detectors to image three-photon positron annihilation for positron emission tomography

    International Nuclear Information System (INIS)

    Abuelhia, E.; Spyrou, N.M.; Kacperski, K.; College University, Middlesex Hospital, London

    2008-01-01

    Positron emission tomography (PET) is rapidly becoming the main nuclear imaging modality of the present century. The future of PET instrumentation relies on semiconductor detectors because of their excellent characteristics. Three-photon positron annihilation has been recently investigated as a novel imaging modality, which demands the crucial high energy resolution of semiconductor detector. In this work the evaluation of the NaI(Tl) scintillator and HPGe and CdZTe semiconductor detectors, to construct a simple three-photon positron annihilation scanner has been explored. The effect of detector and scanner size on spatial resolution (FWHM) is discussed. The characteristics: energy resolution versus count rate and point-spread function of the three-photon positron annihilation image profile from triple coincidence measurements were investigated. (author)

  12. Imaging Prostate Cancer with Positron Emission Tomography

    Science.gov (United States)

    2014-07-01

    multimodal imaging platforms. We have developed peptides that are specific for the FAP active site, conjugated them to the cross- bridged macrocycle 4,11...based pendant arms. Reaction with excess chelator for an extended period finally afforded 5 mg of each product in 95% purity. Additionally 5 mg...proton sponge behavior of the cross- bridged macrocycle14,15. Radiolabeled conjugates can be prepared with a specific activity of 37 MBq (1 mCi)/µg

  13. Imaging instrument for positron emitting heavy ion beam injection

    International Nuclear Information System (INIS)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated

  14. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    Muehllehner, G.; Buchin, M.P.

    1980-01-01

    Improvements to a positron camera imaging system are described. A pair of Angear-type scintillation cameras serve as the detectors, each camera being positioned on opposite sides of the organ of interest. Pulse shaping circuits reduce the pulse duration below 900 nanoseconds and the integration time below 500 noneseconds, improving the count rate capability and the counting statistics of the system and thus the image quality and processing speed. The invention also provides means for rotating the opposed camera heads about an axis which passes through the organ of interest. The cameras do not use collimators, and are capable of accepting radiation travelling in planes not perpendicular to the scintillation crystals. (LL)

  15. Positron annihilation imaging device using multiple offset rings of detectors

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1982-01-01

    A means is provided for recording more than one tomographic image simultaneously through different cross-sections of a patient, using positron emission tomography. Separate rings of detectors are used to construct every odd-numbered slice, and coincident events that occur between adjacent rings of detectors provide a center or even-numbered slice. Detector rings are offset with respect to one another by half the angular separation of the detectors, allowing an image to be reconstructed from the central slice without the necessity of physically rotating the detector array while accumulating data

  16. Monte Carlo simulation of different positron emitting radionuclides incorporated in a soft tissue volume

    International Nuclear Information System (INIS)

    Olaya D, H.; Martinez O, S. A.; Sevilla M, A. C.; Vega C, H. R.

    2015-10-01

    Monte Carlo calculations were carried out where compounds with positron-emitters radionuclides, like FDG ( 18 F), Acetate ( 11 C), and Ammonium ( 13 N), were incorporated into a soft tissue volume, in the aim to estimate the type of particles produced their energies, their mean free paths, and the absorbed dose at different distances with respect to the center of the volume. The volume was modeled with a radius larger than the maximum range of positrons in order to produce 0.511 keV annihilation gamma-ray photons. With the obtained results the equivalent dose, in various organs and tissues able to metabolize different radiopharmaceutical drugs, can be estimated. (Author)

  17. Current Molecular Imaging Positron Emitting Radiotracers in Oncology

    International Nuclear Information System (INIS)

    Zhu, Aizhi; Shim, Hyunsuk

    2011-01-01

    Molecular imaging is one of the fastest growing areas of medical imaging. Positron emission tomography has been widely used in the clinical management of patients with cancer. Nuclear imaging provides biological information at the cellular, subcellular, and molecular level in living subjects with noninvasive procedures. In particular, PET imaging takes advantage of traditional diagnostic imaging techniques and introduces positron emitting probes to determine the expression of indicative molecular targets at different stages of cancer. 18F fluorodeoxyglucose ( 18F FDG), the only FDA approved oncological PET tracer, has been widely utilized in cancer diagnosis, staging, restaging, and even monitoring response to therapy; however, 18F FDG is not a tumor specific PET tracer. Over the last decade, many promising tumor specific PET tracer. Over the last decade, many promising tumor specific PET tracers have been developed and evaluated in preclinical and clinical studies. This review provides an overview of the current non 18F FDG PET tracers in oncology that have been developed based on tumor characteristics such as increased metabolism, hyperproliferation, angiogenesis, hypoxia, apoptosis, and tumor specific antigens and surface receptors

  18. Positron emission tomography: Physics, instrumentation, and image analysis

    International Nuclear Information System (INIS)

    Porenta, G.

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources. PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and userfriendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. (author)

  19. Free volume changes in mechanically milled PS and PC studied by positron annihilation lifetime spectroscopy (PALS)

    NARCIS (Netherlands)

    Günther-Schade, K.; Castricum, H.L.; Ziegler, H.J.; Bakker, H.; Faupel, F.

    2004-01-01

    The effect of mechanical milling on free volume was studied by means of positron annihilation lifetime spectroscopy (PALS) in polystyrene (PS) as a typical brittle polymer and in polycarbonate (PC) as a tough representative. Long-time milling increases the free volume, while a decrease is observed

  20. Some aspects of free volume studies in molecular substances using positron annihilation experiments

    International Nuclear Information System (INIS)

    Shantarovich, V.P.; Gustov, V.W.; Kevdina, I.B.; Suzuki, T.; Djourelov, N.; Shimazu, A.

    2005-01-01

    Positron annihilation lifetime spectroscopy is accepted now as a method for the studies of elementary free volumes (free volume holes) in solids, in polymers in particular. The aim of this paper is to discuss some problems, the difficulties on the way of this application and to illustrate them by several examples obtained by the authors. (author)

  1. Imaging opiate receptors with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Wong, D.F.; Links, J.M.; Burns, H.D.; Kuhar, M.J.; Snyder, S.H.; Wagner, H.N. Jr.

    1984-01-01

    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (5..mu..g/kg), killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50 ..mu..g/kg, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15.

  2. Imaging opiate receptors with positron emission tomography

    International Nuclear Information System (INIS)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.

    1984-01-01

    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (5μg/kg), killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50 μg/kg, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15

  3. Intra-operative nuclear imaging based on positron-emitting radiotracers

    International Nuclear Information System (INIS)

    Shakir, Dzhoshkun Ismail

    2014-01-01

    Positron-emitting radiotracers are an important part of nuclear medical imaging processes. Besides the very famous glucose analog [ 18 F]FDG, many not so well known ones exist, among them the particularly interesting amino acid-based tracers like [ 18 F]FET. Although peri-operative imaging with positron-emitting radiotracers has become state-of- the-art in cases of many types of cancer, their capability is not fully exploited in the operating room yet. In this thesis we explore two intra-operative nuclear imaging modalities exploiting different aspects of positron radiation towards quality assurance in challenging surgical treatment scenarios. The first modality freehand PET provides a tomographic image of a volume of interest and aims at minimizing invasiveness by assisting the surgeon in pinpointing target structures marked with a radiotracer. The second imaging modality epiphanography generates an image of the radiotracer distribution on a surface of interest and aims at providing a means for improving the control of tumor resection margins. The word epiphanography is a compound of the Greek words επιφανεια (epiphaneia) for surface and ζωγραφια (ographia) for image, and hence means the image of the surface similar to the compound τομοζ (tomos) for slice/volume and ζωγραφια (ographia) for image, meaning the image of the volume, i.e. tomography. To our knowledge this is the first use of the word epiphanography in the context of nuclear medical imaging. In this thesis we present our approach to modeling, developing and calibrating these two novel imaging modalities. In addition, we present our work towards their clinical integration. In the case of freehand PET, we have already acquired the first intra-operative datasets of a patient. We present this first experience in the operating room together with our phantom studies. In the case of epiphanography, we present our phantom studies with neurosurgeons towards the integration of this

  4. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  5. Study of CT-based positron range correction in high resolution 3D PET imaging

    International Nuclear Information System (INIS)

    Cal-Gonzalez, J.; Herraiz, J.L.; Espana, S.; Vicente, E.; Herranz, E.; Desco, M.; Vaquero, J.J.; Udias, J.M.

    2011-01-01

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  6. Positron transaxial emission tomograph with computerized image reconstruction

    International Nuclear Information System (INIS)

    Jatteau, Michel.

    1981-01-01

    This invention concerns a positron transaxial emission tomography apparatus with computerized image reconstruction, like those used in nuclear medicine for studying the metabolism of organs, in physiological examinations and as a diagnosis aid. The operation is based on the principle of the detection of photons emitted when the positrons are annihilated by impact with an electron. The appliance is mainly composed of: (a) - a set of gamma ray detectors distributed on a polygonal arrangement around the body area to be examined, (b) - circuits for amplifying the signals delivered by the gamma ray detectors, (c) - computers essentially comprising energy integration and discrimination circuits and provided at the output of the detectors for calculating and delivering, as from the amplified signals, information on the position and energy relative to each occurrence constituted by the detections of photons, (d) - time coincidence circuits for selecting by emission of detector validation signals, only those occurrences, among the ensemble of those detected, which effectively result from the annihilation of positrons inside the area examined, (e) - a data processing system [fr

  7. Materials characterization of free volume and void properties by two-dimensional positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Chen, Hongmin; Van Horn, J. David; Jean, Y. C.; Hung, Wei-Song; Lee, Kueir-Rarn

    2013-04-01

    Positron annihilation lifetime spectroscopy (PALS) has been widely used to determine the free volume and void properties in polymeric materials. Recently, a two dimensional positron annihilation lifetime spectroscopy (2DPALS) system has been developed for membrane applications. The system measures the coincident signals between the lifetime and the energy which could separate the 2γ and 3γ annihilations and improve the accuracy in the determination of the free volume and void properties. When 2D-PALS is used in coupling with a variable mono-energy slow positron beam, it could be applied to a variety of material characterization. Results of free volumes and voids properties in a multi-layer polymer membrane characterized using 2D-PALS are presented.

  8. Alternative free volume models and positron cages for the characterisation of nanoporosity in materials

    International Nuclear Information System (INIS)

    Felix, M.V.; Morones, R.; Castano, V.M.

    2004-01-01

    Three semi-empirical positron stationary Quantum Models were developed for the study of nanoporosity in a wide range of solid porous materials. The cubic, conic and cylindrical well potentials were considered and their geometric parameters related to the Positron Annihilation LifeTime (PALT) measurements. If a conic or a cubic symmetry is assumed, a resonance lifetime phenomenon was found, which enables proposal of a technique to catch positrons in free volume sites. In the cylindrical case, an alternative method to determine free volume sizes in materials was developed. The free volume equations of these new models were then compared to the well-known and widely utilised Spherical Free Volume Model (SFVM) and remarkable differences were found. A strong variation of the free volume size-positron lifetime relation with the geometry involved was observed and a remarkable dependence of the electron layer thickness parameter ΔR with the hole-shape under study and with the nature of the material considered. The mathematical functions appearing in the conic and cylindrical cases are the superposition of Bessel functions of the first kind and trigonometric functions in the cubic case. Generalised free volume diagrams were constructed and a brief geometrical scheme of the diverse cases considered was obtained. (author)

  9. Axial positrons emission tomography: from mouse to human brain imaging

    International Nuclear Information System (INIS)

    Brard, Emmanuel

    2013-01-01

    Positrons emission tomography is a nuclear imaging technics using nuclear decays. It is used both in clinical and preclinical studies. The later requires the use of small animals such as the mouse. The objective is to obtain the best signal with the best spatial resolution. Yet, a weight ratio between humans and mice indicates the need of a sub-millimeter resolution. A conventional scanner is based on detection modules surrounding the object to image and arranged perpendicularly. This implies a strong relationship between efficiency and spatial resolution. This work focuses on the axial geometry in which detection modules are arranged parallel to the object. This limits the relationship between the figures of merit, leading to both high spatial resolution and efficiency. The simulations of prototypes showed great perspectives in term of sub-millimeter resolution with efficiencies of 15 or 40% according to the scanner's axial extension. These results indicate great perspectives for both clinical and preclinical imaging. (author)

  10. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.

    Science.gov (United States)

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R

    2008-03-11

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.

  11. Positron Emission Tomography imaging with the SmartPET system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom)], E-mail: cooperrj@ornl.gov; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P.; Mather, A.R. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2009-07-21

    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  12. Fluorinated tracers for imaging cancer with positron emission tomography

    International Nuclear Information System (INIS)

    Couturier, Olivier; Chatal, Jean-Francois; Luxen, Andre; Vuillez, Jean-Philippe; Rigo, Pierre; Hustinx, Roland

    2004-01-01

    2-[ 18 F]fluoro-2-deoxy-d-glucose (FDG) is currently the only fluorinated tracer used in routine clinical positron emission tomography (PET). Fluorine-18 is considered the ideal radioisotope for PET imaging owing to the low positron energy (0.64 MeV), which not only limits the dose rate to the patient but also results in a relatively short range of emission in tissue, thereby providing high-resolution images. Further, the 110-min physical half-life allows for high-yield radiosynthesis, transport from the production site to the imaging site and imaging protocols that may span hours, which permits dynamic studies and assessment of potentially fairly slow metabolic processes. The synthesis of fluorinated tracers as an alternative to FDG was initially tested using nucleophilic fluorination of the molecule, as performed when radiolabelling with iodine-124 or bromide-76. However, in addition to being long, with multiple steps, this procedure is not recommended for bioactive molecules containing reactive groups such as amine or thiol groups. Radiochemical yields are also often low. More recently, radiosynthesis from prosthetic group precursors, which allows easier radiolabelling of biomolecules, has led to the development of numerous fluorinated tracers. Given the wide availability of 18 F, such tracers may well develop into important routine tracers. This article is a review of the literature concerning fluorinated radiotracers recently developed and under investigation for possible PET imaging in cancer patients. Two groups can be distinguished. The first includes ''generalist'' tracers, i.e. tracers amenable to use in a wide variety of tumours and indications, very similar in this respect to FDG. These are tracers for non-specific cell metabolism, such as protein synthesis, amino acid transport, nucleic acid synthesis or membrane component synthesis. The second group consists of ''specific'' tracers for receptor expression (i.e. oestrogens or somatostatin), cell

  13. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  14. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  15. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography

    International Nuclear Information System (INIS)

    Aristophanous, Michalis; Penney, Bill C.; Martel, Mary K.; Pelizzari, Charles A.

    2007-01-01

    The increased interest in 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in radiation treatment planning in the past five years necessitated the independent and accurate segmentation of gross tumor volume (GTV) from FDG-PET scans. In some studies the radiation oncologist contours the GTV based on a computed tomography scan, while incorporating pertinent data from the PET images. Alternatively, a simple threshold, typically 40% of the maximum intensity, has been employed to differentiate tumor from normal tissue, while other researchers have developed algorithms to aid the PET based GTV definition. None of these methods, however, results in reliable PET tumor segmentation that can be used for more sophisticated treatment plans. For this reason, we developed a Gaussian mixture model (GMM) based segmentation technique on selected PET tumor regions from non-small cell lung cancer patients. The purpose of this study was to investigate the feasibility of using a GMM-based tumor volume definition in a robust, reliable and reproducible way. A GMM relies on the idea that any distribution, in our case a distribution of image intensities, can be expressed as a mixture of Gaussian densities representing different classes. According to our implementation, each class belongs to one of three regions in the image; the background (B), the uncertain (U) and the target (T), and from these regions we can obtain the tumor volume. User interaction in the implementation is required, but is limited to the initialization of the model parameters and the selection of an ''analysis region'' to which the modeling is restricted. The segmentation was developed on three and tested on another four clinical cases to ensure robustness against differences observed in the clinic. It also compared favorably with thresholding at 40% of the maximum intensity and a threshold determination function based on tumor to background image intensities proposed in a recent paper. The parts of the

  16. The development of a compact positron tomograph for prostate imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Qi, Jinyi; Derenzo, Stephen E.; Moses, William W.; Huesman, Ronald H.; Budinger, Thomas F.

    2002-12-17

    We give design details and expected image results of a compact positron tomograph designed for prostate imaging that centers a patient between a pair of external curved detector banks (ellipse: 45 cm minor, 70 cm major axis). The bottom bank is fixed below the patient bed, and the top bank moves upward for patient access and downward for maximum sensitivity. Each bank is composed of two rows (axially) of 20 CTI PET Systems HR+ block detectors, forming two arcs that can be tilted to minimize attenuation. Compared to a conventional PET system, our camera uses about one-quarter the number of detectors and has almost two times higher solid angle coverage for a central point source, because the detectors are close to the patient. The detectors are read out by modified CTI HRRT data acquisition electronics. The individual detectors are angled in the plane to point towards the prostate to minimize reso

  17. The review of myocardial positron emission computed tomography and positron imaging by gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Tohru [Tokyo Univ. (Japan). Faculty of Medicine

    1998-04-01

    To measure myocardial blood flow, Nitrogen-13 ammonia, Oxygen-15 water, Rubidium-82 and et al. are used. Each has merit and demerit. By measuring myocardial coronary flow reserve, the decrease of flow reserve during dipyridamole in patients with hypercholesterolemia or diabetes mellitus without significant coronary stenosis was observed. The possibility of early detection of atherosclerosis was showed. As to myocardial metabolism, glucose metabolism is measured by Fluorine-18 fluorodeoxyglucose (FDG), and it is considered as useful for the evaluation of myocardial viability. We are using FDG to evaluate insulin resistance during insulin clamp in patients with diabetes mellitus by measuring glucose utilization rate of myocardium and skeletal muscle. FFA metabolism has been measured by {sup 11}C-palmitate, but absolute quantification has not been performed. Recently the method for absolute quantification was reported, and new radiopharmaceutical {sup 18}F-FTHA was reported. Oxygen metabolism has been estimated by {sup 11}C-acetate. Myocardial viability, cardiac efficiency was evaluated by oxygen metabolism. As to receptor or sympathetic nerve end, cardiac insufficiency or cardiac transplantation was evaluated. Imaging of positron emitting radiopharmaceutical by gamma camera has been performed. Collimator method is clinically useful for cardiac imaging of viability study. (author). 54 refs.

  18. Characterizing free volumes and layer structures in polymeric membranes using slow positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Jean, Y C; Chen Hongmin; Awad, Somia; Zhang Sui; Chen Hangzheng; Lau, Cher Hon; Wang Huan; Li Fuyun; Chung, Tai-Shung; Lee, L James; Huang, James

    2011-01-01

    Positron annihilation spectroscopy coupled with a newly built slow positron beam at National University of Singapore has been used to study the free volume, pore, and depth profile (0 - 10 μm) in cellulose acetate polymeric membrane at the bottom and top sides of membranes for ionic separation in water purification applications. The S and R parameters from Doppler broadening energy of annihilation radiation representing free volumes (0.1-1 nm size) and pores (>1 nm-μm) as a function of depth have been analyzed into multilayers, i.e. skin dense, transition, and porous layers, respectively. The top side of membrane has large free volumes and pores and the bottom side has a skin dense layer, which plays a key role in membrane performance. Positron annihilation lifetime results provide additional information about free-volume size and distribution at the atomic and molecular scale in polymeric membrane systems. Doppler broadening energy and lifetime spectroscopies coupled with a variable mono-energy slow positron beam are sensitive and novel techniques for characterization of polymeric membrane in separation applications.

  19. A comparison of positron-emitting blood pool imaging agents

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Kulprathipanja, S.; Evans, G.; Elmaleh, D.

    1979-01-01

    The three agents, 11 C-carboxyhaemoglobin, 68 Ga-transferrin and 68 Ga-labelled red cells have been compared in dogs to assess their relative merits for blood-pool imaging. For 1 h following administration of each agent, periodic blood samples were withdrawn for counting in a NaI (Tl) well counter while conventional two-dimensional images were obtained simultaneously on the Massachusetts General Hospital positron camera. Count rates in regions about the heart, liver and spleen were obtained for each image. The disappearance of blood activity as shown from the results of counting the blood samples and from the counting rates in regions about the heart was found to be identical within experimental error for the three agents. In the liver and spleen regions, the highest count rates were obtained with 68 Ga-transferrin and the lowest with 68 Ga-labelled red cells; count rates in these regions with labelled red cells were virtually constant throughout the 1 h study. It may be concluded that with the exceptions noted above, the three agents are approximately equivalent for blood-pool imaging. (author)

  20. First image from a combined positron emission tomography and field-cycled MRI system.

    Science.gov (United States)

    Bindseil, Geron A; Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Chronik, Blaine A

    2011-07-01

    Combining positron emission tomography and MRI modalities typically requires using either conventional MRI with a MR-compatible positron emission tomography system or a modified MR system with conventional positron emission tomography. A feature of field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the use of conventional positron emission tomography detectors based on photomultiplier tubes. In this demonstration, two photomultiplier tube-based positron emission tomography detectors were integrated with a field-cycled MRI system (0.3 T/4 MHz) by placing them into a 9-cm axial gap. A positron emission tomography-MRI phantom consisting of a triangular arrangement of positron-emitting point sources embedded in an onion was imaged in a repeating interleaved sequence of ∼1 sec MRI then 1 sec positron emission tomography. The first multimodality images from the combined positron emission tomography and field-cycled MRI system show no additional artifacts due to interaction between the systems and demonstrate the potential of this approach to combining positron emission tomography and MRI. Copyright © 2010 Wiley-Liss, Inc.

  1. Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications

    International Nuclear Information System (INIS)

    Hatt, Mathieu; Cheze le Rest, Catherine; Descourt, Patrice; Dekker, Andre; De Ruysscher, Dirk; Oellers, Michel; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris

    2010-01-01

    Purpose: Accurate contouring of positron emission tomography (PET) functional volumes is now considered crucial in image-guided radiotherapy and other oncology applications because the use of functional imaging allows for biological target definition. In addition, the definition of variable uptake regions within the tumor itself may facilitate dose painting for dosimetry optimization. Methods and Materials: Current state-of-the-art algorithms for functional volume segmentation use adaptive thresholding. We developed an approach called fuzzy locally adaptive Bayesian (FLAB), validated on homogeneous objects, and then improved it by allowing the use of up to three tumor classes for the delineation of inhomogeneous tumors (3-FLAB). Simulated and real tumors with histology data containing homogeneous and heterogeneous activity distributions were used to assess the algorithm's accuracy. Results: The new 3-FLAB algorithm is able to extract the overall tumor from the background tissues and delineate variable uptake regions within the tumors, with higher accuracy and robustness compared with adaptive threshold (T bckg ) and fuzzy C-means (FCM). 3-FLAB performed with a mean classification error of less than 9% ± 8% on the simulated tumors, whereas binary-only implementation led to errors of 15% ± 11%. T bckg and FCM led to mean errors of 20% ± 12% and 17% ± 14%, respectively. 3-FLAB also led to more robust estimation of the maximum diameters of tumors with histology measurements, with bckg and FCM lead to 10%, 12%, and 13%, respectively. Conclusion: These encouraging results warrant further investigation in future studies that will investigate the impact of 3-FLAB in radiotherapy treatment planning, diagnosis, and therapy response evaluation.

  2. PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography

    Science.gov (United States)

    Thomas, Benjamin A.; Cuplov, Vesna; Bousse, Alexandre; Mendes, Adriana; Thielemans, Kris; Hutton, Brian F.; Erlandsson, Kjell

    2016-11-01

    Positron emission tomography (PET) images are degraded by a phenomenon known as the partial volume effect (PVE). Approaches have been developed to reduce PVEs, typically through the utilisation of structural information provided by other imaging modalities such as MRI or CT. These methods, known as partial volume correction (PVC) techniques, reduce PVEs by compensating for the effects of the scanner resolution, thereby improving the quantitative accuracy. The PETPVC toolbox described in this paper comprises a suite of methods, both classic and more recent approaches, for the purposes of applying PVC to PET data. Eight core PVC techniques are available. These core methods can be combined to create a total of 22 different PVC techniques. Simulated brain PET data are used to demonstrate the utility of toolbox in idealised conditions, the effects of applying PVC with mismatched point-spread function (PSF) estimates and the potential of novel hybrid PVC methods to improve the quantification of lesions. All anatomy-based PVC techniques achieve complete recovery of the PET signal in cortical grey matter (GM) when performed in idealised conditions. Applying deconvolution-based approaches results in incomplete recovery due to premature termination of the iterative process. PVC techniques are sensitive to PSF mismatch, causing a bias of up to 16.7% in GM recovery when over-estimating the PSF by 3 mm. The recovery of both GM and a simulated lesion was improved by combining two PVC techniques together. The PETPVC toolbox has been written in C++, supports Windows, Mac and Linux operating systems, is open-source and publicly available.

  3. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    International Nuclear Information System (INIS)

    Virador, Patrick R.G.

    2000-01-01

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  4. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Virador, Patrick R.G. [Univ. of California, Berkeley, CA (United States)

    2000-04-01

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  5. Monte Carlo simulation of different positron emitting radionuclides incorporated in a soft tissue volume

    Energy Technology Data Exchange (ETDEWEB)

    Olaya D, H.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte 39-115, 150003 Tunja, Boyaca (Colombia); Sevilla M, A. C. [Universidad Nacional de Colombia, Departamento de Fisica, Grupo CRYOMAG, 111321 Bogota D. C. (Colombia); Vega C, H. R., E-mail: grupo.finuas@uptc.edu.co [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2015-10-15

    Monte Carlo calculations were carried out where compounds with positron-emitters radionuclides, like FDG ({sup 18}F), Acetate ({sup 11}C), and Ammonium ({sup 13}N), were incorporated into a soft tissue volume, in the aim to estimate the type of particles produced their energies, their mean free paths, and the absorbed dose at different distances with respect to the center of the volume. The volume was modeled with a radius larger than the maximum range of positrons in order to produce 0.511 keV annihilation gamma-ray photons. With the obtained results the equivalent dose, in various organs and tissues able to metabolize different radiopharmaceutical drugs, can be estimated. (Author)

  6. Positron annihilation and 129Xe NMR studies of free volume in polymers

    International Nuclear Information System (INIS)

    Nagasaka, Bunsow; Eguchi, Taro; Nakayama, Hirokazu; Nakamura, Nobuo; Ito, Yasuo

    2000-01-01

    The existence and the average size of free volume in bisphenol-A polycarbonate (PC), low-density polyethylene (LDPE), poly (2,6-dimethyl-phenylene oxide)(PPO), and polytetrafluoroethylene (PTFE) were studied by positron annihilation and 129 Xe NMR measurements. The 129 Xe NMR chemical shifts for xenon adsorbed in the polymers indicated that the average pore size of the free volume increased in the following order: PC, LDPE, PPO, and PTFE. This order of the pore size of the free volume agrees well with that estimated from the longest lifetime (τ 3 ) of ortho-positronium formed in the polymers. The unique correlation that δ -1 ∝ r is established between the 129 Xe NMR chemical shift (δ) and the pore size (r), which is deduced from the positron annihilation measurements.

  7. Imaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Hossein Jadvar

    2015-07-01

    Full Text Available Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and prognostic utility in the various clinical phases of this prevalent disease. Given the remarkable biological heterogeneity of prostate cancer, one major unmet clinical need that remains is the non-invasive imaging-based characterization of prostate tumors. Accurate tumor characterization allows for image-targeted biopsy and focal therapy as well as facilitates objective assessment of therapy effect. PET in conjunction with radiotracers that track the thymidine salvage pathway of DNA synthesis may be helpful to fulfill this necessity. We review briefly the preclinical and pilot clinical experience with the two major cellular proliferation radiotracers, [18F]-3’-deoxy-3’-fluorothymidine and [18F]-2’-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil in prostate cancer.

  8. Development of radiotracers for imaging NR2B subtype NMDA receptors with positron emission tomography

    International Nuclear Information System (INIS)

    Labas, R.

    2007-01-01

    The aim of this thesis was to develop new radioactive tracers for imaging NR2B subtype NMDA receptors with positron emission tomography. Several compounds including 4-(4-fluoro-benzyl)piperidine and presenting interesting in vivo biological properties were the object of a labelling with a positrons emitter atom ( 11 C or 18 F)

  9. Positron emission tomography/computed tomography imaging and rheumatoid arthritis.

    Science.gov (United States)

    Wang, Shi-Cun; Xie, Qiang; Lv, Wei-Fu

    2014-03-01

    Rheumatoid arthritis (RA) is a phenotypically heterogeneous, chronic, destructive inflammatory disease of the synovial joints. A number of imaging tools are currently available for evaluation of inflammatory conditions. By targeting the upgraded glucose uptake of infiltrating granulocytes and tissue macrophages, positron emission tomography/computed tomography with fluorine-18 fluorodeoxyglucose ((18) F-FDG PET/CT) is available to delineate inflammation with high sensitivity. Recently, several studies have indicated that FDG uptake in affected joints reflects the disease activity of RA. In addition, usage of FDG PET for the sensitive detection and monitoring of the response to treatment has been reported. Combined FDG PET/CT enables the detailed assessment of disease in large joints throughout the whole body. These unique capabilities of FDG PET/CT imaging are also able to detect RA-complicated diseases. Therefore, PET/CT has become an excellent ancillary tool to assess disease activity and prognosis in RA. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  10. Carbon-11-methionine positron emission tomography imaging of chordoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong [Department of Medical Imaging, National Institute of Radiological Sciences, Chiba (Japan); Department of Medical Imaging, Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, 263-8555, Chiba (Japan); Yoshikawa, Kyosan; Tamura, Katsumi; Sagou, Kenji; Kandatsu, Susumu [Clinical Diagnosis Section, National Institute of Radiological Sciences, Chiba (Japan); Tian, Mei; Suhara, Tetsuya; Suzuki, Kazutoshi; Tanada, Shuji [Department of Medical Imaging, National Institute of Radiological Sciences, Chiba (Japan); Tsujii, Hirohiko [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2004-09-01

    Chordoma is a rare malignant bone tumor that arises from notochord remnants. This is the first trial to investigate the utility of {sup 11}C-methionine (MET) positron emission tomography (PET) in the imaging of chordoma before and after carbon-ion radiotherapy (CIRT). Fifteen patients with chordoma were investigated with MET-PET before and after CIRT and the findings analyzed visually and quantitatively. Tumor MET uptake was evaluated by tumor-to-nontumor ratio (T/N ratio). In 12 (80%) patients chordoma was clearly visible in the baseline MET-PET study with a mean T/N ratio of 3.3{+-}1.7. The MET uptake decreased significantly to 2.3{+-}1.4 after CIRT (P<0.05). A significant reduction in tumor MET uptake of 24% was observed after CIRT. Fourteen (93%) patients showed no local recurrence after CIRT with a median follow-up time of 20 months. This study has demonstrated that MET-PET is feasible for imaging of chordoma. MET-PET could provide important tumor metabolic information for the therapeutic monitoring of chordoma after CIRT. (orig.)

  11. Carbon-11-methionine positron emission tomography imaging of chordoma

    International Nuclear Information System (INIS)

    Zhang, Hong; Yoshikawa, Kyosan; Tamura, Katsumi; Sagou, Kenji; Kandatsu, Susumu; Tian, Mei; Suhara, Tetsuya; Suzuki, Kazutoshi; Tanada, Shuji; Tsujii, Hirohiko

    2004-01-01

    Chordoma is a rare malignant bone tumor that arises from notochord remnants. This is the first trial to investigate the utility of 11 C-methionine (MET) positron emission tomography (PET) in the imaging of chordoma before and after carbon-ion radiotherapy (CIRT). Fifteen patients with chordoma were investigated with MET-PET before and after CIRT and the findings analyzed visually and quantitatively. Tumor MET uptake was evaluated by tumor-to-nontumor ratio (T/N ratio). In 12 (80%) patients chordoma was clearly visible in the baseline MET-PET study with a mean T/N ratio of 3.3±1.7. The MET uptake decreased significantly to 2.3±1.4 after CIRT (P<0.05). A significant reduction in tumor MET uptake of 24% was observed after CIRT. Fourteen (93%) patients showed no local recurrence after CIRT with a median follow-up time of 20 months. This study has demonstrated that MET-PET is feasible for imaging of chordoma. MET-PET could provide important tumor metabolic information for the therapeutic monitoring of chordoma after CIRT. (orig.)

  12. Clinical application of positron emission tomography imaging in urologic tumors

    International Nuclear Information System (INIS)

    Tang Ganghua; Wu Guangyuan

    2007-01-01

    Positron emission tomography (PET) is an advanced noninvasive molecular imaging modality that is being investigated for use in the differentiation, diagnosis, and guiding therapy ora variety of cancer types. FDG PET has the unique clinical value in the differentiation, diagnosis, and monitoring therapy of prostate, such as bladder, renal, and testicle cancer. However, high false-positive and false-negative findings are observed in the detection of these tumors with FDG PET. 11 C-Choline (CH) and 11 C-acetate (AC) can overcome the pitfall of FDG, and appear to be more successful than FGD in imaging prostate cancer and bladder cancer. The short half-life of 11 C prevents the widespread use of CH and AC and 18 F-fluorocholine (FCH) and 18 F-fluoroacetate (FAC) seem to be potential tracers. Potential clinical value of the new PET tracers, such as 3'-deoxy-3'- 18 F-fluorothymidine (FLT), 18 F-fluorodihydrotestosterone (FDHT), and 9-(4- 18 F-3-hydroxymethylbutyl)-guanine( 18 F-FHBG) in the detection of urologic tumors, can deserve further study. (authors)

  13. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    Science.gov (United States)

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  14. Prediction of free-volume-type correlations in glassy chalcogenides from positron annihilation lifetime measurements

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Ingram, A.; Shpotyuk, M.; Filipecki, J.

    2014-01-01

    Highlights: • Decisive role of specific chemical environment in free-volume correlations in glass. • Realistic free volumes in As–S/Se glass are defined by newly modified τ 2 -R formula. • Overestimated void sizes in chalcogenide glass as compared with molecular polymers. - Abstract: A newly modified correlation equation between defect-related positron lifetime determined within two-state trapping model and radius of corresponding free-volume-type defects was proposed to describe compositional variations in atomic-deficient structure of covalent-bonded chalcogenides like binary As–S/Se glasses. Specific chemical environment of free-volume voids around neighboring network-forming polyhedrons was shown to play a decisive role in this correlation, leading to systematically enhanced volumes in comparison with typical molecular substrates, such as polymers

  15. Prediction of free-volume-type correlations in glassy chalcogenides from positron annihilation lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Institute of Materials of SRC “Carat”, 212 Stryjska Str., Lviv 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestcochowa 42200 (Poland); Ingram, A. [Opole University of Technology, 75 Ozimska Str., Opole 45370 (Poland); Shpotyuk, M. [Institute of Materials of SRC “Carat”, 212 Stryjska Str., Lviv 79031 (Ukraine); Lviv Polytechnic National University, 12 Bandery Str., Lviv 79013 (Ukraine); Filipecki, J. [Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestcochowa 42200 (Poland)

    2014-11-01

    Highlights: • Decisive role of specific chemical environment in free-volume correlations in glass. • Realistic free volumes in As–S/Se glass are defined by newly modified τ{sub 2}-R formula. • Overestimated void sizes in chalcogenide glass as compared with molecular polymers. - Abstract: A newly modified correlation equation between defect-related positron lifetime determined within two-state trapping model and radius of corresponding free-volume-type defects was proposed to describe compositional variations in atomic-deficient structure of covalent-bonded chalcogenides like binary As–S/Se glasses. Specific chemical environment of free-volume voids around neighboring network-forming polyhedrons was shown to play a decisive role in this correlation, leading to systematically enhanced volumes in comparison with typical molecular substrates, such as polymers.

  16. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning

    DEFF Research Database (Denmark)

    Ashraf, H; Dirksen, A; Jakobsen, Annika Loft

    2011-01-01

    In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules.......In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules....

  17. Image-reconstruction algorithms for positron-emission tomography systems

    International Nuclear Information System (INIS)

    Cheng, S.N.C.

    1982-01-01

    The positional uncertainty in the time-of-flight measurement of a positron-emission tomography system is modelled as a Gaussian distributed random variable and the image is assumed to be piecewise constant on a rectilinear lattice. A reconstruction algorithm using maximum-likelihood estimation is derived for the situation in which time-of-flight data are sorted as the most-likely-position array. The algorithm is formulated as a linear system described by a nonseparable, block-banded, Toeplitz matrix, and a sine-transform technique is used to implement this algorithm efficiently. The reconstruction algorithms for both the most-likely-position array and the confidence-weighted array are described by similar equations, hence similar linear systems can be used to described the reconstruction algorithm for a discrete, confidence-weighted array, when the matrix and the entries in the data array are properly identified. It is found that the mean square-error depends on the ratio of the full width at half the maximum of time-of-flight measurement over the size of a pixel. When other parameters are fixed, the larger the pixel size, the smaller is the mean square-error. In the study of resolution, parameters that affect the impulse response of time-of-flight reconstruction algorithms are identified. It is found that the larger the pixel size, the larger is the standard deviation of the impulse response. This shows that small mean square-error and fine resolution are two contradictory requirements

  18. Bulk-volume behavior of pressure-densified amorphous polymers and free-volume behavior by positron annihilation lifetime measurement

    International Nuclear Information System (INIS)

    Hagiwara, K.; Ougizawa, T.; Inoue, T.; Hirata, K.; Kobayashi, Y.

    2001-01-01

    In order to study the nature of amorphous polymers, the free volume contribution on the bulk volume change was investigated on the basis of the relationship between the bulk volume behavior by PVT (pressure-volume-temperature) measurement and the free volume behavior by PALS (positron annihilation lifetime spectroscopy) measurement. A densified glass, prepared by cooling at constant rate from the melt state temperature to room temperature under 200 MPa, showed smaller bulk volume and free volume than non-densified glass. And the densified glass showed not only the same glass transition temperature (Tg) as non-densified glass but also another transition at lower temperature around (Tg-30 C). In this glass-glass transition, both the bulk volume and free volume of densified glass recovered to those of non-densified glass. Moreover the densified glass showed different thermal behavior from the glass which was enthalpy-relaxed under atmospheric pressure. From those results, it was considered that the free volume behavior largely related to the behavior of amorphous polymers. (orig.)

  19. Probing atomic-size defects and free volumes with positron and positronium

    International Nuclear Information System (INIS)

    Dolveck, J.Y.; Moser, P.; Guo-Huan Dai

    1992-01-01

    The lifetime measurement of positrons injected in a metal allows to investigate defects of atomic dimension. Many crucial problems in metallurgy have found their solutions by the positron annihilation (PA) techniques for about three decades. Application to semiconductors research has been developed in recent years. Specific theory and analysing method can be used in the studies of the free-volume hole in polymers, the size of the empty spaces being between 0.3 and 1.5 nanometers. In many insulating materials, the diffusing positron can trap an electron and form a metastable positronium (Ps). Like a gas bubble, the Ps atom may diffuse and get trapped by the free-volume hole. When this mechanism is governing, lifetimes over the range of 1-10 ns are well observable and a correspondence exists between the positronium lifetime and minimum diameter of the trapping open space. Example of application is given in a study of polyimide membranes used for gas separation. A good correlation is revealed between the Ps lifetime and H 2 and/or CH 4 permeabilities. Recent progress in polymers research is also reviewed

  20. Positron emission tomographic imaging of tumors using monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  1. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring

    DEFF Research Database (Denmark)

    Jødal, Lars; Le Loirec, Cindy; Champion, Christophe

    2012-01-01

    Background: Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Further, the percentage of annihilation events within a given distance from the point...... on allowed-decay isotopes. Methods: It is argued that blurring at the detection level should not be described by positron range r, but instead the 2D-projected distance δ (equal to the closest distance between decay and line-of-response). To determine these 2D distributions, results from a dedicated positron...... is important for improved resolution in PET imaging. Relevant distributions for positron range have been derived for seven isotopes. Distributions for other allowed-decay isotopes may be estimated with the above formulas....

  2. Positron tomographic imaging of the liver: 68Ga iron hydroxide colloid

    International Nuclear Information System (INIS)

    Kumar, B.; Miller, T.R.; Siegel, B.A.; Mathias, C.J.; Markham, J.; Ehrhardt, G.J.; Welch, M.J.

    1981-01-01

    A new radiopharmaceutical, 68 Ga iron hydroxide colloid, for hepatic imaging by positron emission tomography was prepared from the eluate of a 68 Ge- 68 Ga solvent extraction generator. In rats, 84% of the administered dose of colloid localized in the liver and 4.6% accumulated in the spleen. Initial imaging studies in normal dogs showed close correspondence of the findings by positron tomography and transmission computed tomography. Emission tomography with 68 Ga-colloid was performed in 10 patients with hepatic metastases demonstrated by conventional /sup 99m/Tc-sulfur colloid scintigraphy. All focal defects noted on the conventional scintigrams were easily identified and generally were seen more clearly by positron tomography. In one patient, additional lesions not identified on the initial /sup 99m/Tc-sulfur colloid images were demonstrated. The positron tomographic images were compared with those obtained by transmission computed tomography in seven patients; the two studies showed comparable findings in five patients, whereas positron tomography more clearly showed multiple lesions in two. Our results suggest that positron emission tomography is a suitable technique for obtaining high contrast, cross-sectional images of large abdominal organs

  3. Positron tomographic imaging of the liver: 68Ga iron hydroxide colloid

    International Nuclear Information System (INIS)

    Kumar, B.; Miller, T.R.; Siegel, B.A.; Mathias, C.J.; Markham, J.; Ehrhardt, G.J.; Welch, M.J.

    1981-01-01

    A new radiopharmaceutical, 68 Ga ion hydroxide colloid, for hepatic imaging by positron emission tomography was prepared from the eluate of a 68 Ge- 68 Ga solvent extraction generator. In rats, 84% of the administered dose of colloid localized in the liver and 4.6% accumulated in the spleen. Initial imaging studies in normal dogs showed close correspondence of the findings by positron tomography and transmission computed tomography. Emission tomography with 68 Ga-colloid was performed in 10 patients with hepatic metastases demonstrated by conventional 99mTc sulfur colloid scintigraphy. All focal defects noted on the conventional scintigrams were easily identified and generally were seen more clearly by positron tomography. In one patient, additional lesions not identified on the initial 99mTc sulfur colloid images were demonstrated. The positron tomographic images were compared with those obtained by transmission computed tomography in seven patients; the two studies showed comparable findings in five patients, whereas positron tomography more clearly showed multiple lesions in two. Our results suggest that positron emission tomography is a suitable technique for obtaining high contrast, cross-sectional images of large abdominal organs

  4. Imaging properties of a positron tomograph with 280 BGO crystals

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.; Cahoon, J.L.; Vuletich, T.

    1980-11-01

    The basic imaging properties of the Donner 280-BGO-Crystal positron tomograph were measured and compared with the same system when it was equipped with 280 NaI(T1) crystals. The NaI(T1) crystals were 8 mm x 30 mm x 50 mm deep, sealed in 10 mm wide stainless steel cans. The BGO crystals are 9.5 mm x 32 mm x 32 mm deep and as they are not hygroscopic do not require sealed cans. With a shielding gap of 3 cm (section thickness 1.7 cm FWHM) the sensitivity of the BGO system is 55,000 events per sec for 1 μCi per cm 3 in a 20 cm cylinder of water, which is 2.3 times higher than the NaI(T1) system. For a 200 μCi/cm line source on the ring axis in a 20 cm diameter water cylinder, the BGO system records 86% of the scatter fraction and 66% of the accidental fraction of the NaI(T1) system. The lower light yield and poorer time resolution of BGO requires a wider coincidence timing window than NaI(T1). However, the ability to use full-energy pulse height selection with a 2.3-fold improvement in sensitivity results in an overall reduction in the fraction of accidental events recorded. The in-plane resolution of the BGO system is 9 to 10 mm FWHM within the central 30 cm diameter field, and the radial elongation at the edge of the field in the NaI(T1) system has been nearly eliminated

  5. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring

    Science.gov (United States)

    Jødal, L.; Le Loirec, C.; Champion, C.

    2012-06-01

    Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Furthermore, the percentage of annihilation events within a given distance from the point of positron emission is relevant for assessing statistical noise. This paper aims to determine the positron range distribution relevant for blurring for seven medically relevant PET isotopes, 18F, 11C, 13N, 15O, 68Ga, 62Cu and 82Rb, and derive empirical formulas for the distributions. This paper focuses on allowed-decay isotopes. It is argued that blurring at the detection level should not be described by the positron range r, but instead the 2D projected distance δ (equal to the closest distance between decay and line of response). To determine these 2D distributions, results from a dedicated positron track-structure Monte Carlo code, Electron and POsitron TRANsport (EPOTRAN), were used. Materials other than water were studied with PENELOPE. The radial cumulative probability distribution G2D(δ) and the radial probability density distribution g2D(δ) were determined. G2D(δ) could be approximated by the empirical function 1 - exp(-Aδ2 - Bδ), where A = 0.0266 (Emean)-1.716 and B = 0.1119 (Emean)-1.934, with Emean being the mean positron energy in MeV and δ in mm. The radial density distribution g2D(δ) could be approximated by differentiation of G2D(δ). Distributions in other media were very similar to water. The positron range is important for improved resolution in PET imaging. Relevant distributions for the positron range have been derived for seven isotopes. Distributions for other allowed-decay isotopes may be estimated with the above formulas.

  6. Three-dimensional imaging of hidden objects using positron emission backscatter

    International Nuclear Information System (INIS)

    Lee, Dongwon; Cowee, Misa; Fenimore, Ed; Galassi, Mark; Looker, Quinn; Mcneil, Wendy V.; Stonehill, Laura; Wallace, Mark

    2009-01-01

    Positron emission backscatter imaging is a technique for interrogation and three-dimensional (3-D) reconstruction of hidden objects when we only have access to the objects from one side. Using time-of-flight differences in detected direct and backscattered positron-emitted photons, we construct 3-D images of target objects. Recently at Los Alamos National Laboratory, a fully three-dimensional imaging system has been built and the experimental results are discussed in this paper. Quantitative analysis of images reconstructed in both two- and three-dimensions are also presented.

  7. Preclinical evaluation of a positron emitting progestin ([18F]fluoro-16 alpha-methyl-19-norprogesterone) for imaging progesterone receptor positive tumours with positron emission tomography

    NARCIS (Netherlands)

    Verhagen, Aalt; Luurtsema, Gert; PESSER, JW; DEGROOT, TJ; OOSTERHUIS, JW; Vaalburg, Willem; Wouda, S.

    Three 21-fluoro-progestins were investigated as potential imaging agents for the in vivo assessment of human progesterone receptor positive neoplasms with positron emission tomography. In competitive binding assays these compounds demonstrated high specificity, competing only for progesterone

  8. Positron annihilation study on free volume of amino acid modified, starch-grafted acrylamide copolymer

    International Nuclear Information System (INIS)

    Mahmoud, K.R.; Al-Sigeny, S.; Sharshar, T.; El-Hamshary, H.

    2006-01-01

    Free volume measurements using positron annihilation lifetime spectroscopy was performed for uncrosslinked and crosslinked starch-grafted polyacrylamide, and their modified amino acid samples including some of their iron(III) complexes. The measurements were performed at room temperature. The analysis of lifetime spectra yielded mostly three lifetime components. It was observed that the values of the short lifetime component τ 1 are slightly higher than the lifetime associated with the self-decay of para-positronium atoms in polymers. The free volume was probed using ortho-positronium pick-off annihilation lifetime parameters. The mean free volume has also been calculated from the lifetime data. The avrage value of this parameter of the crosslinked polymer were found to be higher than those of the uncrosslinked polymer

  9. Positron annihilation lifetime spectroscopy of mechanically milled protein fibre powders and their free volume aspects

    International Nuclear Information System (INIS)

    Patil, K; Rajkhowa, R; Tsuzuki, T; Lin, T; Wang, X; Sellaiyan, S; Smith, S V; Uedono, A

    2013-01-01

    The present study reports the fabrication of ultra-fine powders from animal protein fibres such as cashmere guard hair, merino wool and eri silk along with their free volume aspects. The respectively mechanically cleaned, scoured and degummed cashmere guard hair, wool and silk fibres were converted into dry powders by a process sequence: Chopping, Attritor Milling, and Spray Drying. The fabricated protein fibre powders were characterised by scanning electron microscope, particle size distribution and positron annihilation lifetime spectroscopy (PALS). The PALS results indicated that the average free volume size in protein fibres increased on their wet mechanical milling with a decrease in the corresponding intensities leading to a resultant decrease in their fractional free volumes.

  10. Free volume modifications in chalcone chromophore doped PMMA films by electron irradiation: Positron annihilation study

    Science.gov (United States)

    Ismayil; Ravindrachary, V.; Praveena, S. D.; Mahesha, M. G.

    2018-03-01

    The free volume related fluorescence behaviour in electron beam irradiated chalcone chromophore doped Poly(methyl methacrylate) (PMMA) composite films have been studied using FTIR, UV-Visible, XRD and Positron Annihilation techniques. From the FTIR spectral study it is found that the formation of polarons and bipolaron takes place due to cross linking as well as chain scission processes at lower and higher doses respectively. It reveals that the formation of various polaronic defect levels upon irradiation is responsible for the creation of three optical energy band gaps within the polymer films as obtained from UV-Visible spectra. The crosslinking process at lower doses increases the distance between the pendant groups to reduce the interchain distance and chain scission process at higher doses decreases interchain separation to enhance the number of polarons in the polymer composites as suggested by XRD studies. The fluorescence studies show the enhancement of fluorescence emission at lower doses and reduction at higher doses under electron irradiation. The positron annihilation study suggests that the low radiation doses induce crosslinking which affect the free volume properties and in turn hinders the chalcone molecular rotation within the polymer composite. At higher doses chain scission process support polymer matrix relaxation and facilitates non-radiative transition of the chromophore upon excitation. This study shows that fluorescence enhancement and mobility of chromophore within the polymer matrix is directly related to the free volume around it.

  11. Molecular Imaging of Transporters with Positron Emission Tomography

    Science.gov (United States)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  12. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    International Nuclear Information System (INIS)

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J.

    1990-01-01

    Sites of uptake, storage, and metabolism of [ 18 F]fluorodopamine and excretion of [ 18 F]fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of [ 18 F]-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of [ 18 F]fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function

  13. Limited-angle imaging in positron cameras: theory and practice

    International Nuclear Information System (INIS)

    Tam, K.C.

    1979-10-01

    The principles of operation of planar positron camera systems made up of multiwire proportional chambers as detectors and electromagnetic delay lines for coordinate readout are discussed. Gamma converters are coupled to the wire chambers to increase detection efficiency and improve spatial resolution. The conversion efficiencies of these converters are calculated and the results compare favorably to the experimentally measured values

  14. Limited-angle imaging in positron cameras: theory and practice

    Energy Technology Data Exchange (ETDEWEB)

    Tam, K.C.

    1979-10-01

    The principles of operation of planar positron camera systems made up of multiwire proportional chambers as detectors and electromagnetic delay lines for coordinate readout are discussed. Gamma converters are coupled to the wire chambers to increase detection efficiency and improve spatial resolution. The conversion efficiencies of these converters are calculated and the results compare favorably to the experimentally measured values.

  15. Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses

    International Nuclear Information System (INIS)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Hotra, O.; Popov, A.I.

    2016-01-01

    Evolution of free-volume positron trapping defects caused by crystallization process in (80GeS_2–20Ga_2S_3)_1_0_0_−_x(CsCl)_x, 0 ≤ x ≤ 15 chalcogenide-chalcohalide glasses was studied by positron annihilation lifetime technique. It is established that CsCl additives in Ge–Ga–S glassy matrix transform defect-related component spectra, indicating that the agglomeration of free-volume voids occurs in initial and crystallized (80GeS_2–20Ga_2S_3)_1_0_0_−_x(CsCl)_x, 0 ≤ x ≤ 10 glasses. Void fragmentation in (80GeS_2–20Ga_2S_3)_8_5(CsCl)_1_5 glass can be associated with loosing of their inner structure. Full crystallization in each of these glasses corresponds to the formation of defect-related voids. These trends are confirmed by positron-positronium decomposition algorithm. It is shown, that CsCl additives result in white shift in the visible regions in transmission spectra. The γ-irradiation of 80GeS_2–20Ga_2S_3 base glass leads to slight long-wavelength shift of the fundamental optical absorption edge and decreasing of transmission speaks in favor of possible formation of additional defects in glasses and their darkening. - Highlights: • CsCl additives in Ge–Ga–S glassy matrix lead to the agglomeration of voids. • Full crystallization of Ge–Ga–S–CsCl glasses corresponds to the formation of defect voids. • Gamma-irradiation of glass stimulates the creation of additional defects and darkening.

  16. Recurrent ovarian endodermal sinus tumor: demonstration by computed tomography, magnetic resonance imaging, and positron emission tomography

    International Nuclear Information System (INIS)

    Romero, J.A.; Kim, E.E.; Tresukosol, D.; Kudelka, A.P.; Edwards, C.L.; Kavanagh, J.J.

    1995-01-01

    We report a case of recurrent endodermal sinus tumor of the ovary that was identified and/or clearly depicted by computed tomography, magnetic resonance imaging, and positron emission tomography. The potential roles of various imaging modalities in the detection of recurrent endodermal sinus tumor are discussed. (orig.)

  17. The Effect of Temperature on the Free Volume in Polytetrafluoroethylene Studied by Positron Annihilation Spectroscopy

    International Nuclear Information System (INIS)

    Abdel-Latif, R.M.; Mohamed, H.F.M.; Abdel-Hady, E.E.; Mohamed, S.S.

    2005-01-01

    The positron annihilation techniques have been applied to investigate the free volume holes in pure and doped polytetrafluoroethylene (PTFE) with glass as a function of temperature. The measurements were performed from room temperature up to 250 degree C. The lifetime spectra were analyzed using two methods; 1) Finite-term analysis to determine the average values of the orthopositronium (o-Ps) lifetime and its intensity using PATFIT program, 2) Continuous lifetime analysis to obtain the o-Ps lifetime and o-Ps hole volume distributions using MELT program. The ortho-positronium (o-Ps) lifetimes, (T3 and T4) are found to be vary depending upon the phase of the polymer. Within the temperature range two transitions can be observed. The first one is related to the glass transition temperature, T g (at 130 degree C for pure PTFE and at 110 degree C for doped PTFE with glass). The second one is the crystalline temperature at 210 degree C for the two samples. It was found that, T g is shifted toward the lower values (110 degree C) for doped PTFE with glass, which could be attributed to the increase in the degree of crystallinity. This is in consistent with the wide-angle x-ray scattering data. A correlation between the positron annihilation parameters and the electrical conductivity was achieved

  18. Positron Annihilation as a Probe of Free Volume Changes in Polyoxymethylene-copolymer

    International Nuclear Information System (INIS)

    Mohamed, H.F.M.; Abdel-Hady, E.E.; Farid, S.S.

    2005-01-01

    The positron annihilation lifetime measurements have been carried out to study the free volume properties of polyoxymethylene-copolymer (POM). The effect of temperature changes on free volume hole sizes and hole size distribution has been investigated over the temperature range (5-100 degree C). All PAL spectra were analyzed with LT program, which is a finite term lifetime analysis and by MELT which is a continuous lifetime analysis. The free volume sites probed by o-Ps increase in size with increasing temperature. PALS measurements revealed the glass transition temperature (Tg) at 15 degree C. Below the glass transition temperature the hole size slowly (linearly) increases with temperatures, while the slope is steeper above Tg. The temperature of this transition as measured by PALS has turned out to be somewhat lower than what is obtained with differential scanning calorimetry (DSC). At room temperature the results show a narrow distribution, reflecting that the free volume holes are small and of rather equal size. As the temperature is raised, the distribution broadens. The largest change in distribution width will be discussed on the frame of the free volume model

  19. Fluorodeoxyglucose-based positron emission tomography imaging to monitor drug responses in hematological tumors

    NARCIS (Netherlands)

    Newbold, Andrea; Martin, Ben P.; Cullinane, Carleen; Bots, Michael

    2014-01-01

    Positron emission tomography (PET) can be used to monitor the uptake of the labeled glucose analog fluorodeoxyglucose (¹⁸F-FDG), a process that is generally believed to reflect viable tumor cell mass. The use of ¹⁸F-FDG PET can be helpful in documenting over time the reduction in tumor mass volume

  20. PET imaging with the non-pure positron emitters: 55Co, 86Y and 124I

    DEFF Research Database (Denmark)

    Braad, Poul-Erik; Hansen, S B; Thisgaard, H

    2015-01-01

    PET/CT with non-pure positron emitters is a highly valuable tool in immuno-PET and for pretherapeutic dosimetry. However, imaging is complicated by prompt gamma coincidences (PGCs) that add an undesired background activity to the images. Time-of-flight (TOF) reconstruction improves lesion...... detectability in 18F-PET and can potentially also improve the signal-to-noise ratio in images acquired with non-pure positron emitters. Using the GE Discovery 690 PET/CT system, we evaluated the image quality with 55Co, 86Y and 124I, and the effect of PGC-correction and TOF-reconstruction on image quality...... and quantitation in a series of phantom studies. PET image quality and quantitation for all isotopes were significantly affected by PGCs. The effect was most severe with 86Y, and less, but comparable, with 55Co and 124I. PGC-correction improved the image quality and the quantitation accuracy dramatically for all...

  1. Quantification of Regional Myocardial Oxygenation by Magnetic Resonance Imaging: Validation with Positron Emission Tomography

    Science.gov (United States)

    McCommis, Kyle S.; Goldstein, Thomas A.; Abendschein, Dana R.; Herrero, Pilar; Misselwitz, Bernd; Gropler, Robert J.; Zheng, Jie

    2011-01-01

    Background A comprehensive evaluation of myocardial ischemia requires measures of both oxygen supply and demand. Positron emission tomography (PET) is currently the gold standard for such evaluations, but its use is limited due to its ionizing radiation, limited availability, and high cost. A cardiac magnetic resonance imaging (MRI) method was developed for assessing myocardial oxygenation. The purpose of this study was to evaluate and validate this technique compared to PET during pharmacologic stress in a canine model of coronary artery stenosis. Methods and Results Twenty-one beagles and small mongrel dogs without coronary artery stenosis (controls), or with moderate to severe acute coronary artery stenosis underwent MRI and PET imaging at rest and during dipyridamole vasodilation or dobutamine stress to induce a wide range of changes in cardiac perfusion and oxygenation. MRI first-pass perfusion imaging was performed to quantify myocardial blood flow (MBF) and volume (MBV). The MRI blood-oxygen-level-dependent (BOLD) technique was used to determine the myocardial oxygen extraction fraction (OEF) during pharmacologic hyperemia. Myocardial oxygen consumption (MVO2) was determined by Fick’s law. In the same dogs, 15O-water and 11C-acetate were used to measure MBF and MVO2, respectively, by PET. Regional assessments were performed for both MR and PET. MRI data correlated nicely with PET values for MBF (R2 = 0.79, P < 0.001), MVO2 (R2 = 0.74, P < 0.001), and OEF (R2 = 0.66, P < 0.01). Conclusions Cardiac MRI methods may provide an alternative to radionuclide imaging in settings of myocardial ischemia. Our newly developed quantitative MRI oxygenation imaging technique may be a valuable non-invasive tool to directly evaluate myocardial energetics and efficiency. PMID:19933371

  2. Positron flight in human tissues and its influence on PET image spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Crespo, Alejandro; Larsson, Stig A. [Section of Nuclear Medicine, Department of Hospital Physics, Karolinska Hospital, 176 76, Stockholm (Sweden); Medical Radiation Physics, Department of Oncology-Pathology, Stockholm University and Karolinska Institute, Stockholm (Sweden); Andreo, Pedro [Medical Radiation Physics, Department of Oncology-Pathology, Stockholm University and Karolinska Institute, Stockholm (Sweden)

    2004-01-01

    The influence of the positron distance of flight in various human tissues on the spatial resolution in positron emission tomography (PET) was assessed for positrons from carbon-11, nitrogen-13, oxygen-15, fluorine-18, gallium-68 and rubidium-82. The investigation was performed using the Monte Carlo code PENELOPE to simulate the transport of positrons within human compact bone, adipose, soft and lung tissue. The simulations yielded 3D distributions of annihilation origins that were projected on the image plane in order to assess their impact on PET spatial resolution. The distributions obtained were cusp-shaped with long tails rather than Gaussian shaped, thus making conventional full width at half maximum (FWHM) measures uncertain. The full width at 20% of the maximum amplitude (FW20M) of the annihilation distributions yielded more appropriate values for root mean square addition of spatial resolution loss components. Large differences in spatial resolution losses due to the positron flight in various human tissues were found for the selected radionuclides. The contribution to image blur was found to be up to three times larger in lung tissue than in soft tissue or fat and five times larger than in bone tissue. For {sup 18}F, the spatial resolution losses were 0.54 mm in soft tissue and 1.52 mm in lung tissue, compared with 4.10 and 10.5 mm, respectively, for {sup 82}Rb. With lung tissue as a possible exception, the image blur due to the positron flight in all human tissues has a minor impact as long as PET cameras with a spatial resolution of 5-7 mm are used in combination with {sup 18}F-labelled radiopharmaceuticals. However, when ultra-high spatial resolution PET cameras, with 3-4 mm spatial resolution, are applied, especially in combination with other radionuclides, the positron flight may enter as a limiting factor for the total PET spatial resolution - particularly in lung tissue. (orig.)

  3. Positron flight in human tissues and its influence on PET image spatial resolution

    International Nuclear Information System (INIS)

    Sanchez-Crespo, Alejandro; Larsson, Stig A.; Andreo, Pedro

    2004-01-01

    The influence of the positron distance of flight in various human tissues on the spatial resolution in positron emission tomography (PET) was assessed for positrons from carbon-11, nitrogen-13, oxygen-15, fluorine-18, gallium-68 and rubidium-82. The investigation was performed using the Monte Carlo code PENELOPE to simulate the transport of positrons within human compact bone, adipose, soft and lung tissue. The simulations yielded 3D distributions of annihilation origins that were projected on the image plane in order to assess their impact on PET spatial resolution. The distributions obtained were cusp-shaped with long tails rather than Gaussian shaped, thus making conventional full width at half maximum (FWHM) measures uncertain. The full width at 20% of the maximum amplitude (FW20M) of the annihilation distributions yielded more appropriate values for root mean square addition of spatial resolution loss components. Large differences in spatial resolution losses due to the positron flight in various human tissues were found for the selected radionuclides. The contribution to image blur was found to be up to three times larger in lung tissue than in soft tissue or fat and five times larger than in bone tissue. For 18 F, the spatial resolution losses were 0.54 mm in soft tissue and 1.52 mm in lung tissue, compared with 4.10 and 10.5 mm, respectively, for 82 Rb. With lung tissue as a possible exception, the image blur due to the positron flight in all human tissues has a minor impact as long as PET cameras with a spatial resolution of 5-7 mm are used in combination with 18 F-labelled radiopharmaceuticals. However, when ultra-high spatial resolution PET cameras, with 3-4 mm spatial resolution, are applied, especially in combination with other radionuclides, the positron flight may enter as a limiting factor for the total PET spatial resolution - particularly in lung tissue. (orig.)

  4. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  5. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  6. Estimation of free volumes of polystyrene by positron annihilation life-time technique

    International Nuclear Information System (INIS)

    Li, Hong-Ling; Ujihira, Yusuke; Nanasawa, Atsushi.

    1996-01-01

    Differences of size, content, and size distribution of free volumes in linear and three-armed polystyrenes, synthesized by radical, and anionic processes, were observed by positron annihilation lifetime measurements. For the polystyrene samples of different architectures and molecular weight distributions, the temperature dependence of an average free volume radius was quite similar to each other. The radius increased with increasing temperature (T), from 0.27 nm (60 K) to 0.30 nm (glass transition temperature: T g = 363 K), then to 0.35 nm (423 K), showing αβ transition temperature about 300 K. With increasing T, the free volume content decreased from 35% (60 K) to 25% (260 K) for radically polymerized linear polystyrene and to 22% (320 K) for anionically polymerized three-armed polystyrene, and then turned to increase to 35% at 350 K and 400 K, respectively. In contrast, the content for anionically polymerized linear polystyrene decreased from 45% (60 K) to 33% (300 K) and turned to increase to 35% at 350-400 K. The free volume content decreased reciprocally with an increase in the molecular weight at 333 K, suggesting differences in molecular motion between the edge and middle portions of the chain molecule. (author)

  7. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications

    International Nuclear Information System (INIS)

    Pagani, M.; Stone-Elander, S.; Larsson, S.A.

    1997-01-01

    The increasing amount of clinically relevant information obtained by positron emission tomography (PET), primarily with fluorine-18 labelled 2-deoxy-2-fluoro-d-glucose, has generated a demand for new routes for the widespread and cost-efficient use of positron-emitting radiopharmaceuticals. New dual-head single-photon emission tomography (SPET) cameras are being developed which offer coincidence detection with camera heads lacking a collimator or SPET imaging with specially designed collimators and additional photon shielding. Thus, not only satellite PET imaging units but also nuclear medicine units investing in these new SPET/PET systems need to examine all available alternatives for rational radionuclide supplies from host cyclotrons. This article examines 25 ''alternative'' positron-emitting radionuclides, discusses the impact of their decay properties on image quality and reviews methods for their production as well as for their application in imaging techniques. (orig.)

  8. Positron Lifetime as a Nano probe for Free Volume in Microbial Poly(3- Hydroxybutyrate/ Polymethylmethacrylate) Blends

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; Abdel-El-Latif, R.M.; Mohamed, S.S.

    2009-01-01

    Poly(β-hydroxybutyrate) PHB is a bio technologically produced polyesters, highly crystalline, totally biodegradable with low versatility in mechanical properties. To overcome this problem it is performed a reactive blending producer with a glassy acrylic polymer, Poly(methylmethacrylate) (PMMA) with different concentrations. positron annihilation lifetime (PAL) spectroscopy has been used to study the effect of PMMA concentrations on the free volume hole properties of PHB. PAL spectra were analyzed using PALSF it program into three components which reflected three different morphologies of the polymer structure. The ortho positronium (ο-Ps) parameters revealed an inflection at (75/25 wt/wt) PHB/PMMA blend. Pure PHB and (75/25 wt/wt) PHB/PMMA blend have been measured as a function of temperature from -30 degree C to 90 degree C. The data clearly revealed the glass transition temperature (T g ) at zero degree C. An attempt is done to find a correlation between the electrical properties of PHB with different concentrations of PMMA and the positron annihilation parameters.

  9. Functional imaging of the brain with positron emission tomography

    International Nuclear Information System (INIS)

    Alavi, A.; Reivich, M.; Jones, S.C.; Greenberg, J.H.; Wolf, A.P.

    1982-01-01

    An extensive review, with 191 references, of the development and diagnostic use of positron emission tomography (PET) of the brain is presented. An historical overview of functional studies of the brain reviews the use of nitrons oxide, 85 Kr and 133 Xe, [ 14 C]2-deoxyglucose, and [ 18 F]FDG. The [ 18 F]FDG technique allows the investigation of the effects of physiologic stimulation on the brain. Several studies using this technique are reported. The effects of stroke, seizure disorders, aging and dementia, and schizophrenia on cerebral metabolism as demosntrated by PET are explored

  10. Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using β+γ coincidences

    Science.gov (United States)

    Lang, C.; Habs, D.; Parodi, K.; Thirolf, P. G.

    2014-01-01

    We present a nuclear medical imaging technique, employing triple-γ trajectory intersections from β+-γ coincidences, able to reach sub-millimeter spatial resolution in 3 dimensions with a reduced requirement of reconstructed intersections per voxel compared to a conventional PET reconstruction analysis. This 'γ-PET' technique draws on specific β+-decaying isotopes, simultaneously emitting an additional photon. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to characterize this technique, Monte-Carlo simulations and image reconstructions have been performed. The achievable spatial resolution has been found to reach ca. 0.4 mm (FWHM) in each direction for the visualization of a 22Na point source. Only 40 intersections are sufficient for a reliable sub-millimeter image reconstruction of a point source embedded in a scattering volume of water inside a voxel volume of about 1 mm3 ('high-resolution mode'). Moreover, starting with an injected activity of 400 MBq for 76Br, the same number of only about 40 reconstructed intersections are needed in case of a larger voxel volume of 2 x 2 x 3 mm3 ('high-sensitivity mode'). Requiring such a low number of reconstructed events significantly reduces the required acquisition time for image reconstruction (in the above case to about 140 s) and thus may open up the perspective for a quasi real-time imaging.

  11. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1994-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal field - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders. Some new ideas associated with these sources are also presented. (orig.)

  12. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1989-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal fields - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders

  13. Methods for modeling and quantification in functional imaging by positron emissions tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Costes, Nicolas

    2017-01-01

    This report presents experiences and researches in the field of in vivo medical imaging by positron emission tomography (PET) and magnetic resonance imaging (MRI). In particular, advances in terms of reconstruction, quantification and modeling in PET are described. The validation of processing and analysis methods is supported by the creation of data by simulation of the imaging process in PET. The recent advances of combined PET/MRI clinical cameras, allowing simultaneous acquisition of molecular/metabolic PET information, and functional/structural MRI information opens the door to unique methodological innovations, exploiting spatial alignment and simultaneity of the PET and MRI signals. It will lead to an increase in accuracy and sensitivity in the measurement of biological phenomena. In this context, the developed projects address new methodological issues related to quantification, and to the respective contributions of MRI or PET information for a reciprocal improvement of the signals of the two modalities. They open perspectives for combined analysis of the two imaging techniques, allowing optimal use of synchronous, anatomical, molecular and functional information for brain imaging. These innovative concepts, as well as data correction and analysis methods, will be easily translated into other areas of investigation using combined PET/MRI. (author) [fr

  14. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor

    Science.gov (United States)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  15. Hypoxia positron emission tomography imaging: combining information on perfusion and tracer retention to improve hypoxia specificity

    DEFF Research Database (Denmark)

    Busk, Morten; Munk, Ole L; Jakobsen, Steen S

    2017-01-01

    BACKGROUND: Static positron emission tomography (PET) allows mapping of tumor hypoxia, but low resolution and slow tracer retention/clearance results in poor image contrast and the risk of missing areas where hypoxic cells and necrosis are intermixed. Fully dynamic PET may improve accuracy but scan...

  16. Small animal positron emission tomography imaging and in vivo studies of atherosclerosis

    DEFF Research Database (Denmark)

    Hag, Anne Mette Fisker; Ripa, Rasmus Sejersten; Pedersen, Sune Folke

    2013-01-01

    Atherosclerosis is a growing health challenge globally, and despite our knowledge of the disease has increased over the last couple of decades, many unanswered questions remain. As molecular imaging can be used to visualize, characterize and measure biological processes at the molecular and cellu...... knowledge obtained from in vivo positron emission tomography studies of atherosclerosis performed in small animals....

  17. The effects of free volumes on charge carrier transport in polysilanes probed by positron annihilation

    International Nuclear Information System (INIS)

    Seki, Shu; Terashima, Y.; Kunimi, Y.; Kawamori, T.; Tashiro, M.; Honda, Y.; Tagawa, S.

    2003-01-01

    Free volume characteristics were investigated by positron annihilation technique in poly(n-alkylphenylsilane)s with a variety length of n-alkyl chains from methyl (C1) to n-dodecyl (C12). The average radius of free volume: R changes in two steps. An increase in R is observed with an elongation of n-alkyl side-groups from C1 to n-pentyl (C5), followed by an abrupt decrease in R between C5 and n-hexyl (C6), and a gradual increase by further elongation from C6 to C12. The sudden decrease in R at C5 and C6 gives a good interpretation to the reduction of inter-site hopping distances and their fluctuation for the charge carrier (hole) transport estimated by time-of-flight measurements. The values of free volume fraction in the polymers mainly reflect the density of the polymers; however, differences in the microscopic inter-molecular structure are also observed for poly(n-hexylphenylsilane) in the present study

  18. Development of Traceable Phantoms for Improved Image Quantification in Positron Emission Tomography

    Science.gov (United States)

    Zimmerman, Brian

    2014-03-01

    Clinical trials for new drugs increasingly rely on imaging data to monitor patient response to the therapy being studied. In the case of radiopharmaceutical applications, imaging data are also used to estimate organ and tumor doses in order to arrive at the optimal dosage for safe and effective treatment. Positron Emission Tomography (PET) is one of the most commonly used imaging modalities for these types of applications. In large, multicenter trials it is crucial to minimize as much as possible the variability that arises due to use of different types of scanners and other instrumentation so that the biological response can be more readily evaluated. This can be achieved by ensuring that all the instruments are calibrated to a common standard and that their performance is continuously monitored throughout the trial. Maintaining links to a single standard also enables the comparability of data acquired on a heterogeneous collection of instruments in different clinical settings. As the standards laboratory for the United States, the National Institute of Standards and Technology (NIST) has been developing a suite of phantoms having traceable activity content to enable scanner calibration and performance testing. The configurations range from small solid cylindrical sources having volumes from 1 mL to 23 mL to large cylinders having a total volume of 9 L. The phantoms are constructed with 68Ge as a long-lived substitute for the more clinically useful radionuclide 18F. The contained activity values are traceable to the national standard for 68Ge and are also linked to the standard for 18F through a careful series of comparisons. The techniques that have been developed are being applied to a variety of new phantom configurations using different radionuclides. Image-based additive manufacturing techniques are also being investigated to create fillable phantoms having irregular shapes which can better mimic actual organs and tumors while still maintaining traceability

  19. Imaging performance of a multiwire proportional-chamber positron camera

    International Nuclear Information System (INIS)

    Perez-Mandez, V.; Del Guerra, A.; Nelson, W.R.; Tam, K.C.

    1982-08-01

    A new design - fully three-dimensional - Positron Camera is presented, made of six MultiWire Proportional Chamber modules arranged to form the lateral surface of a hexagonal prism. A true coincidence rate of 56000 c/s is expected with an equal accidental rate for a 400 μCi activity uniformly distributed in a approx. 3 l water phantom. A detailed Monte Carlo program has been used to investigate the dependence of the spatial resolution on the geometrical and physical parameters. A spatial resolution of 4.8 mm FWHM has been obtained for a 18 F point-like source in a 10 cm radius water phantom. The main properties of the limited angle reconstruction algorithms are described in relation to the proposed detector geometry

  20. Human primary visual cortex topography imaged via positron tomography

    International Nuclear Information System (INIS)

    Schwartz, E.L.; Christman, D.R.; Wolf, A.P.

    1984-01-01

    The visuotopic structure of primary visual cortex was studied in a group of 7 human volunteers using positron emission transaxial tomography (PETT) and 18 F-labeled 2-deoxy-2-fluoro-D-glucose ([ 18 F]DG). A computer animation was constructed with a spatial structure which was matched to estimates of human cortical magnification factor and to striate cortex stimulus preferences. A lateralized cortical 'checker-board' pattern of [ 18 F]DG was stimulated in primary visual cortex by having subjects view this computer animation following i.v. injection of [ 18 F]DG. The spatial structure of the stimulus was designed to produce an easily recognizable 'signature' in a series of 9 serial PETT scans obtained from each of a group of 7 volunteers. The predicted lateralized topographic 'signature' was observed in 6 of 7 subjects. Applications of this method for further PETT studies of human visual cortex are discussed. (Auth.)

  1. Utility of positron emission tomography-magnetic resonance imaging in musculoskeletal imaging

    Institute of Scientific and Technical Information of China (English)

    Ammar A Chaudhry; Maryam Gul; Elaine Gould; Mathew Teng; Kevin Baker; Robert Matthews

    2016-01-01

    Differentiation between neoplastic and nonneoplastic conditions magnetic resonance imaging(MRI) has established itself as one of the key clinical tools in evaluation of musculoskeletal pathology. However, MRI still has several key limitations which require supplemental information from additional modalities to complete evaluation of various disorders. This has led to the development hybrid positron emission tomography(PET)-MRI which is rapidly evolving to address key clinical questions by using the morphological strengths of MRI and functional information of PET imaging. In this article, we aim to review physical principles and techniques of PET-MRI and discuss clinical utility of functional information obtained from PET imaging and structural information obtained from MRI imaging for the evaluation of musculoskeletal pathology. More specifically, this review highlights the role of PET-MRI in musculoskeletal oncology including initial diagnosis and staging, treatment planning and posttreatment follow-up. Also we will review utility of PET-MRI in evaluating musculoskeletal infections(especially in the immunocompromised and diabetics) and inflammatory condition. Additionally, common pitfalls of PET-MRI will be addressed.

  2. Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes

    International Nuclear Information System (INIS)

    Howell, R.H.; Cowan, T.E.; Hartley, J.; Sterne, P.; Brown, B.

    1996-05-01

    We are developing a defect analysis capability based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is operational and positron lifetime analysis is performed with a 3 MeV positron beam on thick samples. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for insitu measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopies is under development at the LLNL high current positron source. This beam will enable defect specific, 3-D maps of defect concentration with sub-micron location resolution and when coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification

  3. Masked volume wise principal component analysis of small adrenocortical tumours in dynamic [11C]-metomidate positron emission tomography

    International Nuclear Information System (INIS)

    Razifar, Pasha; Hennings, Joakim; Monazzam, Azita; Hellman, Per; Långström, Bengt; Sundin, Anders

    2009-01-01

    In previous clinical Positron Emission Tomography (PET) studies novel approaches for application of Principal Component Analysis (PCA) on dynamic PET images such as Masked Volume Wise PCA (MVW-PCA) have been introduced. MVW-PCA was shown to be a feasible multivariate analysis technique, which, without modeling assumptions, could extract and separate organs and tissues with different kinetic behaviors into different principal components (MVW-PCs) and improve the image quality. In this study, MVW-PCA was applied to 14 dynamic 11C-metomidate-PET (MTO-PET) examinations of 7 patients with small adrenocortical tumours. MTO-PET was performed before and 3 days after starting per oral cortisone treatment. The whole dataset, reconstructed by filtered back projection (FBP) 0–45 minutes after the tracer injection, was used to study the tracer pharmacokinetics. Early, intermediate and late pharmacokinetic phases could be isolated in this manner. The MVW-PC1 images correlated well to the conventionally summed image data (15–45 minutes) but the image noise in the former was considerably lower. PET measurements performed by defining 'hot spot' regions of interest (ROIs) comprising 4 contiguous pixels with the highest radioactivity concentration showed a trend towards higher SUVs when the ROIs were outlined in the MVW-PC1 component than in the summed images. Time activity curves derived from '50% cut-off' ROIs based on an isocontour function whereby the pixels with SUVs between 50 to 100% of the highest radioactivity concentration were delineated, showed a significant decrease of the SUVs in normal adrenal glands and in adrenocortical adenomas after cortisone treatment. In addition to the clear decrease in image noise and the improved contrast between different structures with MVW-PCA, the results indicate that the definition of ROIs may be more accurate and precise in MVW-PC1 images than in conventional summed images. This might improve the precision of PET

  4. Positron Tomographic Imaging Of The Liver With Ga-68 Iron Hydroxide Colloid

    Science.gov (United States)

    Kumar, Bharath; Miller, Tom R.; Siegel, Barry A.; Mathias, Carla J.; Markham, Joanne; Ehrhardt, Gary J.; Welch, Michael J.

    1980-08-01

    A new radiopharmaceutical, 68Ga-iron hydroxide colloid, for hepatic imaging by positron emission tomography (PET) was prepared from the eluate of a "Ge-68Ga solvent extraction generator. In rats, 84% of the administered dose of colloid localized in the liver and 4.6% accumulated in the spleen. Initial imaging studies in normal dogs showed close correspondence of the findings by PET and transmission computed tomography (CT). PET with 68Ga-colloid was performed in 10 patients with hepatic metastases demonstrated by conventional scintigraphy with 99mTc-sulfur colloid. All focal defects noted on the conventional scintigrams were easily identified and generally seen more clearly by PET. In one patient, lesions not identified on the initial 99mTc-sulfur colloid images were demonstrated by PET. The positron tomographic images were compared with those obtained by CT in 7 patients; the two studies showed comparable findings in 5 patients, whereas PET more clearly showed multiple lesions in 2. Our results suggest that PET is a suitable technique for obtaining high-contrast, cross-sectional images of large abdominal organs. Emission computed tomography with positron-emitting radionuclides shows promise as an important new tool for clinical research (1-4). Unfortunately, wide clinical application of positron-emission tomography (PET) is presently limited by the need for an expensive, hospital-based cyclotron facility and highly trained professional and technical personnel to synthesize the radiopharmaceuticals labeled with the very short-lived radionuclides 11c, 13N, 150 and 18 F that are employed most commonly in such studies. These difficulties may be circumvented in part by the use of a simple generator system that produces the positron-emitting radionuclide 68Ga (T1/2 = 68 min) from the long-lived parent 68Ge (T1/2 = 275 days) (5-7). A large number of radiopharmaceuticals of potential clinical interest may be prepared readily from the eluate of such a generator (6

  5. 64Cu loaded liposomes as positron emission tomography imaging agents

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Binderup, Tina; Rasmussen, Palle

    2011-01-01

    applicable as PET imaging agents. We show the utility of the 64Cu-liposomes for quantitative in vivo imaging of healthy and tumor-bearing mice using PET. This remote loading method is a powerful tool for characterizing the in vivo performance of liposome based nanomedicine, and has great potential...

  6. Multimodality Imaging Probe for Positron Emission Tomography and Fluorescence Imaging Studies

    Directory of Open Access Journals (Sweden)

    Suresh K. Pandey

    2014-05-01

    Full Text Available Our goal is to develop multimodality imaging agents for use in cell tracking studies by positron emission tomography (PET and optical imaging (OI. For this purpose, bovine serum albumin (BSA was complexed with biotin (histologic studies, 5(6- carboxyfluorescein, succinimidyl ester (FAM SE (OI studies, and diethylenetriamine pentaacetic acid (DTPA for chelating gallium 68 (PET studies. For synthesis of BSA-biotin-FAM-DTPA, BSA was coupled to (+-biotin N-hydroxysuccinimide ester (biotin-NHSI. BSA- biotin was treated with DTPA-anhydride and biotin-BSA-DTPA was reacted with FAM. The biotin-BSA-DTPA-FAM was reacted with gallium chloride 3 to 5 mCi eluted from the generator using 0.1 N HCl and was passed through basic resin (AG 11 A8 and 150 mCi (100 μL, pH 7–8 was incubated with 0.1 mg of FAM conjugate (100 μL at room temperature for 15 minutes to give 66Ga-BSA-biotin-DTPA-FAM. A shaved C57 black mouse was injected with FAM conjugate (50 μL at one flank and FAM-68Ga (50 μL, 30 mCi at the other. Immediately after injection, the mouse was placed in a fluorescence imaging system (Kodak In-Vivo F, Bruker Biospin Co., Woodbridge, CT and imaged (Λex: 465 nm, Λem: 535 nm, time: 8 seconds, Xenon Light Source, Kodak. The same mouse was then placed under an Inveon microPET scanner (Siemens Medical Solutions, Knoxville, TN injected (intravenously with 25 μCi of 18F and after a half-hour (to allow sufficient bone uptake was imaged for 30 minutes. Molecular weight determined using matrix-associated laser desorption ionization (MALDI for the BSA sample was 66,485 Da and for biotin-BSA was 67,116 Da, indicating two biotin moieties per BSA molecule; for biotin-BSA-DTPA was 81,584 Da, indicating an average of 30 DTPA moieties per BSA molecule; and for FAM conjugate was 82,383 Da, indicating an average of 1.7 fluorescent moieties per BSA molecule. Fluorescence imaging clearly showed localization of FAM conjugate and FAM-68Ga at respective flanks of the mouse

  7. Automatic tumour volume delineation in respiratory-gated PET images

    International Nuclear Information System (INIS)

    Gubbi, Jayavardhana; Palaniswami, Marimuthu; Kanakatte, Aparna; Mani, Nallasamy; Kron, Tomas; Binns, David; Srinivasan, Bala

    2011-01-01

    Positron emission tomography (PET) is a state-of-the-art functional imaging technique used in the accurate detection of cancer. The main problem with the tumours present in the lungs is that they are non-stationary during each respiratory cycle. Tumours in the lungs can get displaced up to 2.5 cm during respiration. Accurate detection of the tumour enables avoiding the addition of extra margin around the tumour that is usually used during radiotherapy treatment planning. This paper presents a novel method to detect and track tumour in respiratory-gated PET images. The approach followed to achieve this task is to automatically delineate the tumour from the first frame using support vector machines. The resulting volume and position information from the first frame is used in tracking its motion in the subsequent frames with the help of level set (LS) deformable model. An excellent accuracy of 97% is obtained using wavelets and support vector machines. The volume calculated as a result of the machine learning (ML) stage is used as a constraint for deformable models and the tumour is tracked in the remaining seven phases of the respiratory cycle. As a result, the complete information about tumour movement during each respiratory cycle is available in relatively short time. The combination of the LS and ML approach accurately delineated the tumour volume from all frames, thereby providing a scope of using PET images towards planning an accurate and effective radiotherapy treatment for lung cancer.

  8. Free volume from positron lifetime and pressure-volume-temperature experiments in relation to structural relaxation of van der Waals molecular glass-forming liquids.

    Science.gov (United States)

    Dlubek, G; Shaikh, M Q; Rätzke, K; Paluch, M; Faupel, F

    2010-06-16

    Positron annihilation lifetime spectroscopy (PALS) is employed to characterize the temperature dependence of the free volume in two van der Waals liquids: 1, 1'-bis(p-methoxyphenyl)cyclohexane (BMPC) and 1, 1'-di(4-methoxy-5-methylphenyl)cyclohexane (BMMPC). From the PALS spectra analysed with the routine LifeTime9.0, the size (volume) distribution of local free volumes (subnanometer size holes), its mean, [v(h)], and mean dispersion, σ(h), were calculated. A comparison with the macroscopic volume from pressure-volume-temperature (PV T) experiments delivered the hole density and the specific hole free volume and a complete characterization of the free volume microstructure in that sense. These data are used in correlation with structural (α) relaxation data from broad-band dielectric spectroscopy (BDS) in terms of the Cohen-Grest and Cohen-Turnbull free volume models. An extension of the latter model allows us to quantify deviations between experiments and theory and an attempt to systematize these in terms of T(g) or of the fragility. The experimental data for several fragile and less fragile glass formers are involved in the final discussion. It was concluded that, for large differences in the fragility of different glass formers, the positron lifetime mirrors clearly the different character of these materials. For small differences in the fragility, additional properties like the character of bonds and chemical structure of the material may affect size, distribution and thermal behaviour of the free volume.

  9. Free volume from positron lifetime and pressure-volume-temperature experiments in relation to structural relaxation of van der Waals molecular glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dlubek, G [ITA Institute for Innovative Technologies, Koethen/Halle, Wiesenring 4, D-06120 Lieskau (Germany); Shaikh, M Q; Raetzke, K; Faupel, F [Faculty of Engineering, Institute for Materials Science, Christian-Albrechts University of Kiel, Kaiserstrasse 2, D-24143 Kiel (Germany); Paluch, M, E-mail: guenter.dlubek@gmx.d [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)

    2010-06-16

    Positron annihilation lifetime spectroscopy (PALS) is employed to characterize the temperature dependence of the free volume in two van der Waals liquids: 1, 1'-bis(p-methoxyphenyl)cyclohexane (BMPC) and 1, 1'-di(4-methoxy-5-methylphenyl)cyclohexane (BMMPC). From the PALS spectra analysed with the routine LifeTime9.0, the size (volume) distribution of local free volumes (subnanometer size holes), its mean, (v{sub h}), and mean dispersion, {sigma}{sub h}, were calculated. A comparison with the macroscopic volume from pressure-volume-temperature (PV T) experiments delivered the hole density and the specific hole free volume and a complete characterization of the free volume microstructure in that sense. These data are used in correlation with structural ({alpha}) relaxation data from broad-band dielectric spectroscopy (BDS) in terms of the Cohen-Grest and Cohen-Turnbull free volume models. An extension of the latter model allows us to quantify deviations between experiments and theory and an attempt to systematize these in terms of T{sub g} or of the fragility. The experimental data for several fragile and less fragile glass formers are involved in the final discussion. It was concluded that, for large differences in the fragility of different glass formers, the positron lifetime mirrors clearly the different character of these materials. For small differences in the fragility, additional properties like the character of bonds and chemical structure of the material may affect size, distribution and thermal behaviour of the free volume.

  10. Positron emission tomographic images and expectation maximization: A VLSI architecture for multiple iterations per second

    International Nuclear Information System (INIS)

    Jones, W.F.; Byars, L.G.; Casey, M.E.

    1988-01-01

    A digital electronic architecture for parallel processing of the expectation maximization (EM) algorithm for Positron Emission tomography (PET) image reconstruction is proposed. Rapid (0.2 second) EM iterations on high resolution (256 x 256) images are supported. Arrays of two very large scale integration (VLSI) chips perform forward and back projection calculations. A description of the architecture is given, including data flow and partitioning relevant to EM and parallel processing. EM images shown are produced with software simulating the proposed hardware reconstruction algorithm. Projected cost of the system is estimated to be small in comparison to the cost of current PET scanners

  11. Contribution of the time of flight information to the positron tomographic imaging

    International Nuclear Information System (INIS)

    Laval, M.; Allemand, R.; Campagnolo, R.; Garderet, P.; Gariod, R.; Guinet, P.; Moszinski, M.; Tournier, E.; Vacher, J.

    1982-09-01

    The TOF measurement enables positrons to be localized along the line joining two detectors. The accuracy of this measurement is mainly controled by the scintillator performances: light yield, and decay time constant are the key parameters. The main advantage of using the TOF information can be expressed in terms of sensitivity gain: for example the ratio of the required total counts to obtain the same random noise in a positron image without and with the TOF information. This gain ranges from 1 to more than 10, depending on the TOF performance but also on the activity distribution. Other advantages are inherent on the TOF method: - the very high count rate capabilities of the detectors enables fast dymanic studies with for example O 15 ; - the random coincidences to be found in an imaged object are the lowest that can be achieved; - a small amount of radiation scattered by the object is rejected outside of the field of reconstruction

  12. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    Science.gov (United States)

    Sun, Aixia; Liu, Xiang; Tang, Ganghua

    2017-12-01

    Tumor cells have an increased nutritional demand for amino acids(AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] amino acids, labeling alpha-C- amino acids, the branched-chain of amino acids and N-substituted carbon-11 labeled amino acids. These tracers target protein synthesis or amino acid(AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non–small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.

  13. Applications of a Ga-68/Ge-68 generator system to brain imaging using a multiwire proportional chamber positron camera

    International Nuclear Information System (INIS)

    Hattner, R.S.; Lim, C.B.; Swann, S.J.; Kaufman, L.; Chu, D.; Perez-Mendez, V.

    1976-01-01

    A Ge-68/Ga-68 generator system has been applied to brain imaging in conjunction with a novel coincidence detection based positron camera. The camera consists of two opposed large area multiwire proportional chamber (MWPC) detectors interfaced to multichannel lead converter plates. Event localization is effected of delay lines. Ten patients with brain lesions have been studied 1-2 hours after the administration of Ga-68 formulated as DTPA. The images were compared to conventional brain scans, and to x-ray section scans (CAT). The positron studies have shown significant mitigation of confusing superficial activity resulting from craniotomy compared to conventional brain scans. Central necrosis of lesions observed in positron images, but not in the conventional scans has been confirmed in CAT. The economy of MWPC positron cameras combined with the ideal characteristics of the Ge-68/Ga-68 generator promise a cost efficient imaging system for the future

  14. Reactive astrocytes over express TSPO and are detected by TSPO Positron Emission Tomography Imaging

    International Nuclear Information System (INIS)

    Lavisse, Sonia; Guillermier, Martine; Herard, Anne-Sophie; Petit, Fanny; Delahaye, Marion; Van Camp, Nadja; Ben Haim, Lucile; Lebon, Vincent; Delzescaux, Thierry; Bonvento, Gilles; Hantraye, Philippe; Escartin, Carole; Remy, Philippe; Dolle, Frederic

    2012-01-01

    Astrocytes and micro-glia become reactive under most brain pathological conditions, making this neuro-inflammation process a surrogate marker of neuronal dysfunction. Neuro-inflammation is associated with increased levels of translocator protein 18kDa(TSPO) and binding sites for TSPO ligands. Positron emission tomography (PET) imaging of TSPO is thus commonly used to monitor neuro-inflammation in preclinical and clinical studies. It is widely considered that TSPO PET signal reveals reactive micro-glia, although a few studies suggested a potential contribution of reactive astrocytes. Because astrocytes and micro-glia play very different roles, it is crucial to determine whether reactive astrocytes can also over-express TSPO and yield to a detectable TSPO PET signal in vivo. We used a model of selective astrocyte activation through lentiviral gene transfer of the cytokine ciliary neuro-trophic factor (CNTF) into the rat striatum, in the absence of neuro-degeneration. CNTF induced an extensive activation of astrocytes, which over-expressed GFAP and become hypertrophic, whereas micro-glia displayed minimal increase in reactive markers.Two TSPO radioligands, [ 18 F]DPA-714[N,N-diethyl-2-(2-(4-(2-[ 18 F]fluoroethoxy)phenyl) - 5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide] and [ 11 C]SSR180575 (7-chloro-N,N-dimethyl-5-[ 11 C]methyl-4-oxo-3-phenyl - 3,5-dihydro-4H-pyridazino[4,5- b]indole-1-acetamide),showed a significant binding in the lenti-CNTF-injected striatum that was saturated and displaced by PK11195[N-methyl- N-(1-methylpropyl)-1-(2-chlorophenyl)-isoquinoline-3-carboxamide]. The volume of radioligand binding matched the GFAP immuno-positive volume. TSPO mRNA levels were significantly increased, and TSPO protein was over-expressed by CNTF-activated astrocytes. We show that reactive astrocytes over-express TSPO, yielding to a significant and selective binding of TSPO radioligands. Therefore, caution must be used when interpreting TSPO PET imaging in animals or

  15. Diagnostic merits of current and potential applications of single photon and positron imaging: a perspective

    Energy Technology Data Exchange (ETDEWEB)

    Harper, P. V.

    1978-01-01

    A brief review of the limitations of medical radionuclide imaging techniques in competition with x-ray CAT scanning and ultrasound suggest that the emphasis in this are should be on measurement of the physiologic uptake of tracer materials. Tomography greatly improves the possibilities of quantitation of this uptake - examples using positron and single photon techniques are presented for /sup 13/NH/sub 3/ and /sup 201/Tl in the heart.

  16. Diagnostic merits of current and potential applications of single photon and positron imaging: a perspective

    International Nuclear Information System (INIS)

    Harper, P.V.

    1978-01-01

    A brief review of the limitations of medical radionuclide imaging techniques in competition with x-ray CAT scanning and ultrasound suggest that the emphasis in this are should be on measurement of the physiologic uptake of tracer materials. Tomography greatly improves the possibilities of quantitation of this uptake - examples using positron and single photon techniques are presented for 13 NH 3 and 201 Tl in the heart

  17. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging

    Czech Academy of Sciences Publication Activity Database

    Koziolová, Eva; Goel, S.; Chytil, Petr; Janoušková, Olga; Barnhart, T. E.; Cai, W.; Etrych, Tomáš

    2017-01-01

    Roč. 9, č. 30 (2017), s. 10906-10918 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA15-02986S; GA MZd(CZ) NV16-28594A; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers * positron emission tomography ( PET ) * fluorescence imaging Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.367, year: 2016

  18. Positron-emission tomography imaging of long-term shape recognition challenges

    OpenAIRE

    Rosier, A.; Cornette, L.; Dupont, P.; Bormans, G.; Michiels, J.; Mortelmans, L.; Orban, G. A.

    1997-01-01

    Long-term visual memory performance was impaired by two types of challenges: a diazepam challenge on acquisition and a sensory challenge on recognition. Using positron-emission tomography regional cerebral blood flow imaging, we studied the effect of these challenges on regional brain activation during the delayed recognition of abstract visual shapes as compared with a baseline fixation task. Both challenges induced a significant decrease in differential activation in the left fusiform gyrus...

  19. Temperature and time dependence of free volume in bisphenol A polycarbonate studied by positron lifetime spectroscopy

    NARCIS (Netherlands)

    Kluin, J.E.; Yu, Z.; Vleeshouwers, S.M.; McGervey, J.D.; Jamieson, A.M.; Simha, R.

    1992-01-01

    New positron lifetime expts. were carried out for Bisphenol-A polycarbonate. The influence of unavoidable pos. charged positron irradn. on the lifetime and intensity of o-positronium (o-Ps) annihilation was studied. Results obtained using a state-of-the-art lifetime spectrometer (count rate 670 cps

  20. High-temperature vacant lattice site formation in solids and free volumes in melts studied by positron lifetime measurements

    Science.gov (United States)

    Schaefer, H.-E.

    1991-05-01

    In the present paper a concise review is given of the application of positron lifetime measurements to the study of high-temperature vacancies in intermetallic compounds (F 76.3Al 23.7), in metal oxides (NiO), in elemental semiconductors (Si, Ge), and of the oxygen loss or uptake in YBa 2Cu 3O 7-δ. Investigations of free volumes in elemental melts (Al, In, Ge) are included.

  1. High-temperature vacant lattice site formation in solids and free volumes in melts studied by positron lifetime measurements

    International Nuclear Information System (INIS)

    Schaefer, H.E.

    1991-01-01

    In the present paper a concise review is given of the application of positron lifetime measurements to the study of high-temperature vacancies in intermetallic compounds (F 76.3 Al 23.7 ), in metal oxides (NiO), in elemntal semiconductors (Si, Ge), and of the oxygen loss or uptake in YBa 2 Cu 3 O 7-δ . Investigations of free volumes in elemental melts (Al, In, Ge) are included. (orig.)

  2. Influence of slice overlap on positron emission tomography image quality

    International Nuclear Information System (INIS)

    McKeown, Clare; Gillen, Gerry; Dempsey, Mary Frances; Findlay, Caroline

    2016-01-01

    PET scans use overlapping acquisition beds to correct for reduced sensitivity at bed edges. The optimum overlap size for the General Electric (GE) Discovery 690 has not been established. This study assesses how image quality is affected by slice overlap. Efficacy of 23% overlaps (recommended by GE) and 49% overlaps (maximum possible overlap) were specifically assessed. European Association of Nuclear Medicine (EANM) guidelines for calculating minimum injected activities based on overlap size were also reviewed. A uniform flood phantom was used to assess noise (coefficient of variation, (COV)) and voxel accuracy (activity concentrations, Bq ml −1 ). A NEMA (National Electrical Manufacturers Association) body phantom with hot/cold spheres in a background activity was used to assess contrast recovery coefficients (CRCs) and signal to noise ratios (SNR). Different overlap sizes and sphere-to-background ratios were assessed. COVs for 49% and 23% overlaps were 9% and 13% respectively. This increased noise was difficult to visualise on the 23% overlap images. Mean voxel activity concentrations were not affected by overlap size. No clinically significant differences in CRCs were observed. However, visibility and SNR of small, low contrast spheres (⩽13 mm diameter, 2:1 sphere to background ratio) may be affected by overlap size in low count studies if they are located in the overlap area. There was minimal detectable influence on image quality in terms of noise, mean activity concentrations or mean CRCs when comparing 23% overlap with 49% overlap. Detectability of small, low contrast lesions may be affected in low count studies—however, this is a worst-case scenario. The marginal benefits of increasing overlap from 23% to 49% are likely to be offset by increased patient scan times. A 23% overlap is therefore appropriate for clinical use. An amendment to EANM guidelines for calculating injected activities is also proposed which better reflects the effect overlap size

  3. Initial results of a positron tomograph for prostate imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J.S.; Choong, W.S.; Moses, W.W.; Qi, J.; Hu, J.; Wang,G.C.; Wilson, D.; Oh, S.; Huesman, R.H.; Derenzo, S.E.; Budinger, T.F.

    2004-11-29

    We present the status and initial images of a positrontomograph for prostate imaging that centers a patient between a pair ofexternal curved detector banks (ellipse: 45 cm minor, 70 cm major axis).The distance between detector banks adjusts to allow patient access andto position the detectors as closely as possible for maximum sensitivitywith patients of various sizes. Each bank is composed of two axial rowsof 20 CTI PET Systems HR+ block detectors for a total of 80 modules inthe camera. Compared to an ECAT HR PET system operating in 3D mode, ourcamera uses about one-quarter the number of detectors and hasapproximately the same sensitivity for a central point source, becauseour detectors are close to the patient. The individual detectors areangled in the plane to point towards the prostate to minimize resolutiondegradation in that region. The detectors are read out by modified CTIdata acquisition electronics. We have completed construction of thegantry and electronics, have developed detector calibration and dataacquisition software, and are taking coincidence data. We demonstratethat we can clearly visualize a "prostate" in a simple phantom.Reconstructed images of two phantoms are shown.

  4. Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging.

    Science.gov (United States)

    Eldib, Mootaz; Bini, Jason; Calcagno, Claudia; Robson, Philip M; Mani, Venkatesh; Fayad, Zahi A

    2014-02-01

    Attenuation correction for magnetic resonance (MR) coils is a new challenge that came about with the development of combined MR and positron emission tomography (PET) imaging. This task is difficult because such coils are not directly visible on either PET or MR acquisitions with current combined scanners and are therefore not easily localized in the field of view. This issue becomes more evident when trying to localize flexible MR coils (eg, cardiac or body matrix coil) that change position and shape from patient to patient and from one imaging session to another. In this study, we proposed a novel method to localize and correct for the attenuation and scatter of a flexible MR cardiac coil, using MR fiducial markers placed on the surface of the coil to allow for accurate registration of a template computed tomography (CT)-based attenuation map. To quantify the attenuation properties of the cardiac coil, a uniform cylindrical water phantom injected with 18F-fluorodeoxyglucose (18F-FDG) was imaged on a sequential MR/PET system with and without the flexible cardiac coil. After establishing the need to correct for the attenuation of the coil, we tested the feasibility of several methods to register a precomputed attenuation map to correct for the attenuation. To accomplish this, MR and CT visible markers were placed on the surface of the cardiac flexible coil. Using only the markers as a driver for registration, the CT image was registered to the reference image through a combination of rigid and deformable registration. The accuracy of several methods was compared for the deformable registration, including B-spline, thin-plate spline, elastic body spline, and volume spline. Finally, we validated our novel approach both in phantom and patient studies. The findings from the phantom experiments indicated that the presence of the coil resulted in a 10% reduction in measured 18F-FDG activity when compared with the phantom-only scan. Local underestimation reached 22% in

  5. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image.

    Science.gov (United States)

    Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik

    2015-01-01

    Spatial normalization is a prerequisite step for analyzing positron emission tomography (PET) images both by using volume-of-interest (VOI) template and voxel-based analysis. Magnetic resonance (MR) or ligand-specific PET templates are currently used for spatial normalization of PET images. We used computed tomography (CT) images acquired with PET/CT scanner for the spatial normalization for [18F]-N-3-fluoropropyl-2-betacarboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) PET images and compared target-to-cerebellar standardized uptake value ratio (SUVR) values with those obtained from MR- or PET-guided spatial normalization method in healthy controls and patients with Parkinson's disease (PD). We included 71 healthy controls and 56 patients with PD who underwent [18F]-FP-CIT PET scans with a PET/CT scanner and T1-weighted MR scans. Spatial normalization of MR images was done with a conventional spatial normalization tool (cvMR) and with DARTEL toolbox (dtMR) in statistical parametric mapping software. The CT images were modified in two ways, skull-stripping (ssCT) and intensity transformation (itCT). We normalized PET images with cvMR-, dtMR-, ssCT-, itCT-, and PET-guided methods by using specific templates for each modality and measured striatal SUVR with a VOI template. The SUVR values measured with FreeSurfer-generated VOIs (FSVOI) overlaid on original PET images were also used as a gold standard for comparison. The SUVR values derived from all four structure-guided spatial normalization methods were highly correlated with those measured with FSVOI (P normalization methods provided reliable striatal SUVR values comparable to those obtained with MR-guided methods. CT-guided methods can be useful for analyzing dopamine transporter PET images when MR images are unavailable.

  6. The application of positron emission tomography/computed tomography in radiation treatment planning: effect on gross target volume definition and treatment management.

    Science.gov (United States)

    Iğdem, S; Alço, G; Ercan, T; Unalan, B; Kara, B; Geceer, G; Akman, C; Zengin, F O; Atilla, S; Okkan, S

    2010-04-01

    To analyse the effect of the use of molecular imaging on gross target volume (GTV) definition and treatment management. Fifty patients with various solid tumours who underwent positron emission tomography (PET)/computed tomography (CT) simulation for radiotherapy planning from 2006 to 2008 were enrolled in this study. First, F-18 fluorodeoxyglucose (FDG)-PET and CT scans of the treatment site in the treatment position and then a whole body scan were carried out with a dedicated PET/CT scanner and fused thereafter. FDG-avid primary tumour and lymph nodes were included into the GTV. A multidisciplinary team defined the target volume, and contouring was carried out by a radiation oncologist using visual methods. To compare the PET/CT-based volumes with CT-based volumes, contours were drawn on CT-only data with the help of site-specific radiologists who were blind to the PET/CT results after a median time of 7 months. In general, our PET/CT volumes were larger than our CT-based volumes. This difference was significant in patients with head and neck cancers. Major changes (> or =25%) in GTV delineation were observed in 44% of patients. In 16% of cases, PET/CT detected incidental second primaries and metastatic disease, changing the treatment strategy from curative to palliative. Integrating functional imaging with FDG-PET/CT into the radiotherapy planning process resulted in major changes in a significant proportion of our patients. An interdisciplinary approach between imaging and radiation oncology departments is essential in defining the target volumes. Copyright 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    Science.gov (United States)

    Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M

    2007-11-15

    Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.

  8. Comparison of Five Segmentation Tools for 18F-Fluoro-Deoxy-Glucose-Positron Emission Tomography-Based Target Volume Definition in Head and Neck Cancer

    International Nuclear Information System (INIS)

    Schinagl, Dominic A.X.; Vogel, Wouter V.; Hoffmann, Aswin L.; Dalen, Jorn A. van; Oyen, Wim J.; Kaanders, Johannes H.A.M.

    2007-01-01

    Purpose: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with 18 F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Methods and Materials: Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. Results: The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). Conclusions: The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition

  9. Metastatic meningioma: positron emission tomography CT imaging findings.

    LENUS (Irish Health Repository)

    Brennan, C

    2010-12-01

    The imaging findings of a case of metastasing meningioma are described. The case illustrates a number of rare and interesting features. The patient presented with haemoptysis 22 years after the initial resection of an intracranial meningioma. CT demonstrated heterogeneous masses with avid peripheral enhancement without central enhancement. Blood supply to the larger lesion was partially from small feeding vessels from the inferior pulmonary vein. These findings correlate with a previously published case in which there was avid uptake of fluoro-18-deoxyglucose peripherally with lesser uptake centrally. The diagnosis of metastasing meningioma was confirmed on percutaneous lung tissue biopsy.

  10. Real-time monitoring and analysis of nutrient transportation in a living plant using a positron emitting tracer imaging system (PETIS)

    International Nuclear Information System (INIS)

    Matsuhashi, Shinpei

    2005-01-01

    We visualized the uptake and transportation of nutrition in a living plant using positron-emitting tracers and mathematical analysis of the data. We have been developing a positron-imaging technique to visualize the uptake and transportation of nutrients in a plant by a positron-emitting tracer-imaging system (PETIS) using positron-emitting nuclide-labeled compounds. The PETIS data is analyzed mathematically to understand the physiological meaning of the physical parameters. In this study, the results on the uptake and transportation of nutrients, which were obtained with the use of a positron-imaging method, are introduced. (author)

  11. Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors. Comparison with positron emission tomography/computed tomography

    International Nuclear Information System (INIS)

    Nakajo, Kazuya; Tatsumi, Mitsuaki; Inoue, Atsuo

    2010-01-01

    We compared the diagnostic accuracy of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and PET/magnetic resonance imaging (MRI) fusion images for gynecological malignancies. A total of 31 patients with gynecological malignancies were enrolled. FDG-PET images were fused to CT, T1- and T2-weighted images (T1WI, T2WI). PET-MRI fusion was performed semiautomatically. We performed three types of evaluation to demonstrate the usefulness of PET/MRI fusion images in comparison with that of inline PET/CT as follows: depiction of the uterus and the ovarian lesions on CT or MRI mapping images (first evaluation); additional information for lesion localization with PET and mapping images (second evaluation); and the image quality of fusion on interpretation (third evaluation). For the first evaluation, the score for T2WI (4.68±0.65) was significantly higher than that for CT (3.54±1.02) or T1WI (3.71±0.97) (P<0.01). For the second evaluation, the scores for the localization of FDG accumulation showing that T2WI (2.74±0.57) provided significantly more additional information for the identification of anatomical sites of FDG accumulation than did CT (2.06±0.68) or T1WI (2.23±0.61) (P<0.01). For the third evaluation, the three-point rating scale for the patient group as a whole demonstrated that PET/T2WI (2.72±0.54) localized the lesion significantly more convincingly than PET/CT (2.23±0.50) or PET/T1WI (2.29±0.53) (P<0.01). PET/T2WI fusion images are superior for the detection and localization of gynecological malignancies. (author)

  12. Quantified measurement of brain blood volume: comparative evaluations between the single photon emission computer tomography and the positron computer tomography

    International Nuclear Information System (INIS)

    Bouvard, G.; Fernandez, Y.; Petit-Taboue, M.C.; Derlon, J.M.; Travere, J.M.; Le Poec, C.

    1991-01-01

    The quantified measurement of cerebral blood volume is interesting for the brain blood circulation studies. This measurement is often used in positron computed tomography. It's more difficult in single photon emission computed tomography: there are physical problems with the limited resolution of the detector, the Compton effect and the photon attenuation. The objectif of this study is to compare the results between these two techniques. The quantified measurement of brain blood volume is possible with the single photon emission computer tomogragry. However, there is a loss of contrast [fr

  13. Evaluation of regional cerebral blood flow and volume of rapidly exchangeable water in man by positron emission tomography

    International Nuclear Information System (INIS)

    Depresseux, J.C.; Cheslet, J.P.; Hodiaumont, J.

    1982-01-01

    The present investigation uses bolus inhalation of C 15 O 2 and sequential positron emission tomography of the brain in view to simultaneously evaluate regional cerebral blood flow and regional cerebral volume of rapidly exchangeable water in normal human subjects. Arguments allow to infer that the cerebral distribution volume of radiowater does vary with time during the initial period of invasion of tissue by the indicator. Implications of this variation on the validity of classical data procedures is discussed and an alternative original method is proposed [fr

  14. Investigation of nanoscopic free volume and interfacial interaction in an epoxy resin/modified clay nanocomposite using positron annihilation spectroscopy.

    Science.gov (United States)

    Patil, Pushkar N; Sudarshan, Kathi; Sharma, Sandeep K; Maheshwari, Priya; Rath, Sangram K; Patri, Manoranjan; Pujari, Pradeep K

    2012-12-07

    Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N-dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free-volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent-casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho-positronium lifetime (τ(3)), a measure of the free-volume size, as well as the fractional free volume (f(v)) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I(2)), an index of the epoxy-clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age-momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy-clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging

    OpenAIRE

    Schilling, Kathy; Narayanan, Deepa; Kalinyak, Judith E.; The, Juliette; Velasquez, Maria Victoria; Kahn, Simone; Saady, Matthew; Mahal, Ravinder; Chrystal, Larraine

    2010-01-01

    Purpose The objective of this study was to compare the performance characteristics of 18F-fluorodeoxyglucose (FDG) positron emission mammography (PEM) with breast magnetic resonance imaging (MRI) as a presurgical imaging and planning option for index and ipsilateral lesions in patients with newly diagnosed, biopsy-proven breast cancer. Methods Two hundred and eight women >25 years of age (median age = 59.7 ± 14.1 years) with biopsy-proven primary breast cancer enrolled in this prospective, si...

  16. New developments in molecular imaging: positron emission tomography time-of-flight (TOF-PET)

    International Nuclear Information System (INIS)

    Aguilar, P.; Couce, B.; Iglesias, A.; Lois, C.

    2011-01-01

    Positron Emission tomography (PET) in increasingly being used in oncology for the diagnosis and staging of disease, as well as in monitoring response to therapy. One of the last advances in PET is the incorporation of Time-of-Flight (TOF) information, which improves the tomographic reconstruction process and subsequently the quality of the final image. In this work, we explain the principles of PET and the fundamentals of TOF-PET. Clinical images are shown in order to illustrate how TOF-PET improves the detectability of small lesions, particularly in patients with high body mass index. (Author) 20 refs

  17. Anti-Amyloid-?-Mediated Positron Emission Tomography Imaging in Alzheimer's Disease Mouse Brains

    OpenAIRE

    McLean, Daniel; Cooke, Michael J.; Wang, Yuanfei; Green, David; Fraser, Paul E.; George-Hyslop, Peter St; Shoichet, Molly S.

    2012-01-01

    Antibody-mediated imaging of amyloid β (Aβ) in Alzheimer's disease (AD) offers a promising strategy to detect and monitor specific Aβ species, such as oligomers, that have important pathological and therapeutic relevance. The major current limitation of antibodies as a diagnostic and imaging device is poor blood-brain-barrier permeability. A classical anti-Aβ antibody, 6E10, is modified with 10 kDa polyethylene glycol (PEG) and a positron emitting isotope, Copper-64 (t(½) = 12.7 h), and intra...

  18. Transfer function analysis of positron-emitting tracer imaging system (PETIS) data

    International Nuclear Information System (INIS)

    Keutgen, N.; Matsuhashi, S.; Mizuniwa, C.; Ito, T.; Fujimura, T.; Ishioka, N.S.; Watanabe, S.; Sekine, T.; Uchida, H.; Hashimoto, S.

    2002-01-01

    Quantitative analysis of the two-dimensional image data obtained with the positron-emitting tracer imaging system (PETIS) for plant physiology has been carried out using a transfer function analysis method. While a cut leaf base of Chinese chive (Allium tuberosum Rottler) or a cut stem of soybean (Glycine max L.) was immersed in an aqueous solution containing the [ 18 F] F - ion or [ 13 N]NO 3 - ion, tracer images of the leaf of Chinese chive and the trifoliate of soybean were recorded with PETIS. From the time sequence of images, the tracer transfer function was estimated from which the speed of tracer transport and the fraction moved between specified image positions were deduced

  19. Towards factor analysis exploration applied to positron emission tomography functional imaging for breast cancer characterization

    International Nuclear Information System (INIS)

    Rekik, W.; Ketata, I.; Sellami, L.; Ben slima, M.; Ben Hamida, A.; Chtourou, K.; Ruan, S.

    2011-01-01

    This paper aims to explore the factor analysis when applied to a dynamic sequence of medical images obtained using nuclear imaging modality, Positron Emission Tomography (PET). This latter modality allows obtaining information on physiological phenomena, through the examination of radiotracer evolution during time. Factor analysis of dynamic medical images sequence (FADMIS) estimates the underlying fundamental spatial distributions by factor images and the associated so-called fundamental functions (describing the signal variations) by factors. This method is based on an orthogonal analysis followed by an oblique analysis. The results of the FADMIS are physiological curves showing the evolution during time of radiotracer within homogeneous tissues distributions. This functional analysis of dynamic nuclear medical images is considered to be very efficient for cancer diagnostics. In fact, it could be applied for cancer characterization, vascularization as well as possible evaluation of response to therapy.

  20. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect

    International Nuclear Information System (INIS)

    Iida, H.; Kanno, I.; Takahashi, A.

    1988-01-01

    An in vivo technique was developed for measuring the absolute myocardial blood flow with H 2 15 O and dynamic positron-emission tomography. This technique was based on a new model involving the concept of the tissue fraction, which was defined as the fraction of the tissue mass in the volume of the region of interest. The myocardium was imaged dynamically by positron-emission tomography, starting at the time of intravenous bolus injection of H 2 15 O. The arterial input function was measured continuously with a beta-ray detector. A separate image after C 15 O inhalation was also obtained for correction of the H 2 15 O radioactivity in the blood. The absolute myocardial blood flow and the tissue fraction were calculated for 15 subjects with a kinetic technique under region-of-interest analysis. These results seem consistent with their coronary angiographic findings. The mean value of the measured absolute myocardial blood flows in normal subjects was 0.95 +/- 0.09 ml/min/g. This technique detected a diffuse decrease of myocardial blood flow in patients with triple-vessel disease

  1. Evaluation of contrast reproduction method based on the anatomical guidance of the cerebral images reconstruction in positron emission tomography

    International Nuclear Information System (INIS)

    Bataille, F.

    2007-04-01

    Positron emission tomography is a medical imaging modality providing in-vivo volumetric images of functional processes of the human body, which is used for the diagnosis and the following of neuro degenerative diseases. PET efficiency is however limited by its poor spatial resolution, which generates a decrease of the image local contrast and leads to an under-estimation of small cerebral structures involved in the degenerative mechanism of those diseases. This so-called partial volume effect degradation is usually corrected in a post-reconstruction processing framework through the use of anatomical information, whose spatial resolution allows a better discrimination between functional tissues. However, this kind of method has the major drawback of being very sensitive to the residual mismatches on the anatomical information processing. We developed in this thesis an alternative methodology to compensate for the degradation, by incorporating in the reconstruction process both a model of the system impulse response and an anatomically-based image prior constraint. This methodology was validated by comparison with a post-reconstruction correction strategy, using data from an anthropomorphic phantom acquisition and then we evaluated its robustness to the residual mismatches through a realistic Monte Carlo simulation corresponding to a cerebral exam. The proposed algorithm was finally applied to clinical data reconstruction. (author)

  2. Free volume study on the miscibility of PEEK/PEI blend using positron annihilation and dynamic mechanical thermal analysis

    International Nuclear Information System (INIS)

    Ramani, R; Alam, S

    2015-01-01

    High performance polymer blend of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) was examined for their free volume behaviour using positron annihilation lifetime spectroscopy and dynamic mechanical thermal analysis methods. The fractional free volume obtained from PALS shows a negative deviation from linear additivity rule implying good miscibility between PEEK and PEI. The dynamic modulus and loss tangent were obtained for the blends at three different frequencies 1, 10 and 100 Hz at temperatures close to and above their glass transition temperature. Applying Time-Temperature-Superposition (TTS) principle to the DMTA results, master curves were obtained at a reference temperature T o and the WLF coefficients c 0 1 and c 0 2 were evaluated. Both the methods give similar results for the dependence of fractional free volume on PEI content in this blend. The results reveal that free volume plays an important role in determining the visco-elastic properties in miscible polymer blends. (paper)

  3. Cerebral imaging using 68Ga DTPA and the U.C.S.F. multiwire proportional chamber positron camera

    International Nuclear Information System (INIS)

    Hattner, R.S.; Lim, C.B.; Swann, S.J.; Kaufman, L.; Perez-Mendez, V.; Chu, D.; Huberty, J.P.; Price, D.C.; Wilson, C.B.

    1975-12-01

    A multiwire proportional chamber positron camera consisting of four 48 x 48 cm 2 detectors linked to a small digital computer has been designed, constructed, and characterized. Initial clinical application to brain imaging using 68 Ga DTPA in 10 patients with brain tumors is described. Tomographic image reconstruction is accomplished by an algorithm determining the intersection of the annihilation photon paths in planes of interest. Final image processing utilizes uniformity correction, simple thresholding, and smoothing. The positron brain images were compared to conventional scintillation brain scans and x-ray computerized axial tomograms (CAT) in each case. The positron studies have shown significant mitigation of confusing superficial activity resulting from craniotomy in comparison to conventional brain scans. Central necrosis of lesions observed in the positron images, but not in the conventional scans, has been confirmed in CAT. Modifications of the camera are being implemented to improve image quality, and these changes combined with the tomography inherent in the positron scans are anticipated to result in images superior in information content to conventional brain scans

  4. Development of positron emitting radionuclides for imaging with improved positron detectors. [/sup 82/Rb, /sup 62/Zn, /sup 64/Cu, /sup 67/Ga

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y.

    1976-10-01

    Recent advances in positron cameras and positron ring detectors for transverse section reconstruction have created renewed interest in positron emitting radionuclides. This paper reports on: generator-produced /sup 82/Rb; cyclotron-produced /sup 62/Zn; and reactor-produced /sup 64/Cu. Investigation of the /sup 82/Sr (25 d)--/sup 82/Rb (75 s) generator determined the elution characteristics for Bio-Rex 70, a weakly acidic carboxylic cation exchanger, using 2% NaCl as the eluent. The yield of /sup 82/Rb and the breakthrough of /sup 82/Sr were determined for newly prepared columns and for long term elution conditions. Spallation-produced /sup 82/Sr was used to charge a compact /sup 82/Rb generator to obtain multi-millicurie amounts of /sup 82/Rb for myocardial imaging. Zinc accumulates in the islet cells of the pancreas and in the prostate. Zinc-62 was produced by protons on Cu foil and separated by column chromatography. Zinc-62 was administered as the amino acid chelates and as the ZnCl/sub 2/ to tumor and normal animals. Tissue distribution was determined for various times after intravenous injection. Pancreas-liver images of /sup 62/Zn-histidine uptake were obtained in animals with the gamma camera and the liver uptake of /sup 99m/Tc sulfur colloid was computer subtracted to image the pancreas alone. The positron camera imaged uptake of /sup 62/Zn-histidine in the prostate of a dog at 20 h. /sup 64/Cu was chelated to asparagine, a requirement of leukemic cells, and administered to lymphoma mice. Uptake in tumor and various tissues was determined and compared with the uptake of /sup 67/Ga citrate under the same conditions. /sup 64/Cu-asparagine had better tumor-to-soft tissue ratios than /sup 67/Ga-citrate.

  5. Preliminary results for positron emission mammography: real-time functional breast imaging in a conventional mammography gantry

    International Nuclear Information System (INIS)

    Weinberg, I.; Majewski, S.; Weisenberger, A.; Markowitz, A.; Aloj, L.; Majewski, L,; Danforth, D.; Mulshine, J.; Cowan, K.; Zujewski, J.; Chow, C.; Jones, E.; Chang, V.; Berg, W.; Frank, J.

    1996-01-01

    In order to optimally integrate radiotracer breast imaging within the breast clinic, anatomy and pathology should be easily correlated with functional nuclear medicine breast images. As a first step in the development of a hybrid functional/anatomic breast imaging platform with biopsy capability, a conventional X-ray mammography gantry was modified to image the compressed brest with positron emitters. Phantom studies with the positron emission mammography (PEM) device showed that a 1-cc hot spot could be detected within 5 min. A preliminary clinical trial demonstrated in vivo visualization of primary breast cancer within 4 min. For sites where positron-emitting radionuclides are available, PEM promises to achieve low-cost directed functional examination of breast abnormalities, with potential for achieving X-ray correlation and image-guided biopsy. (orig.)

  6. 18F-FLT Positron Emission Tomography/Computed Tomography Imaging in Pancreatic Cancer: Determination of Tumor Proliferative Activity and Comparison with Glycolytic Activity as Measured by 18F-FDG Positron Emission Tomography/Computed Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Senait Aknaw Debebe

    2016-02-01

    Full Text Available Objective: This phase-I imaging study examined the imaging characteristic of 3’-deoxy-3’-(18F-fluorothymidine (18F-FLT positron emission tomography (PET in patients with pancreatic cancer and comparisons were made with (18F-fluorodeoxyglucose (18F-FDG. The ultimate aim was to develop a molecular imaging tool that could better define the biologic characteristics of pancreas cancer, and to identify the patients who could potentially benefit from surgical resection who were deemed inoperable by conventional means of staging. Methods: Six patients with newly diagnosed pancreatic cancer underwent a combined FLT and FDG computed tomography (CT PET/CT imaging protocol. The FLT PET/CT scan was performed within 1 week of FDG PET/CT imaging. Tumor uptake of a tracer was determined and compared using various techniques; statistical thresholding (z score=2.5, and fixed standardized uptake value (SUV thresholds of 1.4 and 2.5, and applying a threshold of 40% of maximum SUV (SUVmax and mean SUV (SUVmean. The correlation of functional tumor volumes (FTV between 18F-FDG and 18F-FLT was assessed using linear regression analysis. Results: It was found that there is a correlation in FTV due to metabolic and proliferation activity when using a threshold of SUV 2.5 for FDG and 1.4 for FLT (r=0.698, p=ns, but a better correlation was obtained when using SUV of 2.5 for both tracers (r=0.698, p=ns. The z score thresholding (z=2.5 method showed lower correlation between the FTVs (r=0.698, p=ns of FDG and FLT PET. Conclusion: Different tumor segmentation techniques yielded varying degrees of correlation in FTV between FLT and FDGPET images. FLT imaging may have a different meaning in determining tumor biology and prognosis.

  7. Method and apparatus for imaging volume data

    International Nuclear Information System (INIS)

    Drebin, R.; Carpenter, L.C.

    1987-01-01

    An imaging system projects a two dimensional representation of three dimensional volumes where surface boundaries and objects internal to the volumes are readily shown, and hidden surfaces and the surface boundaries themselves are accurately rendered by determining volume elements or voxels. An image volume representing a volume object or data structure is written into memory. A color and opacity is assigned to each voxel within the volume and stored as a red (R), green (G), blue (B), and opacity (A) component, three dimensional data volume. The RGBA assignment for each voxel is determined based on the percentage component composition of the materials represented in the volume, and thus, the percentage of color and transparency associated with those materials. The voxels in the RGBA volume are used as mathematical filters such that each successive voxel filter is overlayed over a prior background voxel filter. Through a linear interpolation, a new background filter is determined and generated. The interpolation is successively performed for all voxels up to the front most voxel for the plane of view. The method is repeated until all display voxels are determined for the plane of view. (author)

  8. Design and construction of the Donner 280-crystal positron ring for dynamic transverse section emission imaging

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Banchero, P.G.; Cahoon, J.L.; Huesman, R.H.; Vuletich, T.; Budinger, T.F.

    1977-09-01

    The design and construction of a medical imaging system for the rapid, accurate, three-dimensional imaging of positron-labeled compounds in the human body are described. Our medical research goals include quantifying blood flow and metabolism in human heart muscle and brain. The system consists of a large gantry containing lead shielding and a ring of 280 NaI(Tl) detectors that completely encircles the patient; 280 photomultiplier tubes, preamplifiers and timing discriminators; circuits that determine whenever a crystal has detected a gamma ray in time coincidence (i.e., within 12 nsec) of any of the opposing 105 crystals and determine the addresses of the crystals involved; 120K words of 12 bit memory for the simultaneous acquisition of data from eight portions of the cardiac cycle; and a hardwired image reconstructor capable of filtering and backprojecting data from 140 views to form a 210 x 210 computed transverse section image in less than 2 sec

  9. Design and construction of the Donner 280-crystal positron ring for dynamic transverse section emission imaging

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, S.E.; Banchero, P.G.; Cahoon, J.L.; Huesman, R.H.; Vuletich, T.; Budinger, T.F.

    1977-09-01

    The design and construction of a medical imaging system for the rapid, accurate, three-dimensional imaging of positron-labeled compounds in the human body are described. Our medical research goals include quantifying blood flow and metabolism in human heart muscle and brain. The system consists of a large gantry containing lead shielding and a ring of 280 NaI(Tl) detectors that completely encircles the patient; 280 photomultiplier tubes, preamplifiers and timing discriminators; circuits that determine whenever a crystal has detected a gamma ray in time coincidence (i.e., within 12 nsec) of any of the opposing 105 crystals and determine the addresses of the crystals involved; 120K words of 12 bit memory for the simultaneous acquisition of data from eight portions of the cardiac cycle; and a hardwired image reconstructor capable of filtering and backprojecting data from 140 views to form a 210 x 210 computed transverse section image in less than 2 sec.

  10. Characteristics of NaI detector in positron imaging device HEADTOME employing circular ring array

    International Nuclear Information System (INIS)

    Miura, Shuichi; Kanno, Iwao; Aizawa, Yasuo; Murakami, Matsutaro; Uemura, Kazuo

    1984-01-01

    In positron emission computed tomographs employing circular ring arrays of detectors, the performance of the imaging device has been specified ultimately by the characteristics of the detector. The responses of NaI detector were studied when detecting positron annihilation photon (511 keV). The study was mainly by using the NaI detector used in hybrid emission computed tomography (CT) ''HEADTOME'' we had developed. A series of measurements were carried out positioning two detectors with 40 cm distance and scanning 22 Na point source in water. Both detectors was inclined from 0 0 through 30 0 to change incident angle of positron annihilation toward crystal face. Energy window was set from 100 to 700 keV. The results were presented as follows; 1 Shortening the crystal length from 7 to 5 cm made sensitivity decrease about 10% and resolution deteriorate about 1 mm (FWHM). 2 As the results of varying the width of the crystal, 20 mm width was optimal at any incident angle. 3 The lead septum between the detectors was the thickness of 4 mm enough to reject multiple detector interactions (crosstalk). 4 Beam mask which was made of lead in order to improve spatial resolution and placed on crystal face worked effectively for incident angles from 0 0 to 15 0 but degraded uniformity of spatial resolution from 0 0 to through 30 0 . (author)

  11. Description and performance of a prototype PET system for small volume imaging

    International Nuclear Information System (INIS)

    McKee, B.T.A.; Hogan, M.J.; Queen's Univ., Kingston, Ontario; Dinsdale, H.B.; Howse, D.C.N.; Kulick, J.; Mak, H.B.; Stewart, H.B.

    1988-01-01

    A prototype positron emission tomography (PET) system has been designed for high-resolution imaging of small volumes. The detectors use Pb converter stacks and multiwire proportional counters (MWPC); the data acquisition components and image reconstruction methods are also described briefly. The performance of the system is discussed in terms of sensitivity, count rate capability, spatial resolution, and scattered background. Three examples of metabolic or transport imaging demonstrate the capabilities and limitations of the system. These are blood flow to bone, cerebral glucose uptake, and nutrient translocation in plants. The performance of the prototype has been sufficiently promising that an improved system is under development. (orig.)

  12. Comparison of fluorine-18 and bromine-76 imaging in positron emission tomography

    International Nuclear Information System (INIS)

    Ribeiro, M.J.; Ferreira, N.; Almeida, P.; Strul, D.; Loc'h, C.; Brulon, V.; Trebossen, R.; Maziere, B.; Bendriem, B.

    1999-01-01

    State of the art positron emission tomography (PET) systems allow for scatter and attenuation correction. However, the size of the structure being studied and the region of interest (ROI) chosen also influence the accuracy of measurements of radioactive concentration. Furthermore, the limited spatial resolution of PET tomographs, which depends, among other factors, on the range of positrons in matter, can also contribute to a loss in quantitation accuracy. In this paper we address the influence of positron range, structure size and ROI size on the quantitation of radioactive concentration using PET. ECAT EXACT HR+ (HR+) and ECAT 953B/31 (ECAT 953B) PET systems were used in phantom acquisitions performed with two radioisotopes with different positron ranges. The 3D Hoffman phantom was scanned on both scanners with both radioisotopes, to visually analyse the image quality. A resolution phantom having six spheres of different diameters in a Plexiglas cylinder was used to calculate the values of the contrast recovery coefficient or hot spot recovery coefficient and of the spill-over or cold spot recovery coefficient under different imaging conditions used in clinical routine at our institution. Activity ratios were varied between 2 and 30 or between 0.4 and 200 by filling the spheres with fluorine-18 or bromine-76 respectively and the cylinder with 11 C. Dynamic scans were performed on each scanner. Data were reconstructed using the same parameters as are used in clinical protocols. The variations in sphere and cylinder activities with time were fitted using the function M(t)=k 1 .A(t)+k 2 .B(t), where M(t) is the radioactivity concentration measured in an ROI placed on each sphere and A(t) and B(t) represent the true radioactivity concentrations present at time t in the spheres and in the cylinder respectively. k 1 and k 2 are factors representing the contrast recovery coefficient and the spill-over from surrounding activity on measurements respectively. The visual

  13. Simultaneous 68Ga DOTATATE Positron Emission Tomography/Magnetic Resonance Imaging in Meningioma Target Contouring: Feasibility and Impact Upon Interobserver Variability Versus Positron Emission Tomography/Computed Tomography and Computed Tomography/Magnetic Resonance Imaging.

    Science.gov (United States)

    Maclean, J; Fersht, N; Sullivan, K; Kayani, I; Bomanji, J; Dickson, J; O'Meara, C; Short, S

    2017-07-01

    The increasing use of highly conformal radiation techniques to treat meningioma confers a greater need for accurate targeting. Several groups have shown that positron emission tomography/computed tomography (PET/CT) information alters meningioma targets contoured by single observers, but whether this translates into improved accuracy has not been defined. As magnetic resonance imaging (MRI) is the cornerstone of meningioma target contouring, simultaneous PET/MRI may be superior to PET/CT. We assessed whether 68 Ga DOTATATE PET imaging (from PET/CT and PET/MRI) reduced interobserver variability (IOV) in meningioma target volume contouring. Ten patients with meningioma underwent simultaneous 68 Ga DOTATATE PET/MRI followed by PET/CT. They were selected as it was anticipated that target volume definition in their cases would be particularly challenging. Three radiation oncologists contoured target volumes according to an agreed protocol: gross tumour volume (GTV) and clinical target volume (CTV) on CT/MRI alone, CT/MRI+PET(CT) and CT/MRI+PET(MRI). GTV/CTV Kouwenhoven conformity levels (KCL), regions of contour variation and qualitative differences between PET(CT) and PET(MRI) were evaluated. There was substantial IOV in contouring. GTV mean KCL: CT/MRI 0.34, CT/MRI+PET(CT) 0.38, CT/MRI+PET(MRI) 0.39 (P = 0.06). CTV mean KCL: CT/MRI 0.31, CT/MRI+PET(CT) 0.35, CT/MRI+PET(MRI) 0.35 (P = 0.04 for all groups; P > 0.05 for individual pairs). One observer consistently contoured largest and one smallest. Observers rarely decreased volumes in relation to PET. Most IOV occurred in bone followed by dural tail, postoperative bed and venous sinuses. Tumour edges were qualitatively clearer on PET(MRI) versus PET(CT), but this did not affect contouring. IOV in contouring challenging meningioma cases was large and only slightly improved with the addition of 68 Ga DOTATATE PET. Simultaneous PET/MRI for meningioma contouring is feasible, but did not improve IOV versus PET

  14. Imaging of the pancreas using positron emission tomography with N-13 ammonia

    International Nuclear Information System (INIS)

    Hayashi, N.; Tamaki, N.; Yamamoto, K.; Senda, M.; Yonekura, Y.; Saji, H.; Nishizawa, S.; Adachi, H.; Torizuka, K.

    1986-01-01

    A new technique for imaging the pancreas was developed using positron emission tomography (PET) with N-13 ammonia. Four healthy volunteers and 15 patients with pancreatic diseases were studied. After intravenous injection of 10-20 mCi of N-13 ammonia, serial PET scans were obtained every 150 seconds. In the healthy subjects, the pancreas was clearly visualized from the earliest scan. Scans in all ten patients with pancreatic cancer were abnormal. In five patients tumors were visualized as hot spots. When there was severe associated pancreatitis due to pancreatic duct obstruction by tumor, the radionuclide accumulation in the pancreas was remarkably low

  15. Magnetic resonance imaging-guided attenuation correction of positron emission tomography data in PET/MRI

    OpenAIRE

    Izquierdo-Garcia, David; Catana, Ciprian

    2016-01-01

    Attenuation correction (AC) is one of the most important challenges in the recently introduced combined positron emission tomography/magnetic resonance imaging (PET/MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients (LACs) of the tissues and other components located in the PET field of view (FoV). MR-AC methods can be divided into three main categories: segmentation-, atlas- and PET-based. This review aims to...

  16. Radiolabeled phosphonium salts as mitocondrial voltage sensors for positron emission tomography myocardial imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yon; Min, Jung Joon [Dept. of Nuclear Medicine,Chonnam National University Medical School and Hwasun Hospital, Gwangju (Korea, Republic of)

    2016-09-15

    Despite substantial advances in the diagnosis of cardiovascular disease, {sup 18}F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenyl phosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed.

  17. A basic study on lesion detectability for hot spot imaging of positron emitters with dedicated PET and positron coincidence gamma camera

    International Nuclear Information System (INIS)

    Zhang, Hong; Inoue, Tomio; Tian, Mei; Alyafei, Saleh; Oriuchi, Noboru; Khan, Nasim; Endo, Keigo; Li Sijin

    2001-01-01

    The aim of this study was to explore the correlations of detectability and the semi-quantification for hot spot imaging with positron emitters in positron emission tomography (PET) and with a positron coincidence detection system (PCD). Phantom study results for the measurement of the lesion-to-background (L/B) ratio ranged from 2.0 to 30.3, and detectability for hot spot lesion of PET and PCD were performed to correspond to clinical conditions. The detectability and semi-quantitative evaluation of hot spots from 4.4 mm to 36.9 mm in diameter were performed from the PET and PCD images. There were strong correlations between the L/B ratios derived from PET and PCD hot spot images and actual L/B ratios; but the L/B ratio derived from PET was higher than that from PCD with a significant difference of 10% to 54.8%. The detectability of hot spot imaging of PCD was lower than that of PET at 64.8% (PCD) versus 77.8% (PET). Even the actual L/B ratio was 8.0, hot spots more than 10.6 mm in diameter could be clearly identified with PCD imaging. The same identification could be achieved with PET imaging even when the actual L/B ratio was 4.0. This detailed investigation indicated that FDG PCD yielded results comparable to FDG PET on visual analysis and semi-quantitative analysis in detecting hot spots in phantoms, but semi-quantitative analysis of the L/B ratio with FDG PCD was inferior to that with FDG PET and the detectability of PCD in smaller hot spots was significantly poor. (author)

  18. Comparison of positron emission tomography/CT and bremsstrahlung imaging following Y-90 radiation synovectomy

    International Nuclear Information System (INIS)

    Barber, Thomas W.; Yap, Kenneth S.K.; Cherk, Martin H.; Kalff, Victor; Powell, Anne

    2013-01-01

    The aim of this study is to compare the results of positron emission tomography (PET)/CT with bremsstrahlung imaging following Y-90 radiation synovectomy. All patients referred to our institution for Y-90 radiation synovectomy between July 2011 and February 2012 underwent both PET/CT and bremsstrahlung planar (±single photon emission computed tomography (SPECT) or SPECT/CT) imaging at 4 or 24 h following administration of Y-90 silicate colloid. PET image acquisition was performed for between 15 and 20min. In patients who underwent SPECT, side-by-side comparison with PET was performed and image quality/resolution scored using a five-point scale. The distribution pattern of Y-90 on PET and bremsstrahlung imaging was compared with the intra- or extra-articular location of Y-90 activity on fused PET/CT. Thirteen joints (11 knees and two ankles) were imaged with both PET/CT and planar bremsstrahlung imaging with 12 joints also imaged with bremsstrahlung SPECT. Of the 12 joints imaged with SPECT, PET image quality/resolution was superior in 11 and inferior in one. PET demonstrated a concordant distribution pattern compared with bremsstrahlung imaging in all scans, with the pattern classified as diffuse in 12 and predominantly focal in one. In all 12 diffuse scans, PET/CT confirmed the Y-90 activity to be located intra-articularly. In the one predominantly focal scan, the fused PET/CT images localised the Y-90 activity to mostly lie in the extra-articular space of the knee. PET/CT can provide superior image quality compared with bremsstrahlung imaging and may enable reliable detection of extra-articular Y-90 activity when there are focal patterns on planar bremsstrahlung imaging.

  19. Anti-amyloid-β-mediated positron emission tomography imaging in Alzheimer's disease mouse brains.

    Directory of Open Access Journals (Sweden)

    Daniel McLean

    Full Text Available Antibody-mediated imaging of amyloid β (Aβ in Alzheimer's disease (AD offers a promising strategy to detect and monitor specific Aβ species, such as oligomers, that have important pathological and therapeutic relevance. The major current limitation of antibodies as a diagnostic and imaging device is poor blood-brain-barrier permeability. A classical anti-Aβ antibody, 6E10, is modified with 10 kDa polyethylene glycol (PEG and a positron emitting isotope, Copper-64 (t(½ = 12.7 h, and intravenously delivered to the TgCRND8 mouse model of Alzheimer's disease. Modification of 6E10 with PEG (6E10-PEG increases accumulation of 6E10 in brain tissue in both TgCRND8 and wild type control animals. 6E10-PEG differentiates TgCRND8 animals from wild type controls using positron emission tomography (PET and provides a framework for using antibodies to detect pathology using non-invasive medical imaging techniques.

  20. Sparse representation and dictionary learning penalized image reconstruction for positron emission tomography

    International Nuclear Information System (INIS)

    Chen, Shuhang; Liu, Huafeng; Shi, Pengcheng; Chen, Yunmei

    2015-01-01

    Accurate and robust reconstruction of the radioactivity concentration is of great importance in positron emission tomography (PET) imaging. Given the Poisson nature of photo-counting measurements, we present a reconstruction framework that integrates sparsity penalty on a dictionary into a maximum likelihood estimator. Patch-sparsity on a dictionary provides the regularization for our effort, and iterative procedures are used to solve the maximum likelihood function formulated on Poisson statistics. Specifically, in our formulation, a dictionary could be trained on CT images, to provide intrinsic anatomical structures for the reconstructed images, or adaptively learned from the noisy measurements of PET. Accuracy of the strategy with very promising application results from Monte-Carlo simulations, and real data are demonstrated. (paper)

  1. Positron emission tomography-computed tomography protocol considerations for head and neck cancer imaging.

    Science.gov (United States)

    Escott, Edward J

    2008-08-01

    Positron emission tomographic-computed tomographic (PET-CT) imaging of patients with primary head and neck cancers has become an established approach for staging and restaging, as well as radiation therapy planning. The inherent co-registration of PET and CT images made possible by the integrated PET-CT scanner is particularly valuable in head and neck cancer imaging due to the complex and closely situated anatomy in this part of the body, the varied sources of physiologic and benign 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) tracer uptake that occurs in the neck, and the varied and complex posttreatment appearance of the neck. Careful optimization of both the CT and the PET portion of the examination is essential to insure the most accurate and clinically valuable interpretation of these examinations.

  2. Enhancement of positron emission tomography-computed tomography image quality using the principle of stochastic resonance

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Singh, Harmandeep; Patel, Chetan; Sarkar, Kaushik; Kumar, Rakesh; Bal, Chandra Sekhar

    2014-01-01

    Acquisition of higher counts improves visual perception of positron emission tomography-computed tomography (PET-CT) image. Larger radiopharmaceutical doses (implies more radiation dose) are administered to acquire this count in a short time period. However, diagnostic information does not increase after a certain threshold of counts. This study was conducted to develop a post processing method based on principle of “stochastic resonance” to improve visual perception of the PET-CT image having a required threshold counts. PET-CT images (JPEG file format) with low, medium, and high counts in the image were included in this study. The image was corrupted with the addition of Poisson noise. The amplitude of the Poisson noise was adjusted by dividing each pixel by a constant 1, 2, 4, 8, 16, and 32. The best amplitude of the noise that gave best images quality was selected based on high value of entropy of the output image, high value of structural similarity index and feature similarity index. Visual perception of the image was evaluated by two nuclear medicine physicians. The variation in structural and feature similarity of the image was not appreciable visually, but statistically images deteriorated as the noise amplitude increases although maintaining structural (above 70%) and feature (above 80%) similarity of input images in all cases. We obtained the best image quality at noise amplitude “4” in which 88% structural and 95% feature similarity of the input images was retained. This method of stochastic resonance can be used to improve the visual perception of the PET-CT image. This can indirectly lead to reduction of radiation dose

  3. Concept of an upright wearable positron emission tomography imager in humans.

    Science.gov (United States)

    Bauer, Christopher E; Brefczynski-Lewis, Julie; Marano, Gary; Mandich, Mary-Beth; Stolin, Alexander; Martone, Peter; Lewis, James W; Jaliparthi, Gangadhar; Raylman, Raymond R; Majewski, Stan

    2016-09-01

    Positron Emission Tomography (PET) is traditionally used to image patients in restrictive positions, with few devices allowing for upright, brain-dedicated imaging. Our team has explored the concept of wearable PET imagers which could provide functional brain imaging of freely moving subjects. To test feasibility and determine future considerations for development, we built a rudimentary proof-of-concept prototype (Helmet_PET) and conducted tests in phantoms and four human volunteers. Twelve Silicon Photomultiplier-based detectors were assembled in a ring with exterior weight support and an interior mechanism that could be adjustably fitted to the head. We conducted brain phantom tests as well as scanned four patients scheduled for diagnostic F(18-) FDG PET/CT imaging. For human subjects the imager was angled such that field of view included basal ganglia and visual cortex to test for typical resting-state pattern. Imaging in two subjects was performed ~4 hr after PET/CT imaging to simulate lower injected F(18-) FDG dose by taking advantage of the natural radioactive decay of the tracer (F(18) half-life of 110 min), with an estimated imaging dosage of 25% of the standard. We found that imaging with a simple lightweight ring of detectors was feasible using a fraction of the standard radioligand dose. Activity levels in the human participants were quantitatively similar to standard PET in a set of anatomical ROIs. Typical resting-state brain pattern activation was demonstrated even in a 1 min scan of active head rotation. To our knowledge, this is the first demonstration of imaging a human subject with a novel wearable PET imager that moves with robust head movements. We discuss potential research and clinical applications that will drive the design of a fully functional device. Designs will need to consider trade-offs between a low weight device with high mobility and a heavier device with greater sensitivity and larger field of view.

  4. Digital contrast enhancement of 18Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Agarwal, Krishan Kant; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh

    2016-01-01

    The role of 18 fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold “m” and slope “e”). The input parameters which resulted in an image having a high value of 2 nd order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters “m” had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope “e” was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted

  5. Free volume of mixed cation borosilicate glass sealants elucidated by positron annihilation lifetime spectroscopy and its correlation with glass properties

    Science.gov (United States)

    Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.

    2015-01-01

    The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.

  6. Practical no-gold-standard evaluation framework for quantitative imaging methods: application to lesion segmentation in positron emission tomography.

    Science.gov (United States)

    Jha, Abhinav K; Mena, Esther; Caffo, Brian; Ashrafinia, Saeed; Rahmim, Arman; Frey, Eric; Subramaniam, Rathan M

    2017-01-01

    Recently, a class of no-gold-standard (NGS) techniques have been proposed to evaluate quantitative imaging methods using patient data. These techniques provide figures of merit (FoMs) quantifying the precision of the estimated quantitative value without requiring repeated measurements and without requiring a gold standard. However, applying these techniques to patient data presents several practical difficulties including assessing the underlying assumptions, accounting for patient-sampling-related uncertainty, and assessing the reliability of the estimated FoMs. To address these issues, we propose statistical tests that provide confidence in the underlying assumptions and in the reliability of the estimated FoMs. Furthermore, the NGS technique is integrated within a bootstrap-based methodology to account for patient-sampling-related uncertainty. The developed NGS framework was applied to evaluate four methods for segmenting lesions from F-Fluoro-2-deoxyglucose positron emission tomography images of patients with head-and-neck cancer on the task of precisely measuring the metabolic tumor volume. The NGS technique consistently predicted the same segmentation method as the most precise method. The proposed framework provided confidence in these results, even when gold-standard data were not available. The bootstrap-based methodology indicated improved performance of the NGS technique with larger numbers of patient studies, as was expected, and yielded consistent results as long as data from more than 80 lesions were available for the analysis.

  7. A possible role for silicon microstrip detectors in nuclear medicine Compton imaging of positron emitters

    CERN Document Server

    Scannavini, M G; Royle, G J; Cullum, I; Raymond, M; Hall, G; Iles, G

    2002-01-01

    Collimation of gamma-rays based on Compton scatter could provide in principle high resolution and high sensitivity, thus becoming an advantageous method for the imaging of radioisotopes of clinical interest. A small laboratory prototype of a Compton camera is being constructed in order to initiate studies aimed at assessing the feasibility of Compton imaging of positron emitters. The design of the camera is based on the use of a silicon collimator consisting of a stack of double-sided, AC-coupled microstrip detectors (area 6x6 cm sup 2 , 500 mu m thickness, 128 channels/side). Two APV6 chips are employed for signal readout on opposite planes of each detector. This work presents the first results on the noise performance of the silicon strip detectors. Measurements of the electrical characteristics of the detector are also reported. On the basis of the measured noise, an angular resolution of approximately 5 deg. is predicted for the Compton collimator.

  8. Sub-millimeter planar imaging with positron emitters: EGS4 code simulation and experimental results

    International Nuclear Information System (INIS)

    Bollini, D.; Del Guerra, A.; Di Domenico, G.

    1996-01-01

    Experimental data for Planar Imaging with positron emitters (pulse height, efficiency and spatial resolution) obtained with two matrices of 25 crystals (2 x 2 x 30 mm 3 each) of YAP:Ce coupled with a Position Sensitive PhotoMultiplier (Hamamatsu R2486-06) have been reproduced with high accuracy using the EGS4 code. Extensive simulation provides a detailed description of the performance of this type of detector as a function of the matrix granularity, the geometry of the detector and detection threshold. We present the Monte Carlo simulation and the preliminary experimental results of a prototype planar imaging system made of two matrices, each one consisting of 400 (2 x 2 x 30 mm 3 ) crystals of YAP-Ce

  9. Attenuation correction with region growing method used in the positron emission mammography imaging system

    Science.gov (United States)

    Gu, Xiao-Yue; Li, Lin; Yin, Peng-Fei; Yun, Ming-Kai; Chai, Pei; Huang, Xian-Chao; Sun, Xiao-Li; Wei, Long

    2015-10-01

    The Positron Emission Mammography imaging system (PEMi) provides a novel nuclear diagnosis method dedicated for breast imaging. With a better resolution than whole body PET, PEMi can detect millimeter-sized breast tumors. To address the requirement of semi-quantitative analysis with a radiotracer concentration map of the breast, a new attenuation correction method based on a three-dimensional seeded region growing image segmentation (3DSRG-AC) method has been developed. The method gives a 3D connected region as the segmentation result instead of image slices. The continuity property of the segmentation result makes this new method free of activity variation of breast tissues. The threshold value chosen is the key process for the segmentation method. The first valley in the grey level histogram of the reconstruction image is set as the lower threshold, which works well in clinical application. Results show that attenuation correction for PEMi improves the image quality and the quantitative accuracy of radioactivity distribution determination. Attenuation correction also improves the probability of detecting small and early breast tumors. Supported by Knowledge Innovation Project of The Chinese Academy of Sciences (KJCX2-EW-N06)

  10. Transconvolution and the virtual positron emission tomograph—A new method for cross calibration in quantitative PET/CT imaging

    International Nuclear Information System (INIS)

    Prenosil, George A.; Weitzel, Thilo; Hentschel, Michael; Klaeser, Bernd; Krause, Thomas

    2013-01-01

    Purpose: Positron emission tomography (PET)/computed tomography (CT) measurements on small lesions are impaired by the partial volume effect, which is intrinsically tied to the point spread function of the actual imaging system, including the reconstruction algorithms. The variability resulting from different point spread functions hinders the assessment of quantitative measurements in clinical routine and especially degrades comparability within multicenter trials. To improve quantitative comparability there is a need for methods to match different PET/CT systems through elimination of this systemic variability. Consequently, a new method was developed and tested that transforms the image of an object as produced by one tomograph to another image of the same object as it would have been seen by a different tomograph. The proposed new method, termed Transconvolution, compensates for differing imaging properties of different tomographs and particularly aims at quantitative comparability of PET/CT in the context of multicenter trials. Methods: To solve the problem of image normalization, the theory of Transconvolution was mathematically established together with new methods to handle point spread functions of different PET/CT systems. Knowing the point spread functions of two different imaging systems allows determining a Transconvolution function to convert one image into the other. This function is calculated by convolving one point spread function with the inverse of the other point spread function which, when adhering to certain boundary conditions such as the use of linear acquisition and image reconstruction methods, is a numerically accessible operation. For reliable measurement of such point spread functions characterizing different PET/CT systems, a dedicated solid-state phantom incorporating 68 Ge/ 68 Ga filled spheres was developed. To iteratively determine and represent such point spread functions, exponential density functions in combination with a

  11. Probing vacancy-type free-volume defects in Li2B4O7 single crystal by positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Shpotyuk, O.; Adamiv, V.; Teslyuk, I.; Ingram, A.; Demchenko, P.

    2018-01-01

    Vacancy-type free-volume defects in lithium tetraborate Li2B4O7 single crystal, grown by the Czochralski technique, are probed with positron annihilation spectroscopy in the lifetime measuring mode. The experimental positron lifetime spectrum is reconstructed within the three-component fitting, involving channels of positron and positronium Ps trapping, as well as within the two-component fitting with a positronium-compensating source input. Structural configurations of the most efficient positron traps are considered using the crystallographic specificity of lithium tetraborate with the main accent on cation-type vacancies. Possible channels of positron trapping are visualized using the electronic structure calculations with density functional theory at the basis of structural parameters proper to Li2B4O7. Spatially-extended positron-trapping complexes involving singly-ionized lithium vacancies, with character lifetime close to 0.32 ns, are responsible for positron trapping in the nominally undoped lithium tetraborate Li2B4O7 crystal.

  12. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    Science.gov (United States)

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  13. Optimized statistical parametric mapping for partial-volume-corrected amyloid positron emission tomography in patients with Alzheimer's disease and Lewy body dementia

    Science.gov (United States)

    Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong

    2017-03-01

    We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.

  14. Comparison of CT and positron emission tomography/CT coregistered images in planning radical radiotherapy in patients with non-small-cell lung cancer

    International Nuclear Information System (INIS)

    MacManus, M.; D'Costa, I.; Ball, D.; Everitt, S.; Andrews, J.; Ackerly, T.; Binns, D.; Lau, E.; Hicks, R.J.; Weih, L.

    2007-01-01

    Imaging with F-18 fluorodeoxyglucose positron emission tomography (PET) significantly improves lung cancer staging, especially when PET and CT information are combined. We describe a method for obtaining CT and PET images at separate acquisitions, which allows coregistration and incorporation of PET information into the radiotherapy (RT) planning process for non-small-cell lung cancer. The influence of PET information on RT planning was analysed for 10 consecutive patients. Computed tomography and PET images were acquired with the patient in an immobilization device, in the treatment position. Using specially written software, PET and CT data were coregistered using fiducial markers and imported into our RT planning system (Cadplan version 6). Treatment plans were prepared with and without access to PET/CT coregistered images and then compared. PET influenced the treatment plan in all cases. In three cases, geographic misses (gross tumour outside planning target volume) would have occurred had PET not been used. In a further three cases, better planning target volume marginal coverage was achieved with PET. In four patients, three with atelectasis, there were significant reductions in V20 (percentage of the total lung volume receiving 20 Gy or more). Use of coregistered PET/CT images significantly altered treatment plans in a majority of cases. This method could be used in routine practice at centres without access to a combined PET/CT scanner

  15. Positron emission tomography with additional γ-ray detectors for multiple-tracer imaging.

    Science.gov (United States)

    Fukuchi, Tomonori; Okauchi, Takashi; Shigeta, Mika; Yamamoto, Seiichi; Watanabe, Yasuyoshi; Enomoto, Shuichi

    2017-06-01

    Positron emission tomography (PET) is a useful imaging modality that quantifies the physiological distributions of radiolabeled tracers in vivo in humans and animals. However, this technique is unsuitable for multiple-tracer imaging because the annihilation photons used for PET imaging have a fixed energy regardless of the selection of the radionuclide tracer. This study developed a multi-isotope PET (MI-PET) system and evaluated its imaging performance. Our MI-PET system is composed of a PET system and additional γ-ray detectors. The PET system consists of pixelized gadolinium orthosilicate (GSO) scintillation detectors and has a ring geometry that is 95 mm in diameter with an axial field of view of 37.5 mm. The additional detectors are eight bismuth germanium oxide (BGO) scintillation detectors, each of which is 50 × 50 × 30 mm 3 , arranged into two rings mounted on each side of the PET ring with a 92-mm-inner diameter. This system can distinguish between different tracers using the additional γ-ray detectors to observe prompt γ-rays, which are emitted after positron emission and have an energy intrinsic to each radionuclide. Our system can simultaneously acquire double- (two annihilation photons) and triple- (two annihilation photons and a prompt γ-ray) coincidence events. The system's efficiency for detecting prompt de-excitation γ-rays was measured using a positron-γ emitter, 22 Na. Dual-radionuclide ( 18 F and 22 Na) imaging of a rod phantom and a mouse was performed to demonstrate the performance of the developed system. Our system's basic performance was evaluated by reconstructing two images, one containing both tracers and the other containing just the second tracer, from list-mode data sets that were categorized by the presence or absence of the prompt γ-ray. The maximum detection efficiency for 1275 keV γ-rays emitted from 22 Na was approximately 7% at the scanner's center, and the minimum detection efficiency was 5.1% at the edge of

  16. Positron emission tomography/computed tomography--imaging protocols, artifacts, and pitfalls.

    Science.gov (United States)

    Bockisch, Andreas; Beyer, Thomas; Antoch, Gerald; Freudenberg, Lutz S; Kühl, Hilmar; Debatin, Jörg F; Müller, Stefan P

    2004-01-01

    There has been a longstanding interest in fused images of anatomical information, such as that provided by computed tomography (CT) or magnetic resonance imaging (MRI) systems, with biological information obtainable by positron emission tomography (PET). The near-simultaneous data acquisition in a fixed combination of a PET and a CT scanner in a combined PET/CT imaging system minimizes spatial and temporal mismatches between the modalities by eliminating the need to move the patient in between exams. In addition, using the fast CT scan for PET attenuation correction, the duration of the examination is significantly reduced compared to standalone PET imaging with standard rod-transmission sources. The main source of artifacts arises from the use of the CT-data for scatter and attenuation correction of the PET images. Today, CT reconstruction algorithms cannot account for the presence of metal implants, such as dental fillings or prostheses, properly, thus resulting in streak artifacts, which are propagated into the PET image by the attenuation correction. The transformation of attenuation coefficients at X-ray energies to those at 511 keV works well for soft tissues, bone, and air, but again is insufficient for dense CT contrast agents, such as iodine or barium. Finally, mismatches, for example, due to uncoordinated respiration result in incorrect attenuation-corrected PET images. These artifacts, however, can be minimized or avoided prospectively by careful acquisition protocol considerations. In doubt, the uncorrected images almost always allow discrimination between true and artificial finding. PET/CT has to be integrated into the diagnostic workflow for harvesting the full potential of the new modality. In particular, the diagnostic power of both, the CT and the PET within the combination must not be underestimated. By combining multiple diagnostic studies within a single examination, significant logistic advantages can be expected if the combined PET

  17. T cell homing to tumors detected by 3D-coordinated positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Agger, Ralf; Petersen, Mikkel; Petersen, Charlotte Christie

    2007-01-01

    of magnetic resonance imaging with the high sensitivity and spatial accuracy of positron emission tomography. We have used this technique, together with determination of tissue radioactivity, flow cytometry, and microscopy, to characterize and quantitate the specific accumulation of transferred CD8+ T cells...

  18. Image properties of list mode likelihood reconstruction for a rectangular positron emission mammography with DOI measurements

    International Nuclear Information System (INIS)

    Qi, Jinyi; Klein, Gregory J.; Huesman, Ronald H.

    2000-01-01

    A positron emission mammography scanner is under development at our Laboratory. The tomograph has a rectangular geometry consisting of four banks of detector modules. For each detector, the system can measure the depth of interaction information inside the crystal. The rectangular geometry leads to irregular radial and angular sampling and spatially variant sensitivity that are different from conventional PET systems. Therefore, it is of importance to study the image properties of the reconstructions. We adapted the theoretical analysis that we had developed for conventional PET systems to the list mode likelihood reconstruction for this tomograph. The local impulse response and covariance of the reconstruction can be easily computed using FFT. These theoretical results are also used with computer observer models to compute the signal-to-noise ratio for lesion detection. The analysis reveals the spatially variant resolution and noise properties of the list mode likelihood reconstruction. The theoretical predictions are in good agreement with Monte Carlo results

  19. Responses of rice to salinity and exogenous glycinebetaine by using positron emitting tracer imaging system

    International Nuclear Information System (INIS)

    Le Xuan Tham; Vo Huy Dang; Noriko, S.

    2002-01-01

    Effect of salinity stress (NaCl) and glycinebetaine on typical non-halophyte plants - rice (Oryza sativa L.) was examined for the growth, net photosynthesis and transpiration functions of seedlings. Using 22 Na, the inhibition of net uptake and translocation of sodium of seedlings stressed at 0.15% NaCl in solution and previously treated with exogenous glycinebetaine was observed by positron-emitting tracer imaging system, namely PETIS for diagnosis of early responses of plants to salt stress. Effects of exogenous glycinebetaine on rice plants stressed with salinity via osmotic protection and particularly stabilization of membrane permeability to inhibit Na uptake and translocation were discussed in connection with promising potentials of PETIS for researches on plants. (Author)

  20. Magnetic resonance imaging-guided attenuation correction of positron emission tomography data in PET/MRI

    Science.gov (United States)

    Izquierdo-Garcia, David; Catana, Ciprian

    2018-01-01

    Synopsis Attenuation correction (AC) is one of the most important challenges in the recently introduced combined positron emission tomography/magnetic resonance imaging (PET/MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients (LACs) of the tissues and other components located in the PET field of view (FoV). MR-AC methods can be divided into three main categories: segmentation-, atlas- and PET-based. This review aims to provide a comprehensive list of the state of the art MR-AC approaches as well as their pros and cons. The main sources of artifacts such as body-truncation, metallic implants and hardware correction will be presented. Finally, this review will discuss the current status of MR-AC approaches for clinical applications. PMID:26952727

  1. The inverse problems of reconstruction in the X-rays, gamma or positron tomographic imaging systems

    International Nuclear Information System (INIS)

    Grangeat, P.

    1999-01-01

    The revolution in imagery, brought by the tomographic technic in the years 70, allows the computation of local values cartography for the attenuation or the emission activity. The reconstruction techniques thus allow the connection from integral measurements to characteristic information distribution by inversion of the measurement equations. They are a main application of the solution technic for inverse problems. In a first part the author recalls the physical principles for measures in X-rays, gamma and positron imaging. Then he presents the various problems with their associated inversion techniques. The third part is devoted to the activity sector and examples, to conclude in the last part with the forecast. (A.L.B.)

  2. Positron imaging feasibility studies: characteristics of 2-deoxyglucose uptake in rodent and canine neoplasms

    International Nuclear Information System (INIS)

    Larson, S.M.; Weiden, P.L.; Grunbaum, J.

    1981-01-01

    Uptake of [ 3 H]2-deoxyglucose was studied in BALB/c mice with EMT-6 sarcoma, in Buffalo rats with Morris 7777 hepatoma, and in eight dogs with spontaneous neoplasms: five osteosarcomas and three diffuse lymphomas. High tumor-to-tissue ratios were observed for all tumor types studies. In rodents, peak levels of uptake occurred between 30 min and 1 hr, with a slow loss from the tumor of about 10% per hour thereafter. In dogs there was considerable variability in uptake, both between individuals and at different tumor sites within an individual. Necrotic tumor did not take up the radiotracer. Absolute uptakes, when normalized for body weight, were similar for spontaneous and transplanted neoplasms. These studies provide additional support for the concept that positron emission tomography can be used to obtain functional images of important metabolic processes of tumors, including glycolysis

  3. Positron emission tomography molecular imaging of dopaminergic system in drug addiction.

    Science.gov (United States)

    Hou, Haifeng; Tian, Mei; Zhang, Hong

    2012-05-01

    Dopamine (DA) is involved in drug reinforcement, but its role in drug addiction remains unclear. Positron emission tomography (PET) is the first technology used for the direct measurement of components of the dopaminergic system in the living human brain. In this article, we reviewed the major findings of PET imaging studies on the involvement of DA in drug addiction, especially in heroin addiction. Furthermore, we summarized PET radiotracers that have been used to study the role of DA in drug addiction. To investigate presynaptic function in drug addiction, PET tracers have been developed to measure DA synthesis and transport. For the investigation of postsynaptic function, several radioligands targeting dopamine one (D1) receptor and dopamine two (D2) receptor are extensively used in PET imaging studies. Moreover, we also summarized the PET imaging findings of heroin addiction studies, including heroin-induced DA increases and the reinforcement, role of DA in the long-term effects of heroin abuse, DA and vulnerability to heroin abuse and the treatment implications. PET imaging studies have corroborated the role of DA in drug addiction and increase our understanding the mechanism of drug addiction. Copyright © 2012 Wiley Periodicals, Inc.

  4. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    Science.gov (United States)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  5. Effects of Respiration-Averaged Computed Tomography on Positron Emission Tomography/Computed Tomography Quantification and its Potential Impact on Gross Tumor Volume Delineation

    International Nuclear Information System (INIS)

    Chi, Pai-Chun Melinda; Mawlawi, Osama; Luo Dershan; Liao Zhongxing; Macapinlac, Homer A.; Pan Tinsu

    2008-01-01

    Purpose: Patient respiratory motion can cause image artifacts in positron emission tomography (PET) from PET/computed tomography (CT) and change the quantification of PET for thoracic patients. In this study, respiration-averaged CT (ACT) was used to remove the artifacts, and the changes in standardized uptake value (SUV) and gross tumor volume (GTV) were quantified. Methods and Materials: We incorporated the ACT acquisition in a PET/CT session for 216 lung patients, generating two PET/CT data sets for each patient. The first data set (PET HCT /HCT) contained the clinical PET/CT in which PET was attenuation corrected with a helical CT (HCT). The second data set (PET ACT /ACT) contained the PET/CT in which PET was corrected with ACT. We quantified the differences between the two datasets in image alignment, maximum SUV (SUV max ), and GTV contours. Results: Of the patients, 68% demonstrated respiratory artifacts in the PET HCT , and for all patients the artifact was removed or reduced in the corresponding PET ACT . The impact of respiration artifact was the worst for lesions less than 50 cm 3 and located below the dome of the diaphragm. For lesions in this group, the mean SUV max difference, GTV volume change, shift in GTV centroid location, and concordance index were 21%, 154%, 2.4 mm, and 0.61, respectively. Conclusion: This study benchmarked the differences between the PET data with and without artifacts. It is important to pay attention to the potential existence of these artifacts during GTV contouring, as such artifacts may increase the uncertainties in the lesion volume and the centroid location

  6. Clinical application of in vivo treatment delivery verification based on PET/CT imaging of positron activity induced at high energy photon therapy

    Science.gov (United States)

    Janek Strååt, Sara; Andreassen, Björn; Jonsson, Cathrine; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Näfstadius, Peder; Näslund, Ingemar; Schoenahl, Frederic; Brahme, Anders

    2013-08-01

    The purpose of this study was to investigate in vivo verification of radiation treatment with high energy photon beams using PET/CT to image the induced positron activity. The measurements of the positron activation induced in a preoperative rectal cancer patient and a prostate cancer patient following 50 MV photon treatments are presented. A total dose of 5 and 8 Gy, respectively, were delivered to the tumors. Imaging was performed with a 64-slice PET/CT scanner for 30 min, starting 7 min after the end of the treatment. The CT volume from the PET/CT and the treatment planning CT were coregistered by matching anatomical reference points in the patient. The treatment delivery was imaged in vivo based on the distribution of the induced positron emitters produced by photonuclear reactions in tissue mapped on to the associated dose distribution of the treatment plan. The results showed that spatial distribution of induced activity in both patients agreed well with the delivered beam portals of the treatment plans in the entrance subcutaneous fat regions but less so in blood and oxygen rich soft tissues. For the preoperative rectal cancer patient however, a 2 ± (0.5) cm misalignment was observed in the cranial-caudal direction of the patient between the induced activity distribution and treatment plan, indicating a beam patient setup error. No misalignment of this kind was seen in the prostate cancer patient. However, due to a fast patient setup error in the PET/CT scanner a slight mis-position of the patient in the PET/CT was observed in all three planes, resulting in a deformed activity distribution compared to the treatment plan. The present study indicates that the induced positron emitters by high energy photon beams can be measured quite accurately using PET imaging of subcutaneous fat to allow portal verification of the delivered treatment beams. Measurement of the induced activity in the patient 7 min after receiving 5 Gy involved count rates which were about

  7. Head and neck: normal variations and benign findings in FDG positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Højgaard, Liselotte; Berthelsen, Anne Kiil; Loft, Annika

    2014-04-01

    Positron emission tomography (PET)/computed tomography with FDG of the head and neck region is mainly used for the diagnosis of head and neck cancer, for staging, treatment evaluation, relapse, and planning of surgery and radio therapy. This article is a practical guide of imaging techniques, including a detailed protocol for FDG PET in head and neck imaging, physiologic findings, and pitfalls in selected case stories. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. An interior-point method for total variation regularized positron emission tomography image reconstruction

    Science.gov (United States)

    Bai, Bing

    2012-03-01

    There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.

  9. Dynamic positron emission tomography image restoration via a kinetics-induced bilateral filter.

    Directory of Open Access Journals (Sweden)

    Zhaoying Bian

    Full Text Available Dynamic positron emission tomography (PET imaging is a powerful tool that provides useful quantitative information on physiological and biochemical processes. However, low signal-to-noise ratio in short dynamic frames makes accurate kinetic parameter estimation from noisy voxel-wise time activity curves (TAC a challenging task. To address this problem, several spatial filters have been investigated to reduce the noise of each frame with noticeable gains. These filters include the Gaussian filter, bilateral filter, and wavelet-based filter. These filters usually consider only the local properties of each frame without exploring potential kinetic information from entire frames. Thus, in this work, to improve PET parametric imaging accuracy, we present a kinetics-induced bilateral filter (KIBF to reduce the noise of dynamic image frames by incorporating the similarity between the voxel-wise TACs using the framework of bilateral filter. The aim of the proposed KIBF algorithm is to reduce the noise in homogeneous areas while preserving the distinct kinetics of regions of interest. Experimental results on digital brain phantom and in vivo rat study with typical (18F-FDG kinetics have shown that the present KIBF algorithm can achieve notable gains over other existing algorithms in terms of quantitative accuracy measures and visual inspection.

  10. Imaging of the pancreas using dynamic positron emission tomography with N-13 ammonia

    International Nuclear Information System (INIS)

    Hayashi, N.; Tamaki, N.; Yonekura, Y.; Adachi, H.; Senda, M.; Saji, H.; Torizuka, K.

    1985-01-01

    This study was undertaken to develop a new imaging technique of the pancreas. Dynamic positron emission tomography (PET) was performed in 3 normal volunteers, 9 patient without the evidence of pancreatic diseases, 2 patients with adenocarcinoma of the pancreatic head and one patient with islet cell carcinoma. Immediately after the intravenous injection of 10-20mCi of N-13 ammonia, data were obtained every 150 seconds for 30 minutes using a multi-slice whole-body PET scanner. In two cases of adenocarcinoma, the pancreas was not imaged, probably because the nontumorous portion of the pancreas was also suffered from severe pancreatitis due to the duct obstruction at the pancreatic head. In the case with islet cell carcinoma, the radionuclide was accumulated in the tumor and pancreas similarly. Thus, both of them were visualized but not separated. The central necrosis of the tumor showed poor radioactivity. The mechanism of the radionuclide accumulation in the pancreas is not well understood. However, the authors also studied the biodistribution of N-13 ammonia in mice and confirmed that there is an early and high accumulation of the radionuclide in the murine pancreas. These preliminary results of this paper suggest that the dynamic PET study may be useful for the imaging of the pancreas as well as for the further study of the blood supply and metabolism of the pancreas

  11. Investigations into the free-volume changes within starch/plasticizer/nanoclay systems using Positron Annihilation Lifetime Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huihua, E-mail: h.liu@federation.edu.au [School of Health Sciences, Federation University Australia, Ballarat, Vic (Australia); Chaudhary, Deeptangshu, E-mail: deepc@ers.com.au [ERS Environmental Risk Solutions PTY LTD, Perth, WA (Australia); Campbell, Colin, E-mail: colin.campbell@anu.edu.au [ARC Centre of Excellence for Antimatter-Matter Studies (CAMS), Research School of Physics and Engineering, Australian National University, Canberra (Australia); Roberts, Jason, E-mail: jxr107@physics.anu.edu.au [ARC Centre of Excellence for Antimatter-Matter Studies (CAMS), Research School of Physics and Engineering, Australian National University, Canberra (Australia); Buckman, Stephen, E-mail: stephen.buckman@anu.edu.au [ARC Centre of Excellence for Antimatter-Matter Studies (CAMS), Research School of Physics and Engineering, Australian National University, Canberra (Australia); Sullivan, James, E-mail: james.sullivan@anu.edu.au [ARC Centre of Excellence for Antimatter-Matter Studies (CAMS), Research School of Physics and Engineering, Australian National University, Canberra (Australia)

    2014-11-14

    The free-volume of a matrix is a fundamental parameter that relates to its molecular and bulk characteristics, such as crystalline change and glass transition behavior. In starch-based bionanocomposite, we investigated the effect of the addition of montmorillonite nanoclay (MMT) and food plasticizers (glycerol and sorbitol) on changes of molecular pore size (including pore volume and pore distribution) using the Positron Annihilation Lifetime Spectroscopy (PALS) method. The results demonstrated counter-intuitive impact of MMT on the total free-volume where the total free-volume increased within the polymeric matrix. When compared to the pure matrix free-volume, the addition of MMT also resulted in the appearance of a broader distribution of the void sizes. The plasticizers, on the other hand, apparently occupied the void spaces, and therefore decreased the free-volume of the matrix. Further, together with the small angle X-ray scattering (SAXS) analysis, we concluded that this is a result of interplay between the plasticizer-plasticizer interactions and the polymer–plasticizer interactions. For example, in the starch/glycerol/MMT system, the pore radii slightly decrease upon the increasing of glycerol amount (OG210 = O.27 nm and OG220 = 0.26 nm), but the relative weight did increase with the increasing glycerol concentration. However, increasing the sorbitol amount increased the pore size from 0.23 nm(OS210) to 0.28 nm(OS220). Furthermore, the addition MMT in the OS010 system, promote the emergence of a new dateable pore radius(0.90 nm), and the total weight significantly increased from 13.70 (OS010) to 19.5% (OS210). We suggest that the pore variation (size and distribution) due to the MMT and plasticizers are reflected in the polymer glass transition and crystallinity because ultimately, the, total free-volume is a reflection of level of interactions existing within the bulk of these nanocomposites. - Highlights: • PALS is applied to explore the

  12. Is Image Registration of Fluorodeoxyglucose–Positron Emission Tomography/Computed Tomography for Head-and-Neck Cancer Treatment Planning Necessary?

    International Nuclear Information System (INIS)

    Fried, David; Lawrence, Michael; Khandani, Amir H.; Rosenman, Julian; Cullip, Tim; Chera, Bhishamjit S.

    2012-01-01

    Purpose: To evaluate dosimetry and patterns of failure related to fluorodeoxyglucose–positron emission tomography (FDG-PET)–defined biological tumor volumes (BTVs) for head-and-neck squamous cell carcinoma (HNSCC) treated with definitive radiotherapy (RT). Methods and Materials: We conducted a retrospective study of 91 HNSCC patients who received pretreatment PET/CT scans that were not formally used for target delineation. The median follow-up was 34.5 months. Image registration was performed for PET, planning CT, and post-RT failure CT scans. Previously defined primary (CT PRIMARY ) and nodal (CT NODE ) gross tumor volumes (GTV) were used. The primary BTV (BTV PRIMARY ) and nodal BTV (BTV NODE ) were defined visually (PET vis ). The BTV PRIMARY was also contoured using 40% and 50% peak PET activity (PET 40, PET 50 ). The recurrent GTVs were contoured on post-RT CT scans. Dosimetry was evaluated on the planning-CT and pretreatment PET scan. PET and CT dosimetric/volumetric data was compared for those with and without local-regional failure (LRF). Results: In all, 29 of 91 (32%) patients experienced LRF: 10 local alone, 7 regional alone, and 12 local and regional. BTVs and CT volumes had less than complete overlap. BTVs were smaller than CT-defined targets. Dosimetric coverage was similar between failed and controlled groups as well as between BTVs and CT-defined volumes. Conclusions: PET and CT-defined tumor volumes received similar RT doses despite having less than complete overlap and the inaccuracies of image registration. LRF correlated with both CT and PET-defined volumes. The dosimetry for PET- and/or CT-based tumor volumes was not significantly inferior in patients with LRF. CT-based delineation alone may be sufficient for treatment planning in patients with HNSCC. Image registration of FDG-PET may not be necessary.

  13. Synthesis of novel ligands for neuro-inflammation imaging using Positron Emission Tomography

    International Nuclear Information System (INIS)

    Cacheux, Fanny

    2016-01-01

    Neuro-inflammation plays an important role in many neuro-degenerative diseases (Alzheimer, Parkinson, Multiple sclerosis..) and recent developments in molecular imaging provide today new insights into the diagnostic and the treatment management of these diseases. Among the existing imaging techniques, the highly sensitive and quantitative nuclear modalities SPECT (single photon emission computed tomography) but especially PET (positron emission tomography) play key roles. My PhD program is devoted to the design and synthesis of novel radioligands, all dedicated to the imaging of specific targets and processes linked to neuro-inflammation. For this, PET and the short-lived positron-emitter fluorine-18 (T 1/2 : 109.8 min) remain the main focuses. The project has been divided into two sections, the first one concentrates on the development of novel ligands targeting the Translocator Protein 18 kDa (TSPO). Indeed, this target is today recognized as an early bio-marker of neuro-inflammatory processes and PK11195, an isoquinoline carboxamide labelled with carbon-11, was, in the late 80's, the first reported PET-radioligand. More recently, new compounds, all belonging to different chemical classes, have emerged and notably the pyrazolopyrimidine acetamide [ 11 C]DPA-713 and the pyridazinoindole acetamide [ 11 C]SSR180575. Within the first section of my PhD, novel derivatives of both DPA-713 and SSR180575 have been synthesized and in vitro characterized. Dedicated precursors for labelling were also developed for the most promising candidates, and radiolabelling has been performed. Some results have been presented at the 21. International Symposium on Radiopharmaceutical Sciences (Columbia, MO, USA - May 26-31, 2015).The second part of my PhD, deals with the development of ligands for alternative targets to the TSPO, like the type-2 cannabinoid receptor (CB2R) and the purinergic P2Y14/P2Y12 receptors, the latter emerging today as a hot topic for imaging opportunities

  14. Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging.

    Science.gov (United States)

    Schilling, Kathy; Narayanan, Deepa; Kalinyak, Judith E; The, Juliette; Velasquez, Maria Victoria; Kahn, Simone; Saady, Matthew; Mahal, Ravinder; Chrystal, Larraine

    2011-01-01

    The objective of this study was to compare the performance characteristics of (18)F-fluorodeoxyglucose (FDG) positron emission mammography (PEM) with breast magnetic resonance imaging (MRI) as a presurgical imaging and planning option for index and ipsilateral lesions in patients with newly diagnosed, biopsy-proven breast cancer. Two hundred and eight women >25 years of age (median age = 59.7 ± 14.1 years) with biopsy-proven primary breast cancer enrolled in this prospective, single-site study. MRI, PEM, and whole-body positron emission tomography (WBPET) were conducted on each patient within 7 business days. PEM and WBPET images were acquired on the same day after intravenous administration of 370 MBq of FDG (median = 432.9 MBq). PEM and MRI images were blindly evaluated, compared with final surgical histopathology, and the sensitivity determined. Substudy analysis compared the sensitivity of PEM versus MRI in patients with different menopausal status, breast density, and use of hormone replacement therapy (HRT) as well as determination of performance characteristics for additional ipsilateral lesion detection. Two hundred and eight patients enrolled in the study of which 87% (182/208) were analyzable. Of these analyzable patients, 26.4% (48/182), 7.1% (13/182), and 64.2% (120/182) were pre-, peri-, and postmenopausal, respectively, and 48.4% (88/182) had extremely or heterogeneously dense breast tissue, while 33.5% (61/182) had a history of HRT use. Ninety-two percent (167/182) underwent core biopsy for index lesion diagnosis. Invasive cancer was found in 77.5% (141/182), while ductal carcinoma in situ (DCIS) and/or Paget's disease were found in 22.5% (41/182) of patients. Both PEM and MRI had index lesion depiction sensitivity of 92.8% and both were significantly better than WBPET (67.9%, p performance characteristics are not affected by patient menopausal/hormonal status or breast density.

  15. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, S. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11711 Cairo (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Arts and Sciences, Najran University, Najran (Saudi Arabia); Centre for Advanced Materials and Nano-Engineering, Najran University, Najran 11001 (Saudi Arabia); Abdel-Hady, E.E. [Physics Department, Faculty of Science, Minia University, BO 61519, Minia (Egypt)

    2015-09-15

    The alpha particle track diameter dependence of the free volume holes size (V{sub f}) in DAM–ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ{sub 3} and V{sub f} increases while I{sub 3} slightly increases as T increases for the two detectors. The values of τ{sub 3}, V{sub f} and I{sub 3} are higher in CR-39 than DAM–ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently V{sub f} increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and V{sub f} in the polymer. A relationship between V{sub f} and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  16. A Comparison of Amplitude-Based and Phase-Based Positron Emission Tomography Gating Algorithms for Segmentation of Internal Target Volumes of Tumors Subject to Respiratory Motion

    International Nuclear Information System (INIS)

    Jani, Shyam S.; Robinson, Clifford G.; Dahlbom, Magnus; White, Benjamin M.; Thomas, David H.; Gaudio, Sergio; Low, Daniel A.; Lamb, James M.

    2013-01-01

    Purpose: To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). Methods and Materials: List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated. Results: Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001). Conclusions: Target volumes in images generated

  17. Diagnostic and Prognostic Significance of Methionine Uptake and Methionine Positron Emission Tomography Imaging in Gliomas

    Directory of Open Access Journals (Sweden)

    Kamalakannan Palanichamy

    2017-11-01

    Full Text Available The present most common image diagnostic tracer in clinical practice for glioma is 18F-fluorodeoxyglucose (FDG positron emission tomography (PET for brain tumors diagnosis and prognosis. PET is a promising molecular imaging technique, which provides real-time information on the metabolic behavior of the tracer. The diffusive nature of glioblastoma (GBM and heterogeneity often make the radiographic detection by FDG-PET inaccurate, and there is no gold standard. FDG-PET often leads to several controversies in making clinical decisions due to their uptake by normal surrounding tissues, and pose a challenge in delineating treatment-induced necrosis, edema, inflammation, and pseudoprogression. Thus, it is imperative to find new criteria independent of conventional morphological diagnosis to demarcate normal and tumor tissues. We have provided proof of concept studies for 11C methionine-PET (MET-PET imaging of gliomas, along with prognostic and diagnostic significance. MET-PET is not widely used in the United States, though clinical trials from Japan and Germany suggesting the diagnostic ability of MET-PET imaging are superior to FDG-PET imaging for brain tumors. A major impediment is the availability of the onsite cyclotron and isotopic carbon chemistry facilities. In this article, we have provided the scientific rationale and advantages of the use of MET-PET as GBM tracers. We extend our discussion on the expected pitfalls of using MET-PET and ways to overcome them by incorporating a translational component of profiling gene status in the methionine metabolic pathway. This translational correlative component to the MET-PET clinical trials can lead to a better understanding of the existing controversies and can enhance our knowledge for future randomization of GBM patients based on their tumor gene signatures to achieve better prognosis and treatment outcome.

  18. Cardiac and pericardial tumors: A potential application of positron emission tomography-magnetic resonance imaging.

    Science.gov (United States)

    Fathala, Ahmed; Abouzied, Mohei; AlSugair, Abdul-Aziz

    2017-07-26

    Cardiac and pericardial masses may be neoplastic, benign and malignant, non-neoplastic such as thrombus or simple pericardial cysts, or normal variants cardiac structure can also be a diagnostic challenge. Currently, there are several imaging modalities for diagnosis of cardiac masses; each technique has its inherent advantages and disadvantages. Echocardiography, is typically the initial test utilizes in such cases, Echocardiography is considered the test of choice for evaluation and detection of cardiac mass, it is widely available, portable, with no ionizing radiation and provides comprehensive evaluation of cardiac function and valves, however, echocardiography is not very helpful in many cases such as evaluation of extracardiac extension of mass, poor tissue characterization, and it is non diagnostic in some cases. Cross sectional imaging with cardiac computed tomography provides a three dimensional data set with excellent spatial resolution but utilizes ionizing radiation, intravenous iodinated contrast and relatively limited functional evaluation of the heart. Cardiac magnetic resonance imaging (CMR) has excellent contrast resolution that allows superior soft tissue characterization. CMR offers comprehensive evaluation of morphology, function, tissue characterization. The great benefits of CMR make CMR a highly useful tool in the assessment of cardiac masses. (Fluorine 18) fluorodeoxygluocse (FDG) positron emission tomography (PET) has become a corner stone in several oncological application such as tumor staging, restaging, treatment efficiency, FDG is a very useful imaging modality in evaluation of cardiac masses. A recent advance in the imaging technology has been the development of integrated PET-MRI system that utilizes the advantages of PET and MRI in a single examination. FDG PET-MRI provides complementary information on evaluation of cardiac masses. The purpose of this review is to provide several clinical scenarios on the incremental value of PET

  19. FDG-PET imaging for the assessment of physiologic volume response during radiotherapy in cervix cancer

    International Nuclear Information System (INIS)

    Lin, Lilie L.; Yang Zhiyun; Mutic, Sasa; Miller, Tom R.; Grigsby, Perry W.

    2006-01-01

    Purpose: To evaluate the physiologic tumor volume response during treatment in cervical cancer using 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). Patients and Methods: This was a prospective study of 32 patients. Physiologic tumor volume in cubic centimeters was determined from the FDG-PET images using the 40% threshold method. Results: The mean pretreatment tumor volume was 102 cm 3 . The mean volume by clinical Stages I, II, and III were 54, 79, and 176 cm 3 , respectively. After 19.8 Gy external irradiation to the pelvis, the reduction in tumor volume was 29% (72 cm 3 ). An additional 13 Gy from high-dose-rate (HDR) brachytherapy reduced the mean volume to 15.4 cm 3 , and this was subsequently reduced to 8.6 cm 3 with 13 Gy additional HDR brachytherapy (26 Gy, HDR). Four patients had physiologic FDG uptake in the cervix at 3 months after the completion of therapy. The mean time to the 50% reduction in physiologic tumor volume was 19.9 days and after combined external irradiation and HDR to 24.9 Gy. Conclusion: These results indicate that physiologic tumor volume determination by FDG-PET is feasible and that a 50% physiologic tumor volume reduction occurs within 20 days of starting therapy

  20. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom.

  1. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    International Nuclear Information System (INIS)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-01-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom

  2. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance.

    Science.gov (United States)

    AlJaroudi, Wael A; Hage, Fadi G

    2016-02-01

    In 2015, many original articles pertaining to cardiovascular imaging with impressive quality were published in the Journal of Nuclear Cardiology. In a set of 2 articles, we provide an overview of these contributions to facilitate for the interested reader a quick review of the advancements that occurred in the field over this year. In this first article, we focus on arterial plaque imaging, cardiac positron emission tomography, computed tomography, and magnetic resonance imaging.

  3. Detector response restoration in image reconstruction of high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Liang, Z.

    1994-01-01

    A mathematical method was studied to model the detector response of high spatial-resolution positron emission tomography systems consisting of close-packed small crystals, and to restore the resolution deteriorated due to crystal penetration and/or nonuniform sampling across the field-of-view (FOV). The simulated detector system had 600 bismuth germanate crystals of 3.14 mm width and 30 mm length packed on a single ring of 60 cm diameter. The space between crystal was filled up with lead. Each crystal was in coincidence with 200 opposite crystals so that the FOV had a radius of 30 cm. The detector response was modeled based on the attenuating properties of the crystals and the septa, as well as the geometry of the detector system. The modeled detector-response function was used to restore the projections from the sinogram of the ring-detector system. The restored projections had a uniform sampling of 1.57 mm across the FOV. The crystal penetration and/or the nonuniform sampling were compensated in the projections. A penalized maximum-likelihood algorithm was employed to accomplish the restoration. The restored projections were then filtered and backprojected to reconstruct the image. A chest phantom with a few small circular ''cold'' objects located at the center and near the periphery of FOV was computer generated and used to test the restoration. The reconstructed images from the restored projections demonstrated resolution improvement off the FOV center, while preserving the resolution near the center

  4. Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography

    International Nuclear Information System (INIS)

    Dolle, F.; Luus, C.; Reynolds, A.; Kassiou, M.

    2009-01-01

    The translocator protein (18 kDa) (TSPO), formerly known as the peripheral benzodiazepine receptor (PBR), was originally identified as an alternate binding site for the central benzodiazepine receptor (CBR) ligand, diazepam, in the periphery, but has now been distinguished as a novel site. The TSPO is ubiquitously expressed in peripheral tissues but only minimally in the healthy brain and increased levels of TSPO expression have been noted in neuro inflammatory conditions such as Alzheimer's disease, Parkinson's disease and stroke. This increase in TSPO expression has been reported to coincide with the process of micro-glial activation, whereby the brain's intrinsic immune system becomes active. Therefore, by using recently developed high affinity, selective TSPO ligands in conjunction with functional imaging modalities such as positron emission tomography (PET), it becomes possible to study the process of micro-glial activation in the living brain. A number of high affinity ligands, the majority of which are C, N-substituted acetamide derivatives, have been successfully radiolabelled and used in in vivo studies of the TSPO and the process of micro-glial activation. This review highlights recent achievements (up to December 2008) in the field of functional imaging of the TSPO as well as the radio-syntheses involved in such studies. (authors)

  5. Automatic extraction of myocardial mass and volumes using parametric images from dynamic nongated PET

    DEFF Research Database (Denmark)

    Harms, Hendrik Johannes; Hansson, Nils Henrik Stubkjær; Tolbod, Lars Poulsen

    2016-01-01

    Dynamic cardiac positron emission tomography (PET) is used to quantify molecular processes in vivo. However, measurements of left-ventricular (LV) mass and volumes require electrocardiogram (ECG)-gated PET data. The aim of this study was to explore the feasibility of measuring LV geometry using non......-gated dynamic cardiac PET. METHODS: Thirty-five patients with aortic-valve stenosis and 10 healthy controls (HC) underwent a 27-min 11C-acetate PET/CT scan and cardiac magnetic resonance imaging (CMR). HC were scanned twice to assess repeatability. Parametric images of uptake rate K1 and the blood pool were......LV and WT only and an overestimation for LVEF at lower values. Intra- and inter-observer correlations were >0.95 for all PET measurements. PET repeatability accuracy in HC was comparable to CMR. CONCLUSION: LV mass and volumes are accurately and automatically generated from dynamic 11C-acetate PET without...

  6. Evaluation of Positron Emission Tomographic Tracers for Imaging of Papillomavirus-Induced Tumors in Rabbits

    Directory of Open Access Journals (Sweden)

    Sonja Probst

    2014-01-01

    Full Text Available In this study, simultaneous positron emission tomography (PET/magnetic resonance (MR imaging was employed to evaluate the feasibility of the PET tracers 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG, 11C-choline, and 18F-fluorothymidine (18F-FLT to detect papillomavirus-induced tumors in an established rabbit model system. The combined PET/MR allowed the analysis of tracer uptake of the tumors using the morphologic information acquired by MR. New Zealand White rabbits were infected with cottontail rabbit papillomavirus genomes and were imaged for up to 10 months with a simultaneous PET/MR system during the course of infection. The uptake characteristics of the PET tracers 11C-choline and 18F-FLT of tumors and reference tissues were examined relative to the clinical standard, 18F-FDG. Tracer biodistribution of various organs was measured by gamma-counting after the last PET scan and compared to the in vivo PET/MR 18F-FDG uptake. Increased tracer uptake was found 2 months postinfection in primary tumors with 18F-FDG and 11C-choline, whereas 18F-FLT failed to detect the tumors at all measured time points. Our data show that the PET tracer 18F-FDG is superior for imaging papillomavirus-induced tumors in rabbits compared to 11C-choline and 18F-FLT. However, 11C-choline imaging, which has previously been applied to detect various tumor entities in patients, appears to be an alternative to 18F-FDG.

  7. Importance of Defect Detectability in Positron Emission Tomography Imaging of Abdominal Lesions

    International Nuclear Information System (INIS)

    Yamashita, Shozo; Yokoyama, Kunihiko; Onoguchi, Masahisa; Yamamoto, Haruki; Nakaichi, Tetsu; Tsuji, Shiro; Nakajima, Kenichi

    2015-01-01

    This study was designed to assess defect detectability in positron emission tomography (PET) imaging of abdominal lesions. A National Electrical Manufactures Association International Electrotechnical Commission phantom was used. The simulated abdominal lesion was scanned for 10 min using dynamic list-mode acquisition method. Images, acquired with scan duration of 1-10 min, were reconstructed using VUE point HD and a 4.7 mm full-width at half-maximum (FWHM) Gaussian filter. Iteration-subset combinations of 2-16 and 2-32 were used. Visual and physical analyses were performed using the acquired images. To sequentially evaluate defect detectability in clinical settings, we examined two middle-aged male subjects. One had a liver cyst (approximately 10 mm in diameter) and the other suffered from pancreatic cancer with an inner defect region (approximately 9 mm in diameter). In the phantom study, at least 6 and 3 min acquisition durations were required to visualize 10 and 13 mm defect spheres, respectively. On the other hand, spheres with diameters ≥17 mm could be detected even if the acquisition duration was only 1 min. The visual scores were significantly correlated with background (BG) variability. In clinical settings, the liver cyst could be slightly visualized with an acquisition duration of 6 min, although image quality was suboptimal. For pancreatic cancer, the acquisition duration of 3 min was insufficient to clearly describe the defect region. The improvement of BG variability is the most important factor for enhancing lesion detection. Our clinical scan duration (3 min/bed) may not be suitable for the detection of small lesions or accurate tumor delineation since an acquisition duration of at least 6 min is required to visualize 10 mm lesions, regardless of reconstruction parameters. Improvements in defect detectability are important for radiation treatment planning and accurate PET-based diagnosis

  8. Effect of electron-irradiation on the free volume of PEEK studied by positron annihilation

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Haraya, K.; Hattori, S.; Sasuga, T.

    1994-01-01

    A good linear correlation was found between the size of a cavity where ortho-positronium (o-Ps) annihilates by the pick-off mechanism and the total free volume of molecular liquids and polymers. Based on the correlation, the free volume of poly(aryl ether-ether ketone) (PEEK) was evaluated as a function of electron irradiation dose and the result was compared with that obtained from gas diffusivity measurements. It was found that the effect of irradiation on the free volume of PEEK was rather small; the free volume was decreased only by a few percent (relative value) when the samples were irradiated with a dose of 50 MGy in air. ((orig.))

  9. Scaling behavior of free-volume holes in polymers probed by positron annihilation

    Science.gov (United States)

    Wang, C. L.; Wang, S. J.

    1995-04-01

    Positron lifetimes in polybutadiene (PB) and polypropylene (PP) are measured as functions of temperature in the range 95-305 K and 95-370 K, respectively. From the variations of ortho-positronium (o-Ps) lifetime τ3, we have determined the glass transition temperatures Tg in PB and PP and the excluding temperature Te in PB, beyond which the o-Ps lifetime τ3 in PB is saturated. From the analogy of the temperature-dependent o-Ps intensity I3 in PB and PP, high- and low-density polyethylene (HDPE and LDPE), we propose that above the glass transition temperature Tg the o-Ps intensity I3 exhibits the scaling relation I3~(T-Tg)β in these polymers. The data also indicate the existence of a crossover temperature Tc, located above Tg, where the β value changes greatly. When TgHDPE and LDPE [D. Lin and S. J. Wang, J. Phys. Condens. Matter 4, 3331 (1992)]. The β values in the region of TcHDPE and branched LDPE, respectively. These results reveal a common picture of hole creation above Tg in polymers, however, the concrete value of β may be associated with the branching structure of macromolecules.

  10. Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging.

    Science.gov (United States)

    Urban, Nina B L; Slifstein, Mark; Meda, Shashwath; Xu, Xiaoyan; Ayoub, Rawad; Medina, Olga; Pearlson, Godfrey D; Krystal, John H; Abi-Dargham, Anissa

    2012-05-01

    Functional neuroimaging (fMRI) studies show activation in mesolimbic circuitry in tasks involving reward processing, like the Monetary Incentive Delay Task (MIDT). In voltammetry studies in animals, mesolimbic dopamine release is associated with reward salience. This study examined the relationship between fMRI activation and magnitude of dopamine release measured with Positron emission tomography study (PET) in the same subjects using MIDT in both modalities to test if fMRI activation is related to dopamine release. Eighteen healthy subjects were scanned with [¹¹C]raclopride PET at baseline and after MIDT. Binding potential (BP(ND)) was derived by equilibrium analysis in striatal subregions and percent change across conditions (∆BP(ND)) was measured. Blood oxygen level dependence (BOLD) signal changes with MIDT were measured during fMRI using voxelwise analysis and ROI analysis and correlated with ∆BP(ND). ∆BP(ND) was not significant in the ventral striatum (VST) but reached significance in the posterior caudate. The fMRI BOLD activation was highest in VST. No significant associations between ∆BP(ND) and change in fMRI BOLD were observed with VST using ROI analysis. Voxelwise analysis showed positive correlation between BOLD activation in anticipation of the highest reward and ∆BP(ND) in VST and precommissural putamen. Our study indicates that endogenous dopamine release in VST is of small magnitude and is related to BOLD signal change during performance of the MIDT in only a few voxels when rewarding and nonrewarding conditions are interspersed. The lack of correlation at the ROI level may be due to the small magnitude of release or to the particular dependence of BOLD on glutamatergic signaling.

  11. The impact of optimal respiratory gating and image noise on evaluation of intra-tumor heterogeneity in 18F-FDG positron emission tomography imaging of lung cancer

    NARCIS (Netherlands)

    Grootjans, W.; Tixier, F.; Vos, C.S. van der; Vriens, D.; Rest, C.C. Le; Bussink, J.; Oyen, W.J.G.; Geus-Oei, L.F. de; Visvikis, D.; Visser, E.P.

    2016-01-01

    Assessment of measurement accuracy of intra-tumor heterogeneity using texture features in positron emission tomography (PET) images is essential to characterize cancer lesions with high precision. In this study, we investigated the influence of respiratory motion and varying noise levels on

  12. Impact of Medical Therapy on Atheroma Volume Measured by Different Cardiovascular Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Mohamad C. N. Sinno

    2010-01-01

    Full Text Available Atherosclerosis is a systemic disease that affects most vascular beds. The gold standard of atherosclerosis imaging has been invasive intravascular ultrasound (IVUS. Newer noninvasive imaging modalities like B-mode ultrasound, cardiac computed tomography (CT, positron emission tomography (PET, and magnetic resonance imaging (MRI have been used to assess these vascular territories with high accuracy and reproducibility. These imaging modalities have lately been used for the assessment of the atherosclerotic plaque and the response of its volume to several medical therapies used in the treatment of patients with cardiovascular disease. To study the impact of these medications on atheroma volume progression or regression, imaging modalities have been used on a serial basis providing a unique opportunity to monitor the effect these antiatherosclerotic strategies exert on plaque burden. As a result, studies incorporating serial IVUS imaging, quantitative coronary angiography (QCA, B-mode ultrasound, electron beam computed tomography (EBCT, and dynamic contrast-enhanced magnetic resonance imaging have all been used to evaluate the impact of therapeutic strategies that modify cholesterol and blood pressure on the progression/regression of atherosclerotic plaque. In this review, we intend to summarize the impact of different therapies aimed at halting the progression or even result in regression of atherosclerotic cardiovascular disease evaluated by different imaging modalities.

  13. Extending the imaging volume for biometric iris recognition.

    Science.gov (United States)

    Narayanswamy, Ramkumar; Johnson, Gregory E; Silveira, Paulo E X; Wach, Hans B

    2005-02-10

    The use of the human iris as a biometric has recently attracted significant interest in the area of security applications. The need to capture an iris without active user cooperation places demands on the optical system. Unlike a traditional optical design, in which a large imaging volume is traded off for diminished imaging resolution and capacity for collecting light, Wavefront Coded imaging is a computational imaging technology capable of expanding the imaging volume while maintaining an accurate and robust iris identification capability. We apply Wavefront Coded imaging to extend the imaging volume of the iris recognition application.

  14. Ultrasound, elastography, and fluorodeoxyglucose positron emission tomography/computed tomography imaging in Riedel's thyroiditis: report of two cases.

    Science.gov (United States)

    Slman, Rouba; Monpeyssen, Hervé; Desarnaud, Serge; Haroche, Julien; Fediaevsky, Laurence Du Pasquier; Fabrice, Menegaux; Seret-Begue, Dominique; Amoura, Zahir; Aurengo, André; Leenhardt, Laurence

    2011-07-01

    Riedel's thyroiditis (RT) is a rare disease characterized by a chronic inflammatory lesion of the thyroid gland with invasion by a dense fibrosis. Publications of the imaging features of RT are scarce. To our knowledge, ultrasound elastography (USE) findings have not been previously reported. Therefore, we describe two patients with RT who were imaged with ultrasonography (US), USE, and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT). Two women were referred for a large, hard goiter with compressive symptoms (dyspnea and dysphagia); in one patient, the goiter was associated with retroperitoneal fibrosis. In both cases, RT was confirmed by surgical biopsy with pathological examination. Thyroid US imaging was performed with a US scan and a 10-13 MHz linear transducer. The hardness of the tissues was analyzed using transient USE (ShearWave, Aixplorer-SuperSonic Imagine). PET/CT scanning was performed with a Philips Gemini GXL camera (GE Medical Systems). In the first patient, US examination revealed a compressive multinodular goiter with large solid hypoechoic and poorly vascularized areas adjacent to the nodules. The predominant right nodule was hypoechoic with irregular margins. The second patient had a hypoechoic goiter with large bilateral hypoechoic areas. In both cases, an unusual feature was observed: the presence of tissue surrounding the primitive carotid artery, associated with thrombi of the internal jugular vein. Further, USE showed heterogeneity in the stiffness values of the thyroid parenchyma varying between 21 kPa and 281 kPa. FDG-PET/CT imaging showed uptake foci in the thyroid gland. In both cases, US showed a decrease in the thyroid gland volume and the disappearance of encasement of the neck vasculature in response to corticosteroid treatment. In contrast, the FDG-PET/CT features remained unchanged. US features, such as vascular encasement and improvement under corticosteroid treatment, seem to be specific to this

  15. Enhancing spatial resolution of 18F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine

    International Nuclear Information System (INIS)

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I; Shi, Kuangyu

    2015-01-01

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by 18 F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [ 18 F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications. (paper)

  16. Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Schilling, Kathy; The, Juliette; Velasquez, Maria Victoria; Kahn, Simone; Saady, Matthew; Mahal, Ravinder; Chrystal, Larraine; Narayanan, Deepa; Kalinyak, Judith E.

    2011-01-01

    The objective of this study was to compare the performance characteristics of 18 F-fluorodeoxyglucose (FDG) positron emission mammography (PEM) with breast magnetic resonance imaging (MRI) as a presurgical imaging and planning option for index and ipsilateral lesions in patients with newly diagnosed, biopsy-proven breast cancer. Two hundred and eight women >25 years of age (median age = 59.7 ± 14.1 years) with biopsy-proven primary breast cancer enrolled in this prospective, single-site study. MRI, PEM, and whole-body positron emission tomography (WBPET) were conducted on each patient within 7 business days. PEM and WBPET images were acquired on the same day after intravenous administration of 370 MBq of FDG (median = 432.9 MBq). PEM and MRI images were blindly evaluated, compared with final surgical histopathology, and the sensitivity determined. Substudy analysis compared the sensitivity of PEM versus MRI in patients with different menopausal status, breast density, and use of hormone replacement therapy (HRT) as well as determination of performance characteristics for additional ipsilateral lesion detection. Two hundred and eight patients enrolled in the study of which 87% (182/208) were analyzable. Of these analyzable patients, 26.4% (48/182), 7.1% (13/182), and 64.2% (120/182) were pre-, peri-, and postmenopausal, respectively, and 48.4% (88/182) had extremely or heterogeneously dense breast tissue, while 33.5% (61/182) had a history of HRT use. Ninety-two percent (167/182) underwent core biopsy for index lesion diagnosis. Invasive cancer was found in 77.5% (141/182), while ductal carcinoma in situ (DCIS) and/or Paget's disease were found in 22.5% (41/182) of patients. Both PEM and MRI had index lesion depiction sensitivity of 92.8% and both were significantly better than WBPET (67.9%, p < 0.001, McNemar's test). For index lesions, PEM and MRI had equivalent sensitivity of various tumors, categorized by tumor stage as well as similar invasive tumor size

  17. Cerebral blood volume measurement using radioactive carboxyhemoglobin and positron emission tomography. Chapter 26

    International Nuclear Information System (INIS)

    Kanno, Iwao; Murakami, Matsutaro; Miura, Shuichi; Iida, Hidehiro; Takahashi, Kazuhiro; Sasaki, Hiroshi; Uemura, Kazuo

    1988-01-01

    This paper aims to describe the technical basis for this simplest cerebral blood volume (CBV) measurement using CO-labelled red blood cells and PET and to clarify the error sources in the technique which will become critical when we perform studies on physiological activation of CBV. 17 refs.; 6 figs.; 2 tabs

  18. Performance and limitations of positron emission tomography (PET) scanners for imaging very low activity sources.

    Science.gov (United States)

    Freedenberg, Melissa I; Badawi, Ramsey D; Tarantal, Alice F; Cherry, Simon R

    2014-02-01

    Emerging applications for positron emission tomography (PET) may require the ability to image very low activity source distributions in the body. The performance of clinical PET scanners in the regime where activity in the field of view is source in the NEMA scatter phantom), the BGO-based scanner significantly outperformed the LSO-based scanner. This was largely due to the effect of background counts emanating from naturally occurring but radioactive (176)Lu within the LSO detector material, which dominates the observed counting rate at the lowest activities. Increasing the lower energy threshold from 350 keV to 425 keV in an attempt to reduce this background did not significantly improve the measured NECR performance. The measured singles rate due to (176)Lu emissions within the scanner energy window was also found to be dependent on temperature, and to be affected by the operation of the CT component, making approaches to correct or compensate for the background more challenging. We conclude that for PET studies in a very low activity range, BGO-based scanners are likely to have better performance because of the lack of significant background. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. A new methodology of second messenger imaging for higher cortical functions by positron emission tomography

    International Nuclear Information System (INIS)

    Imahori, Yoshio; Ueda, Satoshi

    1992-01-01

    Neuronal manifestations are driven by second messenger systems in central nervous system through the neuronal transmission process. Receptor-mediated phosphatidylinositol (PI) response images may reflect neuronal activation in higher cortical function with a high sensitivity based on the common amplifying mechanism of the second messenger. Many bioactive compounds related to PI turnover have simple carbohydrate structures without amines and [ 11 C]ethylketene acylation has been found as the most effective labeling method of these compounds for positron emission tomography. [ 11 C]ethylketene was produced by the pyrolytic decomposition of [1- 11 C]butyric acid. This new method was made possible by the reaction under the no-carrier-added condition. To visualize the response in vivo, we synthesized sn-1,2-[ 11 C]diacylglycerols (DAGs) as a specific tracer for the PI response and [ 11 C]phorbol esters as a ligand for protein kinase C. In autoradiographic studies it was demonstrated that sn-1,2-[ 11 C]DAGs incorporation sites were discretely localized especially in the neocortex, which were concomitant with columnar structures. These results suggested that sn-1,2-[ 11 C]DAG can serve as an extrinsic substrate for the PI turnover by the phosphorylation mechanism and intensive neuronal processing, as a higher cortical function, occurs in these areas on the basis of receptor-mediated PI response. (author)

  20. Formulation of 68Ga BAPEN kit for myocardial positron emission tomography imaging and biodistribution study

    International Nuclear Information System (INIS)

    Yang, Bo Yeun; Jeong, Jae Min; Kim, Young Joo; Choi, Jae Yeon; Lee, Yun-Sang; Lee, Dong Soo

    2010-01-01

    Introduction: Tris(4,6-dimethoxysalicylaldimine)-N,N'-bis(3-aminopropyl) -N,N'-ethylenediamine (BAPEN), a tris(salicylaldimine) derivative, is a heart positron emission tomography (PET) agent when labeled with 68 Ga. However, its labeling requires complicated and time-consuming procedures. In this study, the authors formulated a new BAPEN kit for convenient 68 Ga labeling. Methods: BAPEN (0.25 mg) kits were prepared by dispensing its solution in 1 M sodium acetate buffer (pH 5.5) into sterile vials and lyophilization. The prepared kits were labeled with generator-eluted 68 Ga in 0.1 N HCl. Stability in human serum was tested. Expiration date was determined by accelerated testing according to US Food and Drug Administration guidelines. A Biodistribution study was performed in normal mice after injection via tail vein. Results: The prepared kits achieved radiolabeling efficiencies in excess of 95% and showed a shelf-life of 98 days at 25 deg. C and 64.3 months at 4 deg. C. 68 Ga-BAPEN was found to be stable in human serum at 37 deg. C for at least 1 h. Furthermore, a biodistribution study revealed high heart uptake (10.8% ID/g, 1 h). Conclusions: The authors developed a BAPEN kit for convenient labeling with 68 Ga. The 68 Ga-BAPEN showed high stability and excellent biodistribution results in normal mice, which is required for myocardial PET imaging.

  1. Variabilities of Magnetic Resonance Imaging-, Computed Tomography-, and Positron Emission Tomography-Computed Tomography-Based Tumor and Lymph Node Delineations for Lung Cancer Radiation Therapy Planning.

    Science.gov (United States)

    Karki, Kishor; Saraiya, Siddharth; Hugo, Geoffrey D; Mukhopadhyay, Nitai; Jan, Nuzhat; Schuster, Jessica; Schutzer, Matthew; Fahrner, Lester; Groves, Robert; Olsen, Kathryn M; Ford, John C; Weiss, Elisabeth

    2017-09-01

    To investigate interobserver delineation variability for gross tumor volumes of primary lung tumors and associated pathologic lymph nodes using magnetic resonance imaging (MRI), and to compare the results with computed tomography (CT) alone- and positron emission tomography (PET)-CT-based delineations. Seven physicians delineated the tumor volumes of 10 patients for the following scenarios: (1) CT only, (2) PET-CT fusion images registered to CT ("clinical standard"), and (3) postcontrast T1-weighted MRI registered with diffusion-weighted MRI. To compute interobserver variability, the median surface was generated from all observers' contours and used as the reference surface. A physician labeled the interface types (tumor to lung, atelectasis (collapsed lung), hilum, mediastinum, or chest wall) on the median surface. Contoured volumes and bidirectional local distances between individual observers' contours and the reference contour were analyzed. Computed tomography- and MRI-based tumor volumes normalized relative to PET-CT-based volumes were 1.62 ± 0.76 (mean ± standard deviation) and 1.38 ± 0.44, respectively. Volume differences between the imaging modalities were not significant. Between observers, the mean normalized volumes per patient averaged over all patients varied significantly by a factor of 1.6 (MRI) and 2.0 (CT and PET-CT) (P=4.10 × 10 -5 to 3.82 × 10 -9 ). The tumor-atelectasis interface had a significantly higher variability than other interfaces for all modalities combined (P=.0006). The interfaces with the smallest uncertainties were tumor-lung (on CT) and tumor-mediastinum (on PET-CT and MRI). Although MRI-based contouring showed overall larger variability than PET-CT, contouring variability depended on the interface type and was not significantly different between modalities, despite the limited observer experience with MRI. Multimodality imaging and combining different imaging characteristics might be the best approach to define

  2. Emphysema. Imaging for endoscopic lung volume reduction

    International Nuclear Information System (INIS)

    Storbeck, B.; Oldigs, M.; Rabe, K.F.; Weber, C.; University Medical Center Hamburg-Eppendorf

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by two entities, the more airway-predominant type (''bronchitis'') on the one hand, and emphysema-predominant type on the other. Imaging via high-resolution computed tomography plays an important role in phenotyping COPD. For patients with advanced lung emphysema, new endoscopic lung volume reduction therapies (ELVR) have been developed. Proper selection of suitable patients requires thin-section reconstruction of volumetric CT image data sets also in coronal and sagittal orientation are required. In the current manuscript we will describe emphysema subtypes (centrilobular, paraseptal, panlobular), options for quantifying emphysema and this importance of regional distribution (homogeneous or heterogeneous, target area) as this is crucial for patient selection. Analysis of the interlobular fissures is obligatory despite the lack of standardization, as incomplete fissures indicate collateral ventilation (CV) via parenchymal bridges, which is an important criterion in choosing endoscopic methods of LVR. Every radiologist should be familiar with modern LVR therapies such as valves and coils, and furthermore should know what a lung doctor expects from radiologic evaluation (before and after ELVR). Finally we present a checklist as a quick reference for all steps concerning imaging for ELVR.

  3. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools.

    Science.gov (United States)

    Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr

    2012-05-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.

  4. Quantitative Analysis of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yi [Department of Radiation Oncology, Stanford University, Palo Alto, California (United States); Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Song, Jie; Pollom, Erqi; Alagappan, Muthuraman [Department of Radiation Oncology, Stanford University, Palo Alto, California (United States); Shirato, Hiroki [Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Chang, Daniel T.; Koong, Albert C. [Department of Radiation Oncology, Stanford University, Palo Alto, California (United States); Stanford Cancer Institute, Stanford, California (United States); Li, Ruijiang, E-mail: rli2@stanford.edu [Department of Radiation Oncology, Stanford University, Palo Alto, California (United States); Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Stanford Cancer Institute, Stanford, California (United States)

    2016-09-01

    Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT {sup 18}F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162 robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e-6

  5. Lhermitte-Duclos disease presenting with positron emission tomography-magnetic resonance fusion imaging: a case report

    Directory of Open Access Journals (Sweden)

    Calabria Ferdinando

    2012-03-01

    Full Text Available Abstract Introduction Lhermitte-Duclos disease or dysplastic gangliocytoma of the cerebellum is an extremely rare tumor. It is a slowly enlarging mass within the cerebellar cortex. The majority of cases are diagnosed in the third or fourth decade of life. Case presentation We report the case of a 37-year-old Caucasian woman who underwent positron emission tomography-computed tomography with fluorine-18-fluorodeoxyglucose for evaluation of a solitary lung node. No pathological uptake was detected in the solitary lung node but the positron emission tomography-computed tomography of her brain showed intense tracer uptake, suggestive of a malignant neoplasm, in a mass in her left cerebellar lobe. Our patient had experienced two years of occipital headache and movement disorder. Subsequently, magnetic resonance imaging was performed with contrast agent administration, showing a large subtentorial mass in her left cerebellar hemisphere, with compression and dislocation of the fourth ventricle. Metabolic data provided by positron emission tomography and morphological magnetic resonance imaging views were fused in post-processing, allowing a diagnosis of dysplastic gangliocytoma with increased glucose metabolism. Total resection of the tumor was performed and histological examination confirmed the diagnosis of Lhermitte-Duclos disease. Conclusions Our case indicates that increased uptake of fluorine-18-fluorodeoxyglucose may be misinterpreted as a neoplastic process in the evaluation of patients with Lhermitte-Duclos disease, but supports the usefulness of integrated positron emission tomography-magnetic resonance imaging in the exact pathophysiologic explanation of this disease and in making the correct diagnosis. However, an accurate physical examination and exact knowledge of clinical data is of the utmost importance.

  6. Positron emission tomography imaging of CD105 expression during tumor angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hao [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Yang, Yunan [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Third Military Medical University, Department of Ultrasound, Xinqiao Hospital, Chongqing (China); Zhang, Yin; Engle, Jonathan W.; Barnhart, Todd E.; Nickles, Robert J. [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Leigh, Bryan R. [TRACON Pharmaceuticals, Inc., San Diego, CA (United States); Cai, Weibo [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); University of Wisconsin - Madison, Departments of Radiology and Medical Physics, School of Medicine and Public Health, Madison, WI (United States)

    2011-07-15

    Overexpression of CD105 (endoglin) correlates with poor prognosis in many solid tumor types. Tumor microvessel density (MVD) assessed by CD105 staining is the current gold standard for evaluating tumor angiogenesis in the clinic. The goal of this study was to develop a positron emission tomography (PET) tracer for imaging CD105 expression. TRC105, a chimeric anti-CD105 monoclonal antibody, was conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and labeled with {sup 64}Cu. FACS analysis and microscopy studies were performed to compare the CD105 binding affinity of TRC105 and DOTA-TRC105. PET imaging, biodistribution, blocking, and ex vivo histology studies were performed on 4T1 murine breast tumor-bearing mice to evaluate the ability of {sup 64}Cu-DOTA-TRC105 to target tumor angiogenesis. Another chimeric antibody, cetuximab, was used as an isotype-matched control. FACS analysis of human umbilical vein endothelial cells (HUVECs) revealed no difference in CD105 binding affinity between TRC105 and DOTA-TRC105, which was further validated by fluorescence microscopy. {sup 64}Cu labeling was achieved with high yield and specific activity. Serial PET imaging revealed that the 4T1 tumor uptake of the tracer was 8.0 {+-} 0.5, 10.4 {+-} 2.8, and 9.7 {+-} 1.8%ID/g at 4, 24, and 48 h post-injection, respectively (n = 3), higher than most organs at late time points which provided excellent tumor contrast. Biodistribution data as measured by gamma counting were consistent with the PET findings. Blocking experiments, control studies with {sup 64}Cu-DOTA-cetuximab, as well as ex vivo histology all confirmed the in vivo target specificity of {sup 64}Cu-DOTA-TRC105. This is the first successful PET imaging study of CD105 expression. Fast, prominent, persistent, and CD105-specific uptake of the tracer in the 4T1 tumor was observed. Further studies are warranted and currently underway. (orig.)

  7. Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jørgensen, L V; Kerrigan, S J; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Yamazaki, Y

    2009-01-01

    A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons.

  8. Simulation, image reconstruction and SiPM characterisation for a novel endoscopic positron emission tomography detector

    International Nuclear Information System (INIS)

    Zvolsky, Milan

    2017-12-01

    In the scope of the EndoTOFPET-US project, a novel multimodal device for ultrasound (US) endoscopy and positron emission tomography (PET) is being developed. The project aims at detecting and quantifying morphologic and functional biomarkers and developing new biomarkers for pancreas and prostate oncology. The detector system comprises a small detector probe mounted on an ultrasound endoscope and an external detector plate. The detection of the gamma rays is realised by scintillator crystals with Silicon Photomultiplier (SiPM) read-out. For the characterisation of over 4000 SiPMs for the external plate, an automatised measurement and data analysis procedure is established. The key properties of the SiPMs like breakdown voltage and dark count rate (DCR) are extracted. This knowledge is needed both as a quality assurance as well as for the calibration of the detector. The spread between minimum and maximum breakdown voltage within a SiPM array of 4 x 4 is at maximum 0.43 V with a mean of 0.15 V and an RMS of 0.06 V. This assures the optimal biasing of each SiPM at its individual operating voltage. The mean DCR amounts to 1.49 MHz with an RMS of 0.54 MHz and is thus well below the acceptable threshold of 3 MHz. Two spare modules from the external plate are re-measured and analysed several years after the module assembly, revealing a potential alteration of the SiPM noise properties over time. For the characterisation of SiPMs from different vendors, a software framework for the automatic extraction of performance parameters from pulseheight spectra, including a t of the entire spectrum, is developed and tested. In order to facilitate the modelling of the response of the EndoTOFPET-US detector, a framework is developed which is built around the Geant4-based simulation toolkit GAMOS, to simulate and reconstruct realistic imaging scenarios with this asymmetric PET detector. The simulation studies are used to compare different possible detector designs, guide the

  9. Simulation, image reconstruction and SiPM characterisation for a novel endoscopic positron emission tomography detector

    Energy Technology Data Exchange (ETDEWEB)

    Zvolsky, Milan

    2017-12-15

    In the scope of the EndoTOFPET-US project, a novel multimodal device for ultrasound (US) endoscopy and positron emission tomography (PET) is being developed. The project aims at detecting and quantifying morphologic and functional biomarkers and developing new biomarkers for pancreas and prostate oncology. The detector system comprises a small detector probe mounted on an ultrasound endoscope and an external detector plate. The detection of the gamma rays is realised by scintillator crystals with Silicon Photomultiplier (SiPM) read-out. For the characterisation of over 4000 SiPMs for the external plate, an automatised measurement and data analysis procedure is established. The key properties of the SiPMs like breakdown voltage and dark count rate (DCR) are extracted. This knowledge is needed both as a quality assurance as well as for the calibration of the detector. The spread between minimum and maximum breakdown voltage within a SiPM array of 4 x 4 is at maximum 0.43 V with a mean of 0.15 V and an RMS of 0.06 V. This assures the optimal biasing of each SiPM at its individual operating voltage. The mean DCR amounts to 1.49 MHz with an RMS of 0.54 MHz and is thus well below the acceptable threshold of 3 MHz. Two spare modules from the external plate are re-measured and analysed several years after the module assembly, revealing a potential alteration of the SiPM noise properties over time. For the characterisation of SiPMs from different vendors, a software framework for the automatic extraction of performance parameters from pulseheight spectra, including a t of the entire spectrum, is developed and tested. In order to facilitate the modelling of the response of the EndoTOFPET-US detector, a framework is developed which is built around the Geant4-based simulation toolkit GAMOS, to simulate and reconstruct realistic imaging scenarios with this asymmetric PET detector. The simulation studies are used to compare different possible detector designs, guide the

  10. Positron emission tomography of the lung

    International Nuclear Information System (INIS)

    Wollmer, P.

    1984-01-01

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  11. The use of positrons to study the shape of open-volume defects in cadmium as a function of temperature

    International Nuclear Information System (INIS)

    Selen, M.A.; Mackenzie, I.K.

    1982-01-01

    The properties of positrons and their use as solid state probes is discussed. The S and P parameters are defined. The concept of vacancies and pre-vacancies is introduced. Cadmium is shown to have highly anisotropic pre-vacancies which dominate positron trapping between 200 and 440 degrees Kelvin

  12. Physical Selectivity of Molecularly Imprinted polymers evaluated through free volume size distributions derived from Positron Lifetime Spectroscopy

    Science.gov (United States)

    Pasang, T.; Ranganathaiah, C.

    2015-06-01

    The technique of imprinting molecules of various sizes in a stable structure of polymer matrix has derived multitudes of applications. Once the template molecule is extracted from the polymer matrix, it leaves behind a cavity which is physically (size and shape) and chemically (functional binding site) compatible to the particular template molecule. Positron Annihilation Lifetime Spectroscopy (PALS) is a well known technique to measure cavity sizes precisely in the nanoscale and is not being used in the field of MIPs effectively. This method is capable of measuring nanopores and hence suitable to understand the physical selectivity of the MIPs better. With this idea in mind, we have prepared molecular imprinted polymers (MIPs) with methacrylicacid (MAA) as monomer and EGDMA as cross linker in different molar ratio for three different size template molecules, viz. 4-Chlorophenol (4CP)(2.29 Å), 2-Nephthol (2NP) (3.36 Å) and Phenolphthalein (PP) (4.47Å). FTIR and the dye chemical reactions are used to confirm the complete extraction of the template molecules from the polymer matrix. The free volume size and its distribution have been derived from the measured o-Ps lifetime spectra. Based on the free volume distribution analysis, the percentage of functional cavities for the three template molecules are determined. Percentage of functional binding cavities for 4-CP molecules has been found out to be 70.2% and the rest are native cavities. Similarly for 2NP it is 81.5% and nearly 100% for PP. Therefore, PALS method proves to be very precise and accurate for determining the physical selectivity of MIPs.

  13. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.

    Science.gov (United States)

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al 18 F-labeling strategy involves chelation in aqueous medium of aluminum mono[ 18 F]fluoride ({Al 18 F} 2+ ) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al 18 F} 2+ to evaluate the generic applicability of the one-step Al 18 F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al 18 F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[ 18 F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [ 18 F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.

  14. Localised proton spectroscopy and spectroscopic imaging in cerebral gliomas, with comparison to positron emission tomography

    International Nuclear Information System (INIS)

    Go, K.G.; Kamman, R.L.; Mooyaart, E.L.; Heesters, M.A.A.M.; Pruim, J.; Vaalburg, W.; Paans, A.M.J.

    1995-01-01

    In 32 patients with gliomas, one- and two-dimensional proton magnetic resonance spectroscopy ( 1 H-MRS) has been conducted, the latter allowing reconstruction of spectroscopic data into a spectroscopic image (MRSI), showing the distribution of the various metabolite concentrations over the cross-sectional plane. For lack of absolute concentrations, the measured concentrations of phosphocholine (CHOL), N-acetyl-L-aspartate (NAA), and lactate (LAC) were conventionally expressed in ratios relative to that of creatine (CREAT). Compared to normal brain tissue, an increased CHOL/CREAT ratio was found in all groups of tumours, in glioblastomas, high-, middle- and low-grade astrocytomas both at the margin and the core of the tumours, but in oligodendrogliomas only at the margin. This is consistent with an increased phosphocholine turnover in relation to membrane biosynthesis by the proliferating cells. The NAA/CREAT ratio was decreased in all groups of tumours, both in the centre and at the margin, reflecting replacement of functioning neurons by neoplastic cells. The LAC/CREAT ratio was elevated in the core of malignant gliomas, which may be the result of a prevailing glycolysis, characteristic of tumours, possibly in conjunction with hypoxia/ischaemia. In the perifocal oedema, there was neither elevation of the CHOL/CREAT ratio nor decrease of the NAA/CREAT ratio; an increased LAC/CREAT ratio therefore rather reflected ischaemia/hypoxia probably due to locally elevated pressure and compromised regional perfusion. In the normal brain, the metabolite ratios of grey matter did not differ from those of white matter. The frontal lobe and basal ganglia showed lower NAA/CREAT ratios than the other cerebral areas. In 7 patients positron emission tomography was also performed with [ 18 F]fluoro-2-deoxy-D-glucose ( 18 FDG) or L-[1- 11 C]-tyrosine ( 11 C-TYR); the latter demonstrated a pattern of 11 C-TYR uptake similar to that of CHOL elevation in the MRSI. (orig.)

  15. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging

    Science.gov (United States)

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al18F-labeling strategy involves chelation in aqueous medium of aluminum mono[18F]fluoride ({Al18F}2+) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al18F}2+ to evaluate the generic applicability of the one-step Al18F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al18F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[18F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [18F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers. PMID:28824726

  16. Imaging of metabolism and autonomic innervation of the heart by positron emission tomography

    International Nuclear Information System (INIS)

    Melon, P.; Schwaiger, M.

    1992-01-01

    Positron emission tomography (PET) allows, in combination with multiple radiopharmaceuticals, unique physiological and biochemical tissue characterization. Tracers of blood flow, metabolism and neuronal function have been employed with this technique for research application. More recently, PET has emerged in cardiology as useful for the detection of coronary artery disease and the evaluation of tissue viability. Metabolic tracers such as flourine-18 deoxyglucose (FDG) permit the specific delineation of ischaemically compromised myocardium. Clinical studies have indicated that the metabolic imaging is helpful in selecting patients for coronary artery bypass surgery or coronary angioplasty. More recent research work has concentrated on the use of carbon-11 acetate as a marker of myocardial oxygen consumption. Together with measurements of left ventricular performance, estimates of cardiac efficiency can be derived from dynamic 11 C-acetate studies. The non-invasive evaluation of the autonomic nervous system of the heart was limited in the past. With the introduction of radiopharmaceuticals which specifically bind to neuronal structures, the regional integrity of the autonomic nervous system of the heart can be evaluated with PET. Numerous tracers for pre- and postsynaptic binding sites have been synthesized. 11 C-Hydroxyephedrine represent a new catecholamine analogne which is stored in cardiac presynaptic sympathetic nerve terminals. Initial clinical studies with it suggest a promising role for PET in the study of the sympathetic nervous system in various cardiac diseases such as cardiomyopathy, ischaemic heart disease and diabetes mellitus. The specificity of the radiopharmaceuticals and the quantitative measurements of tissue tracer distribution provided by PET make this technology a very attractive research tool in the cardiovascular sciences with great promise in the area of cardiac metabolism and neurocardiology. (orig.)

  17. X-ray volume imaging in bladder radiotherapy verification

    International Nuclear Information System (INIS)

    Henry, Ann M.; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-01-01

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology

  18. Preclinical and clinical evaluation of O-[11C]methyl-L-tyrosine for tumor imaging by positron emission tomography

    International Nuclear Information System (INIS)

    Ishiwata, Kiichi; Tsukada, Hideo; Kubota, Kazuo; Nariai, Tadashi; Harada, Norihiro; Kawamura, Kazunori; Kimura, Yuichi; Oda, Keiichi; Iwata, Ren; Ishii, Kenji

    2005-01-01

    We performed preclinical and clinical studies of O-[ 11 C]methyl-L-tyrosine, a potential tracer for imaging amino acid transport of tumors by positron emission tomography (PET). Examinations of the radiation-absorbed dose by O-[ 11 C]methyl-L-tyrosine and the acute toxicity and mutagenicity of O-methyl-L-tyrosine showed suitability of the tracer for clinical use. The whole-body imaging of monkeys and healthy humans by PET showed low uptake of O-[ 11 C]methyl-L-tyrosine in all normal organs except for the urinary track and bladder, suggesting that the O-[ 11 C]methyl-L-tyrosine PET has the potential for tumor imaging in the whole-body. Finally, the brain tumor imaging was preliminarily demonstrated

  19. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Grueneisen, Johannes; Nagarajah, James; Buchbender, Christian; Hoffmann, Oliver; Schaarschmidt, Benedikt Michael; Poeppel, Thorsten; Forsting, Michael; Quick, Harald H; Umutlu, Lale; Kinner, Sonja

    2015-08-01

    This study aimed to assess the diagnostic performance of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) of the breast for lesion detection and local tumor staging of patients with primary breast cancer in comparison to PET/computed tomography (CT) and MRI. The study was approved by the local institutional review board. Forty-nine patients with biopsy-proven invasive breast cancer were prospectively enrolled in our study. All patients underwent a PET/CT, and subsequently, a contrast-enhanced PET/MRI of the breast after written informed consent was obtained before each examination. Two radiologists independently evaluated the corresponding data sets (PET/CT, PET/MRI, and MRI) and were instructed to identify primary tumors lesions as well as multifocal/multicentric and bilateral disease. Furthermore, the occurrence of lymph node metastases was assessed, and the T-stage for each patient was determined. Histopathological verification of the local tumor extent and the axillary lymph node status was available for 30 of 49 and 48 of 49 patients, respectively. For the remaining patients, a consensus characterization was performed for the determination of the T-stage and nodal status, taking into account the results of clinical staging, PET/CT, and PET/MRI examinations. Statistical analysis was performed to test for differences in diagnostic performance between the different imaging procedures. P values less than 0.05 were considered to be statistically significant. Positron emission tomography/MRI and MRI correctly identified 47 (96%) of the 49 patients with primary breast cancer, whereas PET/CT enabled detection of 46 (94%) of 49 breast cancer patients and missed a synchronous carcinoma in the contralateral breast in 1 patient. In a lesion-by-lesion analysis, no significant differences could be obtained between the 3 imaging procedures for the identification of primary breast cancer lesions (P > 0.05). Positron emission tomography/MRI and

  20. Evaluation of right ventricular volumes measured by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Møgelvang, J; Stubgaard, M; Thomsen, C

    1988-01-01

    stroke volume was calculated as the difference between end-diastolic and end-systolic volume and compared to left ventricular stroke volume and to stroke volume determined simultaneously by a classical indicator dilution technique. There was good agreement between right ventricular stroke volume......Right ventricular volumes were determined in 12 patients with different levels of right and left ventricular function by magnetic resonance imaging (MRI) using an ECG gated multisection technique in planes perpendicular to the diastolic position of the interventricular septum. Right ventricular...... determined by MRI and by the indicator dilution method and between right and left ventricular stroke volume determined by MRI. Thus, MRI gives reliable values not only for left ventricular volumes, but also for right ventricular volumes. By MRI it is possible to obtain volumes from both ventricles...

  1. Multimodality imaging using proton magnetic resonance spectroscopic imaging and 18F-fluorodeoxyglucose-positron emission tomography in local prostate cancer

    Science.gov (United States)

    Shukla-Dave, Amita; Wassberg, Cecilia; Pucar, Darko; Schöder, Heiko; Goldman, Debra A; Mazaheri, Yousef; Reuter, Victor E; Eastham, James; Scardino, Peter T; Hricak, Hedvig

    2017-01-01

    AIM To assess the relationship using multimodality imaging between intermediary citrate/choline metabolism as seen on proton magnetic resonance spectroscopic imaging (1H-MRSI) and glycolysis as observed on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in prostate cancer (PCa) patients. METHODS The study included 22 patients with local PCa who were referred for endorectal magnetic resonance imaging/1H-MRSI (April 2002 to July 2007) and 18F-FDG-PET/CT and then underwent prostatectomy as primary or salvage treatment. Whole-mount step-section pathology was used as the standard of reference. We assessed the relationships between PET parameters [standardized uptake value (SUVmax and SUVmean)] and MRSI parameters [choline + creatine/citrate (CC/Cmax and CC/Cmean) and total number of suspicious voxels] using spearman’s rank correlation, and the relationships of PET and 1H-MRSI index lesion parameters to surgical Gleason score. RESULTS Abnormal intermediary metabolism on 1H-MRSI was present in 21/22 patients, while abnormal glycolysis on 18F-FDG-PET/CT was detected in only 3/22 patients. Specifically, index tumor localization rates were 0.95 (95%CI: 0.77-1.00) for 1H-MRSI and 0.14 (95%CI: 0.03-0.35) for 18F-FDG-PET/CT. Spearman rank correlations indicated little relationship (ρ = -0.36-0.28) between 1H-MRSI parameters and 18F-FDG-PET/CT parameters. Both the total number of suspicious voxels (ρ = 0.55, P = 0.0099) and the SUVmax (ρ = 0.46, P = 0.0366) correlated weakly with the Gleason score. No significant relationship was found between the CC/Cmax, CC/Cmean or SUVmean and the Gleason score (P = 0.15-0.79). CONCLUSION The concentration of intermediary metabolites detected by 1H MRSI and glycolytic flux measured 18F-FDG PET show little correlation. Furthermore, only few tumors were FDG avid on PET, possibly because increased glycolysis represents a late and rather ominous event in the progression of PCa. PMID:28396727

  2. Brain volume measurement using three-dimensional magnetic resonance images

    International Nuclear Information System (INIS)

    Ishimaru, Yoshihiro

    1996-01-01

    This study was designed to validate accurate measurement method of human brain volume using three dimensional (3D) MRI data on a workstation, and to establish optimal correcting method of human brain volume on diagnosis of brain atrophy. 3D MRI data were acquired by fast SPGR sequence using 1.5 T MR imager. 3D MRI data were segmented by region growing method and 3D image was displayed by surface rendering method on the workstation. Brain volume was measured by the volume measurement function of the workstation. In order to validate the accurate measurement method, phantoms and a specimen of human brain were examined. Phantom volume was measured by changing the lower level of threshold value. At the appropriate threshold value, percentage of error of phantoms and the specimen were within 0.6% and 0.08%, respectively. To establish the optimal correcting method, 130 normal volunteers were examined. Brain volumes corrected with height weight, body surface area, and alternative skull volume were evaluated. Brain volume index, which is defined as dividing brain volume by alternative skull volume, had the best correlation with age (r=0.624, p<0.05). No gender differences was observed in brain volume index in contrast to in brain volume. The clinical usefulness of this correcting method for brain atrophy diagnosis was evaluated in 85 patients. Diagnosis by 2D spin echo MR images was compared with brain volume index. Diagnosis of brain atrophy by 2D MR image was concordant with the evaluation by brain volume index. These results indicated that this measurement method had high accuracy, and it was important to set the appropriate threshold value. Brain volume index was the appropriate indication for evaluation of human brain volume, and was considered to be useful for the diagnosis of brain atrophy. (author)

  3. Spectrum of fluorodeoxyglucose-positron emission tomography/computed tomography and magnetic resonance imaging findings of ovarian tumors.

    Science.gov (United States)

    Kitajima, Kazuhiro; Ueno, Yoshiko; Maeda, Tetsuo; Murakami, Koji; Kaji, Yasushi; Kita, Masato; Suzuki, Kayo; Sugimura, Kazuro

    2011-11-01

    The purpose of this article is to review fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) and magnetic resonance imaging (MRI) findings in a variety of benign, malignant, and borderline malignant ovarian tumors. It is advantageous to become familiar with the wide variety of FDG-PET/CT findings of this entity. Benign ovarian tumors generally have faint uptake, whereas endometriomas, fibromas, and teratomas show mild to moderate uptake. Malignant ovarian tumors generally have intense uptake, whereas tumors with a small solid component often show minimal uptake.

  4. A combined positron emission tomography (PET)- electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner.

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V; Guggilapu, Priyaankadevi; Bobko, Andrey A; Khramtsov, Valery V; Tseytlin, Oxana; Raylman, Raymond R

    2018-04-20

    The advent of hybrid scanners, combining complementary modalities, has revolutionized imaging; enhancing clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). The PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring parameters such as oxygenation and pH, for example. A combined PET/EPRI scanner has the promise to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. In this investigation, a prototype system was created by combing two existing scanners, modified for simultaneous imaging. Specifically, a silicon photomultiplier (SiPM) based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both PET and EPR tracers. The resulting images demonstrated the ability to obtain contemporaneous PET and ERP images without cross-modality interference. The next step in this project is the construction of pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically important parameters of tissue microenvironments. . © 2018 Institute of Physics and Engineering in Medicine.

  5. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.

    2018-05-01

    The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.

  6. Assessment of Extent and Role of Tau in Subcortical Vascular Cognitive Impairment Using 18F-AV1451 Positron Emission Tomography Imaging.

    Science.gov (United States)

    Kim, Hee Jin; Park, Seongbeom; Cho, Hanna; Jang, Young Kyoung; San Lee, Jin; Jang, Hyemin; Kim, Yeshin; Kim, Ko Woon; Ryu, Young Hoon; Choi, Jae Yong; Moon, Seung Hwan; Weiner, Michael W; Jagust, William J; Rabinovici, Gil D; DeCarli, Charles; Lyoo, Chul Hyoung; Na, Duk L; Seo, Sang Won

    2018-05-14

    Amyloid-β (Aβ), tau, and cerebral small vessel disease (CSVD), which occasionally coexist, are the most common causes of cognitive impairments in older people. However, whether tau is observed in patients with subcortical vascular cognitive impairment (SVCI), as well as its associations with Aβ and CSVD, are not yet established. More importantly, the role of tau underlying cognitive impairments in SVCI is unknown. To investigate the extent and the role of tau in patients with SVCI using 18F-AV1451, which is a new ligand to detect neurofibrillary tangles in vivo. This cross-sectional study recruited 64 patients with SVCI from June 2015 to December 2016 at Samsung Medical Center, Seoul, Korea. The patients had significant ischemia on brain magnetic resonance imaging, defined as periventricular white matter hyperintensity at least 10 mm and deep white matter hyperintensity at least 25 mm. We excluded 3 patients with SVCI owing to segmentation error during AV1451 positron emission tomography analysis. We calculated CSVD scores based on the volumes of white matter hyperintensities, numbers of lacunes, and microbleeds using magnetic resonance imaging data. The presence of Aβ was assessed using fluorine 18-labeled (18F) florbetaben positron emission tomography. Tau was measured using 18F-AV1451 positron emission tomography. We determined the spreading order of tau by sorting the regional frequencies of cortical involvement. We evaluated the complex associations between Aβ, CSVD, AV1451 uptake, and cognition in patients with SVCI. Of the 61 patients with SVCI, 44 (72.1%) were women and the mean (SD) age was 78.7 (6.3) years. Patients with SVCI, especially patients with Aβ-negative SVCI, showed higher AV1451 uptake in the inferior temporal areas compared with normal control individuals. In patients with SVCI, Aβ positivity and CSVD score were each independently associated with increased AV1451 uptake in the medial temporal and inferior temporal regions, respectively

  7. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O

    2003-01-01

    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  8. Imaging Spectrum and Pitfalls of (11)C-Methionine Positron Emission Tomography in a Series of Patients with Intracranial Lesions.

    Science.gov (United States)

    Ito, Kimiteru; Matsuda, Hiroshi; Kubota, Kazoo

    2016-01-01

    (11)C-methionine (Met) positron emission tomography (PET) is one of the most commonly used PET tracers for evaluating brain tumors. However, few reports have described tips and pitfalls of (11)C-Met PET for general practitioners. Physiological (11)C-Met uptake, anatomical variations, vascular disorders, non-tumorous lesions such as inflammation or dysplasia, benign brain tumors and patient condition during (11)C-Met PET examination can potentially affect the image interpretation and cause false positives and negatives. These pitfalls in the interpretation of (11)C-Met PET images are important for not only nuclear medicine physicians but also general radiologists. Familiarity with the spectrum and pitfalls of (11)C-Met images could help prevent unfavorable clinical results caused by misdiagnoses.

  9. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    International Nuclear Information System (INIS)

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  10. Positron Emission Tomography/Computed Tomography Imaging of Residual Skull Base Chordoma Before Radiotherapy Using Fluoromisonidazole and Fluorodeoxyglucose: Potential Consequences for Dose Painting

    Energy Technology Data Exchange (ETDEWEB)

    Mammar, Hamid, E-mail: hamid.mammar@unice.fr [Radiation Oncology Department, Antoine Lacassagne Center, Nice (France); CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Kerrou, Khaldoun; Nataf, Valerie [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France); Pontvert, Dominique [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Clemenceau, Stephane [Department of Neurosurgery, Pitie-Salpetriere Hospital, Paris (France); Lot, Guillaume [Department of Neurosurgery, Adolph De Rothschild Foundation, Paris (France); George, Bernard [Department of Neurosurgery, Lariboisiere Hospital, Paris (France); Polivka, Marc [Department of Pathology, Lariboisiere Hospital, Paris (France); Mokhtari, Karima [Department of Pathology, Pitie-Salpetriere Hospital, Paris (France); Ferrand, Regis; Feuvret, Loiec; Habrand, Jean-louis [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Pouyssegur, Jacques; Mazure, Nathalie [CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Talbot, Jean-Noeel [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France)

    2012-11-01

    Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake value (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.

  11. Design and evaluation of a SiPM-based large-area detector module for positron emission imaging

    Science.gov (United States)

    Alva-Sánchez, H.; Murrieta-Rodríguez, T.; Calva-Coraza, E.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.

    2018-03-01

    The design and evaluation of a large-area detector module for positron emission imaging applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state detector (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The detector module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean energy resolution for 511 keV annihilation photons was determined. The performance of the detector using our own readout board was compared to that using two different commercially readout boards using the same detector module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent energy resolution and detector uniformity and thus, can be used for positron emission imaging applications.

  12. Diagnostic imaging procedure volume in the United States

    International Nuclear Information System (INIS)

    Johnson, J.L.; Abernathy, D.L.

    1983-01-01

    Comprehensive data on 1979 and 1980 diagnostic imaging procedure volume were collected from a stratified random sample of U.S. short-term general-care hospitals and private practices of radiologists, cardiologists, obstetricians/gynecologists, orthopedic surgeons, and neurologists/neurosurgeons. Approximately 181 million imaging procedures (within the study scope) were performed in 1980. Despite the rapidly increasing use of newer imaging methods, plain film radiography (140.3 million procedures) and contrast studies (22.9 million procedures) continue to comprise the vast majority of diagnostic imaging volume. Ultrasound, computed tomography, nuclear medicine, and special procedures make up less than 10% of total diagnostic imaging procedures. Comparison of the data from this study with data from an earlier study indicates that imaging procedure volume in hospitals expanded at an annual growth rate of almost 8% from 1973 to 1980

  13. Semi-supervised manifold learning with affinity regularization for Alzheimer's disease identification using positron emission tomography imaging.

    Science.gov (United States)

    Lu, Shen; Xia, Yong; Cai, Tom Weidong; Feng, David Dagan

    2015-01-01

    Dementia, Alzheimer's disease (AD) in particular is a global problem and big threat to the aging population. An image based computer-aided dementia diagnosis method is needed to providing doctors help during medical image examination. Many machine learning based dementia classification methods using medical imaging have been proposed and most of them achieve accurate results. However, most of these methods make use of supervised learning requiring fully labeled image dataset, which usually is not practical in real clinical environment. Using large amount of unlabeled images can improve the dementia classification performance. In this study we propose a new semi-supervised dementia classification method based on random manifold learning with affinity regularization. Three groups of spatial features are extracted from positron emission tomography (PET) images to construct an unsupervised random forest which is then used to regularize the manifold learning objective function. The proposed method, stat-of-the-art Laplacian support vector machine (LapSVM) and supervised SVM are applied to classify AD and normal controls (NC). The experiment results show that learning with unlabeled images indeed improves the classification performance. And our method outperforms LapSVM on the same dataset.

  14. Positron imaging with multiwire proportional chamber-gamma converter hybrid detectors

    International Nuclear Information System (INIS)

    Chu, D.Y.H.

    1976-09-01

    A large area positron camera was developed using multiwire proportional chambers as detectors and electromagnetic delay lines for coordinate readout. Honeycomb structured gamma converters made of lead are coupled to the chambers for efficient gamma detection and good spatial resolution. Two opposing detectors, each having a sensitive area of 48 cm x 48 cm, are operated in coincidence for the detection of annihilation gammas (511 keV) from positron emitters. Detection efficiency of 4.2 percent per detector and spatial resolution of 6 to 7 mm FWHM at the mid-plane were achieved. The present camera operates at a maximum count rate of 24 K counts/min, limited by accidental coincidence. The theory for the gamma converter is presented along with a review of the operation of the multiwire proportional chamber and delay line readout. Calculated gamma converter efficiencies are compared with the measured results using a prototype test chamber. The characteristics of the positron camera system is evaluated, and the performance is shown to be consistent with calculation

  15. Free-volume distributions of polymers by positron annihilation spectroscopy: further experiences in using CONTIN for continuous lifetime distributions

    International Nuclear Information System (INIS)

    Dai, G.H.; Jean, Y.C.

    1995-01-01

    Thorough examinations of the CONTIN program were carried out by using the simulated positron lifetime spectra, to reveal the capability of CONTIN in the reconstruction of the positron lifetime distributions. It is shown that: 1. very high statistics is strongly desired by CONTIN to reproduce reliable lifetime distributions; 2. improving the time resolution of the measurement system, to the level of 0.030 ns full width at half maximum, does not significantly improve the resolving power of CONTIN; and 3. reducing the time width per channel is a practical way of improving the reconstruction of the lifetime probability density functions by CONTIN. (orig.)

  16. Differentiation of Glioblastomas from Metastatic Brain Tumors by Tryptophan Uptake and Kinetic Analysis: A Positron Emission Tomographic Study with Magnetic Resonance Imaging Comparison

    Directory of Open Access Journals (Sweden)

    David O. Kamson

    2013-07-01

    Full Text Available Differentiating high-grade gliomas from solitary brain metastases is often difficult by conventional magnetic resonance imaging (MRI; molecular imaging may facilitate such discrimination. We tested the accuracy of α[11C]methyl-L-tryptophan (AMT–positron emission tomography (PET to differentiate newly diagnosed glioblastomas from brain metastases. AMT-PET was performed in 36 adults with suspected brain malignancy. Tumoral AMT accumulation was measured by standardized uptake values (SUVs. Tracer kinetic analysis was also performed to separate tumoral net tryptophan transport (by AMT volume of distribution [VD] from unidirectional uptake rates using dynamic PET and blood input function. Differentiating the accuracy of these PET variables was evaluated and compared to conventional MRI. For glioblastoma/metastasis differentiation, tumoral AMT SUV showed the highest accuracy (74% and the tumor/cortex VD ratio had the highest positive predictive value (82%. The combined accuracy of MRI (size of contrast-enhancing lesion and AMT-PET reached up to 93%. For ring-enhancing lesions, tumor/cortex SUV ratios were higher in glioblastomas than in metastatic tumors and could differentiate these two tumor types with > 90% accuracy. These results demonstrate that evaluation of tryptophan accumulation by PET can enhance pretreatment differentiation of glioblastomas and metastatic brain tumors. This approach may be particularly useful in patients with a newly diagnosed solitary ring-enhancing mass.

  17. Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics

    International Nuclear Information System (INIS)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Hadzaman, I.; Solntsev, V.; Hotra, O.; Popov, A.

    2016-01-01

    Free volume and pore size distribution size in functional micro and macro-micro-modified Cu 0.4 Co 0.4 Ni 0.4 Mn 1.8 O 4 ceramics are characterized by positron annihilation lifetime spectroscopy in comparison with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are interpreted in terms of model implication positron trapping and ortho-positronium decaying. It is shown that free volume of positron traps are the same type for macro and micro modified Cu 0.4 Co 0.4 Ni 0.4 Mn 1.8 O 4 ceramics. Classic Tao-Eldrup model in spherical approximation is used to calculation of the size of nanopores smaller than 2 nm using the ortho-positronium lifetime.

  18. Imaging for carbon translocation to a fruit of tomato with carbon-11-labeled carbon dioxide and positron emission tomography

    International Nuclear Information System (INIS)

    Kawachi, N.; Suzui, N.; Ishii, S.; Fujimaki, S.; Ishioka, N.; Kikuchi, K.; Watanbe, H.

    2009-01-01

    Carbon kinetics in the fruit is an agricultural issue on the growth and development of the fruit to be harvested. Particularly, photo-assimilate translocation and distribution are important topics for understanding the mechanism. In the present work, carbon-11 ( 11 C) labeled photo-assimilate translocation into fruits of tomato has been imaged using carbon-11-labeled carbon dioxide and the positron emission tomography (PET). Dynamic PET data of gradual increasing of 11 C activity and its distribution is acquired quantitatively in intact plant body. This indicates that the three dimensional photo-assimilate translocation into the fruits is imaged successfully and carbon kinetics is analyzed to understand the plant physiology and nutrition. (authors)

  19. Imaging spectrum and pitfalls of ¹⁸F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with tuberculosis.

    Science.gov (United States)

    Ito, Kimiteru; Morooka, Miyako; Minamimoto, Ryogo; Miyata, Yoko; Okasaki, Momoko; Kubota, Kazuo

    2013-08-01

    Mycobacterium tuberculosis (TB) is one of the most prominant diseases frequently causing false positive lesions in oncologic surveys using (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT), since TB granulomas are composed of activated macrophages and lymphocytes with high affinity for glucose. These pitfalls of (18)F-FDG PET/CT are important for radiologists. Being familiar with (18)F-FDG images of TB could assist in preventing unfavorable clinical results based on misdiagnoses. In addition, (18)F-FDG PET/CT has the advantage of being able to screen the whole body, and can clearly detect harboring TB lesions as high uptake foci. This article details the spectrum and pitfalls of (18)F-FDG PET/CT imaging in TB.

  20. 18F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging findings of primary intracranial histiocytic sarcoma in a dog

    International Nuclear Information System (INIS)

    Kang, B.T.; Park, C.; Yoo, J.H.; Gu, S.H.; Jang, D.P.; Kim, Y.B.; Woo, E.J.; Kim, D.Y.; Cho, Z.H.; Park, H.M.

    2009-01-01

    A 10-year-old, neutered male, Maltese dog presented with a three week history of intention tremor, right hind limb rigidity, poor coordination, and occasional circling to the left. On magnetic resonance imaging (MRI) of the brain, a mass was identified in the right occipital lobe and cerebellum. Three weeks after the initial MRI scan, we performed an sup(18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) of the brain. The FDG-PET demonstrated areas of hypermetabolism in the right occipital lobe, cerebellum, pons, and medulla oblongata. When the standardized uptake value was calculated, the hypermetabolic lesion was higher than the gray matter values. The anatomical location of the hypermetabolic lesion was more precisely identified by the PET-MRI fusion images. The dog was definitively diagnosed as a primary histiocytic sarcoma of the brain. This is the first report of PET findings of an intracranial histiocytic sarcoma in a dog

  1. Study of free volume hole distributions in xTiO2(1-x)SiO2 by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Misheva, M.A.; Djourelov, N.; Margaca, M.A.; Salvado, F.I.; Passage, G.

    1999-01-01

    Positron annihilation spectroscopy has been used to get information about the small pore structure of the system xTiO 2 .(1-x)SiO 2 (x=10,30 mol.%). The pore radius and volume probability distribution functions have been received from the ortho-Positronium lifetime probability distribution function, obtained by the lifetime spectra processing with CONTIN (PALS-2) program. The linearity of the S versus W-parameters has been used to check the similarity (or not) of the defect structure of the samples prepared under different experimental conditions. (author)

  2. Myocardial blood flow quantification for evaluation of coronary artery disease by positron emission tomography, cardiac magnetic resonance imaging, and computed tomography.

    Science.gov (United States)

    Waller, Alfonso H; Blankstein, Ron; Kwong, Raymond Y; Di Carli, Marcelo F

    2014-05-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging, and computed tomography, and its emerging clinical applications.

  3. Graphical User Interfaces for Volume Rendering Applications in Medical Imaging

    OpenAIRE

    Lindfors, Lisa; Lindmark, Hanna

    2002-01-01

    Volume rendering applications are used in medical imaging in order to facilitate the analysis of three-dimensional image data. This study focuses on how to improve the usability of graphical user interfaces of these systems, by gathering user requirements. This is achieved by evaluations of existing systems, together with interviews and observations at clinics in Sweden that use volume rendering to some extent. The usability of the applications of today is not sufficient, according to the use...

  4. Radiolabeled, Antibody-Conjugated Manganese Oxide Nanoparticles for Tumor Vasculature Targeted Positron Emission Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Zhan, Yonghua; Shi, Sixiang; Ehlerding, Emily B; Graves, Stephen A; Goel, Shreya; Engle, Jonathan W; Liang, Jimin; Tian, Jie; Cai, Weibo

    2017-11-08

    Manganese oxide nanoparticles (Mn 3 O 4 NPs) have attracted a great deal of attention in the field of biomedical imaging because of their ability to create an enhanced imaging signal in MRI as novel potent T 1 contrast agents. In this study, we present tumor vasculature-targeted imaging in mice using Mn 3 O 4 NPs through conjugation to the anti-CD105 antibody TRC105 and radionuclide copper-64 ( 64 Cu, t 1/2 : 12.7 h). The Mn 3 O 4 conjugated NPs, 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105, exhibited sufficient stability in vitro and in vivo. Serial positron emission tomography (PET) and magnetic resonance imaging (MRI) studies evaluated the pharmacokinetics and demonstrated targeting of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 to 4T1 murine breast tumors in vivo, compared to 64 Cu-NOTA-Mn 3 O 4 @PEG. The specificity of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 for the vascular marker CD105 was confirmed through in vivo, in vitro, and ex vivo experiments. Since Mn 3 O 4 conjugated NPs exhibited desirable properties for T 1 enhanced imaging and low toxicity, the tumor-specific Mn 3 O 4 conjugated NPs reported in this study may serve as promising multifunctional nanoplatforms for precise cancer imaging and diagnosis.

  5. Translocator Protein-18 kDa (TSPO Positron Emission Tomography (PET Imaging and Its Clinical Impact in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Anne-Claire Dupont

    2017-04-01

    Full Text Available In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO. In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease’s stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia’s role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases.

  6. Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors

    DEFF Research Database (Denmark)

    Clausen, Malene M.; Hansen, Anders Elias; af Rosenschold, Per Munck

    2013-01-01

    : Positron emission tomography/computed tomography (PET/CT) scans of five spontaneous canine solid tumors were included. FDG-PET/CT was obtained at day 1, 64Cu-ATSM at day 2 and 3 (3 and 24 h pi.). GTV was delineated and CT images were co-registered. Sub-volumes for 3 h and 24 h 64Cu-ATSM (Cu3 and Cu24) were...

  7. Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer : reduction in geographic misses with equal inter-observer variability

    NARCIS (Netherlands)

    Schreurs, Liesbeth; Busz, D. M.; Paardekooper, G. M. R. M.; Beukema, J. C.; Jager, P. L.; Van der Jagt, E. J.; van Dam, G. M.; Groen, H.; Plukker, J. Th. M.; Langendijk, J. A.

    P>Target volume definition in modern radiotherapy is based on planning computed tomography (CT). So far, 18-fluorodeoxyglucose positron emission tomography (FDG-PET) has not been included in planning modality in volume definition of esophageal cancer. This study evaluates fusion of FDG-PET and CT in

  8. Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see.

    Science.gov (United States)

    Cocker, Myra S; Mc Ardle, Brian; Spence, J David; Lum, Cheemun; Hammond, Robert R; Ongaro, Deidre C; McDonald, Matthew A; Dekemp, Robert A; Tardif, Jean-Claude; Beanlands, Rob S B

    2012-12-01

    Prodigious efforts and landmark discoveries have led toward significant advances in our understanding of atherosclerosis. Despite significant efforts, atherosclerosis continues globally to be a leading cause of mortality and reduced quality of life. With surges in the prevalence of obesity and diabetes, atherosclerosis is expected to have an even more pronounced impact upon the global burden of disease. It is imperative to develop strategies for the early detection of disease. Positron emission tomography (PET) imaging utilizing [(18)F]fluorodeoxyglucose (FDG) may provide a non-invasive means of characterizing inflammatory activity within atherosclerotic plaque, thus serving as a surrogate biomarker for detecting vulnerable plaque. The aim of this review is to explore the rationale for performing FDG imaging, provide an overview into the mechanism of action, and summarize findings from the early application of FDG PET imaging in the clinical setting to evaluate vascular disease. Alternative imaging biomarkers and approaches are briefly discussed.

  9. Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography.

    Science.gov (United States)

    Dollé, Frédéric

    2013-01-01

    Exploration of the living human brain in real-time and in a noninvasive way was for centuries only a dream, made, however, possible today with the remarkable development during the four last decades of powerful molecular imaging techniques, and especially positron emission tomography (PET). Molecular PET imaging relies, from a chemical point of view, on the use and preparation of a positron-emitting radiolabelled probe or radiotracer, notably compounds incorporating one of two short-lived radionuclides fluorine-18 (T1/2 : 109.8 min) and carbon-11 (T1/2 : 20.38 min). The growing availability and interest for the radiohalogen fluorine-18 in radiopharmaceutical chemistry undoubtedly results from its convenient half-life and the successful use in clinical oncology of 2-[(18) F]fluoro-2-deoxy-d-glucose ([(18) F]FDG). The special interest of carbon-11 is not only that carbon is present in virtually all biomolecules and drugs allowing therefore for isotopic labelling of their chemical structures but also that a given molecule could be radiolabelled at different functions or sites, permitting to explore (or to take advantage of) in vivo metabolic pathways. PET chemistry includes production of these short-lived radioactive isotopes via nuclear transmutation reactions using a cyclotron, and is directed towards the development of rapid synthetic methods, at the trace level, for the introduction of these nuclides into a molecule, as well as the use of fast purification, analysis and formulation techniques. PET chemistry is the driving force in molecular PET imaging, and this special issue of the Journal of Labelled Compounds and Radiopharmaceuticals, which is strongly chemistry and radiochemistry-oriented, aims at illustrating, be it in part only, the state-of-the-art arsenal of reactions currently available and its potential for the research and development of specific molecular probes labelled with the positron emitters carbon-11 and fluorine-18, with optimal imaging

  10. Apparent brain temperature imaging with multi-voxel proton magnetic resonance spectroscopy compared with cerebral blood flow and metabolism imaging on positron emission tomography in patients with unilateral chronic major cerebral artery steno-occlusive disease

    Energy Technology Data Exchange (ETDEWEB)

    Nanba, Takamasa; Nishimoto, Hideaki; Murakami, Toshiyuki; Fujiwara, Shunrou; Ogasawara, Kuniaki [Iwate Medical University, Department of Neurosurgery, Iwate (Japan); Yoshioka, Yoshichika [Osaka University, Open and Transdisciplinary Research Initiatives, Osaka (Japan); Sasaki, Makoto; Uwano, Ikuko [Iwate Medical University, Institute for Biomedical Science, Iwate (Japan); Terasaki, Kazunori [Iwate Medical University, Cyclotron Research Center, Iwate (Japan)

    2017-09-15

    The purpose of the present study was to determine whether apparent brain temperature imaging using multi-voxel proton magnetic resonance (MR) spectroscopy correlates with cerebral blood flow (CBF) and metabolism imaging in the deep white matter of patients with unilateral chronic major cerebral artery steno-occlusive disease. Apparent brain temperature and CBF and metabolism imaging were measured using proton MR spectroscopy and {sup 15}O-positron emission tomography (PET), respectively, in 35 patients. A set of regions of interest (ROIs) of 5 x 5 voxels was placed on an MR image so that the voxel row at each edge was located in the deep white matter of the centrum semiovale in each cerebral hemisphere. PET images were co-registered with MR images with these ROIs and were re-sliced automatically using image analysis software. In 175 voxel pairs located in the deep white matter, the brain temperature difference (affected hemisphere - contralateral hemisphere: ΔBT) was correlated with cerebral blood volume (CBV) (r = 0.570) and oxygen extraction fraction (OEF) ratios (affected hemisphere/contralateral hemisphere) (r = 0.641). We excluded voxels that contained ischemic lesions or cerebrospinal fluid and calculated the mean values of voxel pairs in each patient. The mean ΔBT was correlated with the mean CBF (r = - 0.376), mean CBV (r = 0.702), and mean OEF ratio (r = 0.774). Apparent brain temperature imaging using multi-voxel proton MR spectroscopy was correlated with CBF and metabolism imaging in the deep white matter of patients with unilateral major cerebral artery steno-occlusive disease. (orig.)

  11. Methodology of the individual detection of cerebral activations by positrons emission tomography: statistical characterization of noise images and introduction of anatomical information

    International Nuclear Information System (INIS)

    Antoine, M.J.

    1996-01-01

    The work that presented here has been done in the context of non invasive study of human brain, with metabolism images techniques ( positrons emission tomography or P.E.T.) and anatomy images techniques (imaging by nuclear magnetic resonance or MRI). The objective of this thesis was to use jointly, the information given by these two ways, in the aim of improving the individual detection of cerebral activation. (N.C.)

  12. Positron emission tomography

    International Nuclear Information System (INIS)

    Chandrasekhar, Preethi; Himabindu, Pucha

    2000-01-01

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging technique used to study different molecular pathways and anatomical structures. PET has found extensive applications in various fields of medicine viz. cardiology, oncology, psychiatry/psychology, neuro science and pulmonology. This study paper basically deals with the physics, chemistry and biology behind the PET technique. It discusses the methodology for generation of the radiotracers responsible for emission of positrons and the annihilation and detection techniques. (author)

  13. Positron emission tomography and gene therapy: basic concepts and experimental approaches for in vivo gene expression imaging.

    Science.gov (United States)

    Peñuelas, Iván; Boán, JoséF; Martí-Climent, Josep M; Sangro, Bruno; Mazzolini, Guillermo; Prieto, Jesús; Richter, José A

    2004-01-01

    More than two decades of intense research have allowed gene therapy to move from the laboratory to the clinical setting, where its use for the treatment of human pathologies has been considerably increased in the last years. However, many crucial questions remain to be solved in this challenging field. In vivo imaging with positron emission tomography (PET) by combination of the appropriate PET reporter gene and PET reporter probe could provide invaluable qualitative and quantitative information to answer multiple unsolved questions about gene therapy. PET imaging could be used to define parameters not available by other techniques that are of substantial interest not only for the proper understanding of the gene therapy process, but also for its future development and clinical application in humans. This review focuses on the molecular biology basis of gene therapy and molecular imaging, describing the fundamentals of in vivo gene expression imaging by PET, and the application of PET to gene therapy, as a technology that can be used in many different ways. It could be applied to avoid invasive procedures for gene therapy monitoring; accurately diagnose the pathology for better planning of the most adequate therapeutic approach; as treatment evaluation to image the functional effects of gene therapy at the biochemical level; as a quantitative noninvasive way to monitor the location, magnitude and persistence of gene expression over time; and would also help to a better understanding of vector biology and pharmacology devoted to the development of safer and more efficient vectors.

  14. Systematic screening of imaging biomarkers for the Islets of Langerhans, among clinically available positron emission tomography tracers

    International Nuclear Information System (INIS)

    Karlsson, Filip; Antonodimitrakis, Pantelis Clewemar; Eriksson, Olof

    2015-01-01

    Introduction: Functional imaging could be utilized for visualizing pancreatic islets of Langerhans. Therefore, we present a stepwise algorithm for screening of clinically available positron emission tomography (PET) tracers for their use in imaging of the neuroendocrine pancreas in the context of diabetes. Methods: A stepwise procedure was developed for screening potential islet imaging agents. Suitable PET-tracer candidates were identified by their molecular mechanism of targeting. Clinical abdominal examinations were retrospectively analyzed for pancreatic uptake and retention. The target protein localization in the pancreas was assessed in silico by –omics approaches and the in vitro by binding assays to human pancreatic tissue. Results: Six putative candidates were identified and screened by using the stepwise procedure. Among the tested PET tracers, only [ 11 C]5-Hydroxy-tryptophan passed all steps. The remaining identified candidates were falsified as candidates and discarded following in silico and in vitro screening. Conclusions: Of the six clinically available PET tracers identified, [ 11 C]5-HTP was found to be a promising candidate for beta cell imaging, based on intensity of in vivo pancreatic uptake in humans, and islet specificity as assessed on human pancreatic cell preparations. The flow scheme described herein constitutes a methodology for evaluating putative islet imaging biomarkers among clinically available PET tracers

  15. Comparison of Amino Acid Positron Emission Tomographic Radiotracers for Molecular Imaging of Primary and Metastatic Brain Tumors

    Directory of Open Access Journals (Sweden)

    Csaba Juhász

    2014-08-01

    Full Text Available Positron emission tomography (PET is an imaging technology that can detect and characterize tumors based on their molecular and biochemical properties, such as altered glucose, nucleoside, or amino acid metabolism. PET plays a significant role in the diagnosis, prognostication, and treatment of various cancers, including brain tumors. In this article, we compare uptake mechanisms and the clinical performance of the amino acid PET radiotracers (L-[methyl-11C]methionine [MET], 18F-fluoroethyl-tyrosine [FET], 18F-fluoro-L- dihydroxy-phenylalanine [FDOPA], and 11C-alpha-methyl-L-tryptophan [AMT] most commonly used for brain tumor imaging. First, we discuss and compare the mechanisms of tumoral transport and accumulation, the basis of differential performance of these radioligands in clinical studies. Then we summarize studies that provided direct comparisons among these amino acid tracers and to clinically used 2-deoxy-2[18F]fluoro-D-glucose [FDG] PET imaging. We also discuss how tracer kinetic analysis can enhance the clinical information obtained from amino acid PET images. We discuss both similarities and differences in potential clinical value for each radioligand. This comparative review can guide which radiotracer to favor in future clinical trials aimed at defining the role of these molecular imaging modalities in the clinical management of brain tumor patients.

  16. Experimental results and first {sup 22}Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gallin-Martel, M.-L., E-mail: mlgallin@lpsc.in2p3.fr [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, 53 avenue des Martyrs 38026 Grenoble Cedex (France); Grondin, Y. [Laboratoire TIMC/IMAG, CNRS et Universite Joseph Fourier, Pavillon Taillefer 38706 La Tronche Cedex (France); Gac, N. [Laboratoire L2S, UMR 8506 CNRS - SUPELEC - Univ Paris-Sud, Gif sur Yvette F-91192 (France); Carcagno, Y.; Gallin-Martel, L.; Grondin, D.; Marton, M.; Muraz, J.-F; Rossetto, O.; Vezzu, F. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, 53 avenue des Martyrs 38026 Grenoble Cedex (France)

    2012-08-01

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a {sup 22}Na source placed in the experimental setup.

  17. Experimental results and first 22Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    International Nuclear Information System (INIS)

    Gallin-Martel, M.-L.; Grondin, Y.; Gac, N.; Carcagno, Y.; Gallin-Martel, L.; Grondin, D.; Marton, M.; Muraz, J.-F; Rossetto, O.; Vezzu, F.

    2012-01-01

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a 22 Na source placed in the experimental setup.

  18. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Science.gov (United States)

    Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques

  19. SU-D-201-06: Random Walk Algorithm Seed Localization Parameters in Lung Positron Emission Tomography (PET) Images

    Energy Technology Data Exchange (ETDEWEB)

    Soufi, M [Shahid Beheshti University, Tehran, Tehran (Iran, Islamic Republic of); Asl, A Kamali [Shahid Beheshti University, Tehran, Iran., Tehran, Tehran (Iran, Islamic Republic of); Geramifar, P [Shariati Hospital, Tehran, Iran., Tehran, Tehran (Iran, Islamic Republic of)

    2015-06-15

    Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lung lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm{sup 3}. For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and

  20. SU-D-201-06: Random Walk Algorithm Seed Localization Parameters in Lung Positron Emission Tomography (PET) Images

    International Nuclear Information System (INIS)

    Soufi, M; Asl, A Kamali; Geramifar, P

    2015-01-01

    Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lung lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm 3 . For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and

  1. New developments in molecular imaging: positron emission tomography time-of-flight (TOF-PET); Nuevos desarrollos en imagen molecular: Tomografia por Emision de Positrones con Teimpo de Vuelo (TOF-PET)

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, P.; Couce, B.; Iglesias, A.; Lois, C.

    2011-07-01

    Positron Emission tomography (PET) in increasingly being used in oncology for the diagnosis and staging of disease, as well as in monitoring response to therapy. One of the last advances in PET is the incorporation of Time-of-Flight (TOF) information, which improves the tomographic reconstruction process and subsequently the quality of the final image. In this work, we explain the principles of PET and the fundamentals of TOF-PET. Clinical images are shown in order to illustrate how TOF-PET improves the detectability of small lesions, particularly in patients with high body mass index. (Author) 20 refs.

  2. Cerebral blood volume reactivity to hypercapnia measured with 11C-labelled carboxyhemoglobin and positron emission tomography. Chapter 8

    International Nuclear Information System (INIS)

    Kanno, Iwao; Uemera, Kazuo; Murakami, Matsutaro; Shishido, Fumio; Tomura, Noriaki

    1988-01-01

    The purpose of the present study to examine the regionality of the CBV reactivity to changes in PaCO2 employing 11C-labelled carboxyhemoglobin and positron emission tomography (PET). The study was caried out using sequential scans obtained by PET followinng a single administration by the 11CO inhalation method during which activation of either hypercapnia or hypocapnia was induced in the subject. 7 refs.; 6 figs.; 2 tabs

  3. Evaluation of 4-[(18)F]fluorobenzoyl-FALGEA-NH(2) as a positron emission tomography tracer for epidermal growth factor receptor mutation variant III imaging in cancer

    DEFF Research Database (Denmark)

    Denholt, Charlotte Lund; Binderup, Tina; Stockhausen, Marie-Thérése

    2011-01-01

    This study describes the radiosynthesis, in vitro and in vivo evaluation of the novel small peptide radioligand, 4-[(18)F]fluorobenzoyl-Phe-Ala-Leu-Gly-Glu-Ala-NH(2,) ([(18)F]FBA-FALGEA-NH(2)) as a positron emission tomography (PET) tracer for imaging of the cancer specific epidermal growth facto...

  4. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism

    International Nuclear Information System (INIS)

    Booij, J.; Tissingh, G.; Winogrodzka, A.; Royen, E.A. van

    1999-01-01

    Parkinsonism is a feature of a number of neurodegenerative diseases, including Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. The results of post-mortem studies point to dysfunction of the dopaminergic neurotransmitter system in patients with parkinsonism. Nowadays, by using single-photon emission tomography (SPET) and positron emission tomography (PET) it is possible to visualise both the nigrostriatal dopaminergic neurons and the striatal dopamine D 2 receptors in vivo. Consequently, SPET and PET imaging of elements of the dopaminergic system can play an important role in the diagnosis of several parkinsonian syndromes. This review concentrates on findings of SPET and PET studies of the dopaminergic neurotransmitter system in various parkinsonian syndromes. (orig.)

  5. Development of a New Positron Emission Tomography Tracer for Targeting Tumor Angiogenesis: Synthesis, Small Animal Imaging, and Radiation Dosimetry

    Directory of Open Access Journals (Sweden)

    David S. Lalush

    2013-05-01

    Full Text Available Angiogenesis plays a key role in cancer progression and correlates with disease aggressiveness and poor clinical outcomes. Affinity ligands discovered by screening phage display random peptide libraries can be engineered to molecularly target tumor blood vessels for noninvasive imaging and early detection of tumor aggressiveness. In this study, we tested the ability of a phage-display-selected peptide sequence recognizing specifically bone marrow- derived pro-angiogenic tumor-homing cells, the QFP-peptide, radiolabeled with 64Cu radioisotope to selectively image tumor vasculature in vivo by positron emission tomography (PET. To prepare the targeted PET tracer we modified QFP-phage with the DOTA chelator and radiolabeled the purified QFP-phage-DOTA intermediate with 64Cu to obtain QFP-targeted radioconjugate with high radiopharmaceutical yield and specific activity. We evaluated the new PET tracer in vivo in a subcutaneous (s.c. Lewis lung carcinoma (LLC mouse model and conducted tissue distribution, small animal PET/CT imaging study, autoradiography, histology, fluorescence imaging, and dosimetry assessments. The results from this study show that, in the context of the s.c. LLC immunocompetent mouse model, the QFP-tracer can target tumor blood vessels selectively. However, further optimization of the biodistribution and dosimetry profile of the tracer is necessary to ensure efficient radiopharmaceutical applications enabled by the biological specificity of the QFP-peptide.

  6. Blood flow and blood volume in the femoral heads of healthy adults according to age. Measurement with positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Kubo, Toshikazu; Kimori, Kokuto; Nakamura, Fuminori; Inoue, Shigehiro; Fujioka, Mikihiro; Ueshima, Keiichiro; Hirasawa, Yasusuke; Ushijima, Yo; Nishimura, Tsunehiko

    2001-01-01

    To deepen understanding of hemodynamics in the femoral head, i.e., the essential factor in clarifying pathogenesis of hip disorders, this study examined blood flow and blood volume in the femoral heads of healthy adults, and their changes with age, by using positron emission tomography (PET). In 16 healthy adult males (age: 20-78 years old, mean age: 42 years), blood flow was measured by means of the H 2 15 O dynamic study method, and blood volume was measured by means of the 15 O-labeled carbon monoxide bolus inhalation method. Blood flow was 1.68-6.47 ml/min/100 g (mean ±SD: 3.52±1.2), and blood volume was 1.67-6.03 ml/100 g (mean ±SD: 3.00±1.27). Blood flow significantly decreased (p<0.01) with age, and blood volume significantly increased (P<0.05). PET was useful in the measurement of blood flow and blood volume in the femoral heads. With age, physiological hemodynamic changes also increased in femoral heads. (author)

  7. Brain Volume Estimation Enhancement by Morphological Image Processing Tools

    Directory of Open Access Journals (Sweden)

    Zeinali R.

    2017-12-01

    Full Text Available Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/ abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. Stereology method is a good method for estimating volume but it requires to segment enough MRI slices and have a good resolution. In this study, it is desired to enhance stereology method for volume estimation of brain using less MRI slices with less resolution. Methods: In this study, a program for calculating volume using stereology method has been introduced. After morphologic method, dilation was applied and the stereology method enhanced. For the evaluation of this method, we used T1-wighted MR images from digital phantom in BrainWeb which had ground truth. Results: The volume of 20 normal brain extracted from BrainWeb, was calculated. The volumes of white matter, gray matter and cerebrospinal fluid with given dimension were estimated correctly. Volume calculation from Stereology method in different cases was made. In three cases, Root Mean Square Error (RMSE was measured. Case I with T=5, d=5, Case II with T=10, D=10 and Case III with T=20, d=20 (T=slice thickness, d=resolution as stereology parameters. By comparing these results of two methods, it is obvious that RMSE values for our proposed method are smaller than Stereology method. Conclusion: Using morphological operation, dilation allows to enhance the estimation volume method, Stereology. In the case with less MRI slices and less test points, this method works much better compared to Stereology method.

  8. Positron emission tomography. Basic principles

    International Nuclear Information System (INIS)

    Rodriguez, Jose Luis; Massardo, Teresa; Gonzalez, Patricio

    2001-01-01

    The basic principles of positron emission tomography (PET) technique are reviewed. lt allows to obtain functional images from gamma rays produced by annihilation of a positron, a positive beta particle. This paper analyzes positron emitters production in a cyclotron, its general mechanisms, and the various detection systems. The most important clinical applications are also mentioned, related to oncological uses of fluor-l8-deoxyglucose

  9. Estimation of lung volume and pulmonary blood volume from radioisotopic images

    International Nuclear Information System (INIS)

    Kanazawa, Minoru

    1989-01-01

    Lung volume and pulmonary blood volume in man were estimated from the radioisotopic image using single photon emission computed tomography (SPECT). Six healthy volunteers were studied in a supine position with normal and altered lung volumes by applying continuous negative body-surface pressure (CNP) and by positive end-expiratory pressure (PEEP). 99m Tc labeled human serum albumin was administered as an aerosol to image the lungs. The CNP caused the diaphragm to be lowered and it increased the mean lung tissue volume obtained by SPECT from 3.09±0.49 l for baseline to 3.67±0.62 l for 10 cmH 2 O (p 2 O (p 2 O), respectively. The PEEP also increased the lung tissue volume to 3.68±0.68 l for 10 cmH 2 O as compared with the baseline (p 2 O PEEP. The lung tissue volume obtained by SPECT showed a positive correlation with functional residual capacity measured by the He dilution method (r=0.91, p 99m Tc-labeled red blood cells. The L/H ratio decreased after either the CNP or PEEP, suggesting a decrease in the blood volume per unit lung volume. However, it was suggested that the total pulmonary blood volume increased slightly either on the CNP (+7.4% for 10 cmH 2 O, p 2 O,p<0.05) when we extrapolated the L/H ratio to the whole lungs by multiplying the lung tissue volume obtained by SPECT. We concluded that SPECT could offer access to the estimation of lung volume and pulmonary blood volume in vivo. (author)

  10. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-Based Radiotherapy Target Volume Definition in Non-Small-Cell Lung Cancer: Delineation by Radiation Oncologists vs. Joint Outlining With a PET Radiologist?

    International Nuclear Information System (INIS)

    Hanna, Gerard G.; Carson, Kathryn J.; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P.; Eakin, Ruth L.; Stewart, David P.; Zatari, Ashraf; O'Sullivan, Joe M.; Hounsell, Alan R.

    2010-01-01

    Purpose: 18 F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. Methods and Materials: RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV CT ) and on fused PET/CT images (GTV PETCT ). The mean percentage volume change (PVC) between GTV CT and GTV PETCT for the radiation oncologists and the PVC between GTV CT and GTV PETCT for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV CT and GTV PETCT in a single measurement. Results: For all patients, a significant difference in PVC from GTV CT to GTV PETCT exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV CT and GTV FUSED for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Conclusions: Percentage volume changes from GTV CT to GTV PETCT were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP.

  11. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?

    Science.gov (United States)

    Hanna, Gerard G; Carson, Kathryn J; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P; Eakin, Ruth L; Stewart, David P; Zatari, Ashraf; O'Sullivan, Joe M; Hounsell, Alan R

    2010-11-15

    (18)F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV(CT)) and on fused PET/CT images (GTV(PETCT)). The mean percentage volume change (PVC) between GTV(CT) and GTV(PETCT) for the radiation oncologists and the PVC between GTV(CT) and GTV(PETCT) for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV(CT) and GTV(PETCT) in a single measurement. For all patients, a significant difference in PVC from GTV(CT) to GTV(PETCT) exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV(CT) and GTV(FUSED) for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Percentage volume changes from GTV(CT) to GTV(PETCT) were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors.

    Science.gov (United States)

    Jaber, Mohammed; Wölfer, Johannes; Ewelt, Christian; Holling, Markus; Hasselblatt, Martin; Niederstadt, Thomas; Zoubi, Tarek; Weckesser, Matthias; Stummer, Walter

    2016-03-01

    Approximately 20% of grade II and most grade III gliomas fluoresce after 5-aminolevulinic acid (5-ALA) application. Conversely, approximately 30% of nonenhancing gliomas are actually high grade. The aim of this study was to identify preoperative factors (ie, age, enhancement, 18F-fluoroethyl tyrosine positron emission tomography [F-FET PET] uptake ratios) for predicting fluorescence in gliomas without typical glioblastomas imaging features and to determine whether fluorescence will allow prediction of tumor grade or molecular characteristics. Patients harboring gliomas without typical glioblastoma imaging features were given 5-ALA. Fluorescence was recorded intraoperatively, and biopsy specimens collected from fluorescing tissue. World Health Organization (WHO) grade, Ki-67/MIB-1 index, IDH1 (R132H) mutation status, O-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and 1p/19q co-deletion status were assessed. Predictive factors for fluorescence were derived from preoperative magnetic resonance imaging and F-FET PET. Classification and regression tree analysis and receiver-operating-characteristic curves were generated for defining predictors. Of 166 tumors, 82 were diagnosed as WHO grade II, 76 as grade III, and 8 as glioblastomas grade IV. Contrast enhancement, tumor volume, and F-FET PET uptake ratio >1.85 predicted fluorescence. Fluorescence correlated with WHO grade (P fluorescing grade III gliomas was higher than in nonfluorescing tumors, whereas in fluorescing and nonfluorescing grade II tumors, no differences were noted. Age, tumor volume, and F-FET PET uptake are factors predicting 5-ALA-induced fluorescence in gliomas without typical glioblastoma imaging features. Fluorescence was associated with an increased Ki-67/MIB-1 index and high-grade pathology. Whether fluorescence in grade II gliomas identifies a subtype with worse prognosis remains to be determined.

  13. Automatic Detection of Lung and Liver Lesions in 3-D Positron Emission Tomography Images: A Pilot Study

    Science.gov (United States)

    Lartizien, Carole; Marache-Francisco, Simon; Prost, Rémy

    2012-02-01

    Positron emission tomography (PET) using fluorine-18 deoxyglucose (18F-FDG) has become an increasingly recommended tool in clinical whole-body oncology imaging for the detection, diagnosis, and follow-up of many cancers. One way to improve the diagnostic utility of PET oncology imaging is to assist physicians facing difficult cases of residual or low-contrast lesions. This study aimed at evaluating different schemes of computer-aided detection (CADe) systems for the guided detection and localization of small and low-contrast lesions in PET. These systems are based on two supervised classifiers, linear discriminant analysis (LDA) and the nonlinear support vector machine (SVM). The image feature sets that serve as input data consisted of the coefficients of an undecimated wavelet transform. An optimization study was conducted to select the best combination of parameters for both the SVM and the LDA. Different false-positive reduction (FPR) methods were evaluated to reduce the number of false-positive detections per image (FPI). This includes the removal of small detected clusters and the combination of the LDA and SVM detection maps. The different CAD schemes were trained and evaluated based on a simulated whole-body PET image database containing 250 abnormal cases with 1230 lesions and 250 normal cases with no lesion. The detection performance was measured on a separate series of 25 testing images with 131 lesions. The combination of the LDA and SVM score maps was shown to produce very encouraging detection performance for both the lung lesions, with 91% sensitivity and 18 FPIs, and the liver lesions, with 94% sensitivity and 10 FPIs. Comparison with human performance indicated that the different CAD schemes significantly outperformed human detection sensitivities, especially regarding the low-contrast lesions.

  14. Imaging TCR-Dependent NFAT-Mediated T-Cell Activation with Positron Emission Tomography In Vivo

    Directory of Open Access Journals (Sweden)

    Vladimir Ponomarev

    2001-01-01

    Full Text Available A noninvasive method for molecular imaging of T-cell activity in vivo would be of considerable value. It would aid in understanding the role of specific genes and signal transduction pathways in the course of normal and pathologic immune responses, could elucidate temporal dynamics and immune regulation at different stages of disease and following therapy. We developed and assessed a novel method for monitoring the T-cell receptor (TCR -dependent nuclear factor of activated T cells (NFAT -mediated activation of T cells by optical fluorescence imaging (OFI and positron emission tomography (PET. The herpes simplex virus type 1 thymidine kinase/green fluorescent protein [HSV1-tk/GFP (TKGFP ] dual reporter gene was used to monitor NFAT-mediated transcriptional activation in human Jurkat cells. A recombinant retrovirus bearing the NFAT-TKGFP reporter system was constructed in which the TKGFP reporter gene was placed under control of an artificial cis-acting NFAT-specific enhancer. Transduced Jurkat cells were used to establish subcutaneous infiltrates in nude rats. We demonstrated that noninvasive OR and nuclear imaging of T-cell activation is feasible using the NFAT-TKGFP reporter system. PET imaging with [124]FIAU using the NFAT-TKGFP reporter system is sufficiently sensitive to detect T-cell activation in vivo. PET images were confirmed by independent measurements of T-cell activation (e.g., CD69 and induction of GFP fluorescence. PET imaging of TCR-induced NFAT-dependent transcriptional activity may be useful in the assessment of T cell responses, T-cell-based adoptive therapies, vaccination strategies and immunosuppressive drugs.

  15. Image registration with auto-mapped control volumes

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Xing Lei

    2006-01-01

    Many image registration algorithms rely on the use of homologous control points on the two input image sets to be registered. In reality, the interactive identification of the control points on both images is tedious, difficult, and often a source of error. We propose a two-step algorithm to automatically identify homologous regions that are used as a priori information during the image registration procedure. First, a number of small control volumes having distinct anatomical features are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find their correspondences in the reference image through user interaction, in the proposed method, each of the control regions is mapped to the corresponding part of the reference image by using an automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal mapping. For rigid registration, the transformation parameters of the system are obtained by averaging that derived from the individual control volumes. In our deformable calculation, the mapped control volumes are treated as the nodes or control points with known positions on the two images. If the number of control volumes is not enough to cover the whole image to be registered, additional nodes are placed on the model image and then located on the reference image in a manner similar to the conventional BSpline deformable calculation. For deformable registration, the established correspondence by the auto-mapped control volumes provides valuable guidance for the registration calculation and greatly reduces the dimensionality of the problem. The performance of the two-step registrations was applied to three rigid registration cases (two PET-CT registrations and a brain MRI-CT registration) and one deformable registration of

  16. The role of positron emission tomography/computed tomography imaging with radiolabeled choline analogues in prostate cancer.

    Science.gov (United States)

    Navarro-Pelayo Láinez, M M; Rodríguez-Fernández, A; Gómez-Río, M; Vázquez-Alonso, F; Cózar-Olmo, J M; Llamas-Elvira, J M

    2014-11-01

    prostate cancer is the most frequent solid malignant tumor in Western Countries. Positron emission tomography/x-ray computed tomography imaging with radiolabeled choline analogues is a useful tool for restaging prostate cancer in patients with rising prostate-specific antigen after radical treatment (in whom conventional imaging techniques have important limitations) as well as in the initial assessment of a selected group of prostate cancer patients. For this reason a literature review is necessary in order to evaluate the usefulness of this imaging test for the diagnosis and treatment of prostate cancer. a MEDLINE (PubMed way) literature search was performed using the search parameters: «Prostate cancer» and «Choline-PET/CT». Other search terms were «Biochemical failure» and/or «Staging» and/or «PSA kinetics». English and Spanish papers were selected; original articles, reviews, systematic reviews and clinical guidelines were included. according to available data, radiolabeled choline analogues plays an important role in the management of prostate cancer, especially in biochemical relapse because technique accuracy is properly correlated with prostate-specific antigen values and kinetics. Although is an emerging diagnostic technique useful in treatment planning of prostate cancer, final recommendations have not been submitted. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  17. A Dual Reporter Iodinated Labeling Reagent for Cancer Positron Emission Tomography Imaging and Fluorescence-Guided Surgery

    Science.gov (United States)

    2018-01-01

    The combination of early diagnosis and complete surgical resection offers the greatest prospect of curative cancer treatment. An iodine-124/fluorescein-based dual-modality labeling reagent, 124I-Green, constitutes a generic tool for one-step installation of a positron emission tomography (PET) and a fluorescent reporter to any cancer-specific antibody. The resulting antibody conjugate would allow both cancer PET imaging and intraoperative fluorescence-guided surgery. 124I-Green was synthesized in excellent radiochemical yields of 92 ± 5% (n = 4) determined by HPLC with an improved one-pot three-component radioiodination reaction. The A5B7 carcinoembryonic antigen (CEA)-specific antibody was conjugated to 124I-Green. High tumor uptake of the dual-labeled A5B7 of 20.21 ± 2.70, 13.31 ± 0.73, and 10.64 ± 1.86%ID/g was observed in CEA-expressing SW1222 xenograft mouse model (n = 3) at 24, 48, and 72 h post intravenous injection, respectively. The xenografts were clearly visualized by both PET/CT and ex vivo fluorescence imaging. These encouraging results warrant the further translational development of 124I-Green for cancer PET imaging and fluorescence-guided surgery. PMID:29388770

  18. An application of a new planar positron imaging system (PPIS) in a small animal. MPTP-induced parkinsonism in mouse

    International Nuclear Information System (INIS)

    Takamatsu, Hiroyuki; Noda, Akihiro; Kakiuchi, Takeharu

    2004-01-01

    Recent animal PET research has led to the development of PET scanners for small animals. A planar positron imaging system (PPIS) was newly developed to study physiological function in small animals and plants in recent years. To examine the usefulness of PPIS for functional study in small animals, we examined dopaminergic images of mouse striata in MPTP-induced parkinsonism. Male C57BL/6NCrj mice were treated with MPTP 7 days before the PPIS study. Scans were performed to measure dopamine D 1 receptor binding and dopamine transporter availability with [ 11 C]SCH23390 (about 2 MBq) and [ 11 C]β-CFT (about 2 MBq), respectively. After the PPIS study, dopamine content in the striatum was measured by high-performance liquid chromatography (HPLC). The MPTP treatment significantly reduced dopamine content in the striatum 7 days after treatment. In the MPTP-treated group, [ 11 C]β-CFT binding in the striatum was significantly decreased compared with the control group, while striatal [ 11 C]SCH23390 binding was not affected. Dopamine content in the striatum was significantly correlated with the striatal binding of [ 11 C]β-CFT. The present results suggest that PPIS is able to determine brain function in a small animal. Using PPIS, high throughput imaging of small animal brain functions could be achieved. (author)

  19. Positron annihilation lifetime studies of changes in free volume on some biorelevant nitrogen heterocyclic compounds and their S-glycosylation.

    Science.gov (United States)

    Mahmoud, K R; Khodair, A I; Shaban, S Y

    2015-11-01

    A series of N-heterocyclic compounds was investigated by positron annihilation lifetime spectroscopy as well as Doppler broadening of annihilation radiation (DBAR) at room temperature. The results showed that the formation probability and life time of ortho-positronium in this series are structure and electron-donation character dependent, and can give more information about the structure. The DBAR provides direct information about the change of core and valance electrons as well as the number of defect types present in these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Development of radiotracers for imaging NR2B subtype NMDA receptors with positron emission tomography; Developpement de radiotraceurs pour la visualisation des recepteurs NMDA de sous-type NR2B par tomographie par emission de positons

    Energy Technology Data Exchange (ETDEWEB)

    Labas, R

    2007-07-01

    The aim of this thesis was to develop new radioactive tracers for imaging NR2B subtype NMDA receptors with positron emission tomography. Several compounds including 4-(4-fluoro-benzyl)piperidine and presenting interesting in vivo biological properties were the object of a labelling with a positrons emitter atom ({sup 11}C or {sup 18}F)

  1. Cone-beam volume CT mammographic imaging: feasibility study

    Science.gov (United States)

    Chen, Biao; Ning, Ruola

    2001-06-01

    X-ray projection mammography, using a film/screen combination or digital techniques, has proven to be the most effective imaging modality for early detection of breast cancer currently available. However, the inherent superimposition of structures makes small carcinoma (a few millimeters in size) difficult to detect in the occultation case or in dense breasts, resulting in a high false positive biopsy rate. The cone-beam x-ray projection based volume imaging using flat panel detectors (FPDs) makes it possible to obtain three-dimensional breast images. This may benefit diagnosis of the structure and pattern of the lesion while eliminating hard compression of the breast. This paper presents a novel cone-beam volume CT mammographic imaging protocol based on the above techniques. Through computer simulation, the key issues of the system and imaging techniques, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissues, x-ray setting techniques, the absorbed dose estimation and the quantitative effect of x-ray scattering on image quality, are addressed. The preliminary simulation results support the proposed cone-beam volume CT mammographic imaging modality in respect to feasibility and practicability for mammography. The absorbed dose level is comparable to that of current two-view mammography and would not be a prominent problem for this imaging protocol. Compared to traditional mammography, the proposed imaging protocol with isotropic spatial resolution will potentially provide significantly better low contrast detectability of breast tumors and more accurate location of breast lesions.

  2. Positron imaging feasibility studies: characteristics of [3H]thymidine uptake in rodent and canine neoplasms

    International Nuclear Information System (INIS)

    Larson, S.M.; Weiden, P.L.; Grunbaum, J.

    1981-01-01

    Uptake [ 3 H]thymidine was studied in BALB/c mice with EMT-6 sarcoma, in Buffalo rats with Morris 7777 hepatoma, and in nine dogs with spontaneous neoplasms: four lymphomas, two osteosarcomas, two soft-tissue sarcomas, and a thyroid carcinoma. High tumor-to-tissue ratios were observed for all tumor types assayed, and absolute uptakes, when computed as percent dose per gram tumor normalized for body weight, were similar for transplanted and spontaneous tumors. In the rodent tumors, radiothymidine was retained for at least 3 hr in the tumor without appreciable loss. In canine neoplasms, although the highest uptakes were observed in cellular tumors with many mitotic figures, tumor uptake showed significant variability that did not correlate with any obvious histologic change, and thus may reflect true biologic differences in metabolism among tumors at different sites in the same animal. These studies provide additional experimental evidence that the ratios of neoplastic to normal tissue and the kinetics of thymidine uptake by tumors are suitable for positron emission tomography of neoplasms in small and large, animals, including both transplanted and spontaneous tumors

  3. Comparison of [11C]choline Positron Emission Tomography With T2- and Diffusion-Weighted Magnetic Resonance Imaging for Delineating Malignant Intraprostatic Lesions

    International Nuclear Information System (INIS)

    Chang, Joe H.; Lim Joon, Daryl; Davis, Ian D.; Lee, Sze Ting; Hiew, Chee-Yan; Esler, Stephen; Gong, Sylvia J.; Wada, Morikatsu; Clouston, David; O'Sullivan, Richard; Goh, Yin P.; Bolton, Damien; Scott, Andrew M.; Khoo, Vincent

    2015-01-01

    Purpose: The purpose of this study was to compare the accuracy of [ 11 C]choline positron emission tomography (CHOL-PET) with that of the combination of T2-weighted and diffusion-weighted (T2W/DW) magnetic resonance imaging (MRI) for delineating malignant intraprostatic lesions (IPLs) for guiding focal therapies and to investigate factors predicting the accuracy of CHOL-PET. Methods and Materials: This study included 21 patients who underwent CHOL-PET and T2W/DW MRI prior to radical prostatectomy. Two observers manually delineated IPL contours for each scan, and automatic IPL contours were generated on CHOL-PET based on varying proportions of the maximum standardized uptake value (SUV). IPLs identified on prostatectomy specimens defined reference standard contours. The imaging-based contours were compared with the reference standard contours using Dice similarity coefficient (DSC), and sensitivity and specificity values. Factors that could potentially predict the DSC of the best contouring method were analyzed using linear models. Results: The best automatic contouring method, 60% of the maximum SUV (SUV 60 ) , had similar correlations (DSC: 0.59) with the manual PET contours (DSC: 0.52, P=.127) and significantly better correlations than the manual MRI contours (DSC: 0.37, P<.001). The sensitivity and specificity values were 72% and 71% for SUV 60 ; 53% and 86% for PET manual contouring; and 28% and 92% for MRI manual contouring. The tumor volume and transition zone pattern could independently predict the accuracy of CHOL-PET. Conclusions: CHOL-PET is superior to the combination of T2W/DW MRI for delineating IPLs. The accuracy of CHOL-PET is insufficient for gland-sparing focal therapies but may be accurate enough for focal boost therapies. The transition zone pattern is a new classification that may predict how well CHOL-PET delineates IPLs

  4. 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography/computed tomography imaging in paediatric oncology

    Institute of Scientific and Technical Information of China (English)

    John; Freebody; Eva; A; Wegner; Monica; A; Rossleigh

    2014-01-01

    Positron emission tomography(PET) is a minimally in-vasive technique which has been well validated for the diagnosis, staging, monitoring of response to therapy, and disease surveillance of adult oncology patients. Tra-ditionally the value of PET and PET/computed tomogra-phy(CT) hybrid imaging has been less clearly defined for paediatric oncology. However recent evidence has emerged regarding the diagnostic utility of these mo-dalities, and they are becoming increasingly important tools in the evaluation and monitoring of children with known or suspected malignant disease. Important indi-cations for 2-deoxy-2-(18F)fluoro-D-glucose(FDG) PET in paediatric oncology include lymphoma, brain tumours, sarcoma, neuroblastoma, Langerhans cell histiocytosis, urogenital tumours and neurofibromatosis type Ⅰ. This article aims to review current evidence for the use of FDG PET and PET/CT in these indications. Attention will also be given to technical and logistical issues, the description of common imaging pitfalls, and dosimetric concerns as they relate to paediatric oncology.

  5. Positron emission tomography studies in eating disorders: multireceptor brain imaging, correlates with behavior and implications for pharmacotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Guido K. [Department of Child and Adolescent Psychiatry, Center for Eating Disorders Research, School of Medicine, University of California San Diego, San Diego, CA 92123 (United States); Kaye, Walter H. [Department of Psychiatry, Western Psychiatric Institute and Clinic, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2005-10-01

    Modern imaging techniques that visualize disease-specific organ neurotransmitter or protein receptor sites are increasingly able to define pathological processes on a molecular level. One of those imaging modalities, positron emission tomography (PET), for the assessment of brain neuroreceptor binding has revolutionized the in vivo assessment of biologic markers that may be related to human behavior. Such studies may help identify chemical targets that may be directly related to psychiatric pathology and, thus, opportunities for pharmacological intervention. In this review, we describe results from PET studies in eating disorders (EDs). Eating disorders are frequently debilitating illnesses that are quite homogeneous in their presentation. Those studies that identified particular serotonin and dopamine receptor alterations can distinguish recovered ED subjects from controls as well as ED subgroups. Furthermore, correlations of receptor binding with behavioral constructs, such as harm avoidance or novelty seeking, could be found. These recognized receptors may now help us to move away from rather nonspecific treatment approaches in psychiatric research and clinic to the possibility of more syndrome- and symptom-specific treatment approaches.

  6. Imaging of cellular proliferation in liver metastasis by [18F]fluorothymidine positron emission tomography: effect of therapy

    International Nuclear Information System (INIS)

    Contractor, Kaiyumars; Challapalli, Amarnath; Tomasi, Giampaolo; Rosso, Lula; Stebbing, Justin; Kenny, Laura; Palmieri, Carlo; Sharma, Rohini; Turkheimer, Federico; Coombes, R Charles; Aboagye, Eric; Wasan, Harpreet; Mangar, Stephen; Riddle, Pippa; Al-Nahhas, Adil

    2012-01-01

    Although [ 18 F]fluorothymidine positron emission tomography (FLT-PET) permits estimation of tumor thymidine kinase-1 expression, and thus, cell proliferation, high physiological uptake of tracer in liver tissue can limit its utility. We evaluated FLT-PET combined with a temporal-intensity information-based voxel-clustering approach termed kinetic spatial filtering (FLT-PET KSF ) for detecting drug response in liver metastases. FLT-PET and computed tomography data were collected from patients with confirmed breast or colorectal liver metastases before, and two weeks after the first cycle of chemotherapy. Changes in tumor FLT-PET and FLT-PET KSF variables were determined. Visual distinction between tumor and normal liver was seen in FLT-PET KSF images. Of the 33 metastases from 20 patients studied, 26 were visible after kinetic filtering. The net irreversible retention of the tracer (Ki; from unfiltered data) in the tumor, correlated strongly with tracer uptake when the imaging variable was an unfiltered average or maximal standardized uptake value, 60 min post-injection (SUV 60,av : r = 0.9, SUV 60,max : r = 0.7; p KSF (r = 0.7, p KSF detected changes in proliferation in liver metastases. (paper)

  7. An approach to demonstrating cost-effectiveness of diagnostic imaging modalities in Australia illustrated by positron emission tomography

    International Nuclear Information System (INIS)

    Miles, K.A.

    2001-01-01

    The aim of this study was to develop a framework in which the cost-effectiveness of new imaging technologies could be evaluated using data from other countries, while assessing the impact that any differences between the study populations and Australia may have upon the results. Publications reporting the cost-effectiveness or therapeutic impact of positron emission tomography (PET) were re-worked using Australian cost structures. PET was assigned a cost of $950. The effects of potential differences between the populations studied and the Australian population were evaluated by applying sensitivity analysis to those publications that describe decision tree methodology. The parameters included in the sensitivity analysis were disease prevalence and specificity of PET. The Australian cost savings per patient examined by PET were $505.50-$912.41 for investigation of solitary pulmonary nodules, $34.65-$360.03 for lung cancer staging, $550.08 for axillary staging of breast cancer, $230.75-$2301.27 for assessment of recurrent colorectal cancer and $300.24-$2069.65 for assessment of myocardial viability. Significant differences in disease prevalence and PET specificity could occur while the cost-effectiveness of PET was preserved. Decision tree sensitivity analysis can demonstrate the cost-effectiveness of diagnostic imaging modalities in Australia and provides indications that PET is cost-effective for a range of clinical indications. Copyright (2001) Blackwell Science Pty Ltd

  8. Positron emission tomography studies in eating disorders: multireceptor brain imaging, correlates with behavior and implications for pharmacotherapy

    International Nuclear Information System (INIS)

    Frank, Guido K.; Kaye, Walter H.

    2005-01-01

    Modern imaging techniques that visualize disease-specific organ neurotransmitter or protein receptor sites are increasingly able to define pathological processes on a molecular level. One of those imaging modalities, positron emission tomography (PET), for the assessment of brain neuroreceptor binding has revolutionized the in vivo assessment of biologic markers that may be related to human behavior. Such studies may help identify chemical targets that may be directly related to psychiatric pathology and, thus, opportunities for pharmacological intervention. In this review, we describe results from PET studies in eating disorders (EDs). Eating disorders are frequently debilitating illnesses that are quite homogeneous in their presentation. Those studies that identified particular serotonin and dopamine receptor alterations can distinguish recovered ED subjects from controls as well as ED subgroups. Furthermore, correlations of receptor binding with behavioral constructs, such as harm avoidance or novelty seeking, could be found. These recognized receptors may now help us to move away from rather nonspecific treatment approaches in psychiatric research and clinic to the possibility of more syndrome- and symptom-specific treatment approaches

  9. Imaging cAMP-specific phosphodiesterase-4 in human brain with R-[11C]rolipram and positron emission tomography

    International Nuclear Information System (INIS)

    DaSilva, Jean N.; Lourenco, Celia M.; Meyer, Jeffrey H.; Houle, Sylvain; Hussey, Douglas; Potter, William Z.

    2002-01-01

    Evidence of disruptions in cAMP-mediated signaling in several neuropsychiatric disorders has led to the development of R-[ 11 C]rolipram for imaging phosphodiesterase-4 (PDE4) enzymes with positron emission tomography (PET). The high-affinity PDE4 inhibitor rolipram was previously reported to have an antidepressant effect in humans. PDE4 is abundant in the brain, and it hydrolyzes cAMP produced following stimulation of various neurotransmitter systems. PDE4 is regulated by intracellular cAMP levels. This paper presents the first PET study of R-[ 11 C]rolipram in living human brain. Consistent with the wide distribution of PDE4, high radioactivity retention was observed in all regions representing the gray matter. Rapid metabolism was observed, and kinetic analysis demonstrated that the data fit in a two-tissue compartment model. R-[ 11 C]Rolipram is thus suitable for imaging PDE4 and possibly cAMP signal transduction in the living human brain with PET. (orig.)

  10. Optimized and Automated Radiosynthesis of [18F]DHMT for Translational Imaging of Reactive Oxygen Species with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Wenjie Zhang

    2016-12-01

    Full Text Available Reactive oxygen species (ROS play important roles in cell signaling and homeostasis. However, an abnormally high level of ROS is toxic, and is implicated in a number of diseases. Positron emission tomography (PET imaging of ROS can assist in the detection of these diseases. For the purpose of clinical translation of [18F]6-(4-((1-(2-fluoroethyl-1H-1,2,3-triazol-4-ylmethoxyphenyl-5-methyl-5,6-dihydrophenanthridine-3,8-diamine ([18F]DHMT, a promising ROS PET radiotracer, we first manually optimized the large-scale radiosynthesis conditions and then implemented them in an automated synthesis module. Our manual synthesis procedure afforded [18F]DHMT in 120 min with overall radiochemical yield (RCY of 31.6% ± 9.3% (n = 2, decay-uncorrected and specific activity of 426 ± 272 GBq/µmol (n = 2. Fully automated radiosynthesis of [18F]DHMT was achieved within 77 min with overall isolated RCY of 6.9% ± 2.8% (n = 7, decay-uncorrected and specific activity of 155 ± 153 GBq/µmol (n = 7 at the end of synthesis. This study is the first demonstration of producing 2-[18F]fluoroethyl azide by an automated module, which can be used for a variety of PET tracers through click chemistry. It is also the first time that [18F]DHMT was successfully tested for PET imaging in a healthy beagle dog.

  11. Imaging of cellular proliferation in liver metastasis by [18F]fluorothymidine positron emission tomography: effect of therapy

    Science.gov (United States)

    Contractor, Kaiyumars; Challapalli, Amarnath; Tomasi, Giampaolo; Rosso, Lula; Wasan, Harpreet; Stebbing, Justin; Kenny, Laura; Mangar, Stephen; Riddle, Pippa; Palmieri, Carlo; Al-Nahhas, Adil; Sharma, Rohini; Turkheimer, Federico; Coombes, R. Charles; Aboagye, Eric

    2012-06-01

    Although [18F]fluorothymidine positron emission tomography (FLT-PET) permits estimation of tumor thymidine kinase-1 expression, and thus, cell proliferation, high physiological uptake of tracer in liver tissue can limit its utility. We evaluated FLT-PET combined with a temporal-intensity information-based voxel-clustering approach termed kinetic spatial filtering (FLT-PETKSF) for detecting drug response in liver metastases. FLT-PET and computed tomography data were collected from patients with confirmed breast or colorectal liver metastases before, and two weeks after the first cycle of chemotherapy. Changes in tumor FLT-PET and FLT-PETKSF variables were determined. Visual distinction between tumor and normal liver was seen in FLT-PETKSF images. Of the 33 metastases from 20 patients studied, 26 were visible after kinetic filtering. The net irreversible retention of the tracer (Ki; from unfiltered data) in the tumor, correlated strongly with tracer uptake when the imaging variable was an unfiltered average or maximal standardized uptake value, 60 min post-injection (SUV60,av: r = 0.9, SUV60,max: r = 0.7; p benefit from chemotherapy. FLT-PET and FLT-PETKSF detected changes in proliferation in liver metastases.

  12. Atlas of total body radionuclide imaging. Volume I and II

    International Nuclear Information System (INIS)

    Fordham, E.W.; Ali, A.; Turner, D.A.; Charters, J.

    1982-01-01

    This two-volume work on total body imaging may well be regarded by future historians of nuclear medicine as representing the high points in the art of total body imaging in clinical nuclear medicine. With regard to information content and volume, it is the largest collection of well-interpreted, beautifully reproduced, total body images available to date. The primary goal of this atlas is to demonstrate patterns of abnormality in both typical and less typical variations. This goal is accomplished with many well-described examples of technical artifacts, of normal variants, of common and of rare diseases, and of pitfalls in interpretations. Volume I is entirely dedicated to skeletal imaging with Tc-99m labeled phosphates or phosphonates. The volume is divided into 22 chapters, which include chapters on methodology and instrumentation, chapters on the important bone diseases and other topics such as a treatise on false-negative and false-positive scans, and soft tissue and urinary tract abnormalities recognizable on bone scintigrams

  13. Reliability and Accuracy of Brain Volume Measurement on MR Imaging

    DEFF Research Database (Denmark)

    Yamagchii, Kechiro; Lassen, Anders; Ring, Poul

    1998-01-01

    Yamaguchi, K., Lassen, A. And Ring, P. Reliability and Accuracy of Brain Volume Measurement on MR Imaging. Abstract at ESMRMB98 European Society for Magnetic Resonance in Medicine and Biology, Geneva, Sept 17-20, 1998 Danish Research Center for Magnetic Resonance, Hvidovre University Hospital...

  14. Time series analysis of brain regional volume by MR image

    International Nuclear Information System (INIS)

    Tanaka, Mika; Tarusawa, Ayaka; Nihei, Mitsuyo; Fukami, Tadanori; Yuasa, Tetsuya; Wu, Jin; Ishiwata, Kiichi; Ishii, Kenji

    2010-01-01

    The present study proposed a methodology of time series analysis of volumes of frontal, parietal, temporal and occipital lobes and cerebellum because such volumetric reports along the process of individual's aging have been scarcely presented. Subjects analyzed were brain images of 2 healthy males and 18 females of av. age of 69.0 y, of which T1-weighted 3D SPGR (spoiled gradient recalled in the steady state) acquisitions with a GE SIGNA EXCITE HD 1.5T machine were conducted for 4 times in the time series of 42-50 months. The image size was 256 x 256 x (86-124) voxels with digitization level 16 bits. As the template for the regions, the standard gray matter atlas (icbn452 a tlas p robability g ray) and its labeled one (icbn.Labels), provided by UCLA Laboratory of Neuro Imaging, were used for individual's standardization. Segmentation, normalization and coregistration were performed with the MR imaging software SPM8 (Statistic Parametric Mapping 8). Volumes of regions were calculated as their voxel ratio to the whole brain voxel in percent. It was found that the regional volumes decreased with aging in all above lobes examined and cerebellum in average percent per year of -0.11, -0.07, -0.04, -0.02, and -0.03, respectively. The procedure for calculation of the regional volumes, which has been manually operated hitherto, can be automatically conducted for the individual brain using the standard atlases above. (T.T.)

  15. Evaluation of left ventricular volumes measured by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Møgelvang, J; Thomsen, C; Mehlsen, J

    1986-01-01

    Left ventricular end-diastolic and end-systolic volumes were determined in 17 patients with different levels of left ventricular function by magnetic resonance imaging (MRI). A 1.5 Tesla Magnet was used obtaining ECG triggered single and multiple slices. Calculated cardiac outputs were compared...

  16. Positron Emission Tomography Imaging Demonstrates Correlation between Behavioral Recovery and Correction of Dopamine Neurotransmission after Gene Therapy

    International Nuclear Information System (INIS)

    Leriche, L.; Besret, L.; Gregoire, M.C.; Deglon, N.; Hantraye, Ph.; Leriche, L.; Besret, L.; Gregoire, M.C.; Deglon, N.; Hantraye, Ph.; Bjorklund, T.; Breysse, N.; Carlsson, T.; Kirik, D.; Dolle, F.; Mandel, R.J.; Kirik, D.

    2009-01-01

    In vivo gene transfer using viral vectors is an emerging therapy for neuro-degenerative diseases with a clinical impact recently demonstrated in Parkinson's disease patients. Recombinant adeno-associated viral (rAAV) vectors, in particular, provide an excellent tool for long-term expression of therapeutic genes in the brain. Here we used the [ 11 C]raclopride [(S)-(-)-3, 5-dichloro-N-((1-ethyl-2-pyrrolidinyl)methyl)-2-hydroxy- 6-methoxybenzamide] micro-positron emission tomography (PET) technique to demonstrate that delivery of the tyrosine hydroxylase (TH) and GTP-cyclohydrolase 1 (GCH1) enzymes using an rAAV5 vector normalizes the increased [ 11 C]raclopride binding in hemi-parkinsonian rats. Importantly, we show in vivo by micro-PET imaging and postmortem by classical binding assays performed in the very same animals that the changes in [ 11 C]raclopride after viral vector-based enzyme replacement therapy is attributable to a decrease in the affinity of the tracer binding to the D2 receptors, providing evidence for reconstitution of a functional pool of endogenous dopamine in the striatum. Moreover, the extent of the normalization in this non-invasive imaging measure was highly correlated with the functional recovery in motor behavior. The PET imaging protocol used in this study is fully adaptable to humans and thus can serve as an in vivo imaging technique to follow TH+GCH1 gene therapy in PD patients and provide an additional objective measure to a potential clinical trial using rAAV vectors to deliver L-3, 4-dihydroxyphenylalanine in the brain. (authors)

  17. Positron emission tomography

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Diksic, M.; Meyer, E.; Feindel, W.H.

    1984-01-01

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. The most recent trends are reviewed in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography. (author)

  18. Clinical estimation of myocardial infarct volume with MR imaging

    International Nuclear Information System (INIS)

    Johns, J.A.; Leavitt, M.B.; Field, B.D.; Yasuda, T.; Gold, H.; Leinbach, R.C.; Brady, T.J.; Dinsmore, R.E.

    1987-01-01

    MR imaging has not previously been used to assess infarct size in humans. Short-axis spin-echo cardiac MR imaging was performed in 20 patients who had undergone intravenous thrombolytic therapy and angiography, 10 days after myocardial infarct. A semi-automated computer program was used to outline the infarct region on each section. The outlines were algorithmically stacked and a three-dimensional representation of the infarct was created. The MR imaging infarct volume was then computed using the Simpson rule. Comparison with ventriculographic infarct size as determined by the computed severely hypokinetic segment length showed excellent correlation (r = .84, P < .001)

  19. X-ray volume imaging in image-guided radiotherapy

    International Nuclear Information System (INIS)

    Thorson, Theodore; Prosser, Tim

    2006-01-01

    Treatment simulation has significantly improved the accuracy and precision of radiation therapy delivery. A new generation of therapy systems promises to take the simulation and imaging process to a new level of accuracy; however, this will require changes in the workflow process. We describe the first generation of these devices, review the various imaging options and how they might be used in the clinic to improve treatment outcomes, and suggest several workflow approaches. Workflows discussed include on-line interventional, off-line adaptive, and off-line predictive approaches, with both geometric and dosimetric considerations. These changes will place new knowledge requirements on the medical dosimetrist and will necessitate involvement in the development of new departmental processes

  20. Positron annihilation lifetime studies of changes in free volume on some biorelevant nitrogen heterocyclic compounds and their S-glycosylation

    International Nuclear Information System (INIS)

    Mahmoud, K.R.; Khodair, A.I.; Shaban, S.Y.

    2015-01-01

    A series of N-heterocyclic compounds was investigated by positron annihilation lifetime spectroscopy as well as Doppler broadening of annihilation radiation (DBAR) at room temperature. The results showed that the formation probability and life time of ortho-positronium in this series are structure and electron-donation character dependent, and can give more information about the structure. The DBAR provides direct information about the change of core and valance electrons as well as the number of defect types present in these compounds. - Highlights: • N-heterocyclic compounds were studied by PALS and DBAR at room temperature. • These compounds contain thiohydantoins which have wide applications as anticarcinogenic, antiviral, human immunodeficiency virus (HIV) and antimicrobial activity. • The DBAR provides direct information about the change of core and valance electrons as well as the number of defect types present in these compounds.

  1. Functional imaging of small tissue volumes with diffuse optical tomography

    Science.gov (United States)

    Klose, Alexander D.; Hielscher, Andreas H.

    2006-03-01

    Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.

  2. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging.

    Science.gov (United States)

    Rempp, K A; Brix, G; Wenz, F; Becker, C R; Gückel, F; Lorenz, W J

    1994-12-01

    Quantification of regional cerebral blood flow (rCBF) and volume (rCBV) with dynamic magnetic resonance (MR) imaging. After bolus administration of a paramagnetic contrast medium, rapid T2*-weighted gradient-echo images of two sections were acquired for the simultaneous creation of concentration-time curves in the brain-feeding arteries and in brain tissue. Absolute rCBF and rCBV values were determined for gray and white brain matter in 12 subjects with use of principles of the indicator dilution theory. The mean rCBF value in gray matter was 69.7 mL/min +/- 29.7 per 100 g tissue and in white matter, 33.6 mL/min +/- 11.5 per 100 g tissue; the average rCBV was 8.0 mL +/- 3.1 per 100 g tissue and 4.2 mL +/- 1.0 per 100 g tissue, respectively. An age-related decrease in rCBF and rCBV for gray and white matter was observed. Preliminary data demonstrate that the proposed technique allows the quantification of rCBF and rCBV. Although the results are in good agreement with data from positron emission tomography studies, further evaluation is needed to establish the validity of method.

  3. Positron Emission Tomography and Magnetic Resonance Imaging of the Brain in Fabry Disease

    DEFF Research Database (Denmark)

    Korsholm, Kirsten; Feldt-Rasmussen, Ulla; Granqvist, Henrik

    2015-01-01

    tomography (PET) and magnetic resonance imaging (MRI). PATIENTS: Forty patients with Fabry disease (14 males, 26 females, age at inclusion: 10-66 years, median: 39 years) underwent a brain F-18-FDG-PET-scan at inclusion, and 31 patients were followed with FDG-PET biannually for up to seven years. All...... patients (except one) had a brain MRI-scan at inclusion, and 34 patients were followed with MRI biannually for up to nine years. IMAGE ANALYSIS: The FDG-PET-images were inspected visually and analysed using a quantitative 3-dimensional stereotactic surface projection analysis (Neurostat). MRI images were...... also inspected visually and severity of white matter lesions (WMLs) was graded using a visual rating scale. RESULTS: In 28 patients brain-FDG-PET was normal; in 23 of these 28 patients brain MRI was normal--of the remaining five patients in this group, four patients had WMLs and one patient never had...

  4. An algorithm for three-dimensional imaging in the positron camera

    International Nuclear Information System (INIS)

    Chen Kun; Ma Mei; Xu Rongfen; Shen Miaohe

    1986-01-01

    A mathematical algorithm of back-projection filtered for image reconstructions using two-dimensional signals detected from parallel multiwire proportional chambers is described. The approaches of pseudo three-dimensional and full three-dimensional image reconstructions are introduced, and the available point response functions are defined as well. The designing parameters and computation procedure of the full three-dimensional method is presented

  5. Development of positron emission tomography (PET) labeled polypeptide nanoparticles for tumor imaging and targeting

    Science.gov (United States)

    Mohd Janib, Siti Najila

    The two main problems currently stalling the efficient treatment of cancer has been detecting cancer early enough in the disease process for successful treatment, and treating cancer cells while avoiding excessive toxicity to normal tissues. Arguably the most important factor in the fight against cancer, besides prevention is early detection because the cancer will be easier to treat and less likely to have drug resistance. The work highlighted in this thesis attempts to address the issues related to the effective treatment and management of cancer. The objective of this work is to develop new materials and methods for co-assembly of drugs and imaging agents that permit quantitative imaging of drug delivery and disease progression. By using molecular imaging technique to non-invasively study and detect various molecular markers of diseases can allow for much earlier diagnosis, earlier treatment, and better prognosis that will eventually lead to personalized medicine. Exploration of particulates and polymeric carriers is gaining momentum in diagnostic imaging, initiated by successful therapies using long circulating liposomes. However, liposomes are challenging pharmaceuticals, which include many chemical components, require complex drug encapsulation strategies, and must be physically sheared to control their particle diameter and polydispersity. Polymeric nanocarriers have emerged as an alternative to liposomes as carriers of drugs and imaging agents. Co-inclusion of therapeutic and imaging agents, into these carriers might be advantageous because they increase solubility of hydrophobic agents, may enhance permeability across physiological barriers, alter drug biodistribution, increase local bioavailability and reduce of side effects.

  6. View compensated compression of volume rendered images for remote visualization.

    Science.gov (United States)

    Lalgudi, Hariharan G; Marcellin, Michael W; Bilgin, Ali; Oh, Han; Nadar, Mariappan S

    2009-07-01

    Remote visualization of volumetric images has gained importance over the past few years in medical and industrial applications. Volume visualization is a computationally intensive process, often requiring hardware acceleration to achieve a real time viewing experience. One remote visualization model that can accomplish this would transmit rendered images from a server, based on viewpoint requests from a client. For constrained server-client bandwidth, an efficient compression scheme is vital for transmitting high quality rendered images. In this paper, we present a new view compensation scheme that utilizes the geometric relationship between viewpoints to exploit the correlation between successive rendered images. The proposed method obviates motion estimation between rendered images, enabling significant reduction to the complexity of a compressor. Additionally, the view compensation scheme, in conjunction with JPEG2000 performs better than AVC, the state of the art video compression standard.

  7. Cone-beam volume CT breast imaging: Feasibility study

    International Nuclear Information System (INIS)

    Chen Biao; Ning Ruola

    2002-01-01

    X-ray projection mammography, using a film/screen combination, or digital techniques, has proven to be the most effective imaging modality currently available for early detection of breast cancer. However, the inherent superimposition of structures makes a small carcinoma (a few millimeters in size) difficult to detect when it is occult or in dense breasts, leading to a high false-positive biopsy rate. Cone-beam x-ray-projection-based volume imaging using flat panel detectors (FPDs) may allow obtaining three-dimensional breast images, resulting in more accurate diagnosis of structures and patterns of lesions while eliminating the hard compression of breasts. This article presents a novel cone-beam volume computed tomographic breast imaging (CBVCTBI) technique based on the above techniques. Through a variety of computer simulations, the key issues of the system and imaging techniques were addressed, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissue and lesions, x-ray setting techniques, the absorbed dose estimation, and the quantitative effect of x-ray scattering on image quality. The preliminary simulation results support the proposed CVBCTBI modality for breast imaging in respect to its feasibility and practicability. The absorbed dose level is comparable to that of current mammography and will not be a prominent problem for this imaging technique. Compared to conventional mammography, the proposed imaging technique with isotropic spatial resolution will potentially provide significantly better low-contrast detectability of breast tumors and more accurate location of breast lesions

  8. Feasibility of Vascular Endothelial Growth Factor Imaging in Human Atherosclerotic Plaque Using 89Zr-Bevacizumab Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Reza Golestani

    2013-06-01

    Full Text Available Intraplaque angiogenesis is associated with the occurrence of atherosclerotic plaque rupture. Cardiovascular molecular imaging can be used for the detection of rupture-prone plaques. Imaging with radiolabeled bevacizumab, a monoclonal anti-vascular endothelial growth factor (VEGF-A, can depict VEGF levels corresponding to the angiogenic status in tumors. We determined the feasibility of 89Zr-bevacizumab imaging for the detection of VEGF in carotid endarterectomy (CEA specimens. Five CEA specimens were coincubated with 89Zr-bevacizumab and aspecific 111In-labeled IgG to determine the specificity of bevacizumab accumulation. In 11 CEA specimens, 89Zr-bevacizumab micro-positron emission tomography (PET was performed following 2 hours of incubation. Specimens were cut in 4 mm wide segments and were stained for VEGF and CD68. In each segment, the mean percent incubation dose per gram of tissue (%Inc/g and tissue to background ratio were determined. A 10-fold higher accumulation of 89Zr-bevacizumab compared to 111In-IgG uptake was demonstrated by gamma counting. The mean %Inc/ghot spot was 2.2 ± 0.9 with a hot spot to background ratio of 3.6 ± 0.8. There was a significant correlation between the segmental tissue to background uptake ratio and the VEGF score (ρ = .74, p < .001. It is feasible to detect VEGF tissue concentration within CEA specimens using 89Zr-bevacizumab PET. 89Zr-bevacizumab accumulation in plaques is specific and correlates with immunohistochemistry scores.

  9. Lean body mass correction of standardized uptake value in simultaneous whole-body positron emission tomography and magnetic resonance imaging

    Science.gov (United States)

    Jochimsen, Thies H.; Schulz, Jessica; Busse, Harald; Werner, Peter; Schaudinn, Alexander; Zeisig, Vilia; Kurch, Lars; Seese, Anita; Barthel, Henryk; Sattler, Bernhard; Sabri, Osama

    2015-06-01

    This study explores the possibility of using simultaneous positron emission tomography—magnetic resonance imaging (PET-MRI) to estimate the lean body mass (LBM) in order to obtain a standardized uptake value (SUV) which is less dependent on the patients' adiposity. This approach is compared to (1) the commonly-used method based on a predictive equation for LBM, and (2) to using an LBM derived from PET-CT data. It is hypothesized that an MRI-based correction of SUV provides a robust method due to the high soft-tissue contrast of MRI. A straightforward approach to calculate an MRI-derived LBM is presented. It is based on the fat and water images computed from the two-point Dixon MRI primarily used for attenuation correction in PET-MRI. From these images, a water fraction was obtained for each voxel. Averaging over the whole body yielded the weight-normalized LBM. Performance of the new approach in terms of reducing variations of 18F-Fludeoxyglucose SUVs in brain and liver across 19 subjects was compared with results using predictive methods and PET-CT data to estimate the LBM. The MRI-based method reduced the coefficient of variation of SUVs in the brain by 41  ± 10% which is comparable to the reduction by the PET-CT method (35  ± 10%). The reduction of the predictive LBM method was 29  ± 8%. In the liver, the reduction was less clear, presumably due to other sources of variation. In conclusion, employing the Dixon data in simultaneous PET-MRI for calculation of lean body mass provides a brain SUV which is less dependent on patient adiposity. The reduced dependency is comparable to that obtained by CT and predictive equations. Therefore, it is more comparable across patients. The technique does not impose an overhead in measurement time and is straightforward to implement.

  10. Application of dual phase imaging of 11C-acetate positron emission tomography on differential diagnosis of small hepatic lesions.

    Directory of Open Access Journals (Sweden)

    Li Huo

    Full Text Available OBJECTIVE: Previously we observed that dual phase 11C-acetate positron emission tomography (AC-PET could be employed for differential diagnosis of liver malignancies. In this study, we prospectively evaluated the effect of dual phase AC-PET on differential diagnosis of primary hepatic lesions of 1-3 cm in size. METHODS: 33 patients having primary hepatic lesions with size of 1-3 cm in diameter undertook dual phase AC-PET scans. Procedure included an early upper-abdomen scan immediately after tracer injection and a conventional scan in 11-18 min. The standardized uptake value (SUV was calculated for tumor (SUVT and normal tissue (SUVB, from which 11C-acetate uptake ratio (as lesion against normal liver tissue, SUVT/SUVB in early imaging (R1, conventional imaging (R2, and variance between R2 and R1 (ΔR were derived. Diagnoses based on AC-PET data and histology were compared. Statistical analysis was performed with SPSS 19.0. RESULTS: 20 patients were found to have HCC and 13 patients had benign tumors. Using ΔR>0 as criterion for malignancy, the accuracy and specificity were significantly increased comparing with conventional method. The area under ROC curve (AUC for R1, R2, and ΔR were 0.417, 0.683 and 0.831 respectively. Differential diagnosis between well-differentiated HCCs and benign lesions of FNHs and hemangiomas achieved 100% correct. Strong positive correlation was also found between R1 and R2 in HCC (r2 = 0.55, P<0.001. CONCLUSIONS: Dual phase AC-PET scan is a useful procedure for differential diagnosis of well-differentiated hepatocellular carcinoma and benign lesions. The dynamic changes of 11C-acetate uptake in dual phase imaging provided key information for final diagnosis.

  11. Role of 18F-fluorodeoxyglucose positron emission tomography imaging in surgery for pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Hisao Wakabayashi; Yoshihiro Nishiyama; Tsuyoshi Otani; Takanori Sano; Shinichi Yachida; Keiichi Okano; Kunihiko Izuishi; Yasuyuki Suzuki

    2008-01-01

    AIM:To evaluate the role of positron emission tomo- graphy using 18F-fluorodeoxyglucose (FDG-PET) in the surgical management of patients with pancreatic cancer,including the diagnosis, staging, and selection of patients for the subsequent surgical treatment.METHODS: This study involved 53 patients with proven primary pancreatic cancer. The sensitivity of diagnosing the primary cancer was examined for FDG-PET, CT,cytological examination of the bile or pancreatic juice,and the serum levels of carcinoembrionic antigens (CEA) and carbohydrate antigen 19-9 (CA19-9). Next, the accuracy of staging was compared between FDG-PET and CT. Finally, FDG-PET was analyzed semiquantitatively using the standard uptake value (SUV). The impact of the SUV on patient management was evaluated by examining the correlations between the SUV and the histological findings of cancer.RESULTS: The sensitivity of FDG-PET, CT, cytological examination of the bile or pancreatic juice, and the serum levels of CEA and CA19-9 were 92.5%, 88.7%, 46.4%, 37.7% and 69.8%, respectively. In staging, FDG-PET was superior to CT only in diagnosing distant disease (bone metastasis). For local staging, the sensitivity of CT was better than that of FDG-PET. The SUV did not correlate with the pTNM stage, grades, invasions to the vessels and nerve, or with the size of the tumor. However, there was a statistically significant difference (4.6±2.9 vs 7.8±4.5, P = 0.024) in the SUV between patients with respectable and unresectable disease. CONCLUSION: FDG-PET is thus considered to be useful in the diagnosis of pancreatic cancer. However, regarding the staging of the disease, FDG-PET is not considered to be a sufficiently accurate diagnostic modality. Although the SUV does not correlate with the patho-histological prognostic factors, it may be useful in selecting patients who should undergo subsequent surgical treatment.

  12. Volume calculation from limited number of MR imaging sections

    International Nuclear Information System (INIS)

    Wang, J.; Mezrich, R.; Sebok, D.

    1988-01-01

    Magnetic resonance imaging is an accurate and noninvasive way to obtain cardiac geometrical information. For the quantification of left ventricular dynamic parameters, sections are taken along the long axis of the ventricle. Due to the limited number of sections that can be obtained in a reasonable amount of scanning time, the estimation of longitudinal dimension is usually the cause of error in volume calculation. The starting and ending sections are best estimated by guidance of the short axis cuts. This can only guarantee first-order accuracy. Simpson's rule for summation of areas to calculate volume, which is the commonly used method, assumes an accurate knowledge of the starting and ending points of integration. When this assumption is not perfectly met, Simpson's rule tends to unsystemically over- or underestimate the true volume. Due to this concern, some researchers adopt the images from the short axis cut to aid the volume calculation. This can improve the accuracy, but makes the already long scanning time longer. The authors have derived a method of extrapolation and intrapolation based on no more information than usually available to correct the volume over- or underestimated by the Simpson's rule

  13. Positron emission tomography - a new technology in the nuclear medicine image diagnostics

    International Nuclear Information System (INIS)

    Piperkova, E.; Georgiev, R.

    2004-01-01

    In this paper the principles and technical characteristics of PET and PET-CT scanning systems; radiopharmaceuticals used in PET imaging in oncology, cardiology and brain diseases and clinical application of PET are discussed. Based on the technical characteristics, the latest development and the results from its clinical application it could be concluded that PET gives large opportunities to go deeper in the knowledge of brain function and myocardium imaging and is promising imaging method for diagnosing, staging, and treatment effect follow-up of the malignant diseases. As a method of high sensitivity, it could be combined with the high contrast methods, such as CT and MRI to obtain a spatial localisation of the regions with high radionuclide uptake overlapped on the corresponding anatomical structures of the body. These combined methods (PET-CT, PETMRI) contribute significantly to the improvement of the treatment planning and to follow-up the treatment effect

  14. Instrumentation and data handling. I. Positron coincidence imaging with the TOKIM system

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    In addition to the conventional singles mode of operation, the TOKIM system's two Anger-type gamma cameras may be used in the (stationary, 180 0 opposition) coincidence mode, making it possible to achieve tomographic imaging with three-dimensional spatial resolution and high detection sensitivity, utilizing β + emitting radioisotopes. This method, however, suffers from certain inherent limitations. Our efforts during this past year to improve upon the TOKIM imaging capability in the β + mode have been directed towards the reduction of the limitations by the following means: the removal of out of focal plane image contributions through a computerized iterative correction procedure, coupled with coincidence aperture limitation to achieve uniform sensitivity across a reasonable portion of the detector pair diameter, and the application of Muehllehner's graded filter approach to the TOKIM to increase the ratio of usable coincidence events versus singles count rate

  15. Paul Lecoq assembles a read head made with special crystals for a PET (positron emission tomography) scanner. He is the initiator of the Crystal Clear collaboration, which aims to transfer crystals developed at CERN to applications in medical imaging.

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Paul Lecoq assembles a read head made with special crystals for a PET (positron emission tomography) scanner. He is the initiator of the Crystal Clear collaboration, which aims to transfer crystals developed at CERN to applications in medical imaging.

  16. Imaging of amyloid deposition in human brain using positron emission tomography and [{sup 18}F]FACT: comparison with [{sup 11}C]PIB

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi [National Institute of Radiological Sciences, Molecular Imaging Center, Chiba (Japan); National Institute of Radiological Sciences, Biophysics Program, Molecular Imaging Center, Chiba (Japan); Shinotoh, Hitoshi; Shimada, Hitoshi; Miyoshi, Michie; Takano, Harumasa; Takahashi, Hidehiko; Arakawa, Ryosuke; Kodaka, Fumitoshi; Ono, Maiko; Eguchi, Yoko; Higuchi, Makoto; Fukumura, Toshimitsu; Suhara, Tetsuya [National Institute of Radiological Sciences, Molecular Imaging Center, Chiba (Japan); Yanai, Kazuhiko; Okamura, Nobuyuki [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan)

    2014-04-15

    The characteristic neuropathological changes in Alzheimer's disease (AD) are deposition of amyloid senile plaques and neurofibrillary tangles. The {sup 18}F-labeled amyloid tracer, [{sup 18}F]2-[(2-{(E)-2-[2-(dimethylamino)-1,3-thiazol-5-yl]vinyl}-1, 3-benzoxazol-6-yl)oxy ]-3-fluoropropan-1-ol (FACT), one of the benzoxazole derivatives, was recently developed. In the present study, deposition of amyloid senile plaques was measured by positron emission tomography (PET) with both [ {sup 11}C ]Pittsburgh compound B (PIB) and [ {sup 18}F ]FACT in the same subjects, and the regional uptakes of both radiotracers were directly compared. Two PET scans, one of each with [ {sup 11}C ]PIB and [ {sup 18}F ]FACT, were performed sequentially on six normal control subjects, two mild cognitive impairment (MCI) patients, and six AD patients. The standardized uptake value ratio of brain regions to the cerebellum was calculated with partial volume correction using magnetic resonance (MR) images to remove the effects of white matter accumulation. No significant differences in the cerebral cortical uptake were observed between normal control subjects and AD patients in [ {sup 18}F ]FACT studies without partial volume correction, while significant differences were observed in [ {sup 11}C ]PIB. After partial volume correction, the cerebral cortical uptake was significantly larger in AD patients than in normal control subjects for [ {sup 18}F ]FACT studies as well as [ {sup 11}C ]PIB. Relatively lower uptakes of [ {sup 11}C ]PIB in distribution were observed in the medial side of the temporal cortex and in the occipital cortex as compared with [ {sup 18}F ]FACT. Relatively higher uptake of [ {sup 11}C ]PIB in distribution was observed in the frontal and parietal cortices. Since [ {sup 18}F ]FACT might bind more preferentially to dense-cored amyloid deposition, regional differences in cerebral cortical uptake between [ {sup 11}C ]PIB and [ {sup 18}F ]FACT might be due to differences

  17. Imaging of amyloid deposition in human brain using positron emission tomography and [18F]FACT: comparison with [11C]PIB.

    Science.gov (United States)

    Ito, Hiroshi; Shinotoh, Hitoshi; Shimada, Hitoshi; Miyoshi, Michie; Yanai, Kazuhiko; Okamura, Nobuyuki; Takano, Harumasa; Takahashi, Hidehiko; Arakawa, Ryosuke; Kodaka, Fumitoshi; Ono, Maiko; Eguchi, Yoko; Higuchi, Makoto; Fukumura, Toshimitsu; Suhara, Tetsuya

    2014-04-01

    The characteristic neuropathological changes in Alzheimer's disease (AD) are deposition of amyloid senile plaques and neurofibrillary tangles. The (18)F-labeled amyloid tracer, [(18)F]2-[(2-{(E)-2-[2-(dimethylamino)-1,3-thiazol-5-yl]vinyl}-1,3-benzoxazol-6-yl)oxy]-3-fluoropropan-1-ol (FACT), one of the benzoxazole derivatives, was recently developed. In the present study, deposition of amyloid senile plaques was measured by positron emission tomography (PET) with both [(11)C]Pittsburgh compound B (PIB) and [(18)F]FACT in the same subjects, and the regional uptakes of both radiotracers were directly compared. Two PET scans, one of each with [(11)C]PIB and [(18)F]FACT, were performed sequentially on six normal control subjects, two mild cognitive impairment (MCI) patients, and six AD patients. The standardized uptake value ratio of brain regions to the cerebellum was calculated with partial volume correction using magnetic resonance (MR) images to remove the effects of white matter accumulation. No significant differences in the cerebral cortical uptake were observed between normal control subjects and AD patients in [(18)F]FACT studies without partial volume correction, while significant differences were observed in [(11)C]PIB. After partial volume correction, the cerebral cortical uptake was significantly larger in AD patients than in normal control subjects for [(18)F]FACT studies as well as [(11)C]PIB. Relatively lower uptakes of [(11)C]PIB in distribution were observed in the medial side of the temporal cortex and in the occipital cortex as compared with [(18)F]FACT. Relatively higher uptake of [(11)C]PIB in distribution was observed in the frontal and parietal cortices. Since [(18)F]FACT might bind more preferentially to dense-cored amyloid deposition, regional differences in cerebral cortical uptake between [(11)C]PIB and [(18)F]FACT might be due to differences in regional distribution between diffuse and dense-cored amyloid plaque shown in the

  18. Imaging of amyloid deposition in human brain using positron emission tomography and [18F]FACT: comparison with [11C]PIB

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Shinotoh, Hitoshi; Shimada, Hitoshi; Miyoshi, Michie; Takano, Harumasa; Takahashi, Hidehiko; Arakawa, Ryosuke; Kodaka, Fumitoshi; Ono, Maiko; Eguchi, Yoko; Higuchi, Makoto; Fukumura, Toshimitsu; Suhara, Tetsuya; Yanai, Kazuhiko; Okamura, Nobuyuki

    2014-01-01

    The characteristic neuropathological changes in Alzheimer's disease (AD) are deposition of amyloid senile plaques and neurofibrillary tangles. The 18 F-labeled amyloid tracer, [ 18 F]2-[(2-{(E)-2-[2-(dimethylamino)-1,3-thiazol-5-yl]vinyl}-1, 3-benzoxazol-6-yl)oxy ]-3-fluoropropan-1-ol (FACT), one of the benzoxazole derivatives, was recently developed. In the present study, deposition of amyloid senile plaques was measured by positron emission tomography (PET) with both [ 11 C ]Pittsburgh compound B (PIB) and [ 18 F ]FACT in the same subjects, and the regional uptakes of both radiotracers were directly compared. Two PET scans, one of each with [ 11 C ]PIB and [ 18 F ]FACT, were performed sequentially on six normal control subjects, two mild cognitive impairment (MCI) patients, and six AD patients. The standardized uptake value ratio of brain regions to the cerebellum was calculated with partial volume correction using magnetic resonance (MR) images to remove the effects of white matter accumulation. No significant differences in the cerebral cortical uptake were observed between normal control subjects and AD patients in [ 18 F ]FACT studies without partial volume correction, while significant differences were observed in [ 11 C ]PIB. After partial volume correction, the cerebral cortical uptake was significantly larger in AD patients than in normal control subjects for [ 18 F ]FACT studies as well as [ 11 C ]PIB. Relatively lower uptakes of [ 11 C ]PIB in distribution were observed in the medial side of the temporal cortex and in the occipital cortex as compared with [ 18 F ]FACT. Relatively higher uptake of [ 11 C ]PIB in distribution was observed in the frontal and parietal cortices. Since [ 18 F ]FACT might bind more preferentially to dense-cored amyloid deposition, regional differences in cerebral cortical uptake between [ 11 C ]PIB and [ 18 F ]FACT might be due to differences in regional distribution between diffuse and dense-cored amyloid plaque shown in the

  19. Cholinergic Receptor Binding in Alzheimer Disease and Healthy Aging: Assessment In Vivo with Positron Emission Tomography Imaging.

    Science.gov (United States)

    Sultzer, David L; Melrose, Rebecca J; Riskin-Jones, Hannah; Narvaez, Theresa A; Veliz, Joseph; Ando, Timothy K; Juarez, Kevin O; Harwood, Dylan G; Brody, Arthur L; Mandelkern, Mark A

    2017-04-01

    To compare regional nicotinic cholinergic receptor binding in older adults with Alzheimer disease (AD) and healthy older adults in vivo and to assess relationships between receptor binding and clinical symptoms. Using cross-sectional positron emission tomography (PET) neuroimaging and structured clinical assessment, outpatients with mild to moderate AD (N = 24) and healthy older adults without cognitive complaints (C group; N = 22) were studied. PET imaging of α4β2* nicotinic cholinergic receptor binding using 2-[ 18 F]fluoro-3-(2(S)azetidinylmethoxy)pyridine (2FA) and clinical measures of global cognition, attention/processing speed, verbal memory, visuospatial memory, and neuropsychiatric symptoms were used. 2FA binding was lower in the AD group compared with the C group in the medial thalamus, medial temporal cortex, anterior cingulate, insula/opercula, inferior caudate, and brainstem (p healthy older adults, lower receptor binding may be associated with slower processing speed. Cholinergic receptor binding in vivo may reveal links to other key brain changes associated with aging and AD and may provide a potential molecular treatment target. Published by Elsevier Inc.

  20. Generator-produced rubidium-82 positron emission tomography myocardial perfusion imaging. From basic aspects to clinical applications

    International Nuclear Information System (INIS)

    Yoshinaga, Keiichiro; Klein, R.; Tamaki, Nagara

    2010-01-01

    Cardiovascular disease is the leading cause of death in modern industrialized countries with an aging population. This fact has fueled the need for innovative diagnostic testing intended to improve coronary artery disease (CAD) patient care. Detection of myocardial ischemia using myocardial perfusion imaging (MPI) plays an important role for CAD diagnosis and the prediction of future risk of cardiovascular events. Positron emission tomography (PET) MPI has high diagnostic accuracy and can estimate regional myocardial blood flow (MBF) in patients with CAD. Rubidium-82 ( 82 Rb) is a generator-produced PET myocardial perfusion tracer and has been widely used in North America in clinical practice. 82 Rb PET has recently become available in some cardiovascular centers in Europe and Japan. Clinical trials are expected in both regions. 82 Rb PET has high diagnostic accuracy and recent data have shown its prognostic value. Thus, 82 Rb PET would greatly contribute to CAD patients' care. 82 Rb PET can also be used to quantify MBF. This review describes the current status of 82 Rb MPI from basic principles to clinical implications. This paper also highlights the recent development of MBF quantification using 82 Rb PET. (author)

  1. Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations

    Directory of Open Access Journals (Sweden)

    Jacob U. Fluckiger

    2013-01-01

    Full Text Available We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs available from dynamic PET data into individual TACs associated with the blood space, the extravascular-extracellular space (EES, and the extravascular-intracellular space (EIS. Then we simulate whole tissue TACs over a range of physiologically relevant kinetic parameter values and show that using appropriate DCE-MRI data can separate the PET TAC into the three components with accuracy that is noise dependent. The simulations show that accurate blood, EES, and EIS TACs can be obtained as evidenced by concordance correlation coefficients >0.9 between the true and estimated TACs. Additionally, provided that the estimated DCE-MRI parameters are within 10% of their true values, the errors in the PET kinetic parameters are within approximately 20% of their true values. The parameters returned by this approach may provide new information on the transport of a tracer in a variety of dynamic PET studies.

  2. Complementary information from magnetic resonance imaging and 18F-fluoromisonidazole positron emission tomography in the assessment of the response to an antiangiogenic treatment in a rat brain tumor model

    International Nuclear Information System (INIS)

    Valable, Samuel; Petit, Edwige; Roussel, Simon; Marteau, Lena; Toutain, Jerome; Divoux, Didier; Sobrio, Franck; Delamare, Jerome; Barre, Louisa; Bernaudin, Myriam

    2011-01-01

    Introduction: No direct proof has been brought to light in a link between hypoxic changes in glioma models and the effects of antiangiogenic treatments. Here, we assessed the sensitivity of the detection of hypoxia through the use of 18 F-fluoromisonidazole positron emission tomography ([ 18 F]-FMISO PET) in response to the evolution of the tumor and its vasculature. Methods: Orthotopic glioma tumors were induced in rats after implantation of C6 or 9L cells. Sunitinib was administered from day (D) 17 to D24. At D17 and D24, multiparametric magnetic resonance imaging was performed to characterize tumor growth and vasculature. Hypoxia was assessed by [ 18 F]-FMISO PET. Results: We showed that brain hypoxic volumes are related to glioma volume and its vasculature and that an antiangiogenic treatment, leading to an increase in cerebral blood volume and a decrease in vessel permeability, is accompanied by a decrease in the degree of hypoxia. Conclusions: We propose that [ 18 F]-FMISO PET and multiparametric magnetic resonance imaging are pertinent complementary tools in the evaluation of the effects of an antiangiogenic treatment in glioma.

  3. 2-deoxy-2[F-18]fluoro-D-mannose positron emission tomography imaging in atherosclerosis

    NARCIS (Netherlands)

    Tahara, Nobuhiro; Mukherjee, Jogeshwar; de Haas, Hans J; Petrov, Artiom D; Tawakol, Ahmed; Haider, Nezam; Tahara, Atsuko; Constantinescu, Cristian C; Zhou, Jun; Boersma, Hendrikus H; Imaizumi, Tsutomu; Nakano, Masataka; Finn, Aloke; Fayad, Zahi; Virmani, Renu; Fuster, Valentin; Bosca, Lisardo; Narula, Jagat

    Progressive inflammation in atherosclerotic plaques is associated with increasing risk of plaque rupture. Molecular imaging of activated macrophages with 2-deoxy-2[F-18]fluoro-D-glucose ([F-18]FDG) has been proposed for identification of patients at higher risk for acute vascular events. Because

  4. Photons-based medical imaging - Radiology, X-ray tomography, gamma and positrons tomography, optical imaging; Imagerie medicale a base de photons - Radiologie, tomographie X, tomographie gamma et positons, imagerie optique

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Dinten, J.M.; Moy, J.P.; Rinkel, J. [CEA Leti, Grenoble (France); Buvat, I. [IMNC - CNRS, Orsay (France); Da Silva, A. [Institut Fresnel, Marseille (France); Douek, P.; Peyrin, F. [INSA Lyon, Lyon Univ. (France); Frija, G. [Hopital Europeen George Pompidou, Paris (France); Trebossen, R. [CEA-Service hospitalier Frederic Joliot, Orsay (France)

    2010-07-01

    This book describes the different principles used in medical imaging. The detection aspects, the processing electronics and algorithms are detailed for the different techniques. This first tome analyses the photons-based techniques (X-rays, gamma rays and visible light). Content: 1 - physical background: radiation-matter interaction, consequences on detection and medical imaging; 2 - detectors for medical imaging; 3 - processing of numerical radiography images for quantization; 4 - X-ray tomography; 5 - positrons emission tomography: principles and applications; 6 - mono-photonic imaging; 7 - optical imaging; Index. (J.S.)

  5. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in Patients With Carcinoma of the Nasopharynx: Diagnostic Accuracy and Impact on Clinical Management

    International Nuclear Information System (INIS)

    Gordin, Arie; Golz, Avishay; Daitzchman, Marcello; Keidar, Zohar; Bar-Shalom, Rachel; Kuten, Abraham; Israel, Ora

    2007-01-01

    Purpose: To assess the value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in patients with nasopharyngeal carcinoma as compared with PET and conventional imaging (CI) alone, and to assess the impact of PET/CT on further clinical management. Methods and Materials: Thirty-three patients with nasopharyngeal carcinoma had 45 PET/CT examinations. The study was a retrospective analysis. Changes in patient care resulting from the PET/CT studies were recorded. Results: Positron emission tomography/computed tomography had sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 92%, 90%, 90%, 90%, and 91%, respectively, as compared with 92%, 65%, 76%, 86%, and 80% for PET and 92%, 15%, 60%, 60%, and 60% for CI. Imaging with PET/CT altered further management of 19 patients (57%). Imaging with PET/CT eliminated the need for previously planned diagnostic procedures in 11 patients, induced a change in the planned therapeutic approach in 5 patients, and guided biopsy to a specific metabolically active area inside an edematous region in 3 patients, thus decreasing the chances for tissue sampling errors and avoiding damage to nonmalignant tissue. Conclusions: In cancer of the nasopharynx, the diagnostic performance of PET/CT is better than that of stand-alone PET or CI. Positron emission tomography/computed tomography had a major impact on further clinical management in 57% of patients

  6. Prognostic value of metabolic tumor volume as measured by fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yoon, Young-Ho; Lee, Seok-Hwan; Hong, Sung-Lyong; Kim, Seong-Jang; Roh, Hwan-Jung; Cho, Kyu-Sup

    2014-10-01

    The prognostic value of the tumor burden characterized by the metabolic tumor volume (MTV) remains under investigation in nasopharyngeal carcinoma (NPC). The purpose of this study was to evaluate the prognostic value of the maximum standardized uptake value (SUVmax ) and MTV according to metabolic volume threshold as measured by positron emission tomography (PET)/computed tomography (CT), and other clinical factors, in patients with NPC. This study was a retrospective chart review. We evaluated the association of SUVmax , MTV2.5 , MTV3.0 , and other clinical factors with overall survival (OS) using Kaplan-Meier and Cox regression models. (MTV2.5 and MTV3.0 are the volume of hypermetabolic tissue within the regions of gross tumor volumes with a SUV value greater than the threshold values of 2.5 and 3.0, respectively.) Higher MTV2.5 of 31.45 cm(3) and MTV3.0 of 23.01 cm(3) were associated with an increased risk of death (hazard ratio [HR] = 5.028; p = 0.029), although no significant relationship was found between SUVmax and OS. Interestingly, MTV3.0 was associated with OS in both the differentiated and undifferentiated groups, although MTV2.5 was only associated with OS in the undifferentiated group. Among the clinical parameters, only radiotherapy was associated with longer OS (HR = 12.124; p < 0.001). The MTV and radiotherapy could be prognostic values associated with OS. Particularly, MTV2.5 and MTV3.0 might be valuable metabolic parameters for predicting long-term survival in patients with NPC. Furthermore, MTV3.0 may be more useful because it can be applied irrespective of pathologic subtype. © 2014 ARS-AAOA, LLC.

  7. The Impact of Positron Emission Tomography/Computed Tomography in Edge Delineation of Gross Tumor Volume for Head and Neck Cancers

    International Nuclear Information System (INIS)

    Ashamalla, Hani; Guirgius, Adel; Bieniek, Ewa; Rafla, Sameer; Evola, Alex; Goswami, Ganesh; Oldroyd, Randall; Mokhtar, Bahaa; Parikh, Kapila

    2007-01-01

    Purpose: To study anatomic biologic contouring (ABC), using a previously described distinct halo, to unify volume contouring methods in treatment planning for head and neck cancers. Methods and Materials: Twenty-five patients with head and neck cancer at various sites were planned for radiation therapy using positron emission tomography/computed tomography (PET/CT). The ABC halo was used in all PET/CT scans to contour the gross tumor volume (GTV) edge. The CT-based GTV (GTV-CT) and PET/CT-based GTV (GTV-ABC) were contoured by two independent radiation oncologists. Results: The ABC halo was observed in all patients studied. The halo had a standard unit value of 2.19 ± 0.28. The mean halo thickness was 2.02 ± 0.21 mm. Significant volume modification (≥25%) was seen in 17 of 25 patients (68%) after implementation of GTV-ABC. Concordance among observers was increased with the use of the halo as a guide for GTV determination: 6 patients (24%) had a ≤10% volume discrepancy with CT alone, compared with 22 (88%) with PET/CT (p 3 in CT-based planning to 7.2 cm 3 in PET/CT-based planning (p < 0.001). Conclusions: Using the 'anatomic biologic halo' to contour GTV in PET/CT improves consistency among observers. The distinctive appearance of the described halo and its presence in all of the studied tumors make it attractive for GTV contouring in head and neck tumors. Additional studies are needed to confirm the correlation of the halo with presence of malignant cells

  8. Quantitative Analysis of "1"8F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Cui, Yi; Song, Jie; Pollom, Erqi; Alagappan, Muthuraman; Shirato, Hiroki; Chang, Daniel T.; Koong, Albert C.; Li, Ruijiang

    2016-01-01

    Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT "1"8F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162 robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e-6

  9. Positron emission tomography in cerebrovascular disease: The relationship between regional cerebral blood flow, blood volume and oxygen metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Herold, S.

    1985-03-01

    Positron emission tomography in cerebrovascular disease has demonstrated the importance of the relationship between regional cerebral blood flow and the cerebral metabolic activity. In acute stroke it has been found that within the first hours after the onset of symptoms cerebral blood flow in the affected area is more depressed than cerebral oxygen utilisation. This relative preservation of oxygen utilisation results from an increase in the oxygen extraction ratio far above its normal value. However, the oxygen extraction fraction subsequently falls in the following days indicating the transition from a situation of possibly reversible ischaemia to irreversible infarction. In patients with carotid occlusive disease an increase in the oxygen extraction ratio has been observed only in very few cases. It has been shown, however, that at an earlier stage the relationship between CBF and CBV (as CBF/CBV-ratio) provides a sensitive measure of diminished perfusion pressure which could be helpful for the selection of patients for EC-IC bypass surgery. In patients with sickle cell anaemia it has been found that oxygen delivery to the brain is maintained by an increase in cerebral blood flow, whereas the oxygen extraction ratio is not increased despite the presence of a low oxygen affinity haemoglobin. Preliminary observations in classical migraine suggest an ischaemic situation during the attack.

  10. Impact of point spread function correction in standardized uptake value quantitation for positron emission tomography images. A study based on phantom experiments and clinical images

    International Nuclear Information System (INIS)

    Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho

    2014-01-01

    While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV. (author)

  11. [Impact of point spread function correction in standardized uptake value quantitation for positron emission tomography images: a study based on phantom experiments and clinical images].

    Science.gov (United States)

    Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho; Ito, Shigeru; Sano, Yoshitaka; Sato, Mayumi; Kanno, Toshihiko; Okada, Hiroyuki; Torizuka, Tatsuo; Nishizawa, Sadahiko

    2014-06-01

    While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV.

  12. Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with 64Cu-labeled TRC105.

    Science.gov (United States)

    Orbay, Hakan; Zhang, Yin; Hong, Hao; Hacker, Timothy A; Valdovinos, Hector F; Zagzebski, James A; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo

    2013-07-01

    The goal of this study was to assess ischemia-induced angiogenesis with (64)Cu-NOTA-TRC105 positron emission tomography (PET) in a murine hindlimb ischemia model of peripheral artery disease (PAD). CD105 binding affinity/specificity of NOTA-conjugated TRC105 (an anti-CD105 antibody) was evaluated by flow cytometry, which exhibited no difference from unconjugated TRC105. BALB/c mice were anesthetized, and the right femoral artery was ligated to induce hindlimb ischemia, with the left hindlimb serving as an internal control. Laser Doppler imaging showed that perfusion in the ischemic hindlimb plummeted to ∼ 20% of the normal level after surgery and gradually recovered to near normal level on day 24. Ischemia-induced angiogenesis was noninvasively monitored and quantified with (64)Cu-NOTA-TRC105 PET on postoperative days 1, 3, 10, 17, and 24. (64)Cu-NOTA-TRC105 uptake in the ischemic hindlimb increased significantly from the control level of 1.6 ± 0.2 %ID/g to 14.1 ± 1.9 %ID/g at day 3 (n = 3) and gradually decreased with time (3.4 ± 1.9 %ID/g at day 24), which correlated well with biodistribution studies performed on days 3 and 24. Blocking studies confirmed the CD105 specificity of tracer uptake in the ischemic hindlimb. Increased CD105 expression on days 3 and 10 following ischemia was confirmed by histology and reverse transcription polymerase chain reaction (RT-PCR). This is the first report of PET imaging of CD105 expression during ischemia-induced angiogenesis. (64)Cu-NOTA-TRC105 PET may play multiple roles in future PAD-related research and improve PAD patient management by identifying the optimal timing of treatment and monitoring the efficacy of therapy.

  13. Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease

    Science.gov (United States)

    Foudray, Angela Marie Klohs

    Detecting, quantifying and visualizing biochemical mechanism in a living system without perturbing function is the goal of the instrument and algorithms designed in this thesis. Biochemical mechanisms of cells have long been known to be dependent on the signals they receive from their environment. Studying biological processes of cells in-vitro can vastly distort their function, since you are removing them from their natural chemical signaling environment. Mice have become the biological system of choice for various areas of biomedical research due to their genetic and physiological similarities with humans, the relatively low cost of their care, and their quick breeding cycle. Drug development and efficacy assessment along with disease detection, management, and mechanism research all have benefited from the use of small animal models of human disease. A high resolution, high sensitivity, three-dimensional (3D) positioning positron emission tomography (PET) detector system was designed through device characterization and Monte Carlo simulation. Position-sensitive avalanche photodiodes (PSAPDs) were characterized in various packaging configurations; coupled to various configurations of lutetium oxyorthosilicate (LSO) scintillation crystals. Forty novelly packaged final design devices were constructed and characterized, each providing characteristics superior to commercially available scintillation detectors used in small animal imaging systems: ˜1mm crystal identification, 14-15% of 511 keV energy resolution, and averaging 1.9 to 5.6 ns coincidence time resolution. A closed-cornered box-shaped detector configuration was found to provide optimal photon sensitivity (˜10.5% in the central plane) using dual LSO-PSAPD scintillation detector modules and Monte Carlo simulation. Standard figures of merit were used to determine optimal system acquisition parameters. A realistic model for constituent devices was developed for understanding the signals reported by the

  14. The use of molecular sieves to simulate hot lesions in (18)F-fluorodeoxyglucose--positron emission tomography imaging.

    Science.gov (United States)

    Matheoud, R; Secco, C; Ridone, S; Inglese, E; Brambilla, M

    2008-04-21

    We investigated the use of a kind of zeolite, the Bowie chabazite, to produce radioactive sources of different shapes, dimensions and activity concentrations that can be used for lesion simulation in positron emission tomography (PET) imaging. The (18)F-fluorodeoxyglucose ((18)F-FDG) uptake of a group of 12 zeolites was studied as a function of their weight (120-1,520 mg) and of the activity concentration of the (18)F-FDG solution (1-37 MBq ml(-1)), using a multiple linear regression model. The reproducibility, homogeneity and stability over time of the (18)F-FDG uptake were assessed. The fit of the regression model is good (r(2) = 0.83). This relation allows the production of zeolites of a desired (18)F-FDG activity using knowledge of the concentration of the soaking solution and the weight of the zeolite. The reproducibility of the (18)F-FDG uptake after heating the zeolites is elevated (CV% = 3.68). The almost complete regeneration of the zeolites allows us to reuse them in successive experiments. The stability of the (18)F-FDG uptake on zeolites is far from ideal. When placed in a saline solution the 'activated' zeolites release the (18)F-FDG with an effective half-time of 53 min. The sealing of the zeolites in plastic film bags has been demonstrated to be effective in preventing any release of (18)F-FDG. These features, together with their variable dimensions and shapes, make them ideal (18)F-FDG sources with a fixed target-to-background ratio that can be placed anywhere in a phantom to study lesion detectability in PET imaging.

  15. (-)-N-[(11)C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D(2) receptors.

    Science.gov (United States)

    Hwang, D R; Kegeles, L S; Laruelle, M

    2000-08-01

    Imaging neuroreceptors with radiolabeled agonists might provide valuable information on the in vivo agonist affinity states of receptors of interest. We report here the radiosynthesis, biodistribution in rodents, and imaging studies in baboons of [(11)C]-labeled (-)-N-propyl-norapomorphine [(-)-NPA]. (-)-[(11)C]NPA was prepared by reacting norapomorphine with [(11)C]propionyl chloride and a lithium aluminum hydride reduction. [(11)C]Propionyl chloride was prepared by reacting [(11)C]CO(2) with ethylmagnesium bromide, followed by reacting with phthaloyl chloride. The radiochemical yield of (-)-[(11)C]NPA was 2.5% at end of synthesis (EOS), and the synthesis time was 60 min. The specific activity was 1700+/-1900 mCi/micromol ( N=7; ranged 110-5200 mCi/micromol at EOS). Rodent biodistribution studies showed high uptake of [(11)C](-)-NPA in D(2) receptor-rich areas, and the striatum/cerebellum ratios were 1.7, 3.4, and 4.4 at 5 min, 30 min, and 60 min postinjection, respectively. Pretreating the animals with haloperidol (1 mg/kg) decreased the striatum/cerebellum ratio at 30 min postinjection to 1.3. (-)-[(11)C]NPA was also evaluated via baboon positron emission tomography (PET) studies. Under control conditions ( N=4), rapid uptake of the tracer was observed and the striatum/cerebellum ratio reached 2.86+/-0.15 at 45 min postinjection. Following haloperidol pretreatment (0.2 mg/kg IV), the striatum/cerebellum ratio was 1.29 at 45 min postinjection. The result demonstrated the existence of specific binding of this new tracer to the D(2) receptor. To our knowledge, the current finding of a striatum/cerebellum ratio of 2.8 in baboon was the highest reported with a radiolabeled D(2) agonist. (-)-[(11)C]NPA is a promising new D(2) agonist PET tracer for probing D(2) receptors in vivo using PET.

  16. The use of molecular sieves to simulate hot lesions in 18F-fluorodeoxyglucose-positron emission tomography imaging

    International Nuclear Information System (INIS)

    Matheoud, R; Secco, C; Brambilla, M; Ridone, S; Inglese, E

    2008-01-01

    We investigated the use of a kind of zeolite, the Bowie chabazite, to produce radioactive sources of different shapes, dimensions and activity concentrations that can be used for lesion simulation in positron emission tomography (PET) imaging. The 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake of a group of 12 zeolites was studied as a function of their weight (120-1520 mg) and of the activity concentration of the 18 F-FDG solution (1-37 MBq ml -1 ), using a multiple linear regression model. The reproducibility, homogeneity and stability over time of the 18 F-FDG uptake were assessed. The fit of the regression model is good (r 2 = 0.83). This relation allows the production of zeolites of a desired 18 F-FDG activity using knowledge of the concentration of the soaking solution and the weight of the zeolite. The reproducibility of the 18 F-FDG uptake after heating the zeolites is elevated (CV% = 3.68). The almost complete regeneration of the zeolites allows us to reuse them in successive experiments. The stability of the 18 F-FDG uptake on zeolites is far from ideal. When placed in a saline solution the 'activated' zeolites release the 18 F-FDG with an effective half-time of 53 min. The sealing of the zeolites in plastic film bags has been demonstrated to be effective in preventing any release of 18 F-FDG. These features, together with their variable dimensions and shapes, make them ideal 18 F-FDG sources with a fixed target-to-background ratio that can be placed anywhere in a phantom to study lesion detectability in PET imaging. (note)

  17. Semiautomatic volume of interest drawing for 18F-FDG image analysis - method and preliminary results

    International Nuclear Information System (INIS)

    Green, A.J.; Baig, S.; Begent, R.H.J.; Francis, R.J.

    2008-01-01

    Functional imaging of cancer adds important information to the conventional measurements in monitoring response. Serial 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET), which indicates changes in glucose metabolism in tumours, shows great promise for this. However, there is a need for a method to quantitate alterations in uptake of FDG, which accounts for changes in tumour volume and intensity of FDG uptake. Selection of regions or volumes [ROI or volumes of interest (VOI)] by hand drawing, or simple thresholding, suffers from operator-dependent drawbacks. We present a simple, robust VOI growing method for this application. The method requires a single seed point within the visualised tumour and another in relevant normal tissue. The drawn tumour VOI is insensitive to the operator inconsistency and is, thus, a suitable basis for comparative measurements. The method is validated using a software phantom. We demonstrate the use of the method in the assessment of tumour response in 31 patients receiving chemotherapy for various carcinomas. Valid assessment of tumour response could be made 2-4 weeks after starting chemotherapy, giving information for clinical decision making which would otherwise have taken 9-12 weeks. Survival was predicted from FDG-PET 2-4 weeks after starting chemotherapy (p = 0.04) and after 9-12 weeks FDG-PET gave a better prediction of survival (p = 0.002) than CT or MRI (p = 0.015). FDG-PET using this method of analysis has potential as a routine tool for optimising use of chemotherapy and improving its cost effectiveness. It also has potential for increasing the accuracy of response assessment in clinical trials of novel therapies. (orig.)

  18. Positron annihilation studies on bulk metallic glass and high intensity positron beam developments

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Stoeffl, W.

    2003-01-01

    Positron annihilation spectroscopy is an ideal probe to examine atomic scale open-volume regions in materials. Below, we summarize the recent results on studies of open-volume regions of a multicomponent Zr-Ti-Ni-Cu-Be bulk metallic glass. Our studies establish two types of open-volume regions, one group that is too shallow to trap positrons at room temperature and becomes effective only at low temperatures and the other group that localizes positrons at room temperature and is large enough to accommodate hydrogen. The second half of the paper will concentrate on the high intensity positron program at Lawrence Livermore National Laboratory. A new positron production target is under development and we are constructing two experimental end stations to accommodate a pulsed positron microprobe and an experiment on positron diffraction and holography. Important design considerations of these experiments will be described. (author)

  19. Pre-clinical and Clinical Evaluation of High Resolution, Mobile Gamma Camera and Positron Imaging Devices

    Science.gov (United States)

    2010-10-01

    Downloaded on February 20,2010 at 10:55:59 EST from IEEE Xplore . Restrictions apply. STUDENSKI et al.: ACQUISITION AND PROCESSING METHODS FOR A BEDSIDE...February 20,2010 at 10:55:59 EST from IEEE Xplore . Restrictions apply. 208 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 1, FEBRUARY 2010 from the...59 EST from IEEE Xplore . Restrictions apply. STUDENSKI et al.: ACQUISITION AND PROCESSING METHODS FOR A BEDSIDE CARDIAC SPECT IMAGING SYSTEM 209

  20. A novel intra-operative positron imager for rapid localization of tumor margins

    Science.gov (United States)

    Sabet, Hamid; Stack, Brendan C.; Nagarkar, Vivek V.

    2014-03-01

    We have developed an intra-operative and compact imaging tool for surgeons to detect PET- positive lesions. Currently, most such probes on the market are non-imaging, and provide no ancillary information of surveyed areas, such as clear delineations of malignant tissues. Our probe consists of a novel hybrid scintillator coupled to a compact silicon photomultiplier (SiPM) array with associated front-end electronics encapsulated in an ergonomic housing. Pulse shape discrimination electronics has been implemented and integrated into the downstream data acquisition system. The hybrid scintillator consists of a 0.4 mm thick layer of CsI:Tl scintillator coupled to a 1 mm thick LYSO crystal. To achieve high spatial resolution, CsI:Tl is pixelated to 0.5×0.5 mm2 pixels using laser ablation technique. While CsI:Tl act as beta-sensitive scintillator, LYSO senses the gamma radiation and can be used to navigate the probe to the locations of interest. The gamma response is also subtracted from the beta image for improved SNR and contrast. To achieve accurate centroid position estimation and uniform beta sensitivity over the entire imaging area, the LYSO thickness is optimized such that it acts as scintillation light diffuser by spreading CsI:Tl light over multiple SiPM pixels. The results show that the response of the two scintillators exposed to radiation could be easily distinguished based on their pulse shapes. The probe's spatial resolution is beta radiation even in presence of strong gamma background.

  1. Positron emission tomography imaging studies of dopamine receptors in primate models of addiction

    OpenAIRE

    Nader, Michael A; Czoty, Paul W; Gould, Robert W; Riddick, Natallia V

    2008-01-01

    Animal models have provided valuable information related to trait and state variables associated with vulnerability to drug addiction. Our brain imaging studies in monkeys have implicated D2 receptors in cocaine addiction. For example, an inverse relationship between D2 receptor availability and rates of cocaine self-administration has been documented. Moreover, environmental variables, such as those associated with formation of the social hierarchy, can impact receptor availability and sensi...

  2. Waveguide volume probe for magnetic resonance imaging and spectroscopy

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a probe for use within the field of nuclear magnetic resonance, such as magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS)). One embodiment relates to an RF probe for magnetic resonance imaging and/or spectroscopy comprising a conductive...... non-magnetic hollow waveguide having an internal volume and at least one open end, one or more capacitors and at least a first conductive non-magnetic wire, wherein said first conductive wire connects at least one of said one or more capacitors to opposite walls of one open end of the waveguide...

  3. An X-Ray computed tomography/positron emission tomography system designed specifically for breast imaging.

    Science.gov (United States)

    Boone, John M; Yang, Kai; Burkett, George W; Packard, Nathan J; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D; Lindfors, Karen K

    2010-02-01

    Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging.

  4. Assessment of rigid multi-modality image registration consistency using the multiple sub-volume registration (MSR) method

    International Nuclear Information System (INIS)

    Ceylan, C; Heide, U A van der; Bol, G H; Lagendijk, J J W; Kotte, A N T J

    2005-01-01

    Registration of different imaging modalities such as CT, MRI, functional MRI (fMRI), positron (PET) and single photon (SPECT) emission tomography is used in many clinical applications. Determining the quality of any automatic registration procedure has been a challenging part because no gold standard is available to evaluate the registration. In this note we present a method, called the 'multiple sub-volume registration' (MSR) method, for assessing the consistency of a rigid registration. This is done by registering sub-images of one data set on the other data set, performing a crude non-rigid registration. By analysing the deviations (local deformations) of the sub-volume registrations from the full registration we get a measure of the consistency of the rigid registration. Registration of 15 data sets which include CT, MR and PET images for brain, head and neck, cervix, prostate and lung was performed utilizing a rigid body registration with normalized mutual information as the similarity measure. The resulting registrations were classified as good or bad by visual inspection. The resulting registrations were also classified using our MSR method. The results of our MSR method agree with the classification obtained from visual inspection for all cases (p < 0.02 based on ANOVA of the good and bad groups). The proposed method is independent of the registration algorithm and similarity measure. It can be used for multi-modality image data sets and different anatomic sites of the patient. (note)

  5. Adjusted scaling of FDG positron emission tomography images for statistical evaluation in patients with suspected Alzheimer's disease.

    Science.gov (United States)

    Buchert, Ralph; Wilke, Florian; Chakrabarti, Bhismadev; Martin, Brigitte; Brenner, Winfried; Mester, Janos; Clausen, Malte

    2005-10-01

    Statistical parametric mapping (SPM) gained increasing acceptance for the voxel-based statistical evaluation of brain positron emission tomography (PET) with the glucose analog 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) in patients with suspected Alzheimer's disease (AD). To increase the sensitivity for detection of local changes, individual differences of total brain FDG uptake are usually compensated for by proportional scaling. However, in cases of extensive hypometabolic areas, proportional scaling overestimates scaled uptake. This may cause significant underestimation of the extent of hypometabolic areas by the statistical test. To detect this problem, the authors tested for hypermetabolism. In patients with no visual evidence of true focal hypermetabolism, significant clusters of hypermetabolism in the presence of extended hypometabolism were interpreted as false-positive findings, indicating relevant overestimation of scaled uptake. In this case, scaled uptake was reduced step by step until there were no more significant clusters of hypermetabolism. In 22 consecutive patients with suspected AD, proportional scaling resulted in relevant overestimation of scaled uptake in 9 patients. Scaled uptake had to be reduced by 11.1% +/- 5.3% in these cases to eliminate the artifacts. Adjusted scaling resulted in extension of existing and appearance of new clusters of hypometabolism. Total volume of the additional voxels with significant hypometabolism depended linearly on the extent of the additional scaling and was 202 +/- 118 mL on average. Adjusted scaling helps to identify characteristic metabolic patterns in patients with suspected AD. It is expected to increase specificity of FDGPET in this group of patients.

  6. Estimation of fetal volume by magnetic resonance imaging and stereology.

    Science.gov (United States)

    Roberts, N; Garden, A S; Cruz-Orive, L M; Whitehouse, G H; Edwards, R H

    1994-11-01

    The current methods to monitor fetal growth in utero are based on ultrasound image measurements which, lacking a proper sampling methodology, may be biased to unknown degrees. The Cavalieri method of stereology guarantees the accurate estimation of the volume of an arbitrary object from a few systematic sections. Non-invasive scanning methods, and magnetic resonance imaging (MRI) in particular, are valuable tools to provide the necessary sections, and therefore offer interesting possibilities for unbiased quantification. This paper describes how to estimate fetal volume in utero with a coefficient of error of less than 5% in less than 5 min, from three or four properly sampled MRI scans. MRI was chosen because it does not use ionizing radiations on the one hand, and it offers a good image quality on the other. The impact of potential sources of bias such as fetal motion, chemical shift and partial voluming artefacts is discussed. The methods are illustrated on four subjects monitored between weeks 28 and 40 of gestation.

  7. Positron emission tomographic imaging of tumors using monoclonal antibodies. Progress report, April 15, 1992--October 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  8. Positron emission tomography imaging of CD105 expression with {sup 89}Zr-Df-TRC105

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hao; Yang, Yunan [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Severin, Gregory W.; Engle, Jonathan W.; Zhang, Yin; Barnhart, Todd E.; Nickles, Robert J. [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Liu, Glenn [University of Wisconsin - Madison, Department of Medicine, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); Leigh, Bryan R. [TRACON Pharmaceuticals, Inc, San Diego, CA (United States); Cai, Weibo [University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States)

    2012-01-15

    High tumor microvessel density correlates with a poor prognosis in multiple solid tumor types. The clinical gold standard for assessing microvessel density is CD105 immunohistochemistry on paraffin-embedded tumor specimens. The goal of this study was to develop an {sup 89}Zr-based PET tracer for noninvasive imaging of CD105 expression. TRC105, a chimeric anti-CD105 monoclonal antibody, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS) and labeled with {sup 89}Zr. FACS analysis and microscopy studies were performed to compare the CD105 binding affinity of TRC105 and Df-TRC105. PET imaging, biodistribution, blocking, and ex-vivo histology studies were performed on 4T1 murine breast tumor-bearing mice to evaluate the pharmacokinetics and tumor-targeting of {sup 89}Zr-Df-TRC105. Another chimeric antibody, cetuximab, was used as an isotype-matched control. FACS analysis of HUVECs revealed no difference in CD105 binding affinity between TRC105 and Df-TRC105, which was further validated by fluorescence microscopy. {sup 89}Zr labeling was achieved with high yield and specific activity. Serial PET imaging revealed that the 4T1 tumor uptake of {sup 89}Zr-Df-TRC105 was 6.1 {+-} 1.2, 14.3 {+-} 1.2, 12.4 {+-} 1.5, 7.1 {+-} 0.9, and 5.2 {+-} 0.3 %ID/g at 5, 24, 48, 72, and 96 h after injection, respectively (n = 4), higher than all organs starting from 24 h after injection, which provided excellent tumor contrast. Biodistribution data as measured by gamma counting were consistent with the PET findings. Blocking experiments, control studies with {sup 89}Zr-Df-cetuximab, and ex-vivo histology all confirmed the in vivo target specificity of {sup 89}Zr-Df-TRC105. We report here the first successful PET imaging of CD105 expression with {sup 89}Zr as the radiolabel. Rapid, persistent, CD105-specific uptake of {sup 89}Zr-Df-TRC105 in the 4T1 tumor was observed. (orig.)

  9. Comparison of imaging-based gross tumor volume and pathological volume determined by whole-mount serial sections in primary cervical cancer

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-07-01

    Full Text Available Ying Zhang,1,* Jing Hu,1,* Jianping Li,1 Ning Wang,1 Weiwei Li,1 Yongchun Zhou,1 Junyue Liu,1 Lichun Wei,1 Mei Shi,1 Shengjun Wang,2 Jing Wang,2 Xia Li,3 Wanling Ma4 1Department of Radiation Oncology, 2Department of Nuclear Medicine, 3Department of Pathology, 4Department of Radiology, Xijing Hospital, Xi'an, People's Republic of China*These authors contributed equally to this workObjective: To investigate the accuracy of imaging-based gross tumor volume (GTV compared with pathological volume in cervical cancer.Methods: Ten patients with International Federation of Gynecology and Obstetrics stage I–II cervical cancer were eligible for investigation and underwent surgery in this study. Magnetic resonance imaging (MRI and fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET/computed tomography (CT scans were taken the day before surgery. The GTVs under MRI and 18F-FDG PET/CT (GTV-MRI, GTV-PET, GTV-CT were calculated automatically by Eclipse treatment-planning systems. Specimens of excised uterine cervix and cervical cancer were consecutively sliced and divided into whole-mount serial sections. The tumor border of hematoxylin and eosin-stained sections was outlined under a microscope by an experienced pathologist. GTV through pathological image (GTV-path was calculated with Adobe Photoshop.Results: The GTVs (average ± standard deviation delineated and calculated under CT, MRI, PET, and histopathological sections were 19.41 ± 11.96 cm3, 12.66 ± 10.53 cm3, 11.07 ± 9.44 cm3, and 10.79 ± 8.71 cm3, respectively. The volume of GTV-CT or GTV-MR was bigger than GTV-path, and the difference was statistically significant (P 0.05. Spearman correlation analysis showed that GTV-CT, GTV-MRI, and GTV-PET were significantly correlated with GTV-path (P < 0.01. There was no significant difference in the lesion coverage factor among the three modalities.Conclusion: The present study showed that GTV defined under 40% of maximum standardized

  10. 124Iodine: A Longer-Life Positron Emitter Isotope—New Opportunities in Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Giuseppe Lucio Cascini

    2014-01-01

    Full Text Available 124Iodine (124I with its 4.2 d half-life is particularly attractive for in vivo detection and quantification of longer-term biological and physiological processes; the long half-life of 124I is especially suited for prolonged time in vivo studies of high molecular weight compounds uptake. Numerous small molecules and larger compounds like proteins and antibodies have been successfully labeled with 124I. Advances in radionuclide production allow the effective availability of sufficient quantities of 124I on small biomedical cyclotrons for molecular imaging purposes. Radioiodination chemistry with 124I relies on well-established radioiodine labeling methods, which consists mainly in nucleophilic and electrophilic substitution reactions. The physical characteristics of 124I permit taking advantages of the higher PET image quality. The availability of new molecules that may be targeted with 124I represents one of the more interesting reasons for the attention in nuclear medicine. We aim to discuss all iodine radioisotopes application focusing on 124I, which seems to be the most promising for its half-life, radiation emissions, and stability, allowing several applications in oncological and nononcological fields.

  11. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Parra, N. Andres [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Maudsley, Andrew A. [Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Gupta, Rakesh K. [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Ishkanian, Fazilat; Huang, Kris [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Walker, Gail R. [Biostatistics and Bioinformatics Core Resource, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Padgett, Kyle [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida (United States); Roy, Bhaswati [Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana (India); Panoff, Joseph; Markoe, Arnold [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Stoyanova, Radka, E-mail: RStoyanova@med.miami.edu [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States)

    2014-10-01

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients. Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based on

  12. Clinical investigations on the use of positron emission tomography (PET) for target volume definition in radiation therapy planning; Klinische Untersuchungen zum Einsatz der Positronen-Emissions-Tomographie (PET) in der Zielvolumendefinition bei der Bestrahlungsplanung

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Ingo G.

    2014-12-05

    The aim of the present study was to evaluate the clinical value of positron emission tomography (PET) for target volume definition in different tumor entities using different tracers and taking pretreatment of patients into account. The study collective comprised 109 patients with 112 target volumes. In 48 patients with skull base meningiomas (SBM) and 42 patients with meningiomas of other localizations (SOM) undergoing fractionated stereotactic radiation therapy the gross tumor volumes (SBM, n=48; SOM, n=39) based on magnetic resonance imaging/computed tomography (MRI/CT) and {sup 68}Ga-DOTATOC-PET were compared retrospectively. Additionally, in 19 patients with liver metastasis from colorectal cancer (LM-CRC) treated in 25 CT guided brachytherapy sessions the clinical target volumes (CTV) either based on MRI/CT or {sup 18}F-FDG-PET were compared retrospectively. The spatial agreement of the target volumes was analyzed using the Dice similarity coefficient (DSC). The association of DSC, tumor entity and pretreatment was analyzed using the general linear model (GLM). Metric parameters are given as median (25th/75th-quartile). In the complete patient sample the PET based target volume was 24.1 (10.8/51.2) ml and, thus, significantly (p<0.001) increased by 18.9% (-3.6%/62.7%) compared to the MRI/CT based target volume of 20.8 (8.6/45.0) ml. In the subgroup of LM-CRC, the PET based target volume was significantly increased by 24.4% (0%/ 71.4%; p=0.021), and in patients with SBM it was increased by 23.9%(-1.7%/65.7%; p=0.003) whereas in SOM the difference of 8.0% (-3.6%/51.7%; p=0.199) was not significant. The DSC for PET and MRI/CT based target volumes was 0.66 (0.46/0.76) in the whole study group and varied between 0.65 (0.46/0.71) in patients with SBM and 0.70 (0.40/0.79) in patients with SOM. In pre-treated patients with LM-CRC a significant lower DSC of 0.62 (0.41/0.66) was observed in comparison to 0.84 (0.70/0.96) in untreated patients (significant interaction

  13. Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography

    International Nuclear Information System (INIS)

    Dorbala, Sharmila; Vangala, Divya; Semer, James; Strader, Christopher; Bruyere, John R.; Moore, Stephen C.; Di Carli, Marcelo F.; Falk, Rodney H.

    2014-01-01

    Cardiac amyloidosis, a restrictive heart disease with high mortality and morbidity, is underdiagnosed due to limited targeted diagnostic imaging. The primary aim of this study was to evaluate the utility of 18 F-florbetapir for imaging cardiac amyloidosis. We performed a pilot study of cardiac 18 F-florbetapir PET in 14 subjects: 5 control subjects without amyloidosis and 9 subjects with documented cardiac amyloidosis. Standardized uptake values (SUV) of 18 F-florbetapir in the left ventricular (LV) myocardium, blood pool, liver, and vertebral bone were determined. A 18 F-florbetapir retention index (RI) was computed. Mean LV myocardial SUVs, target-to-background ratio (TBR, myocardial/blood pool SUV ratio) and myocardial-to-liver SUV ratio between 0 and 30 min were calculated. Left and right ventricular myocardial uptake of 18 F-florbetapir were noted in all the amyloid subjects and in none of the control subjects. The RI, TBR, LV myocardial SUV and LV myocardial to liver SUV ratio were all significantly higher in the amyloidosis subjects than in the control subjects (RI median 0.043 min -1 , IQR 0.034 - 0.051 min -1 , vs. 0.023 min -1 , IQR 0.015 - 0.025 min -1 , P = 0.002; TBR 1.84, 1.64 - 2.50, vs. 1.26, IQR 0.91 - 1.36, P = 0.001; LV myocardial SUV 3.84, IQR 1.87 - 5.65, vs. 1.35, IQR 1.17 - 2.28, P = 0.029; ratio of LV myocardial to liver SUV 0.67, IQR 0.44 - 1.64, vs. 0.18, IQR 0.15 - 0.35, P = 0.004). The myocardial RI, TBR and myocardial to liver SUV ratio also distinguished the control subjects from subjects with transthyretin and those with light chain amyloid. 18 F-Florbetapir PET may be a promising technique to image light chain and transthyretin cardiac amyloidosis. Its role in diagnosing amyloid in other organ systems and in assessing response to therapy needs to be further studied. (orig.)

  14. Poster – 02: Positron Emission Tomography (PET) Imaging Reconstruction using higher order Scattered Photon Coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongwei; Pistorius, Stephen [Department of Physics and Astronomy, University of Manitoba, CancerCare, Manitoba (Canada)

    2016-08-15

    PET images are affected by the presence of scattered photons. Incorrect scatter-correction may cause artifacts, particularly in 3D PET systems. Current scatter reconstruction methods do not distinguish between single and higher order scattered photons. A dual-scattered reconstruction method (GDS-MLEM) that is independent of the number of Compton scattering interactions and less sensitive to the need for high energy resolution detectors, is proposed. To avoid overcorrecting for scattered coincidences, the attenuation coefficient was calculated by integrating the differential Klein-Nishina cross-section over a restricted energy range, accounting only for scattered photons that were not detected. The optimum image can be selected by choosing an energy threshold which is the upper energy limit for the calculation of the cross-section and the lower limit for scattered photons in the reconstruction. Data was simulated using the GATE platform. 500,000 multiple scattered photon coincidences with perfect energy resolution were reconstructed using various methods. The GDS-MLEM algorithm had the highest confidence (98%) in locating the annihilation position and was capable of reconstructing the two largest hot regions. 100,000 photon coincidences, with a scatter fraction of 40%, were used to test the energy resolution dependence of different algorithms. With a 350–650 keV energy window and the restricted attenuation correction model, the GDS-MLEM algorithm was able to improve contrast recovery and reduce the noise by 7.56%–13.24% and 12.4%–24.03%, respectively. This approach is less sensitive to the energy resolution and shows promise if detector energy resolutions of 12% can be achieved.

  15. Computing volume potentials for noninvasive imaging of cardiac excitation.

    Science.gov (United States)

    van der Graaf, A W Maurits; Bhagirath, Pranav; van Driel, Vincent J H M; Ramanna, Hemanth; de Hooge, Jacques; de Groot, Natasja M S; Götte, Marco J W

    2015-03-01

    In noninvasive imaging of cardiac excitation, the use of body surface potentials (BSP) rather than body volume potentials (BVP) has been favored due to enhanced computational efficiency and reduced modeling effort. Nowadays, increased computational power and the availability of open source software enable the calculation of BVP for clinical purposes. In order to illustrate the possible advantages of this approach, the explanatory power of BVP is investigated using a rectangular tank filled with an electrolytic conductor and a patient specific three dimensional model. MRI images of the tank and of a patient were obtained in three orthogonal directions using a turbo spin echo MRI sequence. MRI images were segmented in three dimensional using custom written software. Gmsh software was used for mesh generation. BVP were computed using a transfer matrix and FEniCS software. The solution for 240,000 nodes, corresponding to a resolution of 5 mm throughout the thorax volume, was computed in 3 minutes. The tank experiment revealed that an increased electrode surface renders the position of the 4 V equipotential plane insensitive to mesh cell size and reduces simulated deviations. In the patient-specific model, the impact of assigning a different conductivity to lung tissue on the distribution of volume potentials could be visualized. Generation of high quality volume meshes and computation of BVP with a resolution of 5 mm is feasible using generally available software and hardware. Estimation of BVP may lead to an improved understanding of the genesis of BSP and sources of local inaccuracies. © 2014 Wiley Periodicals, Inc.

  16. [{sup 11}C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Alan A., E-mail: alan.wilson@camhpet.c [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Garcia, Armando; Parkes, Jun [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Tong, Junchao [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 (Canada); Vasdev, Neil [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada)

    2011-02-15

    Introduction: Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. Methods: A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([{sup 11}C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. Results: Upon intravenous injection into rats, [{sup 11}C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [{sup 11}C]CURB was irreversibly bound to FAAH

  17. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    International Nuclear Information System (INIS)

    Tohme, Michel S; Qi Jinyi

    2009-01-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 x 3 line phantom, an ultra-micro resolution phantom and a 22 Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  18. [11C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography

    International Nuclear Information System (INIS)

    Wilson, Alan A.; Garcia, Armando; Parkes, Jun; Houle, Sylvain; Tong, Junchao; Vasdev, Neil

    2011-01-01

    Introduction: Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. Methods: A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([ 11 C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. Results: Upon intravenous injection into rats, [ 11 C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [ 11 C]CURB was irreversibly bound to FAAH. Conclusions

  19. Imaging regional variation of cellular proliferation in gliomas using 3'-deoxy-3'-[18F]fluorothymidine positron-emission tomography: an image-guided biopsy study

    International Nuclear Information System (INIS)

    Price, S.J.; Fryer, T.D.; Cleij, M.C.; Dean, A.F.; Joseph, J.; Salvador, R.; Wang, D.D.; Hutchinson, P.J.; Clark, J.C.; Burnet, N.G.; Pickard, J.D.; Aigbirhio, F.I.

    2009-01-01

    Aim: To compare regional variations in uptake of 3'-deoxy-3'- [ 18 F]-fluorothymidine (FLT) images using positron-emission tomography (PET) with measures of cellular proliferation from biopsy specimens obtained by image-guided brain biopsies. Materials and methods: Fourteen patients with a supratentorial glioma that required an image-guided brain biopsy were imaged preoperatively with dynamic PET after the administration of FLT. Maps of FLT irreversible uptake rate (K i ) and standardized uptake value (SUV) were calculated. These maps were co-registered to a gadolinium-enhanced T1-weighted spoiled gradient echo (SPGR) sequence that was used for biopsy guidance, and the mean and maximum K i and SUV determined for each biopsy site. These values were correlated with the MIB-1 labelling index (a tissue marker of proliferation) from these biopsy sites. Results: A total of 57 biopsy sites were studied. Although all measures correlated with MIB-1 labelling index, K i max provided the best correlation (Pearson coefficient, r = 0.68; p i mean (±SD) was significantly higher than in normal tissue (3.3 ± 1.7 x 10 -3 ml plasma /min/ml tissue versus 1.2 ± 0.7 x 10 -3 ml plasma /min/ml tissue ; p = 0.001). High-grade gliomas showed heterogeneous uptake with a mean K i of 7.7 ± 4 x 10 -3 ml plasma /min/ml tissue . A threshold K i mean of 1.8 x 10 -3 differentiates between normal tissue and tumour (sensitivity 84%, specificity 88%); however, the latter threshold underestimated the extent of tumour in half the cases. SUV closely agreed with K i measurements. Conclusion: FLT PET is a useful marker of cellular proliferation that correlates with regional variation in cellular proliferation; however, it is unable to identify the margin of gliomas

  20. Small animal positron emission tomography with gas detectors. Simulations, prototyping, and quantitative image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vernekohl, Don

    2014-04-15

    plain surfaces, predicted by simulations, was observed. Third, as the production of photon converters is time consuming and expensive, it was investigated whether or not thin gas detectors with single-lead-layer-converters would be an alternative to the HIDAC converter design. Following simulations, those concepts potentially offer impressive coincidence sensitivities up to 24% for plain lead foils and up to 40% for perforated lead foils. Fourth, compared to other PET scanner systems, the HIDAC concept suffers from missing energy information. Consequently, a substantial amount of scatter events can be found within the measured data. On the basis of image reconstruction and correction techniques the influence of random and scatter events and their characteristics on several simulated phantoms were presented. It was validated with the HIDAC simulator that the applied correction technique results in perfectly corrected images. Moreover, it was shown that the simulator is a credible tool to provide quantitatively improved images. Fifth, a new model for the non-collinearity of the positronium annihilation was developed, since it was observed that the model implemented in the GATE simulator does not correspond to the measured observation. The input parameter of the new model was trimmed to match to a point source measurement. The influence of both models on the spatial resolution was studied with three different reconstruction methods. Furthermore, it was demonstrated that the reduction of converter depth, proposed for increased sensitivity, also has an advantage on the spatial resolution and that a reduction of the FOV from 17 cm to 4 cm (with only 2 detector heads) results in a remarkable sensitivity increase of 150% and a substantial increase in spatial resolution. The presented simulations for the spatial resolution analysis used an intrinsic detector resolution of 0.125 x 0.125 x 3.2 mm{sup 3} and were able to reach fair resolutions down to 0.9-0.5 mm, which is an

  1. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine.

  2. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    International Nuclear Information System (INIS)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine

  3. Development of 68Ga-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography

    International Nuclear Information System (INIS)

    Choi, Jae Yeon; Jeong, Jae Min; Yoo, Byong Chul; Kim, Kyunggon; Kim, Youngsoo; Yang, Bo Yeun; Lee, Yun-Sang; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2011-01-01

    Introduction: Although many sentinel lymph node (SLN) imaging agents labeled with 99m Tc have been developed, no positron-emitting agent has been specifically designed for SLN imaging. Furthermore, the development of the beta probe and the requirement for better image resolution have increased the need for a positron-emitting SLN imaging agent. Here, we describe the development of a novel positron-emitting SLN imaging agent labeled with 68 Ga. Methods: A mannosylated human serum albumin (MSA) was synthesized by conjugating α-D-mannopyranosylphenyl isothiocyanate to human serum albumin in sodium carbonate buffer (pH 9.5), and then 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid was conjugated to synthesize NOTA-MSA. Numbers of mannose and NOTA units conjugated in NOTA-MSA were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. NOTA-MSA was labeled with 68 Ga at room temperature. The stability of 68 Ga-NOTA-MSA was checked in labeling medium at room temperature and in human serum at 37 o C. Biodistribution in normal ICR mice was investigated after tail vein injection, and micro-positron emission tomography (PET) images were obtained after injecting 68 Ga-NOTA-MSA into a tail vein or a footpad. Results: The numbers of conjugated α-D-mannopyranosylphenyl isothiocyanate and 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid units in NOTA-MSA were 10.6 and 6.6, respectively. The labeling efficiency of 68 Ga-NOTA-MSA was greater than 99% at room temperature, and its stability was greater than 99% at 4 h. Biodistribution and micro-PET studies of 68 Ga-NOTA-MSA showed high liver and spleen uptakes after intravenous injection. 68 Ga-NOTA-MSA injected into a footpad rapidly migrated to the lymph node. Conclusions: 68 Ga-NOTA-MSA was successfully developed as a novel SLN imaging agent for PET. NOTA-MSA is easily labeled at high efficiency, and subcutaneously administered 68 Ga-NOTA-MSA was

  4. Development of {sup 68}Ga-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Yeon [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jeong, Jae Min, E-mail: jmjng@snu.ac.k [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Yoo, Byong Chul [Research Institute, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Kim, Kyunggon; Kim, Youngsoo [Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Yang, Bo Yeun; Lee, Yun-Sang; Lee, Dong Soo [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chung, June-Key [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Myung Chul [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2011-04-15

    Introduction: Although many sentinel lymph node (SLN) imaging agents labeled with {sup 99m}Tc have been developed, no positron-emitting agent has been specifically designed for SLN imaging. Furthermore, the development of the beta probe and the requirement for better image resolution have increased the need for a positron-emitting SLN imaging agent. Here, we describe the development of a novel positron-emitting SLN imaging agent labeled with {sup 68}Ga. Methods: A mannosylated human serum albumin (MSA) was synthesized by conjugating {alpha}-D-mannopyranosylphenyl isothiocyanate to human serum albumin in sodium carbonate buffer (pH 9.5), and then 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid was conjugated to synthesize NOTA-MSA. Numbers of mannose and NOTA units conjugated in NOTA-MSA were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. NOTA-MSA was labeled with {sup 68}Ga at room temperature. The stability of {sup 68}Ga-NOTA-MSA was checked in labeling medium at room temperature and in human serum at 37{sup o}C. Biodistribution in normal ICR mice was investigated after tail vein injection, and micro-positron emission tomography (PET) images were obtained after injecting {sup 68}Ga-NOTA-MSA into a tail vein or a footpad. Results: The numbers of conjugated {alpha}-D-mannopyranosylphenyl isothiocyanate and 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid units in NOTA-MSA were 10.6 and 6.6, respectively. The labeling efficiency of {sup 68}Ga-NOTA-MSA was greater than 99% at room temperature, and its stability was greater than 99% at 4 h. Biodistribution and micro-PET studies of {sup 68}Ga-NOTA-MSA showed high liver and spleen uptakes after intravenous injection. {sup 68}Ga-NOTA-MSA injected into a footpad rapidly migrated to the lymph node. Conclusions: {sup 68}Ga-NOTA-MSA was successfully developed as a novel SLN imaging agent for PET. NOTA-MSA is easily labeled at high

  5. Prospective, blinded trial of whole-body magnetic resonance imaging versus computed tomography positron emission tomography in staging primary and recurrent cancer of the head and neck.

    LENUS (Irish Health Repository)

    O'Neill, J P

    2012-02-01

    OBJECTIVES: To compare the use of computed tomography - positron emission tomography and whole-body magnetic resonance imaging for the staging of head and neck cancer. PATIENTS AND METHODS: From January to July 2009, 15 consecutive head and neck cancer patients (11 men and four women; mean age 59 years; age range 19 to 81 years) underwent computed tomography - positron emission tomography and whole-body magnetic resonance imaging for pre-therapeutic evaluation. All scans were staged, as per the American Joint Committee on Cancer tumour-node-metastasis classification, by two blinded consultant radiologists, in two sittings. Diagnoses were confirmed by histopathological examination of endoscopic biopsies, and in some cases whole surgical specimens. RESULTS: Tumour staging showed a 74 per cent concordance, node staging an 80 per cent concordance and metastasis staging a 100 per cent concordance, comparing the two imaging modalities. CONCLUSION: This study found radiological staging discordance between the two imaging modalities. Whole-body magnetic resonance imaging is an emerging staging modality with superior visualisation of metastatic disease, which does not require exposure to ionising radiation.

  6. Positron emission tomography. Positronemisionstomografi

    Energy Technology Data Exchange (ETDEWEB)

    Bolwig, T G; Haunsoe, S; Dahlgaard Hove, J; Hesse, B; Hoejgard, L; Jensen, M; Paulson, O B; Hastrup Svendsen, J; Soelvsten Soerensen, S

    1994-10-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ([sup 11]C), oxygen ([sup 15]O), and nitrogen ([sup 13]N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.).

  7. Positron emission tomography

    International Nuclear Information System (INIS)

    Bolwig, T.G.; Haunsoe, S.; Dahlgaard Hove, J.; Hesse, B.; Hoejgard, L.; Jensen, M.; Paulson, O.B.; Hastrup Svendsen, J.; Soelvsten Soerensen, S.

    1994-01-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ( 11 C), oxygen ( 15 O), and nitrogen ( 13 N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.)

  8. The influence of respiratory motion on CT image volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid (Spain)

    2014-04-15

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath

  9. Computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with ovarian cancer: A meta-analysis

    International Nuclear Information System (INIS)

    Yuan Ying; Gu Zhaoxiang; Tao Xiaofeng; Liu Shiyuan

    2012-01-01

    Objectives: To compare the diagnostic performances of computed tomography (CT), magnetic resonance (MR) imaging, and positron emission tomography (PET or PET/CT) for detection of metastatic lymph nodes in patients with ovarian cancer. Methods: Relevant studies were identified with MEDLINE and EMBASE from January 1990 to July 2010. We estimated the weighted summary sensitivities, specificities, OR (odds ratio), and summary receiver operating characteristic (sROC) curves of each imaging technique and conducted pair-wise comparisons using the two-sample Z-test. Meta-regression, subgroup analysis, and funnel plots were also performed to explain the between-study heterogeneity. Results: Eighteen eligible studies were included, with a total of 882 patients. PET or PET/CT was a more accurate modality (sensitivity, 73.2%; specificity, 96.7%; OR [odds ratio], 90.32). No significant difference was detected between CT (sensitivity, 42.6%; specificity, 95.0%; OR, 19.87) and MR imaging (sensitivity, 54.7%; specificity, 88.3%; OR, 12.38). Meta-regression analyses and subgroup analyses revealed no statistical difference. Funnel plots with marked asymmetry suggested a publication bias. Conclusion: FDG-PET or FDG-PET/CT is more accurate than CT and MR imaging in the detection of lymph node metastasis in patients with ovarian cancer.

  10. Fluorodeoxyglucose-positron emission tomography/computed tomography imaging features of colloid adenocarcinoma of the lung: a case report.

    Science.gov (United States)

    Wang, ZhenGuang; Yu, MingMing; Chen, YueHua; Kong, Yan

    2017-07-27

    Colloid adenocarcinoma of the lung is a rare subtype of variants of invasive adenocarcinomas. We report the appearance of this unusual entity on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. A 60-year-old man of Chinese Han nationality coughed with a little white sputum for 1 month. Chest computed tomography showed multiple bilateral subpleural nodules and plaques accompanied by air bronchograms, which were most concentrated in the lower lobe of his right lung. Positron emission tomography indicated increased radioactivity uptake with a maximum standardized uptake value of 3.5. Positron emission tomography/computed tomography showed a soft tissue density lesion in his left adrenal gland with a maximum standardized uptake value of 4.1. The positron emission tomography/computed tomography appearance suggested a primary colloid adenocarcinoma in the lower lobe of his right lung accompanied by intrapulmonary and left adrenal gland metastases. The diagnostic rate of colloid adenocarcinoma can be increased by combining the anatomic and metabolic information of lesions. The advantage of positron emission tomography/computed tomography in the diagnosis of colloid adenocarcinoma, as with other cancers, is the ability to locate extrapulmonary disease, facilitating clinical staging.

  11. Positron depth profiling

    International Nuclear Information System (INIS)

    Coleman, P.

    2001-01-01

    Wide-ranging studies of defects below the surface of semiconductor structures have been performed at the University of Bath, in collaboration with the University of Surrey Centre for Ion Beam Applications and with members of research teams at a number of UK universities. Positron implantation has been used in conjunction with other spectroscopies such as RBS-channeling and SIMS, and electrical characterisation methods. Research has ranged from the development of a positron-based technique to monitor the in situ annealing of near-surface open-volume defects to the provision of information on defects to comprehensive diagnostic investigations of specific device structures. We have studied Si primarily but not exclusively; e.g., we have investigated ion-implanted SiC and SiO 2 /GaAs structures. Of particular interest are the applications of positron annihilation spectroscopy to ion-implanted semiconductors, where by linking ion dose to vacancy-type defect concentration one can obtain information on ion dose and uniformity with a sensitivity not achievable by standard techniques. A compact, user-friendly positron beam system is currently being developed at Bath, in collaboration with SCRIBA, with the intention of application in an industrial environment. (orig.)

  12. Combined echo offset (Dixon) and line volume chemical shift imaging as a clinical imaging protocol

    International Nuclear Information System (INIS)

    Listerud, J.; Chan, T.; Lenkinski, R.E.; Kressel, H.Y.; Chao, P.W.

    1989-01-01

    The authors have studied the sensitivity and specificity of the line-volume chemical-shift imaging (CSI) method as compared with the Dixon method they have recently implemented on a Signa, which supports a variety of options. Potential sources or error for the Dixon method include line broadening due to susceptibility, field inhomogeneity, and errors form olefinic resonances associated with fat, which behave like water in the Dixon regime. The authors investigate whether a combined Dixon/line-volume CSI method could be used to improve the placement of the line volume and to provide higher sensitivity and specificity than does the Dixon method alone

  13. Evaluation of drug penetration into the brain: a double study by in vivo imaging with positron emission tomography and using an in vitro model of the human blood-brain barrier

    International Nuclear Information System (INIS)

    Josserand, V.; Jego, B.; Duconge, F.; Tavitian, B.; Pelerin, H.; Ezan, E.; Mabondzo, A.; Bruin, B. de; Kuhnast, B.; Dolle, F.

    2004-01-01

    The blood brain barrier (BBB) passage of a set of radiopharmaceuticals candidates was measured both in vitro using a newly developed co-culture based model of human BBB and in vivo by positron emission tomography (PET). MATERIAL and METHODS: As an in vitro BBB model, a co-culture of primary human brain endothelial cells and primary human astrocytes was used. Dynamic PET studies were performed simultaneously on 4 anesthetized rats with the EXACT HR+ camera. Volumes of interest (VOI) were manually defined on the tomographic images in order to determine the pharmacokinetics of the compounds in various organs, including brain. The in vivo input function was measured by radioactivity counting of arterial blood samples. A two-compartment model analysis was used to compute the exchanging rate constants between blood and brain and to calculate the in vivo permeability coefficient. RESULTS: There was an excellent correlation between the in vitro and in vivo permeability coefficients (r = 0.99; p < 0.001) as well as between the in vivo distribution volume and the in vitro efflux /influx permeability coefficients ratio (r = 0.76). CONCLUSION: This double study evidenced a close relationship between the in vitro and the in vivo approaches for the assessment of the BBB passage. Hence, small animal PET imaging appeared suitable to screen drugs or radiopharmaceuticals candidates aimed at cerebral targets directly in the real-life situation in vivo. (author)

  14. (-)-N-[11C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D2 receptors

    International Nuclear Information System (INIS)

    Hwang, Dah-Ren; Kegeles, Lawrence S.; Laruelle, Marc

    2000-01-01

    Imaging neuroreceptors with radiolabeled agonists might provide valuable information on the in vivo agonist affinity states of receptors of interest. We report here the radiosynthesis, biodistribution in rodents, and imaging studies in baboons of [ 11 C]-labeled (-)-N-propyl-norapomorphine [(-)-NPA]. (-)-[ 11 C]NPA was prepared by reacting norapomorphine with [ 11 C]propionyl chloride and a lithium aluminum hydride reduction. [ 11 C]Propionyl chloride was prepared by reacting [ 11 C]CO 2 with ethylmagnesium bromide, followed by reacting with phthaloyl chloride. The radiochemical yield of (-)-[ 11 C]NPA was 2.5% at end of synthesis (EOS), and the synthesis time was 60 min. The specific activity was 1700±1900 mCi/μmol ( N=7; ranged 110-5200 mCi/μmol at EOS). Rodent biodistribution studies showed high uptake of [ 11 C](-)-NPA in D 2 receptor-rich areas, and the striatum/cerebellum ratios were 1.7, 3.4, and 4.4 at 5 min, 30 min, and 60 min postinjection, respectively. Pretreating the animals with haloperidol (1 mg/kg) decreased the striatum/cerebellum ratio at 30 min postinjection to 1.3. (-)-[ 11 C]NPA was also evaluated via baboon positron emission tomography (PET) studies. Under control conditions ( N=4), rapid uptake of the tracer was observed and the striatum/cerebellum ratio reached 2.86±0.15 at 45 min postinjection. Following haloperidol pretreatment (0.2 mg/kg IV), the striatum/cerebellum ratio was 1.29 at 45 min postinjection. The result demonstrated the existence of specific binding of this new tracer to the D 2 receptor. To our knowledge, the current finding of a striatum/cerebellum ratio of 2.8 in baboon was the highest reported with a radiolabeled D 2 agonist. (-)-[ 11 C]NPA is a promising new D 2 agonist PET tracer for probing D 2 receptors in vivo using PET

  15. Noninvasive Multimodality Imaging of the Tumor Microenvironment: Registered Dynamic Magnetic Resonance Imaging and Positron Emission Tomography Studies of a Preclinical Tumor Model of Tumor Hypoxia

    Directory of Open Access Journals (Sweden)

    HyungJoon Cho

    2009-03-01

    Full Text Available In vivo knowledge of the spatial distribution of viable, necrotic, and hypoxic areas can provide prognostic information about the risk of developing metastases and regional radiation sensitivity and may be used potentially for localized dose escalation in radiation treatment. In this study, multimodality in vivo magnetic resonance imaging (MRI and positron emission tomography (PET imaging using stereotactic fiduciary markers in the Dunning R3327AT prostate tumor were performed, focusing on the relationship between dynamic contrast-enhanced (DCE MRI using Magnevist (Gd-DTPA and dynamic 18F-fluoromisonidazole (18F-Fmiso PET. The noninvasive measurements were verified using tumor tissue sections stained for hematoxylin/eosin and pimonidazole. To further validate the relationship between 18F-Fmiso and pimonidazole uptake, 18F digital autoradiography was performed on a selected tumor and compared with the corresponding pimonidazole-stained slices. The comparison of Akep values (kep = rate constant of movement of Gd-DTPA between the interstitial space and plasma and A = amplitude in the two-compartment model (Hoffmann U, Brix G, Knopp MV, Hess T and Lorenz WJ (1995. Magn Reson Med 33, 506– 514 derived from DCE-MRI studies and from early 18F-Fmiso uptake PET studies showed that tumor vasculature is a major determinant of early 18F-Fmiso uptake. A negative correlation between the spatial map of Akep and the slope map of late (last 1 hour of the dynamic PET scan 18F-Fmiso uptake was observed. The relationships between DCE-MRI and hematoxylin/eosin slices and between 18F-Fmiso PET and pimonidazole slices confirm the validity of MRI/PET measurements to image the tumor microenvironment and to identify regions of tumor necrosis, hypoxia, and well-perfused tissue.

  16. Three-Dimensional Image Fusion of 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography and Contrast-Enhanced Computed Tomography for Computer-Assisted Planning of Maxillectomy of Recurrent Maxillary Squamous Cell Carcinoma and Defect Reconstruction.

    Science.gov (United States)

    Yu, Yao; Zhang, Wen-Bo; Liu, Xiao-Jing; Guo, Chuan-Bin; Yu, Guang-Yan; Peng, Xin

    2017-06-01

    The purpose of this study was to describe new technology assisted by 3-dimensional (3D) image fusion of 18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) and contrast-enhanced CT (CECT) for computer planning of a maxillectomy of recurrent maxillary squamous cell carcinoma and defect reconstruction. Treatment of recurrent maxillary squamous cell carcinoma usually includes tumor resection and free flap reconstruction. FDG-PET/CT provided images of regions of abnormal glucose uptake and thus showed metabolic tumor volume to guide tumor resection. CECT data were used to create 3D reconstructed images of vessels to show the vascular diameters and locations, so that the most suitable vein and artery could be selected during anastomosis of the free flap. The data from preoperative maxillofacial CECT scans and FDG-PET/CT imaging were imported into the navigation system (iPlan 3.0; Brainlab, Feldkirchen, Germany). Three-dimensional image fusion between FDG-PET/CT and CECT was accomplished using Brainlab software according to the position of the 2 skulls simulated in the CECT image and PET/CT image, respectively. After verification of the image fusion accuracy, the 3D reconstruction images of the metabolic tumor, vessels, and other critical structures could be visualized within the same coordinate system. These sagittal, coronal, axial, and 3D reconstruction images were used to determine the virtual osteotomy sites and reconstruction plan, which was provided to the surgeon and used for surgical navigation. The average shift of the 3D image fusion between FDG-PET/CT and CECT was less than 1 mm. This technique, by clearly showing the metabolic tumor volume and the most suitable vessels for anastomosis, facilitated resection and reconstruction of recurrent maxillary squamous cell carcinoma. We used 3D image fusion of FDG-PET/CT and CECT to successfully accomplish resection and reconstruction of recurrent maxillary squamous cell carcinoma

  17. Automated force volume image processing for biological samples.

    Directory of Open Access Journals (Sweden)

    Pavel Polyakov

    2011-04-01

    Full Text Available Atomic force microscopy (AFM has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image.

  18. Improved positron emission tomography imaging of glioblastoma cancer using novel 68Ga-labeled peptides targeting the urokinase-type plasminogen activator receptor (uPAR)

    DEFF Research Database (Denmark)

    Loft, Mathias Dyrberg; Sun, Yao; Liu, Changhao

    2017-01-01

    for non-invasive positron emission tomography (PET) imaging of uPAR. Despite the optimal physical properties of68Ga for peptide-based PET imaging, low tumor uptakes have previously been reported using68Ga-labeled AE105-NH2-based tracers. In an attempt to optimize the tumor uptake, we developed three novel...... to the non-spacer version, NODAGA-AE105-NH2. Following radiolabeling with68Ga, we evaluated the in vitro and in vivo performance in mice bearing subcutaneous tumors derived from the uPAR-expressing human GBM cell line U87MG. In vivo PET/CT imaging showed that introduction of PEG spacers more than doubled...... confirmed the improved tumor uptakes of the PEG-modified tracers.68Ga-NODAGA-PEG8-AE105-NH2is thus a promising candidate for human translation for PET imaging of GBM....

  19. Preclinical and clinical evaluation of O-[{sup 11}C]methyl-L-tyrosine for tumor imaging by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan)]. E-mail: ishiwata@pet.tmig.or.jp; Tsukada, Hideo [Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita 434-8601 (Japan); Kubota, Kazuo [Department of Radiology, Division of Nuclear Medicine, International Medical Center of Japan, Shinjuku-ku, Tokyo 162-8655 (Japan); Nariai, Tadashi [Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519 (Japan); Harada, Norihiro [Department of Radiology, Division of Nuclear Medicine, International Medical Center of Japan, Shinjuku-ku, Tokyo 162-8655 (Japan); Kawamura, Kazunori [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); SHI Accelerator Service Ltd., Shinagawa-ku, Tokyo 141-8686 (Japan); Kimura, Yuichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); Oda, Keiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); Iwata, Ren [CYRIC, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan)

    2005-04-01

    We performed preclinical and clinical studies of O-[{sup 11}C]methyl-L-tyrosine, a potential tracer for imaging amino acid transport of tumors by positron emission tomography (PET). Examinations of the radiation-absorbed dose by O-[{sup 11}C]methyl-L-tyrosine and the acute toxicity and mutagenicity of O-methyl-L-tyrosine showed suitability of the tracer for clinical use. The whole-body imaging of monkeys and healthy humans by PET showed low uptake of O-[{sup 11}C]methyl-L-tyrosine in all normal organs except for the urinary track and bladder, suggesting that the O-[{sup 11}C]methyl-L-tyrosine PET has the potential for tumor imaging in the whole-body. Finally, the brain tumor imaging was preliminarily demonstrated.

  20. Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets

    DEFF Research Database (Denmark)

    Andersen, Julie B; Henning, William S; Lindberg, Ulrich

    2015-01-01

    Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic-ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous (15)O-water positron emission tomography (PET) and single TI pulsed...

  1. A simple algorithm for subregional striatal uptake analysis with partial volume correction in dopaminergic PET imaging

    International Nuclear Information System (INIS)

    Lue Kunhan; Lin Hsinhon; Chuang Kehshih; Kao Chihhao, K.; Hsieh Hungjen; Liu Shuhsin

    2014-01-01

    In positron emission tomography (PET) of the dopaminergic system, quantitative measurements of nigrostriatal dopamine function are useful for differential diagnosis. A subregional analysis of striatal uptake enables the diagnostic performance to be more powerful. However, the partial volume effect (PVE) induces an underestimation of the true radioactivity concentration in small structures. This work proposes a simple algorithm for subregional analysis of striatal uptake with partial volume correction (PVC) in dopaminergic PET imaging. The PVC algorithm analyzes the separate striatal subregions and takes into account the PVE based on the recovery coefficient (RC). The RC is defined as the ratio of the PVE-uncorrected to PVE-corrected radioactivity concentration, and is derived from a combination of the traditional volume of interest (VOI) analysis and the large VOI technique. The clinical studies, comprising 11 patients with Parkinson's disease (PD) and 6 healthy subjects, were used to assess the impact of PVC on the quantitative measurements. Simulations on a numerical phantom that mimicked realistic healthy and neurodegenerative situations were used to evaluate the performance of the proposed PVC algorithm. In both the clinical and the simulation studies, the striatal-to-occipital ratio (SOR) values for the entire striatum and its subregions were calculated with and without PVC. In the clinical studies, the SOR values in each structure (caudate, anterior putamen, posterior putamen, putamen, and striatum) were significantly higher by using PVC in contrast to those without. Among the PD patients, the SOR values in each structure and quantitative disease severity ratings were shown to be significantly related only when PVC was used. For the simulation studies, the average absolute percentage error of the SOR estimates before and after PVC were 22.74% and 1.54% in the healthy situation, respectively; those in the neurodegenerative situation were 20.69% and 2

  2. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  3. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  4. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  5. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    International Nuclear Information System (INIS)

    Bauer, J; Unholtz, D; Kurz, C; Parodi, K

    2013-01-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β + activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β + activity induced in the investigated

  6. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    Science.gov (United States)

    Bauer, J.; Unholtz, D.; Kurz, C.; Parodi, K.

    2013-08-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β+ activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β+ activity induced in the investigated

  7. Planned Positron Factory project

    International Nuclear Information System (INIS)

    Okada, Sohei

    1990-01-01

    The Japan Atomic Energy Research Institute, JAERI, has started, drafting a construction plan for the 'Positron Factory', in which intense energy-controllable monoenergetic positron beams are produced from pair-production reactions caused by high-energy electrons from a linac. The JAERI organized a planning committee to provide a basic picture for the Positron Factory. This article presents an overview of the interactions of positrons, intense positron sources and the research program and facilities planned for the project. The interactions of positrons and intense positron sources are discussed focusing on major characteristics of positrons in different energy ranges. The research program for the Positron Factory is then outlined, focusing on advanced positron annihilation techniques, positron spectroscopy (diffraction, scattering, channeling, microscopy), basic positron physics (exotic particle science), and positron beam technology. Discussion is also made of facilities required for the Positron Factory. (N.K.)

  8. Fundamental limits of positron emission mammography

    International Nuclear Information System (INIS)

    Moses, William W.; Qi, Jinyi

    2001-01-01

    We explore the causes of performance limitation in positron emission mammography cameras. We compare two basic camera geometries containing the same volume of 511 keV photon detectors, one with a parallel plane geometry and another with a rectangular geometry. We find that both geometries have similar performance for the phantom imaged (in Monte Carlo simulation), even though the solid angle coverage of the rectangular camera is about 50 percent higher than the parallel plane camera. The reconstruction algorithm used significantly affects the resulting image; iterative methods significantly outperform the commonly used focal plane tomography. Finally, the characteristics of the tumor itself, specifically the absolute amount of radiotracer taken up by the tumor, will significantly affect the imaging performance

  9. Positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lindback, Stig [GEMS PET Systems AB, Uppsala (Sweden)

    1995-07-15

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body.

  10. Positron emission tomography

    International Nuclear Information System (INIS)

    Lindback, Stig

    1995-01-01

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body

  11. Simulation-based partial volume correction for dopaminergic PET imaging. Impact of segmentation accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Ye; Winz, Oliver H. [University Hospital Aachen (Germany). Dept. of Nuclear Medicine; Vernaleken, Ingo [University Hospital Aachen (Germany). Dept. of Psychiatry, Psychotherapy and Psychosomatics; Goedicke, Andreas [University Hospital Aachen (Germany). Dept. of Nuclear Medicine; High Tech Campus, Philips Research Lab., Eindhoven (Netherlands); Mottaghy, Felix M. [University Hospital Aachen (Germany). Dept. of Nuclear Medicine; Maastricht University Medical Center (Netherlands). Dept. of Nuclear Medicine; Rota Kops, Elena [Forschungszentrum Juelich (Germany). Inst. of Neuroscience and Medicine-4

    2015-07-01

    Partial volume correction (PVC) is an essential step for quantitative positron emission tomography (PET). In the present study, PVELab, a freely available software, is evaluated for PVC in {sup 18}F-FDOPA brain-PET, with a special focus on the accuracy degradation introduced by various MR-based segmentation approaches. Methods Four PVC algorithms (M-PVC; MG-PVC; mMG-PVC; and R-PVC) were analyzed on simulated {sup 18}F-FDOPA brain-PET images. MR image segmentation was carried out using FSL (FMRIB Software Library) and SPM (Statistical Parametric Mapping) packages, including additional adaptation for subcortical regions (SPM{sub L}). Different PVC and segmentation combinations were compared with respect to deviations in regional activity values and time-activity curves (TACs) of the occipital cortex (OCC), caudate nucleus (CN), and putamen (PUT). Additionally, the PVC impact on the determination of the influx constant (K{sub i}) was assessed. Results Main differences between tissue-maps returned by three segmentation algorithms were found in the subcortical region, especially at PUT. Average misclassification errors in combination with volume reduction was found to be lowest for SPM{sub L} (PUT < 30%) and highest for FSL (PUT > 70%). Accurate recovery of activity data at OCC is achieved by M-PVC (apparent recovery coefficient varies between 0.99 and 1.10). The other three evaluated PVC algorithms have demonstrated to be more suitable for subcortical regions with MG-PVC and mMG-PVC being less prone to the largest tissue misclassification error simulated in this study. Except for M-PVC, quantification accuracy of K{sub i} for CN and PUT was clearly improved by PVC. Conclusions The regional activity value of PUT was appreciably overcorrected by most of the PVC approaches employing FSL or SPM segmentation, revealing the importance of accurate MR image segmentation for the presented PVC framework. The selection of a PVC approach should be adapted to the anatomical

  12. 11C-acetate for positron emission tomography imaging of clinical stage IA lung adenocarcinoma. Comparison with 18F-fluorodeoxyglucose for imaging and evaluation of tumor aggressiveness

    International Nuclear Information System (INIS)

    Shibata, Hidekatsu; Nomori, Hiroaki; Uno, Kimiichi

    2009-01-01

    To determine the usefulness of positron emission tomography (PET) with 11 C-acetate (AC) for imaging lung adenocarcinoma and evaluating its tumor aggressiveness, AC- and 18 F-fluorodeoxyglucose (FDG)-PET were compared. One hundred and sixty-nine adenocarcinomas with clinical stage IA and 53 benign nodules were examined by both AC- and FDG-PET before surgery. The sensitivity and specificity for discriminating benign/adenocarcinoma were compared between AC- and FDG-PET. The AC and FDG uptakes were examined to determine the relationship with tumor aggressiveness, id est (i.e.), pathological tumor stage, lymphatic, vascular, or pleural involvement, and proliferative activity determined by Ki-67 staining score. While the sensitivity of AC-PET was significantly higher than FDG-PET for bronchioloalveolar carcinoma (BAC) and well-differentiated (W/D) adenocarcinoma (p<0.001 and 0.006, respectively), there was no significant difference for moderately or poorly differentiated adenocarcinoma. The specificity was not different between them. While FDG uptakes were significantly higher in tumors with pathological advanced stages or those with lymphatic, vascular and/or pleural involvements than in tumors with pathological stage IA or those without these tumor involvements (p=0.04 to p<0.001), AC uptake did not show significant differences between the respective sub-groups except according to the tumor stage. While both AC and FDG uptakes showed a significant correlation with Ki-67 staining scores (p=0.03 and p<0.001, respectively), the correlation coefficient of former was lower than that of latter (p=0.07). While AC-PET can image BAC and W/D adenocarcinoma with a higher sensitivity than FDG-PET, it cannot evaluate tumor aggressiveness of clinical stage IA lung adenocarcinoma as well as FDG-PET. (author)

  13. Diffusion tensor imaging for target volume definition in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Berberat, Jatta; Remonda, Luca [Cantonal Hospital, Department of Neuro-radiology, Aarau (Switzerland); McNamara, Jane; Rogers, Susanne [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); Bodis, Stephan [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); University Hospital, Department of Radiation Oncology, Zurich (Switzerland)

    2014-10-15

    Diffusion tensor imaging (DTI) is an MR-based technique that may better detect the peritumoural region than MRI. Our aim was to explore the feasibility of using DTI for target volume delineation in glioblastoma patients. MR tensor tracts and maps of the isotropic (p) and anisotropic (q) components of water diffusion were coregistered with CT in 13 glioblastoma patients. An in-house image processing program was used to analyse water diffusion in each voxel of interest in the region of the tumour. Tumour infiltration was mapped according to validated criteria and contralateral normal brain was used as an internal control. A clinical target volume (CTV) was generated based on the T{sub 1}-weighted image obtained using contrast agent (T{sub 1Gd}), tractography and the infiltration map. This was compared to a conventional T{sub 2}-weighted CTV (T{sub 2}-w CTV). Definition of a diffusion-based CTV that included the adjacent white matter tracts proved highly feasible. A statistically significant difference was detected between the DTI-CTV and T{sub 2}-w CTV volumes (p < 0.005, t = 3.480). As the DTI-CTVs were smaller than the T{sub 2}-w CTVs (tumour plus peritumoural oedema), the pq maps were not simply detecting oedema. Compared to the clinical planning target volume (PTV), the DTI-PTV showed a trend towards volume reduction. These diffusion-based volumes were smaller than conventional volumes, yet still included sites of tumour recurrence. Extending the CTV along the abnormal tensor tracts in order to preserve coverage of the likely routes of dissemination, whilst sparing uninvolved brain, is a rational approach to individualising radiotherapy planning for glioblastoma patients. (orig.) [German] Die Diffusions-Tensor-Bildgebung (DTI) ist eine MR-Technik, die dank der Erfassung des peritumoralen Bereichs eine Verbesserung bezueglich MRI bringt. Unser Ziel war die Pruefung der Machbarkeit der Verwendung der DTI fuer die Zielvolumenabgrenzung fuer Patienten mit

  14. Prognostic value of vasodilator response using rubidium-82 positron emission tomography myocardial perfusion imaging in patients with coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Arasaratnam, Punitha; Sadreddini, Masoud; Yam, Yeung; Kansal, Vinay; Beanlands, Rob S. [University of Ottawa Heart Institute, Canada, Department of Medicine (Cardiology), Ottawa, ON (Canada); Dorbala, Sharmila; Di Carli, Marcelo F. [Brigham and Women' s Hospital, Division of Cardiovascular Medicine and Division of Nuclear Medicine, Boston, MA (United States); Merhige, Michael E. [Niagara Falls Memorial Medical Center, Departments of Cardiology, Internal Medicine, and Nuclear Medicine, Buffalo, NY (United States); Williams, Brent A. [Geisinger Medical Center, Department of Center for Health Research, Danville, PA (United States); Veledar, Emir; Shaw, Leslee J. [Emory University School of Medicine, Department of Medicine, Atlanta, GA (United States); Min, James K. [Weill Cornell Medical College, Department of Radiology and Department of Imaging, New York, NY (United States); Chen, Li [University of Ottawa Heart Institute, Cardiovascular Research Methods Centre, Ottawa, ON (Canada); Ruddy, Terrence D.; Chow, Benjamin J.W. [University of Ottawa Heart Institute, Canada, Department of Medicine (Cardiology), Ottawa, ON (Canada); University of Ottawa, Department of Radiology, Ottawa, ON (Canada); Germano, Guido; Berman, Daniel S. [Cedars-Sinai Medical Center, Department of Imaging, Los Angeles, CA (United States)

    2018-04-15

    Prognostic value of positron emission tomography (PET) myocardial perfusion imaging (MPI) is well established. There is paucity of data on how the prognostic value of PET relates to the hemodynamic response to vasodilator stress. We hypothesize that inadequate hemodynamic response will affect the prognostic value of PET MPI. Using a multicenter rubidium (Rb)-82 PET registry, 3406 patients who underwent a clinically indicated rest/stress PET MPI with a vasodilator agent were analyzed. Patients were categorized as, ''responders'' [increase in heart rate ≥ 10 beats per minute (bpm) and decrease in systolic blood pressure (SBP) ≥10 mmHg], ''partial responders'' (either a change in HR or SBP), and ''non-responders'' (no change in HR or SBP). Primary outcome was all-cause death (ACD), and secondary outcome was cardiac death (CD). Ischemic burden was measured using summed stress score (SSS) and % left ventricular (LV) ischemia. After a median follow-up of 1.68 years (interquartile range = 1.17- 2.55), there were 7.9% (n = 270) ACD and 2.6% (n = 54) CD. Responders with a normal PET MPI had an annualized event rate (AER) of 1.22% (SSS of 0-3) and 1.58% (% LV ischemia = 0). Partial and non-responders had higher AER with worsening levels of ischemic burden. In the presence of severe SSS ≥12 and LV ischemia of ≥10%, partial responders had an AER of 10.79% and 10.36%, compared to non-responders with an AER of 19.4% and 12.43%, respectively. Patient classification was improved when SSS was added to a model containing clinical variables (NRI: 42%, p < 0.001) and responder category was added (NRI: 61%, p < 0.001). The model including clinical variables, SSS and hemodynamic response has good discrimination ability (Harrell C statistics: 0.77 [0.74-0.80]). Hemodynamic response during a vasodilator Rb-82 PET MPI is predictive of ACD. Partial and non-responders may require additional risk stratification leading to

  15. Positron imaging studies

    International Nuclear Information System (INIS)

    Budinger, T.F.; Ganz, E.; Moyer, B.R.; Yano, Y.; Mathis, C.A.; Friedland, R.P.

    1982-01-01

    Several methods for the noninvasive evaluation of the metabolism and blood perfusion of brain and heart are reviewed. Heart muscle perfusion can be followed by measuring the accumulation of rubidium-82 simultaneously with the measurement of the arterial input. Deoxyglucose labelled with fluorine-18 was used to study the role of insulin in deoxyglucose accumulation

  16. Time-of-flight method for positron tomographic imaging and state-of-the-art of detector technology for emission tomography

    International Nuclear Information System (INIS)

    Allemand, R.; Campagnolo, R.; Garderet, P.; Gariod, R.; Laval, M.; Moszynski, M.; Tournier, E.; Vacher, J.

    1981-10-01

    Positron imaging is essentially a method for studying dynamic phenomena and positron emitters are characterized by a short life which allows to inject a high activity. This means that a high counting-rate capability is a major feature of a P.C.T.; furthermore a high resolving time permits to reduce the random coincidence events which yield a low spatial frequency back-ground reducing the contrast of the image and introducing an error for quantitative measurements. For these points of view, CsF appears to be the most suitable scintillator. Its fast light emission allows to reach a time-of-flight information which improves the signal to noise ratio of the image. That advantage is a function of the object size and of the T.O.F. accuracy. Now, a 500 psec time resolution (FWHM) seems to be a realistic characteristics for an operational machine. The comparison between the conventional method and the T.O.F. technique has been expressed in terms of sensitivity gain which is the ratio of the number of events needed to obtain the same signal to noise ratio. A sensitivity gain of 4 has been theoretically estimated with a 500 psec timing and for a 450 mm diameter phantom. This evaluation seems to be in a good ageement with the first experimental results

  17. Development of positron emission tomography imaging by 64Cu-labeled Fab for detecting ERC/mesothelin in a mesothelioma mouse model.

    Science.gov (United States)

    Yoshida, Chisato; Sogawa, Chizuru; Tsuji, Atsushi B; Sudo, Hitomi; Sugyo, Aya; Uehara, Tomoya; Hino, Okio; Yoshii, Yukie; Fujibayashi, Yasuhisa; Fukumura, Toshimitsu; Koizumi, Mitsuru; Arano, Yasushi; Saga, Tsuneo

    2010-05-01

    Malignant mesothelioma is a highly aggressive form of cancer. Curative surgery is the only effective therapy for mesothelioma, and therefore early diagnosis is important. However, early diagnosis is difficult using current diagnostic imaging techniques, and a new imaging method for early diagnosis is urgently required. We evaluated the affinity of radiolabeled monoclonal antibodies to the C-terminal fragment of ERC/mesothelin for this purpose. In-labeled or I-labeled IgG against C-terminal fragment of ERC and its Fab fragment were evaluated in vitro by cell binding, competitive inhibition, and cellular internalization assays, and in vivo by biodistribution in mice bearing ERC-expressing tumors. Next, the Fab fragment was labeled with the positron emitter Cu and evaluated by positron emission tomography (PET). Radiolabeled IgG and Fab showed specific binding to ERC-expressing mesothelioma cells with high affinity. Both radiolabeled IgG and Fab internalized into cells after binding to ERC on the cell surface. In-labeled IgG accumulated in ERC-expressing tumors and resulted in a moderate tumor-to-blood ratio at 4 days after injection. Furthermore, PET using Cu-labeled Fab visualized the tumor at 6 h after injection. Cu-labeled Fab can be useful for ERC-specific PET imaging, and can thus facilitate improved diagnosis of patients with early-stage mesothelioma.

  18. Positron probing of open vacancy volume of phosphorus-vacancy complexes in float-zone n-type silicon irradiated by 0.9-MeV electrons and by 15-MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, Nikolay [Department of Physics, Martin Luther University Halle (Germany); Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Institute of Ion-Plasma and Laser Technologies (Institute of Electronics), Tashkent (Uzbekistan); Emtsev, Vadim; Oganesyan, Gagik [Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Elsayed, Mohamed [Department of Physics, Martin Luther University Halle (Germany); Faculty of Science, Department of Physics, Minia University (Egypt); Krause-Rehberg, Reinhard [Department of Physics, Martin Luther University Halle (Germany); Abrosimov, Nikolay [Leibniz Institute for Crystal Growth,