WorldWideScience

Sample records for positron fraction combined

  1. What can we learn from a sharply falling positron fraction?

    Directory of Open Access Journals (Sweden)

    Delahaye Timur

    2015-01-01

    Full Text Available Recent results from the AMS-02 data have confirmed that the cosmic ray positron fraction increases with energy between 10 and 200 GeV. This quantity should not exceed 50%, and it is hence expected that it will either converge towards 50% or fall. We study the possibility that future data may show the positron fraction dropping down abruptly to the level expected with only secondary production, and forecast the implications of such a feature in term of possible injection mechanisms that include both Dark Matter and pulsars.

  2. Latest AMS Results: The Positron Fraction and the p-bar/p Ratio

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    A precision measurement by AMS of the positron fraction in primary cosmic rays is presented. The results show that at 275±32 GeV the positron fraction no longer increases with energy. The current status of the anti-proton analysis is also presented.

  3. Temperature dependence of the fraction of re-emitted positrons, the positron work function, and the positronium fraction for Cu(III)+S

    International Nuclear Information System (INIS)

    Schultz, P.J.; Lynn, K.G.

    1982-01-01

    A beam of 1 keV positrons incident on a Cu(111)+S surface has been used to study the dependence on temperature of the positron work function (phi/sub +/), the yield of re-emitted positrons (Y) and of the positronium (Ps) fraction. A positive dependence of the slow-positron yield on temperature is found which is attributed in part to a reduction in the magnitude of phi/sub +/ (approx. 25%) at 50 K relative to its value at 300 K. A similar, though weaker, positive dependence on temperature was seen for the Ps fraction down to 40 K. We present a suggestion for the apparent lack of reflection

  4. Faraday rotation in an electron-positron plasma containing a fraction of ions

    International Nuclear Information System (INIS)

    Hall, J.O.; Shukla, P.K.

    2005-01-01

    The Faraday rotation in a magnetized electron-positron plasma containing a fraction of ions is investigated by using a multifluid description. It is shown that the Faraday rotation for circularly polarized electromagnetic waves with frequencies much larger than the electron/positron plasma and electron gyrofrequencies is proportional to the ion number density and the magnitude of the ambient magnetic-field strength. The results are relevant for astrophysical observations and diagnostics of laboratory electron-positron-ion magnetoplasmas

  5. Combined analysis of the S and W parameters obtained from positron annihilation spectra

    International Nuclear Information System (INIS)

    Fedorov, A.V.; Veen, A. van; Schut, H.

    2001-01-01

    Variable energy positron beam analysis (PBA) has proven to be a very useful and powerful technique for the study of nanosize layer structures and point defects in various materials. Analysis of the positron annihilation spectra is usually performed with the help of the S and W parameters. By mapping the experimental points in the S-W plane the cluster points characteristic for the layers or defects can be derived. We have developed the program SWAN (S-W analysis) to enable to trace these cluster points and to calculate the fractions of the positrons annihilated at the layers or defects ascribed to the cluster points. In combination with the known computer code VEPFIT, program SWAN was successfully used for analyzing the S and W- curves for a number of samples. As an example, the analysis of SIMOX sample measured by PBA is presented. The program runs on a PC, has a user-friendly interface and is available for distribution. (orig.)

  6. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    CERN Document Server

    Aguilar, M; Allaby, James V; Alpat, B; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Blasko, S; Bölla, G; Boschini, M; Bourquin, M; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Cardano, F; Casadei, D; Casaus, J; Castellini, G; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Cho, K; Choi, M J; Choi, Y Y; Cindolo, F; Commichau, V; Contin, A; Cortina, E; Cristinziani, M; Dai, T S; Delgado, C; Difalco, S; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gast, H; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Hungerford, W; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kim, D H; Kim, G N; Kim, K S; Kim, M Y; Klimentov, A; Kossakowski, R; Kounine, A; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Lanciotti, E; Laurenti, G; Lebedev, A; Lechanoine-Leluc, C; Lee, M W; Lee, S C; Levi, G; Liu, C L; Liu, H T; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mujunen, A; Oliva, A; Olzem, J; Palmonari, F; Park, H B; Park, W H; Pauluzzi, M; Pauss, F; Perrin, E; Pesci, A; Pevsner, A; Pilo, F; Pimenta, M; Plyaskin, V; Pozhidaev, V; Pohl, M; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Ro, S; Röser, U; Rossin, C; Sagdeev, R; Santos, D; Sartorelli, G; Sbarra, C; Schael, S; Schultzvon Dratzig, A; Schwering, G; Seo, E S; Shin, J W; Shoumilov, E; Shoutko, V; Siedenburg, T; Siedling, R; Son, D; Song, T; Spinella, F; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Trumper, J; Ulbricht, J; Urpo, S; Valtonen, E; Vandenhirtz, J; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, G; Vite, D; Von Gunten, H; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wiik, K; Williams, C; Wu, S X; Xia, P C; Xu, S; Yan, J L; Yan, L G; Yang, C G; Yang, J; Yang, M; Ye, S W; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhou, Y; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P

    2007-01-01

    A measurement of the cosmic ray positron fraction e+/(e+ + e-) in the energy range of 1-30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 10^6 is reached by identifying converted bremsstrahlung photons emitted from positrons.

  7. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    International Nuclear Information System (INIS)

    Aguilar, M.; Alcaraz, J.; Allaby, J.

    2007-01-01

    A measurement of the cosmic ray positron fraction e + /(e + +e - ) in the energy range of 1-30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 10 6 is reached by identifying converted bremsstrahlung photons emitted from positrons

  8. The rise in the positron fraction. Distance limits on positron point sources from cosmic ray arrival directions and diffuse gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Gebauer, Iris; Bentele, Rosemarie [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-07-01

    The rise in the positron fraction as observed by AMS and previously by PAMELA, cannot be explained by the standard paradigm of cosmic ray transport in which positrons are produced by cosmic-ray-gas interactions in the interstellar medium. Possible explanations are pulsars, which produce energetic electron-positron pairs in their rotating magnetic fields, or the annihilation of dark matter. Here we assume that these positrons originate from a single close-by point source, producing equal amounts of electrons and positrons. The propagation and energy losses of these electrons and positrons are calculated numerically using the DRAGON code, the source properties are optimized to best describe the AMS data. Using the FERMI-LAT limits on a possible dipole anisotropy in electron and positron arrival directions, we put a limit on the minimum distance of such a point source. The energy losses that these energetic electrons and positrons suffer on their way through the galaxy create gamma ray photons through bremsstrahlung and Inverse Compton scattering. Using the measurement of diffuse gamma rays from Fermi-LAT we put a limit on the maximum distance of such a point source. We find that a single electron positron point source powerful enough to explain the locally observed positron fraction must reside between 225 pc and 3.7 kpc distance from the sun and compare to known pulsars.

  9. First image from a combined positron emission tomography and field-cycled MRI system.

    Science.gov (United States)

    Bindseil, Geron A; Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Chronik, Blaine A

    2011-07-01

    Combining positron emission tomography and MRI modalities typically requires using either conventional MRI with a MR-compatible positron emission tomography system or a modified MR system with conventional positron emission tomography. A feature of field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the use of conventional positron emission tomography detectors based on photomultiplier tubes. In this demonstration, two photomultiplier tube-based positron emission tomography detectors were integrated with a field-cycled MRI system (0.3 T/4 MHz) by placing them into a 9-cm axial gap. A positron emission tomography-MRI phantom consisting of a triangular arrangement of positron-emitting point sources embedded in an onion was imaged in a repeating interleaved sequence of ∼1 sec MRI then 1 sec positron emission tomography. The first multimodality images from the combined positron emission tomography and field-cycled MRI system show no additional artifacts due to interaction between the systems and demonstrate the potential of this approach to combining positron emission tomography and MRI. Copyright © 2010 Wiley-Liss, Inc.

  10. A combined matrix isolation spectroscopy and cryosolid positron moderation apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Molek, Christopher D.; Michael Lindsay, C.; Fajardo, Mario E. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2013-03-15

    We describe the design, construction, and operation of a novel apparatus for investigating efficiency improvements in thin-film cryogenic solid positron moderators. We report results from solid neon, argon, krypton, and xenon positron moderators which illustrate the capabilities and limitations of our apparatus. We integrate a matrix isolation spectroscopy diagnostic within a reflection-geometry positron moderation system. We report the optical thickness, impurity content, and impurity trapping site structures within our moderators determined from infrared absorption spectra. We use a retarding potential analyzer to modulate the flow of slow positrons, and report positron currents vs. retarding potential for the different moderators. We identify vacuum ultraviolet emissions from irradiated Ne moderators as the source of spurious signals in our channel electron multiplier slow positron detection channel. Our design is also unusual in that it employs a sealed radioactive Na-22 positron source which can be translated relative to, and isolated from, the cryogenic moderator deposition substrate. This allows us to separate the influences on moderator efficiency of surface contamination by residual gases from those of accumulated radiation damage.

  11. Low energy elastic scattering of positrons by CO: An application of continued fractions and Schwinger variational iterative methods

    Energy Technology Data Exchange (ETDEWEB)

    Arretche, F. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina (Brazil)], E-mail: farretche@hotmail.com; Mazon, K.T.; Michelin, S.E. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina (Brazil); Fujimoto, M.M. [Departamento de Fisica, Universidade Federal do Parana, 81531-990, Curitiba, Parana (Brazil); Iga, I.; Lee, M.-T. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905, Sao Paulo (Brazil)

    2008-02-15

    Iterative Schwinger variational methods and the method of continued fractions, widely used for electron-molecule scattering, are applied for the first time to investigate positron-molecule interactions. Specifically, integral and differential cross sections for elastic positron scattering by CO in the (0.5-20) eV energy range are calculated and reported. In our calculation, a static plus correlation-polarization potential is used to represent the collisional dynamics. Our calculated results are in general agreement with the theoretical and experimental data available in the literature.

  12. The Positronium Radiative Combination Spectrum: Calculation in the Limit of Thermal Positrons and Low Densities

    Science.gov (United States)

    Wallyn, P.; Mahoney, W. A.; Durouchoux, Ph.; Chapuis, C.

    1996-01-01

    We calculate the intensities of the positronium de-excitation lines for two processes: (1) the radiative combination of free thermal electrons and positrons for transitions with principal quantum number n less than 20, and (2) charge exchange between free positrons and hydrogen and helium atoms, restricting our evaluation to the Lyman-alpha line. We consider a low-density medium modeled by the case A assumption of Baker & Menzel and use the "nL method" of Pengelly to calculate the absolute intensities. We also evaluate the positronium fine and hyperfine intensities and show that these transitions are in all cases much weaker than positronium de-excitation lines in the same wavelength range. We also extrapolate our positronium de-excitation intensities to the submillimeter, millimeter, and centimeter wavelengths. Our results favor the search of infrared transitions of positronium lines for point sources when the visual extinction A, is greater than approx. 5.

  13. Facelift combined with simultaneous fractional laser resurfacing: Outcomes and complications.

    Science.gov (United States)

    Wright, Eric J; Struck, Steve K

    2015-10-01

    The combination of simultaneous surgical rhytidectomy with ablative resurfacing has been a controversial procedure due to the concern of postoperative wound healing. Traditional ablative resurfacing lasers are believed to have higher rates of complications, leading to delayed healing and skin flap loss when combined with face rhytidectomy surgeries. With the development of fractionated ablative laser therapy, there has been increased interest in combining these two procedures. The objective of this study is to evaluate the clinical outcomes of patients undergoing simultaneous full-face rhytidectomy in combination with fractionated ablative skin resurfacing. A retrospective chart analysis was performed for all patients who had a combined procedure of facelift and ablative fractional laser resurfacing from 2008 to 2013 by the senior author (SKS). Postoperative recovery and complications were recorded. The surgical technique used for performing the facelift was an extended supraplatysmal dissection with SMAS plication. Fraxel Re:Pair 10,600-nm fractional carbon dioxide laser was used to perform an ablative resurfacing including the elevated skin flaps. A total of 86 patients were included. Average age was 60.01 years (range of 45-78 years). Longest follow up was five years. The average size of the elevated skin flaps was 100 cm(2). Average skin type was a Fitzpatrick type 2. All patients had complete re-epithelialization by one week after their procedure. Four patients (4.6%) experienced acne outbreaks. Four patients (4.6%) had facial erythema that persisted greater than two weeks. Of these four patients, all resolved by five weeks postoperatively. There was no delayed wound healing or skin flap loss observed. Our results indicate that simultaneous rhytidectomy with fractionated ablative laser resurfacing does not cause an increase in wound healing or skin loss. Due to improved patient outcomes with combining these procedures, we believe that this can be increasingly

  14. High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Accardo, L; Aisa, D; Alpat, B; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Carosi, G; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cerreta, D; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Cindolo, F; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D’Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Haas, D; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Henning, R; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Levi, G; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lolli, M; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Massera, F; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Monreal, B; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pauluzzi, M; Pedreschi, E; Pensotti, S; Pereira, R; Pilastrini, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rossi, L; Rozhkov, A; Rozza, D; Rybka, G; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Volpini, G; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Wu, K Y; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhou, F; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-01-01

    A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement extends the energy range of our previous observation and increases its precision. The new results show, for the first time, that above ∼200  GeV the positron fraction no longer exhibits an increase with energy.

  15. High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-500 GeV with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Accardo, L.; Aguilar, M.; Aisa, D.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chikanian, A.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M. J.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; Schuckardt, D.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Wang, L. Q.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration

    2014-09-01

    A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement extends the energy range of our previous observation and increases its precision. The new results show, for the first time, that above ∼200 GeV the positron fraction no longer exhibits an increase with energy.

  16. Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography

    International Nuclear Information System (INIS)

    Wui-Jin, Koh; Bergman, Kenneth S.; Rasey, Janet S.; Peterson, Lanell M.; Evans, Margaret L.; Graham, Michael M.; Grierson, John R.; Lindsley, Karen L.; Lewellen, Thomas K.; Krohn, Kenneth A.; Griffin, Thomas W.

    1995-01-01

    Purpose: Recent clinical investigations have shown a strong correlation between pretreatment tumor hypoxia and poor response to radiotherapy. These observations raise questions about standard assumptions of tumor reoxygenation during radiotherapy, which has been poorly studied in human cancers. Positron emission tomography (PET) imaging of [F-18]fluoromisonidazole (FMISO) uptake allows noninvasive assessment of tumor hypoxia, and is amenable for repeated studies during fractionated radiotherapy to systematically evaluate changes in tumor oxygenation. Methods and Materials: Seven patients with locally advanced nonsmall cell lung cancers underwent sequential [F-18]FMISO PET imaging while receiving primary radiotherapy. Computed tomograms were used to calculate tumor volumes, define tumor extent for PET image analysis, and assist in PET image registration between serial studies. Fractional hypoxic volume (FHV) was calculated for each study as the percentage of pixels within the analyzed imaged tumor volume with a tumor:blood [F-18]FMISO ratio ≥ 1.4 by 120 min after injection. Serial FHVs were compared for each patient. Results: Pretreatment FHVs ranged from 20-84% (median 58%). Subsequent FHVs varied from 8-79% (median 29%) at midtreatment, and ranged from 3-65% (median 22%) by the end of radiotherapy. One patient had essentially no detectable residual tumor hypoxia by the end of radiation, while two others showed no apparent decrease in serial FHVs. There was no correlation between tumor size and pretreatment FHV. Conclusions: Although there is a general tendency toward improved oxygenation in human tumors during fractionated radiotherapy, these changes are unpredictable and may be insufficient in extent and timing to overcome the negative effects of existing pretreatment hypoxia. Selection of patients for clinical trials addressing radioresistant hypoxic cancers can be appropriately achieved through single pretreatment evaluations of tumor hypoxia

  17. Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering

    Directory of Open Access Journals (Sweden)

    M. Geravanchizadeh

    2014-12-01

    Full Text Available This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS leads to better performance of adaptive filter. Furthermore, convex combination of two adaptive filters improves its performance. In this paper, new convex combinational adaptive filtering methods in the framework of speech enhancement system are proposed. The proposed methods utilize the idea of normalization and fractional derivative, both in the design of different convex mixing strategies and their related component filters. To assess our proposed methods, simulation results of different LMS-based algorithms based on their convergence behavior (i.e., MSE plots and different objective and subjective criteria are compared. The objective and subjective evaluations include examining the results of SNR improvement, PESQ test, and listening tests for dual-channel speech enhancement. The powerful aspects of proposed methods are their low complexity, as expected with all LMS-based methods, along with a high convergence rate.

  18. Computed tomography myocardial perfusion vs {sup 15}O-water positron emission tomography and fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Michelle C.; Dweck, Marc R.; Golay, Saroj K. [University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh (United Kingdom); Mirsadraee, Saeed; Weir, Nicholas W.; Fletcher, Alison; Lucatelli, Christophe; Reid, John H. [University of Edinburgh, Clinical Research Imaging Centre, Edinburgh (United Kingdom); MacGillivray, Tom; Van Beek, Edwin J.R.; Newby, David E. [University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh (United Kingdom); University of Edinburgh, Clinical Research Imaging Centre, Edinburgh (United Kingdom); Cruden, Nicholas L.; Henriksen, Peter A.; Uren, Neal [Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh (United Kingdom); McKillop, Graham; Patel, Dilip [Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh (United Kingdom); Lima, Joao A.C. [Johns Hopkins Hospital, Departments of Medicine and Radiology, Baltimore, MD (United States)

    2017-03-15

    Computed tomography (CT) can perform comprehensive cardiac imaging. We compared CT coronary angiography (CTCA) and CT myocardial perfusion (CTP) with {sup 15}O-water positron emission tomography (PET) and invasive coronary angiography (ICA) with fractional flow reserve (FFR). 51 patients (63 (61-65) years, 80 % male) with known/suspected coronary artery disease (CAD) underwent 320-multidetector CTCA followed by ''snapshot'' adenosine stress CTP. Of these 22 underwent PET and 47 ICA/FFR. Obstructive CAD was defined as CTCA stenosis >50 % and CTP hypoperfusion, ICA stenosis >70 % or FFR <0.80. PET hyperaemic myocardial blood flow (MBF) was lower in obstructive than non-obstructive territories defined by ICA/FFR (1.76 (1.32-2.20) vs 3.11 (2.44-3.79) mL/(g/min), P < 0.001) and CTCA/CTP (1.76 (1.32-2.20) vs 3.12 (2.44-3.79) mL/(g/min), P < 0.001). Baseline and hyperaemic CT attenuation density was lower in obstructive than non-obstructive territories (73 (71-76) vs 86 (84-88) HU, P < 0.001 and 101 (96-106) vs 111 (107-114) HU, P 0.001). PET hyperaemic MBF corrected for rate pressure product correlated with CT attenuation density (r = 0.579, P < 0.001). There was excellent per-patient sensitivity (96 %), specificity (85 %), negative predictive value (90 %) and positive predictive value (94 %) for CTCA/CTP vs ICA/FFR. CT myocardial attenuation density correlates with {sup 15}O-water PET MBF. CTCA and CTP can accurately identify obstructive CAD. (orig.)

  19. Positron emission tomography for the dose monitoring of intra-fractionally moving targets in ion beam therapy

    International Nuclear Information System (INIS)

    Stuetzer, Kristin

    2014-01-01

    Ion beam therapy (IBT) is a promising treatment option in radiotherapy. The characteristic physical and biological properties of light ion beams allow for the delivery of highly tumor conformal dose distributions. Related to the sparing of surrounding healthy tissue and nearby organs at risk, it is feasible to escalate the dose in the tumor volume to reach higher tumor control and survival rates. Remarkable clinical outcome was achieved with IBT for radio-resistant, deep-seated, static and well fixated tumor entities. Presumably, more patients could benefit from the advantages of IBT if it would be available for more frequent tumor sites. Those located in the thorax and upper abdominal region are commonly subjected to intra-fractional, respiration related motion. Different motion-compensated dose delivery techniques have been developed for active field shaping with scanned pencil beams and are at least available under experimental conditions at the GSI Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt, Germany. Since minor unexpected anatomical changes e.g. related to patient mispositioning, tumour shrinkage or tissue swelling could already lead to remarkable deviations between planned and delivered dose distribution, a valuable dose monitoring system is desired for IBT. So far, positron emission tomography (PET) is the only in vivo, in situ and non-invasive qualitative dose monitoring method applied under clinical conditions. Conclusions about the delivered dose distribution can be drawn indirectly from a comparison between two β + -activity distributions: the measured one and an expected one generated by a Monte-Carlo simulation. Dedicated phantoms mainly made up of polymethyl methacrylate (PMMA) and a motion table for regular one-dimensional (1D) motion patterns have been designed and manufactured for the experiments. Furthermore, the general applicability of the 4D MLEM algorithm for more complex motion patterns has been demonstrated by the

  20. Positron emission tomography combined with computed tomography for diagnosis of synchronous and metachronous tumors

    International Nuclear Information System (INIS)

    Zlatareva, D.; Garcheva, M.; Hadjiiska, V.

    2013-01-01

    Full text: Introduction: Positron emission tomography combined computed tomography (PET/CT) has proved to be the method of choice in oncology for diagnosis and staging, planning and determining the effect of treatment. Aim of the study was to determine the diagnostic capabilities of PET/CT for the detection of synchronous and metachronous tumors. Materials and Methods: The study was conducted with 18F FDG on Discovery, GE Healthcare under standard protocol. 18F FDG is dosed per kg body weight applying before a meal in blood sugar within reference values. The survey was conducted 60 min after application, in addition to visual assessment using quantitative indicators. For a period of a year (2012) 1408 patients were studied. In 11 (2 men, 9 women) of them synchronous and metachronous unsuspected tumors were found. Results: The most common as the second tumors are found processes in the head and neck, followed by lung cancer and colorectal cancer. In four of the cases operational or histological verification was made. In others cases due to refusal or advanced disease indications for systemic therapy the verification wasn't made. Diagnosis of the second tumor has changed the approach to patients as the therapeutic effect was detected at 3 patients over a period of nine months by repeated PET/CT study. Conclusion: The hybrid PET/CT, combining information about structural changes (CT) and metabolic changes (PET) plays an important role in the diagnosis of synchronous and metachronous tumors. This can significantly change the therapeutic management and prognosis of patients

  1. Combined computed tomography and fluorodeoxyglucose positron emission tomography in the diagnosis of prosthetic valve endocarditis: a case series.

    Science.gov (United States)

    Bartoletti, Michele; Tumietto, Fabio; Fasulo, Giovanni; Giannella, Maddalena; Cristini, Francesco; Bonfiglioli, Rachele; Raumer, Luigi; Nanni, Cristina; Sanfilippo, Silvia; Di Eusanio, Marco; Scotton, Pier Giorgio; Graziosi, Maddalena; Rapezzi, Claudio; Fanti, Stefano; Viale, Pierluigi

    2014-01-13

    The diagnosis of prosthetic valve endocarditis is challenging. The gold standard for prosthetic valve endocarditis diagnosis is trans-esophageal echocardiography. However, trans-esophageal echocardiography may result in negative findings or yield images difficult to differentiate from thrombus in patients with prosthetic valve endocarditis. Combined computed tomography and fluorodeoxyglucose positron emission tomography is a potentially promising diagnostic tool for several infectious conditions and it has also been employed in patients with prosthetic valve endocarditis but data are still scant. We reviewed the charts of 6 patients with prosthetic aortic valves evaluated for suspicion of prosthetic valve endocarditis, at two different hospital, over a 3-year period. We found 3 patients with early-onset PVE cases and blood cultures yielding Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus lugdunensis, respectively; and 3 late-onset cases in the remaining 3 patients with isolation in the blood of Streptococcus bovis, Candida albicans and P. aeruginosa, respectively. Initial trans-esophageal echocardiography was negative in all the patients, while fluorodeoxyglucose positron emission tomography showed images suspicious for prosthetic valve endocarditis. In 4 out of 6 patients valve replacement was done with histology confirming the prosthetic valve endocarditis diagnosis. After an adequate course of antibiotic therapy fluorodeoxyglucose positron emission tomography showed resolution of prosthetic valve endocarditis in all the patients. Our experience confirms the potential role of fluoroseoxyglucose positron emission tomography in the diagnosis and follow-up of prosthetic valve endocarditis.

  2. Hypoxia positron emission tomography imaging: combining information on perfusion and tracer retention to improve hypoxia specificity

    DEFF Research Database (Denmark)

    Busk, Morten; Munk, Ole L; Jakobsen, Steen S

    2017-01-01

    BACKGROUND: Static positron emission tomography (PET) allows mapping of tumor hypoxia, but low resolution and slow tracer retention/clearance results in poor image contrast and the risk of missing areas where hypoxic cells and necrosis are intermixed. Fully dynamic PET may improve accuracy but scan...

  3. Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging.

    Science.gov (United States)

    Eldib, Mootaz; Bini, Jason; Calcagno, Claudia; Robson, Philip M; Mani, Venkatesh; Fayad, Zahi A

    2014-02-01

    Attenuation correction for magnetic resonance (MR) coils is a new challenge that came about with the development of combined MR and positron emission tomography (PET) imaging. This task is difficult because such coils are not directly visible on either PET or MR acquisitions with current combined scanners and are therefore not easily localized in the field of view. This issue becomes more evident when trying to localize flexible MR coils (eg, cardiac or body matrix coil) that change position and shape from patient to patient and from one imaging session to another. In this study, we proposed a novel method to localize and correct for the attenuation and scatter of a flexible MR cardiac coil, using MR fiducial markers placed on the surface of the coil to allow for accurate registration of a template computed tomography (CT)-based attenuation map. To quantify the attenuation properties of the cardiac coil, a uniform cylindrical water phantom injected with 18F-fluorodeoxyglucose (18F-FDG) was imaged on a sequential MR/PET system with and without the flexible cardiac coil. After establishing the need to correct for the attenuation of the coil, we tested the feasibility of several methods to register a precomputed attenuation map to correct for the attenuation. To accomplish this, MR and CT visible markers were placed on the surface of the cardiac flexible coil. Using only the markers as a driver for registration, the CT image was registered to the reference image through a combination of rigid and deformable registration. The accuracy of several methods was compared for the deformable registration, including B-spline, thin-plate spline, elastic body spline, and volume spline. Finally, we validated our novel approach both in phantom and patient studies. The findings from the phantom experiments indicated that the presence of the coil resulted in a 10% reduction in measured 18F-FDG activity when compared with the phantom-only scan. Local underestimation reached 22% in

  4. Resolving Nuclear Reactor Lifetime Extension Questions: A Combined Multiscale Modeling and Positron Characterization approach

    International Nuclear Information System (INIS)

    Wirth, B; Asoka-Kumar, P; Denison, A; Glade, S; Howell, R; Marian, J; Odette, G; Sterne, P

    2004-01-01

    The objective of this work is to determine the chemical composition of nanometer precipitates responsible for irradiation hardening and embrittlement of reactor pressure vessel steels, which threaten to limit the operating lifetime of nuclear power plants worldwide. The scientific approach incorporates computational multiscale modeling of radiation damage and microstructural evolution in Fe-Cu-Ni-Mn alloys, and experimental characterization by positron annihilation spectroscopy and small angle neutron scattering. The modeling and experimental results are

  5. Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Cuimei Jiang

    2015-07-01

    Full Text Available Based on two fractional-order chaotic complex drive systems and one fractional-order chaotic complex response system with different dimensions, we propose generalized combination complex synchronization. In this new synchronization scheme, there are two complex scaling matrices that are non-square matrices. On the basis of the stability theory of fractional-order linear systems, we design a general controller via active control. Additionally, by virtue of two complex scaling matrices, generalized combination complex synchronization between fractional-order chaotic complex systems and real systems is investigated. Finally, three typical examples are given to demonstrate the effectiveness and feasibility of the schemes.

  6. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  7. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.

    2018-05-01

    The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.

  8. Advantages of 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography in detecting post cardiac surgery infections.

    Science.gov (United States)

    Adjtoutah, Djamel; Azhari, Alaa; Larabi, Youcef; Dorigo, Enrica; Merlin, Charles; Marcaggi, Xavier; Nana, Armel Simplice; Camilleri, Lionel; Azarnoush, Kasra

    2014-01-01

    The 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) offers an excellent negative predictive value. Consequently, it is a reliable tool for excluding an infectious phenomenon in case of negativity. In case of persistent fever of unknown origin after cardiac surgery and in combination with other bacteriological examinations and medical imaging, we can rely on FDG-PET/CT to confirm or eliminate deep infections and prosthetic endocarditis. For this reason, FDG-PET/CT should be considered among the examinations to be performed in case of suspected infection after cardiac surgery. We have reported the case of a 76-year-old man who presented with a fever of unknown origin and recurrent septic shocks after a biological Bentall procedure combined with left anterior descending (LAD) coronary artery revascularization by the left internal thoracic artery. We performed a FDG-PET/CT which showed external iliac vein and right common femoral vein hyperfixation with infiltration of adjacent soft tissues, highly suspected to be an infectious process. The aim of this case report is to show that FDG-PET/CT, in combination with other bacteriological examinations and medical imaging, can be extremely helpful in detecting deep infectious sources, even during the early postoperative period.

  9. Early Treatment Response Monitoring Using 2-Deoxy-2-[18F]fluoro-D-glucose Positron Emission Tomography Imaging during Fractionated Radiotherapy of Head Neck Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Jiayi Huang

    2014-01-01

    Full Text Available Background. To determine the optimal timing and analytic method of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (PET imaging during fractionated radiotherapy (RT to predict tumor control. Methods. Ten head neck squamous cell carcinoma xenografts derived from the UT-14-SCC cell line were irradiated with 50 Gy at 2 Gy per day over 5 weeks. Dynamic PET scans were acquired over 70 minutes at baseline (week 0 and weekly for seven weeks. PET data were analyzed using standard uptake value (SUV, retention index (RI, sensitivity factor (SF, and kinetic index (Ki. Results. Four xenografts had local failure (LF and 6 had local control. Eighty scans from week 0 to week 7 were analyzed. RI and SF after 10 Gy appeared to be the optimal predictors for LF. In contrast, SUV and Ki during RT were not significant predictors for LF. Conclusion. RI and SF of PET obtained after the first week of fractionated RT were the optimal methods and timing to predict tumor control.

  10. A combined positron emission tomography (PET)- electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner.

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V; Guggilapu, Priyaankadevi; Bobko, Andrey A; Khramtsov, Valery V; Tseytlin, Oxana; Raylman, Raymond R

    2018-04-20

    The advent of hybrid scanners, combining complementary modalities, has revolutionized imaging; enhancing clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). The PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring parameters such as oxygenation and pH, for example. A combined PET/EPRI scanner has the promise to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. In this investigation, a prototype system was created by combing two existing scanners, modified for simultaneous imaging. Specifically, a silicon photomultiplier (SiPM) based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both PET and EPR tracers. The resulting images demonstrated the ability to obtain contemporaneous PET and ERP images without cross-modality interference. The next step in this project is the construction of pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically important parameters of tissue microenvironments. . © 2018 Institute of Physics and Engineering in Medicine.

  11. Positron emission tomography

    International Nuclear Information System (INIS)

    Paans, A.M.J.

    1981-01-01

    Positron emitting radiopharmaceuticals have special applications in in-vivo studies of biochemical processes. The combination of a cyclotron for the production of radionuclides and a positron emission tomograph for the registration of the distribution of radioactivity in the body enables the measurement of local radioactivity concentration in tissues, and opens up new possibilities in the diagnosis and examination of abnormalities in the metabolism. The principles and procedures of positron emission tomography are described and the necessary apparatus considered, with emphasis on the positron camera. The first clinical applications using 55 Co bloemycine for tumor detection are presented. (C.F.)

  12. Performance of combination of a Venturi and nuclear fraction meter in SAGD production operations

    Energy Technology Data Exchange (ETDEWEB)

    Hompoth, D.; Khun, N. [Suncor Energy, Calgary, AB (Canada); Pinguet, B.G.; Guerra, E. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-07-01

    This paper described a multiphase flow meter (MFM) that used a Venturi and nuclear fraction meter combination for steam assisted gravity drainage (SAGD) well production testing. The device was designed by re-engineering a flow model and fluid property package to measure the steam phases. The meter was designed to improve pump monitoring processes in SAGD operations. The technology combined 2 basic measurement steps. The first was a nuclear multi Gamma-ray fraction meters which measured the fraction of each constituent at the Venturi tube's throat at high frequencies. Fractions were then determined from the solution of 3 simultaneous equations related to the Gamma ray attenuation, and a fraction balance equation. Pressure and temperature measurements were used to predict the fluid properties at line conditions. Primary outputs were based on nuclear measurements, gas fractions, water liquid ratios, and mixture densities. Secondary outputs from the meter included volumetric flow rates. Stability, dynamic responses, and reproducibility rates of the MFM were also presented. 9 refs., 6 tabs., 17 figs.

  13. Native defects in ZnO films studied by slow positron beam

    International Nuclear Information System (INIS)

    Peng Chengxiao; Weng Huimin; Ye Bangjiao; Zhou Xianyi; Han Rongdian; Yang Xiaojie

    2005-01-01

    Native defects in ZnO films grown by radio frequency (RF) reactive magnetron sputtering under variable oxygen fraction conditions have been investigated by using monoenergetic positrons beam technique. The results show that the same type defects dominate in these ZnO samples grown at oxygen fraction less than 70% in the process chamber; and zinc vacancies are preponderant in the ZnO films fabricated in richer oxygen environment. The concentration of zinc vacancies increases with oxygen partial fraction rising. While oxygen fraction reaches 85%, zinc vacancies that could trap positrons decrease, which suggests that impurities could shield zinc vacancies. A combination between hydrogen atoms and the dangling bonds in the lattice could weaken the trap of positrons under the 50% oxygen fraction condition. The concentration of zinc vacancies varies in different oxygen fraction films, which is in agreement with the conclusion of photoluminescence spectroscopy. (authors)

  14. Promising Option for Treatment of Striae Alba: Fractionated Microneedle Radiofrequency in Combination with Fractional Carbon Dioxide Laser

    Directory of Open Access Journals (Sweden)

    Farahnaz Fatemi Naeini

    2016-01-01

    Full Text Available Background. A consistent treatment has not been proposed for treatment of Striae Alba (SA. The present study was designed to compare the fractionated microneedle radiofrequency (FMR alone and in combination with fractional carbon dioxide laser (FMR + CO2 in the treatment of SA. Methods. Forty-eight pairs of SA from six patients were selected. Right or left SAs were randomly assigned to one of the treatment groups. The surface area of the SA before and after treatment and clinical improvement using a four-point scale were measured at the baseline, after one and three months. Results. The mean age of the patients was 30.17±5.19 years. The mean difference of the surface area between pre- and posttreatment in the FMR + CO2 group was significantly higher than that in the FMR group (p=0.003. Clinical improvement scales showed significantly higher improvement in the FMR + CO2 group than in the FMR group in the first and second follow-up (p=0.002 and 0.004, resp.. There were no major persistence side-effects in both groups. Conclusions. The results showed that FMR + CO2 laser was more effective than FMR alone in the treatment of SA.

  15. A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries

    Science.gov (United States)

    Cusimano, N.; Gerardo-Giorda, L.

    2018-06-01

    Classical models of electrophysiology do not typically account for the effects of high structural heterogeneity in the spatio-temporal description of excitation waves propagation. We consider a modification of the Monodomain model obtained by replacing the diffusive term of the classical formulation with a fractional power of the operator, defined in the spectral sense. The resulting nonlocal model describes different levels of tissue heterogeneity as the fractional exponent is varied. The numerical method for the solution of the fractional Monodomain relies on an integral representation of the nonlocal operator combined with a finite element discretisation in space, allowing to handle in a natural way bounded domains in more than one spatial dimension. Numerical tests in two spatial dimensions illustrate the features of the model. Activation times, action potential duration and its dispersion throughout the domain are studied as a function of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is recovered.

  16. [Positron emission tomography combined with computed tomography in the initial evaluation and response assessment in primary central nervous system lymphoma].

    Science.gov (United States)

    Mercadal, Santiago; Cortés-Romera, Montserrat; Vélez, Patricia; Climent, Fina; Gámez, Cristina; González-Barca, Eva

    2015-06-08

    To evaluate the role of positron emission tomography combined with computed tomography (PET-CT) in the initial evaluation and response assessment in primary central nervous system lymphoma (PCNSL). Fourteen patients (8 males) with a median age 59.5 years diagnosed of PCNSL. A brain PET-CT and magnetic resonance imaging (MRI) were performed in the initial evaluation. In 7 patients a PET-CT after treatment was performed. PET-CT showed at diagnosis 31 hypermetabolic focuses and MRI showed 47 lesions, with a good grade of concordance between both (k = 0.61; P = .005). In the response assessment, correlation between both techniques was good, and PET-CT was helpful in the appreciation of residual MRI lesions. Overall survival at 2 years of negative vs. positive PET-CT at the end of treatment was 100 vs. 37.5%, respectively (P = .045). PET-CT can be useful in the initial evaluation of PCNSL, and especially in the assessment of response. Despite the fact that PET-CT detects less small lesions than MRI, a good correlation between MRI and PET-CT was observed. It is effective in the evaluation of residual lesions. Prospective studies are needed to confirm their possible prognostic value. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  17. The Medical Case for a Positron Emission Tomography and X-ray Computed Tomography Combined Service in Oman.

    Science.gov (United States)

    Al-Bulushi, Naima K; Bailey, Dale; Mariani, Giuliano

    2013-11-01

    The value of a positron emission tomography and X-ray computed tomography (PET/CT) combined service in terms of diagnostic accuracy, cost-effectiveness and impact on clinical decision-making is well-documented in the literature. Its role in the management of patients presenting with cancer is shifting from early staging and restaging to the early assessment of the treatment response. Currently, the application of PET/CT has extended to non-oncological specialties-mainly neurology, cardiology and rheumatology. A further emerging application for PET/CT is the imaging of infection/inflammation. This article illustrates some of the PET/CT applications in both oncological and non-oncological disorders. In view of the absence of this modality in Oman, this article aims to increase the awareness of the importance of these imaging modalities and their significant impact on diagnosis and management in both oncological and non-oncological specialties for patients of all age groups as well as the decision-makers.

  18. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning

    DEFF Research Database (Denmark)

    Ashraf, H; Dirksen, A; Jakobsen, Annika Loft

    2011-01-01

    In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules.......In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules....

  19. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  20. Fractional Carbon Dioxide Laser and its Combination with Subcision in Improving Atrophic Acne Scars.

    Science.gov (United States)

    Nilforoushzadeh, Mohammad Ali; Faghihi, Gita; Jaffary, Fariba; Haftbaradaran, Elaheh; Hoseini, Sayed Mohsen; Mazaheri, Nafiseh

    2017-01-01

    Acne is a very common skin disease in which scars are seen in 95% of the patients. Although numerous treatments have been recommended, researchers are still searching for a single modality to treat the complication due to its variety in shape and depth. We compared the effects of fractional carbon dioxide (CO 2 ) laser alone and in combination with subcision in the treatment of atrophic acne scars. This clinical trial study was performed in Skin Diseases and Leishmaniasis Research Center (Isfahan, Iran) during 2011-2012. Eligible patients with atrophic acne scars were treated with fractional CO 2 laser alone (five sessions with 3-week interval) on the right side of the face and fractional CO 2 laser plus subcision (one session using both with four sessions of fractional CO 2 laser, with 3-week interval) on the left side. The subjects were visited 1, 2, and 6 months after the treatment. Patient satisfaction rate was analyzed using SPSS 20 software. The average of recovery rate was 54.7% using the combination method and 43.0% using laser alone ( P < 0.001). The mean patient satisfaction was significantly higher with the combination method than laser alone (6.6 ± 1.2 vs. 5.2 ± 1.8; P < 0.001). Bruising was only seen with the combination method and lasted for 1 week in 57.0% and for 2 weeks in 43.0%. Erythema was seen in both methods. Postinflammatory pigmentation and hyperpigmentation were associated with combination method. No persistent side effects were seen after 6 months. Using a combination of subcision and laser had suitable results regarding scar recovery and satisfaction rate.

  1. Analysis of polymeric phenolics in red wines using different techniques combined with gel permeation chromatography fractionation.

    Science.gov (United States)

    Guadalupe, Zenaida; Soldevilla, Alberto; Sáenz-Navajas, María-Pilar; Ayestarán, Belén

    2006-04-21

    A multiple-step analytical method was developed to improve the analysis of polymeric phenolics in red wines. With a common initial step based on the fractionation of wine phenolics by gel permeation chromatography (GPC), different analytical techniques were used: high-performance liquid chromatography-diode array detection (HPLC-DAD), HPLC-mass spectrometry (MS), capillary zone electrophoresis (CZE) and spectrophotometry. This method proved to be valid for analyzing different families of phenolic compounds, such as monomeric phenolics and their derivatives, polymeric pigments and proanthocyanidins. The analytical characteristics of fractionation by GPC were studied and the method was fully validated, yielding satisfactory statistical results. GPC fractionation substantially improved the analysis of polymeric pigments by CZE, in terms of response, repeatability and reproducibility. It also represented an improvement in the traditional vanillin assay used for proanthocyanidin (PA) quantification. Astringent proanthocyanidins were also analyzed using a simple combined method that allowed these compounds, for which only general indexes were available, to be quantified.

  2. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1994-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal field - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders. Some new ideas associated with these sources are also presented. (orig.)

  3. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1989-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal fields - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders

  4. Additivity versus repair inhibition in fractionated treatments combining drugs and X rays: a theoretical analysis

    International Nuclear Information System (INIS)

    Begg, A.C.

    1987-01-01

    Drugs which inhibit the repair of radiation damage could potentially be useful for enhancing the effects of radiotherapy. In pre-clinical combined modality studies, however, it is often difficult to state with certainty whether or not a drug has inhibited radiation damage repair. This paper shows that several commonly used parameters for assessing repair can give the wrong answer regarding the presence of drug-induced repair inhibition. These parameters are; the difference in radiation dose between 1 and n fractions to give the same effect, the fractional recovered dose per fraction interval, FR, and the related parameter FREC. A further parameter used for treatment comparisons is the enhancement ratio for the drug (D.E.R.; ratio of radiation doses, with and without drug, to cause a given effect). An increasing D.E.R. with increasing number of radiation fractions has been taken as an indication that the drug inhibited repair. The present report demonstrates that this, too, can be misleading. From an analysis based on a linear-quadratic survival curve for X rays, it is suggested that deriving and comparing alpha/beta ratios (ratio of the linea to quadratic coefficients) gives the best indication of drug-induced changes in survival curve shape which may reflect underlying changes in repair capacity

  5. Significance of fractionation regimens in radiation and combined hyperthermia using a murine fibrosarcoma

    International Nuclear Information System (INIS)

    Hahn, E.W.; Alfieri, A.A.; Kim, J.H.

    1978-01-01

    The significance of time--dose ralationships in the use of local tumor hyperthermia (LTH) when combined with radiation (RAD) was studied in a murine fibrosarcoma. RAD, either alone or combined with LTH, was delivered in four equal fractions (total doses, 1.8 to 4.2 krad) separated by 1 to 4 days. LTH (43.1 C +- .05 C for 15 minutes, water bath) was applied immediately after RAD. In this tumor system, RAD was most effective when delivered every 2nd or 3rd day, by a factor of 1.25 over the response achieved when the four fractions were delivered every 1 or 4 days. At all levels studied, RAD + LTH produced a superior tumor response compared to RAD alone. The ratio of the RAD + LTH/RAD doses to achieve an isobiological response ranged from 1.7 to 2.5. Most significant was the finding that the RAD + LTH treatment response was independent of the fractionation scheme used and more dependent on the total RAD dose delivered

  6. Deep pulse fractional CO2 laser combined with a radiofrequency system: results of a case series.

    Science.gov (United States)

    Cannarozzo, Giovanni; Sannino, Mario; Tamburi, Federica; Chiricozzi, Andrea; Saraceno, Rosita; Morini, Cristiano; Nisticò, Steven

    2014-07-01

    The purpose of this study was evaluation of the safety and efficacy of this new combined technology that adds deep ablation to thermal stimulation. Minimally ablative or subablative lasers, such as fractional CO2 lasers, have been developed in an attempt to achieve the same clinical results observed with traditional ablative lasers, but with fewer side effects. Despite being an ablative laser, the system used in this study is able to produce a fractional supply of the beam of light. Fractional ablation of skin is performed through the development of microscopic vertical columns surrounded by spared areas of epidermis and dermis, ensuring rapid wound healing and minimum down time. Simultaneous synchronized delivery of a radiofrequency (RF) current to the deeper layers of the skin completes the therapeutic scenario, ensuring an effective skin tightening effect over the entire treated area. Nine adult patients were treated for wrinkles and acne scars using this new laser technology. An independent observer evaluated the improvement using a five point scale. All patients had good results in terms of improvement of skin texture, with mild and transitory side effects. This novel combined system produced improvement in wrinkles and acne scars, with progressive enhancement of skin tone and elasticity.

  7. Combining electrophoresis with detection under ultraviolet light and multiple ultrafiltration for isolation of humic fluorescence fractions.

    Science.gov (United States)

    Trubetskaya, Olga E; Shaloiko, Lubov A; Demin, Dmitrii V; Marchenkov, Victor V; Proskuryakov, Ivan I; Coelho, Christian; Trubetskoj, Oleg A

    2011-04-01

    Polyacrylamide gel electrophoresis of chernozem soil humic acids (HAs) followed by observation under UV (312 nm) excitation light reveals new low molecular weight (MW) fluorescent fractions. Ultrafiltration of HAs sample in 7 M urea on a membrane of low nominal MW retention (NMWR, 5 kDa) was repetitively used for separation of fluorescent and non-fluorescent species. Thirty ultrafiltrates and the final retentate R were obtained. Fluorescence maxima of separate ultrafiltrates were different and non-monotonously changed in the range of 475-505 nm. Fluorescence maxima of less than 490 nm were detected only in the four first utrafiltrates. For further physical-chemical analyses all utrafiltrates were combined into a fraction called UFchernozem soil HAs complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Combined Inter- and Intrafractional Plan Adaptation Using Fraction Partitioning in Magnetic Resonance-guided Radiotherapy Delivery.

    Science.gov (United States)

    Lagerwaard, Frank; Bohoudi, Omar; Tetar, Shyama; Admiraal, Marjan A; Rosario, Tezontl S; Bruynzeel, Anna

    2018-04-05

    performed to evaluate the benefit of inter-fractional versus intrafractional plan adaptation with respect to GTV coverage and high-dose OARs sparing for all five partitioned fractions. Interfractional changes in adjacent OARs were substantially larger than intrafractional changes. Mean GTV V 95% was 76.8 ± 1.8% (Plan PREDICTED1 ), 83.4 ± 5.7% (Plan RE-OPTIMIZED1 ), 82.5 ± 4.3% (Plan PREDICTED2 ),and 84.4 ± 4.4% (Plan RE-OPTIMIZED2 ). Both plan re-optimizations appeared important for correcting the inappropriately high duodenal V 33 Gy values of 3.6 cc (Plan PREDICTED1 ) and 3.9 cc (Plan PREDICTED2 ) to 0.2 cc for both re-optimizations. To a smaller extent, this improvement was also observed for V 25 Gy values. For the stomach, bowel, and all other OARs, high and intermediate doses were well below preset constraints, even without re-optimization. The mean delivery time of each daily treatment was 90 minutes. This study presents the clinical application of combined inter-fractional and intrafractional plan adaptation during MRgRT for LAPC using fraction partitioning with successive re-optimization. Whereas, in this study, interfractional plan adaptation appeared to benefit both GTV coverage and OARs sparing, intrafractional adaptation was particularly useful for high-dose OARs sparing. Although all necessary steps lead to a prolonged treatment duration, this may be applied in selected cases where high doses to adjacent OARs are regarded as critical.

  9. Combining Estimation of Green Vegetation Fraction in an Arid Region from Landsat 7 ETM+ Data

    Directory of Open Access Journals (Sweden)

    Kun Jia

    2017-11-01

    Full Text Available Fractional vegetation cover (FVC, or green vegetation fraction, is an important parameter for characterizing conditions of the land surface vegetation, and also a key variable of models for simulating cycles of water, carbon and energy on the land surface. There are several types of FVC estimation models using remote sensing data, and evaluating their performance over a specific region is of great significance. Therefore, this study firstly evaluated three types of FVC estimation models using Landsat 7 ETM+ data in an agriculture region of Heihe River Basin, China, and then proposed a combination strategy from different individual models to improve the FVC estimation accuracy, which employed the multiple linear regression (MLR and Bayesian model average (BMA methods. The validation results indicated that the spectral mixture analysis model with three endmembers (SMA3 achieved the best FVC estimation accuracy (determination coefficient (R2 = 0.902, root mean square error (RMSE = 0.076 among the seven individual models using Landsat 7 ETM+ data. In addition, the MLR and BMA combination methods could both improve FVC estimation accuracy (R2 = 0.913, RMSE = 0.063 and R2 = 0.904, RMSE = 0.069 for MLR and BMA, respectively. Therefore, it could be concluded that both MLR and BMA combination methods integrating FVC estimates from different models using Landsat 7 ETM+ data could effectively weaken the estimation errors of individual models and improve the final FVC estimation accuracy.

  10. In-situ Adsorption-Biological Combined Technology Treating Sediment Phosphorus in all Fractions

    Science.gov (United States)

    Zhang, Y.; Wang, C.; He, F.; Liu, B.; Xu, D.; Xia, S.; Zhou, Q.; Wu, Z.

    2016-07-01

    The removal efficiency of sediment phosphorus (P) in all fractions with in-situ adsorption-biological combined technology was studied in West Lake, Hangzhou, China. The removal amounts of sediment Ca-P, Fe/Al-P, IP, OP and TP by the combined effect of PCFM (Porous ceramic filter media) and V. spiralis was 61 mg/kg, 249 mg/kg, 318 mg/kg, 85 mg/kg and 416 mg/kg, respectively, and the corresponding removing rate reached 10.5%, 44.6%, 27.5%, 30.6% and 29.2%. This study suggested that the combination of PCFM and V. spiralis could achieve a synergetic sediment P removal because the removal rates of the combinations were higher than the sum of that of PCFM and macrophytes used separately. From analysis of sediment microbial community and predicted function, we found that the combined PCFM and V. spiralis enhanced the function of P metabolism by increasing specific genus that belong to phylum Firmicutes and Nitrospirae. Thus it can be seen the in-situ adsorption-biological combined technology could be further applied to treat internal P loading in eutrophic waters.

  11. Changes in tumor oxygenation during a combined treatment with fractionated irradiation and hyperthermia: an experimental study.

    Science.gov (United States)

    Zywietz, F; Reeker, W; Kochs, E

    1997-01-01

    To determine the influence of adjuvant hyperthermia on the oxygenation status of fractionated irradiated tumors. Oxygen partial pressure (pO2) in rat rhabdomyosarcomas (R1H) was measured sequentially at weekly intervals during a fractionated irradiation with 60Co-gamma-rays (60 Gy/20f/4 weeks) in combination with local hyperthermia (8 f(HT) at 43 degrees C, 1 h/4 weeks). Tumors were heated twice weekly with a 2450 MHz microwave device at 43 degrees C, 1 h starting 10 min after irradiation. The pO2 measurements (pO2-histograph, Eppendorf, Germany) were performed in anesthetized animals during mechanical ventilation and in hemodynamic steady state. All tumor pO2 measurements were correlated to measurements of the arterial oxygen partial pressure (paO2) determined by a blood gas analyzer. The oxygenation status of R1H tumors decreased continuously from the start of the combined treatment, with increasing radiation dose and number of heat fractions. In untreated controls a median tumor pO2 of 23 +/- 2 mmHg (mean +/- SEM) was measured. Tumor pO2 decreased to 11 +/- 2 mmHg after 30 Gy + 4 HT (2 weeks), and to 6 +/- 2 mmHg after 60 Gy + 8HT (4 weeks). The increase in the frequency of pO2-values below 5 mmHg and the decrease in the range of the pO2 histograms [delta p(10/90)] further indicated that tumor hypoxia increased relatively rapidly from the start of combined treatment. After 60 Gy + 8HT 48 +/- 5% (mean +/- SEM) of the pO2-values recorded were below 5 mmHg. These findings suggest that adjuvant hyperthermia to radiotherapy induces greater changes in tumor oxygenation than radiation alone [cf. (39)]. This might be of importance for the temporary application of hyperthermia in the course of a conventional radiation treatment.

  12. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    Cheng Bin; Weng Huimin; Han Rongdian; Ye Bangjiao

    2010-01-01

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  13. Fractionation of equine antivenom using caprylic acid precipitation in combination with cationic ion-exchange chromatography.

    Science.gov (United States)

    Raweerith, Rutai; Ratanabanangkoon, Kavi

    2003-11-01

    A combined process of caprylic acid (CA) precipitation and ion-exchange chromatography on SP-Sepharose was studied as a means to fractionate pepsin-digested horse antivenom F(ab')(2) antibody. In the CA precipitation, the optimal concentration for fractionation of F(ab')(2) from pepsin-digested horse plasma was 2%, in which 89.61% of F(ab')(2) antibody activity was recovered in the supernatant with 1.5-fold purification. A significant amount of pepsin was not precipitated and remained active under these conditions. An analytical cation exchanger Protein-Pak SP 8HR HPLC column was tested to establish optimal conditions for the effective separation of IgG, albumin, pepsin and CA from the F(ab')(2) product. From these results, the supernatant from CA precipitation of pepsin-digested plasma was subjected to a SP-Sepharose column chromatography using a linear salt gradient. With stepwise elution, a peak containing F(ab')(2) antibody could be obtained by elution with 0.25 M NaCl. The total recovery of antibody was 65.56% with 2.91-fold purification, which was higher than that achieved by ammonium sulfate precipitation. This process simultaneously and effectively removed residual pepsin, high molecular weight aggregates and CA in the final F(ab')(2) product, and should be suitable for large-scale fractionation of therapeutic equine antivenoms.

  14. Combined treatment of the immunoconjugate bivatuzumab mertansine and fractionated irradiation improves local tumour control in vivo

    International Nuclear Information System (INIS)

    Gurtner, Kristin; Hessel, Franziska; Eicheler, Wolfgang; Dörfler, Annegret; Zips, Daniel; Heider, Karl-Heinz; Krause, Mechthild; Baumann, Michael

    2012-01-01

    Background and purpose: To test whether BIWI 1 (bivatuzumab mertansine), an immunoconjugate of the humanized anti-CD44v6 monoclonal antibody BIWA 4 and the maytansinoid DM1, given simultaneously to fractionated irradiation improves local tumour control in vivo compared with irradiation alone. Material and methods: For growth delay, FaDu tumours were treated with 5 intravenous injections (daily) of phosphate buffered saline (PBS, control), BIWA 4 (monoclonal antibody against CD44v6) or BIWI 1 (bivatuzumab mertansine) at two different dose levels (50 μg/kg DM1 and 100 μg/kg DM1). For local tumour control, FaDu tumours received fractionated irradiation (5f/5d) with simultaneous PBS, BIWA 4 or BIWI 1 (two dose levels). Results: BIWI 1 significantly improved local tumour control after irradiation with 5 fractions already in the lower concentration. The dose modifying factor of 1.9 is substantial compared to the majority of other modifiers of radiation response. Conclusion: Because of the magnitude of the curative effect, this approach is highly promising and should be further evaluated using similar combinations with improved tumour-specificity.

  15. The comparison of skin rejuvenation effects of vitamin A, fractional laser, and their combination on rat.

    Science.gov (United States)

    Qu, Yan; Wang, Ying; Zhang, Yan; Han, Chunyu; Gao, Dong; Jin, Waishu; Liang, Jinning; Xia, Xiujuan

    2018-03-15

    Because of long-term exposure of skin, skin aging is an unavoidable natural law with age. Traditional Vitamin A and novel ablative fractional laser technique both have the effects of skin rejuvenation, and studies have demonstrated both of them have apparent clinical efficacy and histology-improving effects on photo-aging skin. 45 female healthy Wistar rats were selected and the depilation areas of every rat were divided into four regions: control region(Region A), Vitamin A acid region(Region B), combination treatment region(Region C), and fractional laser region(Region D). 0.025% Vitamin A acid cream was applied to Region B and C every day for 3 weeks; Region C and D were irradiated once with 10600nm CO 2 fractional laser on the first day of the trail. The skin tissue was dissected and placed into liquid nitrogen according to the design. The real-time quantitative PCR and western blotting methods were taken to detect the expression changes of miR-29a, Akt, TGF-β, and mRNA of type III pre-collagen. It can be seen from the results of the real-time quantitative PCR that the mRNA expression levels of type III pre-collagen, Akt, and TGF-β in the treatment regions are up-regulated and the expression levels of miR-29a mRNA are down-regulated compared to the Region A. The hybridization tests showed that changes of the expression of type III pre-collagen, Akt gene, miR-29a gene, and TGF-β gene across the experiment regions are all significantly different in the third week, and the expression levels of them all achieve the highest value in the third week, the expression level of miR-29a gene achieves the lowest value in the third week, which are consistent with the results of real-time quantitative PCR. It is indicated that the combination region of Vitamin A acid and fractional laser may lead to low expression of miR-29a, thus the inhibition of downstream Akt activation is loss, Akt activation is enhanced, enhancement of the expression of TGF-β is induced, leading to

  16. Fractionation and delivery schedules in combined radiotherapy-cisplatin for head and neck cancer

    International Nuclear Information System (INIS)

    Marcu, L.; Van Doorn, T.; Royal Adelaide Hospital,; Olver, I.

    2000-01-01

    Full text: Since Rosenberg's initial discovery, cisplatin has become one of the most effective anticancer drugs, with particular significance in head and neck cancer. For advanced disease, where the tumour is unresectable, radiotherapy and chemotherapy, either singularly or combined, remain the possible therapeutic modalities. The majority of the trials using a combination of cisplatin and radiation obtained much better results than the single-agent trials. But the best schedule, dosage and timing between radiation and drug administration are still unknown. Many positive steps were however made to eliminate the cisplatin-produced side effects, as much as possible. The tendency in current trials is to fractionate the drug dose by daily administration and also to hyperfractionate the radiation. In this way the long-term benefits are improved and the toxicity is better tolerated

  17. Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, K; Abrao, A

    1975-06-01

    The separation of individual lanthanides, especially Ce, Nd, Pr, Sm and La, from a rare earth chlorides concentrate by the industrial processing of monazite sand is made. To reach this goal the homogeneous fractional precipitation and ion exchange techniques were combined. Using the rare earths concentrate depleted in Cerium, fractions enriched in Nd, Pr and Sm, and one final filtrate enriched in La were obtained, by the hydrolysis of urea. The separation of individual lanthanides (Nd, Pr, Sm and La) was accomplished using two strong cationic ion exchanger columns, the second with Cu(II) as retaining ion, and EDTA-NH/sub 4/ solution buffered with acetic acid as eluant. The annoying problem of precipitation into the column during the RE elution was solved. The difficult EDTA and Cu(II) recovery was the precipitation of Cu/sub 2/S and disruption of Cu-EDTA complex by hydrolysis of thiourea. The combination of both techniques allowed the preparation of individual lanthanides as Nd, Pr and La with 99% and Sm with 90% purity.

  18. Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange

    International Nuclear Information System (INIS)

    Umeda, K.; Abrao, A.

    1975-01-01

    The separation of individual lanthanides, especially Ce, Nd, Pr, Sm and La, from a rare earth chlorides concentrate by the industrial processing of monazite sand is made. To reach this goal the homogeneous fractional precipitation and ion exchange techniques were combined. Using the rare earths concentrate depleted in Cerium, fractions enriched in Nd, Pr and Sm, and one final filtrate enriched in La were obtained, by the hydrolysis of urea. The separation of individual lanthanides (Ns, Pr, Sm and La) was accomplished using two strong cationic ion exchanger columns, the second with Cu(II) as retaining ion, and EDTA-NH 4 solution buffered with acetic acid as eluant. The annoy problem of precipitation into the column during the RE elution was solved. The difficult EDTA and Cu(II) recovery was the precipitation of Cu 2 S and disruption of CU-EDTA complex by hydrolysis of thiourea. The combination of both techniques allowed the preparation of individual lanthanides as Nd, Pr and La with 99% and Sm with 90% purity

  19. Positron Annihilation in Insulating Materials

    International Nuclear Information System (INIS)

    Asoka-Kumar, P; Sterne, PA

    2002-01-01

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO 2 . Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, which predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO 2 samples

  20. Numerical analysis of non-linear vibrations of a fractionally damped cylindrical shell under the conditions of combinational internal resonance

    Directory of Open Access Journals (Sweden)

    Rossikhin Yury A.

    2018-01-01

    Full Text Available Non-linear damped vibrations of a cylindrical shell embedded into a fractional derivative medium are investigated for the case of the combinational internal resonance, resulting in modal interaction, using two different numerical methods with further comparison of the results obtained. The damping properties of the surrounding medium are described by the fractional derivative Kelvin-Voigt model utilizing the Riemann-Liouville fractional derivatives. Within the first method, the generalized displacements of a coupled set of nonlinear ordinary differential equations of the second order are estimated using numerical solution of nonlinear multi-term fractional differential equations by the procedure based on the reduction of the problem to a system of fractional differential equations. According to the second method, the amplitudes and phases of nonlinear vibrations are estimated from the governing nonlinear differential equations describing amplitude-and-phase modulations for the case of the combinational internal resonance. A good agreement in results is declared.

  1. Comparison of {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography, hydro-stomach computed tomography, and their combination for detecting primary gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hye Young; Chung, Woo Suk; Song, E Rang; Kim, Jin Suk [Konyang University Myunggok Medical Research Institute, Konyang University Hospital, Konyang University College of Medicine, Daejeon (Korea, Republic of)

    2015-01-15

    To retrospectively compare the diagnostic accuracy for detecting primary gastric cancer on positron emission tomography/computed tomography (PET/CT) and hydro-stomach CT (S-CT) and determine whether the combination of the two techniques improves diagnostic performance. A total of 253 patients with pathologically proven primary gastric cancer underwent PET/CT and S-CT for the preoperative evaluation. Two radiologists independently reviewed the three sets (PET/CT set, S-CT set, and the combined set) of PET/CT and S-CT in a random order. They graded the likelihood for the presence of primary gastric cancer based on a 4-point scale. The diagnostic accuracy of the PET/CT set, the S-CT set, and the combined set were determined by the area under the alternative-free receiver operating characteristic curve, and sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Diagnostic accuracy, sensitivity, and NPV for detecting all gastric cancers and early gastric cancers (EGCs) were significantly higher with the combined set than those with the PET/CT and S-CT sets. Specificity and PPV were significantly higher with the PET/CT set than those with the combined and S-CT set for detecting all gastric cancers and EGCs. The combination of PET/CT and S-CT is more accurate than S-CT alone, particularly for detecting EGCs.

  2. Comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, hydro-stomach computed tomography, and their combination for detecting primary gastric cancer

    International Nuclear Information System (INIS)

    Jang, Hye Young; Chung, Woo Suk; Song, E Rang; Kim, Jin Suk

    2015-01-01

    To retrospectively compare the diagnostic accuracy for detecting primary gastric cancer on positron emission tomography/computed tomography (PET/CT) and hydro-stomach CT (S-CT) and determine whether the combination of the two techniques improves diagnostic performance. A total of 253 patients with pathologically proven primary gastric cancer underwent PET/CT and S-CT for the preoperative evaluation. Two radiologists independently reviewed the three sets (PET/CT set, S-CT set, and the combined set) of PET/CT and S-CT in a random order. They graded the likelihood for the presence of primary gastric cancer based on a 4-point scale. The diagnostic accuracy of the PET/CT set, the S-CT set, and the combined set were determined by the area under the alternative-free receiver operating characteristic curve, and sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Diagnostic accuracy, sensitivity, and NPV for detecting all gastric cancers and early gastric cancers (EGCs) were significantly higher with the combined set than those with the PET/CT and S-CT sets. Specificity and PPV were significantly higher with the PET/CT set than those with the combined and S-CT set for detecting all gastric cancers and EGCs. The combination of PET/CT and S-CT is more accurate than S-CT alone, particularly for detecting EGCs.

  3. Positron emission tomography

    CERN Document Server

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  4. Distribution of Artificial Radioisotopes in Granulometric and Organic Fractions of Alluvial Soils Downstream the Krasnoyarsk Mining and Chemical Combine

    Energy Technology Data Exchange (ETDEWEB)

    Korobova, Elena M.; Linnik, Vitaly G. [Vernadsky Institute of Geochemistry and Analytical Chemistry, 117991, Moscow (Russian Federation); Brown, Justin E. [Norwegian Radiation Protection Authority P.O. Box 55, N-1332 Oesteraas (Norway)

    2014-07-01

    A study of some artificial radionuclides discharged by the Krasnoyarsk Mining and Chemical Combine (KMCC) in different granulometric and organic fractions of alluvial soils was performed in the near and remote impact zones of the enterprise. Radionuclides were shown to concentrate in fine fractions enriched in hydro-mica and smectites. However in natural conditions the dominating size fraction associated with radionuclide accumulation at the study sites appeared to be made up of silt (0.010 mm) to clay (0.001 mm) sizes. Therefore due to radionuclide sorption and natural aggregation the peaks of a relatively high radionuclide mass accumulation were associated with three granulometric fractions: <0.001 mm, 0.063-0.010 mm and 0.25-0.125 mm. Soil granulometry was shown to reflect specificity of sedimentation at different landscape positions downstream from the KMCC. At the Balchug site a coarser fraction was accumulated close to the channel while finer fractions are deposited at a higher level. The portion of the clay fraction corresponded to the elevation level increasing from the river bank to the terrace. At the Mikhin Island the tendency was different. A coarser fraction was deposited on higher levels while the portion of clay fraction was at a minimum compared to the lower levels. To study the relationship between radionuclide activity concentrations and organic matter content, selected soil samples were subjected to extraction of the humic and fulvic acid fractions with a subsequent determination of radionuclides in the separated phases and the residue component. The air-dry sample was saturated with 0.1 M NaOH, humic acid was precipitated by 1 M HCl at pH=1. The separation resulted in three fractions of the fulvic acids, humic acids, and the residue containing the denuded mineral phase and the refractory organic residue. Radionuclides measured in the first fraction were believed to be the most mobile, those in the second fraction - subjected to the complexation

  5. A Southern African positron beam

    International Nuclear Information System (INIS)

    Britton, D.T.; Haerting, M.; Teemane, M.R.B.; Mills, S.; Nortier, F.M.; Van der Walt, T.N.

    1997-01-01

    The first stage of a state of the art positron beam, being constructed at the University of Cape Town, is currently being brought into operation. This is the first positron beam on the African continent, as well as being the first positron beam dedicated to solid and surface studies in the southern hemisphere. The project also contains a high proportion of local development, including the encapsulated 22 Na positron source developed by our collaboration. Novel features in the design include a purely magnetic in-line deflector, working in the solenoidal guiding field, to eliminate unmoderated positrons and block the direct line of sight to the source. A combined magnetic projector and single pole probe forming lens is being implemented in the second phase of construction to achieve a spot size of 10 μm without remoderation

  6. Combined fractional resurfacing (10600 nm/1540 nm): Tridimensional imaging evaluation of a new device for skin rejuvenation.

    Science.gov (United States)

    Mezzana, Paolo; Valeriani, Maurizio; Valeriani, Roberto

    2016-11-01

    In this study were described the results, by tridimensional imaging evaluation, of the new "Combined Fractional Resurfacing" technique with the first fractional laser that overtakes the limits of traditional ablative, nonablative fractional resurfacing by combining CO 2 ablative and GaAs nonablative lasers. These two wavelengths can work separately or in a mixed modality to give the best treatment choice to all the patients. In this study, it is demonstrated that the simultaneous combination of the CO 2 wavelength (10600 nm) and GaAs wavelength (1540 nm) reduced the downtime, reduced pain during the treatment, and produced better results on fine wrinkles reduction and almost the same results on pigmentation as seen with 3D analysis by Antera (Miravex).

  7. Positron emission tomography. Positronemisionstomografi

    Energy Technology Data Exchange (ETDEWEB)

    Bolwig, T G; Haunsoe, S; Dahlgaard Hove, J; Hesse, B; Hoejgard, L; Jensen, M; Paulson, O B; Hastrup Svendsen, J; Soelvsten Soerensen, S

    1994-10-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ([sup 11]C), oxygen ([sup 15]O), and nitrogen ([sup 13]N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.).

  8. Positron emission tomography

    International Nuclear Information System (INIS)

    Bolwig, T.G.; Haunsoe, S.; Dahlgaard Hove, J.; Hesse, B.; Hoejgard, L.; Jensen, M.; Paulson, O.B.; Hastrup Svendsen, J.; Soelvsten Soerensen, S.

    1994-01-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ( 11 C), oxygen ( 15 O), and nitrogen ( 13 N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.)

  9. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zhihua; Gates, Erica L.; Trout, Andrew T. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); O' Brien, Maureen M. [Cincinnati Children' s Hospital Medical Center, Division of Oncology, Cancer and Blood Disease Institute, Cincinnati, OH (United States)

    2018-02-15

    Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations. (orig.)

  10. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma

    International Nuclear Information System (INIS)

    Qi, Zhihua; Gates, Erica L.; Trout, Andrew T.; O'Brien, Maureen M.

    2018-01-01

    Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations. (orig.)

  11. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma.

    Science.gov (United States)

    Qi, Zhihua; Gates, Erica L; O'Brien, Maureen M; Trout, Andrew T

    2018-02-01

    Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (PCT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations.

  12. Planned Positron Factory project

    International Nuclear Information System (INIS)

    Okada, Sohei

    1990-01-01

    The Japan Atomic Energy Research Institute, JAERI, has started, drafting a construction plan for the 'Positron Factory', in which intense energy-controllable monoenergetic positron beams are produced from pair-production reactions caused by high-energy electrons from a linac. The JAERI organized a planning committee to provide a basic picture for the Positron Factory. This article presents an overview of the interactions of positrons, intense positron sources and the research program and facilities planned for the project. The interactions of positrons and intense positron sources are discussed focusing on major characteristics of positrons in different energy ranges. The research program for the Positron Factory is then outlined, focusing on advanced positron annihilation techniques, positron spectroscopy (diffraction, scattering, channeling, microscopy), basic positron physics (exotic particle science), and positron beam technology. Discussion is also made of facilities required for the Positron Factory. (N.K.)

  13. Proliferation and clonal survival of human lung cancer cells treated with fractionated irradiation in combination with paclitaxel

    International Nuclear Information System (INIS)

    Rijn, Johannes van; Berg, Jaap van den; Meijer, Otto W.M.

    1995-01-01

    Purpose: This study was performed to determine the effects of a continuous exposure to paclitaxel (taxol) in combination with fractionated irradiation on cell proliferation and survival. Methods and Materials: Human lung carcinoma cells (SW1573) were given a daily treatment with 3 Gy of x-rays during 5 days in the continuous presence of 5 nM taxol. The surviving fraction and the total number of cells were determined every 24 h before and immediately after irradiation. Results: Irradiation with 5 x 3 Gy and 5 nM taxol cause approximately the same inhibition of cell proliferation. In combination these treatments have an additional effect and the cell population increases no further after the first 24 h. Whereas the cells become more resistant to taxol after the first 24 h with a minimum survival of 42%, taxol progressively reduces the population of surviving cells in combination with x-rays when the number of fractions increases, up to 25-fold relative to irradiation alone. The enhancement effect of 5 nM taxol is likely to be attributed to an inhibition of the repopulation during fractionated irradiation and not to an increased radiosensitivity. Only after treatment with 10 or 100 nM taxol for 24 h, which is attended with a high cytotoxicity, is moderate radiosensitization observed. Conclusion: Taxol, continuously present at a low concentration with little cytotoxicity, causes a progressive reduction of the surviving cell population in combination with fractionated irradiation, mainly by an inhibition of the repopulation of surviving cells between the dose fractions

  14. Fractionation of organic substances from the South African Eucalyptus grandis biomass by a combination of hot water and mild alkaline treatments

    CSIR Research Space (South Africa)

    Johakimu, Jonas K

    2015-09-01

    Full Text Available An alternative way of fractionating lignocellulose biomass into its individual components, hemicelluloses, lignin and cellulose, was investigated. South African Eucalyptus grandis wood chips were fractionated using a combination of hot water...

  15. Bulk Materials Analysis Using High-Energy Positron Beams

    International Nuclear Information System (INIS)

    Glade, S C; Asoka-Kumar, P; Nieh, T G; Sterne, P A; Wirth, B D; Dauskardt, R H; Flores, K M; Suh, D; Odette, G.R.

    2002-01-01

    This article reviews some recent materials analysis results using high-energy positron beams at Lawrence Livermore National Laboratory. We are combining positron lifetime and orbital electron momentum spectroscopic methods to provide electron number densities and electron momentum distributions around positron annihilation sites. Topics covered include: correlation of positron annihilation characteristics with structural and mechanical properties of bulk metallic glasses, compositional studies of embrittling features in nuclear reactor pressure vessel steel, pore characterization in Zeolites, and positron annihilation characteristics in alkali halides

  16. Combining functional CT and FDG PET allows the calculation of FDG extraction fraction and hepatic glucose phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, M R [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Miles, K A [Centre for Medical and Health Physics, Queensland University of Technology (Australia); Wesley Research Institute, QLD (Australia); Southern X-ray Clinics, Brisbane [Australia; Keith, C J [Wesley Research Institute, QLD (Australia)

    2002-09-01

    Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and

  17. Combining functional CT and FDG PET allows the calculation of FDG extraction fraction and hepatic glucose phosphorylation

    International Nuclear Information System (INIS)

    Griffiths, M.R.; Miles, K.A.; Keith, C.J.

    2002-01-01

    Perfusion data from Functional CT and FDG-PET data may be combined to provide additional information about the uptake of FDG. We have developed methods to calculate FDG extraction fraction in tissues and to quantify hepatic glucose phosphorylation in the liver. Extraction fraction: Functional CT and FDG-PET studies were used to obtain measurements of perfusion and glucose uptake respectively within ten pulmonary nodules. The net influx constant (Ki) was determined from SUV measurements for each lung mass Extraction fraction (E) for each mass lesion was determined from: E=Ki/(Px[1-Hct]). A pixel by pixel calculation allowed generation of extraction fraction maps. The extraction fraction measurements ranged (median) from 0.6% to 4.81% (2.7%). The values for a benign nodule and an organising pneumonia were 0.6% and 0.71% respectively. Extraction fraction measurements for the malignant nodules ranged from 2.01% to 4.81%. A clearer separation of benign and malignant lesions is seen with E values rather than with SUV. Hepatic Glucose Phosphorylation: Functional CT and FDG-PET were utilised to obtain measurements of perfusion and glucose uptake respectively within the livers of a series of 35 patients with colorectal cancer. Hepatic perfusion and the net influx constant were incorporated into FDG kinetic analysis to determine hepatic glucose phosphorylation fraction. SUV and Ki were significantly lower in the 12 patients with advanced disease (p=0.015 and p=0.013 respectively) whereas portal and total hepatic perfusion were increased (p=0.013 and p=0.008 respectively). Combining the PET and CT data yielded phosphorylation fractions of 1.14% and 0.74% for early and advanced disease respectively (p=0.002). By combining functional CT measurements of blood flow with PET measurements of FDG uptake, it is possible to calculate the extraction fraction of FDG and Hepatic glucose phosphorylation. The use of the extraction fraction has improved the distinction between malignant and

  18. Positron confinement in embedded lithium nanoclusters

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  19. The efficacy of autologous platelet-rich plasma combined with erbium fractional laser therapy for facial acne scars or acne.

    Science.gov (United States)

    Zhu, Jiang-Ting; Xuan, Min; Zhang, Ya-Ni; Liu, Hong-Wei; Cai, Jin-Hui; Wu, Yan-Hong; Xiang, Xiao-Fei; Shan, Gui-Qiu; Cheng, Biao

    2013-07-01

    The aim of this study was to evaluate the efficacy of autologous platelet-rich plasma (PRP) combined with erbium fractional laser therapy for facial acne or acne scars. PRP combined with erbium fractional laser therapy was used for the treatment of 22 patients, including 16 patients who suffered from facial acne scars and 6 patients who suffered from acne scars concomitant with acne. Whole blood (40 ml) was collected from each patient, and following differential centrifugation, PRP was harvested. After using an erbium fractional laser, we applied PRP to the entire face of every patient. Digital photos were taken before and after the treatment for evaluation by dermatologists and the patients rated the efficacy on a 5-point scale. The erythema was moderate or mild, while its total duration was 50%, and 91% of the patients were satisfied; no acne inflammation was observed after treatment. PRP combined with erbium fractional laser therapy is an effective and safe approach for treating acne scars or acne, with minimal side-effects, and it simultaneously enhanced the recovery of laser-damaged skin.

  20. Generation and application of slow positrons based on a electron LINAC

    International Nuclear Information System (INIS)

    Kurihara, Toshikazu

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses 58 Co, 64 Cu, 11 C, 13 N, 15 O and 18 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihilation excitation and positron reemission microscope are developed. (S.Y.)

  1. Combined effect of carcinogenic n-nitrosodimethylamine precursors and fractioned γ-irradiation on tumor development in rats

    International Nuclear Information System (INIS)

    Galenko, P.M.; Nedopitanskaya, N.N.

    1996-01-01

    The influence of combined action of N-nitrosodimethylamine (NDMA) and fractioned γ-irradiation on tumor development in rats was investigated. Both the tumor frequency and tumor plurality coefficient have been studied for two types of treatment: precursors of NDMA (amidopyrine and/or sodium nitrite (SN)) alone and the combination 'precursors plus radiation'. Tumor frequency decreased by about 11% after combination of γ-irradiation and precursors in comparison with precursors alone. Nevertheless, treatment with SN and γ-irradiation did not change tumor frequency in comparison with SN alone. Irradiation of rats treated with precursors led to an increased tumor plurality coefficient

  2. Correlation of hypoxic cell fraction with glucose metabolic rate in gliomas with 18F-Fluoromisonidazole (FMISO) and 18F- Fluorodeoxyglucose (FDG) positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Tauro, A.J.; Scott, A.M.; Hannah, A.; Pathmaraj, K.; Tochon-Danguy, H.; Sachinidis, J.I.; Chan, J.D.; Berlangieri, S.U.; Egan, G.F.; Fabinyi, G.; McKay, W.J.; Cher, L.M.; Austin and Repatriation Medical Centre, Heidelberg, VIC

    1998-01-01

    Full text: FDG-PET studies of brain tumours to measure tumour activity are well established, with regions of higher grade tumour utilising more glucose compared to lower grade tumour tissue and normal tissue. FDG uptake in tumour cells may reflect anaerobic glycolysis, but this has not been proven in- vivo. FMISO is a novel positron-emitting compound that has been shown to selectively identify hypoxic but viable tissue, which may contribute to chemoradiotherapy resistance in tumour cells. Studies correlating measurements of regional hypoxia and glucose activity within brain tumours prior to therapy may help gain further insight into the relationship between hypoxic tumour tissue and resistance to chemoradiotherapy. Three patients with newly diagnosed primary brain tumours have been prospectively studied with FMISO-PET, FDG-PET and MRI, prior to surgery. Each patient presented with a suspected primary brain glioma on MRI, which were all confirmed to be high grade glioma on subsequent histology at surgery FMISO-PET, FDG-PET and MRI images of all patients were co-registered to precisely identify the areas of metabolic activity within tumour and surrounding cortical tissue. All gliomas demonstrated areas of FMISO uptake, which corresponded to areas of maximal FDG uptake, indicating a correlation between hypoxic areas within tumour with areas of increased glucose metabolic activity. This supports the hypothesis that hypoxic areas within tumour tissue may be associated with increased FDG uptake, although whether hypoxia itself increases FDG uptake remains controversial. These correlative studies characterising areas of hypoxia and glucose activity should hopefully assist in future therapeutic manipulations to improve the outcome from treatment of primary brain tumours

  3. Improving snow fraction spatio-temporal continuity using a combination of MODIS and Fengyun-2 satellites over China

    Science.gov (United States)

    Jiang, L.; Wang, G.

    2017-12-01

    Snow cover is one of key elements in the investigations of weather, climatic change, water resource, and snow hazard. Satellites observations from on-board optical sensors provides the ability to snow cover mapping through the discrimination of snow from other surface features and cloud. MODIS provides maximum of snow cover data using 8-day composition data in order to reduce the cloud obscuration impacts. However, snow cover mapping is often required to obtain at the temporal scale of less than one day, especially in the case of disasters. Geostationary satellites provide much higher temporal resolution measurements (typically at 15 min or half or one hour), which has a great potential to reduce cloud cover problem and observe ground surface for identifying snow. The proposed method in this work is that how to take the advantages of polar-orbiting and geostationary optical sensors to accurately map snow cover without data gaps due to cloud. FY-2 geostationary satellites have high temporal resolution observations, however, they are lacking enough spectral bands essential for snow cover monitoring, such as the 1.6 μm band. Based on our recent work (Wang et al., 2017), we improved FY-2/VISSR fractional snow cover estimation with a linear spectral unmixing analysis method. The linear approach is applied then using the reflectance observed at the certain hourly image of FY-2 to calculate pixel-wise snow cover fraction. The composition of daily factional snow cover employs the sun zenith angle, where the snow fraction under lowest sun zenith angle is considered as the most confident result. FY-2/VISSR fractional snow cover map has less cloud due to the composition of multi-temporal snow maps in a single day. In order to get an accurate and cloud-reduced fractional snow cover map, both of MODIS and FY-2/VISSR daily snow fraction maps are blended together. With the combination of FY-2E/VISSR and MODIS, there are still some cloud existing in the daily snow fraction map

  4. The role of metabotropic glutamate receptor 5 in the pathogenesis of mood disorders and addiction:Combining preclinical evidence with human Positron Emission Tomography (PET studies

    Directory of Open Access Journals (Sweden)

    Sylvia eTerbeck

    2015-03-01

    Full Text Available In the present review, we deliver an overview of the involvement of metabotropic glutamate receptor 5 (mGluR5 activity and density in pathological anxiety, mood disorders and addiction. Specifically, we will describe mGluR5 studies in humans that employed Positron Emission Tomography (PET and combined the findings with preclinical animal research. This combined view of different methodological approaches — from basic neurobiological approaches to human studies — might give a more comprehensive and clinically relevant view of mGluR5 function in mental health than the view on preclinical data alone. We will also review the current research data on mGluR5 along the Research Domain Criteria (RDoC. Firstly, we found evidence of abnormal glutamate activity related to the positive and negative valence systems, which would suggest that antagonistic mGluR5 intervention has prominent anti-addictive, anti-depressive and anxiolytic effects. Secondly, there is evidence that mGluR5 plays in important role in systems for social functioning and the response to social stress. Finally, mGluR5’s important role in sleep homeostasis suggests that this glutamate receptor may play an important role in RDoC’s arousal and modulatory systems domain. Glutamate was previously mostly investigate in non-human studies, however initial human clinical PET research now also supports the hypothesis that, by mediating brain excitability, neuroplasticity and social cognition, abnormal metabotropic glutamate activity might predispose individuals to a broad range of psychiatric problems.

  5. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Eric, E-mail: eberg@ucdavis.edu; Roncali, Emilie; Du, Junwei; Cherry, Simon R. [Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616 (United States); Kapusta, Maciej [Molecular Imaging, Siemens Healthcare, Knoxville, Tennessee 37932 (United States)

    2016-02-15

    Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals.

  6. Combined positron emission tomography/computed tomography (PET/CT) for clinical oncology: technical aspects and acquisition protocols

    International Nuclear Information System (INIS)

    Beyer, T.

    2004-01-01

    Combined PET/CT imaging is a non-invasive means of reviewing both, the anatomy and the molecular pathways of a patient during a quasi-simultaneous examination. Since the introduction of the prototype PET/CT in 1998 a rapid development of this imaging technology is being witnessed. The incorporation of fast PET detector technology into PET/CT designs and the routine use of the CT transmission images for attenuation correction of the PET allow for anato-metabolic whole-body examinations to be completed in less than 30 min. Thus, PET/CT imaging offers a logistical advantage to both, the patient and the clinicians since the two complementary exams - whenever clinically indicated - can be performed almost at the same time and a single integrated report can be created. Nevertheless, a number of pit-falls, primarily from the use of CT-based attenuation correction, have been identified and are being addressed through optimized acquisition protocols. It is fair to say, that PET/CT has been integrated in the diagnostic imaging arena, and in many cases has led to a close collaboration between different, yet complementary diagnostic and therapeutic medical disciplines. (orig.)

  7. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography

    International Nuclear Information System (INIS)

    Berg, Eric; Roncali, Emilie; Du, Junwei; Cherry, Simon R.; Kapusta, Maciej

    2016-01-01

    Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals

  8. Novel methotrexate soft nanocarrier/fractional erbium YAG laser combination for clinical treatment of plaque psoriasis.

    Science.gov (United States)

    Ramez, Shahenda A; Soliman, Mona M; Fadel, Maha; Nour El-Deen, Faisal; Nasr, Maha; Youness, Eman R; Aboel-Fadl, Dalea M

    2018-02-15

    Psoriasis is a commonly encountered chronic dermatological disease, presenting with inflammatory symptoms in patients. Systemic treatment of psoriasis is associated with several adverse effects, therefore the development of a customized topical treatment modality for psoriasis would be an interesting alternative to systemic delivery. The therapeutic modality explored in this article was the comparative treatment of psoriatic patients using nanoparticulated methotrexate in the form of jojoba oil-based microemulsion with or without fractional erbium YAG laser. Assessment parameters included follow-up photography for up to 8 weeks of treatment, estimation of the psoriasis severity [TES (thickness, erythema, scales)] score, and histopathological skin evaluation. The prepared methotrexate microemulsion was clinically beneficial and safe in treatment of psoriasis vulgaris. The concomitant use of the fractional laser provided improvement in the psoriatic plaques within shorter time duration (3 weeks compared to 8 weeks of treatment), presenting an alternative topical treatment modality for psoriasis vulgaris.

  9. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform

    Science.gov (United States)

    Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun

    2018-07-01

    Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.

  10. Generation and application of slow positrons based on a electron LINAC

    CERN Document Server

    Kurihara, T

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses sup 5 sup 8 Co, sup 6 sup 4 Cu, sup 1 sup 1 C, sup 1 sup 3 N, sup 1 sup 5 O and sup 1 sup 8 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihil...

  11. Performance of the Electromagnetic Calorimeter of AMS-02 on the International Space Station ans measurement of the positronic fraction in the 1.5 – 350 GeV energy range

    CERN Document Server

    Basara, Laurent

    The AMS-02 experiment is a particle detector installed on the International Space Station (ISS) since May 2011, which measures the characteristics of the cosmic rays to bring answers to the problematics risen by the astroparticle physics since a few decades, in particular the study of dark matter and the search of antimatter. The phenomenological aspects of the physics of cosmic rays are reviewed in a first part. A second one describes the in-flight performances of the different subdetectors of AMS-02, in particular the electromagnetic calorimeter. It is shown, using particles at the ionizing minimum (MIPs), accounting for the main part of cosmic rays, that the calorimeter works as expected, and we find the same performances as on ground. This study is used to follow in time the evolution of the detector performances. It also allows to develop a charge estimator for the nuclei using the calorimeter. A third and final part, deals with the determination of the positronic fraction. The main difficulty of this me...

  12. Combination of peptide receptor radionuclide therapy with fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma

    International Nuclear Information System (INIS)

    Kreissl, Michael C; Flentje, Michael; Sweeney, Reinhart A; Hänscheid, Heribert; Löhr, Mario; Verburg, Frederik A; Schiller, Markus; Lassmann, Michael; Reiners, Christoph; Samnick, Samuel S; Buck, Andreas K

    2012-01-01

    External beam radiotherapy (EBRT) is the treatment of choice for irresectable meningioma. Due to the strong expression of somatostatin receptors, peptide receptor radionuclide therapy (PRRT) has been used in advanced cases. We assessed the feasibility and tolerability of a combination of both treatment modalities in advanced symptomatic meningioma. 10 patients with irresectable meningioma were treated with PRRT ( 177 Lu-DOTA0,Tyr3 octreotate or - DOTA0,Tyr3 octreotide) followed by external beam radiotherapy (EBRT). EBRT performed after PRRT was continued over 5–6 weeks in IMRT technique (median dose: 53.0 Gy). All patients were assessed morphologically and by positron emission tomography (PET) before therapy and were restaged after 3–6 months. Side effects were evaluated according to CTCAE 4.0. Median tumor dose achieved by PRRT was 7.2 Gy. During PRRT and EBRT, no side effects > CTCAE grade 2 were noted. All patients reported stabilization or improvement of tumor-associated symptoms, no morphologic tumor progression was observed in MR-imaging (median follow-up: 13.4 months). The median pre-therapeutic SUV max in the meningiomas was 14.2 (range: 4.3–68.7). All patients with a second PET after combined PRRT + EBRT showed an increase in SUV max (median: 37%; range: 15%–46%) to a median value of 23.7 (range: 8.0–119.0; 7 patients) while PET-estimated volume generally decreased to 81 ± 21% of the initial volume. The combination of PRRT and EBRT is feasible and well tolerated. This approach represents an attractive strategy for the treatment of recurring or progressive symptomatic meningioma, which should be further evaluated

  13. Toward a European Network of Positron Laboratories

    Directory of Open Access Journals (Sweden)

    Karwasz Grzegorz P.

    2015-12-01

    Full Text Available Some applications of controlled-energy positron beams in material studies are discussed. In porous organic polysilicates, measurements of 3γ annihilation by Doppler broadening (DB method at the Trento University allowed to trace pore closing and filling by water vapor. In silicon coimplanted by He+ and H+, DB data combined with positron lifetime measurements at the München pulsed positron beam allowed to explain Si blistering. Presently measured samples of W for applications in thermonuclear reactors, irradiated by W+ and electrons, show vast changes of positron lifetimes, indicating complex dynamics of defects.

  14. Endogenous Plasma Peptide Detection and Identification in the Rat by a Combination of Fractionation Methods and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Fabrice Bertile

    2007-01-01

    Full Text Available Mass spectrometry-based analyses are essential tools in the field of biomarker research. However, detection and characterization of plasma low abundance and/or low molecular weight peptides is challenged by the presence of highly abundant proteins, salts and lipids. Numerous strategies have already been tested to reduce the complexity of plasma samples. The aim of this study was to enrich the low molecular weight fraction of rat plasma. To this end, we developed and compared simple protocols based on membrane filtration, solid phase extraction, and a combination of both. As assessed by UV absorbance, an albumin depletion 99% was obtained. The multistep fractionation strategy (including reverse phase HPLC allowed detection, in a reproducible manner (CV [1] 30%–35%, of more than 450 peaks below 3000 Da by MALDI-TOF/MS. A MALDI-TOF/MS-determined LOD as low as 1 fmol/μL was obtained, thus allowing nanoLC-Chip/ MS/MS identification of spiked peptides representing ∼10–6% of total proteins, by weight. Signal peptide recovery ranged between 5%–100% according to the spiked peptide considered. Tens of peptide sequence tags from endogenous plasma peptides were also obtained and high confidence identifications of low abundance fibrinopeptide A and B are reported here to show the efficiency of the protocol. It is concluded that the fractionation protocol presented would be of particular interest for future differential (high throughput analyses of the plasma low molecular weight fraction.

  15. Positron beam studies of transients in semiconductors

    International Nuclear Information System (INIS)

    Beling, C.D.; Ling, C.C.; Cheung, C.K.; Naik, P.S.; Zhang, J.D.; Fung, S.

    2006-01-01

    Vacancy-sensing positron deep level transient spectroscopy (PDLTS) is a positron beam-based technique that seeks to provide information on the electronic ionization levels of vacancy defects probed by the positron through the monitoring of thermal transients. The experimental discoveries leading to the concept of vacancy-sensing PDLTS are first reviewed. The major problem associated with this technique is discussed, namely the strong electric fields establish in the near surface region of the sample during the thermal transient which tend to sweep positrons into the contact with negligible defect trapping. New simulations are presented which suggest that under certain conditions a sufficient fraction of positrons may be trapped into ionizing defects rendering PDLTS technique workable. Some suggestions are made for techniques that might avoid the problematic electric field problem, such as optical-PDLTS where deep levels are populated using light and the use of high forward bias currents for trap filling

  16. Positrons from supernova and the origin of the galactic-center positron-annihilation radiation

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1983-01-01

    The emission of positrons from supernova ejecta is dicussed in terms of the galactic-center annihilation radiation. The positrons from the radioactive sequences 56 Ni→ 56 Co→ 56 Fe are the most numerous source from supernova. Only type I supernova will allow a significant fraction to escape the expanding ejecta. For a neutron star model of a type I SN a fraction 4 x 10 -3 of the escaped positron is enough to create the observed several year fluctuation of the annihilation radiation. The likelihood of this model is discussed in terms of other astrophysical evidence as well as the type I SN light curve

  17. {sup 18}F-fluorodeoxyglucose positron emission tomography combined with whole-body computed tomographic angiography in critically ill patients with suspected severe sepsis with no definite diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Mandry, Damien [CHU Nancy, Pole d' imagerie, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); INSERM, UMR 947, Nancy (France); Tatopoulos, Alexis; Lemarie, Jeremie; Bollaert, Pierre-Edouard; Gibot, Sebastien [University of Lorraine, Faculty of Medicine, Nancy (France); CHU de Nancy - Hopital Central, Service de Reanimation Medicale, Nancy (France); INSERM, UMR 1116, Nancy (France); Chevalier-Mathias, Elodie [CHU Nancy, Pole d' imagerie, Nancy (France); INSERM, UMR 947, Nancy (France); Nancyclotep, Experimental Imaging Platform, Nancy (France); Roch, Veronique [CHU Nancy, Pole d' imagerie, Nancy (France); Nancyclotep, Experimental Imaging Platform, Nancy (France); Olivier, Pierre [CHU Nancy, Pole d' imagerie, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); Nancyclotep, Experimental Imaging Platform, Nancy (France); Marie, Pierre-Yves [CHU Nancy, Pole d' imagerie, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); INSERM, UMR 1116, Nancy (France); Nancyclotep, Experimental Imaging Platform, Nancy (France)

    2014-10-15

    Timely identification of septic foci is critical in patients with severe sepsis or septic shock of unknown origin. This prospective pilot study aimed to assess {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET), combined with whole-body computed tomographic angiography (CTA), in patients with suspected severe sepsis and for whom the prior diagnostic workup had been inconclusive. Patients hospitalized in an intensive care unit with a suspected severe sepsis but no definite diagnosis after 48 h of extensive investigations were prospectively included and referred for a whole body FDG-PET/CTA. Results from FDG-PET/CTA were assessed according to the final diagnosis obtained after follow-up and additional diagnostic workup. Seventeen patients were prospectively included, all on mechanical ventilation and 14 under vasopressor drugs. The FDG-PET/CTA exam 1) was responsible for only one desaturation and one hypotension, both quickly reversible under treatment; 2) led to suspect 16 infectious sites among which 13 (81 %) could be confirmed by further diagnostic procedures; and 3) triggered beneficial changes in the medical management of 12 of the 17 study patients (71 %). The FDG-PET/CTA images showed a single or predominant infectious focus in two cases where CTA was negative and in three cases where CTA exhibited multiple possible foci. Whole-body FDG-PET/CTA appears to be feasible, relatively safe, and provides reliable and useful information, when prospectively planned in patients with suspected severe sepsis and for whom prior diagnostic workup had been inconclusive. The FDG-PET images are particularly helpful when CTA exhibits no or multiple possible sites. (orig.)

  18. Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation

    KAUST Repository

    Vlach, Martin; Cizek, Jakub; Melikhova, Oksana; Stulikova, Ivana; Smola, Bohumil; Kekule, Tomas; Kudrnova, Hana; Gemma, Ryota; Neubert, Volkmar

    2015-01-01

    Thermal effects on the precipitation stages in as-cast Al-0.70 at. pct Mn-0.15 at. pct Sc-0.05 at. pct Zr alloy were studied. The role of lattice defects was elucidated by positron annihilation spectroscopy (lifetime and coincidence Doppler broadening) enabling investigation of solutes clustering at the atomic scale. This technique has never been used in the Al-Sc- and/or Al-Zr-based alloys so far. Studies by positron annihilation were combined with resistometry, hardness measurements, and microstructure observations. Positrons trapped at defects are preferentially annihilated by Sc electrons. Lifetime of trapped positrons indicates that Sc atoms segregate at dislocations. Maximum fraction of positrons annihilated by Sc electrons occurring at 453 K (180 °C) suggests that clustering of Sc bound with vacancies takes place. It is followed by peak of this fraction at 573 K (300 °C). A rise of the contribution of trapped positrons annihilated by Zr electrons starting at 513 K (240 °C) and attaining maximum also at 573 K (300 °C) confirms that Zr participates in precipitation of the Al3Sc particles already at these temperatures. The pronounced hardening at 573 K (300 °C) has its nature in the precipitation of the Al3Sc particles with a Zr-rich shell. The contribution of trapped positrons annihilated by Mn electrons was found to be negligible. © 2015, The Minerals, Metals & Materials Society and ASM International.

  19. Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation

    KAUST Repository

    Vlach, Martin

    2015-01-29

    Thermal effects on the precipitation stages in as-cast Al-0.70 at. pct Mn-0.15 at. pct Sc-0.05 at. pct Zr alloy were studied. The role of lattice defects was elucidated by positron annihilation spectroscopy (lifetime and coincidence Doppler broadening) enabling investigation of solutes clustering at the atomic scale. This technique has never been used in the Al-Sc- and/or Al-Zr-based alloys so far. Studies by positron annihilation were combined with resistometry, hardness measurements, and microstructure observations. Positrons trapped at defects are preferentially annihilated by Sc electrons. Lifetime of trapped positrons indicates that Sc atoms segregate at dislocations. Maximum fraction of positrons annihilated by Sc electrons occurring at 453 K (180 °C) suggests that clustering of Sc bound with vacancies takes place. It is followed by peak of this fraction at 573 K (300 °C). A rise of the contribution of trapped positrons annihilated by Zr electrons starting at 513 K (240 °C) and attaining maximum also at 573 K (300 °C) confirms that Zr participates in precipitation of the Al3Sc particles already at these temperatures. The pronounced hardening at 573 K (300 °C) has its nature in the precipitation of the Al3Sc particles with a Zr-rich shell. The contribution of trapped positrons annihilated by Mn electrons was found to be negligible. © 2015, The Minerals, Metals & Materials Society and ASM International.

  20. Coronary physiological assessment combining fractional flow reserve and index of microcirculatory resistance in patients undergoing elective percutaneous coronary intervention with grey zone fractional flow reserve.

    Science.gov (United States)

    Niida, Takayuki; Murai, Tadashi; Yonetsu, Taishi; Kanaji, Yoshihisa; Usui, Eisuke; Matsuda, Junji; Hoshino, Masahiro; Araki, Makoto; Yamaguchi, Masao; Hada, Masahiro; Ichijyo, Sadamitsu; Hamaya, Rikuta; Kanno, Yoshinori; Isobe, Mitsuaki; Kakuta, Tsunekazu

    2018-03-08

    The aim of this study is to investigate the association between fractional flow reserve (FFR) values and change in coronary physiological indices after elective percutaneous coronary intervention (PCI). Decision making for revascularization when FFR is 0.75-0.80 is controversial. A retrospective analysis was performed of 296 patients with stable angina pectoris who underwent physiological examinations before and after PCI. To investigate the differences of coronary flow improvement between territories with low-FFR (zone FFR (0.75-0.80), serial changes in physiological indices including mean transit time (Tmn), coronary flow reserve (CFR), and index of microcirculatory resistance (IMR) were compared between these two groups. Compared to low-FFR territories, grey-zone FFR territories showed significantly lower prevalence of Tmn shortening, CFR improvement, and decrease in IMR (Tmn shorting, 63.9% vs. 87.0%, P 51.3% vs. 63.3%, P = .040) and lower extent of their absolute changes (Tmn shorting, 0.06 (-0.03 to 0.16) vs. 0.22 (0.07-0.45), P zone FFR. Physiological assessment combining FFR and IMR may help identify patients who may benefit by PCI, particularly those in the grey zone. © 2018 Wiley Periodicals, Inc.

  1. Combining proteomic tools to characterize the protein fraction of llama (Lama glama) milk.

    Science.gov (United States)

    Saadaoui, Besma; Bianchi, Leonardo; Henry, Céline; Miranda, Guy; Martin, Patrice; Cebo, Christelle

    2014-05-01

    Llamas belong to the Camelidae family along with camels. While dromedary camel milk has been broadly characterized, data on llama milk proteins are scarce. The objective of this study was thus to investigate the protein composition of llama milk. Skimmed llama milk proteins were first characterized by a 2D separation technique coupling RP-HPLC in the first dimension with SDS-PAGE in the second dimension (RP-HPLC/SDS-PAGE). Llama milk proteins, namely caseins (αs1 -, αs2 -, β-, and κ-caseins), α-lactalbumin, lactoferrin, and serum albumin, were identified using PMF. Llama milk proteins were also characterized by online LC-ESI-MS analysis. This approach allowed attributing precise molecular masses for most of the previously MS-identified llama milk proteins. Interestingly, α-lactalbumin exhibits distinct chromatographic behaviors between llama and dromedary camel milk. De novo sequencing of the llama α-lactalbumin protein by LC coupled with MS/MS (LC-MS/MS) showed the occurrence of two amino acid substitutions (R62L/I and K89L/I) that partly explained the higher hydrophobicity of llama α-lactalbumin compared with its dromedary counterpart. Taken together, these results provide for the first time a thorough description of the protein fraction of Lama glama milk. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Investigation of positron moderator materials for electron-linac-based slow positron beamlines

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki; Uedono, Akira

    1998-01-01

    Positron re-emission properties were studied on moderator materials in order to improve the positron moderation system of electron-linac-based intense slow positron beamlines. The re-emitted positron fraction was measured on tungsten, SiC, GaN, SrTiO 3 , and hydrogen-terminated Si with a variable-energy pulsed positron beam. The results suggested that tungsten is the best material for the primary moderator of the positron beamlines while epitaxially grown n-type 6H-SiC is the best material for the secondary moderator. Defect characterization by monoenergetic positron beams and surface characterization by Auger electron spectroscopy were carried out to clarify the mechanism of tungsten moderator degradation induced by high-energy electron irradiation. The characterization experiments revealed that the degradation is due to both radiation-induced vacancy clusters and surface carbon impurities. For the restoration of degraded tungsten moderators, oxygen treatment at ∼900degC is effective. Furthermore, it was found that oxygen at the tungsten surface inhibits positronium formation; as a result, it can increase the positron re-emission fraction. (author)

  3. Experimental Study of 5-fluorouracil Encapsulated Ethosomes Combined with CO2 Fractional Laser to Treat Hypertrophic Scar.

    Science.gov (United States)

    Zhang, Zhen; Chen, Jun; Huang, Jun; Wo, Yan; Zhang, Yixin; Chen, Xiangdong

    2018-01-18

    This study is designed to explore permeability of ethosomes encapsulated with 5-florouracil (5-FU) mediated by CO 2 fractional laser on hypertrophic scar tissues. Moreover, therapeutic and duration effect of CO 2 fractional laser combined with 5-FU encapsulated ethosomes in rabbit ear hypertrophic scar model will be evaluated. The permeated amount of 5-FU and retention contents of 5-FU were both determined by high-performance liquid chromatography (HPLC). Fluorescence intensities of ethosomes encapsulated with 5-FU (5E) labeled with Rodanmin 6GO (Rho) were measured by confocal laser scanning microscopy (CLSM). The permeability promotion of 5E labeled with Rho in rabbit ear hypertrophic scar mediated by CO 2 fractional laser was evaluated at 0 h, 6 h, 12 h, 24 h, 3 days and 7 days after the irradiation. The opening rates of the micro-channels were calculated according to CLSM. The therapeutic effect of 5EL was evaluated on rabbit ear hypertrophic scar in vivo. Relative thickness of rabbit ear hypertrophic scar before and after the treatment was measured by caliper method. Scar elevation index (SEI) of rabbit ear hypertrophic scar was measured using H&E staining. The data showed that the penetration amount of 5EL group was higher than 5E group (4.15 ± 2.22 vs. 0.73 ± 0.33; p 5E group (107.61 ± 13.27 vs. 20.73 ± 3.77; p 5E group (24.42 ± 4.37 vs.12.25 ± 1.64; p 5E group at different time points (1, 6, and 24 h). The opening rates of the micro-channels were decreased gradually within 24 h, and micro-channels were closed completely 3 days after the irradiation by CO 2 fractional laser. The relative thickness and SEI of rabbit ear hypertrophic scar after 7 days of treatment in the 5EL group were significantly lower than the 5E group. CO 2 fractional laser combined with topical 5E can be effective in the treatment of hypertrophic scar in vivo and supply a novel therapy method for human hypertrophic scar.

  4. Does the combination of biochar and clinoptilolite enhance nutrient recovery from the liquid fraction of biogas digestate?

    DEFF Research Database (Denmark)

    Kocatürk, Nazli Pelin; Zwart, Kor; Bruun, Sander

    2017-01-01

    Concentrating nutrients on biochar and clinoptilolite and subsequently using the nutrient-enriched sorbents as a fertiliser could be an alternative way to manage nutrients in digestate. In this study, we investigated the use of biochar and clinoptilolite columns in removing ammonium, potassium......, orthophosphate and dissolved organic carbon (DOC) from the liquid fraction of digestate. Our objectives were to investigate the effect of the initial loading ratio between liquid and biochar on nutrient removal, and to investigate the effect of combining biochar with clinoptilolite on nutrient and DOC removal...... efficiency. Increasing the initial loading ratios increased nutrient concentrations on biochar to 8.61 mg NH4-N g(-1), 1.95 mg PO4-P g(-1) and 13.01 mg DOC g(-1), but resulted in decreasing removal efficiencies. The combination of biochar and clinoptilolite resulted in improved ammonium, potassium and DOC...

  5. The efficacy of fractional carbon dioxide (CO2) laser combined with terbinafine hydrochloride 1% cream for the treatment of onychomycosis.

    Science.gov (United States)

    Shi, Jian; Li, Jin; Huang, He; Permatasari, Felicia; Liu, Juan; Xu, Yang; Wu, Di; Zhou, Bing-Rong; Luo, Dan

    2017-10-01

    Although systemic and topical antifungal agents are widely used to treat onychomycosis, oral medications can cause adverse effects and the efficacy of topical agents is not satisfying. Currently, laser treatment has been studied for its efficacy in the treatment of onychomycosis. Our study was aimed to evaluate the efficacy of fractional carbon dioxide (CO 2 ) laser treatment combined with terbinafine cream for 6 months in the treatment of onychomycosis and to analyze the influencing factors. A total of 30 participants (124 nails) with clinical and mycological diagnosis of onychomycosis received fractional CO 2 laser treatment at 2-week interval combined with terbinafine cream once daily for 6 months. The clinical efficacy rate (CER) was assessed from the percentage of fully normal-appearing nails or nails with ≤5% abnormal appearance, and the mycological clearance rate (MCR) was assessed from the percentage of nails with negative fungal microscopy. The CER was evaluated at 3 time points: at the end of treatment (58.9%), at 1 month after the last treatment (63.5%), and at 3 months after the last treatment (68.5%). The MCRs at 1 month and 3 months after the last treatment were 77.4 and 74.2%, respectively. The evaluation of influencing factors showed significantly higher CER (p terbinafine cream for 6 months was an effective and safe method for the treatment of onychomycosis. There were 5 factors that positively influenced the treatment outcome: age, clinical type of onychomycosis, nail thickness, involved nail, and species of fungus.

  6. Enhancing hair growth in male androgenetic alopecia by a combination of fractional CO2 laser therapy and hair growth factors.

    Science.gov (United States)

    Huang, Yue; Zhuo, Fenglin; Li, Linfeng

    2017-11-01

    Laser therapy and growth factors have been used as alternative treatments for male androgenetic alopecia (MAA). The aim of this study is to determine the efficacy and safety of hair growth factors alone or combined with ablative carbon dioxide (CO 2 ) fractional laser therapy in MAA. Twenty-eight men were enrolled in this randomized half-split study based on a left-head to right-head pattern. Fractional CO 2 laser treatment was unilaterally performed; hair growth factors were bilaterally applied. Six sessions with 2-week intervals were performed. Global photographs and dermoscopy assessments were performed at the baseline and 4 months after first treatment. Global photographs underwent blinded review by three independent dermatologists. Scanning electron microscopy was used to compare changes in hair-follicle phase and hair-shaft diameter. Twenty-seven participants completed the 4-month treatment schedule. One patient was lost. Mean hair density increased from 114 ± 27 to 143 ± 25/cm 2 (P laser combined with hair growth factors may serve as an alternative treatment for MAA in individuals unwilling/unable to undergo medical or surgical treatment.

  7. Transmission positron microscopes

    International Nuclear Information System (INIS)

    Doyama, Masao; Kogure, Yoshiaki; Inoue, Miyoshi; Kurihara, Toshikazu; Yoshiie, Toshimasa; Oshima, Ryuichiro; Matsuya, Miyuki

    2006-01-01

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons

  8. Positron annihilation in germanium in thermal equilibrium at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Komuro, Naoyuki; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Ikari, Atsushi

    1996-09-01

    Annihilation characteristics of positrons in Ge in thermal equilibrium at high temperature were studied using a monoenergetic positron beam. Precise measurements of Doppler broadening profiles of annihilation radiation were performed in the temperature range between 300 K and 1211 K. The line shape parameters of Doppler broadening profiles were found to be almost constant at 300-600 K. The changes in these parameters were observed to start above 600 K. This was attributed to both the decrease in the fraction of positrons annihilating with core electrons and the lowering of the crystal symmetry around the region detected by positron-electron pairs. This suggests that behaviors of positrons are dominated by some form of positron-lattice coupling in Ge at high temperatures. The temperature dependence of the diffusion length of positrons was also discussed. (author)

  9. Comparative study of 201Tl reinjection tomography and combined use of 13N-ammonia and 18F-fluorodeoxyglucose positron emission tomography for detection of viable myocardium

    International Nuclear Information System (INIS)

    Wang Lijuan; Qi Guoxian; Hu Jian

    2001-01-01

    Objective: To compare the clinical value of 201 Tl reinjection tomography and combined use of 13 N-ammonia (NH 3 ) regional myocardial perfusion and 18 F-fluorodeoxyglucose (FDG) positron emission tomography transfer function and for the myocardium. Methods: The authors performed exercise 201 Tl SPECT (Tl SPECT) on 20 patients with myocardial infarction and obtained standard 201 Tl exercise-redistribution images. 201 Tl was reinjected immediately after redistribution study, and the images were then acquired as also. The 20 patients also underwent PET imaging with 13 N-NH 3 and 18 F-FDG (NH 3 -FDG PET) within one week of the above study. Vertical and horizontal long axis cuts were divided into nine segments, and uptakes of radioisotope were evaluated into four classes visually (Defect score, DS) (0:normal uptake, 3:severely reduced). Quantitative evaluation was performed on the vertical and horizontal long axis cuts of 201 Tl redistribution, reinjection and FDG PET images using regions of interest. The relative myocardial 201 Tl uptake and 18 F-FDG uptake (% ID) were expressed as the percentage of this reference region accounted for of the maximal counts. Results: In 48 segments identified as viable by the NH 3 -FDG PET images, 45 (93.8%) segments were also identified as viable by the 201 Tl redistribution imaging. Of 24 segments with severe irreversible defects on the 201 Tl redistribution imaging, 87.5% of the segments were concordantly confirmed by 201 Tl reinjection and NH 3 -FDG PET images with 37.5% identified as viable and 50% identified as scar. There was no significant difference in the average % ID, furthermore, regression analysis revealed a high positive correlation in the segmental % ID between 201 Tl reinjection and FDG PET images in the 61 segments with myocardial infarction (r = 0.722). Conclusions: The results show that 201 Tl reinjection tomography is of similar accuracy with NH 3 -FDG PET for detection of viable myocardium and possess important

  10. Characterization of taste-active fractions in red wine combining HPLC fractionation, sensory analysis and ultra performance liquid chromatography coupled with mass spectrometry detection.

    Science.gov (United States)

    Sáenz-Navajas, María-Pilar; Ferreira, Vicente; Dizy, Marta; Fernández-Zurbano, Purificación

    2010-07-19

    Five Tempranillo wines exhibiting marked differences in taste and/or astringency were selected for the study. In each wine the non-volatile extract was obtained by freeze-drying and further liquid extraction in order to eliminate remaining volatile compounds. This extract was fractionated by semipreparative C18-reverse phase-high performance liquid chromatography (C18-RP-HPLC) into nine fractions which were freeze-dried, reconstituted with water and sensory assessed for taste attributes and astringency by a specifically trained sensory panel. Results have shown that wine bitterness and astringency cannot be easily related to the bitter and astringent character of the HPLC fractions, what can be due to the existence of perceptual and physicochemical interactions. While the bitter character of the bitterest fractions may be attributed to some flavonols (myricetin, quercetin and their glycosides) the development of a sensitive UPLC-MS method to quantify astringent compounds present in wines has made it possible to demonstrate that proanthocyanidins monomers, dimers, trimers and tetramers, both galloylated or non-galloylated are not relevant compounds for the perceived astringency of the fractions, while cis-aconitic acid, and secondarily vainillic, and syringic acids and ethyl syringate, are the most important molecules driving astringency in two of the fractions (F5 and F6). The identity of the chemicals responsible for the astringency of the third fraction could be assigned to some proanthocyanidins (higher than the tetramer) capable to precipitate with ovalbumin. 2010 Elsevier B.V. All rights reserved.

  11. Effect of hyperbaric oxygen therapy combined with autologous platelet concentrate applied in rabbit fibula fraction healing

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Fagundes Neves

    2013-09-01

    Full Text Available OBJECTIVES: The purpose is to study the effects of hyperbaric oxygen therapy and autologous platelet concentrates in healing the fibula bone of rabbits after induced fractures. METHODS: A total of 128 male New Zealand albino rabbits, between 6-8 months old, were subjected to a total osteotomy of the proximal portion of the right fibula. After surgery, the animals were divided into four groups (n = 32 each: control group, in which animals were subjected to osteotomy; autologous platelet concentrate group, in which animals were subjected to osteotomy and autologous platelet concentrate applied at the fracture site; hyperbaric oxygen group, in which animals were subjected to osteotomy and 9 consecutive daily hyperbaric oxygen therapy sessions; and autologous platelet concentrate and hyperbaric oxygen group, in which animals were subjected to osteotomy, autologous platelet concentrate applied at the fracture site, and 9 consecutive daily hyperbaric oxygen therapy sessions. Each group was divided into 4 subgroups according to a pre-determined euthanasia time points: 2, 4, 6, and 8 weeks postoperative. After euthanasia at a specific time point, the fibula containing the osseous callus was prepared histologically and stained with hematoxylin and eosin or picrosirius red. RESULTS: Autologous platelet concentrates and hyperbaric oxygen therapy, applied together or separately, increased the rate of bone healing compared with the control group. CONCLUSION: Hyperbaric oxygen therapy and autologous platelet concentrate combined increased the rate of bone healing in this experimental model.

  12. Simulation of processes of water aerosol coagulation-condensation growth using a combination of methods of groups and fractions

    International Nuclear Information System (INIS)

    Alexander G Godizov; Alexander D Efanov; Alexander A Lukianov; Olga V Supotnitskaya

    2005-01-01

    Full text of publication follows: To describe the phenomena involving aerosol, the model in lumped parameters is used, which is based on the kinetic integral-differential equation for the function of particle distribution of size and content of soluble and insoluble impurities with sources and collision integrals. By the function of particle size distribution, the integral parameters of aerosol can be determined: water content (mass of condensed moisture in a unit of volume), dust content (mass of insoluble condensation nuclei in a unit of volume), calculational concentration and the mean radius of particles. In the aerosol transfer problem being considered, the thermodynamic fields are the external data obtained with a thermal-hydraulic computer code. For numerical simulation of the kinetic equation describing aerosol behavior in coagulation-condensation processes, a hybrid method is used, which combines the method of groups and the method of fractions. To solve the complete equation of aerosol transfer, the method of fractions is used. The integral equation describing aerosol coagulation is solved by means of the group method. The group method based on the representation of particle size distribution in terms of a linear combination of δ-functions with time-dependent arguments makes it possible to calculate the integral parameters of spectrum: the moments of distribution function at a small number of groups. The test calculations were performed by giving the particle spectrum as a lognormal distribution and Γ- function. The hybrid method combined with the thermal-hydraulic computer code enables one to simulate volume condensation of steam at varying thermal-hydraulic conditions. (authors)

  13. Combination of Vessel-Targeting Agents and Fractionated Radiation Therapy: The Role of the SDF-1/CXCR4 Pathway

    International Nuclear Information System (INIS)

    Chen, Fang-Hsin; Fu, Sheng-Yung; Yang, Ying-Chieh; Wang, Chun-Chieh; Chiang, Chi-Shiun; Hong, Ji-Hong

    2013-01-01

    Purpose: To investigate vascular responses during fractionated radiation therapy (F-RT) and the effects of targeting pericytes or bone marrow-derived cells (BMDCs) on the efficacy of F-RT. Methods and Materials: Murine prostate TRAMP-C1 tumors were grown in control mice or mice transplanted with green fluorescent protein-tagged bone marrow (GFP-BM), and irradiated with 60 Gy in 15 fractions. Mice were also treated with gefitinib (an epidermal growth factor receptor inhibitor) or AMD3100 (a CXCR4 antagonist) to examine the effects of combination treatment. The responses of tumor vasculatures to these treatments and changes of tumor microenvironment were assessed. Results: After F-RT, the tumor microvascular density (MVD) was reduced; however, the surviving vessels were dilated, incorporated with GFP-positive cells, tightly adhered to pericytes, and well perfused with Hoechst 33342, suggesting a more mature structure formed primarily via vasculogenesis. Although the gefitinib+F-RT combination affected the vascular structure by dissociating pericytes from the vascular wall, it did not further delay tumor growth. These tumors had higher MVD and better vascular perfusion function, leading to less hypoxia and tumor necrosis. By contrast, the AMD3100+F-RT combination significantly enhanced tumor growth delay more than F-RT alone, and these tumors had lower MVD and poorer vascular perfusion function, resulting in increased hypoxia. These tumor vessels were rarely covered by pericytes and free of GFP-positive cells. Conclusions: Vasculogenesis is a major mechanism for tumor vessel survival during F-RT. Complex interactions occur between vessel-targeting agents and F-RT, and a synergistic effect may not always exist. To enhance F-RT, using CXCR4 inhibitor to block BM cell influx and the vasculogenesis process is a better strategy than targeting pericytes by epidermal growth factor receptor inhibitor

  14. Positron emission tomography

    International Nuclear Information System (INIS)

    Iio, Masahiro

    1982-01-01

    Utilization of positron emission tomography was reviewed in relation to construction and planned construction of small-size medical cyclotrons, planned construction of positron cameras and utilization of short-lived radionuclides. (Chiba, N.)

  15. A combined accelerator mass spectrometry-positron emission tomography human microdose study with 14C- and 11C-labelled verapamil.

    Science.gov (United States)

    Wagner, Claudia C; Simpson, Marie; Zeitlinger, Markus; Bauer, Martin; Karch, Rudolf; Abrahim, Aiman; Feurstein, Thomas; Schütz, Matthias; Kletter, Kurt; Müller, Markus; Lappin, Graham; Langer, Oliver

    2011-02-01

    In microdose studies, the pharmacokinetic profile of a drug in blood after administration of a dose up to 100 μg is measured with sensitive analytical techniques, such as accelerator mass spectrometry (AMS). As most drugs exert their effect in tissue rather than blood, methodology is needed for extending pharmacokinetic analysis to different tissue compartments. In the present study, we combined, for the first time, AMS analysis with positron emission tomography (PET) in order to determine the pharmacokinetic profile of the model drug verapamil in plasma and brain of humans. In order to assess pharmacokinetic dose linearity of verapamil, data were acquired and compared after administration of an intravenous microdose and after an intravenous microdose administered concomitantly with an oral therapeutic dose. Six healthy male subjects received an intravenous microdose [0.05 mg] (period 1) and an intravenous microdose administered concomitantly with an oral therapeutic dose [80 mg] of verapamil (period 2) in a randomized, crossover, two-period study design. The intravenous dose was a mixture of (R/S)-[14C]verapamil and (R)-[11C]verapamil and the oral dose was unlabelled racaemic verapamil. Brain distribution of radioactivity was measured with PET whereas plasma pharmacokinetics of (R)- and (S)-verapamil were determined with AMS. PET data were analysed by pharmacokinetic modelling to estimate the rate constants for transfer (k) of radioactivity across the blood-brain barrier. Most pharmacokinetic parameters of (R)- and (S)-verapamil as well as parameters describing exchange of radioactivity between plasma and brain (influx rate constant [K(1)] = 0.030 ± 0.003 and 0.031 ± 0.005 mL/mL/min and efflux rate constant [k(2)] = 0.099 ± 0.006 and 0.095 ± 0.008 min-1 for period 1 and 2, respectively) were not statistically different between the two periods although there was a trend for nonlinear pharmacokinetics for the (R)-enantiomer. On the other hand, all

  16. Efficient Cryosolid Positron Moderators

    Science.gov (United States)

    2012-08-01

    table layout Figure 21 shows the integration of the IR spectroscopy optics with the positron Moderation and Annihilation vacuum chambers on the...Characterization of Cryogenic Moderators The application of Matrix Isolation Spectroscopy (MIS) to characterizing cryogenic solid positron ...Matrix Isolation Spectroscopy capability into our Positron Moderation apparatus, which enables spectroscopic characterization of the cryogenic

  17. Positron emission tomography

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.

    1985-01-01

    This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology

  18. Changing the treatment of heart failure with reduced ejection fraction: clinical use of sacubitril-valsartan combination

    Science.gov (United States)

    Kaplinsky, Edgardo

    2016-01-01

    Despite significant therapeutic advances, patients with chronic heart failure (HF) remain at high risk of morbidity and mortality. Sacubitril valsartan (previously known as LCZ696) is a new oral agent approved for the treatment of symptomatic chronic heart failure in adults with reduced ejection fraction. It is described as the first in class angiotensin receptor neprilysin inhibitor (ARNI) since it incorporates the neprilysin inhibitor, sacubitril and the angiotensin II receptor antagonist, valsartan. Neprilysin is an endopeptidase that breaks down several vasoactive peptides including natriuretic peptides (NPs), bradykinin, endothelin and angiotensin II (Ang-II). Therefore, a natural consequence of its inhibition is an increase of plasmatic levels of both, NPs and Ang-II (with opposite biological actions). So, a combined inhibition of these both systems (Sacubitril / valsartan) may enhance the benefits of NPs effects in HF (natriuresis, diuresis, etc) while Ang-II receptor is inhibited (reducing vasoconstriction and aldosterone release). In a large clinical trial (PARADIGM-HF with 8442 patients), this new agent was found to significantly reduce cardiovascular and all cause mortality as well as hospitalizations due to HF (compared to enalapril). This manuscript reviews clinical evidence for sacubitril valsartan, dosing and cautions, future directions and its considered place in the therapy of HF with reduced ejection fraction. PMID:28133468

  19. Optimum combinations of visible and near-infrared reflectances for estimating the fraction of photosynthetically available radiation absorbed by plants

    Science.gov (United States)

    Podaire, Alain; Deschamps, Pierre-Yves; Frouin, R.; Asrar, Ghassem

    1991-01-01

    A useful parameter to estimate terrestrial primary productivity, that can be sensed from space, is the daily averaged fraction of Photosynthetically Available Radiation (PAR) absorbed by plants. To evaluate this parameter, investigators have relied on the fact that the relative amount of radiation reflected by a vegetated surface in the visible and near infrared depends on the fraction of the surface covered by the vegetation and therefore, correlates with absorbed PAR. They have used vegetation indices, namely normalized difference and simple ratio, to derive absorbed PAR. The problem with normalized difference and simple ratio is first, they are non linear functions of radiance or reflectance and therefore, cannot be readily applied to heterogeneous targets, second, they are used in generally nonlinear relationships, which make time integrals of the indices not proportional to primary productivity, and third, the relationships depend strongly on the type of canopy and background. To remove these limitations, linear combinations of visible and near infrared reflectances at optimum (one or two) viewing zenith angles are proposed.

  20. Gadolinium substitution induced defect restructuring in multiferroic BiFeO3: case study by positron annihilation spectroscopy

    Science.gov (United States)

    Mukherjee, A.; Banerjee, M.; Basu, S.; Nambissan, P. M. G.; Pal, M.

    2013-12-01

    Positron annihilation spectroscopy (PAS) comprising of the measurements of positron lifetime and coincidence Doppler broadening spectra has been carried out to understand and monitor the evolution of the vacancy-type defects arising from the ionic deficiencies at lattice points of the multiferroic perovskite bismuth ferrite (BiFeO3) doped with 1, 5 and 10 at% gadolinium (Gd3+) ions. Negatively charged defects in the form of Bi3+ monovacancies (V_{Bi}^{3-} ) were present in the undoped nanocrystallites, which strongly trapped positrons. During the successive doping by Gd3+ ions, the positron trapping efficiency decreased while the doped ions combined with the vacancies to form complexes, which became neutral. A fraction of the positrons got annihilated at the crystallite surfaces too, being evident from the very large positron lifetimes obtained and confirming the nano-size-specific characteristics of the samples. Further, the intercrystallite regions provided favourable sites for orthopositronium formation, although in minute concentrations. The dopant ion-complex formation was also depicted clearly by the defect characteristic S-W plot. Also, the large change of electrical resistivity with Gd concentration has been explained nicely by invoking the defect information from the PAS study. The study has demonstrated the usefulness of an excellent method of defect identification in such a novel material system, which is vital information for exploiting them for further technological applications.

  1. Comparative study of the efficacy of Platelet-rich plasma combined with carboxytherapy vs its use with fractional carbon dioxide laser in atrophic acne scars.

    Science.gov (United States)

    Al Taweel, Abdul-Aziz Ibrahim; Al Refae, Abdul-Aziz Abdul-Salam; Hamed, Ahmed Mohamed; Kamal, Asmaa Mostafa

    2018-04-22

    Acne scars are a major concerning problem to all acne patients affecting their quality of life. Platelet-rich plasma (PRP) and fractional CO 2 laser are innovative treatment modalities for acne scars. Carboxytherapy can also be used to improve scar tissue through the increase in collagen deposition and reorganization, and the improvement in skin texture and tone. The aim of this work was to compare the efficacy, safety, and complications of the intradermal injection of PRP combined with carboxytherapy and PRP combined with fractional CO 2 laser, in the treatment of atrophic acne scars. Forty patients with atrophic acne scars were divided into 2 groups. Group A included 20 patients and was subjected to three fractional CO 2 laser sessions combined with PRP injection. Group B included 20 patients and was subjected to three sessions of carboxytherapy combined with PRP injection. Both fractional CO 2 laser and carboxytherapy combined with PRP showed improvement in acne scars and patients' satisfaction but the improvement with fractional CO 2 laser was significantly better than carboxytherapy but with more side effects. Improvement of acne scars was noted in both treatment modalities with obvious higher and statistically significant results in favor of fractional CO 2 laser but with more side effects. Carboxytherapy is a promising tool in treatment of acne scars with less complication. © 2018 Wiley Periodicals, Inc.

  2. Simultaneous measurement of cerebral blood flow and oxygen extraction fraction by positron emission tomography: theoretical study and experimental evidence of cerebral blood flow measurement with the C15O2 continuous inhalation technique

    International Nuclear Information System (INIS)

    Steinling, M.

    1983-01-01

    The method of the continuous inhalation technique of oxygen-15 labelled CO 2 coupled with positron emission tomography for the measurement of cerebral blood flow (C.B.F.) is described. An indirect experimental verification that this technique allowed the measurement of C.B.F. has been carried out in baboons by showing the expected change in the measured parameter with variations in the PaCO 2 . A critical investigation of the C 15 O 2 model was performed. The amount of tracer present in the cerebral vascular pool has a negligible effect on C.B.F. value. The use of a mean brain-blood partition coefficient of water instead of that specific to gray or to white matter is commented upon, and its influence on the final C.B.F. value is studied. Lastly, the problem of the limited diffusion of water across the blood-brain-barrier is discussed. The study of the combined effects of gray-white mixing and limited wates extraction of the C.B.F. value shows that the C 15 O 2 technique tends to understimate real C.B.F., and that this error is more severe with high flows and even gray white mixing. These limitations do not depart from the possibility to estimate in the same brain locus not only C.B.F. but oxygen utilization as well by the consecutive inhalation of C 15 O 2 and 15 O 2 . The advantages of this possibility has already been shown in a number of clinical studies [fr

  3. Clinical application of positron CT

    International Nuclear Information System (INIS)

    Takashima, Tsuneo; Yamaura, Akira; Shishido, Fumio; Tateno, Yukio.

    1981-01-01

    A newley designed positron CT has been applied for neurosurgical patients. The radiopharmaceuticals administered are 13 N-ammonia, 11 C-CO, and 18 F-fluorodeoxyglucose, which are produced and synthesized in the institute using the cyclotron. 13 N-ammonia and 18 F-fluorodeoxyglucose are administered by intravenous injection but 11 C-CO is administered by inhaling. 13 N-ammonia acts as a diffusible tracer and is readily metabolized to glutamine in the brain tissue, but the extraction fraction of the glutamine is so slow that the 13 N-ammonia imaging reflects the distribution of the crebral perfusion. 11 C-CO is combined with the hemoglobin and undiffusible in behavior. This makes the 11 C-CO images conduct the cerebral blood pooling distribution. 18 F-fluorodeoxyglucose is an analogous substance of glucose and is transported within the brain tissue competitively. Then, fluorodeoxyglucose is metabolized to fluorodeoxyglucose-6-phosphate but no further. This characteristic property of fluorodeoxyglucose let 18 F-fluorodeoxyglucose images convey the local cerebral metabolic rate of glucose. In normal volunteer subjects, the distribution of 13 N-ammonia and 18 F-fluorodeoxyglucose appeared in a similar fashion, and was in accordance with the brain tissue. Both tracers were accumulated in particularly high concentrations in the gray matter and the basal ganglia. 11 C-CO activity was prominently accumulated in various dural sinuses and the vascular areas. In stroke patients, old lesions showed a lack of perfusion but fresh lesions showed hyperperfusion surrounded by a decreased perfused area. 18 F-fluorodeoxyglucose activity was decreased in the lesion in spite of the hyperperfusion. (J.P.N.)

  4. Synergistic skin heat shock protein expression in response to combined laser treatment with a diode laser and ablative fractional lasers.

    Science.gov (United States)

    Paasch, Uwe; Sonja, Grunewald; Haedersdal, Merete

    2014-06-01

    Diode laser-based skin heating has been shown to minimise scars by interfering with wound healing responses through the induction of heat shock proteins (HSP). HSP are also induced after ablative fractional laser (AFXL) wound healing. AFXL itself is highly recommended for scar treatment. Therefore, the sequential combination of both modalities may produce superior outcomes. The aim of this study was to examine the pretreatment effects of a diode laser before AFXL on wound healing responses in terms of HSP up-regulation in an in vitro model. Immediate responses and responses on days 1, 3 or 6 post-procedure were studied in an in vitro porcine skin model (n = 240). Untreated samples served as control. Immunohistochemical investigation (Hsp70) was performed in all untreated controls, diode laser-, AFXL-, and in diode laser + AFXL-treated samples. Hsp70 was shown to be up-regulated by all interventions between days 1 and 6 after interventions. The largest effect was caused by the combination of a diode laser and an AFXL procedure. Diode laser exposure induces a skin HSP response that can be further enhanced by sequential AFXL treatment. Clinical studies are necessary to investigate the dose response of HSP on scar formation and refine suitable laser exposure settings.

  5. Positron emission tomography of the lung

    International Nuclear Information System (INIS)

    Wollmer, P.

    1984-01-01

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  6. Positron-containing systems and positron diagnostics

    International Nuclear Information System (INIS)

    1978-01-01

    The results of the experimental and theoretical investigations are presented. Considered are quantum-mechanical calculations of wave functions describing the states of positron-containing atomic systems and of cross-sections of the processes characterizing different interactions, and also the calculations of the behaviour of positrons in gases in the presence of an electric field. The results of experimental tests are presented by the data describing the behaviour of positrons and positronium in liquids, polymers and elastomers, complex oxides and in different solids. New equipment and systems developed on the basis of current studies are described. Examined is a possibility of applying the methods of model and effective potentials for studying the bound states of positron systems and for calculating cross-sections of elementary processes of elastic and inelastic collisions with a positron involved. The experimental works described indicate new possibilities of the positron diagnosis method: investigation of thin layers and films of semiconductor materials, defining the nature of chemical bonds in semiconductors, determination of the dislocation density in deformed semiconductors, derivation of important quantitative information of the energy states of radiation defects in them

  7. A real-time positron monitor for the estimation of stack effluent releases from PET medical cyclotron facilities

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar.

    2002-01-01

    Large activities of short-lived positron emitting radiopharmaceuticals are routinely manufactured by modern Medical Cyclotron facilities for positron emission tomography (PET) applications. During radiochemical processing, a substantial fraction of the volatile positron emitting radiopharmaceuticals are released into the atmosphere. An inexpensive, fast response positron detector using a simple positron-annihilation chamber has been developed for real-time assessment of the stack release of positron emitting effluents at the Australian National Medical Cyclotron. The positron detector was calibrated by using a 3.0 ml (1.50 MBq) aliquot of 18 FDG and interfaced to an industrial standard datalogger for the real-time acquisition of stack release data

  8. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Piochacz, Christian

    2009-11-20

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55{+-}0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 {mu}m. The efficiency of the re-moderation process in this second stage was 24.5{+-}4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the

  9. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    International Nuclear Information System (INIS)

    Piochacz, Christian

    2009-01-01

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55±0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 μm. The efficiency of the re-moderation process in this second stage was 24.5±4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the SPM

  10. PREFACE: The International Workshop on Positron Studies of Defects 2014

    Science.gov (United States)

    Sugita, Kazuki; Shirai, Yasuharu

    2016-01-01

    The International Workshop on Positron Studies of Defects 2014 (PSD-14) was held in Kyoto, Japan from 14-19 September, 2014. The PSD Workshop brought together positron scientists interested in studying defects to an international platform for presenting and discussing recent results and achievements, including new experimental and theoretical methods in the field. The workshop topics can be characterized as follows: • Positron studies of defects in semiconductors and oxides • Positron studies of defects in metals • New experimental methods and equipment • Theoretical calculations and simulations of momentum distributions, positron lifetimes and other characteristics for defects • Positron studies of defects in combination with complementary methods • Positron beam studies of defects at surfaces, interfaces, in sub-surface regions and thin films • Nanostructures and amorphous materials

  11. Image Encryption Technology Based on Fractional Two-Dimensional Triangle Function Combination Discrete Chaotic Map Coupled with Menezes-Vanstone Elliptic Curve Cryptosystem

    Directory of Open Access Journals (Sweden)

    Zeyu Liu

    2018-01-01

    Full Text Available A new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM with the discrete fractional difference is proposed. We observe the bifurcation behaviors and draw the bifurcation diagrams, the largest Lyapunov exponent plot, and the phase portraits of the proposed map, respectively. On the application side, we apply the proposed discrete fractional map into image encryption with the secret keys ciphered by Menezes-Vanstone Elliptic Curve Cryptosystem (MVECC. Finally, the image encryption algorithm is analysed in four main aspects that indicate the proposed algorithm is better than others.

  12. Cardiac positron emission tomography

    International Nuclear Information System (INIS)

    Eftekhari, M.; Ejmalian, G.

    2003-01-01

    Positron emission tomography is an intrinsically tool that provide a unique and unparalleled approach for clinicians and researchers to interrogate the heart noninvasively. The ability to label substances of physiological interest with positron-emitting radioisotopes has permitted insight into normal blood flow and metabolism and the alterations that occur with disease states. Positron emission tomography of the heart has evolved as a unique, noninvasive approach for the assessment of myocardial perfusion, metabolism, and function. Because of the intrinsic quantitative nature of positron emission tomography measurements as well as the diverse compounds that can be labeled with positron- emitting radioisotopes, studies with positron emission tomography have provided rich insight into the physiology of the heart under diverse conditions

  13. Positron emission computed tomography

    International Nuclear Information System (INIS)

    Grover, M.; Schelbert, H.R.

    1985-01-01

    Regional mycardial blood flow and substrate metabolism can be non-invasively evaluated and quantified with positron emission computed tomography (Positron-CT). Tracers of exogenous glucose utilization and fatty acid metabolism are available and have been extensively tested. Specific tracer kinetic models have been developed or are being tested so that glucose and fatty acid metabolism can be measured quantitatively by Positron-CT. Tracers of amino acid and oxygen metabolism are utilized in Positron-CT studies of the brain and development of such tracers for cardiac studies are in progress. Methods to quantify regional myocardial blood flow are also being developed. Previous studies have demonstrated the ability of Positron-/CT to document myocardial infarction. Experimental and clinical studies have begun to identify metabolic markers of reversibly ischemic myocardium. The potential of Positron-CT to reliably detect potentially salvageable myocardium and, hence, to identify appropriate therapeutic interventions is one of the most exciting applications of the technique

  14. Combined Effects of Ocean Acidification and Light or Nitrogen Availabilities on 13C Fractionation in Marine Dinoflagellates.

    Directory of Open Access Journals (Sweden)

    Mirja Hoins

    Full Text Available Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light ('LL' and high-light ('HL' conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures ('LN' and nitrogen-replete batches ('HN'. The observed CO2-dependency of εp remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL εp was consistently lower by about 2.7‰ over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of εp disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher εp under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent εp under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect εp, thereby illustrating the need to carefully consider prevailing environmental conditions.

  15. An Improved Estimation of Regional Fractional Woody/Herbaceous Cover Using Combined Satellite Data and High-Quality Training Samples

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2017-01-01

    Full Text Available Mapping vegetation cover is critical for understanding and monitoring ecosystem functions in semi-arid biomes. As existing estimates tend to underestimate the woody cover in areas with dry deciduous shrubland and woodland, we present an approach to improve the regional estimation of woody and herbaceous fractional cover in the East Asia steppe. This developed approach uses Random Forest models by combining multiple remote sensing data—training samples derived from high-resolution image in a tailored spatial sampling and model inputs composed of specific metrics from MODIS sensor and ancillary variables including topographic, bioclimatic, and land surface information. We emphasize that effective spatial sampling, high-quality classification, and adequate geospatial information are important prerequisites of establishing appropriate model inputs and achieving high-quality training samples. This study suggests that the optimal models improve estimation accuracy (NMSE 0.47 for woody and 0.64 for herbaceous plants and show a consistent agreement with field observations. Compared with existing woody estimate product, the proposed woody cover estimation can delineate regions with subshrubs and shrubs, showing an improved capability of capturing spatialized detail of vegetation signals. This approach can be applicable over sizable semi-arid areas such as temperate steppes, savannas, and prairies.

  16. Combined Effects of Ocean Acidification and Light or Nitrogen Availabilities on 13C Fractionation in Marine Dinoflagellates.

    Science.gov (United States)

    Hoins, Mirja; Eberlein, Tim; Groβmann, Christian H; Brandenburg, Karen; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy; Van de Waal, Dedmer B

    2016-01-01

    Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light ('LL') and high-light ('HL') conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures ('LN') and nitrogen-replete batches ('HN'). The observed CO2-dependency of εp remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL εp was consistently lower by about 2.7‰ over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of εp disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher εp under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent εp under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect εp, thereby illustrating the need to carefully consider prevailing environmental conditions.

  17. High resolution positron tomography

    International Nuclear Information System (INIS)

    Brownell, G.L.; Burnham, C.A.

    1982-01-01

    The limits of spatial resolution in practical positron tomography are examined. The four factors that limit spatial resolution are: positron range; small angle deviation; detector dimensions and properties; statistics. Of these factors, positron range may be considered the fundamental physical limitation since it is independent of instrument properties. The other factors are to a greater or lesser extent dependent on the design of the tomograph

  18. Density dependence of a positron annihilation and positronium formation in H2 gas at temperatures between 77 and 297 K

    International Nuclear Information System (INIS)

    Laricchia, G.; Charlton, M.; Beling, C.D.; Griffith, T.C.

    1987-01-01

    Positron lifetime experiments have been performed on H 2 gas at temperatures between 77 and 297 K and in the density range from 12-160 Amagat. The extracted parameters are discussed in terms of current models. In the case of the positronium fraction it has been found that the observed density dependence can, in part, be interpreted using a combined Ore and spur model. (author)

  19. BEPC II positron source

    International Nuclear Information System (INIS)

    Pei Guoxi; Sun Yaolin; Liu Jintong; Chi Yunlong; Liu Yucheng; Liu Nianzong

    2006-01-01

    BEPC II-an upgrade project of the Beijing Electron Positron Collider (BEPC) is a factory type of e + e - collider. The fundamental requirements for its injector linac are the beam energy of 1.89 GeV for on-energy injection and a 40 mA positron beam current at the linac end with a low beam emittance of 1.6 μm and a low energy spread of ±0.5% so as to guarantee a higher injection rate (≥50 mA/min) to the storage ring. Since the positron flux is proportional to the primary electron beam power on the target, the authors will increase the electron gun current from 4A to 10A by using a new electron gun system and increase the primary electron energy from 120 MeV to 240 MeV. The positron source itself is an extremely important system for producing more positrons, including a positron converter target chamber, a 12kA flux modulator, the 7m focusing module with DC power supplies and the support. The new positron production linac from the electron gun to the positron source has been installed into the tunnel. In what follows, the authors will emphasize the positron source design, manufacture and tests. (authors)

  20. Positron-atom collisions

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1984-01-01

    The past decade has seen the field of positron-atom collisions mature into an important sub-field of atomic physics. Increasingly intense positron sources are leading towards a situation in which electron and positron collision experiments will be on almost an equal footing, challenging theory to analyze their similarities and differences. The author reviews the advances made in theory, including dispersion theory, resonances, and inelastic processes. A survey of experimental progress and a brief discussion of astrophysical positronics is also included. (Auth.)

  1. Positrons and positronium

    International Nuclear Information System (INIS)

    Jean, Y.C.; Lambrecht, R.M.

    1988-01-01

    This bibliography includes articles, proceedings, abstracts, reports and patents published between 1930 and 1984 on the subject of positrons, positron annihilation and positronium. The subject covers experimental and theoretical results in the areas of physics and chemistry of low and intermediate energy (< 0.6 MeV) positrons and positronium. The topics of interest are: fundamental properties, interactions with matter, nuclear technology, the history and philosophy of antimatter, the theory of the universe, and the applications of positrons in the chemical, physical, and biomedical sciences

  2. Efficacy of Punch Elevation Combined with Fractional Carbon Dioxide Laser Resurfacing in Facial Atrophic Acne Scarring: A Randomized Split-face Clinical Study

    Science.gov (United States)

    Faghihi, Gita; Nouraei, Saeid; Asilian, Ali; Keyvan, Shima; Abtahi-Naeini, Bahareh; Rakhshanpour, Mehrdad; Nilforoushzadeh, Mohammad Ali; Hosseini, Sayed Mohsen

    2015-01-01

    Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO2) laser resurfacing combined with punch elevation with fractional CO2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18–55) with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56). Their evaluation found that fractional CO2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO2 laser treatment alone, assessed 4 months after treatment (P = 0.02). Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO2 laser treatment was significant on both treatment sides (P < 0.05). Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring. PMID:26538695

  3. Efficacy of punch elevation combined with fractional carbon dioxide laser resurfacing in facial atrophic acne scarring: A randomized split-face clinical study

    Directory of Open Access Journals (Sweden)

    Gita Faghihi

    2015-01-01

    Full Text Available Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO 2 laser resurfacing combined with punch elevation with fractional CO 2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18-55 with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO 2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO 2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56. Their evaluation found that fractional CO 2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO 2 laser treatment alone, assessed 4 months after treatment (P = 0.02. Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO 2 laser treatment was significant on both treatment sides (P < 0.05. Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring.

  4. Formation of Isolated Zn Vacancies in ZnO Single Crystals by Absorption of Ultraviolet Radiation: A Combined Study Using Positron Annihilation, Photoluminescence, and Mass Spectroscopy

    Science.gov (United States)

    Khan, Enamul H.; Weber, Marc H.; McCluskey, Matthew D.

    2013-07-01

    Positron annihilation spectra reveal isolated zinc vacancy (VZn) creation in single-crystal ZnO exposed to 193-nm radiation at 100mJ/cm2 fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the VZn acceptor level at ˜100meV to the conduction band. The observed VZn density profile and hyperthermal Zn+ ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon—a novel photoelectronic process for controlled VZn creation in ZnO.

  5. Positron annihilation microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Canter, K F [Brandeis Univ., Waltham, MA (United States)

    1997-03-01

    Advances in positron annihilation microprobe development are reviewed. The present resolution achievable is 3 {mu}m. The ultimate resolution is expected to be 0.1 {mu}m which will enable the positron microprobe to be a valuable tool in the development of 0.1 {mu}m scale electronic devices in the future. (author)

  6. Positrons in ionic crystals

    International Nuclear Information System (INIS)

    Pareja, R.

    1988-01-01

    Positron annihilation experiments in ionic crystals are reviewed and their results are arranged. A discussion about the positron states in these materials is made in the light of these results and the different proposed models. The positronium in alkali halides is specially considered. (Author)

  7. Positron emission tomography

    NARCIS (Netherlands)

    Paans, AMJ

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation using a

  8. PF slow positron source

    International Nuclear Information System (INIS)

    Shirakawa, A.; Enomoto, A.; Kurihara, T.

    1993-01-01

    A new slow-positron source is under construction at the Photon Factory. Positrons are produced by bombarding a tantalum rod with high-energy electrons; they are moderated in multiple tungsten vanes. We report here the present status of this project. (author)

  9. Positron Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Sohei; Sunaga, Hiromi; Kaneko, Hirohisa; Kawasuso, Atsuo; Masuno, Shin-ichi; Takizawa, Haruki; Yotsumoto, Keiichi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    We have started drafting a construction program for the Positron Factory, in which linac-based intense monoenergetic positron beams are planned to be applied for materials science, biotechnology and basic physics and chemistry. A technical survey study confirmed the feasibility of manufacturing a dedicated electron linac of 100 kW class with a beam energy of 100 MeV, which will produce a world-highest monoenergetic positron beam of more than 10{sup 10}/sec in intensity. A self-driven rotating converter (electrons to positrons and photons) suitable for the high power electron beam was devised and successfully tested. The practicability of simultaneous extraction of multi-channel monoenergetic positron beams with multiple moderator assemblies, which had been originated on the basis of a Monte Carlo simulation, was demonstrated by an experiment using an electron linac. An efficient moderator structure, which is composed of honeycomb-like assembled moderator foils and reflectors, is also proposed. (author)

  10. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  11. Estimate of S-values for children due to six positron emitting radionuclides used in PET examinations

    Science.gov (United States)

    Belinato, Walmir; Santos, William S.; Perini, Ana P.; Neves, Lucio P.; Caldas, Linda V. E.; Souza, Divanizia N.

    2017-11-01

    Positron emission tomography (PET) has revolutionized the diagnosis of cancer since its conception. When combined with computed tomography (CT), PET/CT performed in children produces highly accurate diagnoses from images of regions affected by malignant tumors. Considering the high risk to children when exposed to ionizing radiation, a dosimetric study for PET/CT procedures is necessary. Specific absorbed fractions (SAF) were determined for monoenergetic photons and positrons, as well as the S-values for six positron emitting radionuclides (11C, 13N, 18F, 68Ga, 82Rb, 15O), and 22 source organs. The study was performed for six pediatric anthropomorphic hybrid models, including the newborn and 1 year hermaphrodite, 5 and 10-year-old male and female, using the Monte Carlo N-Particle eXtended code (MCNPX, version 2.7.0). The results of the SAF in source organs and S-values for all organs showed to be inversely related to the age of the phantoms, which includes the variation of body weight. The results also showed that radionuclides with higher energy peak emission produces larger auto absorbed S-values due to local dose deposition by positron decay. The S-values for the source organs are considerably larger due to the interaction of tissue with non-penetrating particles (electrons and positrons) and present a linear relationship with the phantom body masses. The results of the S-values determined for positron-emitting radionuclides can be used to assess the radiation dose delivered to pediatric patients subjected to PET examination in clinical settings. The novelty of this work is associated with the determination of auto absorbed S-values, in six new pediatric virtual anthropomorphic phantoms, for six emitting positrons, commonly employed in PET exams.

  12. Clinical efficacy of utilizing Ultrapulse CO2 combined with fractional CO2 laser for the treatment of hypertrophic scars in Asians-A prospective clinical evaluation.

    Science.gov (United States)

    Lei, Ying; Li, Shi Feng; Yu, Yi Ling; Tan, Jun; Gold, Michael H

    2017-06-01

    Hypertrophic scarring is seen regularly. Tissue penetration of laser energy into hypertrophic scars using computer defaults from some lasers may be insufficient and penetration not enough. We have developed a treatment with an interrupted laser "drilling" by the Ultrapulse CO 2 (Manual Fractional Technology, MFT) and, a second pass, with fractional CO 2 . The MFT with fractional CO 2 lasers to treat hypertrophic scars is evaluated. A total of 158 patients with hypertrophic scars had three sessions of MFT with fractional CO 2 laser at 3-month intervals. Evaluations made before and 6 months after the 3rd treatment: (1) the Vancouver Scar Scale (VSS), (2) the University of North Carolina (UNC) Scar Scale, and (3) a survey of patient satisfaction. All data were analyzed using a t-test before and after treatment. The VSS score decreased from 9.35 to 3.12 (Plaser drilling by MFT and a fractional CO2 laser had profound effects on the hypertrophic scars treated. It works by increasing the penetration depth of the CO 2 laser in the scar tissue, exerting more precise effects on the hypertrophic scars. MFT combined with fractional CO 2 laser has the potential to be a major advance in the treatment of hypertrophic scars. © 2017 Wiley Periodicals, Inc.

  13. Is the positron a light proton. Contrasts of positron/proton analogies in small molecules

    International Nuclear Information System (INIS)

    Cade, P.E.; Kao, C.-M.

    1982-01-01

    The nature of positron behavior in [M - :e + ] systems is explored. Here M - is a molecular anion which combines with a proton to form a stable system, HM. The sharp distinction between the positron and proton dynamics does not entirely remove common characteristics of these systems. Examples are given for HM versus [M - :e + ] systems with M - = (H - , SH - , CN - , and N 3- ). In addition, the possibilities of a 'positronium' bond versus a hydrogen bond are discussed. (Auth.)

  14. Studies of murine tumor control using x-ray fractionation schedules alone or in combination with hyperthermia

    International Nuclear Information System (INIS)

    Imbra, R.J.

    1981-01-01

    The effectiveness of an experimental radiation fractionation schedule of decreasing-sized dose fractions administered at optimal time intervals was compared with a conventional fractionation schedule of constant-sized dose fractions administered five times per week. Also, the effect of the addition of hyperthermia (42.5 0 C) to radiation therapy was investigated. For some experiments, Ehrlich mammary tumors were growth in the right thighs of Swiss mice. The tumor response was determined by measuring the tumor-bearing leg diameter and converting this value to volume. The time for the treated tumor to regrow to its pre-tratment volume was used as an endpoint in Swiss mice. The maximum total treatment dose is limited by the amount of normal tissue damage. A total treatment dose of six thousand rads was most suitable for the further investigations. Definitive investigations were performed using the RIF-1 tumor grown in the right thigh of C3H mice. The length of mitotic delay of RIF-1 cells, in vivo, was determined after various single doses of x radiation. A direct (exponential) relationship betwen x-ray dose and mitotic delay time was observed. Times of release of the RIF-1 cells from radiation-induced mitotic delay were used to determine the optimum time intervals to deliver the decreasing-sized dose fractions. Six thousand rads administered as decreasing-sized dose fractions resulted in significantly greater RIF-1 tumor control, as compared to conventional radiation therapy. The best treatment schedule, overall, was decreasing-sized dose fractions plus hyperthermia

  15. High efficiency positron moderation

    International Nuclear Information System (INIS)

    Taqqu, D.

    1990-01-01

    A new positron moderation scheme is proposed. It makes use of electric and magnetic fields to confine the β + emitted by a radioactive source forcing them to slow down within a thin foil. A specific arrangement is described where an intermediary slowed-down beam of energy below 10 keV is produced. By directing it towards a standard moderator optimal conversion into slow positrons is achieved. This scheme is best applied to short lived β + emitters for which a 25% moderation efficiency can be reached. Within the state of the art technology a slow positron source intensity exceeding 2 x 10 10 e + /sec is achievable. (orig.)

  16. Positron emission tomography

    International Nuclear Information System (INIS)

    Wienhard, K.; Heiss, W.D.

    1984-01-01

    The principles and selected clinical applications of positron emission tomography are described. In this technique a chemical compound is labeled with a positron emitting isotope and its biochemical pathway is traced by coincidence detection of the two annihilation photons. The application of the techniques of computed tomography allows to reconstruct the spatial distribution of the radioactivity within a subject. The 18 F-deoxyglucose method for quantitative measurement of local glucose metabolism is discussed in order to illustrate the possibilities of positron emission tomography to record physiological processes in vivo. (orig.) [de

  17. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) Combined with Positron Emission Tomography-Computed Tomography (PET-CT) and Video-Electroencephalography (VEEG) Have Excellent Diagnostic Value in Preoperative Localization of Epileptic Foci in Children with Epilepsy.

    Science.gov (United States)

    Wang, Gui-Bin; Long, Wei; Li, Xiao-Dong; Xu, Guang-Yin; Lu, Ji-Xiang

    2017-01-01

    BACKGROUND To investigate the effect that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has on surgical decision making relative to video-electroencephalography (VEEG) and positron emission tomography-computed tomography (PET-CT), and if the differences in these variables translates to differences in surgical outcomes. MATERIAL AND METHODS A total of 166 children with epilepsy undergoing preoperative DCE-MRI, VEEG, and PET-CT examinations, surgical resection of epileptic foci, and intraoperative electrocorticography (ECoG) monitoring were enrolled. All children were followed up for 12 months and grouped by Engles prognostic classification for epilepsy. Based on intraoperative ECoG as gold standard, the diagnostic values of DCE-MRI, VEEG, PET-CT, DCE-MRI combined with VEEG, DCE-MRI combined with PET-CT, and combined application of DCE-MRI, VEEG, and PET-CT in preoperative localization for epileptic foci were evaluated. RESULTS The sensitivity of DCE-MRI, VEEG, and PET-CT was 59.64%, 76.51%, and 93.98%, respectively; the accuracy of DCE-MRI, VEEG, PET-CT, DCE-MRI combined with VEEG, and DCE-MRI combined with PET-CT was 57.58%, 67.72%, 91.03%, 91.23%, and 96.49%, respectively. Localization accuracy rate of the combination of DCE-MRI, VEEG, and PET-CT was 98.25% (56/57), which was higher than that of DCE-MRI combined with VEEG and of DCE-MRI combined with PET-CT. No statistical difference was found in the accuracy rate of localization between these three combined techniques. During the 12-month follow-up, children were grouped into Engles grade I (n=106), II (n=31), III (n=21), and IV (n=8) according to postoperative conditions. CONCLUSIONS All DCE-MRI combined with VEEG, DCE-MRI combined with PET-CT, and DCE-MRI combined with VEEG and PET-CT examinations have excellent accuracy in preoperative localization of epileptic foci and present excellent postoperative efficiency, suggesting that these combined imaging methods are suitable for serving as the

  18. Positron reemission microscopy

    International Nuclear Information System (INIS)

    Brandes, G.F.; Canter, K.F.; Mills, A.P. Jr.

    1991-01-01

    The positron reemission microscope (PRM), originally proposed by Hulett, Dale and Pendyala, operates on principles fundamentally different from those utilized in existing microscopes and offers sensitivity and contrast not available in conventional microscopes

  19. Solvated Positron Chemistry. II

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1979-01-01

    The reaction of the hydrated positron, eaq+ with Cl−, Br−, and I− ions in aqueous solutions was studied by means of positron The measured angular correlation curves for [Cl−, e+], [Br−, e+, and [I−, e+] bound states were in good agreement with th Because of this agreement and the fact...... that the calculated positron wavefunctions penetrate far outside the X− ions in the [X−, e+] sta propose that a bubble is formed around the [X−, e+] state, similar to the Ps bubble found in nearly all liquids. F−ions did not react w Preliminary results showed that CN− ions react with eaq+ while OH−ions are non...... in the Cl− case) at higher concentrations. This saturation and the high-concentration effects-in the angular correlation results were interpreted as caused by rather complicated spur effects, wh It is proposed that spur electrons may pick off the positron from the [X−, e+ states with an efficiency which...

  20. Clinical implications of determination of safe surgical margins by using a combination of CT and 18FDG-positron emission tomography in soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Yoshioka Takako

    2011-07-01

    Full Text Available Abstract Background To determine safe surgical margins for soft tissue sarcoma, it is essential to perform a general evaluation of the extent of tumor, responses to auxiliary therapy, and other factors preoperatively using multiple types of diagnostic imaging. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT is a tool for diagnostic imaging that has recently spread rapidly in clinical use. At present, the roles played by FDG-PET/CT in determination of margins for surgical resection of sarcoma are unclear. The present study was undertaken to explore the roles of FDG-PET/CT in determination of surgical margins for soft tissue sarcoma and to examine whether PET can serve as a standard means for setting the margins of surgical resection during reduced surgery. Methods The study involved 7 patients with sarcoma who underwent surgery in our department and in whom evaluation with FDG-PET/CT was possible. Sarcoma was histologically rated as MFH in 6 cases and leiomyosarcoma in 1 case. In all cases, sarcoma was superficial (T1a or T2a. The tumor border was defined by contrast-enhanced MRI, and SUVs were measured at intervals of 1 cm over a 5-cm long area from the tumor border. Mapping of viable tumor cells was carried out on whole-mount sections of resected tissue, and SUVs were compared with histopathological findings. Results Preoperative maximum SUVs (SUV-max of the tumor averaged 11.7 (range: 3.8-22.1. Mean SUV-max was 2.2 (range: 0.3-3.8 at 1 cm from the tumor border, 1.1 (0.85-1.47 at 2 cm, 0.83 (0.65-1.15 at 3 cm, 0.7 (0.42-0.95 at 4 cm, and 0.64 (0.45-0.82 at 5 cm. When resected tissue was mapped, tumor cells were absent in the areas where SUV-max was below 1.0. Conclusions Our findings suggest that a safe surgical margin free of viable tumor cells can be ensured if the SUV cut-off level is set at 1.0. FDG-PET/CT is promising as a diagnostic imaging technique for setting of safe minimal margins for surgical

  1. Positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Sundar, C.S.; Viswanathan, B.

    1996-01-01

    An overview of positron annihilation spectroscopy, the experimental techniques and its application to studies on defects and electronic structure of materials is presented. The scope of this paper is to present the requisite introductory material, that will enable a better appreciation of the subsequent specialized articles on the applications of positron annihilation spectroscopy to investigate various problems in materials science. (author). 31 refs., 3 figs

  2. Positron emission tomography

    International Nuclear Information System (INIS)

    Chandrasekhar, Preethi; Himabindu, Pucha

    2000-01-01

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging technique used to study different molecular pathways and anatomical structures. PET has found extensive applications in various fields of medicine viz. cardiology, oncology, psychiatry/psychology, neuro science and pulmonology. This study paper basically deals with the physics, chemistry and biology behind the PET technique. It discusses the methodology for generation of the radiotracers responsible for emission of positrons and the annihilation and detection techniques. (author)

  3. Positron emission tomography

    International Nuclear Information System (INIS)

    Dvorak, O.

    1989-01-01

    The principle is briefly described of positron emission tomography, and its benefits and constraints are listed. It is emphasized that positron emission tomography (PET) provides valuable information on metabolic changes in the organism that are otherwise only very difficult to obtain, such as brain diagnosis including relationships between mental disorders and the physiology and pathophysiology of the brain. A PET machine is to be installed in Czechoslovakia in the near future. (L.O.)

  4. The Clinical Efficacy of Autologous Platelet-Rich Plasma Combined with Ultra-Pulsed Fractional CO2 Laser Therapy for Facial Rejuvenation.

    Science.gov (United States)

    Hui, Qiang; Chang, Peng; Guo, Bingyu; Zhang, Yu; Tao, Kai

    2017-02-01

    Ultra-pulsed fractional CO 2 laser is an efficient, precise, and safe therapeutic intervention for skin refreshing, although accompanied with prolonged edema and erythema. In recent years, autologous platelet-rich plasma (PRP) has been proven to promote wound and soft tissue healing and collagen regeneration. To investigate whether the combination of PRP and ultra-pulsed fractional CO 2 laser had a synergistic effect on therapy for facial rejuvenation. Totally, 13 facial aging females were treated with ultra-pulsed fractional CO 2 laser. One side of the face was randomly selected as experimental group and injected with PRP, the other side acted as the control group and was injected with physiological saline at the same dose. Comprehensive assessment of clinical efficacy was performed by satisfaction scores, dermatologists' double-blind evaluation and the VISIA skin analysis system. After treatment for 3 months, subjective scores of facial wrinkles, skin texture, and skin elasticity were higher than that in the control group. Similarly, improvement of skin wrinkles, texture, and tightness in the experimental group was better compared with the control group. Additionally, the total duration of erythema, edema, and crusting was decreased, in the experimental group compared with the control group. PRP combined with ultra-pulsed fractional CO 2 laser had a synergistic effect on facial rejuvenation, shortening duration of side effects, and promoting better therapeutic effect.

  5. Application of positron emission tomography in the lung

    International Nuclear Information System (INIS)

    Valind, S.O.; Wollmer, P.E.; Rhodes, C.G.

    1985-01-01

    The early application of positron emission tomography in the lung was mainly concerned with the investigation of the regional volume of the vascular and extravascular compartments, using measurements of fractional blood volume and lung density. However, in addition to its passive role in the exchange of oxygen and carbon dioxide, the lung exerts a number of active, metabolic functions such as the inactivation of circulating vasoactive compounds and the synthesis and release of biologically active substances. Furthermore, many of the pulmonary disorders originate at a cellular or metabolic level, or have metabolic consequences. Many of the substrates of biochemical reactions and the biologically active compounds, or their analogs, can be labeled with positron-emitting radioisotopes without disturbing their biological or biochemical characteristics. In combination with the development of the appropriate physiological and biochemical models, the quantitative measurements possible with PET provide a unique opportunity of regionally studying the metabolic processes of the lung of man in vivo. Hence, a range of different expressions of metabolism and of lung function can be evaluated and their interdependence can be studied regionally

  6. Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation.

    Science.gov (United States)

    Sun, Shaoni; Cao, Xuefei; Sun, Shaolong; Xu, Feng; Song, Xianliang; Sun, Run-Cang; Jones, Gwynn Lloyd

    2014-01-01

    The recalcitrance of lignocellulosic biomass is a major limitation for its conversion into biofuels by enzymatic hydrolysis. The use of a pretreatment technology is an essential step to diminish biomass recalcitrance for bioethanol production. In this study, a two-step pretreatment using hydrothermal pretreatment at various temperatures and alkali fractionation was performed on eucalyptus fiber. The detailed chemical composition, physicochemical characteristics, and morphology of the pretreated fibers in each of the fractions were evaluated to advance the performance of eucalyptus fiber in enzymatic digestibility. The hydrothermal pretreatment (100 to 220°C) significantly degraded hemicelluloses, resulting in an increased crystallinity of the pretreated fibers. However, as the pretreatment temperature reached 240°C, partial cellulose was degraded, resulting in a reduced crystallinity of cellulose. As compared to the hydrothermal pretreatment alone, a combination of hydrothermal and alkali treatments significantly removed hemicelluloses and lignin, resulting in an improved enzymatic hydrolysis of the cellulose-rich fractions. As compared with the raw fiber, the enzymatic hydrolysis rate increased 1.1 to 8.5 times as the hydrothermal pretreatment temperature increased from 100 to 240°C. Interestingly, after a combination of hydrothermal pretreatment and alkali fractionation, the enzymatic hydrolysis rate increased 3.7 to 9.2 times. Taking into consideration the consumption of energy and the production of xylo-oligosaccharides and lignin, an optimum pretreatment condition was found to be hydrothermal pretreatment at 180°C for 30 min and alkali fractionation with 2% NaOH at 90°C for 2.5 h, in which 66.3% cellulose was converted into glucose by enzymatic hydrolysis. The combination of hydrothermal pretreatment and alkali fractionation was a promising method to remove hemicelluloses and lignin as well as overcome the biomass recalcitrance for enzymatic hydrolysis

  7. Metallurgical behavior of fine fractions of copper sulfide minerals in a combined process of modified flotation and agitated bio leaching

    International Nuclear Information System (INIS)

    Ibanez, J. P.; Ipinza, J.; Collao, N.; Ahlborn, G.

    2007-01-01

    The metallurgical behaviour of fine fraction of copper sulfide minerals of Compania Minera Quebrada Blanca S. A. was studied by concentration through flotation in aqueous media modified by alcohol followed by bio leaching of the concentrates. By using a 1% v/v of methanol, the metallurgical recovery of copper reaches 88%, while the iron recovery was 43%, the weight recovery was 18%, which indicates a high selectivity. these concentrates were then bio leached with and without nutrient medium, reaching 80% of copper recovery after 10 and 17 days, respectively. then, it is possible to conclude that this concentration-bio leaching metallurgical process is a promising route for copper recovery from the fine fraction of sulfide minerals. (Author) 24 refs

  8. Production possibility of 51Mn via natV(3He,x)51Mn nuclear process for combined positron emission tomography and magnetic resonance imaging studies

    International Nuclear Information System (INIS)

    Szelecsenyi, F.; Kovacs, Z.; Suzuki, K.; Mukai, K.; Japan Steel Works, Yokohama

    2007-01-01

    Complete text of publication follows. It is very difficult to quantify the uptake kinetics and bio-distribution of magneto pharmaceuticals in humans using MRI (Magnetic Resonance Imaging). The well-know PET (Positron Emission Tomography) technique, however, could give a solution to this problem in the case of those MRI contrast agents that are based on manganese as paramagnetic contrast enhancer. Luckily manganese has a proper radioisotope, namely the 51 Mn (T 1/2 = 46.2 min, β + = 97%), which can be easily employed (in the form of 51 Mn-labelled contrast agents) for PET studies. Recently, for the production of this radioisotope proton and deuteron induced nuclear reactions were suggested using natural and enriched Cr targets, respectively. In this work we studied the nat V( 3 He,x) 51 Mn nuclear processes in detail from their respective threshold energies up to 40 MeV. For natural vanadium, the 51 V( 3 He,3n) 51 Mn reaction (natural isotopic composition of 51 V: 99.75%) forms the majority of the required radioisotope. The cross-sections were measured by the conventional stacked-foil method. Two stacks containing 10 and 8 pieces of thin natural V foils were irradiated in external collimated 3 He beams of the AVF-930 isochronous cyclotron of NIRS. Thin copper and titanium foils served as energy degraders. The activations lasted for 1 h with a beam current of 100 nA. The activity of the irradiated samples was measured without chemical separation by using the usual gamma-ray spectroscopy. Since the 51 Mn has a very weak gamma-line at 749 keV (Iγ=0.265%) its activity was measured via decay curve analysis of the annihilation peaks. We also measured the excitation functions of those reactions which form the major radio-contaminants i.e. 52m Mn (T 1/2 =21.1 min, Eγ=1434.068 keV(Iγ=98.3%)) and 52 Mn (T 1/2 = 5.591 d, Eγ=744.223 keV (Iγ=90%), Eγ=935.538 keV (Iγ=94.5%)). The excitation function curve of the nat V( 3 He,x) 51 Mn nuclear process shows one maximum of

  9. Positron analysis of defects in metals

    NARCIS (Netherlands)

    van Veen, A.; Kruseman, A.C.; Schut, H.; Mijnarends, P.E.; Kooi, B.J.; de Hosson, J.T.M.; Jean, YC; Eldrup, M; Schrader, DM; West, RN

    1997-01-01

    New methods are discussed to improve defect analysis. The first method employs mapping of two shape parameters, S and W, of the positron annihilation photopeak. It is demonstrated that the combined use of S and W allows to a better discrimination of defects. The other method is based on background

  10. Positron emission tomography with Positome, 2

    International Nuclear Information System (INIS)

    Nukui, Hideaki; Yamamoto, Y.L.; Thompson, C.J.; Feindel, W.

    1979-01-01

    Positron emission tomography with Positome II using 68 Ga-EDTA was performed in cases with brain tumor and cerebral arteriovenous malformation. A significant focal uptake in static study and hemodynamic changes in dynamic study were noted in all cases except one case with intracranial lipoma. Comparing this method with sup(99m) Tc-pertechnetate cerebral image study and computerized axial tomography, the diagnostic rate for detecting brain tumor was almost equal in all of these three methods. However, detecting and localizing was easier and clearer in static positron emission tomography with 68 Ga-EDTA than in sup(99m) Tc-pertechnetate cerebral image and computerized axial tomography without infusion of contrast medium. Furthermore, static positron emission tomography with 68 Ga-EDTA was superior to computerized axial tomography without infusion of contrast medium for detecting cerebral arteriovenous malformation. Concerning dynamic positron emission tomography with 68 Ga-EDTA, semiquantitative values obtained by this method correlated well with findings of computerized axial tomography and was thought to be more precise and in detail than the findings of sup(99m) Tc-pertechnetate cerebral image study. Summation of the previous studies about dynamic positron emission tomography with 77 Kr in occlusive cerebrovascular disease is also reported. In conclusion, static positron emission tomography with 68 Ga-EDTA is a very useful diagnostic method for detecting and localizing brain tumor and cerebral arteriovenous malformation without any attendant complications. Furthermore, a good combination of static and dynamic positron emission tomography and computerized axial tomography appear to be outstandingly effective for not only detecting the lesion but also understanding the pathophysiological aspect in cases with various intracranial lesions. (author)

  11. Scintillators for positron emission tomography

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ''ultimate'' scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length (≤ 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times ≤ 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so ≤5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ''fully-3D'' cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm

  12. Positron studies in catalysis research

    International Nuclear Information System (INIS)

    1994-01-01

    During the past eight months, the authors have made progress in several areas relevant to the eventual use of positron techniques in catalysis research. They have come closer to the completion of their positron microscope, and at the same time have performed several studies in their non-microscopic positron spectrometer which should ultimately be applicable to catalysis. The current status of the efforts in each of these areas is summarized in the following sections: Construction of the positron microscope (optical element construction, data collection software, and electronic sub-assemblies); Doppler broadening spectroscopy of metal silicide; Positron lifetime spectroscopy of glassy polymers; and Positron lifetime measurements of pore-sizes in zeolites

  13. Effect of combination of fractional CO2 laser and narrow-band ultraviolet B versus narrow-band ultraviolet B in the treatment of non-segmental vitiligo.

    Science.gov (United States)

    El-Zawahry, Mohamed Bakr; Zaki, Naglaa Sameh; Wissa, Marian Youssry; Saleh, Marwah Adly

    2017-12-01

    The present study was designed to evaluate the effect of combining fractional CO 2 laser with narrow-band ultraviolet B (NB-UVB) versus NB-UVB in the treatment of non-segmental vitiligo. The study included 20 patients with non-segmental stable vitiligo. They were divided into two groups. Group I received a single session of fractional CO 2 laser therapy on the right side of the body followed by NB-UVB phototherapy twice per week for 8 weeks. Group II received a second session of fractional CO 2 laser therapy after 4 weeks from starting treatment with NB-UVB. The vitiligo lesions were assessed before treatment and after 8 weeks of treatment by VASI. At the end of the study period, the vitiligo area score index (VASI) in group I decreased insignificantly on both the right (-2.6%) and left (-16.4%) sides. In group II, VASI increased insignificantly on the right (+14.4%) and left (+2.5%) sides. Using Adobe Photoshop CS6 extended program to measure the area of vitiligo lesions, group I showed a decrease of -1.02 and -6.12% in the mean area percentage change of vitiligo lesions on the right and left sides, respectively. In group II the change was +9.84 and +9.13% on the right and left sides, respectively. In conclusion, combining fractional CO 2 laser with NB-UVB for the treatment of non-segmental vitiligo did not show any significant advantage over treatment with NB-UVB alone. Further study of this combination for longer durations in the treatment of vitiligo is recommended.

  14. Combination of microneedle radiofrequency (RF), fractional RF skin resurfacing and multi-source non-ablative skin tightening for minimal-downtime, full-face skin rejuvenation.

    Science.gov (United States)

    Kaplan, Haim; Kaplan, Lilach

    2016-12-01

    In the recent years, there is a growth in demand for radiofrequency (RF)-based procedures to improve skin texture, laxity and contour. The new generation of systems allow non-invasive and fractional resurfacing treatments on one platform. The aim of this study was to evaluate the safety and efficacy of a new treatment protocol using a multisource RF, combining 3 different modalities in each patient: [1] non-ablative RF skin tightening, [2] fractional skin resurfacing, and [3] microneedling RF for non-ablative coagulation and collagen remodelling. 14 subjects were enrolled in this study using EndyMed PRO ™ platform. Each patient had 8 non-ablative treatments and 4 fractional treatments (fractional skin resurfacing and Intensif). The global aesthetic score was used to evaluate improvement. All patients had improvement in skin appearance. About 43% had excellent or very good improvement above 50%, 18% had good improvement between 25 and 50%, and the rest 39% had a mild improvement of skin texture, skin laxity and wrinkle reduction achieved using RF treatment platform.

  15. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    Science.gov (United States)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  16. Radioprotective efficacy of dipyridamole and AMP combination in fractionated radiation regimen, and its dependence on the time of administration of the drugs prior to irradiation

    International Nuclear Information System (INIS)

    Hofer, M.; Pospisil, M.; Netikova, J.; Hola, J.; Znojil, V.; Vacha, J.

    1995-01-01

    The authors have recently demonstrated that a combined administration of dipyridamole and adenosine monophosphate to mice induces radioprotective effects in terms of postirradiation hematopoietic recovery in animals irradiated with a single dose. The aim of the present experiments was to investigate the radioprotective ability of the drug combination under conditions of fractionated radiation. It was shown that administration of the drugs either 15 or 60 min before each of the five daily 3-Gy doses of gamma radiation enhances hematopoietic recovery and survival of mice exposed to an additional 'top-up' dose of 3.5 Gy. Furthermore, it was ascertained that administration of the drugs 60 min prior to irradiation is more effective than administration of the drugs 15 min prior to irradiation. Due to the evidence that administration of the drugs 15 min prior to irradiation protects the organism mainly via mechanisms of systemic hypoxia while the pretreatment 60 min before irradiation avoids the role of hypoxia and mainly induces cell proliferation effects, the present results suggest a more protective role of mechanisms stimulating hematopoiesis under conditions of fractionated radiation. The data may provide a basis for more rational use of radioprotection in fractionated radiation techniques. (author) 1 tab., 1 fig., 25 refs

  17. Combination of Complex-Based and Magnitude-Based Multiecho Water-Fat Separation for Accurate Quantification of Fat-Fraction

    Science.gov (United States)

    Yu, Huanzhou; Shimakawa, Ann; Hines, Catherine D. G.; McKenzie, Charles A.; Hamilton, Gavin; Sirlin, Claude B.; Brittain, Jean H.; Reeder, Scott B.

    2011-01-01

    Multipoint water–fat separation techniques rely on different water–fat phase shifts generated at multiple echo times to decompose water and fat. Therefore, these methods require complex source images and allow unambiguous separation of water and fat signals. However, complex-based water–fat separation methods are sensitive to phase errors in the source images, which may lead to clinically important errors. An alternative approach to quantify fat is through “magnitude-based” methods that acquire multiecho magnitude images. Magnitude-based methods are insensitive to phase errors, but cannot estimate fat-fraction greater than 50%. In this work, we introduce a water–fat separation approach that combines the strengths of both complex and magnitude reconstruction algorithms. A magnitude-based reconstruction is applied after complex-based water–fat separation to removes the effect of phase errors. The results from the two reconstructions are then combined. We demonstrate that using this hybrid method, 0–100% fat-fraction can be estimated with improved accuracy at low fat-fractions. PMID:21695724

  18. Complete resolution of minocycline pigmentation following a single treatment with non-ablative 1550-nm fractional resurfacing in combination with the 755-nm Q-switched alexandrite laser.

    Science.gov (United States)

    Vangipuram, Ramya K; DeLozier, Whitney L; Geddes, Elizabeth; Friedman, Paul M

    2016-03-01

    Pigmentation secondary to minocycline ingestion is an uncommon adverse event affecting 3.7-14.8% of treated individuals for which few effective therapies are available. Three patterns of minocycline pigmentation have a characteristic clinical and histological appearance. The pigment composition in each variety is different and occurs at varying skin depths. Accordingly, a tailored approach according to the type of minocycline pigmentation is crucial for treatment success. The purpose of this intervention was to evaluate the efficacy of non-ablative fractional photothermolysis in combination with the Q-switched alexandrite laser for the treatment of type I minocycline pigmentation on the face. A patient with type I minocycline pigmentation was treated with non-ablative 1550-nm fractional photothermolysis followed immediately by 755-nm Q-switched alexandrite laser and then observed clinically to determine the outcome of this modality. The patient was seen in clinic 1 month later following her single treatment session and 100% clearance of all blue facial pigment was observed. Non-ablative fractional photothermolysis in combination with the 755-nm Q-switched alexandrite laser should be considered for treatment of type I minocycline pigmentation. © 2015 Wiley Periodicals, Inc.

  19. Positron emission tomography

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Diksic, M.; Meyer, E.; Feindel, W.H.

    1984-01-01

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. The most recent trends are reviewed in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography. (author)

  20. 50 years of positrons

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This year marks the 50th anniversary of one of the major landmarks of modern physics - the discovery of the positron, the antimatter counterpart of the electron. This provided the first evidence for antimatter, and it was also unprecedented for the existence of a new particle to have been predicted by theory. The positron and the concepts behind it were to radically change our picture of Nature. It led to the rapid advancement or our understanding, culminating some fifteen years later with the formulation of quantum electrodynamics as we now know it. (orig./HSI).

  1. The MEG positron spectrometer

    International Nuclear Information System (INIS)

    Nishiguchi, Hajime

    2007-01-01

    We have been developing an innovative spectrometer for the MEG experiment at the Paul Scherrer Institute (PSI) in Switzerland. This experiment searches for a lepton flavour violating decay μ + →e + γ with a sensitivity of 10 -13 in order to explore the region predicted by supersymmetric extensions of the standard model. The MEG positron spectrometer consists of a specially designed superconducting solenoidal magnet with a highly graded field, an ultimate low-mass drift chamber system, and a precise time measuring counter system. This innovative positron spectrometer is described here focusing on the drift chamber system

  2. Fractional Er:YAG laser assisting topical betamethasone solution in combination with NB-UVB for resistant non-segmental vitiligo.

    Science.gov (United States)

    Yan, Ru; Yuan, Jinping; Chen, Hongqiang; Li, Yuan-Hong; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo

    2017-09-01

    Resistant non-segmental vitiligo is difficult to be treated. Ablative erbium-YAG (Er:YAG) laser has been used in the treatment of vitiligo, but the ablation of entire epidermis frustrated the compliance of patients. The purpose of this study is to investigate the effects of fractional Er:YAG laser followed by topical betamethasone and narrow band ultraviolet B (NB-UVB) therapy in the treatment of resistant non-segmental vitiligo. The vitiligo lesions of each enrolled patient were divided into four treatment parts, which were all irradiated with NB-UVB. Three parts were, respectively, treated with low, medium, or high energy of Er:YAG laser, followed by topical betamethasone solution application. A control part was spared with laser treatment and topical betamethasone. The treatment period lasted 6 months. The efficacy was assessed by two blinded dermatologists. Treatment protocol with high energy of 1800 mJ/P of fractional Er:YAG laser followed by topical betamethasone solution and in combination with NB-UVB made 60% patients achieve marked to excellent improvement in white patches. The protocol with medium energy of 1200 mJ/P of laser assisted approximate 36% patients achieve such improvement. The two protocols, respectively, showed better efficacies than NB-UVB only protocol. However, fractional Er:YAG laser at low energy of 600 mJ/P did not provide such contributions to the treatment of vitiligo. The fractional Er:YAG laser in combination with topical betamethasone solution and NB-UVB was suitable for resistant non-segmental vitiligo. The energy of laser was preferred to be set at relatively high level.

  3. Ablative fractional carbon dioxide laser combined with intense pulsed light for the treatment of photoaging skin in Chinese population: A split-face study.

    Science.gov (United States)

    Mei, Xue-Ling; Wang, Li

    2018-01-01

    Intense pulsed light (IPL) is effective for the treatment of lentigines, telangiectasia, and generalized erythema, but is less effective in the removal of skin wrinkles. Fractional laser is effective on skin wrinkles and textural irregularities, but can induce postinflammatory hyperpigmentation (PIH), especially in Asians. This study evaluated the safety and efficacy of ablative fractional laser (AFL) in combination with IPL in the treatment of photoaging skin in Asians.This study included 28 Chinese women with Fitzpatrick skin type III and IV. The side of the face to be treated with IPL alone (3 times) or AFL in combination with IPL (2 IPL treatments and 1 AFL treatment) was randomly selected. Skin conditions including hydration, transepidermal water loss, elasticity, spots, ultraviolet spots, brown spots, wrinkle, texture, pore size and red areas, as well as adverse effects were evaluated before the treatment and at 30 days after the treatment.Compared with IPL treatment alone, AFL in combination with IPL significantly increased elasticity, decreased pore size, reduced skin wrinkles, and improved skin texture (P = .004, P = .039, P = .015, and P = .035, respectively). Both treatment protocols produced similar effects in relation to the improvement of photoaging-induced pigmentation. The combined therapy did not impair epidermal barrier function. No postoperative infection, hypopigmentation, or scarring occurred after IPL and AFL treatments. PIH occurred at 1 month after AFL treatment and disappeared at 30 days after completion of the combined therapy.AFL in combination with IPL is safe and effective for photoaging skin in Asians. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  4. LLNL pure positron plasma program

    International Nuclear Information System (INIS)

    Hartley, J.H.; Beck, B.R.; Cowan, T.E.; Howell, R.H.; McDonald, J.L.; Rohatgi, R.R.; Fajans, J.; Gopalan, R.

    1995-01-01

    Assembly and initial testing of the Positron Time-of-Flight Trap at the Lawrence Livermore National Laboratory (LLNL) Increase Pulsed Positron Facility has been completed. The goal of the project is to accumulate at high-density positron plasma in only a few seconds., in order to facilitate study that may require destructive diagnostics. To date, densities of at least 6 x 10 6 positrons per cm 3 have been achieved

  5. Multi-pair states in electron–positron pair creation

    Energy Technology Data Exchange (ETDEWEB)

    Wöllert, Anton, E-mail: woellert@mpi-hd.mpg.de; Bauke, Heiko, E-mail: heiko.bauke@mpi-hd.mpg.de; Keitel, Christoph H.

    2016-09-10

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  6. Multi-pair states in electron–positron pair creation

    International Nuclear Information System (INIS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-01-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  7. A therapeutic benefit from combining normobaric carbogen or oxygen with nicotinamide in fractionated X-ray treatments

    International Nuclear Information System (INIS)

    Kjellen, E.; Joiner, M.C.; Collier, J.M.; Johns, H.; Rojas, A.

    1991-01-01

    The ability of normobaric oxygen and carbogen (95 percent O 2 + 5 percent CO 2 ) combined with nicotinamide to enhance the radiosensitivity of two rodent adenocarcinomas and of mouse skin and kidneys was compared with the effects of radiation in air and without the drug. A comparison of the results in tumors and normal tissues showed that significant therapeutic benefit was obtained with normobaric oxygen and carbogen combined with nicotinamide. Toxic side effects of the treatment are unlikely, as prolonged administration of nicotinamide is well tolerated in man. The combination of normobaric carbogen with nicotinamide could be an effective method of enhancing tumor radiosensitivity in clinical radiotherapy where hypoxia limits the outcome of treatment. (author). 45 refs.; 4 fig.; 4 tabs

  8. Positron annihilation near fractal surfaces

    International Nuclear Information System (INIS)

    Lung, C.W.; Deng, K.M.; Xiong, L.Y.

    1991-07-01

    A model for positron annihilation in the sub-surface region near a fractal surface is proposed. It is found that the power law relationship between the mean positron implantation depth and incident positron energy can be used to measure the fractal dimension of the fractal surface in materials. (author). 10 refs, 2 figs

  9. Positron depth profiling

    International Nuclear Information System (INIS)

    Coleman, P.

    2001-01-01

    Wide-ranging studies of defects below the surface of semiconductor structures have been performed at the University of Bath, in collaboration with the University of Surrey Centre for Ion Beam Applications and with members of research teams at a number of UK universities. Positron implantation has been used in conjunction with other spectroscopies such as RBS-channeling and SIMS, and electrical characterisation methods. Research has ranged from the development of a positron-based technique to monitor the in situ annealing of near-surface open-volume defects to the provision of information on defects to comprehensive diagnostic investigations of specific device structures. We have studied Si primarily but not exclusively; e.g., we have investigated ion-implanted SiC and SiO 2 /GaAs structures. Of particular interest are the applications of positron annihilation spectroscopy to ion-implanted semiconductors, where by linking ion dose to vacancy-type defect concentration one can obtain information on ion dose and uniformity with a sensitivity not achievable by standard techniques. A compact, user-friendly positron beam system is currently being developed at Bath, in collaboration with SCRIBA, with the intention of application in an industrial environment. (orig.)

  10. Positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lindback, Stig [GEMS PET Systems AB, Uppsala (Sweden)

    1995-07-15

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body.

  11. Positron emission tomography

    International Nuclear Information System (INIS)

    Pavuk, M.

    2003-12-01

    The aim of this project is to provide a simple summary of new trends in positron emission tomography and its basic physical principles. It provides thereby compendious introduction of the trends of the present development in diagnostics using PET systems. A review of available literature was performed. (author)

  12. Cardiac positron tomography

    International Nuclear Information System (INIS)

    Geltmann, E.M.; Roberts, R.; Sobel, B.E.

    1980-01-01

    Positron emission tomography (PET) performed after the administration of the positron-emitting radionuclides carbon-11 ( 11 C), nitrogen-13 ( 13 N), oxygen-15 ( 15 O) and fluorine-18 ( 18 F) has permitted the improved noninvasive assessment of the regional myocardial metabolism of normal physiologic substrates and intermediates and their cogeners. In experimental animals, the rate of oxidation of 11 C-palmitate correlates closely with other indexes of oxygen consumption, and the extraction of 11 C-palmitate (like that of 18 F-fatty acids and 18 F-fluoredoxyglucose) ist markedly diminished in regions of myocardial ischemia. In both experimental animals and in patients, myocardial infarct site and size, determined by positron emission tomography after the intravenous injection of 11 C-palmitate, correlate closely with the electrocardiographic infarct locus and enzymatically estimated infarct size as well as with the location and extent of regional left ventricular wall motion abnormalities. PET offers promise for assessment of flow as well despite the complexities involved. PET with 13 NH 3 appears to provide one useful qualitative index, although this tracer ist actively metabolized. Because of the quantitative capabilities of positron emission tomography and the rapid progress which is being made in the development of fast scan, multi-slice, and gated instrumentation, this technique is likely to facilitate improved understanding and characterization of regional myocardial metabolism and blood flow in man under physiological and pathophysiological conditions. (orig.) [de

  13. Positron emission tomography

    International Nuclear Information System (INIS)

    Lindback, Stig

    1995-01-01

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body

  14. A pilot split-scalp study of combined fractional radiofrequency microneedling and 5% topical minoxidil in treating male pattern hair loss.

    Science.gov (United States)

    Yu, A-J; Luo, Y-J; Xu, X-G; Bao, L-L; Tian, T; Li, Z-X; Dong, Y-X; Li, Y-H

    2018-06-27

    Various trials have been conducted on the management of male pattern hair loss (MPHL), but the outcomes often seem to be limited. Adjuvant therapies are urgently needed. To evaluate the efficacy and safety of combined fractional radiofrequency microneedling (FRM) and 5% topical minoxidil in the treatment of male pattern hair loss. In total, 19 Chinese men were enrolled in this randomized, controlled, split-scalp trial. Participants received monotherapy with 5% topical minoxidil twice daily to one half of the scalp, while on the other half of the scalp the treatment with twice-daily 5% topical minoxidil was combined with five sessions of FRM at 4-week intervals. Mean hair count and hair thickness, global assessment by the investigators, subject self-assessment and adverse effects were assessed. After 5 months of treatment, mean hair count increased from 44.12 ± 21.58 to 73.14 ± 25.45 on the combined-therapy side and from 46.22 ± 18.77 to 63.21 ± 19.22 on the monotherapy side, while mean hair thickness increased from 53 ± 13 μm to 71 ± 15 μm and from 52 ± 16 μm to 66 ± 14 μm, respectively. Compared with the monotherapy side, the combined-therapy side had a higher degree of improvement in both hair count (P = 0.01) and hair thickness (P = 0.02). Combined treatment with fractional radiofrequency microneedle and 5% topical minoxidil could be an effective and safe treatment option for male pattern hair loss. © 2018 British Association of Dermatologists.

  15. Positron annihilation characterization of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Alinger, M.J.; Glade, S.C.; Wirth, B.D.; Odette, G.R.; Toyama, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    Nanostructured ferritic alloys (NFAs) were produced by mechanically alloying Fe-14Cr-3W-0.4Ti and 0.25Y 2 O 3 (wt%) powders followed by hot isostatic pressing consolidation at 850, 1000 and 1150 deg. C. Positron annihilation lifetime and orbital momentum spectroscopy measurements are in qualitative agreement with small angle neutron scattering, transmission electron microscopy and atom probe tomography observations, indicating that up to 50% of the annihilations occur at high densities of Y-Ti-O enriched nm-scale features (NFs). Some annihilations may also occur in small cavities. In Y-free control alloys, that do not contain NFs, positrons primarily annihilate in the Fe-Cr matrix and at features such as dislocations, while a small fraction annihilate in large cavities or Ar bubbles.

  16. Prediction of HIFU Propagation in a Dispersive Medium via Khokhlov–Zabolotskaya–Kuznetsov Model Combined with a Fractional Order Derivative

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2018-04-01

    Full Text Available High intensity focused ultrasound (HIFU has been proven to be promising in non-invasive therapies, in which precise prediction of the focused ultrasound field is crucial for its accurate and safe application. Although the Khokhlov–Zabolotskaya–Kuznetsov (KZK equation has been widely used in the calculation of the nonlinear acoustic field of HIFU, some deviations still exist when it comes to dispersive medium. This problem also exists as an obstacle to the Westervelt model and the Spherical Beam Equation. Considering that the KZK equation is the most prevalent model in HIFU applications due to its accurate and simple simulation algorithms, there is an urgent need to improve its performance in dispersive medium. In this work, a modified KZK (mKZK equation derived from a fractional order derivative is proposed to calculate the nonlinear acoustic field in a dispersive medium. By correcting the power index in the attenuation term, this model is capable of providing improved prediction accuracy, especially in the axial position of the focal area. Simulation results using the obtained model were further compared with the experimental results from a gel phantom. Good agreements were found, indicating the applicability of the proposed model. The findings of this work will be helpful in making more accurate treatment plans for HIFU therapies, as well as facilitating the application of ultrasound in acoustic hyperthermia therapy.

  17. Investigation of Pinus mugo essential oil oxygenated fraction by combined use of gas chromatography and dry column chromatography.

    Science.gov (United States)

    A, M B; Coran, S A; Giannellini, V; Vincieri, F F; Moneti, G

    1981-09-01

    The oxygenated compounds of Pinus mugo Turra essential oil were investigated by a combination of GC and dry column chromatography (DCC) coordinated by GC data processing. The collected data resulted in a bar graph ("normalized" gas chromatogram) giving the RRT's and relative amounts of 68 components; 38 of them were identified by MS and IR. The described procedure may be used for essential oil analysis in general.

  18. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Joao Eduardo [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Department of Mechanical Engineering, Lisbon (Portugal); Pereira, Nuno H.C. [EST Setubal, Polytechnic Institute of Setubal, Department of Mechanical Engineering, Setubal (Portugal); Matos, Jorge [Instituto Superior Tecnico, Technical University of Lisbon, Department of Civil Engineering and Architecture, Lisbon (Portugal); Frizell, Kathleen H. [U.S. Bureau of Reclamation, Denver, CO (United States)

    2010-01-15

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows. (orig.)

  19. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    Science.gov (United States)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  20. Positron effective mass in silicon

    International Nuclear Information System (INIS)

    Panda, B.K.; Shan, Y.Y.; Fung, S.; Beling, C.D.

    1995-01-01

    The positron effective mass in Si is obtained from the first-principles calculations along various crystallographic directions. The effect of electron-positron correlation on the band mass is examined in this work. A positron pseudopotential scheme is worked out to calculate the isotropic band mass without explicitly solving the band energy. The effective mass 1.46m obtained as a sum of band mass and the positron-plasmon interaction compares very well with 1.5m obtained from the positron mobility data

  1. High current pulsed positron microprobe

    International Nuclear Information System (INIS)

    Howell, R.H.; Stoeffl, W.; Kumar, A.; Sterne, P.A.; Cowan, T.E.; Hartley, J.

    1997-01-01

    We are developing a low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopy to provide a new defect analysis capability at the 10 10 e + s -l beam at the Lawrence Livermore National Laboratory electron linac. When completed, the pulsed positron microprobe will enable defect specific, 3-dimensional maps of defect concentrations with sub-micron resolution of defect location. By coupling these data with first principles calculations of defect specific positron lifetimes and positron implantation profiles we will both map the identity and concentration of defect distributions

  2. Response of three soils in the derived savanna zone of southwestern Nigeria to combined application of organic and inorganic fertilizer as affecting phosphorus fractions

    Directory of Open Access Journals (Sweden)

    Abigail O. Ojo

    2018-04-01

    Full Text Available Phosphorus inputs to the soil are primarily from the application of fertilizer P and organic resources. A ten week incubation study was carried out to determine the effects of organic and inorganic P sources on phosphorus fractions in three derived savanna soils. Poultry manure was applied at 0, 0.75g, 1.5g, 2.25g and 3g per 300g weight of soil while single superphosphate was applied at 0.0023g, 0.0046g, 0.0069g and 0.0092g per 300g of soil. Sampling was done at two weeks interval. At 0 week of the incubation study, Ekiti series had the largest amount of P fractions i.e. Fe-P, Al-P, residual P, reductant soluble P, occluded P, organic P and occluded P while Ca-P was high in Apomu series. However, increases in Fe-P, Al-P, Ca-P and organic P were observed in the three soil series evaluated and poultry manure was notably effective in reducing P occlusion. In conclusion, it was observed that irrespective of the soil series at different stages of the incubation studies, poultry manure and the combined application of poultry manure and Single superphosphate was highly effective in increasing P fractions.

  3. Unusual combination of Cis platinum and radiotherapy followed by a three fractions per day irradiation in splitcourse: a phase I-II study in brain glioma patients

    International Nuclear Information System (INIS)

    Ben-Hassel, M.; Lesimple, T.; Gedouin, D.; Chenal, C.; Guegan, Y.; Darcel, F.

    1992-01-01

    An unusual protocol based on a preliminary clinical study on cylindromas metastasized to the lung was proposed to brain glioma patients: Day 2 100 mg/m 2 i.v. Cis platinum (Cis P II) followed at days 3 and 5 by 6 Gy irradiation (RT) in two fractions and three days. Five cycles were scheduled at 21 days interval. On disease progression a three fractions per day radiotherapy regimen (3 FRT) in split-course (two series of 22.50 Gy in 15 fractions and five days separated by a two weeks period of rest) was then delivered to the patients. All patients had a measurable mass on the CT scan. 19 were entered into the study: 13 as first line therapy (group A) and six for salvage treatment (group B). Tolerance was globally good. Eight patients were considered responders at the end of five cycles of Cis II-RT. They were all group A patients. Median symptom-free interval was six months for the whole population. Survival was twelve months. The 3 FRT was well tolerated but does not seem to have improved the therapeutic gain of the chemoradiotherapy combination. The present study concerns patients whose prognosis was poor on inclusion: Surgery unadvisable or unsatisfactory and diagnosis mainly based on biopsy only. The number and the duration of responses justify further study into Cis P II as first line therapy as either an effective cytotoxic drug or a potential radio enhancer. (orig.) [de

  4. Image-quality assessment for several positron emitters using the nema nu 4-2009 standards in the siemens inveon small-animal pet scanner

    NARCIS (Netherlands)

    Disselhorst, J.A.; Brom, M.; Laverman, P.; Slump, Cornelis H.; Boerman, O.C.; Oyen, W.J.G.; Gotthardt, M.; Visser, E.P.

    2010-01-01

    The positron emitters 18F, 68Ga, 124I, and 89Zr are all relevant in small-animal PET. Each of these radionuclides has different positron energies and ranges and a different fraction of single photons emitted. Average positron ranges larger than the intrinsic spatial resolution of the scanner (for

  5. Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner.

    NARCIS (Netherlands)

    Disselhorst, J.A.; Brom, M.; Laverman, P.; Slump, C.H.; Boerman, O.C.; Oyen, W.J.G.; Gotthardt, M.; Visser, E.P.

    2010-01-01

    The positron emitters (18)F, (68)Ga, (124)I, and (89)Zr are all relevant in small-animal PET. Each of these radionuclides has different positron energies and ranges and a different fraction of single photons emitted. Average positron ranges larger than the intrinsic spatial resolution of the scanner

  6. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  7. Usefulness of Daily Fractionated Administration of Wortmannin Combined With γ-Ray Irradiation in Terms of Local Tumor Response and Lung Metastasis

    Science.gov (United States)

    Masunaga, Shin-ichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Narabayashi, Masaru; Tano, Keizo; Maruhashi, Akira; Ono, Koji

    2013-01-01

    Background To evaluate the usefulness of fractionated administration of wortmannin combined with γ-ray irradiation in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells. Methods B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumor-bearing mice then received γ-ray irradiation after wortmannin treatment through a single or 4 consecutive daily intraperitoneal administrations up to a total dose of 4 mg/kg in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Results Wortmannin raised the sensitivity of Q cells more remarkably than the total cell population in both single and daily administrations. Daily administration of wortmannin elevated the sensitivity of both the total and Q cell populations, but especially the total cell population, compared with single administration. Daily administration, especially combined with MTH, decreased the number of lung metastases. Conclusion Daily fractionated administration of wortmannin in combination with γ-ray irradiation was thought to be more promising than single administration because of its potential to enhance local tumor response and repress lung metastatic potential. PMID:29147327

  8. Significance of Fractionated Administration of Thalidomide Combined With γ-Ray Irradiation in Terms of Local Tumor Response and Lung Metastasis

    Science.gov (United States)

    Masunaga, Shin-ichiro; Sanada, Yu; Moriwaki, Takahiro; Tano, Keizo; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Narabayashi, Masaru; Watanabe, Tsubasa; Nakagawa, Yosuke; Maruhashi, Akira; Ono, Koji

    2014-01-01

    Background The aim of this study was to evaluate the significance of fractionated administration of thalidomide combined with γ-ray irradiation in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells. Methods B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumor-bearing mice then received γ-ray irradiation after thalidomide treatment through a single or two consecutive daily intraperitoneal administrations up to a total dose of 400 mg/kg in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Results Thalidomide raised the sensitivity of the total cell population more remarkably than Q cells in both single and daily administrations. Daily administration of thalidomide elevated the sensitivity of both the total and Q cell populations, but especially the total cell population, compared with single administration. Daily administration, especially combined with MTH, decreased the number of lung metastases. Conclusion Daily fractionated administration of thalidomide in combination with γ-ray irradiation was thought to be more promising than single administration because of its potential to enhance local tumor response and repress lung metastatic potential. PMID:29147396

  9. Positron-molecule interactions and corresponding positron attachment to molecules. As a basis for positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Tachikawa, Masanori; Kimura, Mineo; Pichl, Lukas

    2007-01-01

    Through positron and electron interactions, they annihilate emitting primarily two gamma rays with 180-degree opposite directions. Positron spectroscopy using the characteristics of these gamma rays has been employed for analyzing various properties of material as well as for positron emission tomography (PET). However, its fundamental physics of positron-electron interactions and resulting features of emitting gamma rays are not well understood. By obtaining better understanding of positron interactions, it should become possible to provide the firm bases for positron spectroscopy in finer accuracy and quality. Here, we propose a significant mechanism for positron annihilation through positron attachment process, which may help increase the quality of positron spectroscopy. (author)

  10. Effect of treatment in fractionated schedules with the combination of x-irradiation and six cytotoxic drugs on the RIF-1 tumor and normal mouse skin

    International Nuclear Information System (INIS)

    Lelieveld, P.; Scoles, M.A.; Brown, J.M.; Phil, D.; Kallman, R.F.

    1985-01-01

    RIF-1 tumors, implanted syngeneically in the gastrocnemius muscles of the right hind legs of C3H/Km mice, were treated either with X ray alone, drug alone, or drug and X ray combined. The drugs tested were bleomycin, BCNU, cis-diamminedichloro platinum, adriamycin, cyclophosphamide, and actinomycin-D. All drugs were administered either in the maximum tolerated dose or a dose that causes minimal tumor growth delay. Both drugs and X rays were administered either as a single dose or in five daily fractions. In addition to the single modality controls, seven different schedules of combined modalities were tested. Tumors were measured periodically after treatment in order that the day at which each tumor reached 4 times its initial cross-sectional area, i.e., its size at the time of treatment, could be determined. The effect of treatment on tumors was based upon excess growth delay (GD), i.e., T400% (treated)-T400% (untreated control). Treatment effects for the same combined modality schedules were also determined for normal skin, using the early skin reaction as an endpoint. Dose effect factors (DEF) were computed for all combined modality schedules and were based upon calculated radiation dose equivalents. We also calculated supra-additivity ratios, SR/sub I/ and SR/sub II/, therapeutic gain factors and adjusted therapeutic gain factors. The only drugs to produce significant supra-additivity with X rays were cis-Pt and cyclo

  11. Electron-positron interactions

    International Nuclear Information System (INIS)

    Wiik, B.; Wolf, G.

    1979-01-01

    This book is an introduction into the physics of electron-positron interactions. After a description of electron-positron storage rings pure electromagnetic e + e - interactions, and the total cross section are considered. Then low energy processes, the production of the J/psi and psi' particles including their radiative decay as well as the search for other narrow vector states are described. Then after the quark model interpretation of J/psi and psi' charmed mesons, the heavy lepton t, and the upsilon resonances are described. Thereafter inclusive hadron production and jet formation is discussed. Finally the next generation of e + e - colliding rings is described, and the first results from PETRA are presented. This book is suited for all physicists, who want to get a general review about e + e - physics. (HSI) 891 HSI/HSI 892 RKD

  12. Tomography by positrons emission

    International Nuclear Information System (INIS)

    Mosconi, Sergio L.

    1999-01-01

    The tomography by positrons emission is a technology that allows to measure the concentration of positrons emission in a tri dimensional body through external measurements. Among the isotope emissions have carbon isotopes are ( 11 C), of the oxygen ( 15 O), of the nitrogen ( 13 N) that are three the element that constitute the base of the organic chemistry. Theses have on of the PET's most important advantages, since many biological interesting organic molecules can be tracer with these isotopes for the metabolism studies 'in vivo' through PET, without using organic tracers that modify the metabolism. The mentioned isotopes, also possess the characteristic of having short lifetime, that constitute on of PET's advantages from the dosimetric point of view. Among 11 C, 15 O, and 13 N, other isotopes that can be obtained of a generator as the 68 Ga and 82 Rb

  13. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each ring contains a plurality of scintillation detectors which are positioned around an inner circumference with a septum ring extending inwardly from the inner circumference along each outer edge of each ring. An additional septum ring is positioned in the middle of each ring of detectors and parallel to the other septa rings, whereby the inward extent of all the septa rings may be reduced by one-half and the number of detectors required in each ring is reduced. The additional septa reduces the costs of the positron camera and improves its performance

  14. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each detector ring or offset ring includes a plurality of photomultiplier tubes and a plurality of scintillation crystals are positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring is offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. The offset detector ring geometry reduces the costs of the positron camera and improves its performance

  15. New techniques of positron annihilation

    International Nuclear Information System (INIS)

    1983-02-01

    Studies on new techniques of positron annihilation and its application to various fields are presented. First, production of slow positron and its characteristic features are described. The slow positron can be obtained from radioisotopes by using a positron moderator, proton beam bombardment on a boron target, and pair production by using an electron linear accelerator. Bright enhancement of the slow positron beam is studied. Polarized positron beam can be used for the study of the momentum distribution of an electron in ferromagnetic substances. Production of polarized positrons and measurements of polarization are discussed. Various phases of interaction between slow positrons and atoms (or molecules) are described. A comparative study of electron scavenging effects on luminescence and on positronium formation in cyclohexane is presented. The positron annihilation phenomena are applicable for the surface study. The microscopic information on the surface of porous material may be obtained. The slow positrons are also useful for the surface study. Production and application of slow muon (positive and negative) are presented in this report. (Kato, T.)

  16. Positron Interactions with Atoms and Ions

    Science.gov (United States)

    Bhatia, Anand K.

    2012-01-01

    Dirac, in 1928, combining the ideas of quantum mechanics and the ideas of relativity invented the well-known relativistic wave equation. In his formulation, he predicted an antiparticle of the electron of spin n-bar/2. He thought that this particle must be a proton. Dirac published his interpretation in a paper 'A theory of electrons and protons.' It was shown later by the mathematician Hermann Weyl that the Dirac theory was completely symmetric between negative and positive particles and the positive particle must have the same mass as that of the electron. In his J. Robert Oppenheimer Memorial Prize Acceptance Speech, Dirac notes that 'Blackett was really the first person to obtain hard evidence for the existence of a positron but he was afraid to publish it. He wanted confirmation, he was really over cautious.' Positron, produced by the collision of cosmic rays in a cloud chamber, was detected experimentally by Anderson in 1932. His paper was published in Physical Review in 1933. The concept of the positron and its detection were the important discoveries of the 20th century. I have tried to discuss various processes involving interactions of positrons with atoms and ions. This includes scattering, bound states and resonances. It has not been possible to include the enormous work which has been carried out during the last 40 or 50 years in theory and measurements.

  17. Generation of monoenergetic positrons

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Dale, J.M.; Miller, P.D. Jr.; Moak, C.D.; Pendyala, S.; Triftshaeuser, W.; Howell, R.H.; Alvarez, R.A.

    1983-01-01

    Many experiments have been performed in the generation and application of monoenergetic positron beams using annealed tungsten moderators and fast sources of 58 Co, 22 Na, 11 C, and LINAC bremstrahlung. This paper will compare the degrees of success from our various approaches. Moderators made from both single crystal and polycrystal tungsten have been tried. Efforts to grow thin films of tungsten to be used as transmission moderators and brightness enhancement devices are in progress

  18. Positron emission tomography

    International Nuclear Information System (INIS)

    Marchenkov, N.S.

    2000-01-01

    The foundations of the positron emission tomography (PET), widely used for the medical diagnostics, are considered. The brief description of the cyclotron for production of radionuclides, applied in the PET, the target devices for manufacturing the position emitters, the moduli for the radiopharmaceuticals synthesis (RPS) for the PET is presented. The necessity and concept of complete automation of the RPS for the PET are discussed [ru

  19. Intense pulsed light, near infrared pulsed light, and fractional laser combination therapy for skin rejuvenation in Asian subjects: a prospective multi-center study in China.

    Science.gov (United States)

    Tao, Li; Wu, Jiaqiang; Qian, Hui; Lu, Zhong; Li, Yuanhong; Wang, Weizhen; Zhao, Xiaozhong; Tu, Ping; Yin, Rui; Xiang, Leihong

    2015-09-01

    Ablative skin rejuvenation therapies have limitations for Asian people, including post-inflammatory hyperpigmentation and long down time. Non-ablative lasers are safer but have limited efficacy. This study is to investigate the safety and efficacy of a combination therapy consisting of intense pulsed light (IPL), near infrared (NIR) light, and fractional erbium YAG (Er:YAG) laser for skin rejuvenation in Asian people. This study recruited 113 subjects from six sites in China. Subjects were randomly assigned to a full-face group, who received combination therapy, and split-face groups, in which one half of the face received combination therapy and the other half received IPL monotherapy. Each subject received five treatment sessions during a period of 90 days. Subjects were followed up at 1 and 3 months post last treatment. Three months after last treatment, the full-face group (n = 57) had a global improvement rate of 29 % and 29 % for wrinkles, 32 % for skin texture, 33 % for pigment spots, 28 % for pore size, respectively. For patients in the split-face groups (n = 54), monotherapy side had a global improvement rate of 23 % and 20 % for wrinkles, 27 % for skin texture, 25 % for pigment spots, 25 % for pore size, respectively. Both combination therapy and monotherapy resulted in significant improvements at the follow-up visits compared to baseline (P < 0.001). Combination therapy showed significantly greater improvements compared to monotherapy at two follow-up visits (P < 0.05). Combination therapy is a safe and more effective strategy than IPL monotherapy for skin rejuvenation in Asian people.

  20. Electronic structure of Mo and W investigated with positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Dutschke, Markus [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Sekania, Michael [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Andronikashvili Institute of Physics, Tbilisi (Georgia); Benea, Diana [Faculty of Physics, Babes-Bolyai University, Cluj-Napoca (Romania); Department of Chemistry, Ludwig Maximilian University of Munich (Germany); Ceeh, Hubert; Weber, Joseph A.; Hugenschmidt, Christoph [FRM II, Technische Universitaet Muenchen, Garching (Germany); Chioncel, Liviu [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Augsburg Center for Innovative Technologies, University of Augsburg (Germany)

    2016-07-01

    We perform electronic structure calculations to analyze the momentum distribution of the transition metals molybdenum and tungsten. We study the influence of positron-electron and the electron-electron interactions on the shape of the two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) spectra. Our analysis is performed within the framework of the combined Density Functional (DFT) and Dynamical Mean-Field Theory (DMFT). Computed spectra are compared with recent experimental investigations.

  1. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial

    OpenAIRE

    Gita Faghihi; Shima Keyvan; Ali Asilian; Saeid Nouraei; Shadi Behfar; Mohamad Ali Nilforoushzadeh

    2016-01-01

    Background: Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. Aims: This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Methods: Sixteen patients (12 women and 4 men) who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal ...

  2. [Sustained release of recombinant human bone morphogenetic protein-2 combined with stromal vascular fraction cells in promoting posterolateral spinal fusion in rat model].

    Science.gov (United States)

    Yuan, Wei; Zheng, Jun; Qian, Jinyu; Zhou, Xiaoxiao; Wang, Minghui; Wang, Xiuhui

    2017-07-01

    To observe the effect of stromal vascular fraction cells (SVFs) from rat fat tissue combined with sustained release of recombinant human bone morphogenetic protein-2 (rhBMP-2) in promoting the lumbar fusion in rat model. SVFs were harvested from subcutaneous fat of bilateral inguinal region of 4-month-old rat through the collagenase I digestion. The sustained release carrier was prepared via covalent bond of the rhBMP-2 and β-tricalcium phosphate (β-TCP) by the biominetic apatite coating process. The sustained release effect was measured by BCA method. Thirty-two rats were selected to establish the posterolateral lumbar fusion model and were divided into 4 groups, 8 rats each group. The decalcified bone matrix (DBX) scaffold+PBS, DBX scaffold+rhBMP-2/β-TCP sustained release carrier, DBX scaffold+SVFs, and DBX scaffold+rhBMP-2/β-TCP sustained release carrier+SVFs were implanted in groups A, B, C, and D respectively. X-ray films, manual spine palpation, and high-resolution micro-CT were used to evaluate spinal fusion at 8 weeks after operation; bone mineral density (BMD) and bone volume fraction were analyzed; the new bone formation was evaluated by HE staining and Masson's trichrome staining, osteocalcin (OCN) was detected by immunohistochemical staining. The cumulative release amount of rhBMP-2 was about 40% at 2 weeks, indicating sustained release effect of rhBMP-2; while the control group was almost released within 2 weeks. At 8 weeks, the combination of manual spine palpation, X-ray, and micro-CT evaluation showed that group D had the strongest bone formation (100%, 8/8), followed by group B (75%, 6/8), group C (37.5%, 3/8), and group A (12.5%, 1/8). Micro-CT analysis showed BMD and bone volume fraction were significantly higher in group D than groups A, B, and C ( P cells with bone matrix deposition, and an active osteogenic process similar to the mineralization of long bones in group D. The bone formation of group B was weaker than that of group D, and

  3. Using polarized positrons to probe physics beyond the standard model

    Science.gov (United States)

    Furletova, Yulia; Mantry, Sonny

    2018-05-01

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.

  4. Alternative therapeutic approach to renal-cell carcinoma: induction of apoptosis with combination of vitamin K3 and D-fraction.

    Science.gov (United States)

    Degen, Michael; Alexander, Bobby; Choudhury, Muhammad; Eshghi, Majid; Konno, Sensuke

    2013-12-01

    Because of a dismal prognosis for advanced renal-cell carcinoma (RCC), an alternative therapeutic approach, using vitamin K3 (VK3) and D-fraction (DF) was investigated. VK3 is a synthetic VK derivative and DF is a bioactive mushroom extract, and they have been shown to have antitumor activity. We examined if the combination of VK3 and DF would exhibit the improved anticancer effect on RCC in vitro. Human RCC, ACHN cell line, were treated with varying concentrations of VK3, DF, or a combination of the two. Cell viability was assessed at 72 hours by MTT assay. To explore the possible anticancer mechanism, studies on cell cycle, chromatin modifications, and apoptosis were conducted. VK3 alone led to a ~20% reduction in cell viability at 4 μM, while DF alone induced a 20% to 45% viability reduction at ≥ 500 μg/mL. A combination of VK3 (4 μM) and DF (300 μg/mL) led to a drastic >90% viability reduction, however. Cell cycle analysis indicated that VK3/DF treatment induced a G1 cell cycle arrest, accompanied by the up-regulation of p21(WAF1) and p27(Kip1). Histone deacetylase (HDAC) was also significantly (~60%) inactivated, indicating chromatin modifications. In addition, Western blot analysis revealed that the up-regulation of Bax and activation of poly-(ADP-ribose)-polymerase (PARP) were seen in VK3/DF-treated cells, indicating induction of apoptosis. The combination of VK3 and DF can lead to a profound reduction in ACHN cell viability, through a p21(WAF1)-mediated G1 cell cycle arrest, and ultimately induces apoptosis. Therefore, the combination of VK3/DF may have clinical implications as an alternative, improved therapeutic modality for advanced RCC.

  5. Applications of positron depth profiling

    International Nuclear Information System (INIS)

    Hakvoort, R.A.

    1993-01-01

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM)

  6. Nonlinear positron acoustic solitary waves

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Aoutou, Kamel; Younsi, Smain; Amour, Rabia

    2009-01-01

    The problem of nonlinear positron acoustic solitary waves involving the dynamics of mobile cold positrons is addressed. A theoretical work is presented to show their existence and possible realization in a simple four-component plasma model. The results should be useful for the understanding of the localized structures that may occur in space and laboratory plasmas as new sources of cold positrons are now well developed.

  7. Applications of positron depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Hakvoort, R A

    1993-12-23

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM).

  8. Positron emission tomography. Basic principles

    International Nuclear Information System (INIS)

    Rodriguez, Jose Luis; Massardo, Teresa; Gonzalez, Patricio

    2001-01-01

    The basic principles of positron emission tomography (PET) technique are reviewed. lt allows to obtain functional images from gamma rays produced by annihilation of a positron, a positive beta particle. This paper analyzes positron emitters production in a cyclotron, its general mechanisms, and the various detection systems. The most important clinical applications are also mentioned, related to oncological uses of fluor-l8-deoxyglucose

  9. Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Petersen, Jens Højslev; Koch, C. Bender

    2009-01-01

    mechanical and barrier properties and be more suitable for a wider range of food-packaging applications. Natural or synthetic clay nanofillers are being investigated for this purpose in a project called NanoPack funded by the Danish Strategic Research Council. In order to detect and characterize the size...... of clay nanoparticulates, an analytical system combining asymmetrical flow field-flow fractionation (AF4) with multi-angle light-scattering detection (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) is presented. In a migration study, we tested a biopolymer nanocomposite consisting...... of polylactide (PLA) with 5% Cloisite®30B (a derivatized montmorillonite clay) as a filler. Based on AF4-MALS analyses, we found that particles ranging from 50 to 800 nm in radius indeed migrated into the 95% ethanol used as a food simulant. The full hyphenated AF4-MALS-ICP-MS system showed, however, that none...

  10. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    Aourag, H.; Guittom, A.

    2009-01-01

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Positron implantation profile in kapton

    International Nuclear Information System (INIS)

    Plotkowski, K.; Panek, T.J.; Kansj, J.

    1988-01-01

    Measurements of positrons' implantation profile were made with geometry as in the majority of PAT experiments, making use of the difference in values of mean lifetimes of positrons in the absorber and in the detector. The function describing the absorption of positrons in the absorber taking into account measurement geometry was fitted to the experimental data. The correction to the exponential relation occurring in this function is the dominating factor for small thicknesses of the absorber. In this analysis various values of positrons' backscatter coefficients of the nickel and of the kapton were also taken into account

  12. Positron lifetimes in deformed copper

    International Nuclear Information System (INIS)

    Hinode, Kenji; Tanigawa, Shoichiro; Doyama, Masao

    1976-01-01

    Positron lifetime measurements were performed for Cu samples with different densities of lattice defects. The lifetime spectra were successfully resolved into two components with the help of the well established analysis program. Obtained results were quite consistent with those expected from the trapping model. The positron trapping mechanism from free to trapped states and the initial condition of the model were especially checked. Deduced values obtained for tau sub(c) (lifetime of free positrons) and tau sub(t) (lifetime of trapped positrons) were 122+-5 psec and 176+-5 psec, respectively. (auth.)

  13. PET imaging of thin objects: measuring the effects of positron range and partial-volume averaging in the leaf of Nicotiana tabacum

    Energy Technology Data Exchange (ETDEWEB)

    Alexoff, David L., E-mail: alexoff@bnl.gov; Dewey, Stephen L.; Vaska, Paul; Krishnamoorthy, Srilalan; Ferrieri, Richard; Schueller, Michael; Schlyer, David J.; Fowler, Joanna S.

    2011-02-15

    Introduction: PET imaging in plants is receiving increased interest as a new strategy to measure plant responses to environmental stimuli and as a tool for phenotyping genetically engineered plants. PET imaging in plants, however, poses new challenges. In particular, the leaves of most plants are so thin that a large fraction of positrons emitted from PET isotopes ({sup 18}F, {sup 11}C, {sup 13}N) escape while even state-of-the-art PET cameras have significant partial-volume errors for such thin objects. Although these limitations are acknowledged by researchers, little data have been published on them. Methods: Here we measured the magnitude and distribution of escaping positrons from the leaf of Nicotiana tabacum for the radionuclides {sup 18}F, {sup 11}C and {sup 13}N using a commercial small-animal PET scanner. Imaging results were compared to radionuclide concentrations measured from dissection and counting and to a Monte Carlo simulation using GATE (Geant4 Application for Tomographic Emission). Results: Simulated and experimentally determined escape fractions were consistent. The fractions of positrons (mean{+-}S.D.) escaping the leaf parenchyma were measured to be 59{+-}1.1%, 64{+-}4.4% and 67{+-}1.9% for {sup 18}F, {sup 11}C and {sup 13}N, respectively. Escape fractions were lower in thicker leaf areas like the midrib. Partial-volume averaging underestimated activity concentrations in the leaf blade by a factor of 10 to 15. Conclusions: The foregoing effects combine to yield PET images whose contrast does not reflect the actual activity concentrations. These errors can be largely corrected by integrating activity along the PET axis perpendicular to the leaf surface, including detection of escaped positrons, and calculating concentration using a measured leaf thickness.

  14. Progress toward magnetic confinement of a positron-electron plasma: nearly 100% positron injection efficiency into a dipole trap

    Science.gov (United States)

    Stoneking, Matthew

    2017-10-01

    The hydrogen atom provides the simplest system and in some cases the most precise one for comparing theory and experiment in atomics physics. The field of plasma physics lacks an experimental counterpart, but there are efforts underway to produce a magnetically confined positron-electron plasma that promises to represent the simplest plasma system. The mass symmetry of positron-electron plasma makes it particularly tractable from a theoretical standpoint and many theory papers have been published predicting modified wave and stability properties in these systems. Our approach is to utilize techniques from the non-neutral plasma community to trap and accumulate electrons and positrons prior to mixing in a magnetic trap with good confinement properties. Ultimately we aim to use a levitated superconducting dipole configuration fueled by positrons from a reactor-based positron source and buffer-gas trap. To date we have conducted experiments to characterize and optimize the positron beam and test strategies for injecting positrons into the field of a supported permanent magnet by use of ExB drifts and tailored static and dynamic potentials applied to boundary electrodes and to the magnet itself. Nearly 100% injection efficiency has been achieved under certain conditions and some fraction of the injected positrons are confined for as long as 400 ms. These results are promising for the next step in the project which is to use an inductively energized high Tc superconducting coil to produce the dipole field, initially in a supported configuration, but ultimately levitated using feedback stabilization. Work performed with the support of the German Research Foundation (DFG), JSPS KAKENHI, NIFS Collaboration Research Program, and the UCSD Foundation.

  15. In vitro synergism of a water insoluble fraction of Uncaria tomentosa combined with fluconazole and terbinafine against resistant non-Candida albicans isolates.

    Science.gov (United States)

    Moraes, Renata Cougo; Carvalho, Anderson Ramos; Lana, Aline Jacobi Dalla; Kaiser, Samuel; Pippi, Bruna; Fuentefria, Alexandre Meneghello; Ortega, George González

    2017-12-01

    Uncaria tomentosa D.C. (Rubiaceae) has several biological activities, including activity against resistant Candida strains. The synergistic interaction with terbinafine or fluconazole can be an important alternative to overcome this resistance. The potential synergy between a water insoluble fraction (WIF) from Uncaria tomentosa bark and the antifungals terbinafine (TRB) and fluconazole (FLZ) against non-Candida albicans resistant strains was investigated. TRB and FLZ, alone and combined with WIF, were tested by the checkerboard procedure using the micro-dilution technique against seven isolates of Candida glabrata and C. krusei. The molecular interactions occurring outside the cell wall were evaluated by scanning electron microscopy, Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) analysis. The checkerboard inhibitory assay demonstrated synergy for WIF:TRB and WIF:FLZ combinations, respectively. The best synergistic cell damage was demonstrated unequivocally for the associations of WIF and TRB (1.95:4.0 μg/mL) and WIF and FLZ (1.95:8.0 μg/mL). The comparison of the FT-IR spectra of the antifungal alone, and in combination with WIF, allows recognizing clear differences in 3000, 1600, 1400, and 700-800 cm -1 bands. Additionally, modifications on TRB and FLZ thermograms were clearly noticed after their combination with WIF. DSC and infrared analysis demonstrated intermolecular interactions between WIF and either TRB or FLZ. Hence, quite likely the synergistic effect is related to interaction events occurring outside the cell wall between antifungal and cat's claw proanthocyanidins. A direct action on the cell wall is suggested, without connection with the ABC efflux pump mechanism.

  16. Combined therapy for critical limb ischemia: biomimetic PLGA microcarriers potentiates the pro-angiogenic effect of adipose tissue stromal vascular fraction cells.

    Science.gov (United States)

    Hoareau, Laurence; Fouchet, Florian; Planesse, Cynthia; Mirbeau, Sophie; Sindji, Laurence; Delay, Emmanuel; Roche, Régis; Montero-Menei, Claudia N; Festy, Franck

    2018-04-14

    We propose a regenerative solution in the treatment of critical limb ischemia. Poly-lactic/glycolic acid (PLGA) microcarriers were prepared and coated with laminin to be sterilized through γ-irradiation of 25 kGy at low temperature. Stromal vascular fraction (SVF) cells were extracted through enzymatic digestion of adipose tissue. Streptozotocin-induced diabetic mice underwent arteriotomy and received an administration of SVF cells combined or not with biomimetic microcarriers. Functional evaluation of the ischemic limb was then reported and tissue reperfusion was evaluated through fluorescence molecular tomography (FMT). Microcarriers were stable and functional after γ-irradiation until at least 12 months storage. Mice which received an injection of SVF cells in the ischemic limb have 22 % of supplementary blood supply within this limb 7 days after surgery compared to vehicle, whereas no difference was observed at day 14. With the combined therapy, the improvement of blood flow is significantly higher compared to vehicle, of about 31 % at day 7 and of about 11 % at day 14. Injection of SVF cells induces a significant 27 % decrease of necrosis compared to vehicle. This effect is more important when SVF cells were mixed with biomimetic microcarriers: - 37% compared to control. Although SVF cells injection leads to a non-significant 22 % proprioception recovery, the combined therapy induces a significant recovery of about 27 % compared to vehicle. We show that the combination of SVF cells from adipose tissue with laminin-coated PLGA microcarriers is efficient for CLI therapy in a diabetic mouse model. This article is protected by copyright. All rights reserved.

  17. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  18. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  19. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  20. The efficacy of conditioned media of adipose-derived stem cells combined with ablative carbon dioxide fractional resurfacing for atrophic acne scars and skin rejuvenation.

    Science.gov (United States)

    Zhou, Bing-Rong; Zhang, Ting; Bin Jameel, Afzaal Ahmed; Xu, Yang; Xu, Yan; Guo, Shi-Lei; Wang, Ying; Permatasari, Felicia; Luo, Dan

    2016-06-01

    To evaluate the effects of conditioned medium of adipose-derived stem cells (ADSC-CM) on efficacy and side effects after fractional carbon dioxide laser resurfacing (FxCR) when treating subjects with facial atrophic acne scars or with skin rejuvenation needs. Twenty-two subjects were enrolled in the study and divided into two groups. Nine subjects were included in skin rejuvenation group and thirteen subjects were included in acne scar group, and all subjects underwent three sessions of FxCR. ADSC-CM was applied on FxCR site of one randomly selected face side. Evaluations were done at baseline, 1 week after first treatment, and 1 month after each treatment. The outcome assessments included subjective satisfaction scale; blinded clinical assessment; and the biophysical parameters of roughness, elasticity, skin hydration, transepidermal water loss (TEWL), and the erythema and melanin index. Biopsies taken from one subject in skin rejuvenation group were analyzed using hematoxylin and eosin, Masson's Trichrome, and Gomori's aldehyde fuchsin staining. ADSC-CM combined with FxCR increased subject satisfaction, elasticity, skin hydration, and skin elasticity and decreased TEWL, roughness, and the melanin index in both acne scars and skin rejuvenation groups. Histologic analysis showed that ADSC-CM increased dermal collagen density, elastin density, and arranged them in order. ADSC-CM with FxCR is a good combination therapy for treating atrophic acne scars and skin rejuvenation. JSPH2012-082 - Registered 14 Feb 2012.

  1. Muon-decay positron channeling in semiconductors

    International Nuclear Information System (INIS)

    Simmler, H.; Eschle, P.; Keller, H.; Kuendig, W.; Odermatt, W.; Patterson, B.D.; Savic, I.M.; Schneider, J.W.; Staeuble-Puempin, B.; Straumann, U.; Truoel, P.

    1992-01-01

    The lattice positions of implanted positive muons (μ + ) in intrinsic semiconductors (Si, GaAs, InP) have been investigated by μ-decay positron channeling at temperatures ranging from 95 K to 400 K. The positrons exhibit planar steering effects with a maximum amplitude of approximately 5% and a width of the order of 0.1deg. In high purity float-zone (FZ) Si a metastable μ site is observed: Below 200 K, the pattern is consistent with a fraction of 40% near a BC (bond-center) site and 60% near a T (tetrahedral) site. Above 200 K, the T-like fraction undergoes a transition to the BC-like site, where virtually all muons are located above 300 K. By comparison with muon-spin-rotation (μSR) measurements, these sites can be associated with the known paramagnetic muonium (μ + e - ) states observed in numerous semiconductors: The metastable site corresponds to the isotropic state (MU), the BC-like configuration is the stable site for both the anisotropic state (MU * ) at low temperatures as well as the final ionized state ('μ + ') at higher temperatures. In GaAs, there is evidence for a similar metastability. In InP, a near-BC configuration is observed throughout the temperature range investigated. There is no indication of a metastable site. Thus a BC-like configuration is found to be most stable in all measurements. (orig.)

  2. Muon-decay positron channeling in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Simmler, H.; Eschle, P.; Keller, H.; Kuendig, W.; Odermatt, W.; Patterson, B.D.; Savic, I.M.; Schneider, J.W.; Staeuble-Puempin, B.; Straumann, U.; Truoel, P. (Physics Inst., Univ. Zurich (Switzerland))

    1992-01-01

    The lattice positions of implanted positive muons ({mu}{sup +}) in intrinsic semiconductors (Si, GaAs, InP) have been investigated by {mu}-decay positron channeling at temperatures ranging from 95 K to 400 K. The positrons exhibit planar steering effects with a maximum amplitude of approximately 5% and a width of the order of 0.1deg. In high purity float-zone (FZ) Si a metastable {mu} site is observed: Below 200 K, the pattern is consistent with a fraction of 40% near a BC (bond-center) site and 60% near a T (tetrahedral) site. Above 200 K, the T-like fraction undergoes a transition to the BC-like site, where virtually all muons are located above 300 K. By comparison with muon-spin-rotation ({mu}SR) measurements, these sites can be associated with the known paramagnetic muonium ({mu}{sup +}e{sup -}) states observed in numerous semiconductors: The metastable site corresponds to the isotropic state (MU), the BC-like configuration is the stable site for both the anisotropic state (MU{sup *}) at low temperatures as well as the final ionized state ('{mu}{sup +}') at higher temperatures. In GaAs, there is evidence for a similar metastability. In InP, a near-BC configuration is observed throughout the temperature range investigated. There is no indication of a metastable site. Thus a BC-like configuration is found to be most stable in all measurements. (orig.).

  3. Study of tungsten based positron moderators

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México DF (Mexico); DuBois, R.D. [Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-07-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies.

  4. Study of tungsten based positron moderators

    International Nuclear Information System (INIS)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C.; DuBois, R.D.

    2015-01-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies

  5. Two-site Hubbard molecule with a spinless electron-positron pair

    KAUST Repository

    Cossu, Fabrizio

    2012-12-19

    We determine the eigenvalues of the two-site Hubbard molecule with one electron and one positron to describe the characteristics of electron-positron interactions in solids. While the effect of hopping is, in general, opposite to the effect of on-site interaction, we find a complex scenario for the electron-positron pair with a non-vanishing potential drop. We give analytical solutions and discuss the combined effects of the model parameters.

  6. Two-site Hubbard molecule with a spinless electron-positron pair

    KAUST Repository

    Cossu, Fabrizio; Schuster, Cosima; Schwingenschlö gl, Udo

    2012-01-01

    We determine the eigenvalues of the two-site Hubbard molecule with one electron and one positron to describe the characteristics of electron-positron interactions in solids. While the effect of hopping is, in general, opposite to the effect of on-site interaction, we find a complex scenario for the electron-positron pair with a non-vanishing potential drop. We give analytical solutions and discuss the combined effects of the model parameters.

  7. Cyclotrons and positron emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  8. Cyclotrons and positron emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs

  9. Combined diagnostic performance of coronary computed tomography angiography and computed tomography derived fractional flow reserve for the evaluation of myocardial ischemia: A meta-analysis.

    Science.gov (United States)

    Tan, Xiao Wei; Zheng, Qishi; Shi, Luming; Gao, Fei; Allen, John Carson; Coenen, Adriaan; Baumann, Stefan; Schoepf, U Joseph; Kassab, Ghassan S; Lim, Soo Teik; Wong, Aaron Sung Lung; Tan, Jack Wei Chieh; Yeo, Khung Keong; Chin, Chee Tang; Ho, Kay Woon; Tan, Swee Yaw; Chua, Terrance Siang Jin; Chan, Edwin Shih Yen; Tan, Ru San; Zhong, Liang

    2017-06-01

    To evaluate the combined diagnostic accuracy of coronary computed tomography angiography (CCTA) and computed tomography derived fractional flow reserve (FFRct) in patients with suspected or known coronary artery disease (CAD). PubMed, The Cochrane library, Embase and OpenGray were searched to identify studies comparing diagnostic accuracy of CCTA and FFRct. Diagnostic test measurements of FFRct were either extracted directly from the published papers or calculated from provided information. Bivariate models were conducted to synthesize the diagnostic performance of combined CCTA and FFRct at both "per-vessel" and "per-patient" levels. 7 articles were included for analysis. The combined diagnostic outcomes from "both positive" strategy, i.e. a subject was considered as "positive" only when both CCTA and FFRct were "positive", demonstrated relative high specificity (per-vessel: 0.91; per-patient: 0.81), high positive likelihood ratio (LR+, per-vessel: 7.93; per-patient: 4.26), high negative likelihood ratio (LR-, per-vessel: 0.30; per patient: 0.24) and high accuracy (per-vessel: 0.91; per-patient: 0.81) while "either positive" strategy, i.e. a subject was considered as "positive" when either CCTA or FFRct was "positive", demonstrated relative high sensitivity (per-vessel: 0.97; per-patient: 0.98), low LR+ (per-vessel: 1.50; per-patient: 1.17), low LR- (per-vessel: 0.07; per-patient: 0.09) and low accuracy (per-vessel: 0.57; per-patient: 0.54). "Both positive" strategy showed better diagnostic performance to rule in patients with non-significant stenosis compared to "either positive" strategy, as it efficiently reduces the proportion of testing false positive subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analysis of sub-nano spaces by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Jean, Y.C.; Liu, J.; Huang, C.M.; Dai, G.H.; Yuan, J.P.

    1994-01-01

    Positron annihilation spectroscopy (PAS) has been realized to be a novel and potentially powerful tool to evolve the open spaces in the range 1-20 angstrom in molecular systems. Due to the repulsive force between the positron (the anti-particle of the electron) and the cores, annihilation signals are solely contributed from the open spaces, such as vacancies, holes, and voids in the molecular subtracts under study. By further developing two PAS techniques, positron lifetime (PAL), and angular correlation (ACAR), the authors are able to obtain useful and important information of: hole sizes, distributions, hole fractions, and anisotropic structures at sub-nano scales. Applications of PAS to chemical analysis, surface chemistry of inner pores, and polymer sciences are discussed

  11. Positrons in amorphous alloys

    International Nuclear Information System (INIS)

    Moser, Pierre.

    1981-07-01

    Positron annihilation techniques give interesting informations about ''empty spaces'' in amorphous alloys. The results of an extensive research work on the properties of either pre-existing or irradiation induced ''empty spaces'' in four amorphous alloys are presented. The pre-existing empty spaces appear to be small vacancy-like defects. The irradiation induced defects are ''close pairs'' with widely distributed configurations. There is a strong interaction between vacancy like and interstitial like components. A model is proposed, which explains the radiation resistance mechanism of the amorphous alloys. An extensive joint research work to study four amorphous alloys, Fe 80 B 20 ,Fe 40 Ni 40 P 14 B 6 , Cu 50 Ti 50 , Pd 80 Si 20 , is summarized

  12. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector planes positioned side-by-side around a patient area to detect radiation. Each plane includes a plurality of photomultiplier tubes and at least two rows of scintillation crystals on each photomultiplier tube extend across to adjacent photomultiplier tubes for detecting radiation from the patient area. Each row of crystals on each photomultiplier tube is offset from the other rows of crystals, and the area of each crystal on each tube in each row is different than the area of the crystals on the tube in other rows for detecting which crystal is actuated and allowing the detector to detect more inter-plane slides. The crystals are offset by an amount equal to the length of the crystal divided by the number of rows. The rows of crystals on opposite sides of the patient may be rotated 90 degrees relative to each other

  13. Defect identification using positrons

    International Nuclear Information System (INIS)

    Beling, C.D.; Fung, S.

    2001-01-01

    The current use of the lifetime and Doppler broadening techniques in defect identification is demonstrated with two studies, the first being the identification of carbon vacancy in n-6H SiC through lifetime spectroscopy, and the second the production of de-hydrogenated voids in α-Si:H through light soaking. Some less conventional ideas are presented for more specific defect identification, namely (i) the amalgamation of lifetime and Doppler techniques with conventional deep level transient spectroscopy in what may be called ''positron-deep level transient spectroscopy'', and (ii) the extraction of more spatial information on vacancy defects by means of what may be called ''Fourier transform Doppler broadening of annihilation radiation spectroscopy'' (orig.)

  14. Positron emitting pharmaceuticals

    International Nuclear Information System (INIS)

    Rajan, M.G.R.

    2012-01-01

    Positron Emission Tomography (PET) imaging of physiology at the molecular level bridges the gap between laboratory science and clinical medicine by providing the most specific and sensitive means for imaging molecular pathways and interactions in tissues of man. PET-imaging requires the use Positron Emitting Radiopharmaceuticals (PRPs), which are radioactively labeled 'true metabolites' i.e., sugars, amino acids, fatty acids etc., essentially made of H, C, N and O which the cells in the body can metabolize. The PET-isotopes: 11 C, 15 O, 13 N and 18 F (instead of H) are cyclotron produced and are short-lived, which places several constraints on the synthesis time for the PRPs, quality control and their clinical use as compared to the conventional 99m Tc- and other SPECT-RPs widely used in nuclear medicine. There are large number of published reports showing the utility of several PRPs labeled with 18 F (T 1/2 = 110 min) and 11 C (T 1/2 = 20 min). A few PRPs have been labeled with 13 N (T 1/2 = 10 min). 15 O (T 1/2 = 2min) is used mostly as H 2 15 O, C 15 or C 15 O 2 . 18 F-radiopharmaceuticals can be made at a medical cyclotron facility and sent to PET -imaging centres, which can be reached in a couple of hours. The sensitivity of PET -imaging has encouraged R and D in several other PRPs, labeled with viz., 68 Ga (generator produced, T 1/2 68 min), 124 I (cyclotron, T 1/2 4.2 d), 82 Rb (generator, T 1/2 75s), 64 Cu (cyclotron, T 1/2 12h), and 94m Tc (cyclotron, T 1/2 52 min). Due to its relevance in several diseases, particularly cancer, PET-imaging has made major scientific contribution to drug development, particularly for neurological diseases and cancer treatment. (author)

  15. Characterization of point defects in CdTe by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elsharkawy, M. R. M. [Carnegie Laboratory of Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia (Egypt); Kanda, G. S.; Keeble, D. J., E-mail: d.j.keeble@dundee.ac.uk [Carnegie Laboratory of Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Abdel-Hady, E. E. [Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia (Egypt)

    2016-06-13

    Positron lifetime measurements on CdTe 0.15% Zn-doped by weight are presented, trapping to monovacancy defects is observed. At low temperatures, localization at shallow binding energy positron traps dominates. To aid defect identification density functional theory, calculated positron lifetimes and momentum distributions are obtained using relaxed geometry configurations of the monovacancy defects and the Te antisite. These calculations provide evidence that combined positron lifetime and coincidence Doppler spectroscopy measurements have the capability to identify neutral or negative charge states of the monovacancies, the Te antisite, A-centers, and divacancy defects in CdTe.

  16. A coupled channel study on a binding mechanism of positronic alkali atoms

    International Nuclear Information System (INIS)

    Kubota, Yoshihiro; Kino, Yasushi

    2008-01-01

    In order to investigate the binding mechanism of weakly bound states of positronic alkali atoms, we calculate the energies and wavefunctions using the Gaussian expansion method (GEM) where a positronium (Ps)-alkali ion channel and a positron-alkali atom channel are explicitly introduced. The energies of the bound states are updated using a model potential that reproduces well the observed energy levels of alkali atoms. The binding mechanism of the positronic alkali atom is analyzed by the wavefunctions obtained. The structure of the positronic alkali atom has been regarded as a Ps cluster orbiting the alkali ion, which is described by the Ps-alkali ion channel. We point out that the fraction having the positron-alkali atom configuration is small but plays an indispensable role for the weakly bound system

  17. Advances in positron and electron scattering*

    Science.gov (United States)

    Limão-Vieira, Paulo; García, Gustavo; Krishnakumar, E.; Petrović, Zoran; Sullivan, James; Tanuma, Hajime

    2016-10-01

    The topical issue on Advances in Positron and Electron Scattering" combines contributions from POSMOL 2015 together with others devoted to celebrate the unprecedented scientific careers of our loyal colleagues and trusted friends Steve Buckman (Australian National University, Australia) and Michael Allan (University of Fribourg, Switzerland) on the occasion of their retirements. POSMOL 2015, the XVIII International Workshop on Low-Energy Positron and Positronium Physics and the XIX International Symposium on Electron-Molecule Collisions and Swarms, was held at Universidade NOVA de Lisboa, Lisboa, Portugal, from 17-20 July 2015. The international workshop and symposium allowed to achieve a very privileged forum of sharing and developing our scientific expertise on current aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and related topics, as well as electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent developments in the study of swarms are also fully addressed.

  18. Determination of subcellular concentrations of soluble carbohydrates in rose petals during opening by nonaqueous fractionation method combined with infiltration-centrifugation method.

    Science.gov (United States)

    Yamada, Kunio; Norikoshi, Ryo; Suzuki, Katsumi; Imanishi, Hideo; Ichimura, Kazuo

    2009-11-01

    Petal growth associated with flower opening depends on cell expansion. To understand the role of soluble carbohydrates in petal cell expansion during flower opening, changes in soluble carbohydrate concentrations in vacuole, cytoplasm and apoplast of petal cells during flower opening in rose (Rosa hybrida L.) were investigated. We determined the subcellular distribution of soluble carbohydrates by combining nonaqueous fractionation method and infiltration-centrifugation method. During petal growth, fructose and glucose rapidly accumulated in the vacuole, reaching a maximum when petals almost reflected. Transmission electron microscopy showed that the volume of vacuole and air space drastically increased with petal growth. Carbohydrate concentration was calculated for each compartment of the petal cells and in petals that almost reflected, glucose and fructose concentrations increased to higher than 100 mM in the vacuole. Osmotic pressure increased in apoplast and symplast during flower opening, and this increase was mainly attributed to increases in fructose and glucose concentrations. No large difference in osmotic pressure due to soluble carbohydrates was observed between the apoplast and symplast before flower opening, but total osmotic pressure was much higher in the symplast than in the apoplast, a difference that was partially attributed to inorganic ions. An increase in osmotic pressure due to the continued accumulation of glucose and fructose in the symplast may facilitate water influx into cells, contributing to cell expansion associated with flower opening under conditions where osmotic pressure is higher in the symplast than in the apoplast.

  19. IMAC fractionation in combination with LC-MS reveals H2B and NIF-1 peptides as potential bladder cancer biomarkers.

    Science.gov (United States)

    Frantzi, Maria; Zoidakis, Jerome; Papadopoulos, Theofilos; Zürbig, Petra; Katafigiotis, Ioannis; Stravodimos, Konstantinos; Lazaris, Andreas; Giannopoulou, Ioanna; Ploumidis, Achilles; Mischak, Harald; Mullen, William; Vlahou, Antonia

    2013-09-06

    Improvement in bladder cancer (BC) management requires more effective diagnosis and prognosis of disease recurrence and progression. Urinary biomarkers attract special interest because of the noninvasive means of urine collection. Proteomic analysis of urine entails the adoption of a fractionation methodology to reduce sample complexity. In this study, we applied immobilized metal affinity chromatography in combination with high-resolution LC-MS/MS for the discovery of native urinary peptides potentially associated with BC aggressiveness. This approach was employed toward urine samples from patients with invasive BC, noninvasive BC, and benign urogenital diseases. A total of 1845 peptides were identified, corresponding to a total of 638 precursor proteins. Specific enrichment for proteins involved in nucleosome assembly and for zinc-finger transcription factors was observed. The differential expression of two candidate biomarkers, histone H2B and NIF-1 (zinc finger 335) in BC, was verified in independent sets of urine samples by ELISA and by immunohistochemical analysis of BC tissue. The results collectively support changes in the expression of both of these proteins with tumor progression, suggesting their potential role as markers for discriminating BC stages. In addition, the data indicate a possible involvement of NIF-1 in BC progression, likely as a suppressor and through interactions with Sox9 and HoxA1.

  20. Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and StageTip-based, high pH, reversed-phase fractionation.

    Science.gov (United States)

    Han, Dohyun; Jin, Jonghwa; Woo, Jongmin; Min, Hophil; Kim, Youngsoo

    2014-07-01

    Astrocytes are the most abundant cells in the CNS, but their function remains largely unknown. Characterization of the whole-cell proteome and secretome in astrocytes would facilitate the study of their functions in various neurodegenerative diseases and astrocyte-neuron communication. To build a reference proteome, we established a C8-D1A astrocyte proteome to a depth of 7265 unique protein groups using a novel strategy that combined two-step digestion, filter-aided sample preparation, StageTip-based high pH fractionation, and high-resolution MS. Nearly, 6000 unique protein groups were identified from conditioned media of astrocyte cultures, constituting the largest astrocyte secretome that has been reported. High-confidence whole-cell proteomes and secretomes are valuable resources in studying astrocyte function by label-free quantitation and bioinformatics analysis. All MS data have been deposited in the ProteomeXchange with identifier PXD000501 (http://proteomecentral.proteomexchange.org/dataset/PXD000501). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films

    Science.gov (United States)

    Eijt, S. W. H.; Kind, R.; Singh, S.; Schut, H.; Legerstee, W. J.; Hendrikx, R. W. A.; Svetchnikov, V. L.; Westerwaal, R. J.; Dam, B.

    2009-02-01

    We report positron depth-profiling studies on the hydrogen sorption behavior and phase evolution of Mg-based thin films. We show that the main changes in the depth profiles resulting from the hydrogenation to the respective metal hydrides are related to a clear broadening in the observed electron momentum densities in both Mg and Mg2Ni films. This shows that positron annihilation methods are capable of monitoring these metal-to-insulator transitions, which form the basis for important applications of these types of films in switchable mirror devices and hydrogen sensors in a depth-sensitive manner. Besides, some of the positrons trap at the boundaries of columnar grains in the otherwise nearly vacancy-free Mg films. The combination of positron annihilation and x-ray diffraction further shows that hydrogen loading at elevated temperatures, in the range of 480-600 K, leads to a clear Pd-Mg alloy formation of the Pd catalyst cap layer. At the highest temperatures, the hydrogenation induces a partial delamination of the ˜5 nm thin capping layer, as sensitively monitored by positron depth profiling of the fraction of ortho-positronium formed at interface with the cap layer. The delamination effectively blocks the hydrogen cycling. In Mg-Si bilayers, we investigated the reactivity upon hydrogen loading and heat treatments near 480 K, which shows that Mg2Si formation is fast relative to MgH2. The combination of positron depth profiling and transmission electron microscopy shows that hydrogenation promotes a complete conversion to Mg2Si for this destabilized metal hydride system, while a partially unreacted, Mg-rich amorphous prelayer remains on top of Mg2Si after a single heat treatment in an inert gas environment. Thin film studies indicate that the difficulty of rehydrogenation of Mg2Si is not primarily the result from slow hydrogen dissociation at surfaces, but is likely hindered by the presence of a barrier for removal of Mg from the readily formed Mg2Si.

  2. Positron-acoustic waves in an electron-positron plasma with an electron beam

    International Nuclear Information System (INIS)

    Nejoh, Y.N.

    1996-01-01

    The nonlinear wave structures of large-amplitude positron-acoustic waves are studied in an electron-positron plasma in the presence of an electron beam with finite temperature and hot electrons and positrons. The region where positron-acoustic waves exist is presented by analysing the structure of the pseudopotential. The region depends sensitively on the positron density, the positron temperature and the electron beam temperature. It is shown that the maximum amplitude of the wave decreases as the positron temperature increases, and the region of positron-acoustic waves spreads as the positron temperature increases. 11 refs., 5 figs

  3. Basic principles of 18F-fluoro-deoxyglucose positron emission tomography

    International Nuclear Information System (INIS)

    Standke, R.

    2002-01-01

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. (author)

  4. Defect characterization with positron annihilation

    International Nuclear Information System (INIS)

    Granatelli, L.; Lynn, K.G.

    1980-01-01

    Positron annihilation in metal crystals is reviewed. A brief introduction to the positron annihilation technique is presented first. Then the ability of the positron technique to perform microstructural characterization of four types of lattice defects (vacancies, voids, dislocations, grain boundaries) is discussed. It is frequently not possible to obtain samples that contain only one type of defect in nonnegligible concentrations. Such situations exist for some alloys and for fatigued metal samples. Finally, the current limitations and some future prospects of the technique are presented. 79 references, 14 figures, 1 table

  5. Fundamentals of positron emission tomography

    International Nuclear Information System (INIS)

    Ostertag, H.

    1989-01-01

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The methods is based on: (1) Radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. (orig.) [de

  6. Cosmic Ray Positrons from Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  7. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    Conventional slow positron beams have been widely and profitably used to study atomic collisions and have been instrumental in understanding the dynamics of ionization. The next generation of positron atomic collision studies are possible with the use of charged particle traps. Not only can large...... instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...

  8. The study of sub-surface and interface characteristics of semiconductor heterostructures by slow positron implantation spectroscopy

    International Nuclear Information System (INIS)

    Baker, J.A.; Coleman, P.G.

    1989-01-01

    Experiments are described in which the controlled implantation of mono-energetic positrons is used to gain information non-destructively on epilayer and interface defects in semiconductor heterostructures. The implantation, and hence annihilation, profile is changed by varying the incident positron energy from 1 to 35 keV. Characteristics of the positron state at the annihilation site are reflected in the width of the measure Doppler-broadened annihilation line. The fractions of positrons annihilating from each state are deduced by solving the steady-state diffusion equation. The application of the technique is illustrated by application to a series of SiO 2 -Si samples. (author)

  9. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  10. Application of UV-visible absorption spectroscopy combined with two-dimensional correlation for insight into DOM fractions from native halophyte soils in a larger estuarine delta.

    Science.gov (United States)

    Wei, Huaibin; Yu, Huibin; Pan, Hongwei; Gao, Hongjie

    2018-05-01

    UV-visible absorption spectroscopy combined with principal component analysis (PCA) and two-dimensional correlation (2D correlation) is used to trace components of dissolved organic matter (DOM) extracted from soils in a larger estuarine delta and to investigate spatial variations of DOM fractions. Soil samples of different depths were collected from native halophyte soils along a saline gradient, i.e., Suaeda salsa Comm. (SSC), Chenopodium album Comm. (CAC), Phragmites australis Comm. (PAC), and Artemisia selengensis Comm. (ASC). Molecular weights of DOM within the SSC soil profile were the lowest, followed by the CAC, PAC, and ASC soil profiles. Humification degree of DOM within the ASC soil profile was the highest, followed by the PAC, SSC, and CAC soil profiles. DOM within the soil profiles mainly contained phenolic, carboxylic, microbial products, and aromatic and alkyl groups through the PCA, which presented the significant differentiation among the four native halophyte soil profiles. The 2D UV correlation spectra of DOM within the SSC soil profile indicated that the variations of the phenolic groups were the largest, followed by the carboxylic groups, microbial products, and humified organic materials according to the band changing order of 285 → 365 → 425 → 520 nm. The 2D UV correlation spectra of DOM within the CAC soil profiles determined that the decreasing order of the variations was phenolic groups > carboxylic groups > microbial products according the band changing order of 285 → 365 → 425 nm. The 2D UV correlation spectra of DOM within the PAC soil profile proved that the variations of the phenolic groups were larger than those of the carboxylic groups according to the band changing order of 285 → 365 nm. The 2D UV correlation spectra of DOM within the ASC soil profile demonstrated that the variations of the phenolic groups were larger than those of the other DOM fractions according to the broad cross-peak at

  11. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.

    Science.gov (United States)

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R

    2008-03-11

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.

  12. Parkinson disease and positron tomography

    International Nuclear Information System (INIS)

    Baron, J.C.

    1984-10-01

    Physiopathologic investigations of Parkinson disease and parkinsonian syndrome using positron tomography are briefly reviewed: study of cerebral blood flow and metabolism; effects of L-DOPA; study of dopaminergic receptors and of 18 F-Fluoro-L-DOPA incorporation [fr

  13. Deconvolution of Positrons' Lifetime spectra

    International Nuclear Information System (INIS)

    Calderin Hidalgo, L.; Ortega Villafuerte, Y.

    1996-01-01

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  14. Positron annihilation in superconductive metals

    Energy Technology Data Exchange (ETDEWEB)

    Dekhtjar, I.J.

    1969-03-10

    A correlation is shown between the parameters of superconductive metals and those of positron annihilation. Particular attention is paid to the density states obtained from the electron specific heat.

  15. Slow positrons in single-crystal samples of Al and Al-AlxOy

    Science.gov (United States)

    Lynn, K. G.; Lutz, H.

    1980-11-01

    Well-characterized Al(111) and Al(100) samples were studied with monoenergetic positrons before and after exposure to oxygen. Both positronium-formation and positron-emission curves were obtained for various incident positron energies at sample temperatures ranging from 160-900 K. The orthopositronium decay signal provides a unique signature that the positron has emerged from the surface region of a clean metal. In the clean Al crystals part of the positronium formed near the surface is found to be associated with a temperature-activated process described as the thermally activated detrapping of a positron from a surface state. A simple positron diffusion model, including surface and vacancy trapping, is fitted to the positronium data and an estimate of the binding energy of the positron in this trap is made. The positron diffusion constant is found to have a negative temperature dependence before the onset of positron trapping at thermally generated monovacancies (>500 K), in reasonable agreement with theoretical predictions. The depth of the positron surface state is reduced or positronium is formed in the chemisorbed layer as oxygen is adsorbed on both Al sample surfaces, thus increasing the positronium fraction and decreasing the positron emission. At higher oxygen exposures [>500 L (1 L = 10-6 torr sec)] positron or positronium traps are generated in the overlayer and the positronium fraction is reduced. The amorphous-to-crystalline surface transition of AlxOy on Al is observed between 650 and 800 K by the change in the positronium fraction and is interpreted as the removal of trapping centers in the metal-oxide overlayer. At the higher temperatures and incident energies vacancy trapping is observed by the decrease in the positron diffusion length in both the clean and the underlying Al of the oxygen-exposed samples. Similar vacancy formation enthalpies for Al are extracted in both the clean and oxygen-covered samples by a simple model and are in good

  16. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    Science.gov (United States)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  17. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  18. Probing Positron Gravitation at HERA

    International Nuclear Information System (INIS)

    Gharibyan, Vahagn

    2015-07-01

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  19. Probing Positron Gravitation at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Vahagn

    2015-07-15

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  20. Characterization of a transmission positron/positronium converter for antihydrogen production

    Science.gov (United States)

    Aghion, S.; Amsler, C.; Ariga, T.; Bonomi, G.; Brusa, R. S.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Povolo, L.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.; Andersen, S. L.; Chevallier, J.; Uggerhøj, U. I.; Lyckegaard, F.

    2017-09-01

    In this work a characterization study of forward emission from a thin, meso-structured silica positron/positronium (Ps) converter following implantation of positrons in light of possible antihydrogen production is presented. The target consisted of a ∼1 μm thick ultraporous silica film e-gun evaporated onto a 20 nm carbon foil. The Ps formation and emission was studied via Single Shot Positron Annihilation Lifetime Spectroscopy measurements after implantation of pulses with 3 - 4 ·107 positrons and 10 ns temporal width. The forward emission of implanted positrons and secondary electrons was investigated with a micro-channel plate - phosphor screen assembly, connected either to a CCD camera for imaging of the impinging particles, or to a fast photomultiplier tube to extract information about their time of flight. The maximum Ps formation fraction was estimated to be ∼10%. At least 10% of the positrons implanted with an energy of 3.3 keV are forward-emitted with a scattering angle smaller than 50° and maximum kinetic energy of 1.2 keV. At least 0.1-0.2 secondary electrons per implanted positron were also found to be forward-emitted with a kinetic energy of a few eV. The possible application of this kind of positron/positronium converter for antihydrogen production is discussed.

  1. Feasibility studies of a polarized positron source based on the Bremsstrahlung of polarized electrons

    International Nuclear Information System (INIS)

    Dumas, J.

    2011-09-01

    The nuclear and high-energy physics communities have shown a growing interest in the availability of high current, highly-polarized positron beams. A sufficiently energetic polarized photon or lepton incident on a target may generate, via Bremsstrahlung and pair creation within a solid target foil, electron-positron pairs that should carry some fraction of the initial polarization. Recent advances in high current (> 1 mA) spin polarized electron sources at Jefferson Lab offer the perspective of creating polarized positrons from a low energy electron beam. This thesis discusses polarization transfer from electrons to positrons in the perspective of the design optimization of a polarized positron source. The PEPPo experiment, aiming at a measurement of the positron polarization from a low energy (< 10 MeV) highly spin polarized electron beam is discussed. A successful demonstration of this technique would provide an alternative scheme for the production of low energy polarized positrons and useful information for the optimization of the design of polarized positron sources in the sub-GeV energy range. (author)

  2. ''Heavy light bullets'' in electron-positron plasma

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1995-03-01

    The nonlinear propagation of circularly polarized electromagnetic waves with relativistically strong amplitudes in an unmagnetized hot electron-positron plasma with a small fraction of ions is investigated. The possibility of finding localized solutions in such a plasma is explored. It is shown that these plasmas support the propagation of ''heavy light bullets''; nondiffracting and nondispersive electromagnetic (EM) pulses with large density bunching. (author). 24 refs, 12 figs

  3. Skull base chordomas: treatment outcome and prognostic factors in adult patients following conformal treatment with 3D planning and high dose fractionated combined proton and photon radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Munzenrider, J E; Hug, E; McManus, P; Adams, J; Efird, J; Liebsch, N J

    1995-07-01

    Purpose: To report treatment outcome and prognostic factors for local recurrence-free survival and overall survival in adult patients with skull base chordomas treated with 3D planning and high dose fractionated combined proton and photon radiation therapy. Methods and Materials: From 1975 through 1993, 132 adult patients with skull base chordomas were treated with fractionated combined proton and photon radiation therapy. Seventy five patients (57%) were male and 57 (43%) female. Age ranged from 19 to 80 years (median 45.5 years). All pathology was verified at MGH by a single pathologist. Ninety six had non-chondroid (NCC) and 36 chondroid chordomas (CC), respectively. Median prescribed dose was 68.7 CGE (CGE, Cobalt Gray-equivalent: proton Gy X RBE 1.1 + photon Gy), ranging from 36 to 79.2 CGE; 95% received {>=} 66.6 CGE. Between 70 and 100% of the dose was given with the 160 MeV proton beam at the Harvard Cyclotron. 3D CT-based treatment planning has been employed in all patients treated since 1980. Median follow-up was 46 months (range 2-158 months). Results: Treatment outcome was evaluated in terms of local recurrence-free survival (LRFS) and disease specific survival (DSS), as well as treatment-related morbidity. Local failure (LF), defined as progressive neurological deficit with definite increase in tumor volume on CT or MRI scan, occurred in 39 patients (29.5%). LF was more common among women than among men:(26(57)) (46%) vs (13(75)) (17%), respectively. Thirty three of the 39 LF were seen in non-chondroid chordoma patients, with 6 occurring in patients with the chondroid variant (34% of NCC and 17% of CC), respectively. Distant metastasis was documented in 8 patients. LRFS was 81 {+-} 5.8%, 59 {+-} 8.3%, and 43 {+-} 10.4%, and DSS was 94 {+-} 3.6%, 80 {+-} 6.7%, and 50 {+-} 10.7% at 36, 60, and 96 months, respectively, for the total group. LRFS and DSS were not significantly different for patients with NCC than those with CC (p > .05). Gender was

  4. Comprehensive Oncologic Imaging in Infants and Preschool Children With Substantially Reduced Radiation Exposure Using Combined Simultaneous ¹⁸F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Imaging: A Direct Comparison to ¹⁸F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Gatidis, Sergios; Schmidt, Holger; Gücke, Brigitte; Bezrukov, Ilja; Seitz, Guido; Ebinger, Martin; Reimold, Matthias; Pfannenberg, Christina A; Nikolaou, Konstantin; Schwenzer, Nina F; Schäfer, Jürgen F

    2016-01-01

    The aim of this study was to evaluate the clinical applicability and technical feasibility of fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI) compared with FDG PET/computed tomography (CT) in young children focusing on lesion detection, PET quantification, and potential savings in radiation exposure. Twenty examinations (10 PET/CT and 10 PET/MRI examinations) were performed prospectively in 9 patients with solid tumors (3 female, 6 male; mean age, 4.8 [1-6] years). Fluorodeoxyglucose PET/CT and FDG PET/MRI were performed sequentially after a single tracer injection. Lesion detection and analysis were performed independently in PET/CT and PET/MRI. Potential changes in diagnostic or therapeutic patient management were recorded. Positron emission tomography quantification in PET/MRI was evaluated by comparing standardized uptake values resulting from MRI-based and CT-based attenuation correction. Effective radiation doses of PET and CT were estimated. Twenty-one PET-positive lesions were found congruently in PET/CT and PET/MRI. Magnetic resonance imaging enabled significantly better detection of morphologic PET correlates compared with CT. Eight suspicious PET-negative lesions were identified by MRI, of which one was missed in CT. Sensitivity, specificity, and accuracy for correct lesion classification were not significantly different (90%, 47%, and 62% in PET/CT; 100%, 68%, and 79% in PET/MRI, respectively). In 4 patients, the use of PET/MRI resulted in a potential change in diagnostic management compared with PET/CT, as local and whole-body staging could be performed within 1 single examination. In 1 patient, PET/MRI initiated a change in therapeutic management. Positron emission tomography quantification using MRI-based attenuation correction was accurate compared with CT-based attenuation correction. Higher standardized uptake value deviations of about 18% were observed in the lungs due to misclassification in MRI

  5. Contribution of positron emission tomography in neurology

    International Nuclear Information System (INIS)

    Salmon, E.; Franck, G.

    1992-01-01

    Positron Emission Tomography (PET) is a scanner technique using tracers labelled with shortlived radioisotopes which allows to study and quantify human metabolic processes or drug pharmacology in vivo. The technique is first applied in physiological studies. Sleep, normal brain metabolism or cerebral activations have been studied. The pharmacological approach concerns both drug distribution in the human brain and blood flow or metabolic variations under treatment. Main neurological applications in pathology are cerebrovascular disorders, diseases leading to dementia, epilepsy, movement disorders, and brain tumors. In each field of application, PET gives unique and frequently early informations. It nicely combines both dynamic informations and measurement precision. (author)

  6. Cost-Effectiveness of Sacubitril-Valsartan Combination Therapy Compared With Enalapril for the Treatment of Heart Failure With Reduced Ejection Fraction.

    Science.gov (United States)

    King, Jordan B; Shah, Rashmee U; Bress, Adam P; Nelson, Richard E; Bellows, Brandon K

    2016-05-01

    The objective of this study was to determine the cost-effectiveness and cost per quality-adjusted life year (QALY) gained of sacubitril-valsartan relative to enalapril for treatment of heart failure with reduced ejection fraction (HFrEF). Compared with enalapril, combination angiotensin receptor-neprilysin inhibition (ARNI), as is found in sacubitril-valsartan, reduces cardiovascular death and heart failure hospitalization rates in patients with HFrEF. Using a Markov model, costs, effects, and cost-effectiveness were estimated for sacubitril-valsartan and enalapril therapies for the treatment of HFrEF. Patients were 60 years of age at model entry and were modeled over a lifetime (40 years) from a third-party payer perspective. Clinical probabilities were derived predominantly from PARADIGM-HF (Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure). All costs and effects were discounted at a 3% rate annually and are presented in 2015 U.S. dollars. In the base case, sacubitril-valsartan, compared with enalapril, was more costly ($60,391 vs. $21,758) and more effective (6.49 vs. 5.74 QALYs) over a lifetime. The cost-effectiveness of sacubitril-valsartan was highly dependent on duration of treatment, ranging from $249,411 per QALY at 3 years to $50,959 per QALY gained over a lifetime. Sacubitril-valsartan may be a cost-effective treatment option depending on the willingness-to-pay threshold. Future investigations should incorporate real-world evidence with sacubitril-valsartan to further inform decision making. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I + II + III supernatant in human albumin separation

    Science.gov (United States)

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-01

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I + II + III (FI + II + III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (Rp2), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501 g/L, 0.465 g/L and 5.57 for TP, and 0.969, 0.530 g/L, 0.341 g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI + II + III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS.

  8. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I+II+III supernatant in human albumin separation.

    Science.gov (United States)

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-15

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I+II+III (FI+II+III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (R p 2 ), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501g/L, 0.465g/L and 5.57 for TP, and 0.969, 0.530g/L, 0.341g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI+II+III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The positron excess as a smoking gun for dynamical dark matter?

    Energy Technology Data Exchange (ETDEWEB)

    Dienes, Keith R. [Department of Physics, University of Arizona, Tucson, AZ 85721 USA and Department of Physics, University of Maryland, College Park, MD 20742 (United States); Kumar, Jason [Department of Physics, University of Hawaii, Honolulu, HI 96822 (United States); Thomas, Brooks [Department of Physics, Carleton University, Ottawa, Ontario, K1S 5B6 (Canada)

    2014-06-24

    One of the most puzzling aspects of recent data from the AMS-02 experiment is an apparent rise in the cosmic-ray positron fraction as a function of energy. This feature is observed out to energies of approximately 350 GeV. One explanation of these results interprets the extra positrons as arising from the decays of dark-matter particles. This in turn typically requires that such particles have rather heavy TeV-scale masses and not undergo simple two-body decays to leptons. In this talk, by contrast, we show that Dynamical Dark Matter (DDM) can not only match existing AMS-02 data on the positron excess, but also accomplish this feat with significantly lighter dark-matter constituents undergoing simple two-body decays to leptons. We also demonstrate that the Dynamical Dark Matter framework makes a fairly robust prediction that the positron fraction should level off and then remain roughly constant out to approximately 1 TeV, without experiencing any sharp downturns. Thus, if we interpret the positron excess in terms of decaying dark matter, the existence of a plateau in the positron fraction at energies less than 1 TeV may be taken as a “smoking gun” of Dynamical Dark Matter.

  10. The positron excess as a smoking gun for dynamical dark matter?

    International Nuclear Information System (INIS)

    Dienes, Keith R.; Kumar, Jason; Thomas, Brooks

    2014-01-01

    One of the most puzzling aspects of recent data from the AMS-02 experiment is an apparent rise in the cosmic-ray positron fraction as a function of energy. This feature is observed out to energies of approximately 350 GeV. One explanation of these results interprets the extra positrons as arising from the decays of dark-matter particles. This in turn typically requires that such particles have rather heavy TeV-scale masses and not undergo simple two-body decays to leptons. In this talk, by contrast, we show that Dynamical Dark Matter (DDM) can not only match existing AMS-02 data on the positron excess, but also accomplish this feat with significantly lighter dark-matter constituents undergoing simple two-body decays to leptons. We also demonstrate that the Dynamical Dark Matter framework makes a fairly robust prediction that the positron fraction should level off and then remain roughly constant out to approximately 1 TeV, without experiencing any sharp downturns. Thus, if we interpret the positron excess in terms of decaying dark matter, the existence of a plateau in the positron fraction at energies less than 1 TeV may be taken as a “smoking gun” of Dynamical Dark Matter

  11. Fractional thermoelasticity

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research.  The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators.  This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...

  12. Studies of discrete symmetries in a purely leptonic system using the Jagiellonian Positron Emission Tomograph

    Directory of Open Access Journals (Sweden)

    Moskal P.

    2016-01-01

    Full Text Available Discrete symmetries such as parity (P, charge-conjugation (C and time reversal (T are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C and its combination with parity (CP constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i spin vector of the ortho-positronium atom, (ii momentum vectors of photons originating from the decay of positronium, and (iii linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.

  13. Positron Beam Characteristics at NEPOMUC Upgrade

    Science.gov (United States)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.; Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik, S.

    2014-04-01

    In 2012, the new neutron induced positron source NEPOMUC upgrade was put into operation at FRMII. Major changes have been made to the source which consists of a neutron-γ-converter out of Cd and a Pt foil structure for electron positron pair production and positron moderation. The new design leads to an improvement of both intensity and brightness of the mono-energetic positron beam. In addition, the application of highly enriched 113Cd as neutron-γ-converter extends the lifetime of the positron source to 25 years. A new switching and remoderation device has been installed in order to allow toggling from the high-intensity primary beam to a brightness enhanced remoderated positron beam. At present, an intensity of more than 109 moderated positrons per second is achieved at NEPOMUC upgrade. The main characteristics are presented which comprise positron yield and beam profile of both the primary and the remoderated positron beam.

  14. Positron emission tomography/computed tomography scanning for ...

    African Journals Online (AJOL)

    Background: Although the site of nosocomial sepsis in the critically ill ventilated patient is usually identifiable, it may remain occult, despite numerous investigations. The rapid results and precise anatomical location of the septic source using positron emission tomography (PET) scanning, in combination with computed ...

  15. The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS

    International Nuclear Information System (INIS)

    Islam, Ananna; Cho, Yunju; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2013-01-01

    Highlights: • Weathered oils from the Hebei Spirit oil spill and photo degraded oils are compared. • We investigate changes of polar species at the molecular level by 15T FT-ICR MS. • Significant reduction of sulfur class compounds in saturates fraction is observed. • The relative abundance of protonated compounds (presumably basic nitrogen compounds) increase after degradation. • Changes of polar compounds occurred by natural and photo degradation are similar. -- Abstract: Two sets of oil samples, one obtained from different weathering stages of the M/V Hebei Spirit oil spill site and the other prepared by an in vitro photo-degradation experiment, were analyzed and compared at the molecular level by atmospheric pressure photo-ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). For a more detailed comparison at the molecular level, the oil samples were separated into saturate, aromatic, resin, and asphaltene (SARA) fractions before MS analysis. Gravimetric analysis of the SARA fractions revealed a decreased weight percentage of the aromatic fraction and an increased resin fraction in both sets of samples. Molecular-level investigations of the SARA fractions showed a significant reduction in the S 1 class in the saturate fraction and increase of S 1 O 1 class compounds with high DBE values in resin fraction. Levels of N 1 and N 1 O 1 class compounds resulting in protonated ions (presumably basic nitrogen compounds) increased after degradation compared to compounds generating molecular ions (presumably non-basic nitrogen compounds). This study revealed changes occurring in heteroatom polar species of crude oils such as sulfur and nitrogen containing compounds that have not been easily detected with conventional GC based techniques

  16. Positron annihilation at the Si/SiO2 interface

    International Nuclear Information System (INIS)

    Leung, T.C.; Weinberg, Z.A.; Asoka-Kumar, P.; Nielsen, B.; Rubloff, G.W.; Lynn, K.G.

    1992-01-01

    Variable-energy positron annihilation depth-profiling has been applied to the study of the Si/SiO 2 interface in Al-gate metal-oxide-semiconductor (MOS) structures. For both n- and p-type silicon under conditions of negative gate bias, the positron annihilation S-factor characteristic of the interface (S int ) is substantially modified. Temperature and annealing behavior, combined with known MOS physics, suggest strongly that S int depends directly on holes at interface states or traps at the Si/SiO 2 interface

  17. New detector developments for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.; Lorenz, E.

    1998-01-01

    The strength of quantitative, functional imaging using positron emission tomography, specially in small animals, is limited due to the spatial resolution. Therefore, various tomograph designs employing new scintillators, light sensors, or coincidence electronic are investigated to improve resolution without losses in sensitivity. Luminous scintillators with short light decay time in combination with novel readout schemes using photomultipliers or semiconductor detectors are currently tested by several groups and are implemented in tomographs for small animals. This review summarises the state of development in high resolution positron emission tomography with a detailed description of a system incorporating avalanche photodiode arrays and small scintillation crystals. (orig.) [de

  18. Highly efficient proteome analysis with combination of protein pre-fractionation by preparative microscale solution isoelectric focusing and identification by μRPLC-MS/MS with serially coupled long microcolumn.

    Science.gov (United States)

    Tao, Dingyin; Sun, Liangliang; Zhu, Guijie; Liang, Yu; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2011-01-01

    To improve the efficiency of proteome analysis, a strategy with the combination of protein pre-fractionation by preparative microscale solution isoelectric focusing, peptide separation by μRPLC with serially coupled long microcolumn and protein identification by ESI-MS/MS was proposed. By preparative microscale solution isoelectric focusing technique, proteins extracted from whole cell lysates of Escherichia coli were fractionated into five chambers divided by isoelectric membranes, respectively with pH range from 3.0 to 4.6, 4.6 to 5.4, 5.4 to 6.2, 6.2 to 7.0 and 7.0 to 10.0. Compared to the traditional on-gel IFF, the protein recovery could be obviously improved to over 95%. Subsequently, the enriched and fractionated proteins in each chamber were digested, and further separated by a 30-cm long serially coupled RP microcolumn. Through the detection by ESI-MS/MS, about 200 proteins were identified in each fraction, and in total 835 proteins were identified even with one-dimensional μRPLC-MS/MS system. All these results demonstrate that by such a combination strategy, highly efficient proteome analysis could be achieved, not only due to the in-solution protein enrichment and pre-fractionation with improved protein recovery but also owing to the increased separation capacity of serially coupled long μRPLC columns. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with {sup 15}O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Department of Nuclear Medicine and Radiology, Division of Brain Sciences, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-Machi, 980-8575, Aoba-Ku, Sendai (Japan); Kanno, Iwao [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Kato, Chietsugu [Department of Nuclear Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Sasaki, Toshiaki [Cyclotoron Research Center, Iwate Medical University, Morioka (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo (Japan); Ouchi, Yasuomi [Positron Medical Center, Hamamatsu Medical Center, Hamakita (Japan); Iida, Akihiko [Nagoya City Rehabilitation Center, Nagoya (Japan); Okazawa, Hidehiko [PET Unit, Research Institute, Shiga Medical Center, Moriyama (Japan); Hayashida, Kohei [Department of Radiology, National Cardiovascular Center, Suita, Osaka (Japan); Tsuyuguchi, Naohiro [Department of Neurosurgery, Osaka City University Medical School, Osaka (Japan); Ishii, Kazunari [Division of Imaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders, Himeji, Hyogo (Japan); Kuwabara, Yasuo [Department of Radiology, Faculty of Medicine, Kyushu University, Fukuoka (Japan); Senda, Michio [Department of Image-based Medicine, Institute of Biomedical Research and Innovation, Kobe (Japan)

    2004-05-01

    Measurement of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) by positron emission tomography (PET) with oxygen-15 labelled carbon dioxide (C{sup 15}O{sub 2}) or {sup 15}O-labelled water (H{sub 2}{sup 15}O), {sup 15}O-labelled carbon monoxide (C{sup 15}O) and {sup 15}O-labelled oxygen ({sup 15}O{sub 2}) is useful for diagnosis and treatment planning in cases of cerebrovascular disease. The measured values theoretically depend on various factors, which may differ between PET centres. This study explored the applicability of a database of {sup 15}O-PET by examining between-centre and within-centre variation in values. Eleven PET centres participated in this multicentre study; seven used the steady-state inhalation method, one used build-up inhalation and three used bolus administration of C{sup 15}O{sub 2} (or H{sub 2}{sup 15}O) and {sup 15}O{sub 2}. All used C{sup 15}O for measurement of CBV. Subjects comprised 70 healthy volunteers (43 men and 27 women; mean age 51.8{+-}15.1 years). Overall mean{+-}SD values for cerebral cortical regions were: CBF=44.4{+-}6.5 ml 100 ml{sup -1} min{sup -1}; CBV=3.8{+-}0.7 ml 100 ml{sup -1}; OEF=0.44{+-}0.06; CMRO{sub 2}=3.3{+-}0.5 ml 100 ml{sup -1} min{sup -1}. Significant between-centre variation was observed in CBV, OEF and CMRO{sub 2} by one-way analysis of variance. However, the overall inter-individual variation in CBF, CBV, OEF and CMRO{sub 2} was acceptably small. Building a database of normal cerebral haemodynamics obtained by the{sup 15}O-PET methods may be practicable. (orig.)

  20. Multi-pair states in electron–positron pair creation

    Directory of Open Access Journals (Sweden)

    Anton Wöllert

    2016-09-01

    Full Text Available Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  1. Performance characterisation and optimisation of the HIPOS positron generator setup

    Energy Technology Data Exchange (ETDEWEB)

    Tucek, K., E-mail: kamil.tucek@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Zeman, A.; Daquino, G.; Debarberis, L. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Hogenbirk, A. [Nuclear Research and Consultancy Group (NRG), P.O. Box 25, NL-1755 ZG Petten (Netherlands)

    2012-01-01

    As part of an Exploratory Research Project at the Institute for Energy and Transport (Joint Research Centre of the European Commission), a feasibility assessment was performed for the construction and placement of a high-intensity positron facility (HIPOS) in a beam tube, HB9, at the High flux reactor (HFR) in Petten. This paper reports on the results of Monte Carlo simulations to optimise the concept of the HIPOS positron generator and to determine the performance characteristics of the chosen generator design. In the first step, a detailed model of the HFR reactor core, reflector, instrumentation and HB9 beam tube was prepared, and coupled neutron and photon transport calculations were carried out with the MCNP4C3 code to establish neutron and photon source terms on boundary surfaces of the HB9 beam tube. These sources were subsequently used with the MCNPX code to optimise the positron generator concept and geometry. The results showed that the positron beam can reach an integral intensity of 10{sup 13} e{sup +}/s before the moderation stage, easily meeting the specified target and confirming the hypothesis that very high positron yields can be obtained by using combined neutron and gamma radiation sources from a high flux reactor. Full details of the research work are reported in this study.

  2. Combined effect of carcinogenic n-nitrosodimethylamine precursors and fractioned {gamma}-irradiation on tumor development in rats.; Kombinirovannoe vliyanie predshestvennikov kantserogennogo N-nitrozodimetilamina i fraktsionirovannogo {gamma}-oblucheniya na vozniknovenie opukholej u krys.

    Energy Technology Data Exchange (ETDEWEB)

    Galenko, P M [Yinstitut Eksperimental` noyi Patologyiyi, Onkologyiyi yi Radyiobyiologyiyi, Natsyional` na Akademyiya Nauk Ukrayini, Kyiv (Ukraine); Nedopitanskaya, N N [Yinstitut Zdorov` ya, Myinyisterstvo Okhoroni Zdorov` ya, Kyiv (Ukraine)

    1996-12-01

    The influence of combined action of N-nitrosodimethylamine (NDMA) and fractioned {gamma}-irradiation on tumor development in rats was investigated. Both the tumor frequency and tumor plurality coefficient have been studied for two types of treatment: precursors of NDMA (amidopyrine and/or sodium nitrite (SN)) alone and the combination `precursors plus radiation`. Tumor frequency decreased by about 11% after combination of {gamma}-irradiation and precursors in comparison with precursors alone. Nevertheless, treatment with SN and {gamma}-irradiation did not change tumor frequency in comparison with SN alone. Irradiation of rats treated with precursors led to an increased tumor plurality coefficient.

  3. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both...

  4. The random continued fraction transformation

    Science.gov (United States)

    Kalle, Charlene; Kempton, Tom; Verbitskiy, Evgeny

    2017-03-01

    We introduce a random dynamical system related to continued fraction expansions. It uses random combinations of the Gauss map and the Rényi (or backwards) continued fraction map. We explore the continued fraction expansions that this system produces, as well as the dynamical properties of the system.

  5. Positron spectroscopy for materials characterization

    International Nuclear Information System (INIS)

    Schultz, P.J.; Snead, C.L. Jr.

    1988-01-01

    One of the more active areas of research on materials involves the observation and characterization of defects. The discovery of positron localization in vacancy-type defects in solids in the 1960's initiated a vast number of experimental and theoretical investigations which continue to this day. Traditional positron annihilation spectroscopic techniques, including lifetime studies, angular correlation, and Doppler broadening of annihilation radiation, are still being applied to new problems in the bulk properties of simple metals and their alloys. In addition new techniques based on tunable sources of monoenergetic positron beams have, in the last 5 years, expanded the horizons to studies of surfaces, thin films, and interfaces. In the present paper we briefly review these experimental techniques, illustrating with some of the important accomplishments of the field. 40 refs., 19 figs

  6. Channeling crystals for positron production

    International Nuclear Information System (INIS)

    Decker, F.J.

    1991-05-01

    Particles traversing at small angles along a single crystal axis experience a collective scattering force of many crystal atoms. The enormous fields can trap the particles along an axis or plane, called channeling. High energy electrons are attracted by the positive nuclei and therefore produce strongly enhanced so called coherent bremsstrahlung and pair production. These effects could be used in a positron production target: A single tungsten crystal is oriented to the incident electron beam within 1 mrad. At 28 GeV/c the effective radiation length is with 0.9 mm about one quarter of the amorphous material. So the target length can be shorter, which yields a higher conversion coefficient and a lower emittance of the positron beam. This makes single crystals very interesting for positron production targets. 18 refs., 2 figs

  7. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  8. Study of a positron generation

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Enomoto, A.; Ikeda, M.; Ohsawa, S.; Kamitani, T.; Hosoyama, K.; Takei, H.; Emoto, T.; Tani, S.

    1998-03-01

    In the Power Reactor and Nuclear Fuel Development Corporation (PNC), the following are examined as part of an application technology using a high power electron linac: monochromatic gamma ray sources, free electron lasers, and intense positron sources. This report presents the study of an intense positron source, which has been developed jointly by High Energy Accelerator Research Organization (KEK) and PNC. In this report, we describe following items for an adaptive estimate of a superconducting magnet in order to efficiently converge a positron beam. (1) The cryostat which included the superconducting magnet is manufactured. (2) An excitement test of the superconducting magnet is carried out with a magnetic substance such as the electromagnet yoke. (author)

  9. Instrumentation for positron emission tomography

    International Nuclear Information System (INIS)

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.

    1984-01-01

    Positron emission tomography with a spatial resolution of 2 mm full width at half maximum for quantitation in regions of interest 4 mm in diameter will become possible with the development of detectors that achieve ultrahigh resolution. Improved resolution will be possible using solid-state photodetectors for crystal identification or photomultiplier tubes with many small electron multipliers. Temporal resolution of 2 seconds and gating of cyclic events can be accomplished if statistical requirements are met. The major physical considerations in achieving high-resolution positron emission tomography are the degradation in resolution resulting from positron range, emission angle, parallax error, detector sampling density, the sensitivity of various detector materials and packing schemes, and the tradeoff between temporal resolution and statistical accuracy. The accuracy of data required for physiological models depends primarily on the fidelity of spatial sampling independent of statistical constraints

  10. Combining Quantitative Susceptibility Mapping with Automatic Zero Reference (QSM0) and Myelin Water Fraction Imaging to Quantify Iron-Related Myelin Damage in Chronic Active MS Lesions.

    Science.gov (United States)

    Yao, Y; Nguyen, T D; Pandya, S; Zhang, Y; Hurtado Rúa, S; Kovanlikaya, I; Kuceyeski, A; Liu, Z; Wang, Y; Gauthier, S A

    2018-02-01

    A hyperintense rim on susceptibility in chronic MS lesions is consistent with iron deposition, and the purpose of this study was to quantify iron-related myelin damage within these lesions as compared with those without rim. Forty-six patients had 2 longitudinal quantitative susceptibility mapping with automatic zero reference scans with a mean interval of 28.9 ± 11.4 months. Myelin water fraction mapping by using fast acquisition with spiral trajectory and T2 prep was obtained at the second time point to measure myelin damage. Mixed-effects models were used to assess lesion quantitative susceptibility mapping and myelin water fraction values. Quantitative susceptibility mapping scans were on average 6.8 parts per billion higher in 116 rim-positive lesions compared with 441 rim-negative lesions ( P quantitative susceptibility mapping values of both the rim and core regions ( P Quantitative susceptibility mapping scans and myelin water fraction in rim-positive lesions decreased from rim to core, which is consistent with rim iron deposition. Whole lesion myelin water fractions for rim-positive and rim-negative lesions were 0.055 ± 0.07 and 0.066 ± 0.04, respectively. In the mixed-effects model, rim-positive lesions had on average 0.01 lower myelin water fraction compared with rim-negative lesions ( P quantitative susceptibility mapping scan was negatively associated with follow-up myelin water fraction ( P Quantitative susceptibility mapping rim-positive lesions maintained a hyperintense rim, increased in susceptibility, and had more myelin damage compared with rim-negative lesions. Our results are consistent with the identification of chronic active MS lesions and may provide a target for therapeutic interventions to reduce myelin damage. © 2018 by American Journal of Neuroradiology.

  11. Positron creation in superheavy quasi-molecules

    International Nuclear Information System (INIS)

    Mueller, B.

    1976-01-01

    The review of positron creation in superheavy quasi-molecules includes spontaneous positron emission from superheavy atoms, supercritical quasi-molecules, background effects, and some implications of the new ground state. 66 references

  12. Positron emission tomography in oncology

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This report describes the current and potential uses of positron emission tomography in clinical medicine and research related to oncology. Assessment will be possible of metabolism and physiology of tumors and their effects on adjacent tissues. Specific probes are likely to be developed for target sites on tumors, including monoclonal antibodies and specific growth factors that recognize tumors. To date, most oncological applications of positron emission tomography tracers have been qualitative; in the future, quantitative metabolic measurements should aid in the evaluation of tumor biology and response to treatment

  13. NMF on positron emission tomography

    DEFF Research Database (Denmark)

    Bödvarsson, Bjarni; Hansen, Lars Kai; Svarer, Claus

    2007-01-01

    In positron emission tomography, kinetic modelling of brain tracer uptake, metabolism or binding requires knowledge of the cerebral input function. Traditionally, this is achieved with arterial blood sampling in the arm or as shown in (Liptrot, M, et al., 2004) by non-invasive K-means clustering....... We propose another method to estimate time-activity curves (TAC) extracted directly from dynamic positron emission tomography (PET) scans by non-negative matrix factorization (NMF). Since the scaling of the basis curves is lost in the NMF the estimated TAC is scaled by a vector alpha which...

  14. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    Science.gov (United States)

    2009-12-19

    REPORT Development of an electron- positron source for positron annihilation lifetime spectroscopy : FINAL REPORT 14. ABSTRACT 16. SECURITY...to generate radiation, to accelerate particles, and to produce electrons and positrons from vacuum. From applications using existing high-repetition...theoretical directions. This report reviews work directed toward the application of positron generation from laser interaction with matter 1. REPORT DATE

  15. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, L.; Dragulescu, E.; Dudu, D.; Racolta, P.M.; Voiculescu, Dana; Miron, N.

    2002-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers etc., we decided to promote positron annihilation techniques. In order to achieve this goal we started a project of dedicated positron sources produced at the IFIN-HH U-120 Cyclotron. We have used the nuclear reaction 24 Mg(d,α) 22 Na and deuterons of 13 MeV energy. The paper presents the main steps of this procedure like: general conditions required for 22 NaCl sources, reactive chamber and characteristics of Mg target, parameters for the irradiation, radiochemical procedures to separate Na from Mg after the irradiation and geometrical or mechanical requirements for dedicated NaCl source for positron annihilation spectrometry. In the e + lifetime measurements the e + 'death - stop' signals are always provided by γ - quanta generated by the e + e - annihilation and the 'birth - start' signals may be obtained from 'prompt' γ - quanta emitted from the NaCl source (the 1.275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in the sealed quartz vials in dry places and will be dropped between the studied materials before use in positron spectrometry. (authors)

  16. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, L.; Dragulescu, E.; Dudu, D.; Racolta, P. M.; Voiculescu, Dana; Miron, N.

    2003-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers etc., we decided to promote positron annihilation techniques. In order to achieve this goal we started a project of dedicated positron sources produced at the IFIN-HH U-120 Cyclotron. We have used the nuclear reaction: 24 Mg(d,α) 22 Na with deuterons of 13 MeV energy. The paper presents the main characteristics of this procedure, as follows: general conditions asked for 22 NaCl sources, reactive chamber and characteristics of Mg target, parameters for the irradiation, radiochemical procedures for separating Na from Mg after the irradiation and geometrical or mechanical requirements for dedicated NaCl source for positron annihilation spectrometry. In the e + lifetime measurements, the e + end - start signals may be obtained from prompt γ -quanta emitted from the NaCl source (1. 275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in quartz sealed ampoules in dry places and will be dropped between the study materials before the use in positron spectrometry. (authors)

  17. Positron Studies of Oxide-Semiconductor Structures

    OpenAIRE

    Uedono , A.; Wei , L.; Kawano , T.; Tanigawa , S.; Suzuki , R.; Ohgaki , H.; Mikado , T.

    1995-01-01

    The annihilation characteristics of positrons in SiO2 films grown on Si substrates were studied by using monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured as a function of incident positron energy for SiO2/Si structures fabricated by various oxidation techniques. From the measurements, it was found that the formation probability of positronium (Ps) atoms in SiO2 films strongly depends on the growth condition...

  18. A study of positron irradiated porous silicon

    International Nuclear Information System (INIS)

    Huang Yuanming; Xue Qing; Zhai Baogai; Xu Aijun; Liu Shewen; Yu Weizhong

    1998-01-01

    The effect of positron irradiation on photoluminescence (PL) of porous silicon has been studied. After four hour positron irradiation, the red PL spectrum of porous silicon blue shifts into greenish spectral region, and a higher energy luminescence band is introduced into this blueshifted spectrum. The fourier transform infrared absorption experiment shows that the positron irradiation can cause further oxidization of porous silicon. A possible mechanism causing this change of PL spectra after positron irradiation is suggested

  19. Positron probes for mechanical fatigue detection system

    International Nuclear Information System (INIS)

    Holt, W.H.; Mock, W. Jr.

    1976-01-01

    The invention comprises positron-emitting probes for use in testing samples of metals for fatique by positron annihilation techniques comprising a substrate made from the same material as the test sample, positron-emitting material supported by one surface of the substrate, and a cover for the emitting material, the cover is sealed to the substrate and is of such thinness and density as to provide a window through which positron passage is unimpeded

  20. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Gita Faghihi

    2016-01-01

    Full Text Available Background: Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. Aims: This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Methods: Sixteen patients (12 women and 4 men who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Results: Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15 or 4 months after the second (P = 0.23. In addition, adverse effects (erythema and edema on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Limitations: Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. Conclusion: This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects

  1. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial.

    Science.gov (United States)

    Faghihi, Gita; Keyvan, Shima; Asilian, Ali; Nouraei, Saeid; Behfar, Shadi; Nilforoushzadeh, Mohamad Ali

    2016-01-01

    Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Sixteen patients (12 women and 4 men) who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15) or 4 months after the second (P = 0.23). In addition, adverse effects (erythema and edema) on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects and also resulted in more severe side effects and longer downtime.

  2. Slow positron beam production by a 14 MeV C.W. electron accelerator

    Science.gov (United States)

    Begemann, M.; Gräff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.

    1982-10-01

    A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface ofsurface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two NaI-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 × 10 5 slow positrons per second reaching thedetector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons.

  3. Slow positron beam production by a 14 MeV c.w. electron accelerator

    International Nuclear Information System (INIS)

    Begemann, M.; Graeff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.

    1982-01-01

    A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two Nal-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 x 10 5 slow positrons per second reaching the detector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons. (orig.)

  4. Studies of positron induced luminescence from polymers

    International Nuclear Information System (INIS)

    Xu, J.; Hulett, L.D. Jr.; Lewis, T.A.; Tolk, N.H.

    1994-01-01

    Light emission from polymers (anthracene dissolved in polystryrene) induced by low-energy positrons and electrons has been studied. Results indicate a clear difference between optical emissions under positron and electron bombardment. The positron-induced luminescence spectrum is believed to be generated by both collisional and annihilation processes

  5. Combination of ablative fractional laser and daylight-mediated photodynamic therapy for actinic keratosis in organ transplant recipients – a randomized controlled trial

    DEFF Research Database (Denmark)

    Togsverd-Bo, Katrine; Lei, Ulrikke; Erlendsson, A M

    2015-01-01

    BACKGROUND: Topical photodynamic therapy (PDT) for actinic keratoses (AK) is hampered by pain during illumination and inferior efficacy in organ-transplant recipients (OTR). OBJECTIVES: We assessed ablative fractional laser (AFL)-assisted daylight photodynamic therapy (PDT) (AFL-dPDT) compared...

  6. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  7. HAWC Observations Strongly Favor Pulsar Interpretations of the Cosmic-Ray Positron Excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP; Fang, Ke [Maryland U.

    2017-11-17

    Recent measurements of the Geminga and B0656+14 pulsars by the gamma-ray telescope HAWC (along with earlier measurements by Milagro) indicate that these objects generate significant fluxes of very high-energy electrons. In this paper, we use the very high-energy gamma-ray intensity and spectrum of these pulsars to calculate and constrain their expected contributions to the local cosmic-ray positron spectrum. Among models that are capable of reproducing the observed characteristics of the gamma-ray emission, we find that pulsars invariably produce a flux of high-energy positrons that is similar in spectrum and magnitude to the positron fraction measured by PAMELA and AMS-02. In light of this result, we conclude that it is very likely that pulsars provide the dominant contribution to the long perplexing cosmic-ray positron excess.

  8. Electron-positron pair production in Coulomb collisions at ultrarelativistic energies

    International Nuclear Information System (INIS)

    Vane, C.R.; Datz, S.; Dittner, P.F.; Krause, H.F.; Bottcher, C.; Strayer, M.; Schuch, R.; Gao, H.; Hutton, R.

    1993-01-01

    We have measured angular and momentum distributions for electrons and positrons created as pairs in peripheral collisions of 6.4 TeV bare sulfur ions with fixed targets of Al, Pd, and Au. Singly- and doubly-differential cross sections have been determined for 1--17 MeV/c electrons and positrons detected independently and in coincidence as pairs. Integrated yields for pair production are found to vary as the square of the target nuclear charge. Relative angular and momentum differential cross sections are effectively target independent. Probability distributions for the pair total momentum, the positron fraction of the pair momentum, and the pair traverse momentum have been derived from the coincident electron-positron data

  9. Fractional fermions

    International Nuclear Information System (INIS)

    Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    The theory of fermion fractionization due to topologically generated fermion ground states is presented. Applications to one-dimensional conductors, to the MIT bag, and to the Hall effect are reviewed. (author)

  10. Applications of Positron Annihilation Spectroscopy

    OpenAIRE

    Asoka-Kumar , P.; Lynn , K.

    1995-01-01

    We describe the application of Positron Annihilation Spectroscopy (PAS) to some selected technologically important systems. The method involves a nondestructive probe to detect low levels of open-volume defects. The discussion shows the application of PAS to a wide range of advanced material systems.

  11. WORKSHOP: Electron-positron mystery

    International Nuclear Information System (INIS)

    Bokemeyer, H.; Mueller, B.

    1989-01-01

    The tightly correlated electron-positron pairs seen in experiments at the GSI Darmstadt heavy ion Laboratory and elsewhere have yet to be explained. New particle or new effect? The question was highlighted at a recent Moriond workshop held at Les Arcs in the French Alps in January

  12. Positron annhilation in nonmetallic solids

    International Nuclear Information System (INIS)

    Cizek, A.; Sob, M.; Dekhtyar, I. Ya.

    1979-01-01

    In positron annihilation investigations of nonmetallic solids, the standard deviation of the gaussian component of the angular correlation curve is elucidated as material constant. It is related to the apparent radius of the chemical unit of the substance in question. (Auth.)

  13. Positron--Electron Project (PEP)

    International Nuclear Information System (INIS)

    Rees, J.R.

    1977-01-01

    PEP, an 18-GeV electron-positron colliding-beam storage ring facility at SLAC, is being built by a team from LBL and SLAC. Construction is under way and completion is scheduled for Fall of 1979. A summary is given of the design of the facility, and the status of the project is reported

  14. Positron computed tomography with fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Hervouet, T.; Kraeber-Bodere, F.; Lamy, T.; Le Gouil, S.; Devillers, A.; Bodet-Milin, C.; Ansquer, C.; Cheze-le Rest, C.; Metges, J.P.; Teyton, P.; Lozach, P.; Volant, A.; Bizais, Y.; Visvikis, D.; Morel, O.; Girault, S.; Soulie, P.; Dupoiron, D.; Berthelot, C.; Lorimier, G.; Jallet, P.; Garin, E.; Prigent, F.; Lesimple, T.; Barge, M.L.; Rousseau, C.; Devillers, A.; Bernard, A.M.; Bouriel, C.; Bridji, B.; Resche, R.; Banayan, S.; Claret, M.; Ninet, J.; Janier, M.; Billotey, C.; Garin, E.; Devillers, A.; Becker, S.; Lecloirec, J.; Boucher, E.; Raoul, J.L.; Rolland, V.; Oudoux, A.; Valette, F.; Dupas, B.; Moreau, P.; Champion, L.; Anract, P.; Wartski, M.; Laurence, V.; Goldwasser, F.; Pecking, A.P.; Alberini, J.L.; Brillouet, S.; Caselles, O.; Allal, B.; Zerdoud, S.; Gansel, M.G.; Thomas, F.; Dierrickx, L.; Delord, J.P.; Marchand, C.; Resche, I.; Mahe, M.A.

    2006-01-01

    Several oral communications present the interest of positron computed tomography with fluorodeoxyglucose in the detection of cancers, or for the follow up of cancers treatments in order to detect early possible relapses.PET FDG is also used to optimize the definition of target volume in order to avoid side effects and to get a better control of the illness. (N.C.)

  15. The discrimination between cosmic positrons and protons with the Transition Radiation Detector of the AMS experiment on the International Space Station

    International Nuclear Information System (INIS)

    Millinger, Mark

    2012-01-01

    The aim of this thesis is the development and validation of a particle identification method with the Transition Radiation Detector (TRD) of the Alpha Magnetic Spectrometer AMS-02 to allow for the determination of the positron fraction in the cosmic lepton flux. Independent measurements indicate that a significant amount of about 23% of the energy density in the universe consists of an unknown mass contribution, the so-called Dark Matter. The Neutralino, as the most popular Dark Matter particle candidate, may produce an additional signal in the spectrum of cosmic rays. The fraction of positrons in the cosmic lepton flux possibly contains such a Dark Matter signal at high particle momenta. The currently most precise measurements in the region of this excess are provided by the satellite-borne PAMELA and Fermi detectors. Momentumdependent systematic uncertainties, especially the mis-identification of protons as positrons, could imitate the signal. However, if this positron excess is produced by Dark Matter the fraction should decrease above a theoretical energy threshold to the expectations, based on particle propagation. The energy region measured up to now does not show such a progress. Due to its significantly increased event statistics and its capability to measure up to higher particle energies, this signature could be observed with AMS-02. The number of events, which can be recorded by a detector, is limited by the combination of aperture and observable solid angle, quantified by the geometrical acceptance, and the observation time. As the cosmic particle flux follows a power-law in particle momentum with exponent γ ∼ -3, the observable momentum interval is thus constrained by statistics. Due to its large geometrical acceptance of about 0.5 m 2 sr, its long observation time of at least 9 years and its high proton suppression factor of >or similar 10 6 AMS-02 will record large and clean lepton samples and thus provide a precise measurement of the cosmic

  16. The discrimination between cosmic positrons and protons with the Transition Radiation Detector of the AMS experiment on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Millinger, Mark

    2012-10-08

    The aim of this thesis is the development and validation of a particle identification method with the Transition Radiation Detector (TRD) of the Alpha Magnetic Spectrometer AMS-02 to allow for the determination of the positron fraction in the cosmic lepton flux. Independent measurements indicate that a significant amount of about 23% of the energy density in the universe consists of an unknown mass contribution, the so-called Dark Matter. The Neutralino, as the most popular Dark Matter particle candidate, may produce an additional signal in the spectrum of cosmic rays. The fraction of positrons in the cosmic lepton flux possibly contains such a Dark Matter signal at high particle momenta. The currently most precise measurements in the region of this excess are provided by the satellite-borne PAMELA and Fermi detectors. Momentumdependent systematic uncertainties, especially the mis-identification of protons as positrons, could imitate the signal. However, if this positron excess is produced by Dark Matter the fraction should decrease above a theoretical energy threshold to the expectations, based on particle propagation. The energy region measured up to now does not show such a progress. Due to its significantly increased event statistics and its capability to measure up to higher particle energies, this signature could be observed with AMS-02. The number of events, which can be recorded by a detector, is limited by the combination of aperture and observable solid angle, quantified by the geometrical acceptance, and the observation time. As the cosmic particle flux follows a power-law in particle momentum with exponent {gamma} {approx} -3, the observable momentum interval is thus constrained by statistics. Due to its large geometrical acceptance of about 0.5 m{sup 2}sr, its long observation time of at least 9 years and its high proton suppression factor of >or similar 10{sup 6} AMS-02 will record large and clean lepton samples and thus provide a precise measurement

  17. Positrons and positronium in grainy and porous solids

    International Nuclear Information System (INIS)

    Kajcsos, Zs.; Liszkay, L.; Varga, L.; Lohonyai, L.; Duplatre, G.; Lazar, K.; Pal-Borbely, G.; Beyer, H.K.; Caullet, P.; Patarin, J.

    2001-01-01

    Systematic investigations have been performed using positron annihilation techniques on micrograins of crystalline powders (e.g., MgO; Al 2 O 3 , SiO 2 ) and on various zeolites (e.g., silicalite 1, Na-X, Na-Y, ZSM-5, mordenite) aiming at a better understanding of the formation and decay of the long-lived ortho-positronium states. The techniques were lifetime spectroscopy, Doppler-effect measurements and the recording of the full energy distribution of the annihilation radiation. The influences of heat treatment, sample evacuation and presence of gases were investigated. Lifetimes over 130 ns and o-Ps fractions of about 30% were found. A strong correlation of positron annihilation technique data with a water content of the samples was evidenced. Possible pictures of the formation and decay of ortho-positronium in porous media are discussed. (author)

  18. The cryogenic source of slow monochromatic positrons

    International Nuclear Information System (INIS)

    Meshkov, I.N.; Pavlov, V.N.; Sidorin, A.O.; Yakovenko, S.L.

    2008-01-01

    The cryogenic source of slow monochromatic positrons based on the 22 Na isotope has been designed and constructed at JINR. Positrons emitted from radioactive source 22 Na have a very broad energy spectrum up to 0.5 MeV. To generate monochromatic beam of slow positrons the solid neon is used as a moderator. The solid neon allows forming slow positron beam of the energy of 1.2 eV at the spectrum width of 1 eV. The efficiency of moderation is 1 % of total positron flux

  19. Combined Fractional Treatment of Acne Scars Involving Non-ablative 1,550-nm Erbium-glass Laser and Micro-needling Radiofrequency: A 16-week Prospective, Randomized Split-face Study

    Directory of Open Access Journals (Sweden)

    Hyuck Hoon Kwon

    2017-06-01

    Full Text Available An optimized therapeutic regimen involving a non-ablative fractionated laser or radiofrequency therapy for acne scars has not yet been established. To evaluate whether the combination of a non-ablative fractional laser (NAF and fractional micro-needling radiofrequency (FMR has clinical advantages for the treatment of atrophic acne scars compared with NAF alone, a 16-week prospective, randomized split-face study was performed. Each facial side of a patient was treated with 3 sessions of either NAF with FMR or NAF alone, with a 4-week interval between each session. Although both sides demonstrated significant decreases in the échelle d’évaluation clinique des cicatrices d’acné (ECCA score, the facial side treated using the combination regimen demonstrated greater improvement in ECCA score regarding degree and onset time than the NAF-treated side. Histopathological and immunohistochemical results confirmed the clinical findings. This study demonstrated that a combination regimen involving NAF and FMR could be a viable option with satisfactory efficacy.

  20. Chemometric evaluation of the combined effect of temperature, pressure, and co-solvent fractions on the chiral separation of basic pharmaceuticals using actual vs set operational conditions.

    Science.gov (United States)

    Forss, Erik; Haupt, Dan; Stålberg, Olle; Enmark, Martin; Samuelsson, Jörgen; Fornstedt, Torgny

    2017-05-26

    The need to determine the actual operational conditions, instead of merely using the set operational conditions, was investigated for in packed supercritical fluid chromatography (SFC) by design of experiments (DoE) using a most important type of compounds, pharmaceutical basics, as models. The actual values of temperature, pressure, and methanol levels were recorded and calculated from external sensors, while the responses in the DoE were the retention factors and selectivity. A Kromasil CelluCoat column was used as the stationary phase, carbon dioxide containing varying methanol contents as the mobile phase, and the six racemates of alprenolol, atenolol, metoprolol, propranolol, clenbuterol, and mianserin were selected as model solutes. For the retention modeling, the most important term was the methanol fraction followed by the temperature and pressure. Significant differences (p<0.05) between most of the coefficients in the retention models were observed when comparing models from set and actual conditions. The selectivity was much less affected by operational changes, and therefore was not severely affected by difference between set and actual conditions. The temperature differences were usually small, maximum ±1.4°C, whereas the pressure differences were larger, typically approximately +10.5bar. The set and actual fractions of methanol also differed, usually by ±0.4 percentage points. A cautious conclusion is that the primary reason for the discrepancy between the models is a mismatch between the set and actual methanol fractions. This mismatch is more serious in retention models at low methanol fractions. The study demonstrates that the actual conditions should almost always be preferred. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy

  2. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.H.; Stoeffl, W.

    1998-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectra

  3. Electron-positron pair production in ultrarelativistic atomic collisions: 6.4 TeV S16+ with Au, Pd and Al

    International Nuclear Information System (INIS)

    Datz, S.; Vane, C.R.; Dittner, P.F.; Krause, H.F.; Schuch, R.; Gao, H.; Hutton, R.

    1994-01-01

    Angular and momentum distributions have been measured for electron-positron pairs created in peripheral collisions of 6.4 TeV bare sulfur ions with thin targets of Al, Pd, and Au. Singly- and doubly-differential cross sections are presented for 1--17 MeV/c electrons and positrons detected independently and in coincidence as pairs. Various physical parameters are deduced from the coincident electron and positron data, including probability distributions for the pair transverse momentum, the pair total energy, and the positron fraction of the pair energy

  4. Cation vacancies in ferroelectric PbTiO3 and Pb(Zr,Ti)O3 : A positron annihilation lifetime spectroscopy study

    Science.gov (United States)

    Keeble, D. J.; Singh, S.; Mackie, R. A.; Morozov, M.; McGuire, S.; Damjanovic, D.

    2007-10-01

    Positron annihilation lifetime spectroscopy measurements identify A - and B -site cation vacancies in ferroelectric perovskite oxides (ABO3) . Crystal PbTiO3 and ceramic lead zirconium titanate (PZT) were studied and gave consistent values for the lifetime resulting from positron localization at lead vacancies VPb . Positron trapping to B -site vacancies was inferred in PZT. Temperature dependent studies showed that the defect specific trapping rate was higher for VB compared to VPb , consistent with the larger negative charge. Doping PZT with Fe increased the fraction positron trapping to VB compared to VPb -type defects.

  5. A Case of Low-Grade Primary Cardiac Lymphoma with Pericardial Effusion Diagnosed by Combined 18F-Fluorodeoxyglucose Positron Emission Tomography and Computed Tomography (FDG-PET/CT) Imaging and Effusion Cytology.

    Science.gov (United States)

    Fukunaga, Hisanori; Tatewaki, Yasuko; Mutoh, Tatsushi; Shimomura, Hideo; Yamamoto, Shuzo; Terao, Chiaki; Totsune, Tomoko; Nakagawa, Manabu; Taki, Yasuyuki

    2018-03-14

    BACKGROUND Primary cardiac lymphoma is rare and can be an aggressive disease, depending on the grade. A case is reported of low-grade primary cardiac lymphoma associated with a pericardial effusion. 18F-fluorodeoxyglucose positron emission tomography and computed tomography (FDG-PET/CT) imaging was useful in the diagnosis and in evaluating the disease activity in this case. CASE REPORT A 72-year-old Japanese woman visited a general practitioner, complaining of dyspnea associated with cardiac tamponade. Pericardiocentesis was performed, and Group V malignant cells were identified by cytology, suspicious for malignant lymphoma. Whole-body FDG-PET/CT scans showed no pleural effusion or lymph node metastasis supporting the diagnosis of primary cardiac lymphoma diagnosed on pericardial effusion. The laboratory investigations showed that levels of serum soluble interleukin-2 (IL-2) receptor (sIL-2R), a diagnostic and prognostic marker for malignant lymphoma, were not elevated (258 U/ml). A six-month follow-up FDG-PET/CT scan showed an increased volume of the pericardial effusion and mild but abnormal uptake diffusely in the pericardial space, and the sIL-2R was slightly elevated (860 U/ml). No abnormal FDG accumulation outside the retained pericardial effusion was noted, which was compatible with a clinical picture of low-grade primary cardiac lymphoma, and in a period of watchful waiting during the first two years later, the sIL-2R had reduced to 195 U/ml. CONCLUSIONS This is a rare case of low-grade primary cardiac lymphoma detected in a pericardial effusion, and highlights the utility of the FDG-PET/CT scan as a valuable diagnostic and follow-up modality.

  6. High-Dose-Rate Brachytherapy of a Single Implant With Two Fractions Combined With External Beam Radiotherapy for Hormone-Naive Prostate Cancer

    International Nuclear Information System (INIS)

    Sato, Morio; Mori, Takashi; Shirai, Shintaro; Kishi, Kazushi; Inagaki, Takeshi; Hara, Isao

    2008-01-01

    Purpose: To evaluate the preliminary outcomes of high-dose-rate (HDR) brachytherapy of a single implant with two fractions and external beam radiotherapy (EBRT) for hormone-naive prostate cancer. Methods and Materials: Between March 2000 and Sept 2003, a total of 53 patients with tumor Stage T1c-T3b N0 M0 prostate cancer were treated with HDR brachytherapy boost doses (7.5 Gy/fraction) and 50-Gy EBRT during a 5.5-week period. Median follow-up was 61 months. Patients were divided into groups with localized (T1c-T2b) and advanced disease (T3a-T3b). We used the American Society for Therapeutic Radiology and Oncology (ASTRO) definition for biochemical failure. According to recommendations of the Radiation Therapy Oncology Group-ASTRO Phoenix Consensus Conference, biochemical failure-free control rates (BF-FCRs) at 3 years were investigated as 2 years short of the median follow-up. Results: Between April 2000 and Sept 2007, Common Terminology Criteria for Adverse Events Version 2.0 late Grade 2 genitourinary and gastrointestinal toxicity rates were 0% and 3.8%, respectively. Erectile preservation was 25% at 5 years. Overall survival was 88.1% and cause-specific survival was 100%. At 3 years, ASTRO BF-FCRs of the localized and advanced groups were 100% and 42%, respectively (p = 0.001). Conclusions: The HDR brachytherapy of a single implant with two fractions plus EBRT is effective in treating patients with localized hormone-naive prostate cancer, with the least genitourinary and gastrointestinal toxicities; however, longer median BF-FCR follow-up is required to assess these findings

  7. Interactions between stepwise-eluted sub-fractions of fulvic acids and protons revealed by fluorescence titration combined with EEM-PARAFAC.

    Science.gov (United States)

    Song, Fanhao; Wu, Fengchang; Guo, Fei; Wang, Hao; Feng, Weiying; Zhou, Min; Deng, Yanghui; Bai, Yingchen; Xing, Baoshan; Giesy, John P

    2017-12-15

    In aquatic environments, pH can control environmental behaviors of fulvic acid (FA) via regulating hydrolysis of functional groups. Sub-fractions of FA, eluted using pyrophosphate buffers with initial pHs of 3.0 (FA 3 ), 5.0 (FA 5 ), 7.0 (FA 7 ), 9.0 (FA 9 ) and 13.0 (FA 13 ), were used to explore interactions between the various, operationally defined, FA fractions and protons, by use of EEM-PARAFAC analysis. Splitting of peaks (FA 3 and FA 13 ), merging of peaks (FA 7 ), disappearance of peaks (FA 9 and FA 13 ), and red/blue-shifting of peaks were observed during fluorescence titration. Fulvic-like components were identified from FA 3 -FA 13 , and protein-like components were observed in fractions FA 9 and FA 13 . There primary compounds (carboxylic-like, phenolic-like, and protein-like chromophores) in PARAFAC components were distinguished based on acid-base properties. Dissociation constants (pK a ) for fulvic-like components with proton ranged from 2.43 to 4.13 in an acidic pH and from 9.95 to 11.27 at basic pH. These results might be due to protonation of di-carboxylate and phenolic functional groups. At basic pH, pK a values of protein-like components (9.77-10.13) were similar to those of amino acids. However, at acidic pH, pK a values of protein-like components, which ranged from 3.33 to 4.22, were 1-2units greater than those of amino acids. Results presented here, will benefit understanding of environmental behaviors of FA, as well as interactions of FA with environmental contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The efficacy of autologous platelet rich plasma combined with ablative carbon dioxide fractional resurfacing for acne scars: a simultaneous split-face trial.

    Science.gov (United States)

    Lee, Jin Woong; Kim, Beom Joon; Kim, Myeung Nam; Mun, Seog Kyun

    2011-07-01

    Ablative carbon dioxide (CO(2) ) fractional resurfacing is a promising therapeutic intervention for the treatment of acne scars, although this technique is associated with prolonged surgical site erythema and edema, which may affect the daily lives of patients. Autologous platelet-rich plasma (PRP) is known to enhance wound healing and has applications in many areas of medicine. To evaluate the synergistic effects of autologous PRP with CO(2) fractional resurfacing for acne scars. A split-face trial was conducted in 14 Korean participants with acne scars. All participants received one session of ablative CO(2) fractional resurfacing. Immediately after resurfacing, facial halves were randomly assigned to receive treatment with autologous PRP injections on one side (experimental side) and normal saline injections on the other side (control side). The participants were monitored for degree of recovery and resurfacing-associated adverse events, including prolonged erythema, edema, and other effects on days 0, 2, 4, 6, 8, 15, and 30. The intensity of erythema was objectively measured using a chromometer at the same time intervals. After one additional treatment session using the same protocol, two independent dermatologists evaluated clinical improvement using a quartile grading scale. All participants completed the study. Erythema on the experimental side improved faster than on the control side and was significantly less at day 4 (p=.01). This difference was confirmed using a chromometer (p=.049). Total duration of erythema was an average of 10.4±2.7 days on the control side and 8.6±2.0 days on the experimental side (p=.047). Edema also improved faster on the experimental side than on the control side. The total duration of edema was an average of 7.1±1.5 days on the control side and 6.1±1.1 days on the experimental side (p=.04). Participants were also assessed for duration of post-treatment crusting, with a mean of 6.8±1.0 days on the control side and 5.9±1

  9. Identification of dioxin-like and estrogenic compounds in sediment using CALUX {sup registered} assay-directed fractionation combined with two-dimensional comprehensive GCxGC-ToF MS

    Energy Technology Data Exchange (ETDEWEB)

    Houtman, C.; Lamoree, M.; Legler, J.; Brouwer, A. [Vrije Univ., Amsterdam (Netherlands). Inst. for Environmental Studies; Jover, E. [I.I.Q.A.B.-C.S.I.C., Barcelona (Spain). Dept. of Environmental Chemistry; Adahchour, M. [Vrije Univ., Amsterdam (Netherlands). Dept. of Analytical Chemistry and Applied Spectroscopy

    2004-09-15

    The dioxin responsive (DR-) and estrogen responsive (ER-) CALUX {sup registered} -assays (Chemical Activated Luciferase Gene Expression) are mechanism-based, rapid and extremely sensitive in vitro reporter gene bioassays developed to assess dioxin-like and estrogenic activity. They provide useful information about the total dioxin-like or estrogenic potential of complex mixtures of chemicals in environmental samples. They are especially useful if combined with instrumental analytical approaches, as e.g. in bioassay-directed fractionation. In this approach, bioassays are used to direct fractionation and chemical analysis in order to elucidate compounds responsible for the toxic activity found in a sample. The present study was undertaken to elucidate dioxin-like and estrogenic chemicals in sediment from the harbor of the small town of Zierikzee in the Dutch delta area. Former research had shown high dioxin-like and estrogenic activity in sediment from this location. DR- and ER-CALUX {sup registered} assay were used to direct fractionation and chemical analysis of sediment extract. Active fractions were analyzed with comprehensive multidimensional GC x GC-Time-of-Flight Mass Spectrometry to elucidate responsible compounds.

  10. Positron emission tomography of the heart

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  11. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease

  12. Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy

    Science.gov (United States)

    Peng, Cheng-Xiao; Wang, Ke-Fan; Zhang, Yang; Guo, Feng-Li; Weng, Hui-Min; Ye, Bang-Jiao

    2009-05-01

    This paper studies the evolution of native point defects with temperature in ZnO single crystals by positron lifetime and coincidence Doppler broadening (CDB) spectroscopy, combined with the calculated results of positron lifetime and electron momentum distribution. The calculated and experimental results of the positron lifetime in ZnO bulk ensure the presence of zinc monovacancy, and zinc monovacancy concentration begins to decrease above 600 °C annealing treatment. CDB is an effective method to distinguish the elemental species, here we combine this technique with calculated electron momentum distribution to determine the oxygen vacancies, which do not trap positrons due to their positive charge. The CDB spectra show that oxygen vacancies do not appear until 600 °C annealing treatment, and increase with the increase of annealing temperature. This study supports the idea that green luminescence has a close relation with oxygen vacancies.

  13. Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Cheng-Xiao, Peng; Ke-Fan, Wang; Yang, Zhang; Feng-Li, Guo; Hui-Min, Weng; Bang-Jiao, Ye

    2009-01-01

    This paper studies the evolution of native point defects with temperature in ZnO single crystals by positron lifetime and coincidence Doppler broadening (CDB) spectroscopy, combined with the calculated results of positron lifetime and electron momentum distribution. The calculated and experimental results of the positron lifetime in ZnO bulk ensure the presence of zinc monovacancy, and zinc monovacancy concentration begins to decrease above 600 °C annealing treatment. CDB is an effective method to distinguish the elemental species, here we combine this technique with calculated electron momentum distribution to determine the oxygen vacancies, which do not trap positrons due to their positive charge. The CDB spectra show that oxygen vacancies do not appear until 600 °C annealing treatment, and increase with the increase of annealing temperature. This study supports the idea that green luminescence has a close relation with oxygen vacancies

  14. Positron annihilation in transparent ceramics

    Science.gov (United States)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  15. Positron scattering from vinyl acetate

    International Nuclear Information System (INIS)

    Chiari, L; Brunger, M J; Zecca, A; Blanco, F; García, G

    2014-01-01

    Using a Beer–Lambert attenuation approach, we report measured total cross sections (TCSs) for positron scattering from vinyl acetate (C 4 H 6 O 2 ) in the incident positron energy range 0.15–50 eV. In addition, we also report an independent atom model with screening corrected additivity rule computation results for the TCSs, differential and integral elastic cross sections, the positronium formation cross section and inelastic integral cross sections. The energy range of these calculations is 1–1000 eV. While there is a reasonable qualitative correspondence between measurement and calculation for the TCSs, in terms of the energy dependence of those cross sections, the theory was found to be a factor of ∼2 larger in magnitude at the lower energies, even after the measured data were corrected for the forward angle scattering effect. (paper)

  16. Electron-positron annihilation physics

    International Nuclear Information System (INIS)

    Foster, B.

    1990-01-01

    Electron-Positron Annihilation Physics is a detailed introduction to the main topics in e + e - annihilation, with particular emphasis on experimental work. Four main areas are covered, each in great detail, beginning with the Standard Model and its application to the production of lepton, quark and boson pairs. Secondly, the general features of fragmentation and different fragmentation models are explained. Chapter 3 is devoted to heavy quark and lepton physics, to which e + e - experiments have made an immense contribution. The final chapter, 'Where do we go from here?', looks for new phenomena beyond the Standard Model. Predictions of theory are compared with experimental results, highlighting shortcomings of some current theories. Details of instrumentation are included whenever possible. This ensures that the book is of maximum practical use to research workers. A comprehensive introduction to the major topics in the field, Electron-Positron Annihilation Physics is aimed at both graduate students studying high-energy physics and mature research workers. (author)

  17. Electron-Positron Accumulator (EPA)

    CERN Multimedia

    Photographic Service

    1986-01-01

    After acceleration in the low-current linac LIL-W, the electrons and positrons are accumulated in EPA to obtain a sufficient intensity and a suitable time-structure, before being passed on to the PS for further acceleration to 3.5 GeV. Electrons circulate from right to left, positrons in the other direction. Dipole bending magnets are red, focusing quadrupoles blue, sextupoles for chromaticity-control orange. The vertical tube at the left of the picture belongs to an optical transport system carrying the synchrotron radiation to detectors for beam size measurement. Construction of EPA was completed in spring 1986. LIL-W and EPA were conceived for an energy of 600 MeV, but operation was limited to 500 MeV.

  18. PEBS - Positron Electron Balloon Spectrometer

    CERN Document Server

    von Doetinchem, P.; Kirn, T.; Yearwood, G.Roper; Schael, S.

    2007-01-01

    The best measurement of the cosmic ray positron flux available today was performed by the HEAT balloon experiment more than 10 years ago. Given the limitations in weight and power consumption for balloon experiments, a novel approach was needed to design a detector which could increase the existing data by more than a factor of 100. Using silicon photomultipliers for the readout of a scintillating fiber tracker and of an imaging electromagnetic calorimeter, the PEBS detector features a large geometrical acceptance of 2500 cm^2 sr for positrons, a total weight of 1500 kg and a power consumption of 600 W. The experiment is intended to measure cosmic ray particle spectra for a period of up to 20 days at an altitude of 40 km circulating the North or South Pole. A full Geant 4 simulation of the detector concept has been developed and key elements have been verified in a testbeam in October 2006 at CERN.

  19. Positron annihilation in transparent ceramics

    International Nuclear Information System (INIS)

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  20. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  1. Positrons in biomolecular systems. II

    International Nuclear Information System (INIS)

    Glass, J.C.; Graf, G.; Costabal, H.; Ewert, D.H.; English, L.

    1982-01-01

    Pickoff-annihilation parameters, as related to the free volume model, are shown to be indicators of structural fluctuations in membranes and membrane bound proteins. Nitrous oxide anesthetic induces lateral rigidity in a membrane, and an anesthetic mechanism is suggested. Conformational changes of (Na + ,K + )ATPase in natural membrane are observed with ATP and Mg-ion binding. New positron applications to active transport and photosynthetic systems are suggested. (Auth.)

  2. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.J.; Rafecas, M.; Schwaiger, M.

    2001-01-01

    To fully utilize positron emission tomography (PET) as a non-invasive tool for tissue characterization, dedicated instrumentation is being developed which is specially suited for imaging mice and rats. Semiconductor detectors, such as avalanche photodiodes (APDs), may offer an alternative to photomultiplier tubes for the readout of scintillation crystals. Since the scintillation characteristics of lutetium oxyorthosilicate (LSO) are well matched to APDs, the combination of LSO and APDs seems favourable, and the goal of this study was to build a positron tomograph with LSO-APD modules to prove the feasibility of such an approach. A prototype PET scanner based on APD readout of small, individual LSO crystals was developed for tracer studies in mice and rats. The tomograph consists of two sectors (86 mm distance), each comprising three LSO-APD modules, which can be rotated for the acquisition of complete projections. In each module, small LSO crystals (3.7 x 3.7 x 12 mm 3 ) are individually coupled to one channel within matrices containing 2 x 8 square APDs (2.6 x 2.6 mm 2 sensitive area per channel). The list-mode data are reconstructed with a penalized weighted least squares algorithm which includes the spatially dependent line spread function of the tomograph. Basic performance parameters were measured with phantoms and first experiments with rats and mice were conducted to introduce this methodology for biomedical imaging. The reconstructed field of view covers 68 mm, which is 80% of the total detector diameter. Image resolution was shown to be 2.4 mm within the whole reconstructed field of view. Using a lower energy threshold of 450 keV, the system sensitivity was 350 Hz/MBq for a line source in air in the centre of the field of view. In a water-filled cylinder of 4.6 cm diameter, the scatter fraction at the centre of the field of view was 16% (450 keV threshold). The count rate was linear up to 700 coincidence counts per second. In vivo studies of anaesthetized

  3. Design of a volume-imaging positron emission tomograph

    International Nuclear Information System (INIS)

    Harrop, R.; Rogers, J.G.; Coombes, G.H.; Wilkinson, N.A.; Pate, B.D.; Morrison, K.S.; Stazyk, M.; Dykstra, C.J.; Barney, J.S.; Atkins, M.S.; Doherty, P.W.; Saylor, D.P.

    1988-11-01

    Progress is reported in several areas of design of a positron volume imaging tomograph. As a means of increasing the volume imaged and the detector packing fraction, a lens system of detector light coupling is considered. A prototype layered scintillator detector demonstrates improved spatial resolution due to a unique Compton rejection capability. The conceptual design of a new mechanism for measuring scattered radiation during emission scans has been tested by Monte Carlo simulation. The problem of how to use effectively the resulting sampled scattered radiation projections is presented and discussed

  4. Positron deep-level transient spectroscopy in semi-insulating-GaAs using the positron velocity transient method

    International Nuclear Information System (INIS)

    Tsia, M.; Fung, S.; Beling, C.D.

    2001-01-01

    Recently a new semiconductor defect spectroscopy, namely positron deep level transient spectroscopy (PDLTS) has been proposed that combines the energy selectivity of deep level transient spectroscopy with the structural sensitivity of positron annihilation spectroscopy. This paper focuses on one variant of PDLTS, namely positron velocity PDLTS, which has no sensitivity towards vacancy defects but nevertheless is useful in studying deep levels in semi-insulators. In the present study the electric field within the depletion region of semi-insulating GaAs is monitored through the measurement of the small Doppler shift in the annihilation radiation that comes from this region as a result of positron drift. The drift is the result of an increasing electric field produced by space charge building up from ionizing deep level defects. Doppler shift transients are measured between 50-300 K. The EL2 level emission transients are clearly seen at temperatures around 300 K that yield E C -0.78±0.08eV for the energy of EL2. The EL2 electron capture rate is found to have an activation energy of 0.61±0.08eV which most probably arises from freeze out of conduction electrons. We find the surprising result that emission and capture transients can be seen at temperatures below 200 K. Possible reasons for these transients are discussed. (orig.)

  5. Multijunction Capillary Isoelectric Focusing Device Combined with Online Membrane-Assisted Buffer Exchanger Enables Isoelectric Point Fractionation of Intact Human Plasma Proteins for Biomarker Discovery.

    Science.gov (United States)

    Pirmoradian, Mohammad; Astorga-Wells, Juan; Zubarev, Roman A

    2015-12-01

    Prefractionation of proteins is often employed to improve analysis specificity in proteomics. Prefractionation based on the isoelectric point (pI) is particularly attractive because pI is a well-defined parameter and it is orthogonal to hydrophobicity on which reversed-phase chromatography is based. However, direct capillary electrophoresis of blood proteins is challenging due to its high content of salts and charged small molecules. Here, we couple an online desalinator device to our multijunction capillary isoelectric focusing (MJ-CIEF) instrument and perform direct isoelectric separation of human blood plasma. In a proof-of-principle experiment, pooled samples of patients with progressive mild cognitive impairment and corresponding healthy controls were investigated. Injection of 3 μL of plasma containing over 100 μg of proteins into the desalinator was followed by pI fractionation with MJ-CIEF in less than 1 h. Shotgun proteomics of 12 collected fractions from each of the 5 replicates of pooled samples resulted in the identification and accurate quantification (median CV between the replicates is <4%) of nearly 365 protein groups from 4030 unique peptides (with <1% FDR for both peptides and proteins). The obtained results include several proteins previously reported as AD markers. The isoelectric point of each quantified protein was calculated using a set of 7 synthetic peptides spiked into the samples. Several proteins with a significant pI shift between their isoforms in the patient and control samples were identified. The presented method is straightforward, robust, and scalable; therefore, it can be used in both biological and clinical applications.

  6. Fast Identification of Radical Scavengers from Securigera varia by Combining 13C-NMR-Based Dereplication to Bioactivity-Guided Fractionation.

    Science.gov (United States)

    Sientzoff, Pacôme; Hubert, Jane; Janin, Coralie; Voutquenne-Nazabadioko, Laurence; Renault, Jean-Hugues; Nuzillard, Jean-Marc; Harakat, Dominique; Magid, Abdulmagid Alabdul

    2015-08-14

    Securigera varia (Fabaceae) is a common herbaceous perennial plant widely growing in Europe and Asia and purposely established for erosion control, roadside planting, and soil rehabilitation. The aim of this study was to determine the radical scavenging activity of a crude methanol extract of S. varia aerial parts by using the free radical DPPH (1,1-diphenyl-2-picrylhydrazyl) and to rapidly identify the compounds involved in this activity. The crude extract was initially separated in five fractions on Diaion HP20 resin and the most active part was fractionated by Centrifugal Partition Extraction (CPE). Known compounds were directly identified by a (13)C-NMR-based dereplication method. Semi-preparative high performance liquid chromatography purification experiments were further performed to identify unknown or minor active compounds. As a result, one new (13) and twelve known flavonoid glycosides together with three nitropropanoylglucopyranoses were isolated, including astragalin (1), kaempferol-3-O-(6-O-acetyl)-β-D-glucopyranoside (2), kaempferol-3,4'-di-O-β-D-glucopyranoside (3), trifolin (4), isoquercitrin (5), hyperoside (6), isovitexin (7), isoorientin (8), isovitexin 4'-O-β-D-glucopyranoside (9), apigenin 7-O-β-D-glucuronopyranoside (10), luteolin 7-O-β-D-glucuronopyranoside (11), apigenin 7-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucuronopyranoside (12), apigenin 7-O-β-D-glucopyranosyl-(1 → 2)-β-D-glucuronopyranoside (13), 6-O-(3-nitropropanoyl)-β-D-glucopyranoside (14), coronillin (16) and coronarian (15). 120 mg of the most active compound isoorientin against the free radical DPPH was recovered by CPE with an HPLC purity of 99%.

  7. Fast Identification of Radical Scavengers from Securigera varia by Combining 13C-NMR-Based Dereplication to Bioactivity-Guided Fractionation

    Directory of Open Access Journals (Sweden)

    Pacôme Sientzoff

    2015-08-01

    Full Text Available Securigera varia (Fabaceae is a common herbaceous perennial plant widely growing in Europe and Asia and purposely established for erosion control, roadside planting, and soil rehabilitation. The aim of this study was to determine the radical scavenging activity of a crude methanol extract of S. varia aerial parts by using the free radical DPPH (1,1-diphenyl-2-picrylhydrazyl and to rapidly identify the compounds involved in this activity. The crude extract was initially separated in five fractions on Diaion HP20 resin and the most active part was fractionated by Centrifugal Partition Extraction (CPE. Known compounds were directly identified by a 13C-NMR-based dereplication method. Semi-preparative high performance liquid chromatography purification experiments were further performed to identify unknown or minor active compounds. As a result, one new (13 and twelve known flavonoid glycosides together with three nitropropanoylglucopyranoses were isolated, including astragalin (1, kaempferol-3-O-(6-O-acetyl-β-D-glucopyranoside (2, kaempferol-3,4′-di-O-β-D-glucopyranoside (3, trifolin (4, isoquercitrin (5, hyperoside (6, isovitexin (7, isoorientin (8, isovitexin 4′-O-β-D-glucopyranoside (9, apigenin 7-O-β-D-glucuronopyranoside (10, luteolin 7-O-β-D-glucuronopyranoside (11, apigenin 7-O-α-L-rhamnopyranosyl-(1→2-β-D-glucuronopyranoside (12, apigenin 7-O-β-D-glucopyranosyl-(1→2-β-D-glucuronopyranoside (13, 6-O-(3-nitropropanoyl-β-D-glucopyranoside (14, coronillin (16 and coronarian (15. 120 mg of the most active compound isoorientin against the free radical DPPH was recovered by CPE with an HPLC purity of 99%.

  8. Fermi surface in V3Si from positron annihilation

    International Nuclear Information System (INIS)

    Peter, M.; Manuel, A.A.; Jarlborg, T.

    1982-01-01

    The recent work of the Geneva Group on the electronic structure of V 3 Si is briefly reviewed. Accurate self-consistent LMTO calculation leads to a Fermi surface and momentum distribution which is confirmed by high resolution 2-D angular correlation of positron annihilation radiation (2D-ACPAR). The bandstructure data are combined with phonon data from Junod's specific heat measurements to calculate parameters relevant to superconductivity. (orig.)

  9. Design of a transmission electron positron microscope

    International Nuclear Information System (INIS)

    Doyama, Masao; Inoue, M.; Kogure, Y.; Hayashi, Y.; Yoshii, T.; Kurihara, T.; Tsuno, K.

    2003-01-01

    This paper reports the plans and design of positron-electron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan. A used electron microscope is altered. The kinetic energies of positrons produced by accelerators or by nuclear decays are not a unique value but show a spread over in a wide range. Positron beam is guided to a transmission electron microscope (JEM100SX). Positrons are moderated by a tungsten foil, are accelerated and are focused on a nickel sheet. The monochromatic focused beam is injected into an electron microscope. The focusing and aberration of positrons are the same as electrons in a magnetic system which are used in commercial electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (author)

  10. Development of a transmission positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Matsuya, M., E-mail: matsuya@jeol.co.jp [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Jinno, S. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan); Ootsuka, T.; Inoue, M. [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Kurihara, T. [High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Doyama, M.; Inoue, M. [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0913 (Japan); Fujinami, M. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan)

    2011-07-21

    A practical transmission positron microscope (TPM) JEM-1011B has been developed to survey differences in the interaction of positron and electron beams with materials, and is installed in the Slow Positron Facility of High Energy Accelerator Research Organization (KEK). The TPM can share positron and electron beams, and can also be used as a transmission electron microscope (TEM). Positron transmission images up to magnification 10,000x (resolution: 50 nm) and positron diffraction patterns up to 044 family were successfully obtained by the TPM comparing them with those of electrons. The differences in material transmittances for both beams have been measured, and can be explained by the calculated results of the Monte Carlo simulation code PENELOPE-2008.

  11. Fractional laser skin resurfacing.

    Science.gov (United States)

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2012-11-01

    Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.

  12. Fraction Reduction through Continued Fractions

    Science.gov (United States)

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  13. Characterizing microstructural changes in ferritic steels by positron annihilation spectroscopy: Studies on modified 9Cr-1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Hari Babu, S., E-mail: shb@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Rajkumar, K.V. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Hussain, S. [UGC-DAE CSR, Kokilamedu 603 104, TN (India); Amarendra, G.; Sundar, C.S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Positron lifetime technique probing microstructure of ferritic/martensitic steels. Black-Right-Pointing-Pointer Correlation between positron lifetime, ultrasonic and hardness. Black-Right-Pointing-Pointer Complementary nature of positron annihilation spectroscopy in probing defects. Black-Right-Pointing-Pointer Distinguishing precipitation stages by positron annihilation spectroscopy. - Abstract: Applicability of positron annihilation spectroscopy in probing the microstructural changes in ferritic steels has been investigated with thermal treatment studies on modified 9Cr-1Mo steel, during 300-1273 K. Positron lifetime results are compared with those of ultrasonic velocity and hardness techniques with two initial microstructural conditions i.e., normalized and tempered condition as well as only normalized condition. In first case, positron lifetime is found to be sensitive to small changes in metal carbide precipitation which could not be probed by other two techniques. In later case, positron lifetime is found to be sensitive to defect annealing until 673 K and in distinguishing the growth and coarsening of metal carbide precipitation stages during 773-1073 K. The present study suggests that by combining positron lifetime, ultrasonic velocity and hardness measurements, it is possible to distinguish distinct microstructures occurring at different stages.

  14. Positron emission tomography imaging--technical considerations

    International Nuclear Information System (INIS)

    Muehllehner, G.; Karp, J.S.

    1986-01-01

    Positron imaging instrumentation has improved rapidly in the last few years. Scanners currently under development are beginning to approach fundamental limits set by positron range and noncolinearity effects. This report reviews the latest developments in positron emission tomography (PET) instrumentation, emphasizing the development of coding schemes that reduce the complexity and cost of high-resolution scanners. The relative benefits of using time-of-flight (TOF) information is discussed as well. 68 references

  15. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    Science.gov (United States)

    2014-03-27

    actinide oxides . The work described here is an attempt to characterize the quality of crystals using positron annihilation spectroscopy (PALS). The...Upadhyaya, R. V. Muraleedharan, B. D. Sharma and K. G. Prasad, " Positron lifetime studies on thorium oxide powders," Philosohical Magazine A, vol. 45... crystals . A strong foundation for actinide PALS studies was laid, but further work is required to build a more effective system. Positron Spectroscopy

  16. KEK-IMSS Slow Positron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, T; Wada, K; Yagishita, A; Kosuge, T; Saito, Y; Kurihara, T; Kikuchi, T; Shirakawa, A; Sanami, T; Ikeda, M; Ohsawa, S; Kakihara, K; Shidara, T, E-mail: toshio.hyodo@kek.jp [High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps{sup -}). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a {sup 22}Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  17. Combination of Q-switched and quasi long-pulsed 1064-nm Nd:YAG laser, non-ablative 1450-nm diode laser, and ablative 10 600-nm carbon dioxide fractional laser for enlarged pores.

    Science.gov (United States)

    Cho, Sung Bin; Noh, Seongmin; Lee, Sang Ju; Kang, Jin Moon; Kim, Young Koo; Lee, Ju Hee

    2010-07-01

    Currently, there is no gold standard for the treatment of enlarged facial pores. In this report, we describe a patient with enlarged nasal pores which were treated with a combination of a non-ablative 1450-nm diode laser, a Q-switched and quasi long-pulsed 1064-nm Nd:YAG laser, and an ablative 10 600-nm carbon dioxide fractional laser system. Four months after the final treatment, the condition of the patient's pores had markedly improved, and the patient was satisfied with the results.

  18. Solvated Positron Chemistry - Positron Reactions with Pseudo-Halide Ions in Water

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Pedersen, Niels Jørgen; Andersen, Jan Rud

    1982-01-01

    The hydrated positron e+aq reactions with SCN−, OCN−, CN−, S2− were studied by means of the angular correlation technique. The positron forms bound states with SCN−, CN−, and S2− but not with OCN−. Apparently, the e+aq reaction with SH− results in a positron bound state with S2−. It was difficult...

  19. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, Katia, E-mail: Katia.parodi@physik.uni-muenchen.de [Faculty of Physics, Department of Medical Physics, Ludwig Maximilians University Munich, Munich 85748 (Germany)

    2015-12-15

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  20. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring

    International Nuclear Information System (INIS)

    Parodi, Katia

    2015-01-01

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  1. Low energy scattering of positrons by H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Arretche, F., E-mail: fsc1sem@fsc.ufsc.b [Departamento de Fisica, Universidade do Estado de Santa Catarina, 89223-100, Joinville, Santa Catarina (Brazil); Tenfen, W.; Mazon, K.T.; Michelin, S.E. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina (Brazil); Lima, M.A.P. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Unicamp, 13083-970, Campinas, Sao Paulo (Brazil); Lee, M.-T. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905, Sao Carlos, Sao Paulo (Brazil); Machado, L.E. [Departamento de Fisica, Universidade Federal de Sao Carlos, 13565-905, Sao Carlos, Sao Paulo (Brazil); Fujimoto, M.M. [Departamento de Fisica, Universidade Federal do Parana, 13565-905, Curitiba, Parana (Brazil); Pessoa, O.A. [Departamento de Fisica, Universidade do Estado de Santa Catarina, 89111-100, Sao Bento do Sul, Santa Catarina (Brazil)

    2010-01-15

    We present a theoretical investigation on elastic positron-H{sub 2}O collisions. More specifically, differential and integral cross sections in the 0-10 eV energy range are reported. The calculations were performed using two theoretical approaches, namely, the Schwinger multichannel method and the method of continued fractions. The positron-molecule interaction dynamics is described by using a potential composed of static and correlation-polarization contributions. Comparison of our calculated results with the recent experimental of Zecca et al. [J. Phys. B 39 (2006) 1597] and theoretical results is encouraging.

  2. 22 Na positron source for annihilation positron spectroscopy

    International Nuclear Information System (INIS)

    Cimpeanu, Catalina; Craciun, Liviu; Dragulescu, Emilian; Dudu, Dorin; Racolta, Petre Mihai; Voiculescu, Dana; Miron, N.

    2005-01-01

    To extend the nuclear physics applications and to perform the study of vacancy - type defects in metals, semiconductors, polymers, etc., we developed new positron annihilation techniques. In line with this goal we started a project for production of positron sources at the IFIN-HH U-120 Cyclotron. We made use of the nuclear reaction: 24 Mg(d,α) 22 Na with deuterons of 13 MeV energy. The paper present the main steps of this procedure which are: establishing the conditions required for 22 NaCl sources, for the parameters of reaction chamber and the characteristics of Mg target, parameters for the irradiation, radiochemical procedures for separation of Na from Mg after irradiation as well as the geometrical and mechanical requirements for the NaCl source. In the e + lifetime measurements the e + 'stop' signals are always provided by gamma - quanta generated by the e + e - annihilation and the 'start' signals are obtained from 'prompt' gamma - quanta emitted by the NaCl source (1.275 MeV photons). The 22 NaCl stock solution obtained by radiochemical separation will be kept in quartz sealed ampoules. (authors)

  3. Positron tomography. Methodology and applications

    International Nuclear Information System (INIS)

    Kellershohn, C.; Comar, D.

    1979-01-01

    Whereas single photon tomography provides a new and rewarding dimension to conventional nuclear medicine, positron tomography makes a new original approach possible of the analysis in vivo of fundamental biological and physiological processes. The main object of both is the sectional representation of the distribution of a radioactive indicator injected into the body system; compared with conventional detectors (gamma cameras and scintigraphic systems) they provide much greater accuracy in localization. The characteristics of these two methods can be presented schematically by comparing their respective advantages and drawbacks [fr

  4. Positron emission tomography takes lead

    International Nuclear Information System (INIS)

    Simms, R.

    1989-01-01

    Positron emission tomography (PET)'s ability to detect functional abnormalities before they manifest anatomically is examined and some of its most common applications are outlined. It is emphasised that when PET facility and Australian Nuclear Science and Technology Organization's national cyclotron are established at the Royal Prince Alfred Hospital, the availability of short-lived tracers such as oxygen 15, nitrogen 13 and fluorine 18 would improve the specificity of tests(e.g. for brain tumors or cardiac viability) further. Construction of the cyclotron will start shortly and is due to be completed and operating by the end of 1991

  5. Theoretical aspects of positrons in imperfect solids

    International Nuclear Information System (INIS)

    Puska, M.J.

    1987-01-01

    The efficient use of positron annihilation in defect studies requires a deep understanding of the basic processes of positron-imperfect solid interaction. Three stages, i.e. thermalization, trapping by a defect, and the annihilation can be separated during the evolution of the interaction. The last two processes are the most relevant ones for the positron lifetime spectroscopy and they will be discussed in detail in this review. The complete solution of the problem of a localized positron interacting with the electrons around a defect requires the simultaneous self-consistent calculation of the electronic structure and the positron state. This is in principle possible in the two component density functional theory. However, the approximation, in which the electronic structure without the positron influence is used and the electron-positron correlation effects are described by local enhancement factors, has turned out to be feasible in practice and also accurate enough in predicting positron annihilation characteristics. Moreover, a non-self-consistent electron structure is sufficient in many cases. This enables an efficient calculation method in which the positron wave function can be solved in three dimensions for arbitrary defect geometries. Enhancement models for simple metals, transition metals, and semiconductors are represented. Thereafter, applications to vacancies, vacancy clusters, and vacancy-impurity complexes are shown. The positron trapping by defects is mediated by the transfer of the positron binding energy to the solid in the form of electron-hole pairs and phonons. The trapping phenomenon is discussed in the case of metals and semiconductors. Semiconductors are especially challenging because the existence of the energy gap makes the low energy electron-hole excitations impossible and because the defects have different charge states effecting strongly on the trapping rate. (author)

  6. Long-living positron and positronium states in zeolites and microcrystalline oxides

    International Nuclear Information System (INIS)

    Kajcsos, Zs.; Liszkay, L.; Varga, L.; Lohonyai, L.; Lazar, K.

    1995-01-01

    Positron annihilation (PA) investigation were performed on zeolites (X, Y and ZSM-5) and on microcrystalline MgO, Al 2 O 3 and SiO 2 , providing long lifetime components attributed to o-Ps atoms. In addition to the positron lifetime (LT) measurements, the energy distribution (ED) of the annihilation gamma radiation spectrum was recorded in the 30 keV - 1.5 MeV range for different samples and was compared to reference distributions for Si and GaAs samples, where no long-living Ps states are formed. Apart from the strong correlation with the water content in the samples, the positron data collected testify much more pronounced positronium hosting features for powders of the mentioned oxides than for zeolites. Positron LT spectroscopy combined with recording of the ED of the annihilation radiation provides reliable information on the forming of long living 3γ states. (author) 15 refs.; 4 figs

  7. Combination of platelet rich plasma in fractional carbon dioxide laser treatment increased clinical efficacy of for acne scar by enhancement of collagen production and modulation of laser-induced inflammation.

    Science.gov (United States)

    Min, Seonguk; Yoon, Ji Young; Park, Seon Yong; Moon, Jungyoon; Kwon, Hyuck Hoon; Suh, Dae Hun

    2018-04-01

    Platelet-rich plasma (PRP) which contains large amounts of growth factors has been tried to enhance therapeutic efficacy of laser treatment for acne scar with unknown underlying mechanism. The present study was conducted to investigate the molecular mechanism of increased clinical efficacy of PRP when combined with fractional laser treatment for treating acne scars. Subjects with mild to moderate acne scars were treated with two sessions of fractional CO 2 laser therapy given with and without co-administration of PRP. Skin biopsy specimens were obtained at baseline, 1, 3, 7, and 28 days for investigation of molecular profiles associated with skin changes produced by laser plus PRP treatment. The PRP treatment increased clinical efficacy with decreased severity of adverse effects such as erythema, swelling and oozing. Productions of TGFβ1 and TGFβ3 proteins were more highly elevated on the PRP-treated side of the face compared to the control side at day 28. Furthermore, PRP-treated side showed significant increase of c-myc, TIMP, and HGF expression. Experimental fibroblast culture model was also used. PRP administration after laser irradiation increased expressions of p-Akt, TGFβ1, TGFβ3, β-catenin, collagen 1, and collagen 3 in both dose-dependent and time dependent manners in fibroblast. Moreover, we acquired clinical and histological data through randomized control clinical trial. Taken together with human study results combined with the data from cell experiments we suggest that PRP treatment increased fibrogenetic molecules induced by fractional CO 2 laser, which have association with clinical effect. Lasers Surg. Med. 50:302-310, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Investigation of granular impact using positron emission particle tracking

    KAUST Repository

    Marston, Jeremy O.

    2015-04-01

    We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

  9. Polarized positrons and electrons at the linear collider

    International Nuclear Information System (INIS)

    Moortgat-Pick, G.; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Dreiner, H.K.; Eberl, H.; Ellis, J.

    2008-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization

  10. Positron probe to study the freezing of nanodroplets

    International Nuclear Information System (INIS)

    Pujari, P.K.

    2010-01-01

    Positron is an excellent in situ probe to study the phase behavior of fluid confined in nanodomains. The study of phase behavior (freezing/melting) of nano confined fluid or nanodroplet has great relevance in fundamental research as well as applications in nano-tribology, nanofabrication, membrane separation, interfacial adhesion and lubrication. It is seen that the properties of freezing/melting of nanodroplets are different from their bulk behavior due to the combined effects of finite size, surface force, surface anisotropy, pore disorder and reduced dimensionality. We have used positron annihilation spectroscopy (PAS) to study the freezing/melting behavior of different organic liquids like benzene, ethylene glycol and isopropanol confined in nanopores of ZSM5 zeolite and silica gel

  11. Positrons trapped in polyethylene: Electric field effect

    International Nuclear Information System (INIS)

    Bertolaccini, M.; Bisi, A.; Gambarini, G.; Zappa, L.

    1978-01-01

    The intensity of the iot 2 -component of positrons annihilated in polyethylene is found to increase with increasing electric field, while the formation probability of the positron state responsible for this component remains independent of the field. (orig.) 891 HPOE [de

  12. Nanometer cavities studied by positron annihilation

    International Nuclear Information System (INIS)

    Mogensen, O.E.

    1992-01-01

    Positronium (Ps) is trapped in cavities in insulating solids, and the lifetime of ortho Ps is determined by the size of the cavity. The information on the properties of the cavities obtained by use of the standard slow positron beam and the 'normal' positron annihilation techniques is compared for several selected cases. (author)

  13. Positron prevacancy effects in pure annealed metals

    International Nuclear Information System (INIS)

    Smedskjaer, L.C.

    1981-06-01

    The low-temperature prevacancy effects sometimes observed with positrons in well-annealed high-purity metals are discussed. It is shown that these effects are not experimental artifacts, but are due to trapping of the positrons. It is suggested that dislocations are responsible for these trapping effects. 46 references, 5 figures

  14. Electron and Positron Stopping Powers of Materials

    Science.gov (United States)

    SRD 7 NIST Electron and Positron Stopping Powers of Materials (PC database for purchase)   The EPSTAR database provides rapid calculations of stopping powers (collisional, radiative, and total), CSDA ranges, radiation yields and density effect corrections for incident electrons or positrons with kinetic energies from 1 keV to 10 GeV, and for any chemically defined target material.

  15. LEP - Large Electron Positron Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The Large Electron-Positron Collider (LEP) is 27 km long. Its four detectors (ALEPH, DELPHI, L3, OPAL) measure precisely what happens in the collisions of electrons and positrons. These conditions only exist-ed in the Universe when it was about 10 -10 sec old.

  16. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Mathis, C.A.; Moyer, B.R.; Huesman, R.H.; Derenzo, S.E.

    1983-01-01

    Positron emission tomography (PET) offers the opportunity to noninvasively measure heart muscle blood perfusion, oxygen utilization, metabolism of fatty acids, sugars and amino acids. This paper reviews physiological principles which are basic to PET instrumentation for imaging the heart and gives examples of the application of positron emission tomography for measuring myocardial flow and metabolism. 33 references, 11 figures, 1 table

  17. Descriptions of positron defect analysis capabilities

    International Nuclear Information System (INIS)

    Howell, R.H.

    1994-10-01

    A series of descriptive papers and graphics appropriate for distribution to potential collaborators has been assembled. These describe the capabilities for defect analysis using positron annihilation spectroscopy. The application of positrons to problems in the polymer and semiconductor industries is addressed

  18. Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer

    International Nuclear Information System (INIS)

    Jean, Y.C.; Li Ying; Liu Gaung; Chen, Hongmin; Zhang Junjie; Gadzia, Joseph E.

    2006-01-01

    Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 μm depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages

  19. Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jean, Y.C. [Department of Chemistry, University of Missouri-Kansas City, 205 Spenscer Chemistry Building, 5009 Rockhill Road, Kansas City, MO 64110 (United States)]. E-mail: jeany@umkc.edu; Li Ying [Department of Chemistry, University of Missouri-Kansas City, 205 Spenscer Chemistry Building, 5009 Rockhill Road, Kansas City, MO 64110 (United States); Liu Gaung [Department of Chemistry, University of Missouri-Kansas City, 205 Spenscer Chemistry Building, 5009 Rockhill Road, Kansas City, MO 64110 (United States); Chen, Hongmin [Department of Chemistry, University of Missouri-Kansas City, 205 Spenscer Chemistry Building, 5009 Rockhill Road, Kansas City, MO 64110 (United States); Zhang Junjie [Department of Chemistry, University of Missouri-Kansas City, 205 Spenscer Chemistry Building, 5009 Rockhill Road, Kansas City, MO 64110 (United States); Gadzia, Joseph E. [Dermatology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103 (United States); Kansas Medical Clinic, Topeka, KS 66614 (United States)

    2006-02-28

    Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 {mu}m depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages.

  20. Positron annihilation studies on bulk metallic glass and high intensity positron beam developments

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Stoeffl, W.

    2003-01-01

    Positron annihilation spectroscopy is an ideal probe to examine atomic scale open-volume regions in materials. Below, we summarize the recent results on studies of open-volume regions of a multicomponent Zr-Ti-Ni-Cu-Be bulk metallic glass. Our studies establish two types of open-volume regions, one group that is too shallow to trap positrons at room temperature and becomes effective only at low temperatures and the other group that localizes positrons at room temperature and is large enough to accommodate hydrogen. The second half of the paper will concentrate on the high intensity positron program at Lawrence Livermore National Laboratory. A new positron production target is under development and we are constructing two experimental end stations to accommodate a pulsed positron microprobe and an experiment on positron diffraction and holography. Important design considerations of these experiments will be described. (author)

  1. Positronic complexes with unnatural parity

    International Nuclear Information System (INIS)

    Bromley, M. W. J.; Mitroy, J.; Varga, K.

    2007-01-01

    The structure of the unnatural parity states of PsH, LiPs, NaPs, and KPs are investigated with the configuration interaction and stochastic variational methods. The binding energies (in hartree) are found to be 8.17x10 -4 , 4.42x10 -4 , 15.14x10 -4 , and 21.80x10 -4 , respectively. These states are constructed by first coupling the two electrons into a configuration which is predominantly 3 P e , and then adding a p-wave positron. All the active particles are in states in which the relative angular momentum between any pair of particles is at least L=1. The LiPs state is Borromean since there are no three-body bound subsystems (of the correct symmetry) of the (Li + , e - , e - , e + ) particles that make up the system. The dominant decay mode of these states will be radiative decay into a configuration that autoionizes or undergoes positron annihilation

  2. Positron annihilation spectroscopy in materials structure studies

    International Nuclear Information System (INIS)

    Grafutin, Viktor I; Prokop'ev, Evgenii P

    2002-01-01

    A relatively new method of materials structure analysis - positron annihilation spectroscopy (PAS) - is reviewed. Measurements of positron lifetimes, the determination of positron 3γ- and 2γ-annihilation probabilities, and an investigation of the effects of different external factors on the fundamental characteristics of annihilation constitute the basis for this promising method. The ways in which the positron annihilation process operates in ionic crystals, semiconductors, metals and some condensed matter systems are analyzed. The scope of PAS is described and its prospects for the study of the electronic and defect structures are discussed. The applications of positron annihilation spectroscopy in radiation physics and chemistry of various substances as well as in physics and chemistry of solutions are exemplified. (instruments and methods of investigation)

  3. Simulation of a Positron Source for CEBAF

    International Nuclear Information System (INIS)

    S. Golge; A. Freyberger; C. Hyde-Wright

    2007-01-01

    A positron source for the 6 GeV (or the proposed 12 GeV upgrade) recirculating linacs at Jefferson Lab is presented. The proposed 100nA CW positron source has several unique characteristics; high incident beam power (100kW), 10 MeV incident electron beam energy, CW incident beam and CW production. Positron production with 10 MeV electrons has several advantages; the energy is below neutron threshold so the production target will not become activated during use and the absolute energy spread is bounded by the low incident energy. These advantages are offset by the large angular distribution of the outgoing positrons. Results of simulations of the positron production, capture, acceleration and injection into the recirculating linac are presented. Energy flow and thermal management of the production target present a challenge and are included in the simulations

  4. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1996-01-01

    A survey of the positron annihilation studies on high temperature superconductors (HTSC), with results drawn mainly from our work, is presented. These include results of the studies on the temperature dependence of positron lifetime across T c , which have been carried out in the whole gamut of oxide superconductors. These experimental results are discussed in conjunction with the results of theoretically calculated positron density distribution, and it is shown that the observed temperature dependence of lifetime is intimately linked to the probing of the Cu-O network by the positrons. Results on the investigation of oxygen defects, which play a crucial role in HTSC, are presented. The most significant contribution of positrons to HTSC relates to the investigation of Fermi surface and the results of these studies, drawn from literature, are indicated. Some of our recent results in other novel superconducting materials, viz., the fullerenes and borocarbides are also presented. (author). 69 refs., 15 figs

  5. Experimentation with low-energy positron beams

    International Nuclear Information System (INIS)

    Mills, A.P. Jr.

    1983-01-01

    The capability of studying the interactions of positrons with surfaces has recently been exploited by using ultra-high-vacuum techniques. The result has been a new understanding of how positrons interact with surfaces and because of this we are now able to make much stronger fluxes of slow positrons. The higher beam strengths in turn are opening up new possibilities for experimentation on surfaces and solids and for studying the atomic physics of positronium and positron-molecule scattering at low energies. The lectures are intended to review some of the history of this subject and to outline the present state of our knowledge of experimentation with low-energy positron beams. (orig./TW)

  6. Positron annihilation in vitreous silica glasses

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro

    1993-01-01

    The annihilation characteristics of positrons in vitreous silica glasses (v-SiO 2 ) were studied by measurements of two-dimensional angular correlation of positron annihilation radiations and positron lifetime spectra. From the measurements, it was found that positrons and positronium (Ps) atoms mainly annihilate from trapped states by vacancy-type defects in v-SiO 2 . For v-SiO 2 specimens with cylindrical porous structures, annihilations of Ps with anisotropic momentum distributions were observed. This fact was attributed to the momentum uncertainty due to localization of Ps in a finite dimension of pores. This investigation showed possibilities for the detection of microstructures in v-SiO 2 by the positron annihilation technique. (author)

  7. Clinic-like animal model for causal-pathogenetical investigations of hypoxic-ischemic brain injuries. Combined application of the radioactive labelled microsphere method and Positron Emission Tomography. Kliniknahes Tiermodell fuer kausal-pathogenetische Untersuchungen hypoxisch-ischaemischer Hirnschaedigung. Kombinierter Einsatz von Mikrosphaeren-Methode und Positronen-Emissions-Tomographie

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R.; Zwiener, U.; Bergmann, R. (Univ. Jena, Inst. fuer Pathologische Physiologie (Germany)); Manfrass, P.; Enghardt, W.; Fromm, W.D. (Zentralinstitut fuer Kernforschung, Bereich Festkoeper- und Kernphysik, Rossendorf (Germany)); Hoyer, D.; Guenther, K. (Leipzig Univ., Radiologische Klinik (Germany)); Schubert, H. (Univ. Jena, Tierexperimentelles Zentrum (Germany)); Beyer, R.; Beyer, G.J.; Steinbach, J.; Kretzschmer, M. (Zentralinstitut fuer Kernforschung, Bereich Radioaktive Isotope, Rossendorf (Germany))

    1990-01-01

    The complex nature of the pathogenesis in hypoxic-ischemic brain injuries equires the combined determination of the dynamics of main factors in these disturbing processes. The application of suitable methods for registration of such pathogenetic processes is shown in an adequate animal model for simulating the early hypoxic-ischemic brain injuries. That the radioactive labelled microsphere technique is suitable to comprehend quantitively the dynamics of the intracerebral redistribution of the circulating blood due to hypoxia/hypercapnia by simultaneous-multiple measuring of the regional cerebral blood flow. Therefore, at the first time an inadequate hypoxic-induced blood flow increase was shown in large parts of the forebrain in intrauterine growth retarded newborn piglets. For estimation of the regional cerebral glucose utilization in newborn piglets, the {sup 18}F-FDG Positron Emission Tomography is introduced. The measurements were carried out on a stationary high-density avalanche chamber (HIDAC) camera and yielded the fundamental application of this camera model for PET investigations also in the newborn brain due to the very good spatial resolution. (orig.).

  8. Interface detection in poly-ethylene terephthalate-metal laminates using variable energy positron annihilation

    International Nuclear Information System (INIS)

    Escobar Galindo, R.; Schut, H.; Veen, A. van; Rastogi, R.; Vellinga, W.P.; Meijer, H.E.H.

    2005-01-01

    Thin coatings of poly-ethylene terephthalate (PET) on metal ('laminates') have been studied with a variable energy positron annihilation technique. A correlation between PET crystallinity and the positron annihilation parameter S related to the free volume in the polymer is found. It is shown that buried interfaces in these systems may be detected provided the S parameter of the polymer coating is lower than that of the substrate and higher than that of the surface. Also it is found that large positron diffusion lengths in the substrate favour interface detection. Further, changes in S parameter of PET-metal laminates were measured during uniaxial deformation and shown to be in qualitative accordance with a very simple model description that accounts for changes in free volume in PET during plastic deformation as well as the area fraction of cracks occurring in the PET

  9. Effect of epoxide equivalent on microstructure of epoxy/rectorite nanocomposite studied by positrons

    International Nuclear Information System (INIS)

    Liu, L.M.; Fang, P.F.; Zhang, S.P.; Wang, S.J.

    2005-01-01

    The epoxy/rectorite nanocomposites with different epoxide equivalent ranging from 188 to 1110 were prepared and the effects of epoxide equivalent on microstructure of materials were studied by X-ray diffraction (XRD) and positron annihilation lifetime spectroscope (PALS). In nanocomposites, the formation of exfoliated structure was observed from XRD pattern at epoxide equivalent >263. The PALS measurements reveal that the fractional free volume in nanocomposites was strongly affected by epoxide equivalent, in particular, the free-volume concentration was dramatically decreased with the increasing epoxide equivalent from 188 to 263, and the S parameter indicates the rectorite structure change and the high sensitivity of positron annihilation to the entry of rectorite into epoxy. These results indicate that positron annihilation characteristics are useful for study the microstructure of epoxy/rectorite nanocomposites

  10. Precision measurement of positron polarization in 68Ga decay based on the use of a new positron polarimeter

    International Nuclear Information System (INIS)

    Gerber, G.; Newman, D.; Rich, A.; Sweetman, E.

    1977-01-01

    We report a new measurement of positron polarization (P) in 68 Ga decay. Using a new polarimeter the asymmetry (A) in the decay of positronium in a magnetic field was measured to 5%. When combined with a calculation of the positron depolarization on stopping in MgO powder the overall uncertainty in P is 11%. The most precise prior determination of P was to 12% accuracy. An eventual precision of 1% in A and 0.1% in comparisons of asymmetries from different sources is anticipated. In addition to the 68 Ga work we point out the possible use of the polarimeter in a number of new measurements including a determination of e + polarization in μ + and nuclear decay and in a g - 2 experiment

  11. Combined PET/MRI

    DEFF Research Database (Denmark)

    Bailey, D. L.; Pichler, B. J.; Gückel, B.

    2015-01-01

    This paper summarises key themes and discussions from the 4th international workshop dedicated to the advancement of the technical, scientific and clinical applications of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) systems that was held in Tübingen, Germany, from...

  12. Experimental radiotherapy of the R1H rhabdomyosarcoma of the rat: combined use of interstitial iodine-125-brachytherapy and fractionated X-irradiation

    International Nuclear Information System (INIS)

    Doll, D.

    1995-01-01

    The study described here investigated into the therapeutic effects that split-dose x-radiation combined with interstitial iodine-125 brachytherapy would have on two different lines of the R1H rhabdomyosarcoma of the rat. The following parameters were examined: local tumour control rate; growth delay; net growth delay; position, movement and loss of seeds; tumour shape. The following results were obtained: The local tumour control rate for tumours externally treated with two seeds was by 42 Gy higher than that determined for the group treated with external irradiation alone. A procedure was developed to calculate the most appropriate distance for the seeds on the basis of tumour axes and volumes. The relationship between growth delay and mean maximum distance of the seed from the tumour margin could be ascertained on a quantitative basis. The influence of the tumour shape on the result of treatment was confirmed. Although the seeds were still active at the time of recidivation and treatment was not yet terminated, it was possible to show that the tumour bed effect, which tends to distort the growth delay calculations and may even occur in externally treated seed animals, could largely be avoided in the evaluation of this study. (orig./MG) [de

  13. Positron deposition in plasmas by positronium beam ionization and transport of positrons in tokamak plasmas

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1986-11-01

    In a recently proposed positron transport experiment, positrons would be deposited in a fusion plasma by forming a positronium (Ps) beam and passing it through the plasma. Positrons would be deposited as the beam is ionized by plasma ions and electrons. Radial transport of the positrons to the limiter could then be measured by detecting the gamma radiation produced by annihilation of positrons with electrons in the limiter. This would allow measurements of the transport of electron-mass particles and might shed some light on the mechanisms of electron transport in fusion plasmas. In this paper, the deposition and transport of positrons in a tokamak are simulated and the annihilation signal determined for several transport models. Calculations of the expected signals are necessary for the optimal design of a positron transport experiment. There are several mechanisms for the loss of positrons besides transport to the limiter. Annihilation with plasma electrons and reformation of positronium in positron-hydrogen collisions are two such processes. These processes can alter the signal and place restrictions ons on the plasma conditions in which positron transport experiments can be effectively performed

  14. The proposed INEL intense slow positron source, beam line, and positron microscope facility

    International Nuclear Information System (INIS)

    Makowitz, H.; Denison, A.B.; Brown, B.

    1993-01-01

    A program is currently underway at the Idaho National Engineering Laboratory (INEL) to design and construct an Intense Slow Positron Beam Facility with an associated Positron Microscope. Positron beams have been shown to be valuable research tools and have potential application in industrial processing and nondestructive evaluation (microelectronics, etc.). The limit of resolution or overall usefulness of the technique has been limited because of lack of sufficient intensity. The goal of the INEL positron beam is ≥ 10 12 slow e+/s over a 0.03 cm diameter which represents a 10 3 to 10 4 advancement in beam current over existing beam facilities. The INEL is an ideal site for such a facility because of the nuclear reactors capable of producing intense positron sources and the personnel and facilities capable of handling high levels of radioactivity. A design using 58 Co with moderators and remoderators in conjunction with electrostatic positron beam optics has been reached after numerous computer code studies. Proof-of-principle electron tests have demonstrated the feasibility of the large area source focusing optics. The positron microscope development is occurring in conjunction with the University of Michigan positron microscope group. Such a Beam Facility and associated Intense Slow Positron Source (ISPS) can also be utilized for the generation and study of positron, and positron electron plasmas at ≤ 10 14 particles/cm 3 with plasma temperatures ranging from an eV to many keV, as well as an intense x-ray source via positron channeling radiation. The possibility of a tunable x-ray laser based on channeling positron radiation also exists. In this discussion the authors will present a progress report on various activities associated with the INEL ISPS

  15. Homotopic non-local regularized reconstruction from sparse positron emission tomography measurements

    International Nuclear Information System (INIS)

    Wong, Alexander; Liu, Chenyi; Wang, Xiao Yu; Fieguth, Paul; Bie, Hongxia

    2015-01-01

    Positron emission tomography scanners collect measurements of a patient’s in vivo radiotracer distribution. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule, and the tomograms must be reconstructed from projections. The reconstruction of tomograms from the acquired PET data is an inverse problem that requires regularization. The use of tightly packed discrete detector rings, although improves signal-to-noise ratio, are often associated with high costs of positron emission tomography systems. Thus a sparse reconstruction, which would be capable of overcoming the noise effect while allowing for a reduced number of detectors, would have a great deal to offer. In this study, we introduce and investigate the potential of a homotopic non-local regularization reconstruction framework for effectively reconstructing positron emission tomograms from such sparse measurements. Results obtained using the proposed approach are compared with traditional filtered back-projection as well as expectation maximization reconstruction with total variation regularization. A new reconstruction method was developed for the purpose of improving the quality of positron emission tomography reconstruction from sparse measurements. We illustrate that promising reconstruction performance can be achieved for the proposed approach even at low sampling fractions, which allows for the use of significantly fewer detectors and have the potential to reduce scanner costs

  16. Improved positron emission tomography camera

    International Nuclear Information System (INIS)

    Mullani, N.A.

    1986-01-01

    A positron emission tomography camera having a plurality of rings of detectors positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom, and a plurality of scintillation crystals positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring may be offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. (author)

  17. Positron emission tomography and migraine

    International Nuclear Information System (INIS)

    Chabriat, H.

    1992-01-01

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT 2 serotonin receptors can be studied in migraine patients with PET

  18. Positron emission tomography basic sciences

    CERN Document Server

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  19. Optical and microstructural characterization of porous silicon using photoluminescence, SEM and positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Cheung, C K; Nahid, F; Cheng, C C; Beling, C D; Fung, S; Ling, C C; Djurisic, A B; Pramanik, C; Saha, H; Sarkar, C K

    2007-01-01

    We have studied the dependence of porous silicon morphology and porosity on fabrication conditions. N-type (100) silicon wafers with resistivity of 2-5 Ω cm were electrochemically etched at various current densities and anodization times. Surface morphology and the thickness of the samples were examined by scanning electron microscopy (SEM). Detailed information of the porous silicon layer morphology with variation of preparation conditions was obtained by positron annihilation spectroscopy (PAS): the depth-defect profile and open pore interconnectivity on the sample surface has been studied using a slow positron beam. Coincidence Doppler broadening spectroscopy (CDBS) was used to study the chemical environment of the samples. The presence of silicon micropores with diameter varying from 1.37 to 1.51 nm was determined by positron lifetime spectroscopy (PALS). Visible luminescence from the samples was observed, which is considered to be a combination effect of quantum confinement and the effect of Si = O double bond formation near the SiO 2 /Si interface according to the results from photoluminescence (PL) and positron annihilation spectroscopy measurements. The work shows that the study of the positronium formed when a positron is implanted into the porous surface provides valuable information on the pore distribution and open pore interconnectivity, which suggests that positron annihilation spectroscopy is a useful tool in the porous silicon micropores' characterization

  20. Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time

    Directory of Open Access Journals (Sweden)

    M. L. Kavvas

    2017-10-01

    Full Text Available Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally consistent equation is also developed. The governing equation of transient saturated groundwater flow in a multi-fractional, multidimensional confined aquifer in fractional time is then obtained by combining the fractional continuity and water flux equations. To illustrate the capability of the proposed governing equation of groundwater flow in a confined aquifer, a numerical application of the fractional governing equation to a confined aquifer groundwater flow problem was also performed.

  1. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world close-quote s highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy. copyright 1999 American Institute of Physics

  2. Experimental and computational studies of positron-stimulated ion desorption from TiO2(1 1 0) surface

    Science.gov (United States)

    Yamashita, T.; Hagiwara, S.; Tachibana, T.; Watanabe, K.; Nagashima, Y.

    2017-11-01

    Experimental and computational studies of the positron-stimulated O+ ion desorption process from a TiO2(1 1 0) surface are reported. The measured data indicate that the O+ ion yields depend on the positron incident energy in the energy range between 0.5 keV and 15 keV. This dependence is closely related to the fraction of positrons which diffuse back to the surface after thermalization in the bulk. Based on the experimental and computational results, we conclude that the ion desorption via positron-stimulation occurs dominantly by the annihilation of surface-trapped positrons with core electrons of the topmost surface atoms.

  3. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Lucignani, G.; Landoni, C.; Paganelli, G.; Vanoli, G.; Rossetti, C.; Gilardi, M.C.; Colombo, F.; Fazio, F.; Paolini, G.; Zuccari, M.; Di Credico, G.; Mariani, M.A.; Grossi, A.; Galli, L.

    1992-01-01

    We tested the possibility of identifying areas of hibernating myocardium by the combined assessment of perfusion and metabolism using SPET with 99m Tc-MIBI and PET with 18 F-FDG. Segmental wall motion, perfusion and 18 F-FDG uptake were scored in 5 segments in 14 patients with coronary artery disease (CAD), for a total number of 70 segments. Each subject underwent the following studies prior to and following coronary artery-bypass grafting (CABG): First-pass radionuclide angiography, electrocardiography gated planar perfusion scintigraphy and SPET perfusion scintigraphy with 99m Tc-MIBI and, after 16 fasting, 18 F-FDG PET metabolic scintigraphy. Wall motion impairment was either decreased or completely reversed by CABG in 95% of the asynergic segments which exhibited 18 F-FDG uptake, whereas it was unmodified in 80% of the asynergic segments with no 18 Fe-FDG uptake. A stepwise multiple logistic analysis was carried out on the asynergic segments to estimate the postoperative probability of wall motion improvement on the basis of the preoperative regional perfusion and metabolic scores. The segments with the highest probability of functional recovery from preoperative asynergy after revascularization were those with a marked 18 F-FDG uptake prior to CABG. High probabilities of functional recovery were also estimated for the segments presenting with moderate and low 18 F-FDG uptake. A low probability of functional recovery was estimated in the segments with no 18 F-FDG uptake. Despite the potential limitations due to the semiquantitative analysis of the images, the method appears to provide reliable information for the diagnostic and prognostic evaluation of patients with CAD undergoing CABG and confirms that the identification of hibernating myocardium with 18 F-FDG is of paramount importance in the diagnosis of patients undergoing CABG. (orig.)

  4. Exposure of Atlantic salmon parr (Salmo salar) to a combination of resin acids and a water soluble fraction of diesel fuel oil: A model to investigate the chemical causes of pigmented salmon syndrome

    International Nuclear Information System (INIS)

    Croce, B.; Scottish Environmental Protection Agency, Aberdeen; Stagg, R.M.

    1997-01-01

    Pigmented salmon syndrome is a pollutant-induced hemolytic anemia and hyperbilirubinemia. As part of an investigation of this condition, S2 Atlantic salmon parr (Salmo salar) were exposed to a diesel fuel oil, water soluble fraction (WSF) in combination with a mixture of three resin acids (isopimaric, dehydroabietic, and abietic acids) in a continuous-flow freshwater system. The total nominal concentrations of resin acids in the exposure tanks were 10, 50, and 100 microg/L; the diesel WSF was generated in situ and provided a mean hydrocarbon concentration of 2.0 ± 0.1 mg/L (n = 12) during the 9-d exposure period. Exposure to the diesel WSF alone depressed liver bilirubin UDP-glucuronosyl transferase (UDPGT) activity and induced phenol UDPGT activity. Exposure to the diesel WSF in the absence or presence of resin acids induced liver cytochrome P4501A and increased the concentrations in the plasma of the enzymes lactate dehydrogenase, alkaline phosphatase, and glutamic oxaloacetic transaminase. The combined exposure to diesel WSF with either 50 or 100 microg/L total resin acid caused significant elevations in the concentrations of bilirubin in the plasma and many of these fish had yellow pigmentation on the ventral surface and around the gill arches. The results demonstrate that exposure to combinations of two groups of contaminants can result in the manifestation of toxic effects not apparent from exposure to either of these chemicals in isolation

  5. Porous silicon investigated by positron annihilation

    International Nuclear Information System (INIS)

    Cruz, R.M. de la; Pareja, R.

    1989-01-01

    The effect of the anodic conversion in silicon single crystals is investigated by positron lifetime measurements. Anodization at constant current induces changes in the positron lifetime spectrum of monocrystalline silicon samples. It is found that theses changes are primarily dependent on the silicon resistivity. The annihilation parameter behaviour of anodized samples, treated at high temperature under reducing conditions, is also investigated. The results reveal that positron annihilation can be a useful technique to characterize porous silicon formed by anodizing as well as to investigate its thermal behaviour. (author)

  6. Positron emission tomography studies of brain receptors

    International Nuclear Information System (INIS)

    Maziere, B.; Maziere, M.

    1991-01-01

    Probing the regional distribution and affinity of receptors in the brain, in vivo, in human and non human primates has become possible with the use of selective ligands labelled with positron emitting radionuclides and positron emission tomography (PET). After describing the techniques used in positron emission tomography to characterize a ligand receptor binding and discussing the choice of the label and the limitations and complexities of the in vivo approach, the results obtained in the PET studies of various neurotransmission systems: dopaminergic, opiate, benzodiazepine, serotonin and cholinergic systems are reviewed

  7. High efficiency cyclotron trap assisted positron moderator

    OpenAIRE

    Gerchow, L.; Cooke, D. A.; Braccini, S.; Döbeli, M.; Kirch, K.; Köster, U.; Müller, A.; Van Der Meulen, N. P.; Vermeulen, C.; Rubbia, A.; Crivelli, P.

    2017-01-01

    We report the realisation of a cyclotron trap assisted positron tungsten moderator for the conversion of positrons with a broad keV- few MeV energy spectrum to a mono-energetic eV beam with an efficiency of 1.8(2)% defined as the ratio of the slow positrons divided by the $\\beta^+$ activity of the radioactive source. This is an improvement of almost two orders of magnitude compared to the state of the art of tungsten moderators. The simulation validated with this measurement suggests that usi...

  8. Characteristics of the positron annihilation process in the matter

    International Nuclear Information System (INIS)

    Dryzek, J.

    2000-01-01

    In this report the positrons annihilation spectroscopy, as a method for the matter study is described. The interaction of positrons of high as well as thermal energies are discussed and different models of mentioned interactions are presented. Special attention is paid for positrons interaction with crystal lattice and its defects. The influence of positron beams characteristics on measured values are also discussed

  9. Defect identification in semiconductors with positron annihilation: experiment and theory

    Science.gov (United States)

    Tuomisto, Filip

    2015-03-01

    Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.

  10. Novel treatment of Hori′s nevus: A combination of fractional nonablative 2,940-nm Er:YAG and low-fluence 1,064-nm Q-switched Nd:YAG laser

    Directory of Open Access Journals (Sweden)

    Brian Wei Cheng Anthony Tian

    2015-01-01

    Full Text Available Objective: To demonstrate a combination laser therapy to treat Hori′s nevus. Design: A prospective study. Setting: A Singapore-based clinic. Participants: Five female patients, aged 30-46 years, with bilateral malar Hori′s nevus. Measurements: Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. Materials and Methods: The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm 2, spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori′s nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS Nd:YAG at a fluence of 2.0 J/cm 2 , frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori′s nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. Results: All five patients had above 80% improvement in their pigmentation and two (skin type III achieved complete 100% clearance. Based on the patients′ subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. Conclusion: The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori′s nevus.

  11. Novel treatment of Hori's nevus: A combination of fractional nonablative 2,940-nm Er:YAG and low-fluence 1,064-nm Q-switched Nd:YAG laser.

    Science.gov (United States)

    Tian, Brian Wei Cheng Anthony

    2015-01-01

    To demonstrate a combination laser therapy to treat Hori's nevus. A prospective study. A Singapore-based clinic. Five female patients, aged 30-46 years, with bilateral malar Hori's nevus. Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm(2), spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori's nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS) Nd:YAG at a fluence of 2.0 J/cm(2), frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori's nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. All five patients had above 80% improvement in their pigmentation and two (skin type III) achieved complete 100% clearance. Based on the patients' subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori's nevus.

  12. On the average luminosity of electron positron collider and positron-producing energy

    International Nuclear Information System (INIS)

    Xie Jialin

    1985-01-01

    In this paper, the average luminosity of linac injected electron positron collider is investigated from the positron-producing energy point of view. When the energy of the linac injector is fixed to be less than the operating energy of the storage ring, it has been found that there exists a positron-producing energy to give optimum average luminosity. Two cases have been studied, one for an ideal storage ring with no single-beam instability and the other for practical storage ring with fast head-tail instability. The result indicates that there is a positron-producing energy corresponding to the minimum injection time, but this does not correspond to the optimum average luminosity for the practical storage rings. For Beijing Electron Positron Collider (BEPC), the positron-producing energy corresponding to the optimum average luminosity is about one tenth of the total injector energy

  13. Positron annihilation in a metal-oxide semiconductor studied by using a pulsed monoenergetic positron beam

    Science.gov (United States)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.

    1993-12-01

    The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.

  14. A transmission positron microscope and a scanning positron microscope being built at KEK, Japan

    International Nuclear Information System (INIS)

    Doyama, M.; Inoue, M.; Kogure, Y.; Kurihara, T.; Yagishita, A.; Shidara, T.; Nakahara, K.; Hayashi, Y.; Yoshiie, T.

    2001-01-01

    This paper reports the plans of positron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan improving used electron microscopes. The kinetic energies of positron produced by accelerators or by nuclear decays have not a unique value but show a spread over in a wide range. Positron beam will be guided near electron microscopes, a transmission electron microscope (JEM100S) and a scanning electron microscope (JSM25S). Positrons are slowed down by a tungsten foil, accelerated and focused on a nickel sheet. The monochromatic focused beam will be injected into an electron microscope. The focusing of positrons and electrons is achieved by magnetic system of the electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (orig.)

  15. Randomized Phase III Trial to Test Accelerated Versus Standard Fractionation in Combination With Concurrent Cisplatin for Head and Neck Carcinomas in the Radiation Therapy Oncology Group 0129 Trial: Long-Term Report of Efficacy and Toxicity

    Science.gov (United States)

    Nguyen-Tan, Phuc Felix; Zhang, Qiang; Ang, K. Kian; Weber, Randal S.; Rosenthal, David I.; Soulieres, Denis; Kim, Harold; Silverman, Craig; Raben, Adam; Galloway, Thomas J.; Fortin, André; Gore, Elizabeth; Westra, William H.; Chung, Christine H.; Jordan, Richard C.; Gillison, Maura L.; List, Marcie; Le, Quynh-Thu

    2014-01-01

    Purpose We tested the efficacy and toxicity of cisplatin plus accelerated fractionation with a concomitant boost (AFX-C) versus standard fractionation (SFX) in locally advanced head and neck carcinoma (LA-HNC). Patients and Methods Patients had stage III to IV carcinoma of the oral cavity, oropharynx, hypopharynx, or larynx. Radiation therapy schedules were 70 Gy in 35 fractions over 7 weeks (SFX) or 72 Gy in 42 fractions over 6 weeks (AFX-C). Cisplatin doses were 100 mg/m2 once every 3 weeks for two (AFX-C) or three (SFX) cycles. Toxicities were scored by using National Cancer Institute Common Toxicity Criteria 2.0 and the Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer criteria. Overall survival (OS) and progression-free survival (PFS) rates were estimated by using the Kaplan-Meier method and were compared by using the one-sided log-rank test. Locoregional failure (LRF) and distant metastasis (DM) rates were estimated by using the cumulative incidence method and Gray's test. Results In all, 721 of 743 patients were analyzable (361, SFX; 360, AFX-C). At a median follow-up of 7.9 years (range, 0.3 to 10.1 years) for 355 surviving patients, no differences were observed in OS (hazard ratio [HR], 0.96; 95% CI, 0.79 to 1.18; P = .37; 8-year survival, 48% v 48%), PFS (HR, 1.02; 95% CI, 0.84 to 1.24; P = .52; 8-year estimate, 42% v 41%), LRF (HR, 1.08; 95% CI, 0.84 to 1.38; P = .78; 8-year estimate, 37% v 39%), or DM (HR, 0.83; 95% CI, 0.56 to 1.24; P = .16; 8-year estimate, 15% v 13%). For oropharyngeal cancer, p16-positive patients had better OS than p16-negative patients (HR, 0.30; 95% CI, 0.21 to 0.42; P < .001; 8-year survival, 70.9% v 30.2%). There were no statistically significant differences in the grade 3 to 5 acute or late toxicities between the two arms and p-16 status. Conclusion When combined with cisplatin, AFX-C neither improved outcome nor increased late toxicity in patients with LA-HNC. Long-term high survival

  16. Time-dependent behavior of positrons in noble gases

    International Nuclear Information System (INIS)

    Wadehra, J.M.

    1990-01-01

    Both equilibrium and nonequilibrium behaviors of positrons in several noble gases are reviewed. Our novel procedure for obtaining the time-dependent behavior of various swarm parameters -- such as the positron drift velocity, average positron energy, positron annihilation rate (or equivalently Z eff ) etc. -- for positrons in pure ambient gases subjected to external electrostatic fields is described. Summaries of time-dependent as well as electric field-dependent results for positron swarms in various noble gases are presented. New time-dependent results for positron swarms in neon are also described in detail. 36 refs., 4 figs., 3 tabs

  17. Fractional vector calculus for fractional advection dispersion

    Science.gov (United States)

    Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.

    2006-07-01

    We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.

  18. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  19. Application of mathematical removal of positron range blurring in positron emission tomography

    International Nuclear Information System (INIS)

    Haber, S.F.; Derenzo, S.E.; Uber, D.

    1990-01-01

    The range of positrons in tissue is an important limitation to the ultimate spatial resolution achievable in positron emission tomography. In this work the authors have applied a Fourier deconvolution technique to remove range blurring in images taken by the Donner 600-crystal positron tomograph. Using phantom data, the authors have found significant improvement in the image quality and the FWHM for both 68 Ga and 82 Rb. These were successfully corrected so that the images and FWHM almost matched those of 18 F which has negligible positron range. However, statistical noise was increased by the deconvolution process and it was not practical to recover the full spatial resolution of the tomograph

  20. Positron and positronium annihilation in silica-based thin films studied by a pulsed positron beam

    International Nuclear Information System (INIS)

    Suzuki, R.; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Shioya, Y.; Ishimaru, T.

    2003-01-01

    Positron and positronium annihilation in silica-based thin films has been investigated by means of measurement techniques with a monoenergetic pulsed positron beam. The age-momentum correlation study revealed that positron annihilation in thermally grown SiO 2 is basically the same as that in bulk amorphous SiO 2 while o-Ps in the PECVD grown SiCOH film predominantly annihilate with electrons of C and H at the microvoid surfaces. We also discuss time-dependent three-gamma annihilation in porous low-k films by two-dimensional positron annihilation lifetime spectroscopy

  1. Positron flight in human tissues and its influence on PET image spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Crespo, Alejandro; Larsson, Stig A. [Section of Nuclear Medicine, Department of Hospital Physics, Karolinska Hospital, 176 76, Stockholm (Sweden); Medical Radiation Physics, Department of Oncology-Pathology, Stockholm University and Karolinska Institute, Stockholm (Sweden); Andreo, Pedro [Medical Radiation Physics, Department of Oncology-Pathology, Stockholm University and Karolinska Institute, Stockholm (Sweden)

    2004-01-01

    The influence of the positron distance of flight in various human tissues on the spatial resolution in positron emission tomography (PET) was assessed for positrons from carbon-11, nitrogen-13, oxygen-15, fluorine-18, gallium-68 and rubidium-82. The investigation was performed using the Monte Carlo code PENELOPE to simulate the transport of positrons within human compact bone, adipose, soft and lung tissue. The simulations yielded 3D distributions of annihilation origins that were projected on the image plane in order to assess their impact on PET spatial resolution. The distributions obtained were cusp-shaped with long tails rather than Gaussian shaped, thus making conventional full width at half maximum (FWHM) measures uncertain. The full width at 20% of the maximum amplitude (FW20M) of the annihilation distributions yielded more appropriate values for root mean square addition of spatial resolution loss components. Large differences in spatial resolution losses due to the positron flight in various human tissues were found for the selected radionuclides. The contribution to image blur was found to be up to three times larger in lung tissue than in soft tissue or fat and five times larger than in bone tissue. For {sup 18}F, the spatial resolution losses were 0.54 mm in soft tissue and 1.52 mm in lung tissue, compared with 4.10 and 10.5 mm, respectively, for {sup 82}Rb. With lung tissue as a possible exception, the image blur due to the positron flight in all human tissues has a minor impact as long as PET cameras with a spatial resolution of 5-7 mm are used in combination with {sup 18}F-labelled radiopharmaceuticals. However, when ultra-high spatial resolution PET cameras, with 3-4 mm spatial resolution, are applied, especially in combination with other radionuclides, the positron flight may enter as a limiting factor for the total PET spatial resolution - particularly in lung tissue. (orig.)

  2. Positron flight in human tissues and its influence on PET image spatial resolution

    International Nuclear Information System (INIS)

    Sanchez-Crespo, Alejandro; Larsson, Stig A.; Andreo, Pedro

    2004-01-01

    The influence of the positron distance of flight in various human tissues on the spatial resolution in positron emission tomography (PET) was assessed for positrons from carbon-11, nitrogen-13, oxygen-15, fluorine-18, gallium-68 and rubidium-82. The investigation was performed using the Monte Carlo code PENELOPE to simulate the transport of positrons within human compact bone, adipose, soft and lung tissue. The simulations yielded 3D distributions of annihilation origins that were projected on the image plane in order to assess their impact on PET spatial resolution. The distributions obtained were cusp-shaped with long tails rather than Gaussian shaped, thus making conventional full width at half maximum (FWHM) measures uncertain. The full width at 20% of the maximum amplitude (FW20M) of the annihilation distributions yielded more appropriate values for root mean square addition of spatial resolution loss components. Large differences in spatial resolution losses due to the positron flight in various human tissues were found for the selected radionuclides. The contribution to image blur was found to be up to three times larger in lung tissue than in soft tissue or fat and five times larger than in bone tissue. For 18 F, the spatial resolution losses were 0.54 mm in soft tissue and 1.52 mm in lung tissue, compared with 4.10 and 10.5 mm, respectively, for 82 Rb. With lung tissue as a possible exception, the image blur due to the positron flight in all human tissues has a minor impact as long as PET cameras with a spatial resolution of 5-7 mm are used in combination with 18 F-labelled radiopharmaceuticals. However, when ultra-high spatial resolution PET cameras, with 3-4 mm spatial resolution, are applied, especially in combination with other radionuclides, the positron flight may enter as a limiting factor for the total PET spatial resolution - particularly in lung tissue. (orig.)

  3. Generation of an intense pulsed positron beam and its applications

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki; Chiwaki, Mitsukuni; Yamazaki, Tetsuo; Kobayashi, Yoshinori.

    1994-01-01

    A positron pulsing system for an intense positron beam generated by an electron linac has been developed at the Electrotechnical Laboratory. The pulsing system generates an intense pulsed positron beam of variable energy and variable pulse period. The pulsed positron beam is used as a non destructive probe for various materials researches. In this paper, we report the present status of the pulsed positron beam and its applications. (author)

  4. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    Science.gov (United States)

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  5. Treatment of burn scars in Fitzpatrick phototype III patients with a combination of pulsed dye laser and non-ablative fractional resurfacing 1550 nm erbium:glass/1927 nm thulium laser devices.

    Science.gov (United States)

    Tao, Joy; Champlain, Amanda; Weddington, Charles; Moy, Lauren; Tung, Rebecca

    2018-01-01

    Burn scars cause cosmetic disfigurement and psychosocial distress. We present two Fitzpatrick phototype (FP) III patients with burn scars successfully treated with combination pulsed dye laser (PDL) and non-ablative fractional lasers (NAFL). A 30-year-old, FP III woman with a history of a second-degree burn injury to the bilateral arms and legs affecting 30% body surface area (BSA) presented for cosmetic treatment. The patient received three treatments with 595 nm PDL (7 mm, 8 J, 6 ms), six with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and five with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). Treated burn scars improved significantly in thickness, texture and colour. A 33-year-old, FP III man with a history of a second-degree burn injury of the left neck and arm affecting 7% BSA presented for cosmetic treatment. The patient received two treatments with 595 nm PDL (5 mm, 7.5 J, 6 ms), four with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and two with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). The burn scars became thinner, smoother and more normal in pigmentation and appearance. Our patients' burn scars were treated with a combination of PDL and NAFL (two wavelengths). The PDL targets scar hypervascularity, the 1550 nm erbium:glass stimulates collagen remodelling and the 1927 nm thulium targets epidermal processes, particularly hyperpigmentation. This combination addresses scar thickness, texture and colour with a low side effect profile and is particularly advantageous in patients at higher risk of post-procedure hyperpigmentation. Our cases suggest the combination of 595nm PDL plus NAFL 1550 nm erbium:glass/1927 nm thulium device is effective and well-tolerated for burn scar treatment in skin of colour.

  6. Characterization of lacunar defects by positrons annihilation

    CERN Document Server

    Barthe, M F; Blondiaux, G

    2003-01-01

    Among the nondestructive methods for the study of matter, the positrons annihilation method allows to sound the electronic structure of materials by measuring the annihilation characteristics. These characteristics depend on the electronic density as seen by the positon, and on the electron momentums distribution which annihilate with the positon. The positon is sensible to the coulombian potential variations inside a material and sounds preferentially the regions away from nuclei which represent potential wells. The lacunar-type defects (lack of nuclei) represent deep potential wells which can trap the positon up to temperatures close to the melting. This article describes the principles of this method and its application to the characterization of lacunar defects: 1 - positrons: matter probes (annihilation of electron-positon pairs, annihilation characteristics, positrons sources); 2 - positrons interactions in solids (implantation profiles, annihilation states, diffusion and trapping, positon lifetime spec...

  7. Stress evaluation at the ILC positron source

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, Andriy; Moortgat-Pick, Gudrid [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Luruper Chaussee 149, 22761 Hamburg (Germany); Riemann, Sabine; Dietrich, Felix [Deutsches Elektronen-Synchrotron (DESY), Standort Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Aulenbacher, Kurt; Tyukin, Valery; Heil, Philipp [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernphysik, Johann-Joachim-Becher-Weg 45, 55128 Mainz (Germany)

    2016-07-01

    High luminosity is required at future Linear Colliders which is particularly challenging for all corresponding positron sources. At the International Linear Collider (ILC), polarized positrons are obtained from electron-positron pairs by converting high-energy photons produced by passing the high-energy main electron beam through a helical undulator. The conversion target undergoes cyclic stress with high peak values. To distribute the thermal load, the target is designed as wheel spinning in vacuum with 100 m/s. However, the cyclic stress over long time at high target temperatures could exceed the fatigue stress limit. In the talk, an overview of the ILC positron source is given. The prospects to study material parameters under conditions as expected at the ILC are discussed.

  8. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Derenzo, Stephen

    2003-01-01

    The goal of this project is to construct a functioning compact positron tomography, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  9. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer

    2004-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  10. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer S

    2005-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  11. A Magnetic Transport Middle Eastern Positron Beam

    International Nuclear Information System (INIS)

    Al-Qaradawi, I.Y.; Britton, D.T.; Rajaraman, R.; Abdulmalik, D.

    2008-01-01

    A magnetically guided slow positron beam is being constructed at Qatar University and is currently being optimised for regular operation. This is the first positron beam in the Middle East, as well as being the first Arabic positron beam. Novel features in the design include a purely magnetic in-line deflector, working in the solenoid guiding field, to eliminate un-moderated positrons and block the direct line of sight to the source. The impact of this all-magnetic transport on the Larmor radius and resultant beam characteristics are studied by SIMION simulations for both ideal and real life magnetic field variations. These results are discussed in light of the coupled effect arising from electrostatic beam extraction

  12. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  13. New Possibilities of Positron-Emission Tomography

    Science.gov (United States)

    Volobuev, A. N.

    2018-01-01

    The reasons for the emergence of the angular distribution of photons generated as a result of annihilation of an electron and a positron in a positron-emission tomograph are investigated. It is shown that the angular distribution of the radiation intensity (i.e., the probability of photon emission at different angles) is a consequence of the Doppler effect in the center-of-mass reference system of the electron and the positron. In the reference frame attached to the electron, the angular distribution of the number of emitted photons does not exists but is replaced by the Doppler shift of the frequency of photons. The results obtained in this study make it possible to extend the potentialities of the positron-emission tomograph in the diagnostics of diseases and to obtain additional mechanical characteristics of human tissues, such as density and viscosity.

  14. Positron lifetime experiments in indium selenide

    International Nuclear Information System (INIS)

    Cruz, R.M. de la; Pareja, R.

    1988-01-01

    Positron lifetime experiments have been performed on as-grown samples which had been isochronally annealed up to 820 K and plastically deformed and these experiments yield a constant lifetime of 282 ± 2 ps which is attributed to bulk positron states in InSe. Electron-irradiated samples exhibit a two-component spectrum, revealing the presence of positron traps which anneal out at about 330 K. The nature of the native shallow donors in InSe is discussed in the light of the results, which support the idea that native donor centres are probably interstitial In atoms rather than Se vacancies. Positron trapping observed in the electron-irradiated samples is attributed to defects related to In vacancies. (author)

  15. Positron kinetics in an idealized PET environment

    Science.gov (United States)

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-08-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.

  16. Elastic scattering of slow positrons by helium

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Cherepkov, N.A.; Chernysheva, L.V.; Shapiro, S.G.

    1976-01-01

    The s-, p-, d- and f-wave phaseshifts for elastic scattering of slow positrons by He are calculated using a simplified version of the random phase approximation with exchange, with virtual positronium formation effect taken into account. (author)

  17. Radiopharmaceutical chemistry for positron emission tomography

    NARCIS (Netherlands)

    Elsinga, PH

    Radiopharmaceutical chemistry includes the selection, preparation, and preclinical evaluation of radiolabeled compounds. This paper describes selection criteria for candidates for positron emission tomography (PET) investigations. Practical aspects of nucleophilic and electrophilic

  18. Ionization and positron emission in giant quasiatoms

    International Nuclear Information System (INIS)

    Soff, G.; Reinhardt, J.; Reus, T. de; Wietschorke, K.H.; Schaefer, A.; Mueller, B.; Greiner, W.; Mueller, U.; Schlueter, P.

    1985-07-01

    Electron excitation processes in superheavy quasiatoms are treated within a relativistic framework. Theoretical results on K-hole production rates as well as delta-electron and positron spectra are compared with experimental data. It is demonstrated that the study of heavy ion collisions with nuclear time delay promises a signature for the spontaneous positron formation in overcritical systems. Corresponding experimental results are confronted with our theoretical hypothesis. Recent speculations on the origin of the observed peak structures in positron spectra are critically reviewed. Atomic excitations are also employed to obtain information on the course of a nuclear reaction. Using a semiclassical picture we calculate the emission of delta-electrons and positrons in deep-inelastic nuclear reactions. Furthermore some consequences of conversion processes in giant systems are investigated. (orig.)

  19. Measurement of the positron to electron ratio in the cosmic rays above 5 GeV

    International Nuclear Information System (INIS)

    Golden, R.L.; Stochaj, S.J.; Stephens, S.A.; Aversa, F.; Barbiellini, G.; Boezio, M.; Bravar, U.; Colavita, A.; Fratnik, F.

    1995-12-01

    As part of a series of experiments to search for antimatter in cosmic rays, the NMSU balloon-borne magnet spectrometer was configured for a flight to study positrons. Two completely new instruments, a transition radiation detector and a silicon-tungsten imaging calorimeter, were added to the magnet spectrometer. These two detectors provided a proton rejection factor better than (3) (10) 4 . This instrument was flown from Fort Sumner, NM at an average depth of 4.5 g/cm 2 of residual atmosphere for a period of 25 hours. The paper reports the measured fraction of positrons e + /e + +e - from about 5 to 60 GeV at the top of the atmosphere. The measurements do not show any compelling evidence for an increase in this ratio with energy and the results are consistent with a constant fraction of 0.78±0.016 over the entire region

  20. Meadow based Fraction Theory

    OpenAIRE

    Bergstra, Jan A.

    2015-01-01

    In the context of an involutive meadow a precise definition of fractions is formulated and on that basis formal definitions of various classes of fractions are given. The definitions follow the fractions as terms paradigm. That paradigm is compared with two competing paradigms for storytelling on fractions: fractions as values and fractions as pairs.

  1. Radiation damage analysis by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1979-01-01

    The application of positron annihilation spectroscopy (PAS) to the characterization and study of defects in metals produced by radiation damage is discussed. The physical basis for the positron annihilation techniques (lifetime, Doppler broadening, angular correlation) is introduced and the techniques briefly described. Some examples of the application of PAS to radiation damage analysis are presented with a view toward elucidating the particular advantages of PAS over more traditional defect characterization techniques

  2. Design studies for the Positron Factory

    International Nuclear Information System (INIS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Masuno, S.; Kawasuso, A.; Sakai, T.; Takizawa, H.; Yotsumoto, K.; Honda, Y.; Tagawa, S.

    1996-01-01

    In the design study for the Positron Factory, a feasibility of simultaneous extraction of multi-channel monoenergetic positron beams, which had been proposed at the previous conference (Linac 94), was demonstrated by an experiment using an electron linac. On the basis of the experimental result, an efficient moderator structure, which is composed of honeycomb-like assembled moderator foils and reflectors, is proposed. (author)

  3. Positron annihilation studies in lysozyme and catalase

    International Nuclear Information System (INIS)

    Rohilla, Y.; Singh, K.P.; Roy Choudhury, S.; Jain, P.C.

    1992-01-01

    Positron annihilation studies have been carried out in two enzymes, lysozyme and catalase. Temperature dependence of the positron lifetimes in these two enzymes has been investigated. The results explained in terms of the free volume model and fluctuations between different conformational micro states of enzyme structures provide a new insight into the mechanism of bio-activity of these enzymes. (author). 15 refs., 4 figs

  4. Radiation damage analysis by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1982-01-01

    Positron annihilation spectroscopy (PAS) has in recent years become a valuable new tool for investigating defects in metals. The ability of the positron to localize in a trapped state at various defect sites, in which the positron annihilates with unique characteristics, has enabled the positron to be used as a localized probe of these defect sites. Several reviews of the application of PAS to the study of defects in metals have been published, as have more general treatises on the applications of positron annihilation to the study of solids. PAS has made, and has considerably greater potential for, a significant contribution to radiation damage analysis in two areas of importance: (1) the determination of atomic-defect properties, a knowledge of which is necessary for the modeling required to couple the results of model experiments using electron and ion irradiation with the expected irradiation conditions of reactor systems, and (2) the monitoring and characterization of irradiation-induced microstructure development. A unique aspect of PAS for radiation damage analysis is the defect specificity of the annihilation characteristics of a trapped positron. In addition to its value as an independent analytical tool, PAS can be a useful complement to more traditional techniques for defect studies

  5. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1991-01-01

    The results of positron annihilation measurements as a function of temperature, across Tc, in a variety of high temperature superconductors such as Y-Ba-Cu-O (Y1237), Y-Ba-Cu-O (Y1248), Bi-Sr-Ca-Cu-O, Tl-Ba-Ca-Cu-O, Ba-K-Bi-O and Nd-Ce-Cu-O are presented. It is shown that the variation of annihilation parameters in the superconducting state is correlated with the diposition of the positron density distribution with respect to the superconducting CuO planes. An increase in positron lifetime is observed below Tc when the positrons probe the CuO planes whereas a decrease in lifetime is observed when the positron density overlaps predominantly with the apical oxygen atom. With this correlation, the different temperature variation of annihilation parameters, seen in the various high temperature superconductors, is understood in terms of a local charge transfer from the planar oxygen atom to the apical oxygen atom. The significance of these results in the context of various theoretical models of high temperature superconductivity is discussed. In addition, the application of positron annihilation spectroscopy to the study of oxygen defects in the Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O and Nd-Ce-Cu-O is presented. (author). 53 refs., 17 figs., 2 tabs

  6. Positron astronomy with SPI/INTEGRAL

    International Nuclear Information System (INIS)

    Weidenspointner, G.; Diehl, R.; Strong, A.; Weidenspointner, G.; Skinner, G.K.; Skinner, G.K.; Jean, P.; Knoedlseder, J.; Von Ballmoos, P.; Cordier, B.; Schanne, S.; Winkler, C.

    2008-01-01

    We provide an overview of positron astronomy results that have been obtained using the INTEGRAL spectrometer SPI, and discuss their implications for the still mysterious origin of positrons in our Galaxy. It has long been known that the 511 keV positron annihilation emission is strongest from the central region of our Galaxy. Recently, it has been discovered with the SPI spectrometer that the weaker 511 keV line emission from the inner Galactic disk appears to be asymmetric, with the emission to the west of the Galactic center being about twice as strong than that to the east. This distribution of positron annihilation resembles that of low mass X-ray binaries as observed with the INTEGRAL imager IBIS at hard X-ray energies, suggesting that these systems could provide a significant portion of the positrons in our Galaxy. In addition, the spectrometer SPI has permitted unprecedented spectroscopy of annihilation radiation from the bulge and disk regions of the Galaxy, which commences to yield important insights into the conditions of the medium in which the positrons annihilate. (authors)

  7. Undulator-based production of polarized positrons

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G. [Tel-Aviv Univ. (Israel); Barley, J. [Cornell Univ., Ithaca, NY (United States); Batygin, Y. [SLAC, Menlo Park, CA (US)] (and others)

    2009-05-15

    Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9 MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a one-meter-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6 GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5 MeV. In addition, the electron polarization has been determined at 6.7MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of GEANT4 that includes the dominant polarization-dependent interactions of electrons, positrons, and photons with matter. The measurements agree with calculations, corresponding to 80% polarization for positrons near 6 MeV and 90% for electrons near 7 MeV. (orig.)

  8. Results on positron diffusion in Si

    International Nuclear Information System (INIS)

    Nielsen, B.; Lynn, K.G.; Vehanen, A.; Schultz, P.J.

    1984-10-01

    Positron diffusion in Si(100) and Si(111) has been measured using a variable energy positron beam. The diffusion related parameter, E 0 is found to be 4.2 +- 0.2 keV, significantly longer than previously reported values. The positron diffusion coefficient is estimated at D/sub +/ = 2.3 +- 0.4 cm 2 /sec, the uncertainty arising mainly from the characteristics of the assumed positron implantation profile. A drastic reduction in E 0 is found after heating the sample to 1300 0 K, showing that previously reported low values of E 0 are associated with the thermal history of the sample. A high sensitivity to defects introduced by low energy ion bombardment is found, and the defect recovery was followed during heat treatments. Reconstruction of the Si(111) surface into the so-called 7 x 7 structure had no detectable influence on the positron diffusion behavior. No changes in the positron diffusion was observed after covering the surface with atomic hydrogen. However the yield of positronium formation at the surface was enhanced, attributed to an increased density of states at the surface

  9. Production and applications of positron microbeams

    International Nuclear Information System (INIS)

    Brandes, G.R.; Canter, K.F.; Horsky, T.N.; Lippel, P.H.; Mills, A.P. Jr.

    1989-01-01

    The production of a positron microbeam using the high-brightness beam developed at Brandeis University and possible applications of this microbeam to spatially resolved defect studies and positron microscopy are reviewed. The high-brightness beam consists of a W(110) primary moderator and two remoderation stages which provide a 500-fold increase in brightness. With this brightness increase and microbeam optics, we are able to form a 12 μm FWHM beam (48 mrad pencil half-angle) at 5 keV beam energy. The well characterised small-diameter beam is particularly adaptable for determining defect concentration and structure, both laterally and in a depth-profiling mode. In the case of a transmission positron microscope or a positron re-emission microscope operating in a high-magnification mode, efficient image formation requires the use of a microbeam to maximise the number of positrons in the area being imaged. Results of the scanning microbeam tests and the application of a microbeam to positron microscopy and defect studies are reviewed. (author)

  10. On Generalized Fractional Differentiator Signals

    Directory of Open Access Journals (Sweden)

    Hamid A. Jalab

    2013-01-01

    Full Text Available By employing the generalized fractional differential operator, we introduce a system of fractional order derivative for a uniformly sampled polynomial signal. The calculation of the bring in signal depends on the additive combination of the weighted bring-in of N cascaded digital differentiators. The weights are imposed in a closed formula containing the Stirling numbers of the first kind. The approach taken in this work is to consider that signal function in terms of Newton series. The convergence of the system to a fractional time differentiator is discussed.

  11. Positron annihilation in PI189 and PI304 polyimides

    Energy Technology Data Exchange (ETDEWEB)

    Shantarovich, V.P. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul Kosygina 4 st., 119334 Moscow (Russian Federation)]. E-mail: shant@center.chph.ras.ru; Suzuki, T. [High Energy Accelerator Research Organization KEK, Tsukuba 305-0801 (Japan); He, C. [High Energy Accelerator Research Organization KEK, Tsukuba 305-0801 (Japan); Ito, Y. [Reasearch Center for Nuclear Science and Technology, The University of Tokyo, Tokai, Ibaraki 319-1106 (Japan); Yampolskii, Y.P. [A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskii Pr., 117912 Moscow (Russian Federation); Alentiev, A.Yu. [A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskii Pr., 117912 Moscow (Russian Federation)

    2005-05-01

    Temperature dependence of the lifetime {tau}3 and intensity I{sub 3} of the long-lived ortho-positronium (o-Ps) component was measured for two polyimides PI189 and PI304 both below and above glass-transition temperatures Tg of these polymers. First heating runs of the experiments revealed anomalous, irregular behavior of the lifetime {tau}3 in both PI in the vicinity (below) of the glass transition temperature. The effect was similar to that discussed recently for a number of PI. However, on the cooling stage of the first cycle and on the heating run of the second cycle, such irregularities disappeared. These results show that anomalous behavior of annihilation characteristics of o-Ps in our PI samples were due not to anomalous behavior of PI structure itself close to Tg point (not to a specific phase transition), but to removal of residual solvent in vicinity of Tg during the first heating cycle. Different approaches to estimations of the specific hole volume and of the holes number density N on the basis of positron annihilation data are discussed. Final estimation for PI189 gives the fractional free volume h=3.35% and N=0.44x1027m-3. The effects of positron trapping by polar-CO groups on annihilation characteristics of PI and on the obtained value of N are also considered.

  12. Positron emission tomography in neuropsychology.

    Science.gov (United States)

    Heiss, W D; Herholz, K; Pawlik, G; Wagner, R; Wienhard, K

    1986-01-01

    By positron emission tomography (PET) of 18F-2-fluoro-2-deoxy-D-glucose (FDG) local cerebral metabolic rate for glucose (LCMRGl) can be measured in man. Normal values in cerebral cortex and basal ganglia range from 35 to 50 mumol/100 g/min, the values in gray matter structures of the posterior fossa were 25-30 mumol/100 g/min, the lowest LCMRGl was found in the white matter (15-20 mumol/100 g/min). During sensory stimulation by various modalities functional activation increases LCMRGl in the respective special areas, while sleep decreases metabolic rate in all cortical and basal gray matter structures. In many neurological disorders CMRGl is altered in a disease-specific pattern. In dementia of the Alzheimer type CMRGl is impaired even in early stages with accentuation in the parieto-temporal cortex, while in multi-infarct dementia glucose uptake is mainly reduced in the multifocal small infarcts. In Huntington's chorea the most conspicuous changes are found in the caudate nucleus and putamen. In cases of focal lesions (e.g. ischemic infarcts) metabolic disturbances extend far beyond the site of the primary lesion and inactivation of metabolism is found in intact brain structures far away from the anatomical lesion. Additional applications of PET include determination of the metabolism of various substrates, of protein synthesis, of function and distribution of receptors, of tumor growth and of the distribution of drugs as well as the measurement of oxygen consumption, blood flow and blood volume.

  13. Positron emission tomography in epilepsy

    International Nuclear Information System (INIS)

    Hosokawa, Shinichi; Kato, Motohiro; Otsuka, Makoto; Kuwabara, Yasuo; Ichiya, Yuichi; Goto, Ikuo

    1989-01-01

    Positron emission tomography (PET) was performed with the 18 F-fluoro-deoxy-glucose method on 29 patients with epilepsy (generalized epilepsy, 4; partial epilepsy, 24; undetermined type, 1). The subjects were restricted to patients with epilepsy without focal abnormality on X-CT. All the patients with generalized epilepsy showed a normal pattern on PET. Fourteen out of the 24 patients with partial epilepsy and the 1 with epilepsy of undermined type showed focal hypometabolism on PET. The hypometabolic zone was localized in areas including the temporal cortex in 11 patients, frontal in 2 and thalamus in 1. The location of hypometabolic zone and that of interictal paroxysmal activity on EEG were well correlated in most patients. The patients with poorly-controlled seizure showed a higher incidence of PET abnormality (12 out of 13) than those with well-controlled seizures (2 out of 11). The incidence of abnormality on PET and MRI and the location of both abnormality were not necessarily coincident. These results indicated that the PET examination in epilepsy provides valuable information about the location of epileptic focus, and that the findings on PET in patients with partial epilepsy may be one of the good indicators about the intractability of partial epilepsy, and that PET and MRI provide complementary information in the diagnosis of epilepsy. (author)

  14. Positron emission tomography in oncology

    International Nuclear Information System (INIS)

    Lecomte, R.; Bentourkia, M.; Benard, F.

    2002-01-01

    Positron Emission Tomography is a sophisticated molecular imaging technique, using a special scanner, that displays the functional status of tissues in the body at the cellular level (their metabolism). It is a diagnostic scan that provides the physician with information not available with traditional anatomic studies such as CT or MRI. PET can detect changes in cell function (disease) long before they are evident as physical (anatomic) changes seen on CT or MRI. In this way PET can add important information about many diseases allowing the physician to make a diagnosis often much earlier than with anatomic imaging techniques such as CT or MRI alone. In addition, in cases where an abnormality is noted on CT or MRI, PET can help differentiate benign changes from changes due to disease. PET scanning also typically images the entire body, unlike CT/MRI which is usually broken up into specific limited body section scans. All cells use glucose as an energy source but cancer cells use much more since they are growing much faster and out of control. This is the basis of imaging with F-18 FDG glucose, the radiotracer agent use in a PET oncology study. The abnormal, accelerated glucose used by cancer cells is detected by the PET scanner that processes the emissions from the F-18 FDG glucose by abnormally high levels of metabolism (tumor)

  15. Positron in nuclear medicine imaging

    International Nuclear Information System (INIS)

    Basu, S.

    2012-01-01

    The last two decades have witnessed a rapid expansion of clinical indications of positron emission tomography (PET) based imaging in assessing a wide range of disorders influencing their clinical management. This is primarily based upon a large dataset of evidence that has been generated over the years. The impact has been most remarkable in the field of cancer, where it takes a pivotal role in the decision making (at initial diagnosis, early response assessment and following completion of therapeutic intervention) of a number of important malignancies. The concept of PET based personalized cancer medicine is an evolving and attractive proposition that has gained significant momentum in recent years. The non-oncological applications of PET and PET/CT are in (A) Cardiovascular Diseases (e.g. Myocardial Viability, Flow reserve with PET Perfusion Imaging and atherosclerosis imaging); (B) Neuropsychiatric disorders (e.g. Dementia, Epileptic Focus detection, Parkinson's Disease, Hyperkinetic Movement Disorders and Psychiatric diseases); (C) Infection and Inflammatory Disorders (e.g. Pyrexia of Unknown origin, complicated Diabetic Foot, Periprosthetic Infection, Tuberculosis, Sarcoidosis, Vasculitic disorders etc). Apart from these, there are certain novel clinical applications where it is undergoing critical evaluation in various large and small scale studies across several centres across the world. The modality represents a classical example of a successful translational research of recent times with a revolutionary and far-reaching impact in the field of medicine. (author)

  16. Angular correlation in positron annihilation

    International Nuclear Information System (INIS)

    Arponen, J.; Pajanne, E.

    1978-01-01

    The angular correlation of the two gamma quanta emitted when a thermalized positron annihilates with metallic conduction electrons is investigated by applying the newly developed theory of electron gas as a system of interacting collective excitations. The method leads in a natural way to the appearance of high-momentum components (i.e. pair momentum p>psub(F) in the annihilation radiation already in the case of annihilation with conduction electrons only. The amount of these components is significant approximately (10 %) in a dilute electron gas (like alkali metals), but fairly irrelevant for higher densities. The momentum-dependence of the enhancement factor for a dense system (with rsub(s) approximately equal to 2) agrees well both with the earlier theories due to Kahana and others, and also with recent accurate experimental observations. As rsub(s) increases into the alkali-metal region, the enhancement factor for p< psub(F) becomes relatively more and more constant, in contrast with the trend in the Kahana theory. In this density regime the experimental results seem to vary widely, although most of them desagree with the present prediction. We discuss the possible discrepancy and try to account for the effects of the core annihilation by a simple model. (author)

  17. Search for excited charged leptons in electron positron collisions

    CERN Document Server

    Vachon, Brigitte Marie Christine; Sobie, Randall

    2002-01-01

    A search for evidence that fundamental particles are made of smaller subconstituents is performed. The existence of excited states of fundamental particles would be an unambiguous indication of their composite nature. Experimental signatures compatible with the production of excited states of charged leptons in electron-positron collisions are studied. The data analysed were collected by the OPAL detector at the LEP collider. No evidence for the existence of excited states of charged leptons was found. Upper limits on the product of the cross-section and the electromagnetic branching fraction are inferred. Using results from the search for singly produced excited leptons, upper limits on the ratio of the excited lepton coupling constant to the compositeness scale are calculated. From pair production searches, 95% confidence level lower limits on the masses of excited electrons, muons and taus are determined to be 103.2 GeV.

  18. Jet mass dependence of fragmentation in positron-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Urmossy, K. [Shandong University, School of Physics and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Jinan, Shandong (China)

    2017-02-15

    We propose the characterization of fragmentation functions by the energy fraction x a hadron takes away from the energy of the jet measured in the frame co-moving with the jet. Besides, we propose the usage of the jet mass as the fragmentation scale Q. We show that these two Lorentz-invariant variables emerge naturally in a microcanonical ensemble with conserved four-momentum. Then, we construct a statistical hadronisation model, in which, two features of the hadronic final states in various high-energy reactions (power law spectra and negative-binomial multiplicity distributions) can be connected simply. Finally, we analyse the scale dependence of the parameters of the model (power of the spectrum and mean energy per hadron) in the φ{sup 3} theory. Fitting fragmentation functions in diffractive positron-proton collisions, we obtain a prediction for the jet mass dependence of the hadron multiplicity distribution inside jets. (orig.)

  19. Slow positron applications at slow positron facility of institute of materials structure science, KEK

    Science.gov (United States)

    Hyodo, Toshio; Mochizuki, Izumi; Wada, Ken; Toge, Nobukazu; Shidara, Tetsuo

    2018-05-01

    Slow Positron Facility at High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy-tunable (0.1 - 35 keV) slow positron beam created by a dedicated ˜ 50 MeV linac. It operates in a short pulse (width 1-12 ns, variable, 5×106 e+/s) and a long pulse (width 1.2 µs, 5×107 e+/s) modes of 50 Hz. High energy positrons from pair creation are moderated by reemission after thermalization in W foils. The reemitted positrons are then electrostatically accelerated to a desired energy up to 35 keV and magnetically transported. A pulse-stretching section (pulse stretcher) is installed in the middle of the beamline. It stretches the slow positron pulse for the experiments where too many positrons annihilating in the sample at the same time has to be avoided. Four experiment stations for TRHEPD (total-reflection high-energy positron diffraction), LEPD (low-energy positron diffraction), Ps- (positronium negative ion), and Ps-TOF (positronium time-of-flight) experiments are connected to the beamline branches, SPF-A3, SPF-A4, SPF-B1 and SPF-B2, respectively. Recent results of these stations are briefly described.

  20. Solvated Positron Chemistry. Competitive Positron Reactions with Halide Ions in Water

    DEFF Research Database (Denmark)

    Christensen, Palle; Pedersen, Niels Jørgen; Andersen, J. R.

    1979-01-01

    It is shown by means of the angular correlation technique that the binding of positrons to halides is strongly influenced by solvation effects. For aqueous solutions we find increasing values for the binding energies between the halide and the positron with increasing mass of the halide...

  1. Theoretical calculations of positron lifetimes for metal oxides

    International Nuclear Information System (INIS)

    Mizuno, Masataka; Araki, Hideki; Shirai, Yasuharu

    2004-01-01

    Our recent positron lifetime measurements for metal oxides suggest that positron lifetimes of bulk state in metal oxides are shorter than previously reported values. We have performed theoretical calculations of positron lifetimes for bulk and vacancy states in MgO and ZnO using first-principles electronic structure calculations and discuss the validity of positron lifetime calculations for insulators. By comparing the calculated positron lifetimes to the experimental values, it wa found that the semiconductor model well reproduces the experimental positron lifetime. The longer positron lifetime previously reported can be considered to arise from not only the bulk but also from the vacancy induced by impurities. In the case of cation vacancy, the calculated positron lifetime based on semiconductor model is shorter than the experimental value, which suggests that the inward relaxation occurs around the cation vacancy trapping the positron. (author)

  2. Fractional Vector Calculus and Fractional Special Function

    OpenAIRE

    Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao

    2010-01-01

    Fractional vector calculus is discussed in the spherical coordinate framework. A variation of the Legendre equation and fractional Bessel equation are solved by series expansion and numerically. Finally, we generalize the hypergeometric functions.

  3. PALSfit: A new program for the evaluation of positron lifetime spectra

    DEFF Research Database (Denmark)

    Olsen, Jens V.; Kirkegaard, Peter; Pedersen, Niels Jørgen

    2007-01-01

    PALSfit is a new Windows program for the analysis of positron lifetime spectra. PALSfit combines into one interactive Windows program the features of our previous PATFIT program package, such as data input, least-squares fitting routines as well as graphical displays. A number of options are avai...

  4. Early positron emission tomography response-adapted treatment in stage I and II hodgkin lymphoma

    DEFF Research Database (Denmark)

    André, Marc P.E.; Girinsky, Théodore; Federico, Massimo

    2017-01-01

    Purpose Patients who receive combined modality treatment for stage I and II Hodgkin lymphoma (HL) have an excellent outcome. Early response evaluation with positron emission tomography (PET) scan may improve selection of patients who need reduced or more intensive treatments. Methods We performed...

  5. A Positron Annihilation Study of Copper Containing a High Concentration of Krypton

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Evans, John H.

    1982-01-01

    Bulk Cu samples containing up to 4 at.% Kr have been produced by the Harwell combined ion implantation and sputtering method at temperatures near ambient, and then examined by the positron annihilation technique. Both angular correlation and lifetime measurements were made and, in addition, the s...

  6. Positron annihilation induced Auger electron spectroscopy and its implementation at accelerator based low energy positron factories

    International Nuclear Information System (INIS)

    Weiss, A.; Koeymen, A.R.; Mehl, D.; Lee, K.H.; Yang Gimo; Jensen, K.

    1991-01-01

    Positron annihilation induced auger electron spectroscopy (PAES) makes use of a beam of low energy positrons to excite Auger transitions by annihilating core electrons. The large secondary electron background usually present in Auger spectra can be eliminated by setting the positron beam energy well below the Auger electron energy. This allows true Auger lineshapes to be obtained. Further, because the positron is localized just outside the surface before it annihilates, PAES is extremely sensitive to the topmost atomic layer. Recent PAES results obtained at the University of Texas at Arlington will be presented. In addition, the use of high resolution energy analyzers with multichannel particle detection schemes to prevent problems due to the high data rates associated with accelerator based positron beams will be discussed. (orig.)

  7. Positron sources for electron-positron colliders application to the ILC and CLIC

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The increased demanding qualities for positron sources dedicated to e+e- colliders pushed on investigations oriented on new kinds of e+ sources. The different kinds of positron sources polarized and no polarized are considered. Their main features (intensity, emittance) are described and analysed. Comparison between the different sources is worked out. The characteristics of the positron beam available in the collision point are greatly depending on the capture device and on the positron accelerator. Different kinds of capture systems are considered and their qualities, compared. Intense positron sources which are necessary for the colliders require intense incident beams (electrons or photons). The large number of pairs created in the targets leads to important energy deposition and so, thermal heating, which associated to temperature gradients provoke mechanical stresses often destructive. Moreover, the important Coulomb collisions, can affect the atomic structure in crystal targets and the radiation resist...

  8. Positron research in neuropsychiatric disorders

    International Nuclear Information System (INIS)

    Namura, Ikuro; Inoue, Osamu; Yamasaki, Toshiro.

    1984-01-01

    The principal findings revealed by our 18 F-fluoro-2-deoxyglucose ( 18 FDG) and 15 O-oxygen study were reviewed in the former part of this paper. (1) The effect of surgical severing of fiber connections on the terminal gray matter was clearly demonstrated in the following examples. A patient with the injured left optic radiation showed a markedly decreased 18 FDG uptake in the ipsilateral primary visual cortex. The extent of the decrease was larger in the secondary visual cortex (--60%). The patient with bilateral frontal leukotomy (lobotomy) showed about 30% decrease of oxygen accumulation not only in the frontal cortex but in the anterior half of the temporal cortex. (2) The effect of electrical stimulation of the left median nerve can be detected as an increased 18 FDG accumulation in the corresponding sensory and motor areas in the right precentral and postcentral cortices. The slight to moderate increase in the right striatal region was though to be related to the muscle movement caused by the stimulation. (3) The neuro-degenerative disorders such as Huntington's chorea and Parkinsonism could be diagnosed by demonstrating the decrease of 18 FDG in the degenerating focus or the increase in the secondarily affected area. An example was provided by a case of Huntington's chorea patient who showed a markedly decreased 18 FDG uptake in the striatal region in spite that 13 N-ammonia visualized this area. (4) Dementia gives another field where the 18 FDG and 15 O 2 studies are demonstrated to be quite useful. (5) The 18 FDG studies on the intrinsic psychoses are also reviewed. But consistent results seemed to be very difficult in this area by using labeled sugars and oxygens which are nonspecific gray matter imagers. Therefore, new tracers and new techniques in positron emission tomography are briefly described in the latter part of this paper. (author)

  9. Slow positron beam study of hydrogen ion implanted ZnO thin films

    Science.gov (United States)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  10. Depth-dependent positron annihilation in different polymers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Zhang, P.; Cheng, G.D.; Li, D.X.; Wu, H.B.; Li, Z.X.; Cao, X.Z. [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China); Jia, Q.J. [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China); Yu, R.S. [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China); Wang, B.Y., E-mail: wangboy@ihep.ac.cn [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China)

    2013-09-01

    Depth-dependent positron annihilation Doppler broadening measurements were conducted for polymers with different chemical compositions. Variations of the S parameter with respect to incident positron energy were observed. For pure hydrocarbons PP, HDPE and oxygen-containing polymer PC, S parameter rises with increasing positron implantation depth. While for PI and fluoropolymers like PTFE, ETFE and PVF, S parameter decreases with higher positron energy. For chlorine-containing polymer PVDC, S parameter remains nearly constant at all incident positron energies. It is suggested that these three variation trends are resulted from a competitive effect between the depth-dependent positronium formation and the influence of highly electronegative atoms on positron annihilation characteristics.

  11. Mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration.

    Science.gov (United States)

    Converse, Alexander K; Ahlers, Elizabeth O; Bryan, Tom W; Hetue, Jackson D; Lake, Katherine A; Ellison, Paul A; Engle, Jonathan W; Barnhart, Todd E; Nickles, Robert J; Williams, Paul H; DeJesus, Onofre T

    2015-01-01

    Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [(18)F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modeling of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. After initiation of administration at the bisected leaf stalk, [(18)F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.

  12. Low-temperature positron lifetime and Doppler-broadening measurements for single-crystal nickel oxide containing cation vacancies

    International Nuclear Information System (INIS)

    Waber, J.T.; Snead, C.L. Jr.; Lynn, K.G.

    1985-01-01

    Lifetime and Doppler-broadening measurements for positron annihilation in substoichiometric nickelous oxide have been made concomitantly from liquid-helium to room temperature. The concentration of cation vacancies is readily controlled by altering the ambient oxygen pressure while annealing the crystals at 1673 0 K. It was found that neither of the three lifetimes observed or their relative intensities varied significantly with the oxygen pressure, and the bulk rate only increased slightly when the specimen was cooled from room to liquid-helium temperatures. These results are interpreted as indicating that some of the positrons are trapped by the existing cation vacancies and a smaller fraction by vacancy clusters

  13. Positron annihilation study of formation of Mg vacancy in MgO

    International Nuclear Information System (INIS)

    Mizuno, M.; Araki, H.; Shirai, Y.; Inoue, Y.; Sugita, K.; Mizoguchi, T.; Tanaka, I.; Adachi, H.

    2004-01-01

    We have investigated the formation of Mg vacancy induced by ultra-dilute trivalent impurities in MgO by a combination of positron annihilation measurement and theoretical calculations of positron lifetimes. The undoped MgO yields the shortest positron lifetime of 130 ps that is shorter than that of 166 ps previously reported using a single crystal sample. The positron lifetime of the doped samples increases with the increase of the Al or Ga dopant concentration and is saturated at around 170 ps. This result indicates that the previously reported value of 166 ps is ascribed to not the bulk but the vacancy state induced by impurities. The experimental bulk lifetime of 130 ps, which is obtained by employing trapping model, is well reproduced by the theoretical calculation using the semiconductor model. The calculated defect lifetime is about 20 ps longer than the experimental value. This may be due to the lattice relaxation around Mg vacancy associated with the trapping of positrons. (orig.)

  14. Positron annihilation study of formation of Mg vacancy in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, M.; Araki, H.; Shirai, Y. [Science and Technology Center for Atoms, Molecules and Ions Control, Osaka Univ., Osaka (Japan); Inoue, Y.; Sugita, K. [Dept. of Materials Science and Engineering, Osaka Univ., Osaka (Japan); Mizoguchi, T.; Tanaka, I.; Adachi, H. [Dept. of Materials Science and Engineering, Kyoto Univ., Kyoto (Japan)

    2004-07-01

    We have investigated the formation of Mg vacancy induced by ultra-dilute trivalent impurities in MgO by a combination of positron annihilation measurement and theoretical calculations of positron lifetimes. The undoped MgO yields the shortest positron lifetime of 130 ps that is shorter than that of 166 ps previously reported using a single crystal sample. The positron lifetime of the doped samples increases with the increase of the Al or Ga dopant concentration and is saturated at around 170 ps. This result indicates that the previously reported value of 166 ps is ascribed to not the bulk but the vacancy state induced by impurities. The experimental bulk lifetime of 130 ps, which is obtained by employing trapping model, is well reproduced by the theoretical calculation using the semiconductor model. The calculated defect lifetime is about 20 ps longer than the experimental value. This may be due to the lattice relaxation around Mg vacancy associated with the trapping of positrons. (orig.)

  15. Positron annihilation studies of zirconia doped with metal cations of different valence

    Science.gov (United States)

    Prochazka, I.; Cizek, J.; Melikhova, O.; Konstantinova, T. E.; Danilenko, I. A.; Yashchishyn, I. A.; Anwand, W.; Brauer, G.

    2013-06-01

    New results obtained by applying positron annihilation spectroscopy to the investigation of zirconia-based nanomaterials doped with metal cations of different valence are reported. The slow-positron implantation spectroscopy combined with Doppler broadening measurements was employed to study the sintering of pressure-compacted nanopowders of tetragonal yttria-stabilised zirconia (t-YSZ) and t-YSZ with chromia additive. Positronium (Ps) formation in t-YSZ was proven by detecting 3γ-annihilations of ortho-Ps and was found to gradually decrease with increasing sintering temperature. A subsurface layer with enhanced 3γ-annihilations, compared to the deeper regions, could be identified. Addition of chromia was found to inhibit Ps formation. In addition, first results of positron lifetime measurements on nanopowders of zirconia phase-stabilised with MgO and CeO2 are presented.

  16. Slow positron beam study of hydrogen ion implanted ZnO thin films

    International Nuclear Information System (INIS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-01-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×10 15 and 1×10 16 ions cm −2 . Zn vacancy and OH bonding (V Zn +OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process. - Highlights: • Hydrogen introduced by ion implantation can form hydrogen-related defect complex. • V Zn +OH defect complex is identified by positron annihilation and IR spectroscopy. • Irradiation defects suppress the luminescence process

  17. Positron astrophysics and areas of relation to low-energy positron physics

    Science.gov (United States)

    Guessoum, Nidhal

    2014-05-01

    I briefly review our general knowledge of positron astrophysics, focusing mostly on the theoretical and modelling aspects. The experimental/observational aspects of the topic have recently been reviewed elsewhere [E. Churazov et al., Mon. Nat. R. Astron. Soc. 411, 1727 (2011); N. Prantazos et al., Rev. Mod. Phys. 83, 1001 (2011)]. In particular, I highlight the interactions and cross sections of the reactions that the positrons undergo in various cosmic media. Indeed, these must be of high interest to both the positron astrophysics community and the low-energy positron physics community in trying to find common areas of potential collaboration for the future or areas of research that will help the astrophysics community make further progress on the problem. The processes undergone by positrons from the moments of their birth to their annihilation (in the interstellar medium or other locations) are thus examined. The physics of the positron interactions with gases and solids (dust grains) and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation take place, are briefly reviewed. An explanation is given about how all the relevant physical information is taken into account in order to calculate annihilation rates and spectra of the 511 keV emission in the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. In particular, an attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of low-energy positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place

  18. Fermented non-digestible fraction from combined nixtamalized corn (Zea mays L.)/cooked common bean (Phaseolus vulgaris L.) chips modulate anti-inflammatory markers on RAW 264.7 macrophages.

    Science.gov (United States)

    Luzardo-Ocampo, I; Campos-Vega, R; Cuellar-Nuñez, M L; Vázquez-Landaverde, P A; Mojica, L; Acosta-Gallegos, J A; Loarca-Piña, G

    2018-09-01

    Chronic non-communicable diseases (NCDs) are low-level inflammation processes affected by several factors including diet. It has been reported that mixed whole grain and legume consumption, e.g. corn and common bean, might be a beneficial combination due to its content of bioactive compounds. A considerable amount would be retained in the non-digestible fraction (NDF), reaching the colon, where microbiota produce short-chain fatty acids (SCFAs) and phenolic compounds (PC) with known anti-inflammatory effect. The aim of this study was to estimate the anti-inflammatory potential of fermented-NDF of corn-bean chips (FNDFC) in RAW 264.7 macrophages. After 24 h, FNDFC produced SCFAs (0.156-0.222 mmol/l), inhibited nitric oxide production > 80% and H 2 O 2  > 30%, up-regulated anti-inflammatory cytokines (I-TAC, TIMP-1) > 2-fold, and produced angiostatic and protective factors against vascular/tissue damage, and amelioration of tumor necrosis factor signalling and inflammatory bowel disease. These results confirm the anti-inflammatory potential derived from healthy corn-bean chips. Copyright © 2018. Published by Elsevier Ltd.

  19. Simulating Terrestrial Gamma Ray Flashes due to cosmic ray shower electrons and positrons

    Science.gov (United States)

    Connell, Paul

    2017-04-01

    The University of Valencia has developed a software simulator LEPTRACK to simulate the relativistic runaway electron avalanches, RREA, that are presumed to be the cause of Terrestrial Gamma Ray Flashes and their powerful accompanying Ionization/Excitation Flashes. We show here results of LEPTRACK simulations of RREA by the interaction of MeV energy electrons/positrons and photons in cosmic ray showers traversing plausible electric field geometries expected in storm clouds. The input beams of MeV shower products were created using the CORSIKA software package from the Karlsruhe Institute of Technology. We present images, videos and plots showing the different Ionization, Excitation and gamma-ray photon density fields produced, along with their time and spatial profile evolution, which depend critically on where the line of shower particles intercept the electric field geometry. We also show a new effect of incoming positrons in the shower, which make up a significant fraction of shower products, in particular their apparent "orbiting" within a high altitude negative induced shielding charge layer, which has been conjectured to produce a signature microwave emission, as well as a short range 511 keV annihilation line. The interesting question posed is if this conjectured positron emission can be observed and correlated with TGF orbital observations to show if a TGF originates in the macro E-fields of storm clouds or the micro E-fields of lightning leaders where this positron "orbiting" is not likely to occur.

  20. Applications of a Ga-68/Ge-68 generator system to brain imaging using a multiwire proportional chamber positron camera

    International Nuclear Information System (INIS)

    Hattner, R.S.; Lim, C.B.; Swann, S.J.; Kaufman, L.; Chu, D.; Perez-Mendez, V.

    1976-01-01

    A Ge-68/Ga-68 generator system has been applied to brain imaging in conjunction with a novel coincidence detection based positron camera. The camera consists of two opposed large area multiwire proportional chamber (MWPC) detectors interfaced to multichannel lead converter plates. Event localization is effected of delay lines. Ten patients with brain lesions have been studied 1-2 hours after the administration of Ga-68 formulated as DTPA. The images were compared to conventional brain scans, and to x-ray section scans (CAT). The positron studies have shown significant mitigation of confusing superficial activity resulting from craniotomy compared to conventional brain scans. Central necrosis of lesions observed in positron images, but not in the conventional scans has been confirmed in CAT. The economy of MWPC positron cameras combined with the ideal characteristics of the Ge-68/Ga-68 generator promise a cost efficient imaging system for the future