WorldWideScience

Sample records for positron emission tomography a

  1. Cardiac positron emission tomography

    International Nuclear Information System (INIS)

    Eftekhari, M.; Ejmalian, G.

    2003-01-01

    Positron emission tomography is an intrinsically tool that provide a unique and unparalleled approach for clinicians and researchers to interrogate the heart noninvasively. The ability to label substances of physiological interest with positron-emitting radioisotopes has permitted insight into normal blood flow and metabolism and the alterations that occur with disease states. Positron emission tomography of the heart has evolved as a unique, noninvasive approach for the assessment of myocardial perfusion, metabolism, and function. Because of the intrinsic quantitative nature of positron emission tomography measurements as well as the diverse compounds that can be labeled with positron- emitting radioisotopes, studies with positron emission tomography have provided rich insight into the physiology of the heart under diverse conditions

  2. Positron emission tomography

    International Nuclear Information System (INIS)

    Wienhard, K.; Heiss, W.D.

    1984-01-01

    The principles and selected clinical applications of positron emission tomography are described. In this technique a chemical compound is labeled with a positron emitting isotope and its biochemical pathway is traced by coincidence detection of the two annihilation photons. The application of the techniques of computed tomography allows to reconstruct the spatial distribution of the radioactivity within a subject. The 18 F-deoxyglucose method for quantitative measurement of local glucose metabolism is discussed in order to illustrate the possibilities of positron emission tomography to record physiological processes in vivo. (orig.) [de

  3. Positron emission tomography

    International Nuclear Information System (INIS)

    Dvorak, O.

    1989-01-01

    The principle is briefly described of positron emission tomography, and its benefits and constraints are listed. It is emphasized that positron emission tomography (PET) provides valuable information on metabolic changes in the organism that are otherwise only very difficult to obtain, such as brain diagnosis including relationships between mental disorders and the physiology and pathophysiology of the brain. A PET machine is to be installed in Czechoslovakia in the near future. (L.O.)

  4. Positron emission tomography

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.

    1985-01-01

    This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology

  5. Positron emission tomography

    NARCIS (Netherlands)

    Paans, AMJ

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation using a

  6. Positron emission tomography

    International Nuclear Information System (INIS)

    Paans, A.M.J.

    1981-01-01

    Positron emitting radiopharmaceuticals have special applications in in-vivo studies of biochemical processes. The combination of a cyclotron for the production of radionuclides and a positron emission tomograph for the registration of the distribution of radioactivity in the body enables the measurement of local radioactivity concentration in tissues, and opens up new possibilities in the diagnosis and examination of abnormalities in the metabolism. The principles and procedures of positron emission tomography are described and the necessary apparatus considered, with emphasis on the positron camera. The first clinical applications using 55 Co bloemycine for tumor detection are presented. (C.F.)

  7. Positron emission tomography - a new approach to brain chemistry

    International Nuclear Information System (INIS)

    Jacobson, H.G.

    1988-01-01

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission

  8. Positron emission tomography

    International Nuclear Information System (INIS)

    Chandrasekhar, Preethi; Himabindu, Pucha

    2000-01-01

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging technique used to study different molecular pathways and anatomical structures. PET has found extensive applications in various fields of medicine viz. cardiology, oncology, psychiatry/psychology, neuro science and pulmonology. This study paper basically deals with the physics, chemistry and biology behind the PET technique. It discusses the methodology for generation of the radiotracers responsible for emission of positrons and the annihilation and detection techniques. (author)

  9. Positron emission tomography

    International Nuclear Information System (INIS)

    Iio, Masahiro

    1982-01-01

    Utilization of positron emission tomography was reviewed in relation to construction and planned construction of small-size medical cyclotrons, planned construction of positron cameras and utilization of short-lived radionuclides. (Chiba, N.)

  10. Positron emission tomography

    International Nuclear Information System (INIS)

    Pavuk, M.

    2003-12-01

    The aim of this project is to provide a simple summary of new trends in positron emission tomography and its basic physical principles. It provides thereby compendious introduction of the trends of the present development in diagnostics using PET systems. A review of available literature was performed. (author)

  11. Positron emission tomography

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Diksic, M.; Meyer, E.; Feindel, W.H.

    1984-01-01

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. The most recent trends are reviewed in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography. (author)

  12. Positron emission tomography

    CERN Document Server

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  13. Tomography by positrons emission

    International Nuclear Information System (INIS)

    Mosconi, Sergio L.

    1999-01-01

    The tomography by positrons emission is a technology that allows to measure the concentration of positrons emission in a tri dimensional body through external measurements. Among the isotope emissions have carbon isotopes are ( 11 C), of the oxygen ( 15 O), of the nitrogen ( 13 N) that are three the element that constitute the base of the organic chemistry. Theses have on of the PET's most important advantages, since many biological interesting organic molecules can be tracer with these isotopes for the metabolism studies 'in vivo' through PET, without using organic tracers that modify the metabolism. The mentioned isotopes, also possess the characteristic of having short lifetime, that constitute on of PET's advantages from the dosimetric point of view. Among 11 C, 15 O, and 13 N, other isotopes that can be obtained of a generator as the 68 Ga and 82 Rb

  14. Positron emission tomography. Positronemisionstomografi

    Energy Technology Data Exchange (ETDEWEB)

    Bolwig, T G; Haunsoe, S; Dahlgaard Hove, J; Hesse, B; Hoejgard, L; Jensen, M; Paulson, O B; Hastrup Svendsen, J; Soelvsten Soerensen, S

    1994-10-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ([sup 11]C), oxygen ([sup 15]O), and nitrogen ([sup 13]N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.).

  15. Positron emission tomography

    International Nuclear Information System (INIS)

    Bolwig, T.G.; Haunsoe, S.; Dahlgaard Hove, J.; Hesse, B.; Hoejgard, L.; Jensen, M.; Paulson, O.B.; Hastrup Svendsen, J.; Soelvsten Soerensen, S.

    1994-01-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ( 11 C), oxygen ( 15 O), and nitrogen ( 13 N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.)

  16. The Positron Emission Tomography. A diagnostic technique

    International Nuclear Information System (INIS)

    Salvadori, P.

    2001-01-01

    Positron Emission Tomography (PET) is a new imaging modality, which is able to assess non-invasively the biochemical mechanisms, underlying physiological and pathophysiological processes in vivo in humans. The technique relies on the administration of radioactive tracers labeled with short-lived positron emitters, which need to be produced on site via a particle accelerator (cyclotron). Radionuclides are produced upon request and formulated into biologically active organic molecules having precise pharmacokinetics and specificity. The radiotracer can be detected by the PET scanner and represented as tomographic sections (images of body sections) showing its regional distribution and concentration. This makes it possible to address clinical questions concerning occurrence and evolution of many diseases as well as their response to therapy. The ability to image (measure) biological processes and not only anatomy enables PET to explore diseases in the very early stage, including those diseases which are not related to modifications of organ structure (e.g. psychiatric diseases, metabolic disorders, biochemical disfunction). PET plays a major role, in conjunction with the other imaging modalities, to improve diagnosis capabilities and disease mechanism understanding [it

  17. Positron emission computed tomography

    International Nuclear Information System (INIS)

    Grover, M.; Schelbert, H.R.

    1985-01-01

    Regional mycardial blood flow and substrate metabolism can be non-invasively evaluated and quantified with positron emission computed tomography (Positron-CT). Tracers of exogenous glucose utilization and fatty acid metabolism are available and have been extensively tested. Specific tracer kinetic models have been developed or are being tested so that glucose and fatty acid metabolism can be measured quantitatively by Positron-CT. Tracers of amino acid and oxygen metabolism are utilized in Positron-CT studies of the brain and development of such tracers for cardiac studies are in progress. Methods to quantify regional myocardial blood flow are also being developed. Previous studies have demonstrated the ability of Positron-/CT to document myocardial infarction. Experimental and clinical studies have begun to identify metabolic markers of reversibly ischemic myocardium. The potential of Positron-CT to reliably detect potentially salvageable myocardium and, hence, to identify appropriate therapeutic interventions is one of the most exciting applications of the technique

  18. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each ring contains a plurality of scintillation detectors which are positioned around an inner circumference with a septum ring extending inwardly from the inner circumference along each outer edge of each ring. An additional septum ring is positioned in the middle of each ring of detectors and parallel to the other septa rings, whereby the inward extent of all the septa rings may be reduced by one-half and the number of detectors required in each ring is reduced. The additional septa reduces the costs of the positron camera and improves its performance

  19. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each detector ring or offset ring includes a plurality of photomultiplier tubes and a plurality of scintillation crystals are positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring is offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. The offset detector ring geometry reduces the costs of the positron camera and improves its performance

  20. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  1. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  2. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  3. Positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lindback, Stig [GEMS PET Systems AB, Uppsala (Sweden)

    1995-07-15

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body.

  4. Positron emission tomography

    International Nuclear Information System (INIS)

    Lindback, Stig

    1995-01-01

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body

  5. Positron emission tomography

    International Nuclear Information System (INIS)

    Marchenkov, N.S.

    2000-01-01

    The foundations of the positron emission tomography (PET), widely used for the medical diagnostics, are considered. The brief description of the cyclotron for production of radionuclides, applied in the PET, the target devices for manufacturing the position emitters, the moduli for the radiopharmaceuticals synthesis (RPS) for the PET is presented. The necessity and concept of complete automation of the RPS for the PET are discussed [ru

  6. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector planes positioned side-by-side around a patient area to detect radiation. Each plane includes a plurality of photomultiplier tubes and at least two rows of scintillation crystals on each photomultiplier tube extend across to adjacent photomultiplier tubes for detecting radiation from the patient area. Each row of crystals on each photomultiplier tube is offset from the other rows of crystals, and the area of each crystal on each tube in each row is different than the area of the crystals on the tube in other rows for detecting which crystal is actuated and allowing the detector to detect more inter-plane slides. The crystals are offset by an amount equal to the length of the crystal divided by the number of rows. The rows of crystals on opposite sides of the patient may be rotated 90 degrees relative to each other

  7. Positron emission tomography. Basic principles

    International Nuclear Information System (INIS)

    Rodriguez, Jose Luis; Massardo, Teresa; Gonzalez, Patricio

    2001-01-01

    The basic principles of positron emission tomography (PET) technique are reviewed. lt allows to obtain functional images from gamma rays produced by annihilation of a positron, a positive beta particle. This paper analyzes positron emitters production in a cyclotron, its general mechanisms, and the various detection systems. The most important clinical applications are also mentioned, related to oncological uses of fluor-l8-deoxyglucose

  8. Positron-molecule interactions and corresponding positron attachment to molecules. As a basis for positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Tachikawa, Masanori; Kimura, Mineo; Pichl, Lukas

    2007-01-01

    Through positron and electron interactions, they annihilate emitting primarily two gamma rays with 180-degree opposite directions. Positron spectroscopy using the characteristics of these gamma rays has been employed for analyzing various properties of material as well as for positron emission tomography (PET). However, its fundamental physics of positron-electron interactions and resulting features of emitting gamma rays are not well understood. By obtaining better understanding of positron interactions, it should become possible to provide the firm bases for positron spectroscopy in finer accuracy and quality. Here, we propose a significant mechanism for positron annihilation through positron attachment process, which may help increase the quality of positron spectroscopy. (author)

  9. NMF on positron emission tomography

    DEFF Research Database (Denmark)

    Bödvarsson, Bjarni; Hansen, Lars Kai; Svarer, Claus

    2007-01-01

    In positron emission tomography, kinetic modelling of brain tracer uptake, metabolism or binding requires knowledge of the cerebral input function. Traditionally, this is achieved with arterial blood sampling in the arm or as shown in (Liptrot, M, et al., 2004) by non-invasive K-means clustering....... We propose another method to estimate time-activity curves (TAC) extracted directly from dynamic positron emission tomography (PET) scans by non-negative matrix factorization (NMF). Since the scaling of the basis curves is lost in the NMF the estimated TAC is scaled by a vector alpha which...

  10. A new liquid xenon scintillation detector for positron emission tomography

    International Nuclear Information System (INIS)

    Chepel, V.Yu.

    1993-01-01

    A new positron-sensitive detector of annihilation photons filled with liquid xenon is proposed for positron emission tomography. Simultaneous detection of both liquid xenon scintillation and ionization current produces a time resolution of < 1 ns and a position resolution in the tangential direction of the tomograph ring is ∼ 1 mm and in the radial direction is ∼ 5 mm. The advantages of a tomograph with new detectors are discussed. New algorithms of Compton scattering can be used. (author)

  11. Instrumentation for positron emission tomography

    International Nuclear Information System (INIS)

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.

    1984-01-01

    Positron emission tomography with a spatial resolution of 2 mm full width at half maximum for quantitation in regions of interest 4 mm in diameter will become possible with the development of detectors that achieve ultrahigh resolution. Improved resolution will be possible using solid-state photodetectors for crystal identification or photomultiplier tubes with many small electron multipliers. Temporal resolution of 2 seconds and gating of cyclic events can be accomplished if statistical requirements are met. The major physical considerations in achieving high-resolution positron emission tomography are the degradation in resolution resulting from positron range, emission angle, parallax error, detector sampling density, the sensitivity of various detector materials and packing schemes, and the tradeoff between temporal resolution and statistical accuracy. The accuracy of data required for physiological models depends primarily on the fidelity of spatial sampling independent of statistical constraints

  12. Fundamentals of positron emission tomography

    International Nuclear Information System (INIS)

    Ostertag, H.

    1989-01-01

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The methods is based on: (1) Radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. (orig.) [de

  13. Positron emission tomography in a national research centre

    International Nuclear Information System (INIS)

    Weinreich, R.

    1989-01-01

    The example of the Paul Scherrer Institute shows that positron emission tomography can be implanted successfully as spin-off into an appropriate environment. The adaption to the existing irradiation facilities of the technique of production of the short-lived positron emitters is complex. However, the basic necessities of a tomography programme can be covered. Moreover, the relatively high energy of the institute's injector cyclotron allows additional production of rare-used longer-lived positron emitters. The scanner exceeded the guaranteed specifications. With respect to the somewhat lower availability of beam time compared to a usual baby cyclotron, the research programme must not be very patient-intense. A strong participation of the pharmaceutical industry has directed research priorities into the pharmacological area. (orig.) [de

  14. Positron emission tomography in oncology

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This report describes the current and potential uses of positron emission tomography in clinical medicine and research related to oncology. Assessment will be possible of metabolism and physiology of tumors and their effects on adjacent tissues. Specific probes are likely to be developed for target sites on tumors, including monoclonal antibodies and specific growth factors that recognize tumors. To date, most oncological applications of positron emission tomography tracers have been qualitative; in the future, quantitative metabolic measurements should aid in the evaluation of tumor biology and response to treatment

  15. Positron emission tomography: a new paradigm in cancer management

    International Nuclear Information System (INIS)

    Paez Gutierrez, Diana Isabel; De los Reyes, Amelia; Llamas Olier, Augusto

    2007-01-01

    The National Cancer Institute (NCI) is currently building a positron emission tomography facility that will house a cyclotron and a PET fusion scanner. lt should be operational as of december 2007, being a cancer dedicated national referral center, the NCI should provide both positron-emitting radiopharmaceuticals and medical services to institutions and patients nationwide. PET technology provides metabolic information that has been documented to be useful in patient care. The properties of positron decay allow accurate imaging of the in vivo distribution of positron-emitting radiopharmaceuticals. a wide array of positron-emitting radiopharmaceuticals has been used to characterize multiple physiologic and pathologic states. The major clinical PET applications are in cancer patients using fluorine-18 fluorodeoxyglucose (FDG). FDG, an analogue of glucose, accumulates in most tumors in a greater amount than it does in normal tissue. PET is being used in diagnosis and follow-up of several malignancies, and the list of articles supporting its use continues to grow. in this article, the instrumentation aspects of PET are described and most of the clinical applications in oncology are described

  16. First image from a combined positron emission tomography and field-cycled MRI system.

    Science.gov (United States)

    Bindseil, Geron A; Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Chronik, Blaine A

    2011-07-01

    Combining positron emission tomography and MRI modalities typically requires using either conventional MRI with a MR-compatible positron emission tomography system or a modified MR system with conventional positron emission tomography. A feature of field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the use of conventional positron emission tomography detectors based on photomultiplier tubes. In this demonstration, two photomultiplier tube-based positron emission tomography detectors were integrated with a field-cycled MRI system (0.3 T/4 MHz) by placing them into a 9-cm axial gap. A positron emission tomography-MRI phantom consisting of a triangular arrangement of positron-emitting point sources embedded in an onion was imaged in a repeating interleaved sequence of ∼1 sec MRI then 1 sec positron emission tomography. The first multimodality images from the combined positron emission tomography and field-cycled MRI system show no additional artifacts due to interaction between the systems and demonstrate the potential of this approach to combining positron emission tomography and MRI. Copyright © 2010 Wiley-Liss, Inc.

  17. A new headholder for positron emission tomography

    International Nuclear Information System (INIS)

    Suhara, Tetsuya; Furukawa, Sigeo; Shishido, Fumio; Fukuda, Hiroshi.

    1993-01-01

    We developed a new headholder for the fixation and repositioning of patient head in PET study. The device consists of acryl frame and headrest of thermoplastic resin. Special gel is placed on the headrest to adapt different shape of occipita in each patient. Individual face mask was made with thermoplastic resin just before the PET study and was fixed with the holder using plastic taper. It took about 2-3 min to fix the patient head using these system. Immobilization of the patient's head during PET study was good. Accuracy of repositioning in the same patient was relatively good between separate PET studies. (author)

  18. Diffuse nesidioblastosis diagnosed on a Ga-68 DOTATATE positron emission tomography/computerized tomography

    International Nuclear Information System (INIS)

    Arun, Sasikumar; Mittal, Bhagwant Rai; Shukla, Jaya; Bhattacharya, Anish; Kumar, Praveen

    2013-01-01

    The authors describe a 50 days old pre-term infant with persistent hyperinsulinemic hypoglycemia of infancy in whom 68 Ga DOTATATE positron emission tomography/computerized tomography scan showed diffusely increased tracer uptake in the entire pancreas with no abnormal tracer uptake anywhere else in the body, suggestive of a diffuse variant of nesidioblastosis. (author)

  19. Positron emission tomography with Positome, 2

    International Nuclear Information System (INIS)

    Nukui, Hideaki; Yamamoto, Y.L.; Thompson, C.J.; Feindel, W.

    1979-01-01

    Positron emission tomography with Positome II using 68 Ga-EDTA was performed in cases with brain tumor and cerebral arteriovenous malformation. A significant focal uptake in static study and hemodynamic changes in dynamic study were noted in all cases except one case with intracranial lipoma. Comparing this method with sup(99m) Tc-pertechnetate cerebral image study and computerized axial tomography, the diagnostic rate for detecting brain tumor was almost equal in all of these three methods. However, detecting and localizing was easier and clearer in static positron emission tomography with 68 Ga-EDTA than in sup(99m) Tc-pertechnetate cerebral image and computerized axial tomography without infusion of contrast medium. Furthermore, static positron emission tomography with 68 Ga-EDTA was superior to computerized axial tomography without infusion of contrast medium for detecting cerebral arteriovenous malformation. Concerning dynamic positron emission tomography with 68 Ga-EDTA, semiquantitative values obtained by this method correlated well with findings of computerized axial tomography and was thought to be more precise and in detail than the findings of sup(99m) Tc-pertechnetate cerebral image study. Summation of the previous studies about dynamic positron emission tomography with 77 Kr in occlusive cerebrovascular disease is also reported. In conclusion, static positron emission tomography with 68 Ga-EDTA is a very useful diagnostic method for detecting and localizing brain tumor and cerebral arteriovenous malformation without any attendant complications. Furthermore, a good combination of static and dynamic positron emission tomography and computerized axial tomography appear to be outstandingly effective for not only detecting the lesion but also understanding the pathophysiological aspect in cases with various intracranial lesions. (author)

  20. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    DEFF Research Database (Denmark)

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle W

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present...

  1. Improved positron emission tomography camera

    International Nuclear Information System (INIS)

    Mullani, N.A.

    1986-01-01

    A positron emission tomography camera having a plurality of rings of detectors positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom, and a plurality of scintillation crystals positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring may be offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. (author)

  2. Positron emission tomography and migraine

    International Nuclear Information System (INIS)

    Chabriat, H.

    1992-01-01

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT 2 serotonin receptors can be studied in migraine patients with PET

  3. Positron emission tomography studies of brain receptors

    International Nuclear Information System (INIS)

    Maziere, B.; Maziere, M.

    1991-01-01

    Probing the regional distribution and affinity of receptors in the brain, in vivo, in human and non human primates has become possible with the use of selective ligands labelled with positron emitting radionuclides and positron emission tomography (PET). After describing the techniques used in positron emission tomography to characterize a ligand receptor binding and discussing the choice of the label and the limitations and complexities of the in vivo approach, the results obtained in the PET studies of various neurotransmission systems: dopaminergic, opiate, benzodiazepine, serotonin and cholinergic systems are reviewed

  4. A Case of Corticobasal Degeneration Studied with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    H. Nagasawa

    1993-01-01

    Full Text Available We measured cerebral blood flow, oxygen metabolism, glucose utilization, and dopamine metabolism in the brain of a patient with corticobasal degeneration using positron emission tomography (PET. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Brain imagings of glucose and dopamine metabolism can demonstrate greater abnormalities in the cerebral cortex and in the striatum contralateral to the more affected side than those of blood flow and oxygen metabolism. This unique combination study measuring both cerebral glucose utilization and dopamine metabolism in the nigrostriatal system can provide efficient information about the dysfunctions which are correlated with individual clinical symptoms, and this study is essential to diagnosis of corticobasal degeneration.

  5. Positron emission tomography takes lead

    International Nuclear Information System (INIS)

    Simms, R.

    1989-01-01

    Positron emission tomography (PET)'s ability to detect functional abnormalities before they manifest anatomically is examined and some of its most common applications are outlined. It is emphasised that when PET facility and Australian Nuclear Science and Technology Organization's national cyclotron are established at the Royal Prince Alfred Hospital, the availability of short-lived tracers such as oxygen 15, nitrogen 13 and fluorine 18 would improve the specificity of tests(e.g. for brain tumors or cardiac viability) further. Construction of the cyclotron will start shortly and is due to be completed and operating by the end of 1991

  6. Positron emission tomography

    International Nuclear Information System (INIS)

    Nagel, F.; Pfaff, M.; Pfannenstiel, P.

    1989-01-01

    Within the framework of the government program 'Research and Development Serving Public Health', the Federal Ministry of Research and Technology (BMFT) of the Federal Republic of Germany is supporting research projects in the field of health care, covering the areas of prevention, diagnosis, therapy and rehabilitation. The Federal Ministry of Research and Technology initiated a careful evaluation of the potential and the objectives of a priority research venture in the field of PET in the light of the above program. According to the research support policy outlined this priority research venture would be aimed at determining the clinical and health-care relevant potential and perspectives of PET. The present report defines the starting point of PET technology and deals with problems concerning health-economic aspects. The data and analysis provided may serve as a first and, with respect to specific details, preliminary assessment of this new technique. Further investigations will strive to substantiate these preliminary findings. (orig./MG)

  7. Positron emission tomography

    International Nuclear Information System (INIS)

    Cohen, R.M.; Semple, W.E.; Gross, M.

    1986-01-01

    PET is a unique tool for the direct in vivo evaluation of physiologic processes within discrete areas of the brain. Thus far, its application to the study of schizophrenia has served to confirm the subtleties of this illness. However, PET does promise to increase our knowledge of the neurochemical anatomy of the normal and abnormal mind with respect to goal-directed behavior.22 references

  8. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Rollo, F.D.; Hines, H.

    2001-01-01

    ADAC Laboratories has two main imaging strengths: PET and Gamma Cameras. PET's three-dimensional imaging of metabolic function is used in oncology, with emerging opportunties in cardiology, genetic mapping and pharmaceuticals research. In oncology, PET imaging can provide comprehensive and accurate staging information which is not available from CT or MRI. In some cases, this information can lead to modification of treatment, for example from an aggressive approach to one of palliation. The SKYLight is the world's first and only gantry-free camera. It is a dual-detector variable angle camera designed for high throughput, with unsurpassed openness and patient access. (orig.)

  9. Positron emission tomography in oncology

    International Nuclear Information System (INIS)

    Lecomte, R.; Bentourkia, M.; Benard, F.

    2002-01-01

    Positron Emission Tomography is a sophisticated molecular imaging technique, using a special scanner, that displays the functional status of tissues in the body at the cellular level (their metabolism). It is a diagnostic scan that provides the physician with information not available with traditional anatomic studies such as CT or MRI. PET can detect changes in cell function (disease) long before they are evident as physical (anatomic) changes seen on CT or MRI. In this way PET can add important information about many diseases allowing the physician to make a diagnosis often much earlier than with anatomic imaging techniques such as CT or MRI alone. In addition, in cases where an abnormality is noted on CT or MRI, PET can help differentiate benign changes from changes due to disease. PET scanning also typically images the entire body, unlike CT/MRI which is usually broken up into specific limited body section scans. All cells use glucose as an energy source but cancer cells use much more since they are growing much faster and out of control. This is the basis of imaging with F-18 FDG glucose, the radiotracer agent use in a PET oncology study. The abnormal, accelerated glucose used by cancer cells is detected by the PET scanner that processes the emissions from the F-18 FDG glucose by abnormally high levels of metabolism (tumor)

  10. Scintillators for positron emission tomography

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ''ultimate'' scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length (≤ 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times ≤ 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so ≤5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ''fully-3D'' cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm

  11. Positron emission tomography in epilepsy

    International Nuclear Information System (INIS)

    Hosokawa, Shinichi; Kato, Motohiro; Otsuka, Makoto; Kuwabara, Yasuo; Ichiya, Yuichi; Goto, Ikuo

    1989-01-01

    Positron emission tomography (PET) was performed with the 18 F-fluoro-deoxy-glucose method on 29 patients with epilepsy (generalized epilepsy, 4; partial epilepsy, 24; undetermined type, 1). The subjects were restricted to patients with epilepsy without focal abnormality on X-CT. All the patients with generalized epilepsy showed a normal pattern on PET. Fourteen out of the 24 patients with partial epilepsy and the 1 with epilepsy of undermined type showed focal hypometabolism on PET. The hypometabolic zone was localized in areas including the temporal cortex in 11 patients, frontal in 2 and thalamus in 1. The location of hypometabolic zone and that of interictal paroxysmal activity on EEG were well correlated in most patients. The patients with poorly-controlled seizure showed a higher incidence of PET abnormality (12 out of 13) than those with well-controlled seizures (2 out of 11). The incidence of abnormality on PET and MRI and the location of both abnormality were not necessarily coincident. These results indicated that the PET examination in epilepsy provides valuable information about the location of epileptic focus, and that the findings on PET in patients with partial epilepsy may be one of the good indicators about the intractability of partial epilepsy, and that PET and MRI provide complementary information in the diagnosis of epilepsy. (author)

  12. Positron emission tomography in neuropsychology.

    Science.gov (United States)

    Heiss, W D; Herholz, K; Pawlik, G; Wagner, R; Wienhard, K

    1986-01-01

    By positron emission tomography (PET) of 18F-2-fluoro-2-deoxy-D-glucose (FDG) local cerebral metabolic rate for glucose (LCMRGl) can be measured in man. Normal values in cerebral cortex and basal ganglia range from 35 to 50 mumol/100 g/min, the values in gray matter structures of the posterior fossa were 25-30 mumol/100 g/min, the lowest LCMRGl was found in the white matter (15-20 mumol/100 g/min). During sensory stimulation by various modalities functional activation increases LCMRGl in the respective special areas, while sleep decreases metabolic rate in all cortical and basal gray matter structures. In many neurological disorders CMRGl is altered in a disease-specific pattern. In dementia of the Alzheimer type CMRGl is impaired even in early stages with accentuation in the parieto-temporal cortex, while in multi-infarct dementia glucose uptake is mainly reduced in the multifocal small infarcts. In Huntington's chorea the most conspicuous changes are found in the caudate nucleus and putamen. In cases of focal lesions (e.g. ischemic infarcts) metabolic disturbances extend far beyond the site of the primary lesion and inactivation of metabolism is found in intact brain structures far away from the anatomical lesion. Additional applications of PET include determination of the metabolism of various substrates, of protein synthesis, of function and distribution of receptors, of tumor growth and of the distribution of drugs as well as the measurement of oxygen consumption, blood flow and blood volume.

  13. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Mathis, C.A.; Moyer, B.R.; Huesman, R.H.; Derenzo, S.E.

    1983-01-01

    Positron emission tomography (PET) offers the opportunity to noninvasively measure heart muscle blood perfusion, oxygen utilization, metabolism of fatty acids, sugars and amino acids. This paper reviews physiological principles which are basic to PET instrumentation for imaging the heart and gives examples of the application of positron emission tomography for measuring myocardial flow and metabolism. 33 references, 11 figures, 1 table

  14. Positron emission tomography basic sciences

    CERN Document Server

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  15. Positron emission tomography in malignant haematological disease

    NARCIS (Netherlands)

    Schot, Bartholomeus Wilhelmus

    2007-01-01

    Positron emission tomography (PET) is a diagnostic technique with a promising role especially in the haemato-oncology. Although its use in the management ; of malignant lymphoma seems to be established already, much about the true potential and drawbacks of FDG-PET in this disease are still unknown.

  16. Positron emission tomography applied to fluidization engineering

    NARCIS (Netherlands)

    Dechsiri, C; Ghione, A; van de Wiel, F; Dehling, HG; Paans, AMJ; Hoffmann, AC

    The movement of particles in a laboratory fluidized bed has been studied using Positron Emission Tomography (PET). With this non-invasive technique both pulses of various shapes and single tracer particles were followed in 3-D. The equipment and materials used made it possible to label actual bed

  17. Fluorodeoxyglucose-positron emission tomography/computed tomography imaging features of colloid adenocarcinoma of the lung: a case report.

    Science.gov (United States)

    Wang, ZhenGuang; Yu, MingMing; Chen, YueHua; Kong, Yan

    2017-07-27

    Colloid adenocarcinoma of the lung is a rare subtype of variants of invasive adenocarcinomas. We report the appearance of this unusual entity on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. A 60-year-old man of Chinese Han nationality coughed with a little white sputum for 1 month. Chest computed tomography showed multiple bilateral subpleural nodules and plaques accompanied by air bronchograms, which were most concentrated in the lower lobe of his right lung. Positron emission tomography indicated increased radioactivity uptake with a maximum standardized uptake value of 3.5. Positron emission tomography/computed tomography showed a soft tissue density lesion in his left adrenal gland with a maximum standardized uptake value of 4.1. The positron emission tomography/computed tomography appearance suggested a primary colloid adenocarcinoma in the lower lobe of his right lung accompanied by intrapulmonary and left adrenal gland metastases. The diagnostic rate of colloid adenocarcinoma can be increased by combining the anatomic and metabolic information of lesions. The advantage of positron emission tomography/computed tomography in the diagnosis of colloid adenocarcinoma, as with other cancers, is the ability to locate extrapulmonary disease, facilitating clinical staging.

  18. Scintillation crystals for positron emission tomography having a non reflecting band

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1992-01-01

    This invention relates generally to positron emission tomography, a sub-field of the class of medical imaging techniques using ionizing radiation and image reconstruction techniques; and more particularly to devices which use an array of scintillation detectors to detect the annihilation radiation from positron disintegration and use this information to reconstruct an image of the distribution of positron emitting isotope within a body section. 6 figs

  19. Positron emission computerized tomography: a potential tool for in vivo quantitation of the distribution of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Huebner, K.F.; King, P.; Gibbs, W.D.; Washburn, L.C.; Hayes, R.L.

    1981-01-01

    The principles and some of the difficulties in quantitative positron emission computerized tomography have been discussed. We have shown that randoms and scattered events are a major cause of noise and counting errors in positron emission computerized tomography. The noise has been identified as a convoluting process and a mathematical solution has been presented. Examples of phantom studies and in vivo measurements have demonstrated that the distribution of positron emitting radiopharmaceuticals can be quantitated with much improved accuracy using the deconvolution equation to remove undesired noise

  20. Positron emission tomography now and in the future

    International Nuclear Information System (INIS)

    Vaalburg, W.

    1987-01-01

    A survey is given of positron emission tomography used in nuclear medicine. The production of positron emitting radionuclides is discussed. The development of positron detectors is described. The application of positron emission tomography in cardiology, oncology and neurology is treated. The authors conclude that PET is a unique method to examine metabolic processes, although the method is still in its infancy. 7 refs.; 1 table

  1. Radiopharmaceutical chemistry for positron emission tomography

    NARCIS (Netherlands)

    Elsinga, PH

    Radiopharmaceutical chemistry includes the selection, preparation, and preclinical evaluation of radiolabeled compounds. This paper describes selection criteria for candidates for positron emission tomography (PET) investigations. Practical aspects of nucleophilic and electrophilic

  2. Features and applications of positron emission tomography

    International Nuclear Information System (INIS)

    Fan Mingwu

    1997-01-01

    Positron emission tomography, the so-called world's smartest camera, is based on a NaI or BGO detector and imaging of positron-emitting radioisotopes which are introduced as a tracer into the regional tissue or organ of interest. With the aid of a computer visual images of a series of these distributions can be built into a picture of the functional status of the tissue or organ being imaged. This highly accurate imaging technique is already widely used for clinical diagnostics heart disease, brain disorder, tumors and so on

  3. Electrocardiographic gating in positron emission computed tomography

    International Nuclear Information System (INIS)

    Hoffman, E.J.; Phelps, M.E.; Wisenberg, G.; Schelbert, H.R.; Kuhl, D.E.

    1979-01-01

    Electrocardiographic (ECG) synchronized multiple gated data acquisition was employed with positron emission computed tomography (ECT) to obtain images of myocardial blood pool and myocardium. The feasibility and requirements of multiple gated data acquisition in positron ECT were investigated for 13NH3, ( 18 F)-2-fluoro-2-D-deoxyglucose, and ( 11 C)-carboxyhemoglobin. Examples are shown in which image detail is enhanced and image interpretation is facilitated when ECG gating is employed in the data collection. Analysis of count rate data from a series of volunteers indicates that multiple, statistically adequate images can be obtained under a multiple gated data collection format without an increase in administered dose

  4. F-18-fluorodeoxyglucose-positron emission tomography in colorectal cancer

    International Nuclear Information System (INIS)

    Joerg, L.; Langsteger, W.

    2002-01-01

    Whole-body positron emission tomography (PET) with the radiolabeled glucose analog F-18-fluorodeoxyglucose (F-18-FDG) is a sensitive diagnostic tool that images tumors based on increased uptake of glucose. Several recent publications have shown that F-18-fluorodeoxyglucose-positron emission tomography is more sensitive than computed-tomography (CT) in detecting colorectal cancer. In patients with increasing CEA (carcinoembryonic antigen) and no evidence of recurrent disease on CT F-18-fluorodeoxyglucose-positron emission tomography often detects recurrent cancer. In all, patient management seems to be changed in about 25 % of patients who undergo F-18-fluorodeoxyglucose-positron emission tomography in addition to standard staging procedure. Limited reports to date on both chemotherapy and radiotherapy support the role of F-18-fluorodeoxyglucose-positron emission tomography in assessing treatment response. Also regarding preoperative staging of primary colorectal cancer the literature is very limited. (author)

  5. Positron emission tomography in movement disorders

    International Nuclear Information System (INIS)

    Martin, W.R.W.

    1985-01-01

    Positron emission tomography provides a method for the quantitation of regional function within the living human brain. Studies of cerebral metabolism and blood flow in patients with Huntington's disease, Parkinson's disease and focal dystonia have revealed functional abnormalities within substructures of the basal ganglia. Recent developments permit assessment of both pre-synaptic and post-synaptic function ion dopaminergic pathways. These techniques are now being applied to studies of movement disorders in human subjects

  6. Positron emission tomography in movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W R.W.

    1985-02-01

    Positron emission tomography provides a method for the quantitation of regional function within the living human brain. Studies of cerebral metabolism and blood flow in patients with Huntington's disease, Parkinson's disease and focal dystonia have revealed functional abnormalities within substructures of the basal ganglia. Recent developments permit assessment of both pre-synaptic and post-synaptic function in dopaminergic pathways. These techniques are now being applied to studies of movement disorders in human subjects.

  7. Positron emission tomography imaging--technical considerations

    International Nuclear Information System (INIS)

    Muehllehner, G.; Karp, J.S.

    1986-01-01

    Positron imaging instrumentation has improved rapidly in the last few years. Scanners currently under development are beginning to approach fundamental limits set by positron range and noncolinearity effects. This report reviews the latest developments in positron emission tomography (PET) instrumentation, emphasizing the development of coding schemes that reduce the complexity and cost of high-resolution scanners. The relative benefits of using time-of-flight (TOF) information is discussed as well. 68 references

  8. Positron emission tomography of the lung

    International Nuclear Information System (INIS)

    Wollmer, P.

    1984-01-01

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  9. Defining a radiotherapy target with positron emission tomography

    International Nuclear Information System (INIS)

    Black, Quinten C.; Grills, Inga S.; Kestin, Larry L.; Wong, Ching-Yee O.; Wong, John W.; Martinez, Alvaro A.; Yan Di

    2004-01-01

    Purpose: F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging is now considered the most accurate clinical staging study for non-small-cell lung cancer (NSCLC) and is also important in the staging of multiple other malignancies. Gross tumor volume (GTV) definition for radiotherapy, however, is typically based entirely on computed tomographic data. We performed a series of phantom studies to determine an accurate and uniformly applicable method for defining a GTV with FDG-PET. Methods and materials: A model-based method was tested by a phantom study to determine a threshold, or unique cutoff of standardized uptake value based on body weight (standardized uptake value [SUV]) for FDG-PET based GTV definition. The degree to which mean target SUV, background FDG concentration, and target volume influenced that GTV definition were evaluated. A phantom was constructed consisting of a 9.0-L cylindrical tank. Glass spheres with volumes ranging from 12.2 to 291.0 cc were suspended within the tank, with a minimum separation of 4 cm between the edges of the spheres. The sphere volumes were selected based on the range of NSCLC patient tumor volumes seen in our clinic. The tank and spheres were filled with a variety of known concentrations of FDG in several experiments and then scanned using a General Electric Advance PET scanner. In the initial experiment, six spheres with identical volumes were filled with varying concentrations of FDG (mean SUV 1.85 ∼ 9.68) and suspended within a background bath of FDG at a similar concentration to that used in clinical practice (0.144 μCi/mL). The second experiment was identical to the first, but was performed at 0.144 and 0.036 μCi/mL background concentrations to determine the effect of background FDG concentration on sphere definition. In the third experiment, six spheres with volumes of 12.2 to 291.0 cc were filled with equal concentrations of FDG and suspended in a standard background FDG concentration of 0.144

  10. Laparoscopic Scar: a mimicker of Sister Mary Joseph's nodule on positron emission tomography/CT

    International Nuclear Information System (INIS)

    Setty, B.; Blake, M.A.; Holalkere, N.S.; Blaszkowsky, L.S.; Fischman, A.

    2006-01-01

    Positron emission tomography/CT is an established imaging method in the diagnosis and staging of cancers. 18 F -fluoro-2-deoxy-D-glucose (FDG) is the most commonly used radiotracer in positron emission tomography/CT. It is a tumour viability agent and usually its uptake within a lesion reflects the presence of a viable tumour tissue. However, false-positive FDG uptake is known to occur in benign processes of either inflammatory or infectious aetiology. We describe FDG uptake at the site of laparoscopic scar that mimicked Sister Mary Joseph's nodule in a patient with gastric adenocarcinoma. Here, the knowledge of the patient's history and subtle imaging findings helped in accurate staging of the patient. In this case report, we emphasize the value of the knowledge of the patient history and awareness of different pitfalls of FDG to achieve a correct diagnosis on positron emission tomography/CT

  11. Report of two cases of fluorodeoxyglucose positron emission tomography/computed tomography appearance of hibernoma: A rare benign tumor

    International Nuclear Information System (INIS)

    Agrawal, Archi; Kembhavi, Seema; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2014-01-01

    False-positive findings are commonly seen in positron emission tomography computed tomography imaging. One of the most common false positive finding is uptake of fluorodeoxyglucose in brown adipose tissue. Herein, we report two cases with incidentally detected hibernomas-a brown fat containing tumor with metabolic activity

  12. A simulation study of a method to reduce positron annihilation spread distributions using a strong magnetic field in positron emission tomography

    International Nuclear Information System (INIS)

    Iida, H.; Kanno, I.; Miura, S.; Murakami, M.; Takahashi, V.; Kemura, K.

    1986-01-01

    The positron trajectories have been three-dimensionally simulated using a Monte-Carlo method under various strength of the magnetic field. More than 5 tesla of the field confined the positrons effectively, resulting in increase of the probability of the annihilation within a limited small region, hence the higher spatial resolution in positron emission tomography

  13. Positron emission tomography/computed tomography surveillance in patients with Hodgkin lymphoma in first remission has a low positive predictive value and high costs.

    Science.gov (United States)

    El-Galaly, Tarec Christoffer; Mylam, Karen Juul; Brown, Peter; Specht, Lena; Christiansen, Ilse; Munksgaard, Lars; Johnsen, Hans Erik; Loft, Annika; Bukh, Anne; Iyer, Victor; Nielsen, Anne Lerberg; Hutchings, Martin

    2012-06-01

    The value of performing post-therapy routine surveillance imaging in patients with Hodgkin lymphoma is controversial. This study evaluates the utility of positron emission tomography/computed tomography using 2-[18F]fluoro-2-deoxyglucose for this purpose and in situations with suspected lymphoma relapse. We conducted a multicenter retrospective study. Patients with newly diagnosed Hodgkin lymphoma achieving at least a partial remission on first-line therapy were eligible if they received positron emission tomography/computed tomography surveillance during follow-up. Two types of imaging surveillance were analyzed: "routine" when patients showed no signs of relapse at referral to positron emission tomography/computed tomography, and "clinically indicated" when recurrence was suspected. A total of 211 routine and 88 clinically indicated positron emission tomography/computed tomography studies were performed in 161 patients. In ten of 22 patients with recurrence of Hodgkin lymphoma, routine imaging surveillance was the primary tool for the diagnosis of the relapse. Extranodal disease, interim positron emission tomography-positive lesions and positron emission tomography activity at response evaluation were all associated with a positron emission tomography/computed tomography-diagnosed preclinical relapse. The true positive rates of routine and clinically indicated imaging were 5% and 13%, respectively (P = 0.02). The overall positive predictive value and negative predictive value of positron emission tomography/computed tomography were 28% and 100%, respectively. The estimated cost per routine imaging diagnosed relapse was US$ 50,778. Negative positron emission tomography/computed tomography reliably rules out a relapse. The high false positive rate is, however, an important limitation and a confirmatory biopsy is mandatory for the diagnosis of a relapse. With no proven survival benefit for patients with a pre-clinically diagnosed relapse, the high costs and low

  14. Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Disseminated Cryptococcosis.

    Science.gov (United States)

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography-computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm.

  15. Cerebral metabolic data obtained by positron emission tomography in physiological aging. A review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Pellat, J; Hommel, M

    1987-06-18

    Following a summary of the general principles and limitations of metabolic measurements by positron emission tomography and of the different indices used to interpret the data, the authors review the results of published studies on physiological aging. Globally, with strict inclusion criteria absolute metabolic values at rest and under partial sensorial deprivation are little or not modified by age. In contrast, functional interactions between regions, as deduced from metabolic intercorrelations, are perhaps different in elderly people. In any case, positron emission tomography seems to discriminate between normal aging and different patterns of pathological aging. Technical improvements, more refined neuropsychological correlations and the use of dynamic activation paradigms will no doubt provide, in the future, a better definition of normal and pathological aging as positron tomography.

  16. Cerebral metabolic data obtained by positron emission tomography in physiological aging. A review of the literature

    International Nuclear Information System (INIS)

    Pellat, J.; Hommel, M.

    1987-01-01

    Following a summary of the general principles and limitations of metabolic measurements by positron emission tomography and of the different indices used to interpret the data, the authors review the results of published studies on physiological aging. Globally, with strict inclusion criteria absolute metabolic values at rest and under partial sensorial deprivation are little or not modified by age. In contrast, functional interactions between regions, as deduced from metabolic intercorrelations, are perhaps different in elderly people. In any case, positron emission tomography seems to discriminate between normal aging and different patterns of pathological aging. Technical improvements, more refined neuropsychological correlations and the use of dynamic activation paradigms will no doubt provide, in the future, a better definition of normal and pathological aging as positron tomography [fr

  17. Positron emission tomography imaging of gene expression

    International Nuclear Information System (INIS)

    Tang Ganghua

    2001-01-01

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  18. F-18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Appearance of Extramedullary Hematopoesis in a Case of Primary Myelofibrosis

    Science.gov (United States)

    Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    A 44-year-old female with known primary myelofibrosis presented with shortness of breath. High Resolution Computed Tomography thorax revealed large heterogeneously enhancing extraparenchymal soft tissue density mass involving bilateral lung fields. F-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography revealed mildly FDG avid soft tissue density mass with specks of calcification involving bilateral lung fields, liver, and spleen. Subsequent histopathologic evaluation from the right lung mass was suggestive of extramedullary hematopoesis. PMID:28533647

  19. Methods and instrumentation for positron emission tomography

    International Nuclear Information System (INIS)

    Mandelkern, M.A.; Phelps, M.E.

    1988-01-01

    This paper reports on positron emission tomography (PET), a technique for the noninvasive measurement of local tissue concentrations of injected radioactive tracers. Tracer kinetics techniques can be applied to this information to quantify physiologic function in human tissue. In the tracer method, a pharmaceutical is labeled by a radioactive atom. When introduced into the subject that molecule follows a physiologic pathway. The space- and time-dependent distribution of the radionuclide is obtained via an imaging technique. If the radiopharmaceutical is sufficiently analogous to a natural substrate or other substance of interest, a quantitative image can be translated into a physiologic measurement

  20. Activity-based costing evaluation of a [F-18]-fludeoxyglucose positron emission tomography study

    NARCIS (Netherlands)

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Vander Borght, Thierry

    2009-01-01

    Objective: The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes.

  1. Positron Emission Tomography: Its 65 years

    International Nuclear Information System (INIS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-01-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, preclinical and hybrid scanners (i.e., PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  2. Positron emission tomography tracers for imaging angiogenesis

    International Nuclear Information System (INIS)

    Haubner, Roland; Beer, Ambros J.; Wang, Hui; Chen, Xiaoyuan

    2010-01-01

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or α v β 3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging α v β 3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. (orig.)

  3. Fluorodeoxyglucose positron emission tomography-computed tomography findings in a case of xanthogranulomatous pyelonephritis

    Science.gov (United States)

    Joshi, Prathamesh; Lele, Vikram; Shah, Hardik

    2013-01-01

    Xanthogranulomatous pyelonephritis (XGNP) is an uncommon condition characterized by chronic suppurative renal inflammation that leads to progressive parenchymal destruction. This condition can clinically present as recurrent urinary tract infections, flank pain, hematuria, and occasionally sepsis, and weight loss. This condition is usually associated with obstructing renal calculus. We present 18-fluorodeoxyglucose positron emission tomography-computed tomography (18-FDG PET/CT) findings in an elderly male suffering from pyrexia and weight loss and suspected urinary tract infection. PET/CT findings in this case lead to diagnosis of XGNP. This diagnosis should be kept in mind while evaluating similar symptoms and PET/CT scan findings. PMID:24019680

  4. A positron emission tomography study of wind-up pain in chronic postherniotomy pain

    DEFF Research Database (Denmark)

    Kupers, Ron; Lonsdale, Markus Georg; Aasvang, Eske Kvanner

    2011-01-01

    -induced wind-up pain in neuropathic pain patients. We therefore used positron emission tomography (PET) to investigate the cerebral response pattern of mechanical wind-up pain in a homogenous group of 10 neuropathic pain patients with long-standing postherniotomy pain in the groin area. Patients were scanned...

  5. Cobalt-55 positron emission tomography in traumatic brain injury : A pilot study

    NARCIS (Netherlands)

    Jansen, HML; vanderNaalt, J; vanZomeren, AH; Paans, AMJ; VeenmavanderDuin, L; Hew, JM; Pruim, J; Minderhoud, JM; Korf, J

    Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Go-PET) as a calcium tracer enables

  6. A Monte Carlo simulation of the possible use of Positron Emission Tomography in proton radiotherapy

    International Nuclear Information System (INIS)

    Del Guerra, Alberto; Di Domenico, Giovanni; Gambaccini, Mauro; Marziani, Michele

    1994-01-01

    We have used the Monte Carlo technique to evaluate the applicability of Positron Emission Tomography to in vivo dosimetry for proton radiotherapy. A fair agreement has been found between Monte Carlo results and experimental data. The simulation shows that PET can be useful especially for in vivo Bragg's peak localization. ((orig.))

  7. Contribution of positron emission tomography in neurology

    International Nuclear Information System (INIS)

    Salmon, E.; Franck, G.

    1992-01-01

    Positron Emission Tomography (PET) is a scanner technique using tracers labelled with shortlived radioisotopes which allows to study and quantify human metabolic processes or drug pharmacology in vivo. The technique is first applied in physiological studies. Sleep, normal brain metabolism or cerebral activations have been studied. The pharmacological approach concerns both drug distribution in the human brain and blood flow or metabolic variations under treatment. Main neurological applications in pathology are cerebrovascular disorders, diseases leading to dementia, epilepsy, movement disorders, and brain tumors. In each field of application, PET gives unique and frequently early informations. It nicely combines both dynamic informations and measurement precision. (author)

  8. Positron emission tomography in brain function study

    International Nuclear Information System (INIS)

    Wu Hua

    2006-01-01

    Little has been recognized about the advanced brain function. Recent years several new techniques such as event-related potentials, megnetoencephalography, functional magnetic resonance imaging and positron emission tomography (PET) have been used in the study of brain function. The methodology, application study in normal people and clinical patients of PET in brain function are reviewed. (authors)

  9. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Moyer, B.R.; Mathis, C.A.; Ganz, E.; Huesman, R.H.; Derenzo, S.E.

    1982-01-01

    Positron emission tomography (PET) of the heart can measure blood perfusion, metabolism of fatty acids, metabolism of sugars, uptake of amino acids and can quantitate infarction volume. The principles which are basic to PET instrumentation and procedures for quantitative studies of the heart muscle with examples of measurements of myocardial flow and metabolism, are reviewed

  10. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Huesman, R.H.; Derenzo, S.E.; Moyer, B.R.; Mathis, C.A.; Ganz, E.; Knittel, B.

    1983-01-01

    Positron emission tomography (PET) of the heart can measure blood perfusion, metabolism of fatty acids, metabolism of sugars, uptake of amino acids and can quantitate infarction volume. The principles are reviewed which are basic to PET instrumentation and procedures for quantitative studies of human physiology with examples of measurements of myocardial flow and metabolism

  11. Is positron emission tomography useful in stroke?

    NARCIS (Netherlands)

    DeReuck, J; Leys, D; DeKeyser, J

    Positron emission tomography (PET) has been widely used in the study of stroke and related cerebrovascular diseases. It has shown the various stages leading to cerebral infarction and defined the significance of the ischaemic penumbra. PET scan can predict the clinical outcome of patients with acute

  12. Advanced Instrumentation for Positron Emission Tomography [PET

    Science.gov (United States)

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  13. Combined computed tomography and fluorodeoxyglucose positron emission tomography in the diagnosis of prosthetic valve endocarditis: a case series.

    Science.gov (United States)

    Bartoletti, Michele; Tumietto, Fabio; Fasulo, Giovanni; Giannella, Maddalena; Cristini, Francesco; Bonfiglioli, Rachele; Raumer, Luigi; Nanni, Cristina; Sanfilippo, Silvia; Di Eusanio, Marco; Scotton, Pier Giorgio; Graziosi, Maddalena; Rapezzi, Claudio; Fanti, Stefano; Viale, Pierluigi

    2014-01-13

    The diagnosis of prosthetic valve endocarditis is challenging. The gold standard for prosthetic valve endocarditis diagnosis is trans-esophageal echocardiography. However, trans-esophageal echocardiography may result in negative findings or yield images difficult to differentiate from thrombus in patients with prosthetic valve endocarditis. Combined computed tomography and fluorodeoxyglucose positron emission tomography is a potentially promising diagnostic tool for several infectious conditions and it has also been employed in patients with prosthetic valve endocarditis but data are still scant. We reviewed the charts of 6 patients with prosthetic aortic valves evaluated for suspicion of prosthetic valve endocarditis, at two different hospital, over a 3-year period. We found 3 patients with early-onset PVE cases and blood cultures yielding Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus lugdunensis, respectively; and 3 late-onset cases in the remaining 3 patients with isolation in the blood of Streptococcus bovis, Candida albicans and P. aeruginosa, respectively. Initial trans-esophageal echocardiography was negative in all the patients, while fluorodeoxyglucose positron emission tomography showed images suspicious for prosthetic valve endocarditis. In 4 out of 6 patients valve replacement was done with histology confirming the prosthetic valve endocarditis diagnosis. After an adequate course of antibiotic therapy fluorodeoxyglucose positron emission tomography showed resolution of prosthetic valve endocarditis in all the patients. Our experience confirms the potential role of fluoroseoxyglucose positron emission tomography in the diagnosis and follow-up of prosthetic valve endocarditis.

  14. Retroperitoneal Endometriosis: A Possible Cause of False Positive Finding at 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    International Nuclear Information System (INIS)

    Maffione, Anna Margherita; Panzavolta, Riccardo; Lisato, Laura Camilla; Ballotta, Maria; D'Isanto, Mariangela Zanforlini; Rubello, Domenico

    2015-01-01

    Endometriosis is a frequent and clinically relevant problem in young women. Laparoscopy is still the gold standard for the diagnosis of endometriosis, but frequently both morphologic and functional imaging techniques are involved in the diagnostic course before achieving a conclusive diagnosis. We present a case of a patient affected by infiltrating retroperitoneal endometriosis falsely interpreted as a malignant mass by contrast-enhanced magnetic resonance imaging and 18 F-fluorodeoxyglucose positron emission tomography/computed tomography

  15. Positron emission tomography for the assessment of myocardial viability

    International Nuclear Information System (INIS)

    Schelbert, H.R.

    1991-01-01

    The detection of viable myocardium or ischemically injured myocardium with a reversible impairment of contractile function remains clinically important but challenging. Detection of reversible dysfunction and distinction from irreversible tissue injury by positron emission tomography is based on identification of preserved or even enhanced glucose metabolism with F-18 2-fluoro 2-deoxyglucose. Regional patterns of myocardial glucose utilization and blood flow, defined as perfusion-metabolism mismatches or matches, on positron emission tomography in patients with chronic or even acute ischemic heart disease are highly accurate in predicting the functional outcome after interventional revascularization. Compared with thallium-201 redistribution scintigraphy, positron emission tomography appears to be diagnostically more accurate, especially in patients with severely impaired left ventricular function. While larger clinical trials are needed for further confirmation, positron emission tomography has already proved clinically useful for stratifying patients with poor left ventricular function to the most appropriate therapeutic approach

  16. Positron emission tomography - a new technique for observing fluid behaviour in engineering systems

    International Nuclear Information System (INIS)

    Stewart, P.A.E.; Rogers, J.D.; Skelton, R.T.

    1988-01-01

    Positron emission tomography promises to become a powerful new technique for flow tracing and measurement within metal structures in general and operating engines in particular. The principles involved are outlined, and a mobile positron camera system being developed jointly by Rolls-Royce, Castrol, the University of Birmingham and the Rutherford-Appleton Laboratory of the SERC is described. Finally, illustrative examples of the camera's capability are presented drawn from its use to study lubricating fluid flow in the bearings of a Viper gas turbine engine on test up to 100% full power. (author)

  17. A multicrystal two dimensional BGO detector system for positron emission tomography

    International Nuclear Information System (INIS)

    Casey, M.E.; Nutt, R.

    1986-01-01

    This paper presents a discussion of a new multicrystal detector system as it is implemented in Positron Emission Tomography. The system consists of a 32 x 8 matrix of BGO crystals, a tuned light pipe, and four photomultipliers. The electronics that decodes the position consists of fast preamps, gated integrators, and level comparators. This detector represents a major development toward reducing the cost of PET

  18. Positron emission tomography in drug development and drug evaluation

    NARCIS (Netherlands)

    Paans, AMJ; Vaalburg, W

    2000-01-01

    Positron Emission Tomography (PET) is an imaging modality which can determine biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labeled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation

  19. Positron emission tomography in drug development

    International Nuclear Information System (INIS)

    Rubin, R. H.; Fischman, A. J.

    1997-01-01

    There are four kinds of measurements that can be carried out with positron emission tomography (PET) that can contribute significantly to the process of drug development: pharmacodynamic measurement of tissue metabolism influenced by a given drug; precise measurements of tissue blood flow; tissue pharmacokinetics of a given drug following administration of a particular dose; and the temporal course of ligand-receptor interaction. One or more of these measurements can greatly improve the decision making involved in determining the appropriate dose of a drug, the clinical situations in which a drug might be useful, and the linkage of pharmacokinetics with pharmacodynamics, which is at the heart of effective drug development. The greater the potential of a particular compound as a therapeutic agent, the greater the potential for PET to contribute to the drug development process

  20. A positron emission tomography study of cardiac sequelae in children with Kawasaki disease, 1

    International Nuclear Information System (INIS)

    Ohmochi, Yutaka

    1994-01-01

    This study quantitatively measured regional myocardial blood flow (MBF) and perfusable tissue fraction (pTF) in 25 children (mean age: 17.2±2.7) with Kawasaki disease using positron emission tomography and H 2 15 O. Patients were divided into three groups based on coronary angiographic findings. Group 1 consisted of 11 patients with normal coronary angiograms; Group 2, 7 patients with stenotic coronary lesions. There were no significant differences in MBF and pTF among 5 divided regions on the left ventricular wall. Average MBF at rest in Group 1 was 0.91±0.19 ml/min/g. There was a poor correlation between MBF estimated positron emission tomography and patient's age in Group 1. (r=-0.374, Y=-0.0234X + 1.254: p 2 15 O, to determine the functional capacity of coronary artery lesions and myocardial damage in children with Kawasaki disease. (author)

  1. Applications of positron emission tomography to psychiatry

    International Nuclear Information System (INIS)

    Volkow, N.D.; Brodie, J.D.; Gomez-mont, F.

    1985-01-01

    The brain's inaccessibility has hampered investigation of the metabolic changes underlying the behavioral and psychological symptoms of psychiatric patients. Using positron emission transaxial tomography (PET) to study the functioning human brain opens the possibility of directly investigating the patterns of activity associated with mental illness. A major focus of present-day research in psychiatry has been to identify etiological agents that fit a medical model of psychiatric illness. Experiments seeking pathophysiological indices that would permit objective classification of psychiatric illnesses have failed to reveal consistent abnormalities. The lack of consistency is explained in part by research designs that deal with the brain as if it were a homogeneous organ. PET offers a unique technique for monitoring the regional biochemical activity that is associated with the different ''brain states'' and ''brain traits'' of normal subjects and psychiatric patients

  2. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging

    Czech Academy of Sciences Publication Activity Database

    Koziolová, Eva; Goel, S.; Chytil, Petr; Janoušková, Olga; Barnhart, T. E.; Cai, W.; Etrych, Tomáš

    2017-01-01

    Roč. 9, č. 30 (2017), s. 10906-10918 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA15-02986S; GA MZd(CZ) NV16-28594A; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers * positron emission tomography ( PET ) * fluorescence imaging Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.367, year: 2016

  3. A promising new mechanism of ionizing radiation detection for positron emission tomography: Modulation of optical properties

    OpenAIRE

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-01-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we...

  4. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  5. Positron emission tomography and basal ganglia functions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1990-05-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs.

  6. Positron emission tomography and basal ganglia functions

    International Nuclear Information System (INIS)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi

    1990-01-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs

  7. New Possibilities of Positron-Emission Tomography

    Science.gov (United States)

    Volobuev, A. N.

    2018-01-01

    The reasons for the emergence of the angular distribution of photons generated as a result of annihilation of an electron and a positron in a positron-emission tomograph are investigated. It is shown that the angular distribution of the radiation intensity (i.e., the probability of photon emission at different angles) is a consequence of the Doppler effect in the center-of-mass reference system of the electron and the positron. In the reference frame attached to the electron, the angular distribution of the number of emitted photons does not exists but is replaced by the Doppler shift of the frequency of photons. The results obtained in this study make it possible to extend the potentialities of the positron-emission tomograph in the diagnostics of diseases and to obtain additional mechanical characteristics of human tissues, such as density and viscosity.

  8. Cardiological applications of positron emission tomography

    International Nuclear Information System (INIS)

    Schelbert, H.; Czernin, J.

    1994-01-01

    Positron emission tomography (PET) expands the diagnostic possibilities of nuclear medicine techniques for the diagnosis of coronary artery disease and, especially, for the identification of myocardial viability. The presence of coronary artery disease can be detected by evaluation of myocardial blood flow at rest and during pharmacologically induced hyperemia with a sensitivity of 84 to 98% and a specificity of 78 to 100% according to recent studies. Comparative investigations in the same patients have demonstrated a significant gain in the diagnostic accuracy of PET as compared with single photon emission computed tomography (SPECT). PET has influenced even more profoundly the identification of myocardial viability. Measured against the functional outcome of regional contractile function after successful revascularization, an increase of glucose utilization relative to regional myocardial blood flow is 77 to 85% accurate in identifying reversibly injured myocardium. Conversely, PET is 78 to 92% accurate in identifying myocardium as irreversibly injured when pre-operative glucose uptake was reduced or absent. Recent studies have indicated that it is possible to predict to some extent post-revascularization improvement in left ventricular function as well as in congestive heart failure related symptoms in patients with ischemic cardiomyopathy. Furthermore, PET can identify patients with an increased risk of mortality and morbidity as a result of ischemic heart disease and, thus, stratify patients to the most appropriate and cost-effective therapeutic approach. (authors)

  9. Emission tomography with positrons principle, physical performances of a ring detector and quantitative possibilities

    International Nuclear Information System (INIS)

    Soussaline, F.; Plummer, D.; Todd Pokropek, A.E.; Loc'h, C.; Comar, D.

    1979-01-01

    Satisfactory qualitative and quantitative data in positron emission tomography requires the use of a well adapted tomographic system. A number of parameters have been identified which can be considered as the critical characteristics for evaluation and intercomparison of such systems. Using these the choice of a single slice ring positron camera could be justified by its physical performance, which is presented and discussed. Series of physical and mathematical simulations allow an appropriate knowledge of such a system, which has been in use for more than a year in a clinical environment. These studies aid to the interpretation of very interesting physiopathologic studies. In principle, a positron tomographic system permits measurement of absolute quantitative concentration values, which are essential for precise metabolic studies. The main sources of error comprising the calibration of the system, the tail effects and the precision for attenuation correction are analysed. When taking in account these errors, a precision of the order of 10% should be obtainable [fr

  10. Positron emission tomography (PET) in psychiatry

    International Nuclear Information System (INIS)

    Buchsbaum, M.S.

    1984-01-01

    In the past the approach to the brain has been necessarily indirect, employing peripheral fluids to assess central and regional neurochemical processes. Blood, urine, skin and muscle biopsy, and cerebrospinal fluid are valuable reflectors of the neurochemical and neuropharmacological activity of the brain, but are removed in time and place from disordered thought processes and diluted by the products of both functional and dysfunctional brain systems. Biopsy studies have helped in studying the functional disorders of organs like the liver, but they are destructive to the brain and less useful because unlike these organs, the brain has a regional variation in its chemistry. The experimental insights from animal studies focusing on the pharmacology of individual cell groups - in striatum or locus coeruleus, for example - cannot easily or unambigiously be applied to clinical populations. Positron emission tomography (PET) is a versatile approach utilizing the mathematics of x-ray transmission scanning (CT scanning) to produce slice images of radioisotope distribution. PET makes possible a wide range of metabolic studies. Positron emitters such as carbon-11 or fluorine-18 can be used to label glucose, amino acids, drugs, neurotransmitter precursors, and many other molecules and examine their distribution and fate in discrete cell groups

  11. Positron emission tomography for staging of oesophageal and gastroesophageal malignancy

    NARCIS (Netherlands)

    Kole, AC; Plukker, JT; Nieweg, OE; Vaalburg, W

    Positron emission tomography (PET) with [F-18]-fluoro-2-deoxy-D-glucose (FDG) was prospectively investigated as a means of detecting metastatic disease in patients with oesophageal tumours and compared with computerized tomography (CT), with the surgical findings as a gold standard. Twenty-six

  12. 18 F-fluorodeoxyglucose positron emission tomography-computed tomography for preoperative lymph node staging in patients undergoing radical cystectomy for bladder cancer: a prospective study.

    Science.gov (United States)

    Hitier-Berthault, Maryam; Ansquer, Catherine; Branchereau, Julien; Renaudin, Karine; Bodere, Françoise; Bouchot, Olivier; Rigaud, Jérôme

    2013-08-01

    The objective of our study was to analyze the diagnostic performance of (18) F-fluorodeoxyglucose positron emission tomography-computed tomography for lymph node staging in patients with bladder cancer before radical cystectomy and to compare it with that of computed tomography. A total of 52 patients operated on between 2005 and 2010 were prospectively included in this prospective, mono-institutional, open, non-randomized pilot study. Patients who had received neoadjuvant chemotherapy or radiotherapy were excluded. (18) F-fluorodeoxyglucose positron emission tomography-computed tomography in addition to computed tomography was carried out for lymph node staging of bladder cancer before radical cystectomy. Lymph node dissection during radical cystectomy was carried out. Findings from (18) F-fluorodeoxyglucose positron emission tomography-computed tomography and computed tomography were compared with the results of definitive histological examination of the lymph node dissection. The diagnostic performance of the two imaging modalities was assessed and compared. The mean number of lymph nodes removed during lymph node dissection was 16.5 ± 10.9. Lymph node metastasis was confirmed on histological examination in 22 cases (42.3%). This had been suspected in five cases (9.6%) on computed tomography and in 12 cases (23.1%) on (18) F-fluorodeoxyglucose positron emission tomography-computed tomography. Sensitivity, specificity, positive predictive value, negative predictive value, relative risk and accuracy were 9.1%, 90%, 40%, 57.4%, 0.91 and 55.7%, respectively, for computed tomography, and 36.4%, 86.7%, 66.7%, 65%, 2.72, 65.4%, respectively, for (18) F-fluorodeoxyglucose positron emission tomography-computed tomography. (18) F-fluorodeoxyglucose positron emission tomography-computed tomography is more reliable than computed tomography for preoperative lymph node staging in patients with invasive bladder carcinoma undergoing radical cystectomy. © 2012 The Japanese

  13. Positron emission tomography of incidentally detected small pulmonary nodules

    DEFF Research Database (Denmark)

    Fischer, B M; Mortensen, J; Dirksen, A

    2004-01-01

    The aim of this study was to assess the value of fluorodeoxyglucose positron emission tomography (FDG PET) imaging of small pulmonary nodules incidentally detected by spiral computed tomography (CT) in a high-risk population. Ten patients (five females, five males, aged 54-72 years) were recruited...

  14. RELIABILITY OF POSITRON EMISSION TOMOGRAPHY-COMPUTED TOMOGRAPHY IN EVALUATION OF TESTICULAR CARCINOMA PATIENTS.

    Science.gov (United States)

    Nikoletić, Katarina; Mihailović, Jasna; Matovina, Emil; Žeravica, Radmila; Srbovan, Dolores

    2015-01-01

    The study was aimed at assessing the reliability of 18F-fluorodeoxyglucose positron emission tomography-computed tomography scan in evaluation of testicular carcinoma patients. The study sample consisted of 26 scans performed in 23 patients with testicular carcinoma. According to the pathohistological finding, 14 patients had seminomas, 7 had nonseminomas and 2 patients had a mixed histological type. In 17 patients, the initial treatment was orchiectomy+chemotherapy, 2 patients had orchiectomy+chemotherapy+retroperitoneal lymph node dissection, 3 patients had orchiectomy only and one patient was treated with chemotherapy only. Abnormal computed tomography was the main cause for the oncologist to refer the patient to positron emission tomography-computed tomography scan (in 19 scans), magnetic resonance imaging abnormalities in 1 scan, high level oftumor markers in 3 and 3 scans were perforned for follow-up. Positron emission tomography-computed tomography imaging results were compared with histological results, other imaging modalities or the clinical follow-up of the patients. Positron emission tomography-computed tomography scans were positive in 6 and negative in 20 patients. In two patients, positron emission tomography-computed tomography was false positive. There were 20 negative positron emission omography-computed tomography scans perforned in 18 patients, one patient was lost for data analysis. Clinically stable disease was confirmed in 18 follow-up scans performed in 16 patients. The values of sensitivty, specificity, accuracy, and positive- and negative predictive value were 60%, 95%, 75%, 88% and 90.5%, respectively. A hgh negative predictive value obtained in our study (90.5%) suggests that there is a small possibility for a patient to have future relapse after normal positron emission tomography-computed tomography study. However, since the sensitivity and positive predictive value of the study ire rather low, there are limitations of positive

  15. Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 68Ga-EDTA and 77Kr

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Meyer, E.; Robertson, J.S.; Feindel, W.

    1977-01-01

    Dynamic positron emission tomographic studies were performed on over 120 patients with occlusive cerebrovascular disease, arteriovenous malformations, and brain tumors, using the positron section scanner, consisting of a ring of 32 scintillation detectors. The radiopharmaceuticals were nondiffusible 68 Ga-EDTA for transit time and uptake studies and the diffusible tracer, 77 Kr, for quantitative regional cerebral blood flow studies in every square centimeter of the cross section of the head. The results of dynamic positron emission tomography in correlation with the results from the gamma scintillation camera dynamic studies and computed tomography (CT) scans are discussed

  16. Positron Emission Tomography Computed Tomography: A Guide for the General Radiologist.

    Science.gov (United States)

    Beadsmoore, Clare; Newman, David; MacIver, Duncan; Pawaroo, Davina

    2015-11-01

    Cancer remains a leading cause of death in Canada and worldwide. Whilst advances in anatomical imaging to detect and monitor malignant disease have continued over the last few decades, limitations remain. Functional imaging, such as positron emission tomography (PET), has improved the sensitivity and specificity in detecting malignant disease. In combination with computed tomography (CT), PET is now commonly used in the oncology setting and is an integral part of many cancer patients' pathways. Although initially the CT component of the study was purely for attenuation of the PET imaging and to provide anatomical coregistration, many centers now combine the PET study with a diagnostic quality contrast enhanced CT to provide one stop staging, thus refining the patient's pathway. The commonest tracer used in everyday practice is FDG (F18-fluorodeoxyglucose). There are many more tracers in routine clinical practice and those with emerging roles, such as 11C-choline, useful in the imaging of prostate cancer; 11C-methionine, useful in imaging brain tumours; C11-acetate, used in imaging hepatocellular carcinomas; 18F-FLT, which can be used as a marker of cellular proliferation in various malignancies; and F18-DOPA and various 68Ga-somatostatin analogues, used in patients with neuroendocrine tumours. In this article we concentrate on FDG PETCT as this is the most commonly available and widely utilised tracer now used to routinely stage a number of cancers. PETCT alters the stage in approximately one-third of patients compared to anatomical imaging alone. Increasingly, PETCT is being used to assess early metabolic response to treatment. Metabolic response can be seen much earlier than a change in the size/volume of the disease which is measured by standard CT imaging. This can aid treatment decisions in both in terms of modifying therapy and in addition to providing important prognostic information. Furthermore, it is helpful in patients with distorted anatomy from surgery

  17. Positron emission tomography for neurologists.

    Science.gov (United States)

    Miletich, Robert S

    2009-02-01

    This short review focuses on practical, present day, clinical application of FDG PET, a technology available to practicing neurologists for managing their patients. Indications in the disease states of dementia, neuro-oncology, epilepsy, parkinsonism, and other less common settings are reviewed. Many third-party payers currently make reimbursements based on these indications. By measuring an aspect of brain function, PET provides information that often is unobtainable from other sources, thus facilitating more rationale and cost-effective management, which can only benefit the patient, the referring physician, and the health care system as a whole.

  18. Positron emission tomography clinical practice

    CERN Document Server

    Valk, Peter E; Bailey, Dale L; Townsend, David W; Maisey, Michael N

    2006-01-01

    This book provides a contemporary reference to the science, technology and clinical applications of PET and PET/CT. The opening chapters summarize the scientific aspects of PET and PET/CT including physics, instrumentation, radiation dosimetry and radiation protection. A chapter on normal variants in FDG PET imaging serves as an introduction to the clinical chapters, which cover oncology applications and have been updated to include the impact of FDG PET/CT imaging in oncology. The book concludes with chapters on the use of PET and PET/CT in cardiology and neurology and PET imaging of infectio

  19. Geneva University - The AX-PET experiment : A demonstrator for an axial Positron Emission Tomography

    CERN Multimedia

    Université de Genève

    2012-01-01

    Geneva University École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 14 March 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE 11.15 a.m. - Science II, Auditoire 1S081, 30, quai Ernest-Ansermet, 1211 Genève 4 The AX-PET experiment : A demonstrator for an axial Positron Emission Tomography Dr Chiara CASELLA   ETH Zurich   PET (Positron Emission Tomography) is a tool for in-vivo functional imaging, successfully used since the earliest days of nuclear medicine. It is based on the detection of the two coincident 511 keV photons from the annihilation of a positron, emitted from a radiotracer injected into the body. Tomographic analysis of the coincidence data allows for a 3D reconstructed image of the source distribution. The AX-PET experiment proposes a novel geometrical approach for a PET scanner, in which l...

  20. Positron emission tomography/computed tomography scanning for ...

    African Journals Online (AJOL)

    Background: Although the site of nosocomial sepsis in the critically ill ventilated patient is usually identifiable, it may remain occult, despite numerous investigations. The rapid results and precise anatomical location of the septic source using positron emission tomography (PET) scanning, in combination with computed ...

  1. Fluorodeoxyglucose positron emission tomography/computed tomography findings in a patient with cerebellar mutism after operation in posterior fossa

    Directory of Open Access Journals (Sweden)

    Gonca Kara Gedik

    2017-03-01

    Full Text Available Cerebellar mutism is a transient period of speechlessness that evolves after posterior fossa surgery in children. Although direct cerebellar and brain stem injury and supratentorial dysfunction have been implicated in the mediation of mutism, the pathophysiological mechanisms involved in the evolution of this kind of mutism remain unclear. Magnetic resonance imaging revealed dentatothalamocortical tract injuries and single photon emission computed tomography showed cerebellar and cerebral hypoperfusion in patients with cerebellar mutism. However, findings with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT in this group of patients have not been documented previously. In this clinical case, we report a patient who experienced cerebellar mutism after undergoing a posterior fossa surgery. Right cerebellar and left frontal lobe hypometabolism was shown using FDG PET/CT. The FDG metabolism of both the cerebellum and the frontal lobe returned to normal levels after the resolution of the mutism symptoms.

  2. A new gamma camera for positron emission tomography

    International Nuclear Information System (INIS)

    Schotanus, P.

    1988-01-01

    This thesis describes the detection of annihiliation radiation employing a new principle: radiation is absorbed in a barium fluoride (BaF 2) crystal and the resulting scintillation light is detected in a multiwire proportional chamber filled with a photsensitive vapour. The application of such a detector for PET is new; the use of a high density fast scintillator in combination with a low pressure wire chamber offers a good detection efficiency and permits high count rates because of the small dead time. In this work, the physical background of the above detection mechanism is explored and the performance parameters of a gamma camera using this new principle, are determined. Furthermore, a comprehensive research on the scintillation mechanism and physical characteristics of the increasingly popular BaF 2 scintillator is presented. Also, a new class of ultraviolet (UV) scintillation materials, consisting of rare earth doped fluorides, is introduced. (author). 211 refs.; 30 figs.; 17 tabs

  3. PET, Positron emission tomography: Presentation of a clinical case

    International Nuclear Information System (INIS)

    Sierralta C, Paulina; Jofre M, M. Josefina; Gonzalez E, Patricio; Massardo V, Teresa; Humeres A, Pamela; Canessa G, Jose

    2003-01-01

    A patient with a solitary pulmonary nodule is presented. She was studied with PET using F-18 FDG. The metabolic images demonstrated increased uptake in the nodule and 2 additional areas suggestive of extension, not seen in anatomic diagnostic procedures. These findings were compatible with a malignant tumour with metastasis (au)

  4. PETRIC - A positron emission tomography readout integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Pedrali-Noy, Marzio; Gruber, Gregory; Krieger, Bradley; Mandelli, Emmanuele; Meddeler, Gerrit; Moses, William; Rosso, Valeria

    2000-11-05

    We present architecture, critical design issues and performance measurements of PETRIC, a 64-channel mixed signal front-end integrated circuit (IC) for reading out a photodiode (PD) array coupled with LSO scintillator crystals for a medical imaging application (PET). Each channel consists of a low noise charge sensitive pre-amplifier (CSA), an RC-CR pulse shaper and a winner-take-all (WTA) multiplexer that selects the channel with the largest input signal. Triggered by an external timing signal, a switch opens and a capacitor stores the peak voltage of the winner channel. The shaper rise and fall times are adjustable by means of external current inputs over a continuous range of 0.7 (mu)s to 9 (mu)s. Power consumption is 5.4 mW per channel, measured Equivalent Noise Charge (ENC) at 1 (mu)s peaking time. Zero leakage current is 33 rms electrons plus 7.3 rms electrons per pF of input capacitance. Design is fabricated in 0.5 (mu)m 3.3V CMOS technology.

  5. A study of conduction aphasia by positron emission tomography

    International Nuclear Information System (INIS)

    Shoji, Mikio; Harigawa, Yasuo; Kawarabayashi, Takeshi; Hirai, Shunsaku; Tamada, Junpei.

    1988-01-01

    We reported two cases of conduction aphasia with distinctive language disorder from early stage of stroke, as well as their cerebral blood flow and oxygen consumption investigated with PET. The case was a 72-year-old right handed man whose speech disturbance began acutely. On admission, neurological examination revealed hand pronation sign on the right and speech disturbance. Other neurological findings including cortical functions were normal. Brain CT scan showed low density area in the white matter of the left supramarginal gyrus. The diagnosis was cerebral infarction. The case 2 was a 64-year-old right handed man. He suffered right hemiparesis 2 months before. Neurological examination revealed mild right hemiparesis and speech disturbance. Other cortical functions were noncontributory. Brain CT scan showed old subcortical infarction of the left frontal lobe and new cerebral infarction. with supramarginal gyrus. The low density area of the supramarginal cortex extended into the subcortical white matter. The language performances in these two cases were similar. Two patients were definitely fluent, but the verbal output was contaminated by paraphasias which were predominantly literal. They performed poorly when attempting to repeat despite good comprehension. Thus, the primary characteristics of conduction aphasia were present. PET studies resulted as follows. 1) rCBF reduced 36 % in the supramarginal cortex, 50 % in the white matter. 2) rCMRO 2 reduced 37 % in the supramarginal cortex, 45 % in the white matter. 3) The CBF and the CMRO 2 images indicated that cerebral blood flow and oxygen consumption reduced in wider range of area than that shown by brain CT. These results indicated that not only the cortex but also the white matter were damaged in conduction aphasia and several methods including PET should be used to determine the locus of abnormality in conduction aphasia. (author)

  6. Caffeine and human cerebral blood flow: A positron emission tomography study

    International Nuclear Information System (INIS)

    Cameron, O.G.; Modell, J.G.; Hariharan, M.

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p a CO 2 and increased systolic blood pressure significantly; the change in p a CO 2 did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed

  7. New detector developments for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.; Lorenz, E.

    1998-01-01

    The strength of quantitative, functional imaging using positron emission tomography, specially in small animals, is limited due to the spatial resolution. Therefore, various tomograph designs employing new scintillators, light sensors, or coincidence electronic are investigated to improve resolution without losses in sensitivity. Luminous scintillators with short light decay time in combination with novel readout schemes using photomultipliers or semiconductor detectors are currently tested by several groups and are implemented in tomographs for small animals. This review summarises the state of development in high resolution positron emission tomography with a detailed description of a system incorporating avalanche photodiode arrays and small scintillation crystals. (orig.) [de

  8. Amorphous silicon detectors in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  9. Amorphous silicon detectors in positron emission tomography

    International Nuclear Information System (INIS)

    Conti, M.; Perez-Mendez, V.

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters ε 2 τ's are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs

  10. Positron emission tomography - a new technique for studies of the central nervous system

    International Nuclear Information System (INIS)

    Eriksson, Lars; Dahlbom, Magnus; Widen, Lennart

    1990-01-01

    Positron emission tomography (PET) has become an important tool to study the central nervous system. Examples of such studies are cerebral blood flow and metabolism and determination of receptor characteristics of the brain. In the following the basic principles and the physics behind PET are given. Different aspects are discussed such as detector design, image reconstruction and data analyses. Since quantification is essential in PET, data have to be corrected for absorption, scatter and random coincidences. These corrections and their influence on image data are discussed. A review of state-of-the-art PET research of the brain is given. (author)

  11. A case of skeletal tuberculosis and psoas abscess: disease activity evaluated using (18) F-fluorodeoxyglucose positron emission tomography-computed tomography.

    Science.gov (United States)

    Kimizuka, Yoshifumi; Ishii, Makoto; Murakami, Koji; Ishioka, Kota; Yagi, Kazuma; Ishii, Ken; Watanabe, Kota; Soejima, Kenzo; Betsuyaku, Tomoko; Hasegawa, Naoki

    2013-11-14

    Psoas abscess complicating tuberculous spondylitis is a rare morbidity in extrapulmonary tuberculosis. There are no established guidelines for evaluating the clinical response of psoas abscess. Although several studies have shown that positron emission tomography-computed tomography with 18 F-fluorodeoxyglucose can play a potential role in diagnosing multifocal tuberculosis and monitoring the clinical response of pulmonary tuberculosis, to our knowledge, this is the first report demonstrating that positron emission tomography-computed tomography is useful for evaluating local inflammation and disease activity of a tuberculous psoas abscess. We report a case of multifocal bone and lymph node tuberculosis with concomitant lumbar psoas abscess in a 77-year-old man, along with a literature review. An initial positron emission tomography-computed tomography scan showed intense 18 F-fluorodeoxyglucose accumulation in the sternum, ribs, vertebrae, and lymph nodes. The patient was successfully treated with antitubercular agents and computed tomography-guided drainage therapy. A follow-up positron emission tomography-computed tomography after abscess drainage and 9 months of antitubercular drug treatment revealed that the majority of lesions improved; however, protracted inflammation surrounding the psoas abscess was still observed. These results indicate that disease activity of psoas abscess can remain, even after successful drainage and antitubercular medication regime of appropriate duration. We have successfully followed up the extent of skeletal tuberculosis complicated with psoas abscess by positron emission tomography-computed tomography. In this patient, positron emission tomography-computed tomography is useful for evaluating the disease activity of tuberculous psoas abscess and for assessing the appropriate duration of antitubercular drug therapy in psoas abscess.

  12. A case of skeletal tuberculosis and psoas abscess: disease activity evaluated using 18 F-fluorodeoxyglucose positron emission tomography-computed tomography

    International Nuclear Information System (INIS)

    Kimizuka, Yoshifumi; Hasegawa, Naoki; Ishii, Makoto; Murakami, Koji; Ishioka, Kota; Yagi, Kazuma; Ishii, Ken; Watanabe, Kota; Soejima, Kenzo; Betsuyaku, Tomoko

    2013-01-01

    Psoas abscess complicating tuberculous spondylitis is a rare morbidity in extrapulmonary tuberculosis. There are no established guidelines for evaluating the clinical response of psoas abscess. Although several studies have shown that positron emission tomography-computed tomography with 18 F-fluorodeoxyglucose can play a potential role in diagnosing multifocal tuberculosis and monitoring the clinical response of pulmonary tuberculosis, to our knowledge, this is the first report demonstrating that positron emission tomography-computed tomography is useful for evaluating local inflammation and disease activity of a tuberculous psoas abscess. We report a case of multifocal bone and lymph node tuberculosis with concomitant lumbar psoas abscess in a 77-year-old man, along with a literature review. An initial positron emission tomography-computed tomography scan showed intense 18 F-fluorodeoxyglucose accumulation in the sternum, ribs, vertebrae, and lymph nodes. The patient was successfully treated with antitubercular agents and computed tomography-guided drainage therapy. A follow-up positron emission tomography-computed tomography after abscess drainage and 9 months of antitubercular drug treatment revealed that the majority of lesions improved; however, protracted inflammation surrounding the psoas abscess was still observed. These results indicate that disease activity of psoas abscess can remain, even after successful drainage and antitubercular medication regime of appropriate duration. We have successfully followed up the extent of skeletal tuberculosis complicated with psoas abscess by positron emission tomography-computed tomography. In this patient, positron emission tomography-computed tomography is useful for evaluating the disease activity of tuberculous psoas abscess and for assessing the appropriate duration of antitubercular drug therapy in psoas abscess

  13. Attenuation Correction Strategies for Positron Emission Tomography/Computed Tomography and 4-Dimensional Positron Emission Tomography/Computed Tomography

    OpenAIRE

    Pan, Tinsu; Zaidi, Habib

    2013-01-01

    This article discusses attenuation correction strategies in positron emission tomography/computed tomography (PET/CT) and 4 dimensional PET/CT imaging. Average CT scan derived from averaging the high temporal resolution CT images is effective in improving the registration of the CT and the PET images and quantification of the PET data. It underscores list mode data acquisition in 4 dimensional PET and introduces 4 dimensional CT popular in thoracic treatment planning to 4 dimensional PET/CT. ...

  14. Functional cardiac imaging: positron emission tomography

    International Nuclear Information System (INIS)

    Mullani, N.A.; Gould, K.L.

    1984-01-01

    Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures

  15. Synthesis and biodistribution of [C-11]procaterol, a beta(2)-adrenoceptor agonist for positron emission tomography

    NARCIS (Netherlands)

    Visser, TJ; van der Wouden, EA; van Waarde, A; Doze, P; Elsinga, PH; Vaalburg, W

    The potent, subtype-selective radioligand (+/-)-erythro-5-(1-hydroxy-2-[C-11]isopropyl-aminobutyl)-8-hydroxy-carbostyril ([C-11]procaterol) was synthesized and evaluated for visualization of pulmonary beta(2)-adrenoceptors with positron emission tomography (PET). Procaterol was labelled by reductive

  16. MR imaging and positron emission tomography of cortical heterotopia

    Energy Technology Data Exchange (ETDEWEB)

    Bairamian, D.; Di Chiro, G.; Theodore, W.H.; Holmes, M.D.; Dorwart, R.H.; Larson, S.M.

    1985-11-01

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using YF-2-deoxyglucose.

  17. MR imaging and positron emission tomography of cortical heterotopia

    International Nuclear Information System (INIS)

    Bairamian, D.; Di Chiro, G.; Theodore, W.H.; Holmes, M.D.; Dorwart, R.H.; Larson, S.M.

    1985-01-01

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using 18 F-2-deoxyglucose

  18. Hemiballismus: Study of a case using positron emission tomography with 18fluoro-2-deoxyglucose

    International Nuclear Information System (INIS)

    Dubinsky, R.M.; Greenberg, M.; Di Chiro, G.; Baker, M.; Hallett, M.

    1989-01-01

    A 64-year-old man had right-sided persistent hemiballismus. Cerebral computed tomography (CT) and 0.5-T magnetic resonance imaging (MRI) showed no abnormalities, but 1.5-T MRI showed decreased signal intensity of the putamina, greater on the left than on the right. The subthalamic area was normal on CT and MRI. Positron emission tomography with 18fluoro2-deoxyglucose showed marked hypometabolism of the left putamen (60% of the right) and hypermetabolism of the left parietal lobe (138% of the right). The decreased metabolism of the left putamen may indicate a reduction in neuronal firing. The pathophysiology of the hemiballismus in this case may be loss of tonic inhibition of the lateral globus pallidus from the putamen, leading in turn to greater inhibition of the subthalamic nucleus, less excitation of the medial globus pallidus, and less inhibition of the thalamus and motor cortex, and thus allowing expression of the ballistic movements

  19. Extensive Tattoos Mimicking Lymphatic Metastasis on Positron Emission Tomography Scan in a Patient With Cervical Cancer.

    Science.gov (United States)

    Grove, Narine; Zheng, Ma; Bristow, Robert E; Eskander, Ramez N

    2015-07-01

    Positron emission tomography (PET) fused with computed tomography (CT) imaging is common in the clinical assessment of patients with locally advanced cervical cancer. Limitations to the utilization and interpretation of PET-CT scans in patients with cervical cancer have been described, including false-positive findings secondary to tattoo ink. A 32-year-old woman presented with clinical stage 1B1 cervical cancer and extensive tattoos of the lower extremities. Preoperative PET-CT scan identified two ileac lymph nodes with increased fluorine-18-deoxyglucose uptake suspicious for metastatic disease. At the time of surgical resection, bilateral pigmented lymph nodes were identified with histologic examination showing deposition of tattoo ink and no malignant cells. Physicians should be cognizant of the possible effects of tattoos on PET-CT findings while counseling patients and formulating a treatment program.

  20. Positron emission tomography of the heart

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  1. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease

  2. 3D fast reconstruction in positron emission tomography

    International Nuclear Information System (INIS)

    Egger, M.L.; Scheurer, A. Hermann; Joseph, C.; Morel, C.

    1996-01-01

    The issue of long reconstruction times in positron emission tomography (PET) has been addressed from several points of view, resulting in an affordable dedicated system capable of handling routine 3D reconstructions in a few minutes per frame : on the hardware side using fast processors and a parallel architecture, and on the software side, using efficient implementation of computationally less intensive algorithms

  3. Cobalt-55 positron emission tomography in recurrent ischaemic stroke

    NARCIS (Netherlands)

    De Reuck, J; Santens, P; Keppens, J; De Bleecker, J; Strijckmans, K; Goethals, P; Lemahieu, [No Value; Korf, J

    The present study investigates if Cobalt-55 (Co-55) positron emission tomography (PET) allows us to distinguish and detect recent, recurrent strokes in patients who had already suffered a previous infarct in the same vascular territory. Fourteen patients with recurrent strokes underwent a Co-55 PET

  4. Measurement of absolute bone blood flow by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nahmias, C.; Cockshott, W.P.; Garnett, E.S.; Belbeck, L.W.

    1986-03-01

    A method of measuring bone blood flow has been developed using /sup 18/F sodium fluoride and positron emission tomography. The blood flow levels are in line with those obtained experimentally from microsphere embolisation. This investigative method could be applied to elucidate a number of clinical questions involving bone perfusion.

  5. Amyloid-β positron emission tomography imaging probes

    DEFF Research Database (Denmark)

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt

    2013-01-01

    , a number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate...

  6. Positron Emission Tomography : background, possibilities and perspectives in neuroscience

    NARCIS (Netherlands)

    Paans, AMJ

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way. This includes the measurement of the pharmacokinetics of labeled drugs and the measurement of the effects of drugs and/or therapy on metabolism. Also deviations of

  7. Quantification in dynamic and small-animal positron emission tomography

    NARCIS (Netherlands)

    Disselhorst, Johannes Antonius

    2011-01-01

    This thesis covers two aspects of positron emission tomography (PET) quantification. The first section addresses the characterization and optimization of a small-animal PET/CT scanner. The sensitivity and resolution as well as various parameters affecting image quality (reconstruction settings, type

  8. Detectors for high resolution dynamic positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1985-01-01

    Tomography is the technique of producing a photographic image of an opaque specimen by transmitting a beam of x-rays or gamma rays through the specimen onto an adjacent photographic film. The image results from variations in thickness, density, and chemical composition, of the specimen. This technique is used to study the metabolism of the human brain. This article examines the design of equipment used for high resolution dynamic positron emission tomography. 27 references, 5 figures, 3 tables

  9. Shielding design for positron emission tomography facility

    International Nuclear Information System (INIS)

    Abdallah, I.I.

    2007-01-01

    With the recent advent of readily available tracer isotopes, there has been marked increase in the number of hospital-based and free-standing positron emission tomography (PET) clinics. PET facilities employ relatively large activities of high-energy photon emitting isotopes, which can be dangerous to the health of humans and animals. This coupled with the current dose limits for radiation worker and members of the public can result in shielding requirements. This research contributes to the calculation of the appropriate shielding to keep the level of radiation within an acceptable recommended limit. Two different methods were used including measurements made at selected points of an operating PET facility and computer simulations by using Monte Carlo Transport Code. The measurements mainly concerned the radiation exposure at different points around facility using the survey meter detectors and Thermoluminescent Dosimeters (TLD). Then the set of manual calculation procedures were used to estimate the shielding requirements for a newly built PEF facility. The results from the measurement and the computer simulation were compared to the results obtained from the set manual calculation procedure. In general, the estimated weekly dose at the points of interest is lower than the regulatory limits for the little company of Mary Hospital. Furthermore, the density and the HVL for normal strength concrete and clay bricks are almost similar. In conclusion, PET facilities present somewhat different design requirements and are more likely to require additional radiation shielding. Therefore, existing shields at the little Company of Mary Hospital are in general found to be adequate and satisfactory and additional shielding was found necessary at the new PET facility in the department of Nuclear Medicine of the Dr. George Mukhari Hospital. By use of appropriate design, by implying specific shielding requirements and by maintaining good operating practices, radiation doses to

  10. Utility of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in a child with chronic granulomatous disease

    International Nuclear Information System (INIS)

    Garg, Gunjan; DaSilva, Raphaella; Bhalakia, Avni; Milstein, David M.

    2016-01-01

    We report the fluorodeoxyglucose positron emission tomography/computed tomography (FDG - PET/CT) findings in an 11-month-old boy with suspected milk protein allergy, presented to the hospital with 2-month history of fever of unknown origin and failure to thrive. It showed FDG avid lymphadenopathy above and below the diaphragm and splenic focus, which could represent diffuse inflammatory process or lymphoma. Subsequent jejunal biopsy showed non-necrotizing granulomas

  11. Usefulness of Positron Emission Tomography in Patients with Syphilis: A Systematic Review of Observational Studies.

    Science.gov (United States)

    Chen, Jian-Hua; Zheng, Xin; Liu, Xiu-Qin

    2017-05-05

    Diagnosis of syphilis is difficult. Follow-up and therapy evaluation of syphilitic patients are poor. Little is known about positron emission tomography (PET) in syphilis. This review was to systematically review usefulness of PET for diagnosis, disease extent evaluation, follow-up, and treatment response assessment in patients with syphilis. We searched PubMed, EMBASE, SCOPUS, Cochrane Library, Web of Science, ClinicalTrials.gov, and three Chinese databases (SinoMed, Wanfang, and CNKI) for English and Chinese language articles from inception to September 2016. We also collected potentially relevant studies and reviews using a manual search. The search keywords included the combined text and MeSH terms "syphilis" and "positron emission tomography". We included studies that reporting syphilis with a PET scan before and/or after antibiotic treatment. The diagnosis of syphilis was based on serological criteria or dark field microscopy. Outcomes include pre- and post-treatment PET scan, pre- and post-treatment computed tomography, and pre- and post-treatment magnetic resonance imaging. We excluded the articles not published in English or Chinese or not involving humans. Of 258 identified articles, 34 observational studies were included. Thirty-three studies were single-patient case reports and one study was a small case series. All patients were adults. The mean age of patients was 48.3 ± 12.1 years. In primary syphilis, increased fluorodeoxyglucose (FDG) accumulation could be seen at the site of inoculation or in the regional lymph nodes. In secondary syphilis with lung, bone, gastrointestinal involvement, or generalized lymphadenopathy, increased FDG uptake was the most commonly detected changes. In tertiary syphilis, increased glucose metabolic activity, hypometabolic lesions, or normal glucose uptake might be seen on PET. There were five types of PET scans in neurosyphilis. A repeated PET scan after treatment revealed apparent or complete resolution of the

  12. Fluorodeoxyglucose and C-Choline positron emission tomography for distinction of metastatic plexopathy and neuritis : a case report

    NARCIS (Netherlands)

    Bartels, Anna L.; Zeebregts, Clark J; Enting, Roeline; Slart, Riemer Hja

    2009-01-01

    INTRODUCTION: Fluorodeoxyglucose positron emission tomography scanning has an established role in the diagnostic work-up of many malignant diseases and also in the evaluation of cancer treatment response. Fluorodeoxyglucose positron emission tomography may, however be non-specific as infectious

  13. Towards a practical implementation of the MLE algorithm for positron emission tomography

    International Nuclear Information System (INIS)

    Llacer, J.; Andreae, S.; Veklerov, E.; Hoffman, E.J.

    1986-01-01

    Recognizing that the quality of images obtained by application of the Maximum Likelihood Estimator (MLE) to Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) appears to be substantially better than those obtained by conventional methods, the authors have started to develop methods that will facilitate the necessary research for a good evaluation of the algorithm and may lead to its practical application for research and routine tomography. They have found that the non-linear MLE algorithm can be used with pixel sizes which are smaller than the sampling distance, without interpolation, obtaining excellent resolution and no noticeable increase in noise. They have studied the role of symmetry in reducing the amount of matrix element storage requirements for full size applications of the algorithm and have used that concept to carry out two reconstructions of the Derenzo phantom with data from the ECAT-III instrument. The results show excellent signal-to-noise (S/N) ratio, particularly for data with low total counts, excellent sharpness, but low contrast at high frequencies when using the Shepp-Vardi model for probability matrices

  14. Performance evaluation of BGO block detectors used in positron emission tomography and a coincidence system

    International Nuclear Information System (INIS)

    Kim, J. H.; Choi, Y.; Lim, K. C.; Lee, M. Y.; Woo, S. K.; Lee, K. H.; Kim, S. E.; Choi, Y. S.; Kim, B. T.

    1999-01-01

    We investigated the basic performances of the BGO block detectors, which is used in the GE Advance positron emission tomography. The block detector is composed of 36 small BGO crystals coupled to two 2-channel photomultiplier tubes. In this study, we measured the crystal map and the intrinsic energy resolution of the detector. The coincidence signals between the detectors were also obtained using F-18. The intrinsic energy resolution of the block detector was 69% FWHM at 140 keV and 33% FWHM at 511 keV. High quality crystal map and the coincidence signals between the detectors were successfully obtained. The timing resolution of the detectors are being measured. The results of this study demonstrate the feasibility of developing high performance positron emission tomography

  15. Application of mathematical removal of positron range blurring in positron emission tomography

    International Nuclear Information System (INIS)

    Haber, S.F.; Derenzo, S.E.; Uber, D.

    1990-01-01

    The range of positrons in tissue is an important limitation to the ultimate spatial resolution achievable in positron emission tomography. In this work the authors have applied a Fourier deconvolution technique to remove range blurring in images taken by the Donner 600-crystal positron tomograph. Using phantom data, the authors have found significant improvement in the image quality and the FWHM for both 68 Ga and 82 Rb. These were successfully corrected so that the images and FWHM almost matched those of 18 F which has negligible positron range. However, statistical noise was increased by the deconvolution process and it was not practical to recover the full spatial resolution of the tomograph

  16. Positron-emission tomography as a new direction in radiation medicine development (scientometric analysis)

    International Nuclear Information System (INIS)

    Artamonova, N.O.; Masyich, O.V.; Pavlyichenko, Yu.V.; Shepeljev, A.G.; Kuryilo, Yu.P.; Ponomarenko, T.O.

    2009-01-01

    The contemporary state and prospects of positron-emission tomography (PET) application in diagnosis of cancer diseases are investigated. The comparative analysis of the image of the topical field in Medline and INIS allowed to allocate the zones of intensive investigation of PET efficacy at cancer diseases, investigations of the brain, lungs, heart as well as to establish the peculiarities of the search depending on the features of their search interfaces

  17. A statistical analysis of count normalization methods used in positron-emission tomography

    International Nuclear Information System (INIS)

    Holmes, T.J.; Ficke, D.C.; Snyder, D.L.

    1984-01-01

    As part of the Positron-Emission Tomography (PET) reconstruction process, annihilation counts are normalized for photon absorption, detector efficiency and detector-pair duty-cycle. Several normalization methods of time-of-flight and conventional systems are analyzed mathematically for count bias and variance. The results of the study have some implications on hardware and software complexity and on image noise and distortion

  18. Simultaneous emission and transmission scanning in positron emission tomography

    International Nuclear Information System (INIS)

    Satoh, Tomohiko; Tanaka, Kazumi; Kitamura, Keishi; Amano, Masaharu; Miura, Shuichi

    2001-01-01

    Examination by PET (positron emission tomography) scanning, following the dosage of 2-deoxy- 18 F fluoro-D-glucose (FDG), is positively utilized for the diagnosis of cancers, rather than for the purpose of studies. This is because the examination by FDG-PET (PET scanning following the dosage of FDG) ensures higher efficiency in discrimination of cancers, than conventional CT and PET. The method of whole body scanning by PET scanning following the dosage of FDG is effectively utilized not only for discrimination cancers, but also for determining the degree of malignancy of tumors and evaluating the methods of treatment of cancers. In conventional methods for examining the degree of malignancy of tumors and evaluating the methods of cancer treatment, it is necessary to correct for the gamma-ray attenuation, which requires a longer time for examination, increasing the physical and psychological pains of the patients. We have installed the simultaneous emission and transmission scanning capability into the HEADTOME-V of the Shimadzu SET-2000W Series positron emission tomographic scanning instruments, to establish an instrument that permits FDG-PET whole body scanning in actual clinical fields, with minimized physical and psychological pains of patients concerned, yet ensuring an outstandingly high examination efficiency. This report also presents some data obtained by this newly developed instrument and those obtained in practical applications. (author)

  19. Reliability of eye lens dosimetry in workers of a positron emission tomography radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    Silva, Teógenes A. da; Guimarães, Margarete C.; Meireles, Leonardo S.; Teles, Luciana L.D.; Lacerda, Marco Aurélio S.

    2016-01-01

    A new regulatory statement was issued concerning the eye lens radiation protection of persons in planned exposures. A debate was raised on the adequacy of the dosimetric quantity and on its method of measurement. The aim of this work was to establish the individual monitoring procedure with the EYE-D™ holder and a MCP-N LiF:Mg,Cu,P thermoluminescent chip detector for measuring the personal dose equivalent H_p(3) in workers of a Positron Emission Tomography Radiopharmaceutical Production Facility. - Highlights: • New regulatory statement was issued concerning eye lens radiation protection. • The calibration procedure of dosimeters for measuring H_p(3) was studied on a slab and cylindrical phantoms. • H_p(3) measurements in workers in a radiopharmaceutical production facility were done.

  20. A method for measuring the energy spectrum of coincidence events in positron emission tomography.

    Science.gov (United States)

    Goertzen, Andrew L; Stout, David B; Thompson, Christopher J

    2010-01-21

    Positron emission tomography (PET) system energy response is typically characterized in singles detection mode, yet there are situations in which the energy spectrum of coincidence events might be different than the spectrum measured in singles mode. Examples include imaging with isotopes that emit a prompt gamma in coincidence with a positron emission, imaging with low activity in a LSO/LYSO-based cameras, in which the intrinsic activity is significant, and in high scatter situations where the two 511 keV photons have different scattering probabilities (i.e. off-center line source). The ability to accurately measure the energy spectrum of coincidence events could be used for validating simulation models, optimizing energy discriminator levels and examining scatter models and corrections. For many PET systems operating in coincidence mode, the only method available for estimating the energy spectrum is to step the lower and upper level discriminators (LLD and ULD). Simple measurement techniques such as using a narrow sliding energy window or stepping only the LLD will not yield a spectrum of coincidence events that is accurate for cases where there are different energy components contributing to the spectrum. In this work we propose a new method of measuring the energy spectrum of coincidence events in PET based on a linear combination of two sets of coincident count measurements: one made by stepping the LLD and one made by stepping the ULD. The method was tested using both Monte Carlo simulations of a Siemens microPET R4 camera and measured data acquired on a Siemens Inveon PET camera. The results show that our energy spectrum calculation method accurately measures the coincident energy spectra for cases including the beta/gamma spectrum of the (176)Lu intrinsic activity present in the LSO scintillator crystals, a (68)Ge source and an (124)I source (in which there are prompt gamma-rays emitted together with the positron).

  1. GePEToS: A Geant4 Monte Carlo simulation package for positron emission tomography

    International Nuclear Information System (INIS)

    Jan, Sebastien; Collot, Johann; Gallin-Martel, Marie-Laure; Martin, Philippe; Mayet, Frederic; Tournefier, Edwige

    2003-01-01

    GePEToS is a simulation framework developed over the last few years for assessing the instrumental performance of future PET scanners. It is based on Geant4, written in Object- Oriented C++ and runs on Linux platforms. The validity of GePEToS has been tested on the well-known Siemens ECAT EXACT HR+ camera. The results of two application examples are presented: the design optimization of a liquid Xe μPET camera dedicated to small animal imaging as well as the evaluation of the effect of a strong axial magnetic field on the image resolution of a Concorde P4 μPET camera. Index Terms-Positron Emission Tomography, Monte Carlo Simulation, Geant 4. (authors)

  2. Caffeine and human cerebral blood flow: A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, O.G.; Modell, J.G.; Hariharan, M. (Univ. of Michigan Medical Center, Ann Arbor (USA))

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p{sub a}CO{sub 2} and increased systolic blood pressure significantly; the change in p{sub a}CO{sub 2} did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed.

  3. Correction of head movements in positron emission tomography using point source tracking system: a simulation study.

    Science.gov (United States)

    Nazarparvar, Babak; Shamsaei, Mojtaba; Rajabi, Hossein

    2012-01-01

    The motion of the head during brain positron emission tomography (PET) acquisitions has been identified as a source of artifact in the reconstructed image. In this study, a method is described to develop an image-based motion correction technique for correcting the post-acquisition data without using external optical motion-tracking system such as POLARIS. In this technique, GATE has been used to simulate PET brain scan using point sources mounted around the head to accurately monitor the position of the head during the time frames. The measurement of head motion in each frame showed a transformation in the image frame matrix, resulting in a fully corrected data set. Using different kinds of phantoms and motions, the accuracy of the correction method is tested and its applicability to experimental studies is demonstrated as well.

  4. Interstitial brachytherapy for liver metastases and assessment of response by positron emission tomography: a case report

    Directory of Open Access Journals (Sweden)

    Goura Kishor Rath

    2010-10-01

    Full Text Available For liver metastases (LM, image guided percutaneous ablative procedures such as radiofrequency ablation (RFA, laser induced thermal therapy (LITT and trans-arterial chemo-embolisation (TACE are increasingly being used because they are relatively safer, less invasive and equally effective. CT scan guided interstitial brachytherapy (IBT with a single large dose of radiation by high dose rate (HDR brachytherapy is a novel technique of treating LM and has shown good results. Positron emission tomography (PET scan may provide better information for assessing the response toIBT procedures. We hereby report a case of LM that was treated by HDR IBT and PET scan was done in addition to CT scan for assessing the response.

  5. Positron emission tomography in human hemispheric infarction: a study with 150 continuous inhalation technique

    International Nuclear Information System (INIS)

    Castaigne, Paul; Baron, J.C.; Bousser, M.G.; Comar, D.; Kellershohn, C.; CEA, 91 - Orsay

    1979-01-01

    Non-invasive tomographic imaging of cerebral blood flow and oxygen metabolism has now become possible with the 15 O continuous inhalation technique coupled with positron emission tomography (PET). We have for the first time applied this procedure in a large scale study of human hemispheric infarction. From this study, it may be concluded that: various hitherto undescribed patterns of disturbances in the perfusion/metabolism couple that occur in cerebral infarction have been documented by PET imaging of CBF and EO 2 . The EO 2 appears as an important physiological parameter in the study of recent cerebral infarction, and specific patterns of the CBF/EO 2 relationship are now emerging that may have important pathophysiologic, prognostic and therapeutic implications. Despite some limitations, the non invasive 15 O inhalation technique has a number of major specific advantages that make it particularly suited for the study of ischemic brain disorders

  6. Speech processing system demonstrated by positron emission tomography (PET). A review of the literature

    International Nuclear Information System (INIS)

    Hirano, Shigeru; Naito, Yasushi; Kojima, Hisayoshi

    1996-01-01

    We review the literature on speech processing in the central nervous system as demonstrated by positron emission tomography (PET). Activation study using PET has been proved to be a useful and non-invasive method of investigating the speech processing system in normal subjects. In speech recognition, the auditory association areas and lexico-semantic areas called Wernicke's area play important roles. Broca's area, motor areas, supplementary motor cortices and the prefrontal area have been proved to be related to speech output. Visual speech stimulation activates not only the visual association areas but also the temporal region and prefrontal area, especially in lexico-semantic processing. Higher level speech processing, such as conversation which includes auditory processing, vocalization and thinking, activates broad areas in both hemispheres. This paper also discusses problems to be resolved in the future. (author) 42 refs

  7. Value of 18fluorodeoxyglucose-positron-emission tomography in amyotrophic lateral sclerosis: a prospective study.

    Science.gov (United States)

    Van Laere, Koen; Vanhee, Annelies; Verschueren, Jolien; De Coster, Liesbeth; Driesen, An; Dupont, Patrick; Robberecht, Wim; Van Damme, Philip

    2014-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder primarily affecting the motor system, with extramotor involvement to a variable extent. Biomarkers for early differential diagnosis and prognosis are needed. An autosomal dominant hexanucleotide (GGGGCC) expansion in the noncoding region of the chromosome 9 open reading frame 72 (C9orf72) gene is the most frequent genetic cause of ALS, but its metabolic pattern has not been studied systematically. To evaluate the use of 18fluorodeoxyglucose-positron-emission tomography as a marker of ALS pathology and investigate whether a specific metabolic signature is present in patients with C9orf72 mutations. In total, 81 patients with a suspected diagnosis of ALS at University Hospital Leuven were prospectively investigated. All underwent detailed neurological examination and electrodiagnostic and genetic testing for the major known genetic causes of ALS (C9orf72, SOD1, TARDBP, and FUS). A diagnosis of ALS was made in 70 of 81 patients. Of these, 11 were C9orf72 positive and 59 were C9orf72 negative. In 7 patients, the diagnosis of primary lateral sclerosis was made; 4 patients had progressive muscular atrophy. A screened healthy control population was used for comparison. Positron-emission tomographic data were spatially normalized and analyzed using a predefined volume of interest and a voxel-based analysis (SPM8). Discriminant analysis was done both volume of interest based and voxel based using a support vector machine approach. Compared with control participants, 18fluorodeoxyglucose-positron-emission tomography showed perirolandic and variable prefrontal hypometabolism in most patients. Patients with primary lateral sclerosis showed a similar pattern. Patients with C9orf72-positive ALS had discrete relative hypometabolism in the thalamus and posterior cingulate compared with those with C9orf72-negative ALS. A posteriori-corrected discriminant analysis was able to correctly classify 95% of ALS cases and

  8. Use of a high density lead glass tubing projection chamber in positron emission tomography and in high energy physics

    International Nuclear Information System (INIS)

    Conti, M.; Guerra, A.D.; Habel, R.; Mulera, T.; Perez-Mendez, V.; Schwartz, G.

    1985-10-01

    We describe the principle of operation of a high density Projection Chamber, in which the converter/radiator and drift field shaping structures are combined in the form of high density (5 to 6 g/cm 3 ) lead glass tubing. The main applications of this type of detector to Medical Physics (Positron Emission Tomography) and High Energy Physics (Electromagnetic Calorimetry) are discussed

  9. Positron emission tomography/computed tomography imaging and rheumatoid arthritis.

    Science.gov (United States)

    Wang, Shi-Cun; Xie, Qiang; Lv, Wei-Fu

    2014-03-01

    Rheumatoid arthritis (RA) is a phenotypically heterogeneous, chronic, destructive inflammatory disease of the synovial joints. A number of imaging tools are currently available for evaluation of inflammatory conditions. By targeting the upgraded glucose uptake of infiltrating granulocytes and tissue macrophages, positron emission tomography/computed tomography with fluorine-18 fluorodeoxyglucose ((18) F-FDG PET/CT) is available to delineate inflammation with high sensitivity. Recently, several studies have indicated that FDG uptake in affected joints reflects the disease activity of RA. In addition, usage of FDG PET for the sensitive detection and monitoring of the response to treatment has been reported. Combined FDG PET/CT enables the detailed assessment of disease in large joints throughout the whole body. These unique capabilities of FDG PET/CT imaging are also able to detect RA-complicated diseases. Therefore, PET/CT has become an excellent ancillary tool to assess disease activity and prognosis in RA. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  10. Physical and technical basis of positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Bauer, R.

    1994-01-01

    Positron emission tomography utilizes the annihilation of positrons, generating pairs of gamma quanta which are emitted in opposing directions. 'Electronic collimation' is performed by coincident detection of both quanta. Thus, there is no need for mechanical collimators and no limiting connection between sensitivity and spatial resolution. Transversal tomograms are reconstructed from the projection data by means of highly sophisticated data processing. The half life of the most positron emitters used in medical applications is short and of the order of some minutes. Therefore, many positron emitters have to be produced on-side by means of a cyclotron. PET is superior to SPECT with respect to physical and technical aspects, but the high costs of PET limit its wide-spread use up to now. (orig.) [de

  11. Therapy response evaluation with positron emission tomography-computed tomography.

    Science.gov (United States)

    Segall, George M

    2010-12-01

    Positron emission tomography-computed tomography with F-18-fluorodeoxyglucose is widely used for evaluation of therapy response in patients with solid tumors but has not been as readily adopted in clinical trials because of the variability of acquisition and processing protocols and the absence of universal response criteria. Criteria proposed for clinical trials are difficult to apply in clinical practice, and gestalt impression is probably accurate in individual patients, especially with respect to the presence of progressive disease and complete response. Semiquantitative methods of determining tissue glucose metabolism, such as standard uptake value, can be a useful descriptor for levels of tissue glucose metabolism and changes in response to therapy if technical quality control measures are carefully maintained. The terms partial response, complete response, and progressive disease are best used in clinical trials in which the terms have specific meanings and precise definitions. In clinical practice, it may be better to use descriptive terminology agreed upon by imaging physicians and clinicians in their own practice. Copyright © 2010. Published by Elsevier Inc.

  12. Basic principles of 18F-fluoro-deoxyglucose positron emission tomography

    International Nuclear Information System (INIS)

    Standke, R.

    2002-01-01

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. (author)

  13. Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial.

    Science.gov (United States)

    Schuster, David M; Nieh, Peter T; Jani, Ashesh B; Amzat, Rianot; Bowman, F Dubois; Halkar, Raghuveer K; Master, Viraj A; Nye, Jonathon A; Odewole, Oluwaseun A; Osunkoya, Adeboye O; Savir-Baruch, Bital; Alaei-Taleghani, Pooneh; Goodman, Mark M

    2014-05-01

    We prospectively evaluated the amino acid analogue positron emission tomography radiotracer anti-3-[(18)F]FACBC compared to ProstaScint® ((111)In-capromab pendetide) single photon emission computerized tomography-computerized tomography to detect recurrent prostate carcinoma. A total of 93 patients met study inclusion criteria who underwent anti-3-[(18)F]FACBC positron emission tomography-computerized tomography plus (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for suspected recurrent prostate carcinoma within 90 days. Reference standards were applied by a multidisciplinary board. We calculated diagnostic performance for detecting disease. In the 91 of 93 patients with sufficient data for a consensus on the presence or absence of prostate/bed disease anti-3-[(18)F]FACBC had 90.2% sensitivity, 40.0% specificity, 73.6% accuracy, 75.3% positive predictive value and 66.7% negative predictive value compared to (111)In-capromab pendetide with 67.2%, 56.7%, 63.7%, 75.9% and 45.9%, respectively. In the 70 of 93 patients with a consensus on the presence or absence of extraprostatic disease anti-3-[(18)F]FACBC had 55.0% sensitivity, 96.7% specificity, 72.9% accuracy, 95.7% positive predictive value and 61.7% negative predictive value compared to (111)In-capromab pendetide with 10.0%, 86.7%, 42.9%, 50.0% and 41.9%, respectively. Of 77 index lesions used to prove positivity histological proof was obtained in 74 (96.1%). Anti-3-[(18)F]FACBC identified 14 more positive prostate bed recurrences (55 vs 41) and 18 more patients with extraprostatic involvement (22 vs 4). Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography correctly up-staged 18 of 70 cases (25.7%) in which there was a consensus on the presence or absence of extraprostatic involvement. Better diagnostic performance was noted for anti-3-[(18)F]FACBC positron emission tomography-computerized tomography than for (111)In-capromab pendetide single

  14. Gamma camera based Positron Emission Tomography: a study of the viability on quantification

    International Nuclear Information System (INIS)

    Pozzo, Lorena

    2005-01-01

    Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, random, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 2D, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be delt with carefully in clinical quantification. Finally, the choice of the region

  15. Images to visualize the brain. PET: Positron Emission Tomography

    International Nuclear Information System (INIS)

    1992-01-01

    Diagnosis instrument and research tool, Positron Emission Tomography permits advanced technological developments on positron camera, on molecule labelling and principally on very complex 3D image processing. Cyceron Centre in Caen-France works on brain diseases and try to understand the mechanism of observed troubles and to assess the treatment efficiency with PET. Service Hospitalier Frederic Joliot of CEA-France establishes a mapping of cognitive functions in PET as vision areas, anxiety regions, brain organization of language, different attention forms, voluntary actions and motor functions

  16. Positron Emission Tomography: Principles, Technology, and Recent Developments

    Science.gov (United States)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  17. Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography in Disseminated Cryptococcosis

    Science.gov (United States)

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography–computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm. PMID:29142368

  18. Recent developments in positron emission tomography (PET) instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs.

  19. Recent developments in positron emission tomography (PET) instrumentation

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs

  20. Contribution of positron emission tomography in pleural disease.

    OpenAIRE

    Duysinx, Bernard; Corhay, Jean-Louis; Larock, Marie-Paule; Withofs, Nadia; Bury, Thierry; Hustinx, Roland; Louis, Renaud

    2010-01-01

    INTRODUCTION: Positron emission tomography (PET) now plays a clear role in oncology, especially in chest tumours. We discuss the value of metabolic imaging in characterising pleural pathology in the light of our own experience and review the literature. BACKGROUND: PET is particularly useful in characterising malignant pleural pathologies and is a factor of prognosis in mesothelioma. Metabolic imaging also provides clinical information for staging lung cancer, in researching the primary tumou...

  1. Evaluation of response to immune checkpoint inhibitors: Is there a role for positron emission tomography?

    Institute of Scientific and Technical Information of China (English)

    Matteo Bauckneht; Roberta Piva; Gianmario Sambuceti; Francesco Grossi; Silvia Morbelli

    2017-01-01

    Strategies targeting intracellular negative regulators such as immune checkpoint inhibitors(ICPIs) have demonstrated significant antitumor activity across a wide range of solid tumors. In the clinical practice, the radiological effect of immunotherapeutic agents has raised several more relevant and complex challenges for the determination of their imaging-based response at single patient level. Accordingly, it has been suggested that the conventional Response Evaluation Criteria in Solid Tumors assessment alone, based on dimensional evaluation provided by computed tomography(CT), tends to underestimate the benefit of ICPIs at least in a subset of patients, supporting the need of immunerelated response criteria. Different from CT, very few data are available for the evaluation of immunotherapy by means of 18F-fluoro-2-deoxy-D-glucose positron emission tomography(FDG-PET). Moreover, since the antineoplastic activity of ICPIs is highly related to the activation of T cells against cancer cells, FDG accumulation might cause false-positive findings. Yet, discrimination between benign and malignant processes represents a huge challenge for FDG-PET in this clinical setting. Consequently, it might be of high interest to test the complex and variegated response to ICPIs by means of PET and thus it is worthwhile to ask if a similar introduction of immune-related PET-based criteria could be proposed in the future. Finally, PET might offer a new insight into the biology and pathophysiology of ICPIs thanks to a growing number of non-invasive immunediagnostic approaches based on non-FDG tracers.

  2. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Grueneisen, Johannes; Nagarajah, James; Buchbender, Christian; Hoffmann, Oliver; Schaarschmidt, Benedikt Michael; Poeppel, Thorsten; Forsting, Michael; Quick, Harald H; Umutlu, Lale; Kinner, Sonja

    2015-08-01

    This study aimed to assess the diagnostic performance of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) of the breast for lesion detection and local tumor staging of patients with primary breast cancer in comparison to PET/computed tomography (CT) and MRI. The study was approved by the local institutional review board. Forty-nine patients with biopsy-proven invasive breast cancer were prospectively enrolled in our study. All patients underwent a PET/CT, and subsequently, a contrast-enhanced PET/MRI of the breast after written informed consent was obtained before each examination. Two radiologists independently evaluated the corresponding data sets (PET/CT, PET/MRI, and MRI) and were instructed to identify primary tumors lesions as well as multifocal/multicentric and bilateral disease. Furthermore, the occurrence of lymph node metastases was assessed, and the T-stage for each patient was determined. Histopathological verification of the local tumor extent and the axillary lymph node status was available for 30 of 49 and 48 of 49 patients, respectively. For the remaining patients, a consensus characterization was performed for the determination of the T-stage and nodal status, taking into account the results of clinical staging, PET/CT, and PET/MRI examinations. Statistical analysis was performed to test for differences in diagnostic performance between the different imaging procedures. P values less than 0.05 were considered to be statistically significant. Positron emission tomography/MRI and MRI correctly identified 47 (96%) of the 49 patients with primary breast cancer, whereas PET/CT enabled detection of 46 (94%) of 49 breast cancer patients and missed a synchronous carcinoma in the contralateral breast in 1 patient. In a lesion-by-lesion analysis, no significant differences could be obtained between the 3 imaging procedures for the identification of primary breast cancer lesions (P > 0.05). Positron emission tomography/MRI and

  3. Incidental finding of a left over guide wire on a positron emission tomography

    International Nuclear Information System (INIS)

    Yap, Kok Hooi; Lee, Phong Teck; Buch, Mamta; Rammohan, Kandadai Seshadri

    2012-01-01

    The Seldinger technique is commonly used cannulate vessels for radiographical procedures. Loss of a guide wire into the circulation is a rare and preventable complication. It is often noticed by chance during routine radiographs. However, there is a lack of reported cases of incidental fin dings of leftover guide wire on a PET scan. An intravascular foreign body should be retrieved as soon as the diagnosis is made, to prevent complications such as embolisation or vascular damage by fractured wires. Interventional radiology is the method of choice for retrieval. We report a rare case of the coincidental finding of a lost guide wire on a PET scan. A 37 year old man presented with psychotic episodes, thigh weakness, weight gain, increased appetite and leg cramps. He was subsequently diagnosed with cushing syndrome secondary to ectopic adrenocorticotropic secretion from a right lung tumour. He subsequently underwent a staging positron emission tomography (PET) scan. The lung tumour had no uptake on PET bit had increased activity uptake on octreotide scanning. These appearances were suggestive of with carcinoid tumour. The PET scan also revealed an incidental finding of a leftover guide wire used during peripheral inserted central catheter (PICC) recently. The wire extended from right atrium to inferior vena cava. It also showed a high uptake in the adrenal glands, indicating hyperplasia, which was most likely due to adrenocorticotropic hormone stimulation. He underwent a percutaneous wire retrieval via the right femoral vein in a cardiac catheterisation laboratory and was transferred to a thoracic surgical unit for lung tumor resection

  4. Incidental finding of a left over guide wire on a positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Kok Hooi; Lee, Phong Teck; Buch, Mamta; Rammohan, Kandadai Seshadri

    2012-12-15

    The Seldinger technique is commonly used cannulate vessels for radiographical procedures. Loss of a guide wire into the circulation is a rare and preventable complication. It is often noticed by chance during routine radiographs. However, there is a lack of reported cases of incidental fin dings of leftover guide wire on a PET scan. An intravascular foreign body should be retrieved as soon as the diagnosis is made, to prevent complications such as embolisation or vascular damage by fractured wires. Interventional radiology is the method of choice for retrieval. We report a rare case of the coincidental finding of a lost guide wire on a PET scan. A 37 year old man presented with psychotic episodes, thigh weakness, weight gain, increased appetite and leg cramps. He was subsequently diagnosed with cushing syndrome secondary to ectopic adrenocorticotropic secretion from a right lung tumour. He subsequently underwent a staging positron emission tomography (PET) scan. The lung tumour had no uptake on PET bit had increased activity uptake on octreotide scanning. These appearances were suggestive of with carcinoid tumour. The PET scan also revealed an incidental finding of a leftover guide wire used during peripheral inserted central catheter (PICC) recently. The wire extended from right atrium to inferior vena cava. It also showed a high uptake in the adrenal glands, indicating hyperplasia, which was most likely due to adrenocorticotropic hormone stimulation. He underwent a percutaneous wire retrieval via the right femoral vein in a cardiac catheterisation laboratory and was transferred to a thoracic surgical unit for lung tumor resection.

  5. Simulated annealing image reconstruction for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sundermann, E; Lemahieu, I; Desmedt, P [Department of Electronics and Information Systems, University of Ghent, St. Pietersnieuwstraat 41, B-9000 Ghent, Belgium (Belgium)

    1994-12-31

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors). 11 refs., 2 figs.

  6. Measurement of brain pH with positron emission tomography

    International Nuclear Information System (INIS)

    Buxton, R.B.; Alpert, N.M.; Ackerman, R.H.; Wechsler, L.R.; Elmaleh, D.R.; Correia, J.A.

    1985-01-01

    With positron emission tomography (PET) it is now possible to measure local brain pH noninvasively in humans. The application of PET to the determination of pH is relatively new, so only a handful of papers on the subject have appeared in print. This chapter reviews the current strategies for measuring brain pH with PET, discuss methodological problems, and present initial results

  7. Simulated annealing image reconstruction for positron emission tomography

    International Nuclear Information System (INIS)

    Sundermann, E.; Lemahieu, I.; Desmedt, P.

    1994-01-01

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors)

  8. A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.

    Science.gov (United States)

    Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi

    2016-10-01

    Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Preclinical evaluation of a positron emitting progestin ([18F]fluoro-16 alpha-methyl-19-norprogesterone) for imaging progesterone receptor positive tumours with positron emission tomography

    NARCIS (Netherlands)

    Verhagen, Aalt; Luurtsema, Gert; PESSER, JW; DEGROOT, TJ; OOSTERHUIS, JW; Vaalburg, Willem; Wouda, S.

    Three 21-fluoro-progestins were investigated as potential imaging agents for the in vivo assessment of human progesterone receptor positive neoplasms with positron emission tomography. In competitive binding assays these compounds demonstrated high specificity, competing only for progesterone

  10. Increased fluoro-deoxy-D-glucose uptake on positron emission tomography-computed tomography postbronchoalveolar lavage: a potential cause of radiologic misinterpretation.

    LENUS (Irish Health Repository)

    Leong, Sum

    2011-08-01

    Cytologic analysis of bronchoalveolar lavage (BAL) fluid is used for lung cancer diagnosis. We describe a patient with a history of rectal carcinoma who presented with a new lung mass. BAL was performed, with positron emission tomography-computed tomography the following day. There was mildly increased fluoro-deoxy-D-glucose uptake in areas of the lung parenchyma with new ground-glass opacification. This created ambiguity in staging, clarified 2 weeks later by a computed tomography showing complete resolution of the ground-glass opacity. Clinicians should be aware that BAL may cause increased pulmonary fluoro-deoxy-D-glucose uptake, making accurate radiologic interpretation problematic. We suggest that to optimize positron emission tomography-computed tomography, studies should not be performed within 24 hours of BAL.

  11. Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in evaluation of residual intramuscular myxoma

    International Nuclear Information System (INIS)

    Zade, Anand; Ahire, Archana; Shetty, Shishir; Rai, Sujith; Bokka, Rajashekharrao; Velumani, Arokiaswamy; Kabnurkar, Rasika

    2015-01-01

    Intramuscular myxoma (IM) is a rare benign neoplasm. In a patient diagnosed with IM of left thigh, we report the utility of a postoperative fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography scan in assessing the efficacy of surgical excision

  12. Effective dose to staff members in a positron emission tomography/CT facility using zirconium-89

    Science.gov (United States)

    2013-01-01

    Objective: Positron emission tomography (PET) using zirconium-89 (89Zr) is complicated by its complex decay scheme. In this study, we quantified the effective dose from 89Zr and compared it with fluorine-18 fludeoxyglucose (18F-FDG). Methods: Effective dose distribution in a PET/CT facility in Riyadh was calculated by Monte Carlo simulations using MCNPX. The positron bremsstrahlung, the annihilation photons, the delayed gammas from 89Zr and those emissions from 18F-FDG were modelled in the simulations but low-energy characteristic X-rays were ignored. Results: On the basis of injected activity, the dose from 89Zr was higher than that of 18F-FDG. However, the dose per scan from 89Zr became less than that from 18F-FDG near the patient, owing to the difference in injected activities. In the corridor and control rooms, the 89Zr dose was much higher than 18F-FDG, owing to the difference in attenuation by the shielding materials. Conclusion: The presence of the high-energy photons from 89Zr-labelled immuno-PET radiopharmaceuticals causes a significantly higher effective dose than 18F-FDG to the staff outside the patient room. Conversely, despite the low administered activity of 89Zr, it gives rise to a comparable or even lower dose than 18F-FDG to the staff near the patient. This interesting result raises apparently contradictory implications in the radiation protection considerations of a PET/CT facility. Advances in knowledge: To the best of our knowledge, radiation exposure to staff and public in the PET/CT unit using 89Zr has not been investigated. The ultimate output of this study will lead to the optimal design of the facility for routine use of 89Zr. PMID:23934963

  13. Lhermitte-Duclos disease presenting with positron emission tomography-magnetic resonance fusion imaging: a case report

    Directory of Open Access Journals (Sweden)

    Calabria Ferdinando

    2012-03-01

    Full Text Available Abstract Introduction Lhermitte-Duclos disease or dysplastic gangliocytoma of the cerebellum is an extremely rare tumor. It is a slowly enlarging mass within the cerebellar cortex. The majority of cases are diagnosed in the third or fourth decade of life. Case presentation We report the case of a 37-year-old Caucasian woman who underwent positron emission tomography-computed tomography with fluorine-18-fluorodeoxyglucose for evaluation of a solitary lung node. No pathological uptake was detected in the solitary lung node but the positron emission tomography-computed tomography of her brain showed intense tracer uptake, suggestive of a malignant neoplasm, in a mass in her left cerebellar lobe. Our patient had experienced two years of occipital headache and movement disorder. Subsequently, magnetic resonance imaging was performed with contrast agent administration, showing a large subtentorial mass in her left cerebellar hemisphere, with compression and dislocation of the fourth ventricle. Metabolic data provided by positron emission tomography and morphological magnetic resonance imaging views were fused in post-processing, allowing a diagnosis of dysplastic gangliocytoma with increased glucose metabolism. Total resection of the tumor was performed and histological examination confirmed the diagnosis of Lhermitte-Duclos disease. Conclusions Our case indicates that increased uptake of fluorine-18-fluorodeoxyglucose may be misinterpreted as a neoplastic process in the evaluation of patients with Lhermitte-Duclos disease, but supports the usefulness of integrated positron emission tomography-magnetic resonance imaging in the exact pathophysiologic explanation of this disease and in making the correct diagnosis. However, an accurate physical examination and exact knowledge of clinical data is of the utmost importance.

  14. Recurrent ovarian endodermal sinus tumor: demonstration by computed tomography, magnetic resonance imaging, and positron emission tomography

    International Nuclear Information System (INIS)

    Romero, J.A.; Kim, E.E.; Tresukosol, D.; Kudelka, A.P.; Edwards, C.L.; Kavanagh, J.J.

    1995-01-01

    We report a case of recurrent endodermal sinus tumor of the ovary that was identified and/or clearly depicted by computed tomography, magnetic resonance imaging, and positron emission tomography. The potential roles of various imaging modalities in the detection of recurrent endodermal sinus tumor are discussed. (orig.)

  15. Chemical neuroanatomy and in vitro receptor autoradiography: A basis for cerebral positron emission tomography

    International Nuclear Information System (INIS)

    Albin, R.L.; Young, A.B.; Penney, J.B.; Makowiec, R.L.; Gilman, S.

    1991-01-01

    We review chemical neuroanatomy and in vitro receptor (IVG) autoradiography as tools for the development of methods suitable for positron emission tomography (PET) studies. The organizations of monoaminergic, cholinergic, γ-aminobutyric acidergic (GABA), and excitatory amino acidergic (EAA) pathways within the central nervous system are summarized, as is the presently accepted classification of GABA and EAA receptors. We describe the technique of IVG and discuss its unique advantages for the selection of possible PET methods. Finally, we discuss receptor changes in Huntington's disease and olivopontocerebellar atrophy, two human diseases for which IVG has suggested possible targets for PET imaging

  16. Lymphocytic Thyroiditis Presenting as a Focal Uptake on 18F-Fluorodeoxyglucose Positron Emission Tomography: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Tae Seok; Kim, Eun Kyung; Lee, Sarah; Moon, Hee Jung; Kwak, Jin Young [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2011-12-15

    Diffuse increased uptake on 18F-Fluorodeoxyglucose Positron Emission Tomography (18F FDG PET) is a well-known finding of the lymphocytic thyroiditis. Nevertheless, a pathologic confirmation is needed in cases of a focal 18F FDG uptake in the thyroid gland. This article reports a rare case of a focal 18F FDG uptake lesion by PET, which was revealed pathologically to be lymphocytic thyroiditis

  17. Development of a data acquisition architecture with distributed synchronization for a Positron Emission Tomography system with integrated front-end.

    OpenAIRE

    Aliaga Varea, Ramón José

    2016-01-01

    [EN] Positron Emission Tomography (PET) is a non-invasive nuclear medical imaging modality that makes it possible to observe the distribution of metabolic substances within a patient's body after marking them with radioactive isotopes and arranging an annular scanner around him in order to detect their decays. The main applications of this technique are the detection and tracing of tumors in cancer patients and metabolic studies with small animals. The Electronic Design for Nuclear Applic...

  18. Use of positron emission tomography in colorectal cancer

    International Nuclear Information System (INIS)

    Gonzalez E, Patricio; Jofre E, Josefina; Massardo V, Teresa; Humeres, Pamela; Canessa G, Jose; Sierralta C, Paulina

    2002-01-01

    The value of PET (Positron Emission Tomography) in colorectal cancer is presented. PET is a novel technique that uses F-18-FDG (fluorodeoxiglucose) to assess glucose metabolism by whole body imaging. It has been demonstrated that malignant cells have both increase of glucose uptake and utilization. In colorectal cancer, PET is indicated for staging, assess recurrence, liver metastasis and treatment follow-up. PET is more sensitive and specific than CT (Computed Tomography) and is cost effective. In 30% of cases PET may change patient management, avoiding unnecessary procedures (au)

  19. Clinical impact of 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of neurological diseases

    International Nuclear Information System (INIS)

    Buck, A.; Kamel, E.

    2002-01-01

    In this review it will be discussed in which neurological disorders positron emission tomography can yield important diagnostic information. Because positron emission tomography is an expensive method indications have to be cleary defined. One important question concerns the differentiation of tumor recurrence and scar due to radiation therapy or an operation. The grading of brain tumors is another application. In HIV patients fluorodeoxyglucose positron emission tomography can separate lymphoma and toxoplasmosis. In the evaluation of dementia positron emission tomography can help to clarify the differential diagnosis. Another important area is the presurgical evaluation of epilepsy patients and patients with cerebrovascular disease in whom a surgical revascularization procedure is planned. In extrapyramidal disorders, positron emission tomography can often help to establish the final diagnosis. (author)

  20. Computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with ovarian cancer: A meta-analysis

    International Nuclear Information System (INIS)

    Yuan Ying; Gu Zhaoxiang; Tao Xiaofeng; Liu Shiyuan

    2012-01-01

    Objectives: To compare the diagnostic performances of computed tomography (CT), magnetic resonance (MR) imaging, and positron emission tomography (PET or PET/CT) for detection of metastatic lymph nodes in patients with ovarian cancer. Methods: Relevant studies were identified with MEDLINE and EMBASE from January 1990 to July 2010. We estimated the weighted summary sensitivities, specificities, OR (odds ratio), and summary receiver operating characteristic (sROC) curves of each imaging technique and conducted pair-wise comparisons using the two-sample Z-test. Meta-regression, subgroup analysis, and funnel plots were also performed to explain the between-study heterogeneity. Results: Eighteen eligible studies were included, with a total of 882 patients. PET or PET/CT was a more accurate modality (sensitivity, 73.2%; specificity, 96.7%; OR [odds ratio], 90.32). No significant difference was detected between CT (sensitivity, 42.6%; specificity, 95.0%; OR, 19.87) and MR imaging (sensitivity, 54.7%; specificity, 88.3%; OR, 12.38). Meta-regression analyses and subgroup analyses revealed no statistical difference. Funnel plots with marked asymmetry suggested a publication bias. Conclusion: FDG-PET or FDG-PET/CT is more accurate than CT and MR imaging in the detection of lymph node metastasis in patients with ovarian cancer.

  1. The Medical Case for a Positron Emission Tomography and X-ray Computed Tomography Combined Service in Oman.

    Science.gov (United States)

    Al-Bulushi, Naima K; Bailey, Dale; Mariani, Giuliano

    2013-11-01

    The value of a positron emission tomography and X-ray computed tomography (PET/CT) combined service in terms of diagnostic accuracy, cost-effectiveness and impact on clinical decision-making is well-documented in the literature. Its role in the management of patients presenting with cancer is shifting from early staging and restaging to the early assessment of the treatment response. Currently, the application of PET/CT has extended to non-oncological specialties-mainly neurology, cardiology and rheumatology. A further emerging application for PET/CT is the imaging of infection/inflammation. This article illustrates some of the PET/CT applications in both oncological and non-oncological disorders. In view of the absence of this modality in Oman, this article aims to increase the awareness of the importance of these imaging modalities and their significant impact on diagnosis and management in both oncological and non-oncological specialties for patients of all age groups as well as the decision-makers.

  2. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Krishnendu [Ohio Medical Physics Consulting, Dublin, Ohio 43017 (United States); Straus, Kenneth J.; Glick, Stephen J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Chen, Yu. [Department of Radiation Oncology, Columbia University, New York, New York 10032 (United States)

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  3. Pareidolia in Parkinson's disease without dementia: A positron emission tomography study.

    Science.gov (United States)

    Uchiyama, Makoto; Nishio, Yoshiyuki; Yokoi, Kayoko; Hosokai, Yoshiyuki; Takeda, Atsushi; Mori, Etsuro

    2015-06-01

    Pareidolia, which is a particular type of complex visual illusion, has been reported to be a phenomenon analogous to visual hallucinations in patients with dementia with Lewy bodies. However, whether pareidolia is observed in Parkinson's disease (PD) or whether there are common underlying mechanisms of these two types of visual misperceptions remains to be elucidated. A test to evoke pareidolia, the Pareidolia test, was administered to 53 patients with PD without dementia and 24 healthy controls. The regional cerebral metabolic rate of glucose was measured using 18F-fluorodeoxyglucose positron emission tomography in the PD patients. PD patients without dementia produced a greater number of pareidolic illusions compared with the controls. Pareidolia was observed in all of the patients having visual hallucinations as well as a subset of those without visual hallucinations. The number of pareidolic illusions was correlated with hypometabolism in the bilateral temporal, parietal and occipital cortices. The index of visual hallucinations was correlated with hypometabolism in the left parietal cortex. A region associated with both pareidolia and visual hallucinations was found in the left parietal lobe. Our study suggests that PD patients without dementia experience pareidolia more frequently than healthy controls and that posterior cortical dysfunction could be a common neural mechanism of pareidolia and visual hallucinations. Pareidolia could represent subclinical hallucinations or a predisposition to visual hallucinations in Lewy body disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Study on a high resolution positron emission tomography scanner for brain study

    International Nuclear Information System (INIS)

    Nohara, N.; Tomitani, T.; Yamamoto, M.; Murayama, H.; Tanaka, E.

    1990-01-01

    The spatial resolution of positron emission tomography (PET) scanners is usually limited by the finite size of crystals such as bismuth germanate (BGO). To attain high resolution as well as high sensitivity, it is essential to use a large number of small BGO crystals arranged in close-packing on circular rings. In developing high resolution PET scanners, however, there are two physical factors limiting the spatial resolution. One is the finite range of positrons before annihilation and the other the deviation from 180 degrees of annihilation photons. The effect of the factors on the spatial resolution has been evaluated for positron-emitting sources as a function of detector ring radius. A high resolution PET scanner has been developed for brain study, aiming to have spatial resolutions as high as less than 4-mm FWHM in tomographic plane and less than 6-mm FWHM in axial direction at the detector ring center. For the goal of the high resolutions a multi-segment type of photomultiplier tubes has been specially designed and developed, which allows one tube to be directly coupled by four BGO crystals. The scanner consists of five detector rings of 47-cm in diameter, using all 1200 BGO crystals each measuring 5 mm x 12 mm x 30 mm. The scanner provides simultaneous 9 images by combination of in-plane and cross-plane, offering a 24-cm dia. x7.4-cm field-of-view. Physical performance of the scanner was investigated. At the ring center, the spatial resolution in the tomographic plane was measured to be 3.5-mm FWHM. The axial resolution was measured to be 5.7-mm FWHM for in-plane and 5.3-mm FWHM for cross-plane. Sensitivity for a 20-cm dia. uniform source was measured to be 9.5 kcps/μCi/ml for in-plane and 15.3 kcps/μCi/ml for cross-plane. (J.P.N.)

  5. Initial characterization of a BGO-photodiode detector for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.

    1983-11-01

    Spatial resolution in positron emission tomography is currently limited by the resolution of the detectors. This work presents the initial characterization of a detector design using small bismuth germanate (BGO) crystals individually coupled to silicon photodiodes (SPDs) for crystal identification, and coupled in groups to phototubes (PMTs) for coincidence timing. A 3 mm x 3 mm x 3 mm BGO crystal coupled only to an SPD can achieve a 511 keV photopeak resolution of 8.7% FWHM at -150 0 C, using a pulse peaking time of 10 μs. When two 3 mm x 3 mm x 15 mm BGO crystals are coupled individually to SPDs and also coupled to a common 14 mm diam PMT, the SPDs detect the 511 keV photopeak with a resolution of 30% FWHM at -76 0 C. In coincidence with an opposing 3 mm wide BGO crystal, the SPDs are able to identify the crystal of interaction with good signal-to-noise ratio, and the detector pair resolution is 2 mm FWHM. 32 references, 7 figures, 3 tables

  6. A fast rebinning algorithm for 3D positron emission tomography using John's equation

    Science.gov (United States)

    Defrise, Michel; Liu, Xuan

    1999-08-01

    Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.

  7. Tomographic evaluation of a dual-head positron emission tomography system

    International Nuclear Information System (INIS)

    Efthimiou, N; Maistros, S; Tripolitis, X; Panayiotakis, G; Samartzis, A; Loudos, G

    2011-01-01

    In this paper we present the performance evaluation results, in the planar and tomographic modes, of a low-cost positron emission tomography camera dedicated to small-animal imaging. The system consists of two pixelated Lu 2 SiO 5 crystals, two Hamamatsu H8500 position sensitive photomultiplier tubes, fast amplification electronics and an FPGA-USB-based read-out system. The parameters that have been studied are (i) saturation as a function of the head distance and photon acceptance angle, (ii) effect of the number of projections and half or complete head's rotation, (iii) spatial resolution as a function of the head distance, (iv) spatial resolution as a function of acceptance angle, (v) system's sensitivity as a function of these parameters and (vi) performance in small mice imaging. Image reconstruction has been carried out using open source software developed by our group (QSPECT), which is designed mainly for SPECT imaging. The results indicate that the system has a linear response for activities up to at least 2 MBq, which are typical in small-animal imaging. Best tomographic spatial resolution was measured to be ∼2 mm. The system has been found suitable for imaging of small mice both in the planar and tomographic modes

  8. Eyeblink conditioning in unmedicated schizophrenia patients: a positron emission tomography study.

    Science.gov (United States)

    Parker, Krystal L; Andreasen, Nancy C; Liu, Dawei; Freeman, John H; O'Leary, Daniel S

    2013-12-30

    Previous studies suggest that patients with schizophrenia exhibit dysfunctions in a widely distributed circuit-the cortico-cerebellar-thalamic-cortical circuit, or CCTCC-and that this may explain the multiple cognitive deficits observed in the disorder. This study uses positron emission tomography (PET) with O(15) H₂O to measure regional cerebral blood flow (rCBF) in response to a classic test of cerebellar function, the associative learning that occurs during eyeblink conditioning, in a sample of 20 unmedicated schizophrenia patients and 20 closely matched healthy controls. The PET paradigm examined three phases of acquisition and extinction (early, middle and late). The patients displayed impaired behavioral performance during both acquisition and extinction. The imaging data indicate that, compared to the control subjects, the patients displayed decreases in rCBF in all three components of the CCTCC during both acquisition and extinction. Specifically, patients had less rCBF in the middle and medial frontal lobes, anterior cerebellar lobules I/V and VI, as well as the thalamus during acquisition and although similar areas were found in the frontal lobe, ipsilateral cerebellar lobule IX showed consistently less activity in patients during extinction. Thus this study provides additional support for the hypothesis that patients with schizophrenia have a cognitive dysmetria--an inability to smoothly coordinate many different types of mental activity--that affects even a very basic cognitive task that taps into associative learning. © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. A Delphi study to establish national cost-effectiveness research priorities for positron emission tomography

    International Nuclear Information System (INIS)

    Robert, Glenn; Milne, Ruairidh

    1999-01-01

    Objective: This study aimed to determine the key cost-effectiveness research questions relating to positron emission tomography (PET) in the UK. Methods: A systematic literature review was conducted to establish the existing knowledge base relating to the cost-effectiveness of PET in the various conditions for which it has been proposed. A three-round postal Delphi study of relevant individuals was used to determine the key cost-effectiveness research questions relating to PET in the UK. The content and structure of the Delphi study was informed by the results of the literature review. Results: The most important cost-effectiveness research priorities for the National Health Service (NHS) relating to PET were in the clinical areas of lung cancer, breast cancer and the assessment of myocardial viability. Gamma camera PET using coincidence imaging was highlighted as a modality whose clinical role needed to be determined urgently. Conclusion: Underlying the cost-effectiveness research priorities which were established is the need for evidence that the use of the various PET modalities as a diagnostic technique will alter patient management as compared to existing diagnostic strategies. The findings of the project provide a contemporary overview of the potential role for PET in the NHS and will be relevant to other countries

  10. A new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-10-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) annihilation photon pair coincidence time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit of around 100 ps. On the other hand, modulation mechanisms of a material's optical properties as exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to study whether ionizing radiation can also produce fast modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5x10-6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the radiation source flux rate and average photon energy.

  11. A promising new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-11-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5× {{10}-6} is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source.

  12. A new methodology of second messenger imaging for higher cortical functions by positron emission tomography

    International Nuclear Information System (INIS)

    Imahori, Yoshio; Ueda, Satoshi

    1992-01-01

    Neuronal manifestations are driven by second messenger systems in central nervous system through the neuronal transmission process. Receptor-mediated phosphatidylinositol (PI) response images may reflect neuronal activation in higher cortical function with a high sensitivity based on the common amplifying mechanism of the second messenger. Many bioactive compounds related to PI turnover have simple carbohydrate structures without amines and [ 11 C]ethylketene acylation has been found as the most effective labeling method of these compounds for positron emission tomography. [ 11 C]ethylketene was produced by the pyrolytic decomposition of [1- 11 C]butyric acid. This new method was made possible by the reaction under the no-carrier-added condition. To visualize the response in vivo, we synthesized sn-1,2-[ 11 C]diacylglycerols (DAGs) as a specific tracer for the PI response and [ 11 C]phorbol esters as a ligand for protein kinase C. In autoradiographic studies it was demonstrated that sn-1,2-[ 11 C]DAGs incorporation sites were discretely localized especially in the neocortex, which were concomitant with columnar structures. These results suggested that sn-1,2-[ 11 C]DAG can serve as an extrinsic substrate for the PI turnover by the phosphorylation mechanism and intensive neuronal processing, as a higher cortical function, occurs in these areas on the basis of receptor-mediated PI response. (author)

  13. A 31-channel MR brain array coil compatible with positron emission tomography.

    Science.gov (United States)

    Sander, Christin Y; Keil, Boris; Chonde, Daniel B; Rosen, Bruce R; Catana, Ciprian; Wald, Lawrence L

    2015-06-01

    Simultaneous acquisition of MR and positron emission tomography (PET) images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (signal to noise ratio [SNR], g-factor) and PET attenuation. The coil design showed an improvement in attenuation by 190% (average) compared with conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical region of interest) compared with a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. © 2014 Wiley Periodicals, Inc.

  14. Dynamic positron emission tomography image restoration via a kinetics-induced bilateral filter.

    Directory of Open Access Journals (Sweden)

    Zhaoying Bian

    Full Text Available Dynamic positron emission tomography (PET imaging is a powerful tool that provides useful quantitative information on physiological and biochemical processes. However, low signal-to-noise ratio in short dynamic frames makes accurate kinetic parameter estimation from noisy voxel-wise time activity curves (TAC a challenging task. To address this problem, several spatial filters have been investigated to reduce the noise of each frame with noticeable gains. These filters include the Gaussian filter, bilateral filter, and wavelet-based filter. These filters usually consider only the local properties of each frame without exploring potential kinetic information from entire frames. Thus, in this work, to improve PET parametric imaging accuracy, we present a kinetics-induced bilateral filter (KIBF to reduce the noise of dynamic image frames by incorporating the similarity between the voxel-wise TACs using the framework of bilateral filter. The aim of the proposed KIBF algorithm is to reduce the noise in homogeneous areas while preserving the distinct kinetics of regions of interest. Experimental results on digital brain phantom and in vivo rat study with typical (18F-FDG kinetics have shown that the present KIBF algorithm can achieve notable gains over other existing algorithms in terms of quantitative accuracy measures and visual inspection.

  15. Cardiac and pericardial tumors: A potential application of positron emission tomography-magnetic resonance imaging.

    Science.gov (United States)

    Fathala, Ahmed; Abouzied, Mohei; AlSugair, Abdul-Aziz

    2017-07-26

    Cardiac and pericardial masses may be neoplastic, benign and malignant, non-neoplastic such as thrombus or simple pericardial cysts, or normal variants cardiac structure can also be a diagnostic challenge. Currently, there are several imaging modalities for diagnosis of cardiac masses; each technique has its inherent advantages and disadvantages. Echocardiography, is typically the initial test utilizes in such cases, Echocardiography is considered the test of choice for evaluation and detection of cardiac mass, it is widely available, portable, with no ionizing radiation and provides comprehensive evaluation of cardiac function and valves, however, echocardiography is not very helpful in many cases such as evaluation of extracardiac extension of mass, poor tissue characterization, and it is non diagnostic in some cases. Cross sectional imaging with cardiac computed tomography provides a three dimensional data set with excellent spatial resolution but utilizes ionizing radiation, intravenous iodinated contrast and relatively limited functional evaluation of the heart. Cardiac magnetic resonance imaging (CMR) has excellent contrast resolution that allows superior soft tissue characterization. CMR offers comprehensive evaluation of morphology, function, tissue characterization. The great benefits of CMR make CMR a highly useful tool in the assessment of cardiac masses. (Fluorine 18) fluorodeoxygluocse (FDG) positron emission tomography (PET) has become a corner stone in several oncological application such as tumor staging, restaging, treatment efficiency, FDG is a very useful imaging modality in evaluation of cardiac masses. A recent advance in the imaging technology has been the development of integrated PET-MRI system that utilizes the advantages of PET and MRI in a single examination. FDG PET-MRI provides complementary information on evaluation of cardiac masses. The purpose of this review is to provide several clinical scenarios on the incremental value of PET

  16. Clinical applications of positron emission tomography at Montreal Neurological Institute

    International Nuclear Information System (INIS)

    Morgan, P.P.

    1983-01-01

    The Montreal Neurological Institute occupies a leading position in positron emission tomography (PET) of the brain with the help of the following three techological gains: they have acquired a 'Therascan' positron emission tomograph manufactured by Atomic Energy of Canada Ltd.; also, a 'Baby Cyclotron' manufactured by Japan Steel Works Ltd.; and they have written a computer program to display the results in colour. Four short-lived isotopes are used; 11 C, 15 O, 18 F, 13 N. Studies of the oxygen uptake of tumours, their glucose metabolism (as monitored by 18 F labelled 2-fluoro-2-deoxyglucose), and their uptake of therapeutic agents, provide valuable research and diagnostic information. PET is also being used to study epilepsy and cerebrovascular disease

  17. Neural correlates of sensorimotor gating: A metabolic positron emission tomography study in awake rats

    Directory of Open Access Journals (Sweden)

    Cathrin eRohleder

    2014-05-01

    Full Text Available Impaired sensorimotor gating occurs in neuropsychiatric disorders such as schizophrenia and can be measured using the prepulse inhibition (PPI paradigm of the acoustic startle response. This assay is frequently used to validate animal models of neuropsychiatric disorders and to explore the therapeutic potential of new drugs. The underlying neural network of PPI has been extensively studied with invasive methods and genetic modifications. However, its relevance for healthy untreated animals and the functional interplay between startle- and PPI-related areas during a PPI session is so far unknown. Therefore, we studied awake rats in a PPI paradigm, startle control and background noise control, combined with behavioral [18F]fluoro-2-deoxyglucose positron emission tomography (FDG-PET. Subtractive analyses between conditions were used to identify brain regions involved in startle and PPI processing in well-hearing Black hooded rats. For correlative analysis with regard to the amount of PPI we also included hearing-impaired Lister hooded rats that startled more often, because their hearing threshold was just below the lowest prepulses. Metabolic imaging showed that the brain areas proposed for startle and PPI mediation are active during PPI paradigms in healthy untreated rats. More importantly, we show for the first time that the whole PPI modulation network is active during passive PPI sessions, where no selective attention to prepulse or startle stimulus is required. We conclude that this reflects ongoing monitoring of stimulus significance and constant adjustment of sensorimotor gating.

  18. Redistribution of whole-body energy metabolism by exercise. A positron emission tomography study

    International Nuclear Information System (INIS)

    Masud, M.M.; Miyake, Masayasu; Watanuki, Shoichi; Itoh, Masatoshi; Tashiro, Manabu; Fujimoto, Toshihiko

    2009-01-01

    Our aim was to evaluate changes in glucose metabolism of skeletal muscles and viscera induced by different workloads using 18 F-2-fluoro-2-deoxyglucose ([ 18 F]FDG) and three-dimensional positron emission tomography (3-D PET). Five male volunteers performed ergometer bicycle exercise for 40 min at 40% and 70% of the maximal O 2 consumption (VO 2max ). [ 18 ]FDG was injected 10 min later following the exercise task. Whole-body 3-D PET was performed. Five other male volunteers were studied as a control to compare with the exercise group. The PET image data were analyzed using manually defined regions of interest to quantify the regional metabolic rate of glucose (rMRGlc). Group comparisons were made using analysis of variance, and significant differences (P 18 F]FDG-PET can be used as an index of organ energy metabolism for moderate exercise workloads (70% VO 2max ). The results of this investigation may contribute to sports medicine and rehabilitation science. (author)

  19. A positron emission tomography study of self-paced finger movements at different frequencies

    International Nuclear Information System (INIS)

    Kawashima, R.; Inoue, K.; Sugiura, M.; Okada, K.; Ogawa, A.; Fukuda, H.

    1999-01-01

    Regional cerebral blood flow was measured in six right-handed volunteers using positron emission tomography during tasks involving repetitive self-paced finger tapping at five different frequencies. The contralateral primary sensorimotor cortex, the pre-supplementary motor area and the cingulate motor area showed significant activation during self-paced finger tapping tasks, compared with the resting state. A positive correlation between the regional cerebral blood flow and the movement frequency was found only in the primary sensorimotor cortex. In the pre-supplementary motor area and the cingulate motor area, however, activity increased when the subject employed movement frequencies faster or slower than his own pace. The same tendency was noted with respect to the relative variability of the inter-tapping interval.The results therefore indicate that the activity of the pre-supplementary motor area and the cingulate motor area may well be related to the increased difficulty in motor control rather than to the execution of the movement itself. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study.

    Science.gov (United States)

    Park, So Hyeon; Park, Hyun Soo; Kim, Sang Eun

    2016-08-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after (18)F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders.

  1. Positron emission tomography of FDG in schizophrenia

    International Nuclear Information System (INIS)

    Sargent, T. III; Kusubov, N.

    1986-01-01

    The use of the Donner dynamic positron emission tomograph to study fluorodeoxyglucose labelled 18 F uptake in the brain of six patients with schizophrenia is reported. The glucose metabolic rate and the local cerebral metabolic rate were calculated. The dynamic brain uptake data and the blood input function were used to calculate rate constants by an iterative least squares fitting program for all regions of interest chosen in the brain. Although the number of patients was small, differences in k3 were statistically significant in several brain regions compared with normal controls

  2. Diagnostic accuracy of fluorine-18-fluorodeoxyglucose positron emission tomography in gallbladder cancer: A meta-analysis.

    Science.gov (United States)

    Annunziata, Salvatore; Pizzuto, Daniele Antonio; Caldarella, Carmelo; Galiandro, Federica; Sadeghi, Ramin; Treglia, Giorgio

    2015-10-28

    To meta-analyze published data about the diagnostic accuracy of fluorine-18-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (PET/CT) in the evaluation of primary tumor in patients with gallbladder cancer (GBCa). A comprehensive literature search of studies published through 30(th) June 2014 regarding the role of (18)F-FDG PET and PET/CT in the evaluation of primary gallbladder cancer (GBCa) was performed. All retrieved studies were reviewed. Pooled sensitivity and specificity of (18)F-FDG PET or PET/CT in the evaluation of primary GBCa were calculated. The area under the summary receiving operator characteristics curve (AUC) was calculated to measure the accuracy of these methods. Sub-analyses considering the device used (PET vs PET/CT) were carried out. Twenty-one studies comprising 495 patients who underwent (18)F-FDG PET or PET/CT for suspicious GBCa were selected for the systematic review. The meta-analysis of 13 selected studies provided the following results: sensitivity 87% (95%CI: 82%-92%), specificity 78% (95%CI: 68%-86%). The AUC was 0.88. Improvement of sensitivity and specificity was observed when PET/CT was used. (18)F-FDG-PET and PET/CT demonstrated to be useful diagnostic imaging methods in the assessment of primary tumor in GBCa patients, nevertheless possible sources of false-negative and false-positive results should be kept in mind. PET/CT seems to have a better diagnostic accuracy than PET alone in this setting.

  3. Brain glucose utilization in systemic lupus erythematosus with neuropsychiatric symptoms: a controlled positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Otte, A. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland)]|[Department of Nuclear Medicine, University Hospital Freiburg (Germany); Weiner, S.M. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Peter, H.H. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Mueller-Brand, J. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland); Goetze, M. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland); Moser, E. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Gutfleisch, J. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Hoegerle, S. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Juengling, F.D. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Nitzsche, E.U. [Department of Nuclear Medicine, University Hospital Freiburg (Germany)

    1997-07-01

    In contrast to morphological imaging [such as magnetic resonance imaging (MRI) or computed tomography], functional imaging may be of advantage in the detection of brain abnormalities in cases of neuropsychiatric systemic lupus erythematosus (SLE). Therefore, we studied 13 patients (aged 40{+-}14 years, 11 female, 2 male) with neuropsychiatric SLE who met four of the American Rheumatism Association criteria for the classification of SLE. Ten clinically and neurologically healthy volunteers served as controls (aged 40{+-}12 years, 5 female, 5 male). Both groups were investigated using fluorine-18-labelled fluorodeoxyglucose brain positron emission tomography (PET) and cranial MRI. The normal controls and 11 of the 13 patients showed normal MRI scans. However, PET scan was abnormal in all 13 SLE patients. Significant group-to-group differences in the glucose metabolic index (GMI=region of interest uptake/global uptake at the level of the basal ganglia and thalamus) were found in the parieto-occipital region on both sides: the GMI of the parieto-occipital region on the right side was 0.922{+-}0.045 in patients and 1.066{+-}0.081 in controls (P<0.0001, Mann Whitney U test), while on the left side it was 0.892{+-}0.060 in patients and 1.034{+-}0.051 in controls (P=0.0002). Parieto-occipital hypometabolism is a conspicuous finding in mainly MRI-negative neuropsychiatric SLE. As the parieto-occipital region is located at the boundary of blood supply of all three major arteries, it could be the most vulnerable zone of the cerebrum and may be affected at an early stage of the cerebrovascular disease. (orig.). With 1 fig., 1 tab.

  4. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of thymoma: a preliminary report

    International Nuclear Information System (INIS)

    Liu Renshyan; Yeh Shinhwa; Huang Minhsiung; Wang Liangshun; Chu Leeshing; Chang Chenpei; Chu Yumkung; Wu Lingchi

    1995-01-01

    This study aimed to analyse the uptake patterns of fluorine-18 fluorodeoxyglucose (FDG) in thymomas of different stages. FDG positron emission tomography (PET) scan was performed in 12 patients suspected of having thymoma and in nine controls. Qualitative visual interpretation was used to detect the foci with FDG uptake higher than that of normal mediastinum. Tumour/lung ratio (TLR) was calculated from the counts of ROIs over the mass and over comparable normal lung tissue in thymoma patients. Mediastinum/lung ratio (MLR) was calculated from the counts of ROIs over the anterior mediastinum and lung in controls. The PET scan patterns of distribution of foci with FDG uptake and TLRs were correlated with the computed tomography (CT) of magnetic resonance imaging (MRI) findings, and staging of the thymomas. Thymectomy was performed in ten patients and thoracoscopy was done in two patients. The results revealed ten thymomas (two stage I tumours, two stage II, four stage III and two stage IV, according to the Masaoka classification), and two cases of thymic hyperplasia associated with myasthenia gravis. Myasthenia gravis was also noted in four thymoma patients. FDG studies showed (a) diffuse uptake in the widened anterior mediastinum in patients with thymic hyperplasia, (b) confined focal FDG uptake in the non-invasive or less invasive, stage I and II thymomas, and (c) multiple discrete foci of FDG uptake in the mediastinum and thoraci structures in stage III and IV advanced invasive thymomas. The thymomas had the highest TLRs, followed by the TLRs of thymic hyperplasia and the MLRs of control subjects. No significant difference was found between thymomas in different stages or between thymomas with and thymomas without myasthenia gravis. In comparison with CT and/or MRI, FDG/PET detected more lesions in patients with invasive thymomas and downgraded the staging of thymoma in four patients. (orig./MG)

  5. Positron emission tomography as a diagnostic tool in infection: present role and future possibilities.

    Science.gov (United States)

    Basu, Sandip; Chryssikos, Timothy; Moghadam-Kia, Siamak; Zhuang, Hongming; Torigian, Drew A; Alavi, Abass

    2009-01-01

    The past decade has witnessed the emergence of yet another promising application of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging in the detection and management of patients with infection and inflammatory disorders. This phenomenon is quite evident when the peer-reviewed scientific literature is searched for on this topic. Among these scientific communications, the 6 conditions in which FDG-PET has demonstrated its greatest utility include (1) chronic osteomyelitis, (2) complicated lower-limb prostheses, (3) complicated diabetic foot, (4) fever of unknown origin, (5) acquired immunodeficiency syndrome (ie, AIDS), and (6) vascular graft infection and fistula. On the basis of published literature, orthopedic infections, particularly those related to implanted prostheses and osteomyelitis (including that occurring in the setting of a complicated diabetic foot), can be detected successfully by the use of FDG-PET and, therefore, this modality has great promise for becoming the study of choice in these complex settings. Increasingly, this technique is being used to detect infection in soft tissues, including those representing the sources of fever of unknown origin. The ability of FDG-PET to diagnose vascular graft infection and fistula, even when the anatomical imaging modalities are inconclusive, is of considerable interest to practitioners of vascular surgery. Combined PET/computed tomography (CT) imaging has the potential to determine the sites of infection or inflammation with high precision. The data on the role of PET/CT imaging in the assessment of infection and inflammation is sparse, but this combined modality approach may prove to be the study of choice in foreseeable future for precise localization of involved sites. However, the role of PET/CT may be limited in the presence of metallic artifacts (such as those caused by prostheses) adjacent to the sites of infection.

  6. Brain glucose utilization in systemic lupus erythematosus with neuropsychiatric symptoms: a controlled positron emission tomography study

    International Nuclear Information System (INIS)

    Otte, A.; Weiner, S.M.; Peter, H.H.; Mueller-Brand, J.; Goetze, M.; Moser, E.; Gutfleisch, J.; Hoegerle, S.; Juengling, F.D.; Nitzsche, E.U.

    1997-01-01

    In contrast to morphological imaging [such as magnetic resonance imaging (MRI) or computed tomography], functional imaging may be of advantage in the detection of brain abnormalities in cases of neuropsychiatric systemic lupus erythematosus (SLE). Therefore, we studied 13 patients (aged 40±14 years, 11 female, 2 male) with neuropsychiatric SLE who met four of the American Rheumatism Association criteria for the classification of SLE. Ten clinically and neurologically healthy volunteers served as controls (aged 40±12 years, 5 female, 5 male). Both groups were investigated using fluorine-18-labelled fluorodeoxyglucose brain positron emission tomography (PET) and cranial MRI. The normal controls and 11 of the 13 patients showed normal MRI scans. However, PET scan was abnormal in all 13 SLE patients. Significant group-to-group differences in the glucose metabolic index (GMI=region of interest uptake/global uptake at the level of the basal ganglia and thalamus) were found in the parieto-occipital region on both sides: the GMI of the parieto-occipital region on the right side was 0.922±0.045 in patients and 1.066±0.081 in controls (P<0.0001, Mann Whitney U test), while on the left side it was 0.892±0.060 in patients and 1.034±0.051 in controls (P=0.0002). Parieto-occipital hypometabolism is a conspicuous finding in mainly MRI-negative neuropsychiatric SLE. As the parieto-occipital region is located at the boundary of blood supply of all three major arteries, it could be the most vulnerable zone of the cerebrum and may be affected at an early stage of the cerebrovascular disease. (orig.). With 1 fig., 1 tab

  7. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of thymoma: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Liu Renshyan [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China)]|[National Def. Medical Center, Taipei (Taiwan, Province of China); Yeh Shinhwa [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China); Huang Minhsiung [Div. of Thoracic Surgery, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China); Wang Liangshun [Div. of Thoracic Surgery, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China); Chu Leeshing [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China)]|[National Def. Medical Center, Taipei (Taiwan, Province of China); Chang Chenpei [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China); Chu Yumkung [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China); Wu Lingchi [National PET/Cyclotron Center and Dept. of Nuclear Medicine, Taipei Veterans General Hospital and National Yang-Ming Univ. School of Medicine, Taipei (Taiwan, Province of China)

    1995-12-01

    This study aimed to analyse the uptake patterns of fluorine-18 fluorodeoxyglucose (FDG) in thymomas of different stages. FDG positron emission tomography (PET) scan was performed in 12 patients suspected of having thymoma and in nine controls. Qualitative visual interpretation was used to detect the foci with FDG uptake higher than that of normal mediastinum. Tumour/lung ratio (TLR) was calculated from the counts of ROIs over the mass and over comparable normal lung tissue in thymoma patients. Mediastinum/lung ratio (MLR) was calculated from the counts of ROIs over the anterior mediastinum and lung in controls. The PET scan patterns of distribution of foci with FDG uptake and TLRs were correlated with the computed tomography (CT) of magnetic resonance imaging (MRI) findings, and staging of the thymomas. Thymectomy was performed in ten patients and thoracoscopy was done in two patients. The results revealed ten thymomas (two stage I tumours, two stage II, four stage III and two stage IV, according to the Masaoka classification), and two cases of thymic hyperplasia associated with myasthenia gravis. Myasthenia gravis was also noted in four thymoma patients. FDG studies showed (a) diffuse uptake in the widened anterior mediastinum in patients with thymic hyperplasia, (b) confined focal FDG uptake in the non-invasive or less invasive, stage I and II thymomas, and (c) multiple discrete foci of FDG uptake in the mediastinum and thoraci structures in stage III and IV advanced invasive thymomas. The thymomas had the highest TLRs, followed by the TLRs of thymic hyperplasia and the MLRs of control subjects. No significant difference was found between thymomas in different stages or between thymomas with and thymomas without myasthenia gravis. In comparison with CT and/or MRI, FDG/PET detected more lesions in patients with invasive thymomas and downgraded the staging of thymoma in four patients. (orig./MG)

  8. Positron emission tomography of malignant tumours at head and neck. Evaluation of the diagnostic value of positron emission tomography by comparison with computed tomography

    International Nuclear Information System (INIS)

    Kettler, Nele

    2011-01-01

    Imaging methods for early, accurate diagnosis and aftercare of malignant growths is currently one of the most important research topics. The objective of this thesis is to evaluate the diagnostic value of FDG-positron emission tomography by comparison with computed tomography for patients with squamous cell carcinoma, malignant melanoma or sarcoma at head and neck. Measurement criteria are sensitivity and specificity. A retrospective evaluation of 100 examinations on 85 patients of University clinic Aachen was performed. The examination reports were supported by reports from histology, positron emission tomography and computed tomography. In each case, the histological results were assumed to provide a reliable benchmark. Sensitivity and specificity for the primary tumour site, metastatic lymphatic nodes and defined anatomic structures were compared across all patients. Comparisons were also performed on sub groups separated by gender, cancer type and the time and frequency at which tumours arose. The statistic analysis was done with MedCalc. Results: The results for sensitivity and specificity of the primary tumour site were 86.42% and 42.86%, and 64.71% and 66.07%, for positron emission tomography and computed tomography respectively. The results for the lymphatic nodes were 51.52% and 92.86% and 64.71% and 66.07%. When the constituent anatomic structures were evaluated separately, the specificity was significantly higher. The separation by gender showed no difference. Because the classification by tumor type resulted in samples that were of varying size, a comparison was difficult. For the diagnosis of primary tumours, the examination with positron emission tomography was superior, whereas computed tomography proved more effective for the diagnosis of recurrent tumours. For the diagnosis of the main tumour site, both methods were shown to be equally suitable. For the assessment of lymphatic nodes, positron emission tomography was superior to computed tomography

  9. The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in resectable pancreatic cancer.

    Science.gov (United States)

    Crippa, Stefano; Salgarello, Matteo; Laiti, Silvia; Partelli, Stefano; Castelli, Paola; Spinelli, Antonello E; Tamburrino, Domenico; Zamboni, Giuseppe; Falconi, Massimo

    2014-08-01

    The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in pancreatic ductal adenocarcinoma is debated. We retrospectively assessed the value of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in addition to conventional imaging as a staging modality in pancreatic cancer. (18)Fluoro-deoxyglucose positron emission tomography/computed tomography was performed in 72 patients with resectable pancreatic carcinoma after multi-detector computed tomography positron emission tomography was considered positive for a maximum standardized uptake value >3. Overall, 21% of patients had a maximum standardized uptake value ≤ 3, and 60% of those had undergone neoadjuvant treatment (P=0.0001). Furthermore, 11% of patients were spared unwarranted surgery since positron emission tomography/computed tomography detected metastatic disease. All liver metastases were subsequently identified with contrast-enhanced ultrasound. Sensitivity and specificity of positron emission tomography/computed tomography for distant metastases were 78% and 100%. The median CA19.9 concentration was 48.8 U/mL for the entire cohort and 292 U/mL for metastatic patients (P=0.112). The widespread application of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic carcinoma seems not justified. It should be considered in selected patients at higher risk of metastatic disease (i.e. CA19.9>200 U/mL) after undergoing other imaging tests. Neoadjuvant treatment is significantly associated with low metabolic activity, limiting the value of positron emission tomography in this setting. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. Positron emission tomography in oncology. Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This report describes the current and potential uses of positron emission tomography in clinical medicine and research related to oncology. Assessment will be possible of metabolism and physiology of tumors and their effects on adjacent tissues. Specific probes are likely to be developed for target sites on tumors, including monoclonal antibodies and specific growth factors that recognize tumors. To date, most oncological applications of positron emission tomography tracers have been qualitative; in the future, quantitative metabolic measurements should aid in the evaluation of tumor biology and response to treatment. 41 references

  11. Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance- and Computed Tomography-Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients.

    Science.gov (United States)

    Seith, Ferdinand; Gatidis, Sergios; Schmidt, Holger; Bezrukov, Ilja; la Fougère, Christian; Nikolaou, Konstantin; Pfannenberg, Christina; Schwenzer, Nina

    2016-01-01

    Attenuation correction (AC) in fully integrated positron emission tomography (PET)/magnetic resonance (MR) systems plays a key role for the quantification of tracer uptake. The aim of this prospective study was to assess the accuracy of standardized uptake value (SUV) quantification using MR-based AC in direct comparison with computed tomography (CT)-based AC of the same PET data set on a large patient population. Sixty-six patients (22 female; mean [SD], 61 [11] years) were examined by means of combined PET/CT and PET/MR (11C-choline, 18F-FDG, or 68Ga-DOTATATE) subsequently. Positron emission tomography images from PET/MR examinations were corrected with MR-derived AC based on tissue segmentation (PET(MR)). The same PET data were corrected using CT-based attenuation maps (μ-maps) derived from PET/CT after nonrigid registration of the CT to the MR-based μ-map (PET(MRCT)). Positron emission tomography SUVs were quantified placing regions of interest or volumes of interest in 6 different body regions as well as PET-avid lesions, respectively. The relative differences of quantitative PET values when using MR-based AC versus CT-based AC were varying depending on the organs and body regions assessed. In detail, the mean (SD) relative differences of PET SUVs were as follows: -7.8% (11.5%), blood pool; -3.6% (5.8%), spleen; -4.4% (5.6%)/-4.1% (6.2%), liver; -0.6% (5.0%), muscle; -1.3% (6.3%), fat; -40.0% (18.7%), bone; 1.6% (4.4%), liver lesions; -6.2% (6.8%), bone lesions; and -1.9% (6.2%), soft tissue lesions. In 10 liver lesions, distinct overestimations greater than 5% were found (up to 10%). In addition, overestimations were found in 2 bone lesions and 1 soft tissue lesion adjacent to the lung (up to 28.0%). Results obtained using different PET tracers show that MR-based AC is accurate in most tissue types, with SUV deviations generally of less than 10%. In bone, however, underestimations can be pronounced, potentially leading to inaccurate SUV quantifications. In

  12. A Comparison of Endoscopic Ultrasound Guided Biopsy and Positron Emission Tomography with Integrated Computed Tomography in Lung Cancer Staging

    DEFF Research Database (Denmark)

    Larsen, Stine Schmidt; Vilmann, P; Krasnik, K

    2009-01-01

    BACKGROUND AND STUDY AIMS: Exact staging of patients with non-small-cell lung cancer (NSCLC) is important to improve selection of resectable and curable patients for surgery. Positron emission tomography with integrated computed tomography (PET/CT) and endoscopic ultrasound guided fine needle...... aspiration biopsy (EUS-FNA) are new and promising methods, but indications in lung cancer staging are controversial. Only few studies have compared the 2 methods. The aim of this study was to assess and compare the diagnostic values of PET/CT and EUS-FNA for diagnosing advanced lung cancer in patients, who...... had both procedures performed. PATIENTS AND METHODS: 27 patients considered to be potential candidates for resection of NSCLC underwent PET/CT and EUS-FNA. Diagnoses were confirmed either by open thoracotomy, mediastinoscopy or clinical follow-up. Advanced lung cancer was defined as tumour...

  13. Marked reduction of cerebral oxygen metabolism in patients with advanced cirrhosis; A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Kawatoko, Toshiharu; Murai, Koichiro; Ibayashi, Setsurou; Tsuji, Hiroshi; Nomiyama, Kensuke; Sadoshima, Seizo; Eujishima, Masatoshi; Kuwabara, Yasuo; Ichiya, Yuichi (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1992-01-01

    Regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen (rCMRO{sub 2}), and oxygen extraction fraction (rOEF) were measured using positron emission tomography (PET) in four patients with cirrhosis (two males and two females, aged 57 to 69 years) in comparison with those in five age matched controls with previous transient global amnesia. PET studies were carried out when the patients were fully alert and oriented after the episodes of encephalopathy. In the patients, rCBF tended to be lower, while rCMRO{sub 2} was significantly lowered in almost all hemisphere cortices, more markedly in the frontal cortex. Our results suggest that the brain oxygen metabolism is diffusely impaired in patients with advanced cirrhosis, and the frontal cortex seems to be more susceptible to the systemic metabolic derangements induced by chronic liver disease. (author).

  14. Time-of-Flight Positron Emission Tomography with Radiofrequency Phototube

    International Nuclear Information System (INIS)

    Margaryan, A.; Kakoyan, V.; Knyazyan, S.

    2011-01-01

    In this paper γ-detector, based on the radiofrequency (RF) phototube and recently developed fast and ultrafast scintillators, is considered for Time-of-Flight positron emission tomography applications. Timing characteristics of such a device has been investigated by means of a dedicated Monte Carlo code based on the single photon counting concept. Biexponential timing model for scintillators have been used. The calculations have shown that such a timing model is in a good agreement with recently measured data. The timing resolution of -detectors can be significantly improved by using the RF phototube. (authors)

  15. Low-resource synchronous coincidence processor for positron emission tomography

    International Nuclear Information System (INIS)

    Sportelli, Giancarlo; Belcari, Nicola; Guerra, Pedro; Santos, Andres

    2011-01-01

    We developed a new FPGA-based method for coincidence detection in positron emission tomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs.

  16. Contribution of positron emission tomography in pleural disease.

    Science.gov (United States)

    Duysinx, B; Corhay, J-L; Larock, M-P; Withofs, N; Bury, T; Hustinx, R; Louis, R

    2010-10-01

    Positron emission tomography (PET) now plays a clear role in oncology, especially in chest tumours. We discuss the value of metabolic imaging in characterising pleural pathology in the light of our own experience and review the literature. PET is particularly useful in characterising malignant pleural pathologies and is a factor of prognosis in mesothelioma. Metabolic imaging also provides clinical information for staging lung cancer, in researching the primary tumour in metastatic pleurisy and in monitoring chronic or recurrent pleural pathologies. PET should therefore be considered as a useful tool in the diagnosis of liquid or solid pleural pathologies. Copyright © 2010 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  17. A new iterative reconstruction technique for attenuation correction in high-resolution positron emission tomography

    International Nuclear Information System (INIS)

    Knesaurek, K.; Machac, J.; Vallabhajosula, S.; Buchsbaum, M.S.

    1996-01-01

    A new interative reconstruction technique (NIRT) for positron emission computed tomography (PET), which uses transmission data for nonuniform attenuation correction, is described. Utilizing the general inverse problem theory, a cost functional which includes a noise term was derived. The cost functional was minimized using a weighted-least-square maximum a posteriori conjugate gradient (CG) method. The procedure involves a change in the Hessian of the cost function by adding an additional term. Two phantoms were used in a real data acquisition. The first was a cylinder phantom filled with uniformly distributed activity of 74 MBq of fluorine-18. Two different inserts were placed in the phantom. The second was a Hoffman brain phantom filled with uniformly distributed activity of 7.4 MBq of 18 F. Resulting reconstructed images were used to test and compare a new interative reconstruction technique with a standard filtered backprojection (FBP) method. The results confirmed that NIRT, based on the conjugate gradient method, converges rapidly and provides good reconstructed images. In comaprison with standard results obtained by the FBP method, the images reconstructed by NIRT showed better noise properties. The noise was measured as rms% noise and was less, by a factor of 1.75, in images reconstructed by NIRT than in the same images reconstructed by FBP. The distance between the Hoffman brain slice created from the MRI image was 0.526, while the same distance for the Hoffman brain slice reconstructed by NIRT was 0.328. The NIRT method suppressed the propagation of the noise without visible loss of resolution in the reconstructed PET images. (orig.)

  18. Development of a multiplexed readout with high position resolution for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangwon; Choi, Yong [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of); Kang, Jihoon [Department of Biomedical Engineering, Chonnam National University, Yeosu 550-749 (Korea, Republic of); Jung, Jin Ho [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of)

    2017-04-01

    Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm{sup 3} LYSO, a 4×4 array of 3×3 mm{sup 2} silicon photomultiplier (SiPM) and 13.4×13.4 mm{sup 2} light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.

  19. Activity-based costing evaluation of a [(18)F]-fludeoxyglucose positron emission tomography study.

    Science.gov (United States)

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Borght, Thierry Vander

    2009-10-01

    The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes. The cost data were obtained from the hospital administration, personnel and vendor interviews as well as from structured questionnaires. A process map separates the process in 16 patient- and non-patient-related activities, to which the detailed cost data are related. One-way sensitivity analyses shows to which degree of uncertainty the different parameters affect the individual cost and evaluate the impact of possible resource or practice changes like the acquisition of a hybrid PET/CT device, the patient throughput or the sales price of a 370MBq (18)F-FDG patient dose. The PET centre spends 73% of time in clinical activities and the resting time after injection of the tracer (42%) is the single largest departmental cost element. The tracer cost and the operational time have the most influence on cost per procedure. The analysis shows a total cost per FDG-PET ranging from 859 Euro for a BGO PET camera to 1142 Euro for a 16 slices PET-CT system, with a distribution of the resource costs in decreasing order: materials (44%), equipment (24%), wage (16%), space (6%) and hospital overhead (10%). The cost of FDG-PET is mainly influenced by the cost of the radiopharmaceutical. Therefore, the latter rather than the operational time should be reduced in order to improve its cost-effectiveness.

  20. Respiratory gating in positron emission tomography: A quantitative comparison of different gating schemes

    International Nuclear Information System (INIS)

    Dawood, Mohammad; Buether, Florian; Lang, Norbert; Schober, Otmar; Schaefers, Klaus P

    2007-01-01

    Respiratory gating is used for reducing the effects of breathing motion in a wide range of applications from radiotherapy treatment to diagnostical imaging. Different methods are feasible for respiratory gating. In this study seven gating methods were developed and tested on positron emission tomography (PET) listmode data. The results of seven patient studies were compared quantitatively with respect to motion and noise. (1) Equal and (2) variable time-based gating methods use only the time information of the breathing cycle to define respiratory gates. (3) Equal and (4) variable amplitude-based gating approaches utilize the amplitude of the respiratory signal. (5) Cycle-based amplitude gating is a combination of time and amplitude-based techniques. A baseline correction was applied to methods (3) and (4) resulting in two new approaches: Baseline corrected (6) equal and (7) variable amplitude-based gating. Listmode PET data from seven patients were acquired together with a respiratory signal. Images were reconstructed applying the seven gating methods. Two parameters were used to quantify the results: Motion was measured as the displacement of the heart due to respiration and noise was defined as the standard deviation of pixel intensities in a background region. The amplitude-based approaches (3) and (4) were superior to the time-based methods (1) and (2). The improvement in capturing the motion was more than 30% (up to 130%) in all subjects. The variable time (2) and amplitude (4) methods had a more uniform noise distribution among all respiratory gates compared to equal time (1) and amplitude (3) methods. Baseline correction did not improve the results. Out of seven different respiratory gating approaches, the variable amplitude method (4) captures the respiratory motion best while keeping a constant noise level among all respiratory phases

  1. Clinical cardiac positron emission tomography: State of the art

    International Nuclear Information System (INIS)

    Gould, K.L.

    1991-01-01

    Cardiac positron emission tomography (PET) has evolved rapidly from a relatively esoteric research tool into clinical applications providing unique, quantitative information on myocardial perfusion, metabolism, and cell membrane function and having a potentially significant impact on cardiovascular medicine. Although there are many different positron radionuclides for imaging diverse myocardial behavior, three radionuclides have reached accepted clinical utility. Cardiac PET using nitrogen-13-ammonia, rubidium-82, and fluoro-18-deoxyglucose has proved accurate and definitive in multiple university and private-practice sites for diagnosing and assessing severity and location of coronary artery disease in symptomatic or asymptomatic patients, for identifying injured but viable myocardium potentially salvageable by revascularization, and for ruling out clinically significant coronary artery stenosis with a high specificity in patients who might otherwise undergo coronary arteriography to document the absence of significant disease. 89 references

  2. Positron emission tomography. Present status and Romanian perspectives

    International Nuclear Information System (INIS)

    Constantinescu, B.; Lungu, V.

    1995-01-01

    Basic principles of the positron emission tomography (PET) are summarised. The main PET methods using short-lived radioisotopes (i.e. 11 C, 13 N, 15 O, 18 F) are briefly reviewed. Three types of particle accelerators for radioisotopes production and medical uses (including radiotherapy), corresponding to the proton energy (E p p p < 200 MeV) are presented. PET imaging equipment and procedures are discussed. Main radiopharmaceuticals based on beta decay for PET studies and their role in medicine is also described. Finally, perspectives for a PET program in Romania (Cyclotron + Radiochemistry + Tomograph ) are discussed. (author)

  3. Kinetic modeling in pre-clinical positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  4. PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography

    Science.gov (United States)

    Thomas, Benjamin A.; Cuplov, Vesna; Bousse, Alexandre; Mendes, Adriana; Thielemans, Kris; Hutton, Brian F.; Erlandsson, Kjell

    2016-11-01

    Positron emission tomography (PET) images are degraded by a phenomenon known as the partial volume effect (PVE). Approaches have been developed to reduce PVEs, typically through the utilisation of structural information provided by other imaging modalities such as MRI or CT. These methods, known as partial volume correction (PVC) techniques, reduce PVEs by compensating for the effects of the scanner resolution, thereby improving the quantitative accuracy. The PETPVC toolbox described in this paper comprises a suite of methods, both classic and more recent approaches, for the purposes of applying PVC to PET data. Eight core PVC techniques are available. These core methods can be combined to create a total of 22 different PVC techniques. Simulated brain PET data are used to demonstrate the utility of toolbox in idealised conditions, the effects of applying PVC with mismatched point-spread function (PSF) estimates and the potential of novel hybrid PVC methods to improve the quantification of lesions. All anatomy-based PVC techniques achieve complete recovery of the PET signal in cortical grey matter (GM) when performed in idealised conditions. Applying deconvolution-based approaches results in incomplete recovery due to premature termination of the iterative process. PVC techniques are sensitive to PSF mismatch, causing a bias of up to 16.7% in GM recovery when over-estimating the PSF by 3 mm. The recovery of both GM and a simulated lesion was improved by combining two PVC techniques together. The PETPVC toolbox has been written in C++, supports Windows, Mac and Linux operating systems, is open-source and publicly available.

  5. A computed tomography-based spatial normalization for the analysis of [18F] fluorodeoxyglucose positron emission tomography of the brain.

    Science.gov (United States)

    Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung

    2014-01-01

    We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.

  6. Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry.

    Science.gov (United States)

    Dorbala, Sharmila; Di Carli, Marcelo F; Beanlands, Rob S; Merhige, Michael E; Williams, Brent A; Veledar, Emir; Chow, Benjamin J W; Min, James K; Pencina, Michael J; Berman, Daniel S; Shaw, Leslee J

    2013-01-15

    The primary objective of this multicenter registry was to study the prognostic value of positron emission tomography (PET) myocardial perfusion imaging (MPI) and the improved classification of risk in a large cohort of patients with suspected or known coronary artery disease (CAD). Limited prognostic data are available for MPI with PET. A total of 7,061 patients from 4 centers underwent a clinically indicated rest/stress rubidium-82 PET MPI, with a median follow-up of 2.2 years. The primary outcome of this study was cardiac death (n = 169), and the secondary outcome was all-cause death (n = 570). Net reclassification improvement (NRI) and integrated discrimination analyses were performed. Risk-adjusted hazard of cardiac death increased with each 10% myocardium abnormal with mildly, moderately, or severely abnormal stress PET (hazard ratio [HR]: 2.3 [95% CI: 1.4 to 3.8; p = 0.001], HR: 4.2 [95% CI: 2.3 to 7.5; p statistic 0.805 [95% CI: 0.772 to 0.838] to 0.839 [95% CI: 0.809 to 0.869]) and risk reclassification for cardiac death (NRI 0.116 [95% CI: 0.021 to 0.210]), with smaller improvements in risk assessment for all-cause death. In patients with known or suspected CAD, the extent and severity of ischemia and scar on PET MPI provided powerful and incremental risk estimates of cardiac death and all-cause death compared with traditional coronary risk factors. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies.

    Science.gov (United States)

    Ito, Hiroshi; Yokoi, Takashi; Ikoma, Yoko; Shidahara, Miho; Seki, Chie; Naganawa, Mika; Takahashi, Hidehiko; Takano, Harumasa; Kimura, Yuichi; Ichise, Masanori; Suhara, Tetsuya

    2010-01-01

    In positron emission tomography (PET) studies with radioligands for neuroreceptors, tracer kinetics have been described by the standard two-tissue compartment model that includes the compartments of nondisplaceable binding and specific binding to receptors. In the present study, we have developed a new graphic plot analysis to determine the total distribution volume (V(T)) and nondisplaceable distribution volume (V(ND)) independently, and therefore the binding potential (BP(ND)). In this plot, Y(t) is the ratio of brain tissue activity to time-integrated arterial input function, and X(t) is the ratio of time-integrated brain tissue activity to time-integrated arterial input function. The x-intercept of linear regression of the plots for early phase represents V(ND), and the x-intercept of linear regression of the plots for delayed phase after the equilibrium time represents V(T). BP(ND) can be calculated by BP(ND)=V(T)/V(ND)-1. Dynamic PET scanning with measurement of arterial input function was performed on six healthy men after intravenous rapid bolus injection of [(11)C]FLB457. The plot yielded a curve in regions with specific binding while it yielded a straight line through all plot data in regions with no specific binding. V(ND), V(T), and BP(ND) values calculated by the present method were in good agreement with those by conventional non-linear least-squares fitting procedure. This method can be used to distinguish graphically whether the radioligand binding includes specific binding or not.

  8. Elevated Brain Cannabinoid CB1 Receptor Availability in Posttraumatic Stress Disorder: A Positron Emission Tomography Study

    Science.gov (United States)

    Neumeister, Alexander; Normandin, Marc D.; Pietrzak, Robert H.; Piomelli, Daniele; Zheng, Ming-Qiang; Gujarro-Anton, Ana; Potenza, Marc N.; Bailey, Christopher R.; Lin, Shu-fei; Najafzadeh, Soheila; Ropchan, Jim; Henry, Shannan; Corsi-Travali, Stefani; Carson, Richard E.; Huang, Yiyun

    2013-01-01

    Endocannabinoids and their attending cannabinoid type 1 receptor (CB1) have been implicated in animal models of posttraumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [11C]OMAR in individuals with PTSD, and healthy controls with lifetime histories of trauma (trauma controls [TC]) and those without such histories (healthy controls [HC]). Untreated individuals with PTSD (N=25) with non-combat trauma histories, and TC (N=12) and HC (N=23) participated in a magnetic resonance (MR) imaging scan and a resting PET scan with the CB1 receptor antagonist radiotracer [11C]OMAR, which measures volume of distribution (VT) linearly related to CB1 receptor availability. Peripheral levels of anandamide, 2-arachidonoylglycerol (2-AG), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and cortisol were also assessed. In the PTSD group, relative to the HC and TC groups, we found elevated brain-wide [11C]OMAR VT values (F(2,53)=7.96, p=.001; 19.5% and 14.5% higher, respectively) which were most pronounced in women (F(1,53)=5.52, p=.023). Anandamide concentrations were reduced in the PTSD relative to the TC (53.1% lower) and HC (58.2% lower) groups. Cortisol levels were lower in the PTSD and TC groups relative to the HC group. Three biomarkers examined collectively—OMAR VT, anandamide, and cortisol—correctly classified nearly 85% of PTSD cases. These results suggest that abnormal CB1 receptor-mediated anandamide signaling is implicated in the etiology of PTSD, and provide a promising neurobiological model to develop novel, evidence-based pharmacotherapies for this disorder. PMID:23670490

  9. A method for comparing intra-tumoural radioactivity uptake heterogeneity in preclinical positron emission tomography studies

    International Nuclear Information System (INIS)

    Grafström, Jonas; Ahlzén, Hanna-Stina; Stone-Elander, Sharon

    2015-01-01

    Non-uniformity influences the interpretation of nuclear medicine based images and consequently their use in treatment planning and monitoring. However, no standardised method for evaluating and ranking heterogeneity exists. Here, we have developed a general algorithm that provides a ranking and a visualisation of the heterogeneity in small animal positron emission tomography (PET) images. The code of the algorithm was written using the Matrix Laboratory software (MATLAB). Parameters known to influence the heterogeneity (distances between deviating peaks, gradients and size compensations) were incorporated into the algorithm. All data matrices were mathematically constructed in the same format with the aim of maintaining overview and control. Histograms visualising the spread and frequency of contributions to the heterogeneity were also generated. The construction of the algorithm was tested using mathematically generated matrices and by varying post-processing parameters. It was subsequently applied in comparisons of radiotracer uptake in preclinical images in human head and neck carcinoma and endothelial and ovarian carcinoma xenografts. Using the developed algorithm, entire tissue volumes could be assessed and gradients could be handled in an indirect manner. Similar-sized volumes could be compared without modifying the algorithm. Analyses of the distribution of different tracers gave results that were generally in accordance with single plane preclinical images, indicating that it could appropriately handle comparisons of targeting vs. non-targeting tracers and also for different target levels. Altering the reconstruction algorithm, pixel size, tumour ROI volumes and lower cut-off limits affected the calculated heterogeneity factors in expected directions but did not reverse conclusions about which tumour was more or less heterogeneous. The algorithm constructed is an objective and potentially user-friendly tool for one-to-one comparisons of heterogeneity in

  10. Is dopamine D1 receptor availability related to social behavior? A positron emission tomography replication study.

    Directory of Open Access Journals (Sweden)

    Pontus Plavén-Sigray

    Full Text Available Associations between dopamine receptor levels and pro- and antisocial behavior have previously been demonstrated in human subjects using positron emission tomography (PET and self-rated measures of personality traits. So far, only one study has focused on the dopamine D1-receptor (D1-R, finding a positive correlation with the trait social desirability, which is characterized by low dominant and high affiliative behavior, while physical aggression showed a negative correlation. The aim of the present study was to replicate these previous findings using a new independent sample of subjects.Twenty-six healthy males were examined with the radioligand [11C]SCH-23390, and completed the Swedish universities Scales of Personality (SSP which includes measures of social desirability and physical trait aggression. The simplified reference tissue model with cerebellum as reference region was used to calculate BPND values in the whole striatum and limbic striatum. The two regions were selected since they showed strong association between D1-R availability and personality scores in the previous study. Pearson's correlation coefficients and replication Bayes factors were then employed to assess the replicability and robustness of previous results.There were no significant correlations (all p values > 0.3 between regional BPND values and personality scale scores. Replication Bayes factors showed strong to moderate evidence in favor no relationship between D1-receptor availability and social desirability (striatum BF01 = 12.4; limbic striatum BF01 = 7.2 or physical aggression scale scores (limbic striatum BF01 = 3.3, compared to the original correlations.We could not replicate the previous findings of associations between D1-R availability and either pro- or antisocial behavior as measured using the SSP. Rather, there was evidence in favor of failed replications of associations between BPND and scale scores. Potential reasons for these results are restrictive

  11. A method for comparing intra-tumoural radioactivity uptake heterogeneity in preclinical positron emission tomography studies

    Energy Technology Data Exchange (ETDEWEB)

    Grafström, Jonas; Ahlzén, Hanna-Stina [Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm (Sweden); Stone-Elander, Sharon [Department of Clinical Neuroscience, Karolinska Institutet, SE-17176 Stockholm (Sweden); PET Radiochemistry, Neuroradiology Department, Karolinska University Hospital, SE-17176 Stockholm (Sweden)

    2015-09-08

    Non-uniformity influences the interpretation of nuclear medicine based images and consequently their use in treatment planning and monitoring. However, no standardised method for evaluating and ranking heterogeneity exists. Here, we have developed a general algorithm that provides a ranking and a visualisation of the heterogeneity in small animal positron emission tomography (PET) images. The code of the algorithm was written using the Matrix Laboratory software (MATLAB). Parameters known to influence the heterogeneity (distances between deviating peaks, gradients and size compensations) were incorporated into the algorithm. All data matrices were mathematically constructed in the same format with the aim of maintaining overview and control. Histograms visualising the spread and frequency of contributions to the heterogeneity were also generated. The construction of the algorithm was tested using mathematically generated matrices and by varying post-processing parameters. It was subsequently applied in comparisons of radiotracer uptake in preclinical images in human head and neck carcinoma and endothelial and ovarian carcinoma xenografts. Using the developed algorithm, entire tissue volumes could be assessed and gradients could be handled in an indirect manner. Similar-sized volumes could be compared without modifying the algorithm. Analyses of the distribution of different tracers gave results that were generally in accordance with single plane preclinical images, indicating that it could appropriately handle comparisons of targeting vs. non-targeting tracers and also for different target levels. Altering the reconstruction algorithm, pixel size, tumour ROI volumes and lower cut-off limits affected the calculated heterogeneity factors in expected directions but did not reverse conclusions about which tumour was more or less heterogeneous. The algorithm constructed is an objective and potentially user-friendly tool for one-to-one comparisons of heterogeneity in

  12. An automated blood sampling system used in positron emission tomography

    International Nuclear Information System (INIS)

    Eriksson, L.; Bohm, C.; Kesselberg, M.

    1988-01-01

    Fast dynamic function studies with positron emission tomography (PET), has the potential to give accurate information of physiological functions of the brain. This capability can be realised if the positron camera system accurately quantitates the tracer uptake in the brain with sufficiently high efficiency and in sufficiently short time intervals. However, in addition, the tracer concentration in blood, as a function of time, must be accurately determined. This paper describes and evaluates an automated blood sampling system. Two different detector units are compared. The use of the automated blood sampling system is demonstrated in studies of cerebral blood flow, in studies of the blood-brain barrier transfer of amino acids and of the cerebral oxygen consumption. 5 refs.; 7 figs

  13. Acquisition of resistance to antitumor alkylating agent ACNU: a possible target of positron emission tomography monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Hideya [Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193 (Japan); Research Institute of Brain and Blood Vessels, Akita 010-0874 (Japan); Toyohara, Jun [Radiopharmaceutical Chemistry Section, Department of Medical Imaging, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Kado, Hirotsugu [Research Institute of Brain and Blood Vessels, Akita 010-0874 (Japan); Nakagawa, Takao [Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193 (Japan); Takamatsu, Shinji [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Furukawa, Takako [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Yonekura, Yoshiharu [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Kubota, Toshihiko [Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan)]. E-mail: yfuji@fmsrsa.fukui-med.ac.jp

    2006-01-15

    Early detection of tumor response to chemotherapy is of great importance for appropriate treatment of tumors. In this study, characteristics of two positron emission tomography (PET) tracers, [{sup 18}F]2-fluoro-2-deoxy-D-glucose (FDG) and[{sup 18}F]3'-fluoro-3'-deoxy-thymidine (FLT), in the early detection of tumor cell response as well as tolerance development to chemotherapy was compared using rat C6 glioma cells and 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl) -3-nitrosoureahydrochloride (ACNU). ACNU is an alkylating agent known to induce drug resistance through expression of O {sup 6}-methylguanine-deoxyribonucleic acid methyl transferase (O {sup 6}-MGMT). We established an ACNU-resistant C6 glioma cell line (C6/ACNU) and investigated the effect of ACNU on the uptake of FLT and FDG. In C6 cells, DNA synthesis presented as [{sup 3}H]thymidine ([{sup 3}H]Thd) incorporation into DNA was quickly suppressed by ACNU. In C6/ACNU cells, the suppression was recovered promptly, indicating that DNA alkylation occurs initially but highly expressed O {sup 6}-MGMT repairs DNA, leading to the recovery of DNA synthesis. The patterns of FLT uptake in C6 and C6/ACNU were difficult to distinguish in the very early stage of the treatment, though it was reported that FLT uptake well correlated with proliferation in certain conditions. FDG uptake showed different patterns between the resistant and control cells, with significantly decreased uptake in C6 cells and unchanged uptake in C6/ACNU cells at 18-24 h after the treatment. Though difficult to be directly translated into clinical situation, the present study will provide a base to develop an appropriate protocol to assess tumor response to treatment by PET and to design effective treatment plans.

  14. Remote effect in patients with thalamic stroke. A study using positron emission tomography

    International Nuclear Information System (INIS)

    Komaba, Yuichi; Kitamura, Shin; Terashi, Akiro

    1998-01-01

    The purpose of this study was to investigate the functional relation between the thalamus and other cortical regions in patients with thalamic stroke from the view of cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO 2 ) using positron emission tomography (PET). Twenty patients with thalamic stroke (right lesion=8, left lesion=12) and 7 normal controls were studied. Five patients were diagnosed as having thalamic infarction, and 15 (patients were diagnosed) as having thalamic hemorrhage by X-CT and/or MRI scan. Regional cerebral blood flow and cerebral metabolic rate of oxygen were measured by PET using C 15 O 2 and 15 O 2 steady state inhalation technique. In the left thalamic stroke group, CMRO 2 was significantly decreased in the left cingulate, superior frontal, superior temporal, middle temporal, medial occipital, and thalamic regions, compared with the normal control group. In the right thalamic stroke group, CMRO 2 was decreased in the left cingulate, medial occipital, right hippocampal, thalamic, and the bilateral cerebellar regions, compared with the normal control group. In the left thalamic stroke group, CBF was decreased significantly in the left cingulate, middle temporal, hippocampal, thalamic, and right cerebellar regions, compared with the normal control group. In the right thalamic stroke group, CBF was significantly decreased in the right hippocampal, thalamic and left cerebellar regions compared with the normal control group. These results indicate that CBF and CMRO 2 decrease in some distant regions from thalamic lesions, perhaps due to a disconnection of neuronal fiber. Especially in the left thalamic stroke group, CMRO 2 was decreased in the ipsilateral temporal regions. This result suggests that there are more intimate functional fiber connections between the thalamus and temporal cortex in the left hemisphere than in the right hemisphere. (author)

  15. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography

    International Nuclear Information System (INIS)

    Aristophanous, Michalis; Penney, Bill C.; Martel, Mary K.; Pelizzari, Charles A.

    2007-01-01

    The increased interest in 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in radiation treatment planning in the past five years necessitated the independent and accurate segmentation of gross tumor volume (GTV) from FDG-PET scans. In some studies the radiation oncologist contours the GTV based on a computed tomography scan, while incorporating pertinent data from the PET images. Alternatively, a simple threshold, typically 40% of the maximum intensity, has been employed to differentiate tumor from normal tissue, while other researchers have developed algorithms to aid the PET based GTV definition. None of these methods, however, results in reliable PET tumor segmentation that can be used for more sophisticated treatment plans. For this reason, we developed a Gaussian mixture model (GMM) based segmentation technique on selected PET tumor regions from non-small cell lung cancer patients. The purpose of this study was to investigate the feasibility of using a GMM-based tumor volume definition in a robust, reliable and reproducible way. A GMM relies on the idea that any distribution, in our case a distribution of image intensities, can be expressed as a mixture of Gaussian densities representing different classes. According to our implementation, each class belongs to one of three regions in the image; the background (B), the uncertain (U) and the target (T), and from these regions we can obtain the tumor volume. User interaction in the implementation is required, but is limited to the initialization of the model parameters and the selection of an ''analysis region'' to which the modeling is restricted. The segmentation was developed on three and tested on another four clinical cases to ensure robustness against differences observed in the clinic. It also compared favorably with thresholding at 40% of the maximum intensity and a threshold determination function based on tumor to background image intensities proposed in a recent paper. The parts of the

  16. Time-of-flight positron emission tomography and associated detectors

    International Nuclear Information System (INIS)

    Vacher, J.; Allemand, R.; Campagnolo, R.

    1983-04-01

    An analysis of the timing capabilities of the detectors (scintillators and photomultipliers) in time-of-flight positron emission tomography is presented. The advantages of BaF 2 compared with CsF for the futur tomographs are evaluated [fr

  17. Physiopathology of ischemic strokes: the input of positron emission tomography

    International Nuclear Information System (INIS)

    Steinling, M.; Samson, Y.

    1999-01-01

    The tomography by positrons emissions has brought essential physiological and pathological knowledge relative to cerebral vascular accidents in the acute phase, because it is possible to measure the cerebral blood flow, the oxygen extraction rate and the local oxygen consumption. (N.C.)

  18. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  19. Positron emission tomography in presurgical diagnosis of partial epilepsies

    International Nuclear Information System (INIS)

    Hajek, M.; Leenders, K.L.; Wieser, H.G.

    1992-01-01

    We present results of studies in which positron emission tomography was applied to the presurgical evaluation of epileptics. Emphasis is placed on results of PET studies with various tracers in partial epilepsies and on the use of PET in age-related epileptic syndromes in children. (orig.) [de

  20. Serotonin synthesis studied with positron emission tomography, (PET)

    DEFF Research Database (Denmark)

    Honoré, Per Gustaf Hartvig; Lundquist, Pinelopi

    Positron emission tomography (PET) has the potential to study the biosynthesis and release of serotonin (5HT) at brain serotonergic neurons. PET requires probe compounds with specific attributes to enable imaging and quantification of biological processes. This section focuses on probes to measure...

  1. Positron emission tomography/computed tomography data of a tuberculosis mimicking lung cancer: A Case report

    Directory of Open Access Journals (Sweden)

    Amine Benjelloun

    2014-10-01

    Full Text Available PET/CT is a modern and very valuable tool for detecting primary or secondary lung cancers. However, in countries where tuberculosis is endemic, data must be interpreted with caution because of the frequent tuberculomas. We report here a case of a cancer-like tuberculoma of the lung with paralysis of the left vocal cord, and discuss the PET/CT contribution in tuberculomas as well as the noncancer etiologies of this damage.

  2. 77 FR 21783 - Guidance on Media Fills for Validation of Aseptic Preparations for Positron Emission Tomography...

    Science.gov (United States)

    2012-04-11

    ...] Guidance on Media Fills for Validation of Aseptic Preparations for Positron Emission Tomography Drugs... Aseptic Preparations for Positron Emission Tomography (PET) Drugs.'' This guidance is intended to help... Preparations for Positron Emission Tomography (PET) Drugs.'' Most PET drugs are designed for parenteral...

  3. Positron emission tomography and cerebral metabolism

    International Nuclear Information System (INIS)

    Comar, D.; Maziere, M.; Zarifian, E.; Naquet, R.

    1979-01-01

    The association of new methods of labelling with short lived radioisotopes and of visualisation 'in vivo' of these labelled molecules by emission tomography, provide the possibility of studying brain metabolism at different levels. Two examples will illustrate the possibilities of this methodology. Cerebral metabolism of methionine- 11 C in phenylketonutic patients: The cerebral uptake of methionine was measured in 24 PKU children aged 1 to 40 months on a low protein diet. Ten of them were examined twice at intervals of several months. Stopping the diet for one week leads to an increase in blood phenylalanine and to a significant important decrease in brain uptake of labelled methionine. Futhermore, for children under treatment having a low phenylalanine blood concentration, brain uptake of methionine decreases with age between 1 and 40 months. These results suggest that the treatment of this disease should be started as soon as possible after birth. Cerebral metabolism of psychoactive drugs: The study of the brain distribution and kinetics of psychoactive drugs may help in understanding their mode of action. Chlorpromazine- 11 C was administered i.v. to schyzophrenic patients not previously treated with neuroleptics. In all patients the brain uptake of the drug was high and rapid, and was localized mainly in the grey matter, probably in proportion to the blood flow. Non-specific binding of this drug to brain proteins prevented visualization of specific binding to dopaminergic or αnor-adrenergic receptors. Specific receptor binding of benzodiazepines was however visualized in the brain of baboons after injection of 11 C-flunitrazepam (specific activity = 600 Ci/μmole) and subsequent displacement of this radioactive ligand by a pharmacological dose of Lorazepam

  4. Development of EndoTOFPET-US, a multi-modal endoscope for ultrasound and time of flight positron emission tomography

    International Nuclear Information System (INIS)

    Pizzichemi, M

    2014-01-01

    The EndoTOFPET-US project aims at delevoping a multi-modal imaging device that combines Ultrasound with Time-Of-Flight Positron Emission Tomography into an endoscopic imaging device. The goal is to obtain a coincidence time resolution of about 200 ps FWHM and sub-millimetric spatial resolution for the PET head, integrating the components in a very compact detector suitable for endoscopic use. The scanner will be exploited for the clinical test of new bio-markers especially targeted for prostate and pancreatic cancer as well as for diagnostic and surgical oncology. This paper focuses on the status of the Time-Of-Flight Positron Emission Tomograph under development for the EndoTOFPET-US project

  5. 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography in Tuberculosis: Spectrum of Manifestations.

    Science.gov (United States)

    Agarwal, Krishan Kant; Behera, Abhishek; Kumar, Rakesh; Bal, Chandrasekhar

    2017-01-01

    The objective of this article is to provide an illustrative tutorial highlighting the utility of 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography ( 18 F-FDG-PET/CT) imaging to detect spectrum of manifestations in patients with tuberculosis (TB). FDG-PET/CT is a powerful tool for early diagnosis, measuring the extent of disease (staging), and consequently for evaluation of response to therapy in patients with TB.

  6. Positron emission tomography: Physics, instrumentation, and image analysis

    International Nuclear Information System (INIS)

    Porenta, G.

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources. PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and userfriendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. (author)

  7. Diagnosis and evaluation of gastric cancer by positron emission tomography

    Science.gov (United States)

    Wu, Chen-Xi; Zhu, Zhao-Hui

    2014-01-01

    Gastric cancer is the second leading cause of cancer mortality worldwide. The diagnosis of gastric cancer has been significantly improved with the broad availability of gastrointestinal endoscopy. Effective technologies for accurate staging and quantitative evaluation are still in demand to merit reasonable treatment and better prognosis for the patients presented with advanced disease. Preoperative staging using conventional imaging tools, such as computed tomography (CT) and endoscopic ultrasonography, is inadequate. Positron emission tomography (PET), using 18F-fluorodeoxyglucose (FDG) as a tracer and integrating CT for anatomic localization, holds a promise to detect unsuspected metastasis and has been extensively used in a variety of malignancies. However, the value of FDG PET/CT in diagnosis and evaluation of gastric cancer is still controversial. This article reviews the current literature in diagnosis, staging, response evaluation, and relapse monitoring of gastric cancer, and discusses the current understanding, improvement, and future prospects in this area. PMID:24782610

  8. Positron emission tomography with gamma camera in coincidence mode

    International Nuclear Information System (INIS)

    Hertel, A.; Hoer, G.

    1999-01-01

    Positron emission tomography using F-18 FDG has been estbalished in clinical diagnostics with first indications especially in oncology. To install a conventional PET tomography (dedicated PET) is financially costly and restricted to PET examinations only. Increasing demand for PET diagnostics on one hand and restricted financial resources in the health system on the other hand led industry to develop SPECT cameras to be operated in coincidence mode (camera PET) in order to offer nuclear medicine physicians cost-effective devices for PET diagnostic. At the same time camera PET is inferior to conventional PET regarding sensitivity and detection-efficiency for 511 keV photons. Does camera-PET offer a reliable alternative to conventional PET? The first larger comparative studies are now available, so a first apraisal about the technical clinical performance of camera-PET can be done. (orig.) [de

  9. Clinical applications of positron emission tomography in breast cancer patients

    International Nuclear Information System (INIS)

    Roemer, W.; Avril, N.; Schwaiger, M.

    1997-01-01

    Increased glucose metabolism by malignant tissue can be visualized with positron emission tomography (PET), using the radiolabeled glucose analogue F-18 fluorodeoxyglucose (FDG). Depending on the criteria of image interpretation FDG-PET allows detection of breast cancer with a sensitivity of 68% to 94 % and a specificity of 84 % to 97 %. However, sensitivity to visualize small tumors (< 1 cm) is limited. Positron emission tomography demonstrates tumor involvement of regional lymph nodes with high accuracy, predominantly in patients with advanced breast cancer. The sensitivity for the detection of axillary lymph node metastases was 79% with a corresponding specificity of 96 %. Lymph node metastases could not be identified in four of six patients with small primary breast cancer (stage pT1), resulting in a sensitivity of only 33% in these patients. By visualizing primary tumors and metastases in one imaging procedure, PET imaging may allow the effective staging of breast cancer patients. Further studies are needed to define the role of scintigraphic techniques for the diagnostic work-up in patients. (author)

  10. Positron Emission Tomography imaging with the SmartPET system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom)], E-mail: cooperrj@ornl.gov; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P.; Mather, A.R. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2009-07-21

    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  11. Positron emission tomography (PET) for oncologic applications in oral region

    International Nuclear Information System (INIS)

    Shozushima, Masanori; Terasaki, Kazunori

    2004-01-01

    A rapidly emerging clinical application of positron emission tomography (PET) is the detection of cancer with radionuclide tracer, because it provides information unavailable by ultrasound, computed tomography or magnetic resonance imaging. The most commonly used radiotracer for PET oncologic imaging is fluorine-18-labeled fluorodeoxyglucose ( 18 F-FDG). Early studies show PET has potential value in viewing the region of the tumor, detecting, staging, grading, monitoring response to anticancer therapy, and differentiating recurrent or residual disease from post treatment changes. However, limitations of FDG-PET in the head and neck region, namely, physiological FDG uptake in the salivary glands and palatine tonsils, have been reported, increasing the false-positive rates in image interpretation. This review was designed to address these distinctions of oral cancer PET imaging: specialization of PET equipment, cancer cell metabolism, proliferation and tracers, clinical diagnosis of oral cancer with PET, pitfalls in oncologic diagnosis with FDG-PET imaging. (author)

  12. An analysis of true- and false-positive results of vocal fold uptake in positron emission tomography-computed tomography imaging.

    Science.gov (United States)

    Seymour, N; Burkill, G; Harries, M

    2018-03-01

    Positron emission tomography-computed tomography with fluorine-18 fluorodeoxy-D-glucose has a major role in the investigation of head and neck cancers. Fluorine-18 fluorodeoxy-D-glucose is not a tumour-specific tracer and can also accumulate in benign pathology. Therefore, positron emission tomography-computed tomography scan interpretation difficulties are common in the head and neck, which can produce false-positive results. This study aimed to investigate patients detected as having abnormal vocal fold uptake on fluorine-18 fluorodeoxy-D-glucose positron emission tomography-computed tomography. Positron emission tomography-computed tomography scans were identified over a 15-month period where reports contained evidence of unilateral vocal fold uptake or vocal fold pathology. Patients' notes and laryngoscopy results were analysed. Forty-six patients were identified as having abnormal vocal fold uptake on positron emission tomography-computed tomography. Twenty-three patients underwent positron emission tomography-computed tomography and flexible laryngoscopy: 61 per cent of patients had true-positive positron emission tomography-computed tomography scans and 39 per cent had false-positive scan results. Most patients referred to ENT for abnormal findings on positron emission tomography-computed tomography scans had true-positive findings. Asymmetrical fluorine-18 fluorodeoxy-D-glucose uptake should raise suspicion of vocal fold pathology, accepting a false-positive rate of approximately 40 per cent.

  13. Readout of scintillator light with avalanche photodiodes for positron emission tomography

    International Nuclear Information System (INIS)

    Chen, Ruru; Fremout, A.; Tavernier, S.; Bruyndonckx, P.; Clement, D.; Loude, J.-F.; Morel, C.

    1999-01-01

    The noise properties and other relevant characteristics of avalanche photodiodes have been investigated with the perspective of replacing photomultiplier tubes in positron emission tomography. It is clearly demonstrated that they are a valid alternative to photomultiplier tubes in this application

  14. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both...

  15. Positron Emission Tomography (PET) and breast cancer in clinical practice

    International Nuclear Information System (INIS)

    Lavayssiere, Robert; Cabee, Anne-Elizabeth; Filmont, Jean-Emmanuel

    2009-01-01

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005

  16. Positron Emission Tomography (PET) and breast cancer in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Lavayssiere, Robert [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France)], E-mail: cab.lav@wanadoo.fr; Cabee, Anne-Elizabeth [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); Centre RMX, 80, avenue Felix Faure, 75105 Paris (France); Filmont, Jean-Emmanuel [Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); American Hospital of Paris, Nuclear Medicine, 63, boulevard Victor Hugo - BP 109, 92202 Neuilly sur Seine Cedex (France)

    2009-01-15

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005].

  17. Metabolism and quantification of [18F]DPA-714, a new TSPO positron emission tomography radioligand

    International Nuclear Information System (INIS)

    Peyronneau, Marie-Anne; Saba, Wadad; Goutal, Sebastien; Damont, Annelaure; Dolle, Frederic; Bottlaender, Michel; Valette, Heric; Kassiou, Michael

    2013-01-01

    [ 18 F]DPA-714 [N,N-diethyl-2-(2-(4-(2[ 18 F]-fluoroethoxy)phenyl) 5,7-dimethyl-pyrazolo[1,5a]pyrimidin-3-yl)acetamide] is a new radioligand currently used for imaging the 18-kDa translocator protein in animal models of neuro-inflammation and recently in humans. The biodistribution by positron emission tomography (PET) in baboons and the in vitro and in vivo metabolism of [ 18 F]DPA-714 were investigated in rats, baboons, and humans. Whole-body PET experiments showed a high uptake of radioactivity in the kidneys, heart, liver, and gallbladder. The liver was a major route of elimination of [ 18 F]DPA-714, and urine was a route of excretion for radio-metabolites. In rat and baboon plasma, high-performance liquid chromatography (HPLC) metabolic profiles showed three major radio-metabolites accounting for 85% and 89% of total radioactivity at 120 minutes after injection, respectively. Rat microsomal incubations and analyses by liquid chromatography-mass spectrometry (LC-MS) identified seven metabolites, characterized as O-de-ethyl, hydroxyl, and N-de-ethyl derivatives of nonradioactive DPA-714, two of them having the same retention times than those detected in rat and baboon plasma. The third plasma radio-metabolite was suggested to be a carboxylic acid compound that accounted for 15% of the rat brain radioactivity. O-de-ethylation led to a nonradioactive compound and [ 18 F] fluoroacetic acid. Human CYP3A4 and CYP2D6 were shown to be involved in the oxidation of the radioligand. Finally an easy, rapid, and accurate method-indispensable for PET quantitative clinical studies - for quantifying [ 18 F]DPA-714 by solid-phase extraction was developed. In vivo, an extensive metabolism of [ 18 F]DPA-714 was observed in rats and baboons, identified as [ 18 F]de-ethyl, [ 18 F]hydroxyl, and [ 18 F]carboxylic acid derivatives of [ 18 F]DPA-714. The main route of excretion of the unchanged radioligand in baboons was hepatobiliary while that of radio-metabolites was the urinary

  18. Is a positron emission tomography-computed tomography scan useful in the staging of thymic epithelial neoplasms?

    Science.gov (United States)

    Viti, Andrea; Terzi, Alberto; Bianchi, Andrea; Bertolaccini, Luca

    2014-07-01

    A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed concerned the employment of 18-fluorine fluorodeoxyglucose positron emission tomography/computed tomography (PET-CT) in the preoperative evaluation of thymic epithelial neoplasms (TENs). We reviewed its role as a predictor of Masaoka stage and histology (according to the WHO). In clinical practice, stage is considered the most important determinant in the therapeutic approach. A total of 265 papers were found as a result of the reported search, of which 14 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. All the studies are retrospective analyses. Patient numbers varied from 13 to 58. Our research showed that PET-CT could clearly add information about the histology of the tumour. Thymic carcinoma constantly showed a higher standard uptake value (SUVmax) than thymomas. Furthermore, in one retrospective study of 36 patients, when using a derived PET indicator, the T/M ratio (ratio between SUVmax of the tumour and SUVmax of mediastinum, as conventionally measured at the level of the aortic arc), PET-CT could also differentiate between low- and high-risk thymomas (low risk vs high risk P = 0.01). In another study, a cut-off value of T/M ratio of 2.75 was identified between low- and high-risk TENs. The role of PET-CT in prediction of stage is harder to recognize. In one study, there was a statistically significant correlation between SUVmax, T/M ratio and Masaoka stage (P = 0.781 and 0.718, respectively). When analysing the data from the three larger series on this topic (58, 51 and 47 patients, the latter group selected in a multicentre study), only one study identified a correlation between SUVmax and Masaoka stage (Spearman correlation coefficient 0.30, P = 0.0436), while the other two failed

  19. Biological characterization of F-18-labeled rhodamine B, a potential positron emission tomography perfusion tracer.

    Science.gov (United States)

    Bartholomä, Mark D; He, Huamei; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; McGowan, Francis X; Cowan, Douglas B; Treves, S Ted; Packard, Alan B

    2013-11-01

    Myocardial infarction is the leading cause of death in western countries, and positron emission tomography (PET) plays an increasing role in the diagnosis and treatment planning for this disease. However, the absence of an (18)F-labeled PET myocardial perfusion tracer hampers the widespread use of PET in myocardial perfusion imaging (MPI). We recently reported a potential MPI agent based on (18)F-labeled rhodamine B. The goal of this study was to more completely define the biological properties of (18)F-labeled rhodamine B with respect to uptake and localization in an animal model of myocardial infarction and to evaluate the uptake (18)F-labeled rhodamine B by cardiomyocytes. A total of 12 female Sprague Dawley rats with a permanent ligation of the left anterior descending artery (LAD) were studied with small-animal PET. The animals were injected with 100-150 μCi of (18)F-labeled rhodamine B diethylene glycol ester ([(18)F]RhoBDEGF) and imaged two days before ligation. The animals were imaged again two to ten days post-ligation. After the post-surgery scans, the animals were euthanized and the hearts were sectioned into 1mm slices and myocardial infarct size was determined by phosphorimaging and 2,3,5-triphenyltetrazolium chloride staining (TTC). In addition, the uptake of [(18)F]RhoBDEGF in isolated rat neonatal cardiomyocytes was determined by fluorescence microscopy. Small-animal PET showed intense and uniform uptake of [(18)F]RhoBDEGF throughout the myocardium in healthy rats. After LAD ligation, well defined perfusion defects were observed in the PET images. The defect size was highly correlated with the infarct size as determined ex vivo by phosphorimaging and TTC staining. In vitro, [(18)F]RhoBDEGF was rapidly internalized into rat cardiomyocytes with ~40 % of the initial activity internalized within the 60 min incubation time. Fluorescence microscopy clearly demonstrated localization of [(18)F]RhoBDEGF in the mitochondria of rat cardiomyocytes. Fluorine-18

  20. Biological characterization of F-18-labeled rhodamine B, a potential positron emission tomography perfusion tracer

    International Nuclear Information System (INIS)

    Bartholomä, Mark D.; He, Huamei; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; McGowan, Francis X.; Cowan, Douglas B.; Treves, S. Ted; Packard, Alan B.

    2013-01-01

    Introduction: Myocardial infarction is the leading cause of death in western countries, and positron emission tomography (PET) plays an increasing role in the diagnosis and treatment planning for this disease. However, the absence of an 18 F-labeled PET myocardial perfusion tracer hampers the widespread use of PET in myocardial perfusion imaging (MPI). We recently reported a potential MPI agent based on 18 F-labeled rhodamine B. The goal of this study was to more completely define the biological properties of 18 F-labeled rhodamine B with respect to uptake and localization in an animal model of myocardial infarction and to evaluate the uptake 18 F-labeled rhodamine B by cardiomyocytes. Methods: A total of 12 female Sprague Dawley rats with a permanent ligation of the left anterior descending artery (LAD) were studied with small-animal PET. The animals were injected with 100–150 μCi of 18 F-labeled rhodamine B diethylene glycol ester ([ 18 F]RhoBDEGF) and imaged two days before ligation. The animals were imaged again two to ten days post-ligation. After the post-surgery scans, the animals were euthanized and the hearts were sectioned into 1 mm slices and myocardial infarct size was determined by phosphorimaging and 2,3,5-triphenyltetrazolium chloride staining (TTC). In addition, the uptake of [ 18 F]RhoBDEGF in isolated rat neonatal cardiomyocytes was determined by fluorescence microscopy. Results: Small-animal PET showed intense and uniform uptake of [ 18 F]RhoBDEGF throughout the myocardium in healthy rats. After LAD ligation, well defined perfusion defects were observed in the PET images. The defect size was highly correlated with the infarct size as determined ex vivo by phosphorimaging and TTC staining. In vitro, [ 18 F]RhoBDEGF was rapidly internalized into rat cardiomyocytes with ∼ 40 % of the initial activity internalized within the 60 min incubation time. Fluorescence microscopy clearly demonstrated localization of [ 18 F]RhoBDEGF in the mitochondria

  1. Exenatide improves both hepatic and adipose tissue insulin resistance: A dynamic positron emission tomography study.

    Science.gov (United States)

    Gastaldelli, Amalia; Gaggini, Melania; Daniele, Giuseppe; Ciociaro, Demetrio; Cersosimo, Eugenio; Tripathy, Devjit; Triplitt, Curtis; Fox, Peter; Musi, Nicolas; DeFronzo, Ralph; Iozzo, Patricia

    2016-12-01

    Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1-RAs) act on multiple tissues, in addition to the pancreas. Recent studies suggest that GLP-1-RAs act on liver and adipose tissue to reduce insulin resistance (IR). Thus, we evaluated the acute effects of exenatide (EX) on hepatic (Hep-IR) and adipose (Adipo-IR) insulin resistance and glucose uptake. Fifteen male subjects (age = 56 ± 8 years; body mass index = 29 ± 1 kg/m 2 ; A1c = 5.7 ± 0.1%) were studied on two occasions, with a double-blind subcutaneous injection of EX (5 μg) or placebo (PLC) 30 minutes before a 75-g oral glucose tolerance test (OGTT). During OGTT, we measured hepatic (HGU) and adipose tissue (ATGU) glucose uptake with [ 18 F]2-fluoro-2-deoxy-D-glucose/positron emission tomography, lipolysis (RaGly) with [U- 2 H 5 ]-glycerol, oral glucose absorption (RaO) with [U- 13 C 6 ]-glucose, and hepatic glucose production (EGP) with [6,6- 2 H 2 ]-glucose. Adipo-IR and Hep-IR were calculated as (FFA 0-120min ) × (Ins 0-120min ) and (EGP 0-120min ) × (Ins 0-120min ), respectively. EX reduced RaO, resulting in reduced plasma glucose and insulin concentration from 0 to 120 minutes postglucose ingestion. EX decreased Hep-IR (197 ± 28 to 130 ± 37; P = 0.02) and increased HGU of orally administered glucose (23 ± 4 to 232 ± 89 [μmol/min/L]/[μmol/min/kg]; P = 0.003) despite lower insulin (23 ± 5 vs. 41 ± 5 mU/L; P < 0.02). EX enhanced insulin suppression of RaGly by decreasing Adipo-IR (23 ± 4 to 13 ± 3; P = 0.009). No significant effect of insulin was observed on ATGU (EX = 1.16 ± 0.15 vs. PLC = 1.36 ± 0.13 [μmol/min/L]/[μmol/min/kg]). Acute EX administration (1) improves Hep-IR, decreases EGP, and enhances HGU and (2) reduces Adipo-IR, improves the antilipolytic effect of insulin, and reduces plasma free fatty acid levels during OGTT. (Hepatology 2016;64:2028-2037). © 2016 by the American Association for the Study of Liver Diseases.

  2. Evidence for a caudate role in aphasia from FDG positron emission tomography

    International Nuclear Information System (INIS)

    Metter, E.J.; Riege, W.H.; Hanson, W.R.; Phelps, M.; Kuhl, D.E.

    1982-01-01

    In a recent study correlations between language function and regional glucose metabolism from FDG positron computed tomography were examined. Caudate metabolism correlated with PICA speaking and comprehension factors, as well as BDAE mean writing and reading scores. To identify the language function implicated with caudate metabolism in these eleven patients, twenty subtests making up these two PICA factors and mean BDAE scores were correlated to caudate metabolism. Also a principle components analysis on the twenty subtests identified three factors, only one of which correlated with caudate metabolism. Evidence was found that the caudate has a functional relationship to recognition or motor planning of simple and overlearned materials. This involved simple syntax, low levels of abstraction, identification or sequencing of phonetic and semantic material. This role appeared related to but independent of Broca and frontal lobe function, and may involve the focusing of cortical functions, by allowing two or more regions to interact together

  3. A Unique Case of Diffuse Metastatic Neuroendocrine Cancer with Subcutaneous Nodules on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computer Assisted Tomography

    International Nuclear Information System (INIS)

    Johnston, Mickaila J.; Sachedina, Archana; McDonald, James E.

    2015-01-01

    Neuroendocrine tumors (NETs) account for 8–10% of cases of carcinomas of unknown primary. Most of these cases are poorly differentiated with metastatic disease at the time of diagnosis. However, cutaneous metastatic presentation is rare. We present an interesting case of a 74-year-old woman presenting with cutaneous metastatic involvement from high grade poorly differentiated NET of unknown origin. She was referred to us with a diagnosis of lymphoma. 18 F-fluorodeoxyglucose positron emission tomography/computer assisted tomography imaging at our institution offered a differential diagnosis, including neuroendocrine cancer. Repeat skin lesion biopsy demonstrated “non-Merkel cell” carcinoma, favoring metastatic high-grade neuroendocrine carcinoma

  4. Positron emission tomography in the evaluation of subdural hematomas

    International Nuclear Information System (INIS)

    Ericson, K.; Bergstroem, M.; Eriksson, L.

    1980-01-01

    Fifteen patients with 21 subdural effusions were investigated both with transmission computer assisted tomography (CAT) and positron emission tomography (PET). The tracer in the emission studies was 68 Ga-EDTA. Twelve lesions were visualized both with CAT and PET. Five lesions that were negative or doubtful on CAT were visualized with PET, whereas four lesions negative or doubtful on PET were demonstrated by CAT. The two methods complement each other due to the fact that they are based on different mechanisms: CAT mainly on attenuation of the fluid collection. PET on isotope accumulation, particularly in the hematoma membranes

  5. Malaria masquerading as relapse of Hodgkin's lymphoma on contrast enhanced 18F-fluorodeoxyglucose positron emission tomography/computed tomography: A diagnostic dilemma

    International Nuclear Information System (INIS)

    Jeph, Sunil; Thakur, Kamia; Shamim, Shamim Ahmed; Aggarwal, Ajay

    2014-01-01

    18 Flurodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) is nowadays routinely used in management of lymphoma patients. We here present a case of Hodgkin's lymphoma which showed 18 F-FDG avid splenomegaly on PET/CT done for clinically suspected relapse. Further evaluation by peripheral smear examination revealed malaria. The patient was then started on anti-malarial medications and follow-up PET/CT revealed resolution of hypermetabolic splenomegaly. This report highlights that in endemic regions malaria can cause 18 F-FDG avid splenomegaly and might mimic relapse of lymphoma

  6. A rare case of extensive skeletal muscle metastases in adenocarcinoma cervix identified by 18F-fluorodeoxyglucose positron emission tomography/computed tomography scan

    International Nuclear Information System (INIS)

    Vishnoi, Madan Gopal; Jain, Anurag; John, Arun Ravi; Paliwal, Dharmesh

    2016-01-01

    Adenocarcinoma cervix is an uncommon histological subtype of carcinoma cervix; further incidence of skeletal muscle metastases is even rarer. We report the identification of extensive fluorodeoxyglucose (FDG) avid metastatic skeletal muscle deposits in a known case of adenocarcinoma cervix. The largest lesion representative of muscle deposit in the right deltoid was histopathologically confirmed to be metastatic poorly differentiated carcinoma. This report also serves to highlight the importance of 18 F-FDG positron emission tomography/computed tomography (CT) as compared to conventional imaging modalities such as CT and ultrasonography and comments better over the description of invasiveness as well as the extent of disease in carcinoma cervix

  7. Performance of Positron Emission Tomography and Positron Emission Tomography/Computed Tomography Using Fluorine-18-Fluorodeoxyglucose for the Diagnosis, Staging, and Recurrence Assessment of Bone Sarcoma: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Liu, Fengxia; Zhang, Qingyu; Zhu, Dezhi; Li, Zhenfeng; Li, Jianmin; Wang, Boim; Zhou, Dongsheng; Dong, Jinlei

    2015-09-01

    To investigate the performance of fluorine-18-fluorodeoxyglucose (F-FDG) positron emission tomography (PET) and PET/computed tomography (CT) in the diagnosis, staging, restaging, and recurrence surveillance of bone sarcoma by systematically reviewing and meta-analyzing the published literature.To retrieve eligible studies, we searched the MEDLINE, Embase, and the Cochrane Central library databases using combinations of following Keywords: "positron emission tomography" or "PET," and "bone tumor" or "bone sarcoma" or "sarcoma." Bibliographies from relevant articles were also screened manually. Data were extracted and the pooled sensitivity, specificity, and diagnostic odds ratio (DOR), on an examination-based or lesion-based level, were calculated to appraise the diagnostic accuracy of F-FDG PET and PET/CT. All statistical analyses were performed using Meta-Disc 1.4.Forty-two trials were eligible. The pooled sensitivity and specificity of PET/CT to differentiate primary bone sarcomas from benign lesions were 96% (95% confidence interval [CI], 93-98) and 79% (95% CI, 63-90), respectively. For detecting recurrence, the pooled results on an examination-based level were sensitivity 92% (95% CI, 85-97), specificity 93% (95% CI, 88-96), positive likelihood ratio (PLR) 10.26 (95% CI, 5.99-17.60), and negative likelihood ratio (NLR) 0.11 (95% CI, 0.05-0.22). For detecting distant metastasis, the pooled results on a lesion-based level were sensitivity 90% (95% CI, 86-93), specificity 85% (95% CI, 81-87), PLR 5.16 (95% CI, 2.37-11.25), and NLR 0.15 (95% CI, 0.11-0.20). The accuracies of PET/CT for detecting local recurrence, lung metastasis, and bone metastasis were satisfactory. Pooled outcome estimates of F-FDG PET were less complete compared with those of PET/CT.F-FDG PET and PET/CT showed a high sensitivity for diagnosing primary bone sarcoma. Moreover, PET/CT demonstrated excellent accuracy for the staging, restaging, and recurrence surveillance of bone sarcoma. However

  8. single photon emission tomography and positron emission tomography - Part 1 (October 2012), Part 2 (October 2010)

    International Nuclear Information System (INIS)

    Buvat, Irene

    2010-10-01

    The objective of this lecture is to present the single photon emission computed tomography (SPECT) and the positron emission tomography (PET) imaging techniques. Part 1 Content: 1 - Introduction: anatomic, functional and molecular imaging; 2 - Radiotracers: chemical and physical constraints, gamma photon emitters, positon emitters, radioisotopes production, emitters type and imaging techniques; 3 - Gamma cameras; 4 - Quantification in emission tomography: attenuation, scattering, un-stationary spatial resolution; 5 - Synthesis and conclusion. Part 2 content: 1 - Positon emitters; 2 - Positons detection: Coincidence detection (electronic collimation, PET detectors with gamma cameras, dedicated PET detectors, spectrometry); PET detectors type; time-of-flight PET; 2D PET; 3D PET; 3 - Quantification in emission tomography: detected events, attenuation, scattering, fortuitous coincidences, standardisation; 4 - Common SPECT and PET problems: partial volume effect, movement, tomographic reconstruction, calibration, dead time; 5 - Synthesis and conclusion

  9. Application of positron emission tomography in industrial research

    International Nuclear Information System (INIS)

    Jonkers, G.; van den Bergen, E.A.; Vonkeman, K.A.

    1990-01-01

    Positron Emission computed Tomography (PET) is a relatively new imaging technique, exploiting the 511 keV annihilation radiation characteristic of positron emitters. Although exclusively used till now in the field of nuclear medicine, the application of PET for the non-invasive, in-situ visualisation of processes of industrial interest is challenging, because PET can in principle be used to obtain quantitative, 2D/3D images of the flow and distribution of fluids inside process units, whose steel walls may be up to several centimeters thick. With the aid of a NeuroECAT positron tomographer the PET technique has been utilised to image important (model) processes in the petrochemical industry, using physical labelling of the phase to be imaged. First, the displacement of a brine/surfactant phase, labelled with 66 Ga-EDTA, in a piece of reservoir rock was imaged. Secondly, the dehydration of water-in-oil emulsions was monitored dynamically by labelling the water phase with 68 Ga-EDTA. The second study in particular demonstrates that in the presence of noisy data the image reconstruction method utilised strongly influences the results obtained. With the advent of PET in nuclear medicine the availability of short-lived positron emitting nuclides like 11 C (t1/2 = 20 min), 13 N (t1/2 = 10 min) and 15 0 (t1/2 = 2 min) has increased considerably, allowing the investigation of industrially important reactions by chemical labelling. Utilising the NeuroECAT in a special mode, the catalytic oxidation of carbon monoxide could be imaged in a model tubular reactor by using 11 C-labelled CO, providing information about the kinetics of the individual reaction steps and interactions and about the degree of occupation of catalytically active sites. (author)

  10. Development of radiotracers for imaging NR2B subtype NMDA receptors with positron emission tomography

    International Nuclear Information System (INIS)

    Labas, R.

    2007-01-01

    The aim of this thesis was to develop new radioactive tracers for imaging NR2B subtype NMDA receptors with positron emission tomography. Several compounds including 4-(4-fluoro-benzyl)piperidine and presenting interesting in vivo biological properties were the object of a labelling with a positrons emitter atom ( 11 C or 18 F)

  11. Application of positron emission tomography in the heart

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This report discusses experimental and clinical applications of positron emission tomography to the heart, including measurements of blood flow to the myocardium and studies of metabolism and experimental injury. Most initial clinical studies have concentrated on ischemic heart disease, but the technique also has potential for investigation of cardiomyopathies, studying the neural control of the heart, and evaluating the effects of drugs on cardiac tissues

  12. Early prosthetic aortic valve infection identified with the use of positron emission tomography in a patient with lead endocarditis.

    Science.gov (United States)

    Amraoui, Sana; Tlili, Ghoufrane; Sohal, Manav; Bordenave, Laurence; Bordachar, Pierre

    2016-12-01

    18-Fluorodeoxyglucose positron emission tomography/computerized tomography (FDG PET/CT) scanning has recently been proposed as a diagnostic tool for lead endocarditis (LE). FDG PET/CT might be also useful to localize associated septic emboli in patients with LE. We report an interesting case of a LE patient with a prosthetic aortic valve in whom a trans-esophageal echocardiogram did not show associated aortic endocarditis. FDG PET/CT revealed prosthetic aortic valve infection. A second TEE performed 2 weeks after identified aortic vegetation. A longer duration of antimicrobial therapy with serial follow-up echocardiography was initiated. There was also increased uptake in the sigmoid colon, corresponding to focal polyps resected during a colonoscopy. FDG PET/CT scanning seems to be highly sensitive for prosthetic aortic valve endocarditis diagnosis. This promising diagnostic tool may be beneficial in LE patients, by identifying septic emboli and potential sites of pathogen entry.

  13. Investigation of language lateralization mechanism by Positron Emission Tomography

    International Nuclear Information System (INIS)

    Belin, Pascal

    1997-01-01

    As language lateralization in the brain left hemisphere is one of the most well known but less understood characteristics of the human brain, this research thesis reports the use of brain functional imaging to address some specific aspects of this lateralization. In a first part, the author reports the study of mechanisms of recovery from aphasia after a left hemisphere lesion within a population of aphasic right-handers. Based on a contrast between patients with a persistent aphasia despite usual language therapies, and patients with a significant recovery after a melodic and rhythmic therapy (TMR), a PET-based (positron emission tomography) activation study has been developed, based on the opposition between usual language stimuli and stimuli accentuated by TMR. In the second part, the author explored more systematically on sane patients the influence of some physical characteristics of auditory stimulation on the induced functional asymmetry [fr

  14. Lesson of the month 1: Large vessel vasculitis - a diagnostic challenge and the role of 18-fluorodeoxyglucose positron emission tomography.

    Science.gov (United States)

    Allard, Andrew; Mootoo, Ramesh

    2017-07-01

    Large vessel vasculitis can pose a significant diagnostic challenge. It may be insidious in onset with the only presenting symptoms consisting of constitutional compromise. It may mimic other pathologies and the only serological abnormalities may be abnormal inflammatory markers. Conventional imaging modalities may not be diagnostic. We present a case of large vessel vasculitis that proved a significant diagnostic challenge with diagnosis established on 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) computerised tomography (CT) imaging. This is one of five cases of large vessel vasculitis that were diagnosed in the rheumatology department at our trust over a 12-month period with diagnosis established with the use of 18F-FDG PET CT. We discuss the advantages of 18F-FDG PET CT over more conventional imaging modalities in diagnosing large vessel vasculitis. © Royal College of Physicians 2017. All rights reserved.

  15. Axial positrons emission tomography: from mouse to human brain imaging

    International Nuclear Information System (INIS)

    Brard, Emmanuel

    2013-01-01

    Positrons emission tomography is a nuclear imaging technics using nuclear decays. It is used both in clinical and preclinical studies. The later requires the use of small animals such as the mouse. The objective is to obtain the best signal with the best spatial resolution. Yet, a weight ratio between humans and mice indicates the need of a sub-millimeter resolution. A conventional scanner is based on detection modules surrounding the object to image and arranged perpendicularly. This implies a strong relationship between efficiency and spatial resolution. This work focuses on the axial geometry in which detection modules are arranged parallel to the object. This limits the relationship between the figures of merit, leading to both high spatial resolution and efficiency. The simulations of prototypes showed great perspectives in term of sub-millimeter resolution with efficiencies of 15 or 40% according to the scanner's axial extension. These results indicate great perspectives for both clinical and preclinical imaging. (author)

  16. Differential diagnosis of depression: relevance of positron emission tomography

    International Nuclear Information System (INIS)

    Schwartz, J.M.; Baxter, L.R. Jr.; Mazziotta, J.C.; Gerner, R.H.; Phelps, M.E.

    1987-01-01

    The proper differential diagnosis of depression is important. A large body of research supports the division of depressive illness into bipolar and unipolar subtypes with respect to demographics, genetics, treatment response, and neurochemical mechanisms. Optimal treatment is different for unipolar and bipolar depressions. Treating a patient with bipolar depression as one would a unipolar patient may precipitate a serious manic episode or possibly even permanent rapid cycling disorder. The clinical distinction between these disorders, while sometimes difficult, can often be achieved through an increased diagnostic suspicion concerning a personal or family history of mania. Positron emission tomography and the FDG method, which allow in vivo study of the glucose metabolic rates for discrete cerebral structures, provide new evidence that bipolar and unipolar depression are two different disorders

  17. Positron Emission Tomography: state of the art and future developments

    International Nuclear Information System (INIS)

    Pizzichemi, M.

    2016-01-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  18. Knowledge-based automated radiopharmaceutical manufacturing for Positron Emission Tomography

    International Nuclear Information System (INIS)

    Alexoff, D.L.

    1991-01-01

    This article describes the application of basic knowledge engineering principles to the design of automated synthesis equipment for radiopharmaceuticals used in Positron Emission Tomography (PET). Before discussing knowledge programming, an overview of the development of automated radiopharmaceutical synthesis systems for PET will be presented. Since knowledge systems will rely on information obtained from machine transducers, a discussion of the uses of sensory feedback in today's automated systems follows. Next, the operation of these automated systems is contrasted to radiotracer production carried out by chemists, and the rationale for and basic concepts of knowledge-based programming are explained. Finally, a prototype knowledge-based system supporting automated radiopharmaceutical manufacturing of 18FDG at Brookhaven National Laboratory (BNL) is described using 1stClass, a commercially available PC-based expert system shell

  19. F-18-fluorodeoxyglucose-positron-emission tomography in neurology

    International Nuclear Information System (INIS)

    Fazekas, F.; Payer, F.

    2002-01-01

    Positron emission tomography using F-18-fluorodeoxyglucose (F-18-FDG-PET) is an ideal tool for imaging regional cerebral metabolism as glucose is the most important source of energy for neurons. Under physiologic conditions the pattern of metabolism reflects the state of cerebral activation which can be modulated by various stimuli to investigate cerebral organization. Pathologic conditions usually cause a drop in metabolism because of neuronal inactivity or loss. They can, however, also be associated with an increased rate of glucose metabolism such as in case of active epileptic foci or malignant tumors. As a consequence F-18-FDG-PET has become a valuable functional imaging modality especially for the diagnostic clarification of non-contributory or negative morphologic imaging results. Dementia, pre-surgical evaluation of epilepsy and neurooncology are currently frequent indications for referral to F-18-FDG-PET in neurology. (author)

  20. Studies of the brain cannabinoid system using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  1. Studies of the brain cannabinoid system using positron emission tomography

    International Nuclear Information System (INIS)

    Gatley, S.J.; Volkow, N.D.

    1995-01-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available

  2. Evaluating patients with ischemic cerebrovascular disease using positron emission tomography

    International Nuclear Information System (INIS)

    Raichle, M.E.

    1982-01-01

    Recent advances in nuclear medicine imaging techniques offer an important alternative for the evaluation of therapy for ischemic cerebrovascular disease. In particular, positron emission tomography (PET), with its capacity to provide quantitative measurements of brain blood flow, metabolism and biochemistry on a truly regional basis, now offers the opportunity to evaluate therapy in terms of specific changes in these parameters. By doing this PET permits one to study the problem on an individual patient basis with each subject serving as his own control. The author has been pursuing this approach in patients considered candidates for superficial temporal artery-middle cerebral artery anastomosis to bypass major stenotic or occlusive lesions of the internal carotid or middle cerebral artery. The results indicate that PET is of considerable value in establishing much more exactly the pathophysiology of certain forms of ischemic cerebrovascular disease and evaluating a form of therapy designed to correct the basic underlying defect. (Auth./C.F.)

  3. Radiopharmaceuticals for positron emission tomography investigations of Alzheimer's disease

    International Nuclear Information System (INIS)

    Naagren, Kjell; Halldin, Christer; Rinne, Juha O.

    2010-01-01

    Alzheimer's disease (AD) is a common degenerative neurological disease that is an increasing medical, economical, and social problem. There is evidence that a long ''asymptomatic'' phase of the disease exists where functional changes in the brain are present, but structural imaging for instance with magnetic resonance imaging remains normal. Positron emission tomography (PET) is one of the tools by which it is possible to explore changes in cerebral blood flow and metabolism and the functioning of different neurotransmitter systems. More recently, investigation of protein aggregations such as amyloid deposits or neurofibrillary tangles containing tau-protein has become possible. The purpose of this paper is to review the current knowledge on various 18 F- and 11 C-labelled PET tracers that could be used to study the pathophysiology of AD, to be used in the early or differential diagnosis or to be used in development of treatment and in monitoring of treatment effects. (orig.)

  4. Brain abnormalities in murderers indicated by positron emission tomography.

    Science.gov (United States)

    Raine, A; Buchsbaum, M; LaCasse, L

    1997-09-15

    Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.

  5. Simulation, image reconstruction and SiPM characterisation for a novel endoscopic positron emission tomography detector

    International Nuclear Information System (INIS)

    Zvolsky, Milan

    2017-12-01

    In the scope of the EndoTOFPET-US project, a novel multimodal device for ultrasound (US) endoscopy and positron emission tomography (PET) is being developed. The project aims at detecting and quantifying morphologic and functional biomarkers and developing new biomarkers for pancreas and prostate oncology. The detector system comprises a small detector probe mounted on an ultrasound endoscope and an external detector plate. The detection of the gamma rays is realised by scintillator crystals with Silicon Photomultiplier (SiPM) read-out. For the characterisation of over 4000 SiPMs for the external plate, an automatised measurement and data analysis procedure is established. The key properties of the SiPMs like breakdown voltage and dark count rate (DCR) are extracted. This knowledge is needed both as a quality assurance as well as for the calibration of the detector. The spread between minimum and maximum breakdown voltage within a SiPM array of 4 x 4 is at maximum 0.43 V with a mean of 0.15 V and an RMS of 0.06 V. This assures the optimal biasing of each SiPM at its individual operating voltage. The mean DCR amounts to 1.49 MHz with an RMS of 0.54 MHz and is thus well below the acceptable threshold of 3 MHz. Two spare modules from the external plate are re-measured and analysed several years after the module assembly, revealing a potential alteration of the SiPM noise properties over time. For the characterisation of SiPMs from different vendors, a software framework for the automatic extraction of performance parameters from pulseheight spectra, including a t of the entire spectrum, is developed and tested. In order to facilitate the modelling of the response of the EndoTOFPET-US detector, a framework is developed which is built around the Geant4-based simulation toolkit GAMOS, to simulate and reconstruct realistic imaging scenarios with this asymmetric PET detector. The simulation studies are used to compare different possible detector designs, guide the

  6. Simulation, image reconstruction and SiPM characterisation for a novel endoscopic positron emission tomography detector

    Energy Technology Data Exchange (ETDEWEB)

    Zvolsky, Milan

    2017-12-15

    In the scope of the EndoTOFPET-US project, a novel multimodal device for ultrasound (US) endoscopy and positron emission tomography (PET) is being developed. The project aims at detecting and quantifying morphologic and functional biomarkers and developing new biomarkers for pancreas and prostate oncology. The detector system comprises a small detector probe mounted on an ultrasound endoscope and an external detector plate. The detection of the gamma rays is realised by scintillator crystals with Silicon Photomultiplier (SiPM) read-out. For the characterisation of over 4000 SiPMs for the external plate, an automatised measurement and data analysis procedure is established. The key properties of the SiPMs like breakdown voltage and dark count rate (DCR) are extracted. This knowledge is needed both as a quality assurance as well as for the calibration of the detector. The spread between minimum and maximum breakdown voltage within a SiPM array of 4 x 4 is at maximum 0.43 V with a mean of 0.15 V and an RMS of 0.06 V. This assures the optimal biasing of each SiPM at its individual operating voltage. The mean DCR amounts to 1.49 MHz with an RMS of 0.54 MHz and is thus well below the acceptable threshold of 3 MHz. Two spare modules from the external plate are re-measured and analysed several years after the module assembly, revealing a potential alteration of the SiPM noise properties over time. For the characterisation of SiPMs from different vendors, a software framework for the automatic extraction of performance parameters from pulseheight spectra, including a t of the entire spectrum, is developed and tested. In order to facilitate the modelling of the response of the EndoTOFPET-US detector, a framework is developed which is built around the Geant4-based simulation toolkit GAMOS, to simulate and reconstruct realistic imaging scenarios with this asymmetric PET detector. The simulation studies are used to compare different possible detector designs, guide the

  7. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update

    Directory of Open Access Journals (Sweden)

    Karim Farid

    2017-01-01

    Full Text Available Sporadic cerebral amyloid angiopathy (CAA is a very common small vessel disease of the brain, showing preferential and progressive amyloid-βdeposition in the wall of small arterioles and capillaries of the leptomeninges and cerebral cortex. CAA now encompasses not only a specific cerebrovascular pathological trait, but also different clinical syndromes - including spontaneous lobar intracerebral haemorrhage (ICH, dementia and ‘amyloid spells’ - an expanding spectrum of brain parenchymal MRI lesions and a set of diagnostic criteria – the Boston criteria, which have resulted in increasingly detecting CAA during life. Although currently available validated diagnostic criteria perform well in multiple lobar ICH, a formal diagnosis is currently lacking unless a brain biopsy is performed. This is partly because in practice CAA MRI biomarkers provide only indirect evidence for the disease. An accurate diagnosis of CAA in different clinical settings would have substantial impact for ICH risk stratification and antithrombotic drug use in elderly people, but also for sample homogeneity in drug trials. It has recently been demonstrated that vascular (in addition to parenchymal amyloid-βdeposition can be detected and quantified in vivo by positron emission tomography (PET amyloid tracers. This non-invasive approach has the potential to provide a molecular signature of CAA, and could in turn have major clinical impact. However, several issues around amyloid-PET in CAA remain unsettled and hence its diagnostic utility is limited. In this article we systematically review and critically appraise the published literature on amyloid-PET (PiB and other tracers in sporadic CAA. We focus on two key areas: (a the diagnostic utility of amyloid-PET in CAA and (b the use of amyloid-PET as a window to understand pathophysiological mechanism of the disease. Key issues around amyloid-PET imaging in CAA, including relevant technical aspects are also covered in depth

  8. Mechanisms for the recovery of aphasia following stroke. A positron emission tomography study

    International Nuclear Information System (INIS)

    Warburton, E.

    1998-01-01

    Language disorders following stroke are common and are a major source of distress and disability. Most patients show some recovery with time implying the potential for neuronal plasticity within the brain for recovery of language. The mechanisms underlying recovery are poorly understood, making strategies for speech therapy and further investigation of potential therapeutic agents difficult. These studies were designed to explore the cortical re-organisation which underlies at least some language recovery using positron emission tomography (PET). With the rapid developments in PET technology and advances in image data processing it is now well established that language tasks can be studied in terms of responses within brain regions, and interactions between regions. The results can be interpreted with reference to neuropsychological theory and models. Many language activation studies have been performed in the normal brain. The studies reported here concentrated on one behavioural task - the verbal fluency task - the strategy being to compare patterns of activation in normal subjects with those in recovered aphasic patients performing the same fluency task. In the first part of this thesis, a detailed PET study of a verb retrieval task was made using different control tasks in normal volunteers. The results show that this task engages a widespread network of regions, predominantly in the left hemisphere i.e. the dorsolateral temporal cortex, the inferolateral temporal cortex and inferior parietal cortex, an extensive area of the dorsolateral prefrontal cortex (LDLPFC), the anterior cingulate and the supplementary motor area (SMA). The experiments using different control tasks suggest that the dorsolateral temporal cortex is involved with auditory and lexical processing of the stimulus nouns and it is demonstrated that observation of an activation in this region is dependent on the particular control task used with the retrieval task. This explains discrepancies

  9. Mechanisms for the recovery of aphasia following stroke. A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, E

    1998-07-01

    Language disorders following stroke are common and are a major source of distress and disability. Most patients show some recovery with time implying the potential for neuronal plasticity within the brain for recovery of language. The mechanisms underlying recovery are poorly understood, making strategies for speech therapy and further investigation of potential therapeutic agents difficult. These studies were designed to explore the cortical re-organisation which underlies at least some language recovery using positron emission tomography (PET). With the rapid developments in PET technology and advances in image data processing it is now well established that language tasks can be studied in terms of responses within brain regions, and interactions between regions. The results can be interpreted with reference to neuropsychological theory and models. Many language activation studies have been performed in the normal brain. Thestudies reported here concentrated on one behavioural task - the verbal fluency task - the strategy being to compare patterns of activation in normal subjects with those in recovered aphasic patients performing the same fluency task. In the first part of this thesis, a detailed PET study of a verb retrieval task was made using different control tasks in normal volunteers. The results show that this task engages a widespread network of regions, predominantly in the left hemisphere i.e. the dorsolateral temporal cortex, the inferolateral temporal cortex and inferior parietal cortex, an extensive area of the dorsolateral prefrontal cortex (LDLPFC), the anterior cingulate and the supplementary motor area (SMA). The experiments using different control tasks suggest that the dorsolateral temporal cortex is involved with auditory and lexical processing of the stimulus nouns and it is demonstrated that observation of an activation in this region is dependent on the particular control task used with the retrieval task. This explains discrepancies

  10. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E. (National Institute of Aging, Baltimore, MD (USA))

    1990-11-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas.

  11. Evaluation of brain tumours by positron emission tomography

    International Nuclear Information System (INIS)

    Schober, O.; Meyer, G.J.

    1992-01-01

    The clinical application of positron emission tomography (PET) for the evaluation of brain tumours has proved clinically valuable. Amino acid and FDG-glucose PET provide information on the degree of malignancy and the prognosis during the initial evaluation. After therapy, the residual tumour can be visualized and recurrence can be differentiated from necrosis. Amino acids have advantages over FDG for these clinical applications. Blood flow, oxygen extraction and metabolism and blood-brain barrier permeability are of minor relevance in clinical situations. Comparison of PET with MRI and MRS will provide new data. The quantitative information of the unique information yielded by PET will lead to a more important clinical role, as will the extrapolation of this experience to the SPECT technique. (orig.) [de

  12. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    International Nuclear Information System (INIS)

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E.

    1990-01-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas

  13. The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: A phantom study

    International Nuclear Information System (INIS)

    Yang, Jaewon; Yamamoto, Tokihiro; Mazin, Samuel R.; Graves, Edward E.; Keall, Paul J.

    2014-01-01

    Purpose: This study aims to evaluate the potential and feasibility of positron emission tomography for dynamic lung tumor tracking during radiation treatment. The authors propose a center of mass (CoM) tumor tracking algorithm using gated-PET images combined with a respiratory monitor and investigate the geometric accuracy of the proposed algorithm. Methods: The proposed PET dynamic lung tumor tracking algorithm estimated the target position information through the CoM of the segmented target volume on gated PET images reconstructed from accumulated coincidence events. The information was continuously updated throughout a scan based on the assumption that real-time processing was supported (actual processing time at each frame ≈10 s). External respiratory motion and list-mode PET data were acquired from a phantom programmed to move with measured respiratory traces (external respiratory motion and internal target motion) from human subjects, for which the ground truth target position was known as a function of time. The phantom was cylindrical with six hollow sphere targets (10, 13, 17, 22, 28, and 37 mm in diameter). The measured respiratory traces consisted of two sets: (1) 1D-measured motion from ten healthy volunteers and (2) 3D-measured motion from four lung cancer patients. The authors evaluated the geometric accuracy of the proposed algorithm by quantifying estimation errors (Euclidean distance) between the actual motion of targets (1D-motion and 3D-motion traces) and CoM trajectories estimated by the proposed algorithm as a function of time. Results: The time-averaged error of 1D-motion traces over all trajectories of all targets was 1.6 mm. The error trajectories decreased with time as coincidence events were accumulated. The overall error trajectory of 1D-motion traces converged to within 2 mm in approximately 90 s. As expected, more accurate results were obtained for larger targets. For example, for the 37 mm target, the average error over all 1D

  14. Application of positron emission tomography in the lung

    International Nuclear Information System (INIS)

    Valind, S.O.; Wollmer, P.E.; Rhodes, C.G.

    1985-01-01

    The early application of positron emission tomography in the lung was mainly concerned with the investigation of the regional volume of the vascular and extravascular compartments, using measurements of fractional blood volume and lung density. However, in addition to its passive role in the exchange of oxygen and carbon dioxide, the lung exerts a number of active, metabolic functions such as the inactivation of circulating vasoactive compounds and the synthesis and release of biologically active substances. Furthermore, many of the pulmonary disorders originate at a cellular or metabolic level, or have metabolic consequences. Many of the substrates of biochemical reactions and the biologically active compounds, or their analogs, can be labeled with positron-emitting radioisotopes without disturbing their biological or biochemical characteristics. In combination with the development of the appropriate physiological and biochemical models, the quantitative measurements possible with PET provide a unique opportunity of regionally studying the metabolic processes of the lung of man in vivo. Hence, a range of different expressions of metabolism and of lung function can be evaluated and their interdependence can be studied regionally

  15. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Del Guerra, A.; Zavattini, G.; Notaristefani, F. de; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-01-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO 3 :Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm 3 ), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 ± 3)% with a 150 keV threshold and (20 ± 2)% with a 300 keV threshold

  16. Analysis of human cerebral functions using positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Shibasaki, Takashi

    1984-01-01

    Positron emission tomography has two major advantages to analyse human cerebral functions in vivo. First, we can see the distribution of a variety of substance in the living (and doing something) human brain. Positron emitters, 11 C, 13 N, 15 O and 18 F, are made by medical cyclotron and are elements of natural substrates or easily tagged to substrate. Second, the distribution of the tracer is calculated to make a quantitative functional map in a reasonable spatial resolution over the entire brain in the same time. Not only cortical areas but also deeper structures show regional cerebral blood flow (rCBF) or local cerebral metabolic rates (LCMRs). Nowadays, PET is put to practical use for determination of mainly rCBF, LCMR for glucose (LCMRsub(glu)), LCMR for oxygen (LCMRsub(o2)) and regional cerebral blood volume (rCBV). There have been many other pilot studies, such as estimation of distribution of given neurotransmitters or modulators in the brain which also confirms the substances' role in the neuronal function, and observation of protein synthesis relating to memory function. (J.P.N.)

  17. Positron emission tomography in the management of cervix cancer patients

    International Nuclear Information System (INIS)

    Bonardel, G.; Gontier, E.; Soret, M.; Dechaud, C.; Fayolle, M.; Foehrenbach, H.; Chargari, C.; Bauduceau, O.

    2009-01-01

    Since its introduction in clinical practice in the 1990 s, positron emission tomography (PET), usually with 18 F-fluoro-2-deoxy-D-glucose ( 18 F-F.D.G.), has become an important imaging modality in patients with cancer. For cervix carcinoma, F.D.G.-PET is significantly more accurate than computed tomography (CT) and is recommended for loco-regional lymph node and extra pelvic staging. The metabolic dimension of the technique provides additional prognostic information. Ongoing studies now concentrate on more advanced clinical applications, such as the planning of radiotherapy, the response evaluation after the induction of therapy, the early detection of recurrence. Technical innovations, such as PET cameras with better spatial resolution and hybrid positron emission tomography/computed tomography (PET-CT), available now on the whole territory, provide both anatomic and metabolic information in the same procedure. From the point of view of biological metabolism, new radiopharmaceutical probes are being developed. Those hold promise for future refinements in this field. This article reviews the current applications of F.D.G.-PET in patients with cervix cancer. (authors)

  18. Positron emission tomography and migraine. Tomographie par emission de positons et migraine

    Energy Technology Data Exchange (ETDEWEB)

    Chabriat, H. (CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot)

    1992-04-01

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT{sub 2} serotonin receptors can be studied in migraine patients with PET.

  19. Depressed cerebral oxygen metabolism in patients with chronic renal failure. A positron emission tomography study

    International Nuclear Information System (INIS)

    Hirakata, Hideki; Kanai, Hidetoshi; Nakane, Hiroshi; Fujii, Ken-ichiro; Hirakata, Eriko; Ibayashi, Setsuro; Kuwabara, Yasuo; Deenitchna, S.S.; Fujishima, Masatoshi

    2001-01-01

    In order to elucidate brain oxygen metabolism in uremic patients, the regional cerebral blood flow (rCBF), oxygen extraction (rOEF) and oxygen metabolism (rCMRO 2 ) were measured by positron emission tomography (PET) in both 10 hemodialysis patients (HD: male [m]/female [f]=2/8, age of 49±3 [SEM] years old, HD duration of 113±26 months) and 13 pre-dialysis renal failure patients (CRF: m/f=10/3, age of 61±2 years old, serum creatinine (SCr) of 6.3±1.0 mg/dl). Data were compared with 20 non-uremic subjects (Control: m/f=7/13, age of 62±2 years old, SCr of 0.9±0.1 mg/dl). They had no neurological abnormalities, congestive heart failure, history of cerebrovascular accident, diabetes mellitus, or symptomatic brain lesion on magnetic resonance imaging. The age of HD was significantly younger than the other groups (p 2 in both HD (1.82±0.10 ml/min/100 g) and CRF (1.95±0.09) showed significantly lower values as compared to Control (2.23±0.05) (p<0.01, respectively). Hemispheric rCBF in HD (35.6±2.1 ml/100 g/min) and in CRF (36.1±2.1) were not different from that in Control (31.8±1.4). Hemispheric rOEF in CRF (45.7±1.6%) was significantly higher than that in Control (40.5±1.2%) (p<0.02), but that in HD (43.7±1.9%) did not increase significantly. These tendencies were similar in all regions of interest, especially in the cerebral cortices, but not in the cerebellum. All PET parameters in the frontal cortices tended to show the lowest value in renal failure patients. For all HD patients, rCBF in both the frontal cortex and the white matter correlated inversely with HD duration (frontal cortex: r=-0.649, p<0.05; white matter: r=-0.706, p<0.02). Based on these data, it is concluded that brain oxygen metabolism is depressed in renal failure patients on or before hemodialysis treatment. The cause for the depressed brain oxygen metabolism is considered to be due either to the dysregulation of cerebral circulation or to lower brain cell activity. (author)

  20. Hepatic Pseudolymphoma with Fluorodeoxyglucose Uptake on Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Kazuhiro Suzumura

    2017-12-01

    Full Text Available A 69-year-old woman with chronic hepatitis B was admitted to our hospital with a hepatic tumor. The levels of 2 tumor markers, carcinoembryonic antigen and carbohydrate antigen 19-9, were slightly elevated; however, the α-fetoprotein and protein levels induced by vitamin K antagonist II were within the normal limits. Abdominal ultrasonography showed a well-defined peripheral hypoechoic mass that was isoechoic and homogeneous on the inside. Computed tomography showed a poorly enhanced tumor of 13 mm in diameter in the 5th segment of the liver. Fluorodeoxyglucose positron emission tomography showed a slight uptake (maximum standard uptake value 3.4 by the hepatic tumor. These findings suggested cholangiocellular carcinoma, and we performed anterior segmentectomy of the liver. A histopathological examination showed a hepatic pseudolymphoma. The patient’s postoperative course was uneventful, and she remains alive without recurrence 5 months after undergoing surgery. In most cases, hepatic pseudolymphoma is preoperatively diagnosed as a malignant tumor and a definite diagnosis is made after resection. It is therefore necessary to consider hepatic pseudolymphoma as a differential diagnosis in patients with hepatic tumors.

  1. Positron Emission Tomography with Three-Dimensional Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, K.

    1996-10-01

    The development of two different low-cost scanners for positron emission tomography (PET) based on 3D acquisition are presented. The first scanner consists of two rotating scintillation cameras, and produces quantitative images, which have shown to be clinically useful. The second one is a system with two opposed sets of detectors, based on the limited angle tomography principle, dedicated for mammographic studies. The development of low-cost PET scanners can increase the clinical impact of PET, which is an expensive modality, only available at a few centres world-wide and mainly used as a research tool. A 3D reconstruction method was developed that utilizes all the available data. The size of the data-sets is considerably reduced, using the single-slice rebinning approximation. The 3D reconstruction is divided into 1D axial deconvolution and 2D transaxial reconstruction, which makes it relatively fast. This method was developed for the rotating scanner, but was also implemented for multi-ring scanners with and without inter plane septa. An iterative 3D reconstruction method was developed for the limited angle scanner, based on the new concept of `mobile pixels`, which reduces the finite pixel errors and leads to an improved signal to noise ratio. 100 refs.

  2. Positron Emission Tomography with Three-Dimensional Reconstruction

    International Nuclear Information System (INIS)

    Erlandsson, K.

    1996-10-01

    The development of two different low-cost scanners for positron emission tomography (PET) based on 3D acquisition are presented. The first scanner consists of two rotating scintillation cameras, and produces quantitative images, which have shown to be clinically useful. The second one is a system with two opposed sets of detectors, based on the limited angle tomography principle, dedicated for mammographic studies. The development of low-cost PET scanners can increase the clinical impact of PET, which is an expensive modality, only available at a few centres world-wide and mainly used as a research tool. A 3D reconstruction method was developed that utilizes all the available data. The size of the data-sets is considerably reduced, using the single-slice rebinning approximation. The 3D reconstruction is divided into 1D axial deconvolution and 2D transaxial reconstruction, which makes it relatively fast. This method was developed for the rotating scanner, but was also implemented for multi-ring scanners with and without inter plane septa. An iterative 3D reconstruction method was developed for the limited angle scanner, based on the new concept of 'mobile pixels', which reduces the finite pixel errors and leads to an improved signal to noise ratio. 100 refs

  3. Neuroleptic binding sites: specific labeling in mice with [18F]haloperidol, a potential tracer for positron emission tomography

    International Nuclear Information System (INIS)

    Zanzonico, P.B.; Bigler, R.E.; Schmall, B.

    1983-01-01

    Haloperidol labeled with fluorine- 18 (T 1/2 . 110 min, positron emission 97%), prepared yielding .04 Ci/millimole by the Balz-Schiemann reaction, was evaluated in a murine model as a potential radiotracer for noninvasive determination, by positron-emission tomography, of regional concentrations of brain dopamine receptors in patients. As the haloperidol dose in mice was increased from 0.01 to 1000 micrograms/kg, the relative concentration of [ 18 F]haloperidol (microCi per g specimen/microCi per g of body mass), at one hour after injection decreased from 30 to 1.0 in the striatum and from 8.0 to 1.0 in the cerebellum. The striatal radioactivity, plotted as relative concentration against log of dose, decreased sigmoidally, presumably reflecting competition between labeled and unlabeled haloperidol for a single class of accessible binding sites. Because the cerebellum is relatively deficient in dopamine receptors, the observed decrease in cerebellar radioactivity may reflect a saturable component of haloperidol transport into brain. The high brain concentrations and the unexpectedly high striatum-to-cerebellum concentration ratios (greater than 4 at haloperidol doses less than or equal to 1 microgram/kg) suggest that [ 18 F]haloperidol warrants further investigation as a potential radiotracer for dopamine receptors

  4. The metabolism of the human brain studied with positron emission tomography

    International Nuclear Information System (INIS)

    Greitz, T.; Ingvar, D.H.; Widen, L.

    1985-01-01

    This volume presents coverage of the use of positron emission tomography (PET) to study the human brain. The contributors assess new developments in high-resolution positron emission tomography, cyclotrons, radiochemistry, and tracer kinetic models, and explore the use of PET in brain energy metabolism, blood flow, and protein synthesis measurements, receptor analysis, and pH determinations, In addition, they discuss the relevance and applications of positron emission tomography from the perspectives of physiology, neurology, and psychiatry

  5. Effectiveness of lead aprons in positron emission tomography

    International Nuclear Information System (INIS)

    Bezerra Fonseca, R.; Amaral, A.

    2008-01-01

    Full text: In the last two decades, Positron Emission Tomography (PET) has emerged as clinical diagnostic technique, becoming one of the fastest growing imaging tools in modern nuclear medicine. Because 511 keV annihilation photon energy is much higher than the photon with mean energy of 140 keV emitted in Single Photon Computed Tomography (SPECT), medical staff working in PET studies receive a higher dose than those working only with SPECT tracers do. As a result, special attention must be paid to keep radiation exposure as low as reasonably achievable (ALARA principle). Lead equivalent apron is the principal personal protective equipment for technologists occupationally exposed to ionizing radiation in medical procedures and may be an important component in the ALARA program. However, in practices involving PET, 0.5 mm lead equivalent aprons have been used regardless of photon's energy. In this context, this work was designed for evaluating radioprotective effectiveness of such aprons in PET procedures. For this, the operational quantities personal dose equivalent H p (0.07) and H p (10) have been assessed by using MCNP4C code in a model of individual exposure to small source of 511 keV photons, representing the situation of injection of the radiopharmaceutical, in two situations: technologists wearing and not wearing 0.5 mm lead aprons. To represent the technologist a mathematical anthropomorphic phantom was employed, and the simulated source to subject distances varied between 40 to 100 cm, in steps of 10 cm. The results showed no significant differences between the values obtained for H p (10) in the two situations, pointing out that that there is no radioprotective influence of wearing such aprons on PET practices. Compared to simulations without such device, H p (0.07) increased up about 26% when technologist is wearing radioprotective aprons, depending on the source to subject distance. On the basis of this work, 0.5 mm lead equivalent aprons should not be

  6. Quality assurance and radiation safety in positron emission tomography

    International Nuclear Information System (INIS)

    Kmetyuk, Ya.V.; Radosh, H.V.; Bezshyyko, O.A.; Golinka-Bezshyyko, L.O.; Kadenko, I.M.; Kazinova, O.A.; Nagai, A.O.

    2012-01-01

    Scientific studies, clinical experience and economic analysis have shown that the positron emission tomography (PET) is clinically and cost effective cancer diagnostics method. Combined PET and computed tomography (PET/CT) has proven clinical utility, particularly in the diagnosis, staging or restaging malignant disease and metastases, surgical planning, radiation therapy planning and evaluation of treatment response. The use of PET/CT has grown substantially in the past few years, with an increasing number of hospitals and installations of PET/CT imaging centers each year. In the same time combination of 2 procedures, each of which impart a radiation dose and, as a result, increases the deleterious influence for health, creates additional radiation safety issues. In these conditions the role of quality assurance (QA) and quality control (QC) programs is getting more and more important. We considered main QA and radiation safety requirements for whole PET technology chain from radio-pharmacy facilities to PET/CT scanning and patient release criteria. All these issues were considered and assessed having the example of PET facilities and technology chain of All-Ukrainian Center for Radiosurgery of the Clinical Hospital 'Feofania'

  7. A noninvasive approach to quantitative functional brain mapping with H215O and positron emission tomography

    International Nuclear Information System (INIS)

    Fox, P.T.; Mintun, M.A.; Raichle, M.E.; Herscovitch, P.

    1984-01-01

    Positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) with intravenously administered 15 O-labeled water and an adaptation of the Kety autoradiographic model are well suited to the study of functional-anatomical correlations within the human brain. This model requires arterial blood sampling to determine rCBF from the regional tissue radiotracer concentration (Cr) recorded by the tomograph. Based upon the well-defined, nearly linear relation between Cr and rCBF inherent in the model, we have developed a method for estimating changes in rCBF from changes in Cr without calculating true rCBF and thus without arterial sampling. This study demonstrates that quantitative functional brain mapping does not require the determination of rCBF from Cr when regional neuronal activation is expressed as the change in rCBF from an initial, resting-state measurement. Patterned-flash visual stimulation was used to produce a wide range of increases in rCBF within the striate cortex. Changes in occipital rCBF were found to be accurately estimated directly from Cr over a series of 56 measurements on eight subjects. This adaptation of the PET/autoradiographic method serves to simplify its application and to make it more acceptable to the subject

  8. Fluorodeoxyglucose positron emission tomography in pancreatic cancer: an unsolved problem

    International Nuclear Information System (INIS)

    Kato, Takashi; Fukatsu, Hiroshi; Ito, Kengo; Tadokoro, Masanori; Ota, Toyohiro; Ikeda, Mitsuru; Isomura, Takayuki; Ito, Shigeki; Nishino, Masanari; Ishigaki, Takeo

    1995-01-01

    The aim of this study was to examine the significance and problems of 2-[fluorine-18]-2-deoxy-d-glucose (FDG) positron emission tomography (PET) in diagnosing pancreatic cancer and mass-forming pancreatitis (MFP). PET, X-ray computed tomography (CT) and magnetic resonance (MR) imaging were performed in 15 patients with pancreatic cancer and nine patients with MFP. The areas of the PET scan were determined according to the markers drawn on the patients at CT or MR imaging. Regions of interests (ROIs) were placed by reference to the CT or MR images corresponding to the PET images. Tissue metabolism was evaluated by the differential absorption ratio (DAR) at 50 min after intravenous injection of FDG [DAR = tissue tracer concentration/(injected dose/body weight). The DAR value differed significantly in pancreatic cancer (mean±SD, 4.64±1.94) and MFP (mean±SD, 2.84±2.22) (P<0.05). In one false-negative case (mucinous adenocarcinoma), the tumour contained a small number of malignant cells. In one false-positive case, lymphocytes accumulated densely in the mass in the pancreatic head. Further studies are necessary to investigate the histopathological characteristics (especially the cellularity) and other factors affecting the FDG DAR on PET images. (orig.)

  9. Biological imaging in radiation therapy: role of positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Ursula; Hentschel, Michael; Grosu, Anca-Ligia [Departments of Radiation Oncology, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg (Germany); Weber, Wolfgang [Nuclear Medicine, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg (Germany)], E-mail: ursula.nestle@uniklinik-freiburg.de

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required. (topical review)

  10. Biological imaging in radiation therapy: role of positron emission tomography.

    Science.gov (United States)

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  11. Fluorinated tracers for imaging cancer with positron emission tomography

    International Nuclear Information System (INIS)

    Couturier, Olivier; Chatal, Jean-Francois; Luxen, Andre; Vuillez, Jean-Philippe; Rigo, Pierre; Hustinx, Roland

    2004-01-01

    2-[ 18 F]fluoro-2-deoxy-d-glucose (FDG) is currently the only fluorinated tracer used in routine clinical positron emission tomography (PET). Fluorine-18 is considered the ideal radioisotope for PET imaging owing to the low positron energy (0.64 MeV), which not only limits the dose rate to the patient but also results in a relatively short range of emission in tissue, thereby providing high-resolution images. Further, the 110-min physical half-life allows for high-yield radiosynthesis, transport from the production site to the imaging site and imaging protocols that may span hours, which permits dynamic studies and assessment of potentially fairly slow metabolic processes. The synthesis of fluorinated tracers as an alternative to FDG was initially tested using nucleophilic fluorination of the molecule, as performed when radiolabelling with iodine-124 or bromide-76. However, in addition to being long, with multiple steps, this procedure is not recommended for bioactive molecules containing reactive groups such as amine or thiol groups. Radiochemical yields are also often low. More recently, radiosynthesis from prosthetic group precursors, which allows easier radiolabelling of biomolecules, has led to the development of numerous fluorinated tracers. Given the wide availability of 18 F, such tracers may well develop into important routine tracers. This article is a review of the literature concerning fluorinated radiotracers recently developed and under investigation for possible PET imaging in cancer patients. Two groups can be distinguished. The first includes ''generalist'' tracers, i.e. tracers amenable to use in a wide variety of tumours and indications, very similar in this respect to FDG. These are tracers for non-specific cell metabolism, such as protein synthesis, amino acid transport, nucleic acid synthesis or membrane component synthesis. The second group consists of ''specific'' tracers for receptor expression (i.e. oestrogens or somatostatin), cell

  12. Diagnostic utility of fluorodeoxyglucose positron emission tomography/computed tomography in pyrexia of unknown origin

    International Nuclear Information System (INIS)

    Singh, Nidhi; Kumar, Rakesh; Malhotra, Arun; Bhalla, Ashu Seith; Kumar, Uma; Sood, Rita

    2005-01-01

    The present study was undertaken to evaluate the diagnostic utility of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) in patients presenting as pyrexia of unknown origin (PUO). Forty-seven patients (31 males and 16 females; mean age of 42.7 ± 19.96 years) presenting as PUO to the Department of Medicine at the All India Institute of Medical Sciences, New Delhi over a period of 2 years underwent F-18 FDG PET/CT. PET ⁄ CT was considered supportive when its results correlated with the final definitive diagnosis. Final diagnosis was made on the basis of combined evaluation of history, clinical findings, investigations, and response to treatment. Thirty-five PET/CT studies (74.5%) were positive. However, only 18 (38.3%) were supportive of the final diagnosis. In three patients (6.4%), PET/CT was considered diagnostic as none of the other investigations including contrast-enhanced computed tomography of chest and abdomen, and directed tissue sampling could lead to the final diagnosis. All these three patients were diagnosed as aortoarteritis. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography is an important emerging modality in the workup of PUO. It supported the final diagnosis in 38% of our patients and was diagnostic in 6.4% of patients. Thus, PET/CT should only be considered as second-line investigation for the diagnostic evaluation of PUO; especially in suspected noninfectious inflammatory disorders

  13. Extensive tumor thrombus of hepatocellular carcinoma in the entire portal venous system detected on fluorodeoxyglucose positron emission tomography computed tomography

    International Nuclear Information System (INIS)

    Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Puranik, Ameya; Rangarajan, Venkatesh

    2013-01-01

    Detection of thrombus is usually an incidental finding on fluorodeoxyglucose positron emission tomography/computed tomography studies. Nevertheless this is an important finding in terms of disease prognostication and in planning the treatment strategy. We herein report a case of a 50-years-old male, a diagnosed case of hepatocellular carcinoma with extensive hypermetabolic thrombus involving the entire portal venous system. (author)

  14. 18F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging findings of primary intracranial histiocytic sarcoma in a dog

    International Nuclear Information System (INIS)

    Kang, B.T.; Park, C.; Yoo, J.H.; Gu, S.H.; Jang, D.P.; Kim, Y.B.; Woo, E.J.; Kim, D.Y.; Cho, Z.H.; Park, H.M.

    2009-01-01

    A 10-year-old, neutered male, Maltese dog presented with a three week history of intention tremor, right hind limb rigidity, poor coordination, and occasional circling to the left. On magnetic resonance imaging (MRI) of the brain, a mass was identified in the right occipital lobe and cerebellum. Three weeks after the initial MRI scan, we performed an sup(18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) of the brain. The FDG-PET demonstrated areas of hypermetabolism in the right occipital lobe, cerebellum, pons, and medulla oblongata. When the standardized uptake value was calculated, the hypermetabolic lesion was higher than the gray matter values. The anatomical location of the hypermetabolic lesion was more precisely identified by the PET-MRI fusion images. The dog was definitively diagnosed as a primary histiocytic sarcoma of the brain. This is the first report of PET findings of an intracranial histiocytic sarcoma in a dog

  15. Preclinical studies on [{sup 11}C]MPDX for mapping adenosine A{sub 1} receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi; Kimura, Yuichi; Oda, Keiichi; Kawamura, Kazunori; Ishii, Kenji; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan). Positron Medical Center; Nariai, Tadashi; Wakabayashi, Shinichi [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Shimada, Junichi [Kyowa Hakko Kogyo Co. Ltd., Tokyo (Japan). Pharmaceutical Research Inst.

    2002-09-01

    In previous in vivo studies with mice, rats and cats, we have demonstrated that [{sup 11}C]MPDX ([1-methyl-{sup 11}C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine) is a potential radioligand for mapping adenosine A{sub 1} receptors of the brain by positron emission tomography (PET). In the present study, we performed a preclinical study. The radiation absorbed-dose by [{sup 11}C]MPDX in humans estimated from the tissue distribution in mice was low enough for clinical use, and the acute toxicity and mutagenicity of MPDX were not found. The monkey brain was clearly visualized by PET with [{sup 11}C]MPDX. We have concluded that [{sup 11}C]MPDX is suitable for mapping adenosine A{sub 1} receptors in the human brain by PET. (author)

  16. Positron emission tomography and optical tissue imaging

    Science.gov (United States)

    Falen, Steven W [Carmichael, CA; Hoefer, Richard A [Newport News, VA; Majewski, Stanislaw [Yorktown, VA; McKisson, John [Hampton, VA; Kross, Brian [Yorktown, VA; Proffitt, James [Newport News, VA; Stolin, Alexander [Newport News, VA; Weisenberger, Andrew G [Yorktown, VA

    2012-05-22

    A mobile compact imaging system that combines both PET imaging and optical imaging into a single system which can be located in the operating room (OR) and provides faster feedback to determine if a tumor has been fully resected and if there are adequate surgical margins. While final confirmation is obtained from the pathology lab, such a device can reduce the total time necessary for the procedure and the number of iterations required to achieve satisfactory resection of a tumor with good margins.

  17. Functional imaging of the brain with positron emission tomography

    International Nuclear Information System (INIS)

    Alavi, A.; Reivich, M.; Jones, S.C.; Greenberg, J.H.; Wolf, A.P.

    1982-01-01

    An extensive review, with 191 references, of the development and diagnostic use of positron emission tomography (PET) of the brain is presented. An historical overview of functional studies of the brain reviews the use of nitrons oxide, 85 Kr and 133 Xe, [ 14 C]2-deoxyglucose, and [ 18 F]FDG. The [ 18 F]FDG technique allows the investigation of the effects of physiologic stimulation on the brain. Several studies using this technique are reported. The effects of stroke, seizure disorders, aging and dementia, and schizophrenia on cerebral metabolism as demosntrated by PET are explored

  18. Positron Emission Tomography (PET in Oncology

    Directory of Open Access Journals (Sweden)

    Andrea Gallamini

    2014-09-01

    Full Text Available Since its introduction in the early nineties as a promising functional imaging technique in the management of neoplastic disorders, FDG-PET, and subsequently FDG-PET/CT, has become a cornerstone in several oncologic procedures such as tumor staging and restaging, treatment efficacy assessment during or after treatment end and radiotherapy planning. Moreover, the continuous technological progress of image generation and the introduction of sophisticated software to use PET scan as a biomarker paved the way to calculate new prognostic markers such as the metabolic tumor volume (MTV and the total amount of tumor glycolysis (TLG. FDG-PET/CT proved more sensitive than contrast-enhanced CT scan in staging of several type of lymphoma or in detecting widespread tumor dissemination in several solid cancers, such as breast, lung, colon, ovary and head and neck carcinoma. As a consequence the stage of patients was upgraded, with a change of treatment in 10%–15% of them. One of the most evident advantages of FDG-PET was its ability to detect, very early during treatment, significant changes in glucose metabolism or even complete shutoff of the neoplastic cell metabolism as a surrogate of tumor chemosensitivity assessment. This could enable clinicians to detect much earlier the effectiveness of a given antineoplastic treatment, as compared to the traditional radiological detection of tumor shrinkage, which usually takes time and occurs much later.

  19. Positron Emission Tomography (PET) in Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Gallamini, Andrea, E-mail: gallamini.a@ospedale.cuneo.it [Department of Research and Medical Innovation, Antoine Lacassagne Cancer Center, Nice University, Nice Cedex 2-06189 Nice (France); Zwarthoed, Colette [Department of Nuclear Medicine, Antoine Lacassagne Cancer Center, Nice University, Nice Cedex 2-06189 Nice (France); Borra, Anna [Hematology Department S. Croce Hospital, Via M. Coppino 26, Cuneo 12100 (Italy)

    2014-09-29

    Since its introduction in the early nineties as a promising functional imaging technique in the management of neoplastic disorders, FDG-PET, and subsequently FDG-PET/CT, has become a cornerstone in several oncologic procedures such as tumor staging and restaging, treatment efficacy assessment during or after treatment end and radiotherapy planning. Moreover, the continuous technological progress of image generation and the introduction of sophisticated software to use PET scan as a biomarker paved the way to calculate new prognostic markers such as the metabolic tumor volume (MTV) and the total amount of tumor glycolysis (TLG). FDG-PET/CT proved more sensitive than contrast-enhanced CT scan in staging of several type of lymphoma or in detecting widespread tumor dissemination in several solid cancers, such as breast, lung, colon, ovary and head and neck carcinoma. As a consequence the stage of patients was upgraded, with a change of treatment in 10%–15% of them. One of the most evident advantages of FDG-PET was its ability to detect, very early during treatment, significant changes in glucose metabolism or even complete shutoff of the neoplastic cell metabolism as a surrogate of tumor chemosensitivity assessment. This could enable clinicians to detect much earlier the effectiveness of a given antineoplastic treatment, as compared to the traditional radiological detection of tumor shrinkage, which usually takes time and occurs much later.

  20. Positron emission tomography of cerebrovascular disorders

    International Nuclear Information System (INIS)

    Tanaka, Makoto; Hirai, Shunsaku; Kondo, Susumu; Ishiguro, Koji; Yamazaki, Tsuneo

    1989-01-01

    The pathogenesis of cerebrovascular disorders which present PET findings significantly different from those by XCT were studied. The PET study was performed using a steady state method of 15 O 2 and C 15 O 2 inhalation. The XCT was obtained simultaneously. Seventeen cases with marked discrepancies between XCT and PET findings were selected from 50 cases with cerebrovascular disorders. Twenty-two findings, shown by PET but not by XCT, from the 17 cases were classified into three major groups on the basis of pathogenesis. Group I was composed of nine cases suffering from ischemic stroke either without any cerebral cortical structural abnormalities or with an organic lesion not revealed by XCT. Ischemic penumbra or allied mechanism may explain the discrepancy in this group. Perfusion and metabolic decreases in the 11 patients in Group II were caused by the transneuronal effects (diaschisis) of stroke; cortical effect of a small white matter infarction; cortical effect of thalamic hemorrhage; and an effect of a cerebral hemispheric lesion on the contralateral cerebellar hemisphere (crossed cerebellar diaschisis). Group III consisted of two cases studied in a period of prominent fogging effect. Regional cerebral blood flow (CBF) and metabolic rates of oxygen (CMRO 2 ) of the cerebral cortex or cerebellar hemisphere were measured in the area where perfusional and/or metabolic changes were demonstrated and in the corresponding area in the contralateral hemisphere. Reduction rates of CBF and CMRO 2 in the former to those in the latter were calculated. Evaluation of the functional images in PET depends primarily on visual and qualitative analyses. The comparison of radioactivities in a diseased region and in a reference region can inform a semiquantitative parameter in SPECT. The reduction rates of CBF and CMRO 2 in PET will serve as a good guide to evaluate the parameter in SPECT of cerebrovascular disorders. (J.P.N.)

  1. Positron Emission Tomography in inflammatory cardiovascular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Renata Christian Martins; Gouvea, Clecio Maria, E-mail: renatafelix@cardiol.br, E-mail: renata.felix@inc.saude.gov.br [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Carneiro, Michel Pontes [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil); Mesquita, Claudio Tinoco [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2014-10-15

    Many articles have demonstrated the role of PET-CT in the evaluation of inflammatory and infectious diseases of the cardiovascular system. The purpose of this article is to provide a review of the literature on this topic to identify clinical situations in which there is evidence of the usefulness of PET-CT in diagnostic and therapeutic evaluation.

  2. Positron emission tomography in cerebrovascular disease

    International Nuclear Information System (INIS)

    Powers, W.J.

    1988-01-01

    This paper reviews and discusses those aspects of PET that are relevant to its current and future role in the clinical care of individual patients with ischemic cerebrovascular disease. In making a judgement about the value of any diagnostic test in the management of patients with a specific disease, one must decide what criteria to apply. It is tempting to conclude that any test that provides accurate data related to the pathophysiology of the disease under consideration must be clinically useful. This is not necessarily the case, however, if the data do not lead to better patient care by reducing either morbidity and mortality or expense. Such is currently the case for PET in human cerebrovascular disease. The data that PET can provide on CBF, CBV, OEF, and CMRO 2 are accurate and are directly related to the pathophysiology of cerebral ischemia. As yet, however, there is no evidence that the application of these data leads to improvements in patient care

  3. Imaging Prostate Cancer with Positron Emission Tomography

    Science.gov (United States)

    2014-07-01

    multimodal imaging platforms. We have developed peptides that are specific for the FAP active site, conjugated them to the cross- bridged macrocycle 4,11...based pendant arms. Reaction with excess chelator for an extended period finally afforded 5 mg of each product in 95% purity. Additionally 5 mg...proton sponge behavior of the cross- bridged macrocycle14,15. Radiolabeled conjugates can be prepared with a specific activity of 37 MBq (1 mCi)/µg

  4. Occipital lobe infarction and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tagawa, Koichi; Nagata, Ken; Shishido, Fumio (Research Inst. of Brain and Blood Vessels, Akita (Japan))

    1990-08-01

    Even though the PET study revealed a total infarct in the territory of the left PCA in our 3 cases of pure alesia, it is still obscure which part of the left occipital lobe is most closely associated with the occurrence of the pure alexia. In order to elucidate the intralobar localization of the pure alexia, it is needed to have an ideal case who shows an pure alexia due to the localized lesion within the left occipital lobe. Furthermore, high-resolution PET scanner will circumvent the problem in detecting the metabolism and blood flow in the corpus callosum which plays an important role in the pathogenesis. We have shown that the occlusion of the right PCA also produced a left unilateral agnosia which is one of the common neurological signs in the right MCA infarction. To tell whether the responsible lesion for the unilateral spatial agnosia differs between the PCA occlusion and the MCA occlusion, the correlation study should be carried out in a greater number of the subjects. Two distinctive neuropsychological manifestations, cerebral color blidness and prosopagnosia, have been considered to be produced by the bilateral occipital lesion. The PET studies disclosed reduction of blood flow and oxygen metabolism in both occipital lobes in our particular patient who exibited cerebral color blindness and posopagnosia. (author).

  5. Occipital lobe infarction and positron emission tomography

    International Nuclear Information System (INIS)

    Tagawa, Koichi; Nagata, Ken; Shishido, Fumio

    1990-01-01

    Even though the PET study revealed a total infarct in the territory of the left PCA in our 3 cases of pure alesia, it is still obscure which part of the left occipital lobe is most closely associated with the occurrence of the pure alexia. In order to elucidate the intralobar localization of the pure alexia, it is needed to have an ideal case who shows an pure alexia due to the localized lesion within the left occipital lobe. Furthermore, high-resolution PET scanner will circumvent the problem in detecting the metabolism and blood flow in the corpus callosum which plays an important role in the pathogenesis. We have shown that the occlusion of the right PCA also produced a left unilateral agnosia which is one of the common neurological signs in the right MCA infarction. To tell whether the responsible lesion for the unilateral spatial agnosia differs between the PCA occlusion and the MCA occlusion, the correlation study should be carried out in a greater number of the subjects. Two distinctive neuropsychological manifestations, cerebral color blidness and prosopagnosia, have been considered to be produced by the bilateral occipital lesion. The PET studies disclosed reduction of blood flow and oxygen metabolism in both occipital lobes in our particular patient who exibited cerebral color blindness and posopagnosia. (author)

  6. Positron emission tomography in the Rett syndrome

    International Nuclear Information System (INIS)

    Naidu, S.; Wong, D.F.; Kitt, C.; Wenk, G.; Moser, H.W.

    1992-01-01

    A consistent constellation of clinical signs and symptoms define the Rett syndrome, the most prominent of which are disorders of movement and tone. Preliminary pathologic and neurochemical data indicate predominant involvement of the nigrostriatal dopaminergic pathways and the cholinergic system of the basal forebrain region. The age of onset differentiates the Rett syndrome from Alzheimer and Parkinson disease with similar lesions. PET scanning makes it possible to relate the chemistry of the brain to function by measuring the number and affinity of neuroreceptors, metabolism in specific brain regions, and provide important determinants of the underlying mechanisms in disease states. (author)

  7. The imaging science of positron emission tomography

    International Nuclear Information System (INIS)

    Jones, T.

    1996-01-01

    To meet the goals of converging molecular imaging with molecular biology and molecular medicine, there is a need to define the strategy and structure for perfecting the accuracy of functional images derived using PET. This also relates directly to how clinical research, diagnostic questions and challenges from the pharmaceutical industry are addressed. In order to exploit the sensitivity and specificity of PET, an integrated, multidisciplinary approach is imperative. The structure to provide this needs to been seen in the context of an institutional approach, collaborations within the academic and industrial sectors and the funding needed to meet the challenges of addressing difficult questions. (orig.)

  8. Measurement of neurotransmitters with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Laruelle, M.; Erritzoe, D.; Abi-Dargham, A.; Huang, Y. [Columbia Univ., Coll. of Physicians and Surgeons, Dept. of Psychiatry and Radiology, New York, NY (United States)

    2003-09-01

    Over the last decade several groups have provided evidence that PET and SPECT neuro-receptor imaging techniques might be applied to measure fluctuations of dopamine (DA) synaptic concentrations in the living human brain. It is generally believed that changes in the in vivo binding of radioligands following acute changes in transmitter levels are driven by binding competition. These techniques have been very successful in giving dynamic information regarding DA transmission. However, the development of similar techniques to study other neurotransmitter systems has proven difficult. This review paper first summarizes endogenous competition studies performed in animals and humans. The validity of the model underlying the interpretation of these data is critically assessed. Emerging data suggest that simple binding competition might not be the only phenomenon involved in these interactions; receptor trafficking might play an important role. A better understanding of the radioligand properties that determine sensitivity to endogenous molecules might facilitate the selective development of this type of radiotracer. (authors)

  9. Imaging opiate receptors with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Wong, D.F.; Links, J.M.; Burns, H.D.; Kuhar, M.J.; Snyder, S.H.; Wagner, H.N. Jr.

    1984-01-01

    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (5..mu..g/kg), killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50 ..mu..g/kg, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15.

  10. Imaging opiate receptors with positron emission tomography

    International Nuclear Information System (INIS)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.

    1984-01-01

    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (5μg/kg), killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50 μg/kg, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15

  11. Unusual sites of metastatic recurrence of osteosarcoma detected on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography

    International Nuclear Information System (INIS)

    Kabnurkar, Rasika; Agrawal, Archi; Rekhi, Bharat; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2015-01-01

    Osteosarcoma (OS) is the most common nonhematolymphoid primary bone malignancy characterized by osteoid or new bone formation. Lungs and bones are the most common sites of metastases. We report a case where unusual sites of the soft tissue recurrence from OS were detected on restaging fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography scan done post 6 years of disease free interval

  12. Incidental head and neck findings on 18F-fluoro-deoxy-glucose positron emission tomography computed tomography.

    Science.gov (United States)

    Williams, S P; Kinshuck, A J; Williams, C; Dwivedi, R; Wieshmann, H; Jones, T M

    2015-09-01

    The overlapping risk factors for lung and head and neck cancer present a definite risk of synchronous malignant pathology. This is the first study to specifically review incidental positron emission tomography computed tomography findings in the head and neck region in lung carcinoma patients. A retrospective review was performed of all lung cancer patients who underwent positron emission tomography computed tomography imaging over a five-year period (January 2008 - December 2012), identified from the Liverpool thoracic multidisciplinary team database. Six hundred and nine patients underwent positron emission tomography computed tomography imaging over this period. In 76 (12.5 per cent) scans, incidental regions of avid 18F-fluoro-deoxy-glucose uptake were reported in the head and neck region. In the 28 patients who were fully investigated, there were 4 incidental findings of malignancy. In lung cancer patients undergoing investigative positron emission tomography computed tomography scanning, a significant number will also present with areas of clinically significant 18F-fluoro-deoxy-glucose uptake in the head and neck region. Of these, at least 5 per cent may have an undiagnosed malignancy.

  13. Diagnosis of sinusoidal obstruction syndrome by positron emission tomography/computed tomography: report of two cases treated by defibrotide.

    Science.gov (United States)

    Gauthé, Mathieu; Bozec, Laurence; Bedossa, Pierre

    2014-11-01

    Sinusoidal obstruction syndrome (SOS) is a potentially fatal liver injury that mainly occurs after myeloablative chemotherapy. We report two cases of SOS investigated by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and treated with defibrotide. © 2014 by the American Association for the Study of Liver Diseases.

  14. A meta-analysis of 18F-Fluoride positron emission tomography for assessment of metastatic bone tumor

    International Nuclear Information System (INIS)

    Tateishi, Ukihide; Morita, Satoshi; Taguri, Masataka

    2010-01-01

    The aim of this study was to assess the diagnostic performance of 18 F-Fluoride positron emission tomography (PET) or positron emission tomography/computed tomography (PET/CT) compared with bone scintigraphy (BS) planar or BS planar and single photon emission computed tomography (SPECT) in evaluating patients with metastatic bone tumor. We performed a meta-analysis of all available studies addressing the diagnostic accuracy of 18 F-Fluoride PET, 18 F-Fluoride PET/CT, BS planar, and BS planar and SPECT for detecting the metastatic bone tumor. We determined sensitivities and specificities across studies, calculated positive and negative likelihood ratios, and drew summary receiver operating characteristic curves using hierarchical regression models. We also compared the effective dose and cost-effectiveness estimated by data from the enrolled studies between 18 F-Fluoride PET or PET/CT and BS planar or BS planar and SPECT. When comparing all studies with data on 18 F-Fluoride PET or PET/CT, sensitivity and specificity were 96.2% [95% confidence interval (CI) 93.5-98.9%] and 98.5% (95% CI 97.0-100%), respectively, on a patient basis and 96.9% (95% CI 95.9-98.0%) and 98.0% (95% CI 97.1-98.9%), respectively, on a lesion basis. The Az values of 18 F-Fluoride PET or PET/CT were 0.986 for the patient basis and 0.905 for the lesion basis, whereas those of BS or BS and SPECT were 0.866 for the patient basis and 0.854 for the lesion basis. However, the estimated effective dose and average cost-effective ratio were poorer for 18 F-Fluoride PET or PET/CT than those of BS planar or BS planar and SPECT. 18 F-Fluoride PET or PET/CT has excellent diagnostic performance for the detection of metastatic bone tumor, but the estimated effective dose and average cost-effective ratio are at a disadvantage compared with BS planar or BS planar and SPECT. (author)

  15. Toward prediction of efficacy of chemotherapy: A proof of concept study in lung cancer patients using [11C]docetaxel and positron emission tomography

    NARCIS (Netherlands)

    A.A.M. van der Veldt (Astrid); M. Lubberink (Mark); A.H.J. Mathijssen (Ron); W.J. Loos (Walter); G.J.M. Herder (G. J M); M.J.W. Greuter (Marcel); E.F.I. Comans (Emile); H.B. Rutten (Hugo); J. Eriksson (Joel); A.D. Windhorst (Albert); N.H. Hendrikse (N. Harry); D. Postmus (Douwe); E.F. Smit (Egbert); A.A. Lammertsma (Adriaan)

    2013-01-01

    textabstractPurpose: Pharmacokinetics of docetaxel can be measured in vivo using positron emission tomography (PET) and a microdose of radiolabeled docetaxel ([11C]docetaxel). The objective of this study was to investigate whether a [11C]docetaxel PET microdosing study could predict tumor uptake of

  16. Organ hierarchy during low blood flow on-pump: a randomized experimental positron emission tomography study

    DEFF Research Database (Denmark)

    Thomassen, Sisse Anette; Kjærgaard, Benedict; Frøkiær, Jørgen

    will be measured with dynamic PET-CT before CPB and during the different blood flows. Systemic oxygen consumption will be estimated by measurement of mixed venous saturation and lactate, and regional muscle oxygen saturation (tSO2) with near infrared spectroscopy at the lower limb. Result: Preliminary data......].The purpose of this animal study is to investigate the organ hierarchy of brain, liver, kidney and muscle at normal and low blood flows by using dynamic positron tomography (PET-CT) during CPB. Methods CPB at different blood flows will be investigated in an experimental model of six 70 kg pigs...... knowledge this is the first study investigating organ hierarchy with dynamic PET-CT during profound systemic ischemia due to suboptimal blood flows during normothermic CPB. References 1. Murphy JM, Hessel II EA, Groom RC. Optimal perfusion during cardiopulmonary bypass: an Evidence-based approach. Anesth...

  17. The value of positron emission tomography/computed tomography for evaluating metastatic disease in patients with pancreatic cancer.

    Science.gov (United States)

    Kim, Mi-Jin; Lee, Kwang Hyuck; Lee, Kyu Taek; Lee, Jong Kyun; Ku, Bon-Ho; Oh, Cho-Rong; Heo, Jin Seok; Choi, Seong-Ho; Choi, Dong Wook

    2012-08-01

    Routine application of positron emission tomography/computed tomography (PET/CT) for pancreatic cancer staging remains a controversial approach. The purpose of this study was to reassess the clinical impact of PET/CT for the detection of distant metastasis of pancreatic cancer. From January 2006 to June 2009, 125 patients with histologically proven pancreatic cancer that had undergone PET/CT at our hospital were retrospectively reviewed. To evaluate the clinical efficacy of PET/CT on the management plan, the post-PET/CT management plans were compared with the pre-PET/CT management plans. After the conventional staging workup, we determined that 76 patients (60.8%) had resectable lesions, whereas 48 patients had unresectable lesions. One patient underwent explorative laparotomy due to equivocal resectability. Positron emission tomography/computed tomography diagnosed distant metastasis in only 2 (2.6%) of the 76 patients with resectable lesions, and these patients did not undergo unnecessary surgical treatment. Complete resection was not performed in 8 of the 74 operative patients because they had distant metastasis detected during the operative procedure. Positron emission tomography/computed tomography diagnosed distant metastasis in 32 of the 44 patients with metastatic lesions that were histologically shown to have sensitivity of 72.7%. Positron emission tomography/computed tomography has a limited role in the evaluation of metastatic disease from pancreatic cancer.

  18. Distinguishing tumor recurrence from irradiation sequelae with positron emission tomography in patients treated for larynx cancer

    International Nuclear Information System (INIS)

    Greven, K.M.; Williams, D.W. III; Keyes, J.W. Jr.; McGuirt, W.F.; Harkness, B.A.; Watson, N.E. Jr.; Raben, M.; Frazier, L.C.; Geisinger, K.R.; Capellari, J.O.

    1994-01-01

    Distinguishing persistent or recurrent tumor from postradiation edema, or soft tissue/cartilage necrosis in patients treated for carcinoma of the larynx can be difficult. Because recurrent tumor is often submucosal, multiple deep biopsies may be necessary before a diagnosis can be established. Positron emission tomography with 18F-2-fluro-2-deoxglucose (FDG) was studied for its ability to aid in this problem. Positron emission tomography (18FDG) scans were performed on 11 patients who were suspected of having persistent or recurrent tumor after radiation treatment for carcinoma of the larynx. Patients underwent thorough history and physical examinations, scans with computerized tomography, and pathologic evaluation when indicated. Standard uptake values were used to quantitate the FDG uptake in the larynx. The time between completion of radiation treatment and positron emission tomography examination ranged from 2 to 26 months with a median of 6 months. Ten patients underwent computed tomography (CT) of the larynx, which revealed edema of the larynx (six patients), glottic mass (four patients), and cervical nodes (one patient). Positron emission tomography scans revealed increased FDG uptake in the larynx in five patients and laryngectomy confirmed the presence of carcinoma in these patients. Five patients had positron emission tomography results consistent with normal tissue changes in the larynx, and one patient had increased FDG uptake in neck nodes. This patient underwent laryngectomy, and no cancer was found in the primary site, but nodes were pathologically positive. One patient had slightly elevated FDG uptake and negative biopsy results. The remaining patients have been followed for 11 to 14 months since their positron emission studies and their examinations have remained stable. In patients without tumor, average standard uptake values of the larynx ranged from 2.4 to 4.7, and in patients with tumor, the range was 4.9 to 10.7. 18 refs., 3 figs., 1 tab

  19. Evaluation of 4-[(18)F]fluorobenzoyl-FALGEA-NH(2) as a positron emission tomography tracer for epidermal growth factor receptor mutation variant III imaging in cancer

    DEFF Research Database (Denmark)

    Denholt, Charlotte Lund; Binderup, Tina; Stockhausen, Marie-Thérése

    2011-01-01

    This study describes the radiosynthesis, in vitro and in vivo evaluation of the novel small peptide radioligand, 4-[(18)F]fluorobenzoyl-Phe-Ala-Leu-Gly-Glu-Ala-NH(2,) ([(18)F]FBA-FALGEA-NH(2)) as a positron emission tomography (PET) tracer for imaging of the cancer specific epidermal growth facto...

  20. Fluorodeoxyglucose positron emission tomography-computed tomography scan in von Hippel-Lindau syndrome: a case report and review of literature

    International Nuclear Information System (INIS)

    Solav, Shrikant; Bhandari, Ritu

    2012-01-01

    Von Hippel-Lindau (VHL) syndrome is a hereditary autosomal dominant disorder caused by defective tumor suppression gene at 3p25-p26. The gene for VHL disease is found on chromosome 3, and is inherited in a dominant fashion. The VHL gene is a tumor suppressor gene. This means that its role in a normal cell is to stop the uncontrolled growth and proliferation. It is characterized by abnormal growth of blood vessels. It strikes the eyes, central nervous system, kidneys, endocrine glands, etc. It predisposes the patient to retinal angiomas, central nervous system hemangioblastoma, renal cell carcinoma (RCC), pheochromocytomas, islet cell tumor of the pancreas, endolymphatic sac tumors, renal, pancreatic, epididymal cysts. We present a case of familial VHL syndrome whose Fluorine 18-fluorodeoxyglucose positron emission tomography-computed tomography scan was truly positive for adrenal pheochromocytoma but was falsely negative for RCC. Review of literature related to this entity is made. (author)

  1. False-positive 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with metallic implants following chondrosarcoma resection.

    Science.gov (United States)

    Zhou, P U; Tang, Jinliang; Zhang, Dong; Li, Guanghui

    2016-05-01

    Positron emission tomography (PET) with fluorine-18-labeled fluorodeoxyglucose ( 18 F-FDG) has been used for the staging and evaluation of recurrence in cancer patients. We herein report a false-positive result of 18 F-FDG PET/computed tomography (CT) scan in a patient following chondrosarcoma resection and metallic implanting. A 35-year-old male patient with chondrosarcoma of the left iliac bone underwent radical resection, metal brace implanting and radiotherapy. A high uptake of 18 F-FDG was observed in the metallic implants and adjacent tissue during PET/CT scanning in the 5th year of follow-up. Tissue biopsy and follow-up examination identified no tumor recurrence or infection at these sites, suggesting that the results of 18 F-FDG PET/CT must be interpreted with caution in cancer patients with metallic implants.

  2. Depressed cerebral oxygen metabolism in patients with chronic renal failure. A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Hirakata, Hideki; Kanai, Hidetoshi; Nakane, Hiroshi; Fujii, Ken-ichiro; Hirakata, Eriko; Ibayashi, Setsuro; Kuwabara, Yasuo; Deenitchna, S.S.; Fujishima, Masatoshi [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences

    2001-07-01

    In order to elucidate brain oxygen metabolism in uremic patients, the regional cerebral blood flow (rCBF), oxygen extraction (rOEF) and oxygen metabolism (rCMRO{sub 2}) were measured by positron emission tomography (PET) in both 10 hemodialysis patients (HD: male [m]/female [f]=2/8, age of 49{+-}3 [SEM] years old, HD duration of 113{+-}26 months) and 13 pre-dialysis renal failure patients (CRF: m/f=10/3, age of 61{+-}2 years old, serum creatinine (SCr) of 6.3{+-}1.0 mg/dl). Data were compared with 20 non-uremic subjects (Control: m/f=7/13, age of 62{+-}2 years old, SCr of 0.9{+-}0.1 mg/dl). They had no neurological abnormalities, congestive heart failure, history of cerebrovascular accident, diabetes mellitus, or symptomatic brain lesion on magnetic resonance imaging. The age of HD was significantly younger than the other groups (p<0.02) and the hemoglobin (Hb) levels in both HD (10.5{+-}0.5 g/dl) and CRF (9.8{+-}0.9) were significantly lower than that in Control (13.3{+-}0.3) (p<0.02). In the hemisphere, rCMRO{sub 2} in both HD (1.82{+-}0.10 ml/min/100 g) and CRF (1.95{+-}0.09) showed significantly lower values as compared to Control (2.23{+-}0.05) (p<0.01, respectively). Hemispheric rCBF in HD (35.6{+-}2.1 ml/100 g/min) and in CRF (36.1{+-}2.1) were not different from that in Control (31.8{+-}1.4). Hemispheric rOEF in CRF (45.7{+-}1.6%) was significantly higher than that in Control (40.5{+-}1.2%) (p<0.02), but that in HD (43.7{+-}1.9%) did not increase significantly. These tendencies were similar in all regions of interest, especially in the cerebral cortices, but not in the cerebellum. All PET parameters in the frontal cortices tended to show the lowest value in renal failure patients. For all HD patients, rCBF in both the frontal cortex and the white matter correlated inversely with HD duration (frontal cortex: r=-0.649, p<0.05; white matter: r=-0.706, p<0.02). Based on these data, it is concluded that brain oxygen metabolism is depressed in renal failure

  3. Infective endocarditis detected by 18F-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography in a patient with occult infection

    Directory of Open Access Journals (Sweden)

    Chia-Lu Yeh

    2011-11-01

    Full Text Available Integrated 18F-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG PET/CT has been clinically used to detect infectious lesions. We present a case with pyrexia and bacteremia of unknown origin. Whole body FDG PET/CT was arranged to look for an occult source of infection and it revealed a focal lesion with increased FDG uptake in the mitral valve area. Under suspicion of infective endocarditis, transthoracic echocardiography was repeated and then the presence of linear vegetation over the calcified mitral annulus was confirmed. Ultimately, definite infective endocarditis was diagnosed according to the Duke criteria. The patient recovered after the antibiotic therapy. In our case, FDG PET/CT can help to localize the exact site of occult infection, thereby guiding additional testing and facilitating timely definitive diagnosis and therapy.

  4. Is it possible to verify directly a proton-treatment plan using positron emission tomography?

    International Nuclear Information System (INIS)

    Vynckier, S.; Derreumaux, S.; Richard, F.; Wambersie, A.; Bol, A.; Michel, C.

    1993-01-01

    A PET camera is used to visualize the positron activity induced during protonbeam therapy in order to verify directly the proton-treatment plans. The positron emitters created are predominantly the 15 O and 11 C, whose total activity amounts to 12 MBq after an irradiation with 85 MeV protons, delivering 3 Gy in a volume of approximately 300 cm 3 . Although this method is a useful verification of patient setup, care must be taken when deriving dose distributions from activity distributions. Correlation between both quantities is difficult, moreover at the last millimeters of their range, protons will no longer activate tissue. Due to the short half-lives the PET camera must be located close to the treatment facility. (author) 17 refs

  5. Detectors, sampling, shielding, and electronics for positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.

    1981-08-01

    A brief discussion of the important design elements for positron emission tomographs is presented. The conclusions are that the instrumentation can be improved by the use of larger numbers of small, efficient detectors closely packed in many rings, the development of new detector materials, and novel electronic designs to reduce the deadtime and increase maximum event rates

  6. Utilisation of spatial and temporal correlations in positron emission tomography

    International Nuclear Information System (INIS)

    Sureau, F.

    2008-06-01

    In this thesis we propose, implement, and evaluate algorithms improving spatial resolution in reconstructed images and reducing data noise in positron emission tomography imaging. These algorithms have been developed for a high resolution tomograph (HRRT) and applied to brain imaging, but can be used for other tomographs or studies. We first developed an iterative reconstruction algorithm including a stationary and isotropic model of resolution in image space, experimentally measured. We evaluated the impact of such a model of resolution in Monte-Carlo simulations, physical phantom experiments and in two clinical studies by comparing our algorithm with a reference reconstruction algorithm. This study suggests that biases due to partial volume effects are reduced, in particular in the clinical studies. Better spatial and temporal correlations are also found at the voxel level. However, other methods should be developed to further reduce data noise. We then proposed a maximum a posteriori de-noising algorithm that can be used for dynamic data to de-noise temporally raw data (sino-grams) or reconstructed images. The a priori modeled the coefficients in a wavelet basis of all the signals without noise (in an image or sinogram). We compared this technique with a reference de-noising method on replicated simulations. This illustrates the potential benefits of our approach of sinogram de-noising. (author)

  7. Quantifying the limitations of small animal positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, D.C. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)], E-mail: dco@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cooper, R.J.; Cresswell, J.R.; Grint, A.N.; Nolan, P.J.; Scraggs, D.P. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury Laboratory, Warrington, WA4 4AD Cheshire (United Kingdom); Beveridge, T.E. [School of Materials and Engineering, Monash University, Melbourne (Australia)

    2009-06-01

    The application of position sensitive semiconductor detectors in medical imaging is a field of global research interest. The Monte-Carlo simulation toolkit GEANT4 [ (http://geant4.web.cern.ch/geant4/)] was employed to improve the understanding of detailed {gamma}-ray interactions within the small animal Positron Emission Tomography (PET), high-purity germanium (HPGe) imaging system, SmartPET [A.J. Boston, et al., Oral contribution, ANL, Chicago, USA, 2006]. This system has shown promising results in the field of PET [R.J. Cooper, et al., Nucl. Instr. and Meth. A (2009), accepted for publication] and Compton camera imaging [J.E. Gillam, et al., Nucl. Instr. and Meth. A 579 (2007) 76]. Images for a selection of single and multiple point, line and phantom sources were successfully reconstructed using both a filtered-back-projection (FBP) [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007] and an iterative reconstruction algorithm [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007]. Simulated data were exploited as an alternative route to a reconstructed image allowing full quantification of the image distortions introduced in each phase of the data processing. Quantifying the contribution of uncertainty in all system components from detector to reconstruction algorithm allows the areas in need of most attention on the SmartPET project and semiconductor PET to be addressed.

  8. Image-reconstruction algorithms for positron-emission tomography systems

    International Nuclear Information System (INIS)

    Cheng, S.N.C.

    1982-01-01

    The positional uncertainty in the time-of-flight measurement of a positron-emission tomography system is modelled as a Gaussian distributed random variable and the image is assumed to be piecewise constant on a rectilinear lattice. A reconstruction algorithm using maximum-likelihood estimation is derived for the situation in which time-of-flight data are sorted as the most-likely-position array. The algorithm is formulated as a linear system described by a nonseparable, block-banded, Toeplitz matrix, and a sine-transform technique is used to implement this algorithm efficiently. The reconstruction algorithms for both the most-likely-position array and the confidence-weighted array are described by similar equations, hence similar linear systems can be used to described the reconstruction algorithm for a discrete, confidence-weighted array, when the matrix and the entries in the data array are properly identified. It is found that the mean square-error depends on the ratio of the full width at half the maximum of time-of-flight measurement over the size of a pixel. When other parameters are fixed, the larger the pixel size, the smaller is the mean square-error. In the study of resolution, parameters that affect the impulse response of time-of-flight reconstruction algorithms are identified. It is found that the larger the pixel size, the larger is the standard deviation of the impulse response. This shows that small mean square-error and fine resolution are two contradictory requirements

  9. Characterization of time resolved photodetector systems for Positron Emission Tomography

    CERN Document Server

    Powolny, François

    The main topic of this work is the study of detector systems composed of a scintillator, a photodetector and readout electronics, for Positron Emission Tomography (PET). In particular, the timing properties of such detector systems are studied. The first idea is to take advantage of the good timing properties of the NINO chip, which is a fast preamplifier-discriminator developed for the ALICE Time of flight detector at CERN. This chip uses a time over threshold technique that is to be applied for the first time in medical imaging applications. A unique feature of this technique is that it delivers both timing and energy information with a single digital pulse, the time stamp with the rising edge and the energy from the pulse width. This entails substantial simplification of the entire readout architecture of a tomograph. The scintillator chosen in the detector system is LSO. Crystals of 2x2x10mm3 were used. For the photodetector, APDs were first used, and were then replaced by SiPMs to make use of their highe...

  10. Automated identification of the lung contours in positron emission tomography

    International Nuclear Information System (INIS)

    Nery, F; Ferreira, N C; Faustino, R; Silva, J Silvestre; Caramelo, F J

    2013-01-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better sensitivity and specificity than other techniques such as CT. On the other hand, accurate segmentation, an important procedure for Computer Aided Diagnostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution and the high noise that are intrinsic characteristics of PET images. This work presents an algorithm for the segmentation of lungs in PET images, to be used in CAD and group analysis in a large patient database. The lung boundaries are automatically extracted from a PET volume through the application of a marker-driven watershed segmentation procedure which is robust to the noise. In order to test the effectiveness of the proposed method, we compared the segmentation results in several slices using our approach with the results obtained from manual delineation. The manual delineation was performed by nuclear medicine physicians that used a software routine that we developed specifically for this task. To quantify the similarity between the contours obtained from the two methods, we used figures of merit based on region and also on contour definitions. Results show that the performance of the algorithm was similar to the performance of human physicians. Additionally, we found that the algorithm-physician agreement is similar (statistically significant) to the inter-physician agreement.

  11. Quantification of adenosine A2A receptors in the human brain using [11C]TMSX and positron emission tomography

    International Nuclear Information System (INIS)

    Naganawa, Mika; Kimura, Yuichi; Oda, Keiichi; Ishii, Kenji; Ishiwata, Kiichi; Mishina, Masahiro; Manabe, Yoshitsugu; Chihara, Kunihiro

    2007-01-01

    [7-methyl- 11 C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([ 11 C]TMSX) is a positron-emitting adenosine A 2A receptor (A2AR) antagonist for visualisation of A2AR distribution by positron emission tomography (PET). The aims of this paper were to use a kinetic model to analyse the behaviour of [ 11 C]TMSX in the brain and to examine the applicability of the Logan plot. We also studied the applicability of a simplified Logan plot by omitting metabolite correction and arterial blood sampling. The centrum semiovale was used as a reference region on the basis of a post-mortem study showing that it has a negligibly low density of A2ARs. Compartmental analysis was performed in five normal subjects. Parametric images of A2AR binding potential (BP) were also generated using a Logan plot with or without metabolite correction and with or without arterial blood sampling. To omit arterial blood sampling, we applied a method to extract the plasma-related information using independent component analysis (EPICA). The estimated K 1 /k 2 was confirmed to be common in the centrum semiovale and main cortices. The three-compartment model was well fitted to the other regions using the fixed value of K 1 /k 2 estimated from the centrum semiovale. The estimated BPs using the Logan plot matched those derived from compartment analysis. Without the metabolite correction, the estimate of BP underestimated the true value by 5%. The estimated BPs agreed regardless of arterial blood sampling. A three-compartment model with a reference region, the centrum semiovale, describes the kinetic behaviour of [ 11 C]TMSX PET images. A2ARs in the human brain can be visualised as a BP image using [ 11 C]TMSX PET without arterial blood sampling. (orig.)

  12. European health telematics networks for positron emission tomography

    Science.gov (United States)

    Kontaxakis, George; Pozo, Miguel Angel; Ohl, Roland; Visvikis, Dimitris; Sachpazidis, Ilias; Ortega, Fernando; Guerra, Pedro; Cheze-Le Rest, Catherine; Selby, Peter; Pan, Leyun; Diaz, Javier; Dimitrakopoulou-Strauss, Antonia; Santos, Andres; Strauss, Ludwig; Sakas, Georgios

    2006-12-01

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  13. European health telematics networks for positron emission tomography

    International Nuclear Information System (INIS)

    Kontaxakis, George; Pozo, Miguel Angel; Ohl, Roland; Visvikis, Dimitris; Sachpazidis, Ilias; Ortega, Fernando; Guerra, Pedro; Cheze-Le Rest, Catherine; Selby, Peter; Pan, Leyun; Diaz, Javier; Dimitrakopoulou-Strauss, Antonia; Santos, Andres; Strauss, Ludwig; Sakas, Georgios

    2006-01-01

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site

  14. European health telematics networks for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kontaxakis, George [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain)]. E-mail: g.kontaxakis@upm.es; Pozo, Miguel Angel [Centro PET Complutense, Madrid 28040 (Spain); Universidad Complutense de Madrid, Instituto Pluridisciplinar, Madrid 28040 (Spain); Ohl, Roland [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Visvikis, Dimitris [U650 INSERM, Lab. du Traitement de L' Information Medicale, University of Brest Occidentale, CHU Morvan, Brest 29609 (France); Sachpazidis, Ilias [Fraunhofer Institute for Computer Graphics, Darmstadt 64283 (Germany); Ortega, Fernando [Fundacion Instituto Valenciano de Oncologia, Valencia 46009 (Spain); Guerra, Pedro [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain); Cheze-Le Rest, Catherine [Dept. Medicine Nucleaire, CHU Morvan, Brest 29609 (France); Selby, Peter [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Pan, Leyun [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Diaz, Javier [Fundacion Instituto Valenciano de Oncologia, Valencia 46009 (Spain); Dimitrakopoulou-Strauss, Antonia [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Santos, Andres [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain); Strauss, Ludwig [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Sakas, Georgios [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Fraunhofer Institute for Computer Graphics, Darmstadt 64283 (Germany)

    2006-12-20

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  15. Measurement of regional cerebral blood flow by positron emission tomography

    International Nuclear Information System (INIS)

    Herscovitch, P.; Powers, W.J.

    1987-01-01

    The principal advantage of positron emission tomography over other methods for measuring cerebral blood flow stems from the accurate, quantitative three-dimensional measurements of regional brain radioactivity that are possible with this technique. As a result, accurate quantitative measurements of regional cerebral blood flow can be obtained for both superficial and deep cerebral structures. The value of PET for investigating central nervous system physiology and pathology extends far beyond this, however. Through the use of different radiotracers and appropriate mathematical models, PET can be applied to the measurement of a wide variety of physiologic variables. Measurements of rCBF tell only part of the story. Experience with PET and with a variety of other techniques has taught us that rCBF is at times a poor indicator of the metabolic, functional, and biochemical status of cerebral tissue. It is only by understanding the interaction of all of these factors that our understanding of neurologic disease can advance. It is in the investigation of these complex relationships that the real value of PET resides

  16. Positron emission tomography scans on kanji and kana

    International Nuclear Information System (INIS)

    Sakurai, Yasuhisa

    2002-01-01

    We reanalyzed our positron emission tomography (PET) study on reading of Japanese kanji (morphogram) words, kana (phonogram) words and kana nonwords, using Statistical Parametric Mapping (SPM). The basal occipital and occipito-temporal areas were activated in common, among which activity was most pronounced in the fusiform/inferior temporal gyri with kanji and in the inferior occipital gyrus with kana. The results were consistent with the clinical observations that damage to the posterior inferior temporal cortex including the fusiform/inferior temporal gyri causes alexia with agraphia for kanji, whereas damage to the posterior occipital area including the inferior occipital gyrus causes pure alexia for kana. Bases on the present results and the lesion studies, a dual-route hypothesis that modifies Iwata's model of reading about the Japanese language was proposed. That is, the middle occipital gyrus, deep perisylvian temporoparietal cortex and posterior temporal gyrus constitute a dorsal route for reading and process phonology for words, whereas the inferior occipital, fusiform and posterior inferior temporal gyri constitute a ventral route for reading and process orthography and lexico-semantics for words. The ventral route may gain dominance in reading, according as a word is repeatedly presented. (author)

  17. Carbon-11-methionine positron emission tomography imaging of chordoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong [Department of Medical Imaging, National Institute of Radiological Sciences, Chiba (Japan); Department of Medical Imaging, Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, 263-8555, Chiba (Japan); Yoshikawa, Kyosan; Tamura, Katsumi; Sagou, Kenji; Kandatsu, Susumu [Clinical Diagnosis Section, National Institute of Radiological Sciences, Chiba (Japan); Tian, Mei; Suhara, Tetsuya; Suzuki, Kazutoshi; Tanada, Shuji [Department of Medical Imaging, National Institute of Radiological Sciences, Chiba (Japan); Tsujii, Hirohiko [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2004-09-01

    Chordoma is a rare malignant bone tumor that arises from notochord remnants. This is the first trial to investigate the utility of {sup 11}C-methionine (MET) positron emission tomography (PET) in the imaging of chordoma before and after carbon-ion radiotherapy (CIRT). Fifteen patients with chordoma were investigated with MET-PET before and after CIRT and the findings analyzed visually and quantitatively. Tumor MET uptake was evaluated by tumor-to-nontumor ratio (T/N ratio). In 12 (80%) patients chordoma was clearly visible in the baseline MET-PET study with a mean T/N ratio of 3.3{+-}1.7. The MET uptake decreased significantly to 2.3{+-}1.4 after CIRT (P<0.05). A significant reduction in tumor MET uptake of 24% was observed after CIRT. Fourteen (93%) patients showed no local recurrence after CIRT with a median follow-up time of 20 months. This study has demonstrated that MET-PET is feasible for imaging of chordoma. MET-PET could provide important tumor metabolic information for the therapeutic monitoring of chordoma after CIRT. (orig.)

  18. Carbon-11-methionine positron emission tomography imaging of chordoma

    International Nuclear Information System (INIS)

    Zhang, Hong; Yoshikawa, Kyosan; Tamura, Katsumi; Sagou, Kenji; Kandatsu, Susumu; Tian, Mei; Suhara, Tetsuya; Suzuki, Kazutoshi; Tanada, Shuji; Tsujii, Hirohiko

    2004-01-01

    Chordoma is a rare malignant bone tumor that arises from notochord remnants. This is the first trial to investigate the utility of 11 C-methionine (MET) positron emission tomography (PET) in the imaging of chordoma before and after carbon-ion radiotherapy (CIRT). Fifteen patients with chordoma were investigated with MET-PET before and after CIRT and the findings analyzed visually and quantitatively. Tumor MET uptake was evaluated by tumor-to-nontumor ratio (T/N ratio). In 12 (80%) patients chordoma was clearly visible in the baseline MET-PET study with a mean T/N ratio of 3.3±1.7. The MET uptake decreased significantly to 2.3±1.4 after CIRT (P<0.05). A significant reduction in tumor MET uptake of 24% was observed after CIRT. Fourteen (93%) patients showed no local recurrence after CIRT with a median follow-up time of 20 months. This study has demonstrated that MET-PET is feasible for imaging of chordoma. MET-PET could provide important tumor metabolic information for the therapeutic monitoring of chordoma after CIRT. (orig.)

  19. The natural history of misery perfusion in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Shinji; Fujii, Kiyotaka; Matsushima, Toshio; Fukui, Masashi; Sadoshima, Shouzou; Kuwabara, Yasuo (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1992-03-01

    This report reviews the natural courses of misery perfusion in 5 patients with atherosclerotic cerebrovascular occlusion diseases. Cases 1 showed partial improvement and Case 2 showed deterioration of misery perfusion on positron emission tomography (PET). These 2 patients did not show any clinical changes during the follow-up periods. Case 3 showed remarkable improvement of misery perfusion during the 2-year follow-ups, but his neurological condition worsened. The EC-IC bypass improved both in PET and clinical symptoms. Case 4 had a stroke at the region of misery perfusion in PET. Case 5 had a lacunar infarction 2 years after the EC-IC bypass on the opposite side. PET taken one month before the stroke did not show any signs of hypoperfusion in the area of the lacunar infarction. Misery perfusion seems not to be a static but a dynamic condition that can develop into cerebral infarction by some hemodynamic stresses. Cerebral cortical or lobar infarction may occur in the region of severe misery perfusion. EC-IC bypass may prevent impending infarction of the cerebral cortex by improving the regional cerebral blood flow. However, EC-CI bypass will not prevent the lacunar infarction of the basal ganglia or internal capsule. (author).

  20. Variation in positron emission tomography use after colon cancer resection.

    Science.gov (United States)

    Bailey, Christina E; Hu, Chung-Yuan; You, Y Nancy; Kaur, Harmeet; Ernst, Randy D; Chang, George J

    2015-05-01

    Colon cancer surveillance guidelines do not routinely include positron emission tomography (PET) imaging; however, its use after surgical resection has been increasing. We evaluated the secular patterns of PET use after surgical resection of colon cancer among elderly patients and identified factors associated with its increasing use. We used the SEER-linked Medicare database (July 2001 through December 2009) to establish a retrospective cohort of patients age ≥ 66 years who had undergone surgical resection for colon cancer. Postoperative PET use was assessed with the test for trends. Patient, tumor, and treatment characteristics were analyzed using univariable and multivariable logistic regression analyses. Of the 39,221 patients with colon cancer, 6,326 (16.1%) had undergone a PET scan within 2 years after surgery. The use rate steadily increased over time. The majority of PET scans had been performed within 2 months after surgery. Among patients who had undergone a PET scan, 3,644 (57.6%) had also undergone preoperative imaging, and 1,977 (54.3%) of these patients had undergone reimaging with PET within 2 months after surgery. Marriage, year of diagnosis, tumor stage, preoperative imaging, postoperative visit to a medical oncologist, and adjuvant chemotherapy were significantly associated with increased PET use. PET use after colon cancer resection is steadily increasing, and further study is needed to understand the clinical value and effectiveness of PET scans and the reasons for this departure from guideline-concordant care. Copyright © 2015 by American Society of Clinical Oncology.

  1. Positron Emission Tomography Particle tracking using cluster analysis

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2004-01-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method

  2. Positron Emission Tomography Particle tracking using cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham, B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2004-12-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method.

  3. Fluorodeoxyglucose positron emission tomography in pulmonary carcinoid tumors

    International Nuclear Information System (INIS)

    Gasparri, R.; Rezende, G. C.; Brambilla, D.; Petrella, F.; Galetta, D.; Spaggiari, L.; Fazio, N.; Maisonneuve, P.; Travaini, L. L.; Paganelli, G.

    2015-01-01

    The role of fluorodeoxyglucose positron emission tomography (FDG-PET) as an additional investigation to computer tomography for pulmonary carcinoid tumors remains controversial. The aim of this study was to assess the role of FDG-PET for the diagnosis and staging of pulmonary carcinoid tumors. It has been performed a retrospective mono-institutional analysis of data from 97 patients with pathologically confirmed pulmonary carcinoid tumor who had been operated on between July 1998 and April 2009 and had had a preoperative FDG-PET scan performed. Sixty-five (67%) of the 97 tumors were typical (TC) and 32 (33%) atypical (AC) carcinoid tumors. Overall FDG-PET sensitivity was 67% being lower for TC (60%) than for AC (81%) (P=0.04). FDG-PET negative tumors were smaller than FDG-PET positive tumors, with a respective median size of 15 and 17 mm (P=0.02). Median SUVmax for FDG-PET-positive tumors was 4.0 (2.8-5.1) with no difference between TC and AC tumors. Median Ki-67 expression was respectively 4.7% and 3.1% for FDG-PET positive and FDG-PET negative tumors (P=0.05). During a median follow-up of 49 months (interquartile range 30-63 months), 9 patients (4TC, 5AC) developed recurrent disease. Neither SUVmax nor Ki-67 expression resulted associated with disease-free survival. With an overall sensitivity of 67%, FDG-PET has shown to be useful in the preoperative work-up of patients with suspect lung carcinoid tumors. In particular it could have a role in larger tumors. These results warrant a prospective evaluation of FDG-PET in the staging of lung carcinoid tumor.

  4. Positron emission tomography in degenerative disorders of the dopaminergic system

    Energy Technology Data Exchange (ETDEWEB)

    Karbe, H; Holthoff, V; Huber, M; Herholz, K; Wienhard, K; Wagner, R; Heiss, W D [Universitaetsklinik fuer Neurologie und Max-Planck-Institut fuer neurologische Forschung, Koeln (Germany)

    1992-01-01

    21 patients who had Parkinson's disease (PD), PD plus dementia of Alzheimer type (PDAT) or progressive supranuclear palsy (PSP), were studied with positron emission tomography (PET) using ({sup 18}F)-2-fluoro-2-deoxy-D-glucose (FDG). In one patient with strictly unilateral PD side differences in striatal dopa uptake were studied with 6-({sup 18}F)fluoro-L-dopa (F-dopa). In patients with PD PET with FDG did not show any significant change in regional cerebral metabolic rates for glucose (rCMR(Glu)). In PDAT glucose metabolism was generally reduced, the most severe decrease was found in parietal cortex. The metabolic pattern was similar to that typically found in patients with Alzheimer's disease (AD). In the patient with strictly unilateral PD rCMR(Glu) was normal, F-dopa PET, however, revealed a distinct reduction of dopa uptake in the contralateral putamen. In PSP glucose metabolism was significantly decreased in subcortical regions (caudatum, putamen and brainstem) and in frontal cortex. Thus PET demonstrated a clear difference of metabolic pattern between PDAT and PSP. (authors).

  5. Imaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Hossein Jadvar

    2015-07-01

    Full Text Available Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and prognostic utility in the various clinical phases of this prevalent disease. Given the remarkable biological heterogeneity of prostate cancer, one major unmet clinical need that remains is the non-invasive imaging-based characterization of prostate tumors. Accurate tumor characterization allows for image-targeted biopsy and focal therapy as well as facilitates objective assessment of therapy effect. PET in conjunction with radiotracers that track the thymidine salvage pathway of DNA synthesis may be helpful to fulfill this necessity. We review briefly the preclinical and pilot clinical experience with the two major cellular proliferation radiotracers, [18F]-3’-deoxy-3’-fluorothymidine and [18F]-2’-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil in prostate cancer.

  6. 18F-fluorodeoxyglucose positron emission tomography in uterine carcinosarcoma

    International Nuclear Information System (INIS)

    Ho, Kung-Chu; Yen, Tzu-Chen; Lai, Chyong-Huey; Wu, Tzu-I; Chang, Ting-Chang; Huang, Huei-Jean; Ng, Koon-Kwan; Lin, Gigin; Wang, Chun-Chieh; Hsueh, Swei

    2008-01-01

    Uterine carcinosarcomas clinically confined to the uterus usually harbor occult metastases. We conducted a pilot study to evaluate the value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in uterine carcinosarcoma. Patients with histologically confirmed uterine carcinosarcoma were enrolled. Abdominal and pelvic magnetic resonance imaging (MRI)/whole-body computed tomography (CT) scan, and whole-body 18 F-FDG PET or PET/CT were undertaken for primary staging, evaluating response, and restaging/post-therapy surveillance. The clinical impact of 18 F-FDG PET was determined on a scan basis. A total of 19 patients were recruited and 31 18 F-FDG PET scans (including 8 scans performed on a PET/CT scanner) were performed. Positive impacts of scans were found in 36.8% (7/19) for primary staging, 66.7% (2/3) for monitoring response, and 11.1% (1/9) for restaging/post-therapy surveillance. PET excluded falsely inoperable disease defined by MRI in two patients. Aggressive treatment applying to three patients with PET-defined resectable stage IVB disease seemed futile. Two patients died of disease shortly after salvage therapy restaged by PET. With PET monitoring, one stage IVB patient treated by targeted therapy only was alive with good performance. Using PET did not lead to improvement of overall survival of this series compared with the historical control (n = 35) (P 0.779). The preliminary results suggest that 18 F-FDG PET is beneficial in excluding falsely inoperable disease for curative therapy and in making a decision on palliation for better quality of life instead of aggressive treatment under the guidance of PET. PET seems to have limited value in post-therapy surveillance or restaging after failure. (orig.)

  7. Influence of 18F-fluorodeoxyglucose-positron emission tomography on computed tomography-based radiation treatment planning for oesophageal cancer

    International Nuclear Information System (INIS)

    Everitt, C.; Leong, T.

    2006-01-01

    The addition of positron emission tomography (PET) information to CT-based radiotherapy treatment planning has the potential to improve target volume definition through more accurate localization of the primary tumour and involved regional lymph nodes. This case report describes the first patient enrolled to a prospective study evaluating the effects of coregistered positron emission tomography/CT images on radiotherapy treatment planning for oesophageal cancer. The results show that if combined positron emission tomography/CT is used for radiotherapy treatment planning, there may be alterations to the delineation of tumour volumes when compared to CT alone. For this patient, a geographic miss of tumour would have occurred if CT data alone were used for radiotherapy planning Copyright (2006) Blackwell Publishing Asia Pty Ltd

  8. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Science.gov (United States)

    2012-12-04

    ... Positron Emission Tomography (PET) Drugs.'' The guidance is intended to assist manufacturers of PET drugs... one self-addressed adhesive label to assist that office in processing your requests. See the... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance summarizes the...

  9. Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter

    2010-01-01

    , and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI...

  10. 18F-fluorodeoxyglucose positron emission tomography-positive sarcoidosis after chemoradiotherapy for Hodgkin’s disease: a case report

    Directory of Open Access Journals (Sweden)

    Pham Alan

    2011-06-01

    Full Text Available Abstract Introduction The occurrence of granulomatous disease in the setting of Hodgkin's disease is rare; however, when it occurs it can pose significant clinical and diagnostic challenges for physicians treating these patients. Case presentation We report the case of a 33-year-old Caucasian woman of Mediterranean descent with newly diagnosed 18F-fluorodeoxyglucose (18F-FDG positron emission tomography (PET/computed tomography (CT scan-positive, early-stage Hodgkin's disease involving the cervical nodes who, despite having an excellent clinical response to chemotherapy, had a persistent 18F-FDG PET scan-positive study, which was suggestive of residual or progressive disease. A subsequent biopsy of her post-chemotherapy PET-positive nodes demonstrated sarcoidosis with no evidence of Hodgkin's disease. Conclusion This case highlights the fact that abnormalities observed on posttherapy PET/CT scans in patients with Hodgkin's disease are not always due to residual or progressive disease. An association between Hodgkin's disease and/or its treatment with an increased incidence of granulomatous disease appears to exist. Certain patterns of 18F-FDG uptake observed on PET/CT scans may suggest other pathologies, such as granulomatous inflammation, and because of the significant differences in prognosis and management, clinicians should maintain a low threshold of confidence for basing their diagnosis on histopathological evaluations when PET/CT results appear to be incongruent with the patient's clinical response.

  11. Potentials of positron emission tomography for regional cerebral blood flow evaluation

    International Nuclear Information System (INIS)

    Depresseux, J.C.

    1982-01-01

    A general overview of the potentials of positron emission tomography and of positron-emitting radiopharmaceuticals for the evaluation of regional cerebral blood flow is proposed and discussed. Specific characteristics of this technique are described, with special stress on conceptual and methodological implications. Four different approaches to the problem of the determination of cerebral blood flow are distinguished: trapping equilibrium methods, steady state equilibrium methods, clearance methods and convoluted kinetic methods [fr

  12. Sup(110)Sn/110In - a new generator system for positron emission tomography

    International Nuclear Information System (INIS)

    Lundqvist, H.; Einarsson, L.; Malmborg, P.; Scott-Robson, S.

    1991-01-01

    A generator system, 110 Sn/ 110 In, is suggested for use in the labelling of leukocytes with this short-lived (t 1/2 = 1.15 h) positron emitting (62%) isotope of indium. The half-life gives the labelled leukocytes time to be adequately distributed but is short enough to allow repeated studies within a few hours. The mother radionuclide 110 Sn (t 1/2 = 4.15 h) is produced by the reaction nat In(p, xn) 110 Sn which has a maximum cross-section of 110 mb at approx. 70 MeV and a practical yield of 400 MBq/μAh. (author)

  13. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.

    Science.gov (United States)

    Kinahan, Paul E; Hasegawa, Bruce H; Beyer, Thomas

    2003-07-01

    A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended. Copyright 2003 Elsevier Inc. All rights reserved.

  14. Professional practice assessment. Pertinence of positron emission tomography clinical indications in oncology; Evaluation des pratiques professionnelles. Pertinence des indications de la tomographie a emission de positons en cancerologie

    Energy Technology Data Exchange (ETDEWEB)

    Le Stanc, E.; Tainturier, C. [Hopital Foch, Service de Medecine Nucleaire, 92 - Suresnes (France); Swaenepoel, J. [Hopital Foch, Cellule Qualite, 92 - Suresnes (France)

    2009-09-15

    Introduction As part of the health care quality and safety policy in France, Professional Practice Assessment (P.P.A.) are mandatory in the health services 'certification' process. We present our study regarding the pertinence of Positron Emission Tomography (PET) indications in oncology. Materials and methods A multidisciplinary task group used the Quick Audit method with two rounds of 100 request forms each. The assessment list of criteria comprised four items of decreasing relevance grading the PET scans clinical indications, which were derived from the three French published guidelines (S.O.R. [F.N.C.L.C.C]., 'Guide du bon usage des examens d'imagerie medicale' [S.F.R.-S.F.M.N.], 'Guide pour la redaction de protocoles pour la TEP au F.D.G. en cancerologie' [S.F.M.N.]) and five additional items: clinical information, patient's body weight, previous treatments dates, diabetes, claustrophobia. Results The first round showed that 68% of the requested scans corresponded to the two most relevant groups of indications (S.O.R. Standards and Options). The request forms were correctly filled in regarding the clinical information, but this was not the case for the other items we tested. Several actions were conducted: dedicated PET request form, availability of the S.O.R. on the hospital intranet, boost of the referring physicians awareness during the multidisciplinary oncology meetings (Reunions de Concertation Pluridisciplinaires RCP). The second round showed a better pertinence of the PET scans indications (75% versus 68%); the patient's body weight was more frequently mentioned on the request form. Discussion This study is an example of P.P.A. in our discipline. It led to an improvement of the oncologic PET scans clinical indications in our hospital. This work is pursued in everyday discussion with the referring clinicians, especially during the RCP. (authors)

  15. Budget impact from the incorporation of positron emission tomography ? computed tomography for staging lung cancers

    OpenAIRE

    Biz, Aline Navega; Caetano, Ros?ngela

    2015-01-01

    OBJECTIVE To estimate the budget impact from the incorporation of positron emission tomography (PET) in mediastinal and distant staging of non-small cell lung cancer.METHODS The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease´s prevalence and on the technologies’ accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazi...

  16. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.

    2018-05-01

    The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.

  17. Comparison of Diagnostic Performance of Three-Dimensional Positron Emission Mammography versus Whole Body Positron Emission Tomography in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Dong Dai

    2017-01-01

    Full Text Available Objective. To compare the diagnostic performance of three-dimensional (3D positron emission mammography (PEM versus whole body positron emission tomography (WBPET for breast cancer. Methods. A total of 410 women with normal breast or benign or highly suspicious malignant tumors were randomized at 1 : 1 ratio to undergo 3D-PEM followed by WBPET or WBPET followed by 3D-PEM. Lumpectomy or mastectomy was performed on eligible participants after the scanning. Results. The sensitivity and specificity of 3D-PEM were 92.8% and 54.5%, respectively. WBPET showed a sensitivity of 95.7% and specificity of 56.8%. After exclusion of the patients with lesions beyond the detecting range of the 3D-PEM instrument, 3D-PEM showed higher sensitivity than WBPET (97.0% versus 95.5%, P = 0.913, particularly for small lesions (<1 cm (72.0% versus 60.0%, P = 0.685. Conclusions. The 3D-PEM appears more sensitive to small lesions than WBPET but may fail to detect lesions that are beyond the detecting range. This study was approved by the Ethics Committee (E2012052 at the Tianjin Medical University Cancer Institute and Hospital (Tianjin, China. The instrument positron emission mammography (PEMi was approved by China State Food and Drug Administration under the registration number 20153331166.

  18. A combined positron emission tomography (PET)- electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner.

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V; Guggilapu, Priyaankadevi; Bobko, Andrey A; Khramtsov, Valery V; Tseytlin, Oxana; Raylman, Raymond R

    2018-04-20

    The advent of hybrid scanners, combining complementary modalities, has revolutionized imaging; enhancing clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). The PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring parameters such as oxygenation and pH, for example. A combined PET/EPRI scanner has the promise to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. In this investigation, a prototype system was created by combing two existing scanners, modified for simultaneous imaging. Specifically, a silicon photomultiplier (SiPM) based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both PET and EPR tracers. The resulting images demonstrated the ability to obtain contemporaneous PET and ERP images without cross-modality interference. The next step in this project is the construction of pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically important parameters of tissue microenvironments. . © 2018 Institute of Physics and Engineering in Medicine.

  19. Nuclear medicine and positron emission tomography: An overview

    International Nuclear Information System (INIS)

    McCarthy, T.J.; Schwarz, S.W.; Welch, M.J.

    1994-01-01

    Nuclear medicine is the field of medical practice that involves the oral or intravenous administration of radioactive materials for use in diagnosis and therapy. The majority of radiopharmaceutical available are used for diagnostic purposes. These involve the determination of organ function, shape, or position from an image of the radioactivity distribution within an organ or at a location within the body. After administration, the radiopharmaceutical localizes within an organ or target tissue due to its biological or physiologic characteristics. This diagnostic capability is usually the result of the emission of gamma radiation from the radiopharmaceutical localized within an organ. This allows for external detection and imaging using a special type of camera known as a gamma camera. When a positron-emitting radionuclide decays, a positron (positive electron) is emitted from the nucleus. The positron then annihilates with an electron, resulting in the release of energy in the form of two 511-KeV γ-rays at 180 degree to one another. The energy of these photons is sufficient to pass through tissue. Thus, placing a series of detectors around the patient allows technicians to monitor the emission of both of the photons that result from a single positron annihilation. this ultimately allows an accurate quantification of the distribution of radioactivity in the body not possible when only a single γ-ray is emitted

  20. Positron emission tomography, physical bases and comparaison with other techniques

    International Nuclear Information System (INIS)

    Guermazi, Fadhel; Hamza, F; Amouri, W.; Charfeddine, S.; Kallel, S.; Jardak, I.

    2013-01-01

    Positron emission tomography (PET) is a medical imaging technique that measures the three-dimensional distribution of molecules marked by a positron-emitting particle. PET has grown significantly in clinical fields, particularly in oncology for diagnosis and therapeutic follow purposes. The technical evolutions of this technique are fast. Among the technical improvements, is the coupling of the PET scan with computed tomography (CT). PET is obtained by intravenous injection of a radioactive tracer. The marker is usually fluorine ( 18 F) embedded in a glucose molecule forming the 18-fluorodeoxyglucose (FDG-18). This tracer, similar to glucose, binds to tissues that consume large quantities of the sugar such cancerous tissue, cardiac muscle or brain. Detection using scintillation crystals (BGO, LSO, LYSO) suitable for high energy (511keV) recognizes the lines of the gamma photons originating from the annihilation of a positron with an electron. The electronics of detection or coincidence circuit is based on two criteria: a time window, of about 6 to 15 ns, and an energy window. This system measures the true coincidences that correspond to the detection of two photons of 511 kV from the same annihilation. Most PET devices are constituted by a series of elementary detectors distributed annularly around the patient. Each detector comprises a scintillation crystal matrix coupled to a finite number (4 or 6) of photomultipliers. The electronic circuit, or the coincidence circuit, determines the projection point of annihilation by means of two elementary detectors. The processing of such information must be extremely fast, considering the count rates encountered in practice. The information measured by the coincidence circuit is then positioned in a matrix or sinogram, which contains a set of elements of a projection section of the object. Images are obtained by tomographic reconstruction by powerful computer stations equipped with a software tools allowing the analysis and

  1. 18F-fluorodeoxyglucose positron emission tomography in colorectal cancer: value in primary staging and follow-up

    International Nuclear Information System (INIS)

    Joerg, L.; Heinisch, M.; Rechberger, E.; Kurz, F.; Klug, R.; Aufschnaiter, M; Hammer, J.; Langsteger, W.

    2002-01-01

    Positron emission tomography using 18 F-fluorodeoxyglucose (FDG-PET) is a encouraging imaging techniques allowing a highly sensitive whole-body search for malignant foci detected by their increased glucose metabolism compared with benign tissues. Several studies are now available that indicate its added value for diagnosis and staging of colorectal cancer. In all, patient management seems to be changed in 20-30 % of patients who undergo fluorodeoxyglucose positron emission tomography in addition to standard staging procedures. Fluorodeoxyglucose positron emission tomography is also useful in monitoring radiation therapy and chemotherapy. Regarding preoperative staging of primary colorectal cancer the literature is very limited. (author)

  2. Homotopic non-local regularized reconstruction from sparse positron emission tomography measurements

    International Nuclear Information System (INIS)

    Wong, Alexander; Liu, Chenyi; Wang, Xiao Yu; Fieguth, Paul; Bie, Hongxia

    2015-01-01

    Positron emission tomography scanners collect measurements of a patient’s in vivo radiotracer distribution. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule, and the tomograms must be reconstructed from projections. The reconstruction of tomograms from the acquired PET data is an inverse problem that requires regularization. The use of tightly packed discrete detector rings, although improves signal-to-noise ratio, are often associated with high costs of positron emission tomography systems. Thus a sparse reconstruction, which would be capable of overcoming the noise effect while allowing for a reduced number of detectors, would have a great deal to offer. In this study, we introduce and investigate the potential of a homotopic non-local regularization reconstruction framework for effectively reconstructing positron emission tomograms from such sparse measurements. Results obtained using the proposed approach are compared with traditional filtered back-projection as well as expectation maximization reconstruction with total variation regularization. A new reconstruction method was developed for the purpose of improving the quality of positron emission tomography reconstruction from sparse measurements. We illustrate that promising reconstruction performance can be achieved for the proposed approach even at low sampling fractions, which allows for the use of significantly fewer detectors and have the potential to reduce scanner costs

  3. Investigating Serotonergic Function Using Positron Emission Tomography: Overview and Recent Findings

    NARCIS (Netherlands)

    Veltman, D.J.; Ruhe, H.G.; Booij, J.

    2010-01-01

    Mono-aminergic neurotransmitters, in particular serotonin (5-HT), are involved in regulating a large number of psychological and physiological functions, and abnormal 5-HT transmission has been implicated in a wide variety of neuropsychiatric disorders. Positron emission tomography (PET) is a

  4. MRI and {sup 18}F-fluorodeoxyglucose positron emission tomography in hemimegalencephaly

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K.T.; Liebig, T.; Hosten, N. [Departments of Radiology and Nuclear Medicine, Virchow-Klinikum, Charite, Berlin (Germany); Amthauer, H.; Farahati, J.; Felix, R. [Departments of Radiology and Nuclear Medicine, Virchow-Klinikum, Charite, Berlin (Germany); PET-Centre Berlin, Virchow-Klinikum, Charite, Humboldt-University, Berlin (Germany); Etou, A.; Lehmann, T.N. [Department of Neurosurgery, Virchow-Klinikum, Charite, Humboldt-University, Berlin (Germany)

    2000-10-01

    We report hemimegalencephaly in a 44-year-old woman with mental retardation, epilepsy and a mild hemiparesis. In addition to typical findings on MRI, 2-deoxy-2[{sup 18}F]fluorodeoxyglucose positron-emission tomography (PET) demonstrated glucose hypometabolism of the affected hemisphere. The results of PET have been coregistered with morphological information from the MRI studies by image fusion. (orig.)

  5. Statistical properties of compartmental model parameters extracted from dynamic positron emission tomography experiments

    International Nuclear Information System (INIS)

    Mazoyer, B.M.; Huesman, R.H.; Budinger, T.F.; Knittel, B.L.

    1986-01-01

    Over the past years a major focus of research in physiologic studies employing tracers has been the computer implementation of mathematical methods of kinetic modeling for extracting the desired physiological parameters from tomographically derived data. A study is reported of factors that affect the statistical properties of compartmental model parameters extracted from dynamic positron emission tomography (PET) experiments

  6. Evaluation of scintillators and semiconductor detectors to image three-photon positron annihilation for positron emission tomography

    International Nuclear Information System (INIS)

    Abuelhia, E.; Spyrou, N.M.; Kacperski, K.; College University, Middlesex Hospital, London

    2008-01-01

    Positron emission tomography (PET) is rapidly becoming the main nuclear imaging modality of the present century. The future of PET instrumentation relies on semiconductor detectors because of their excellent characteristics. Three-photon positron annihilation has been recently investigated as a novel imaging modality, which demands the crucial high energy resolution of semiconductor detector. In this work the evaluation of the NaI(Tl) scintillator and HPGe and CdZTe semiconductor detectors, to construct a simple three-photon positron annihilation scanner has been explored. The effect of detector and scanner size on spatial resolution (FWHM) is discussed. The characteristics: energy resolution versus count rate and point-spread function of the three-photon positron annihilation image profile from triple coincidence measurements were investigated. (author)

  7. [Human positron emission tomography with oral 11C-vinpocetine].

    Science.gov (United States)

    Vas, Adám; Christer, Halldin; Sóvágó, Judit; Johan, Sandell; Cselényi, Zsolt; Kiss, Béla; Kárpáti, Egon; Lars, Farde; Gulyás, Balázs

    2003-11-16

    Positron emission tomography (PET) is a useful tool for the investigation of certain physiological changes and for the evaluation of the distribution, and receptor binding of drugs labelled with positron emitting isotopes. Vinpocetine (ethyl-apovincaminate) is a neuroprotective drug widely used in the prevention and treatment of cerebrovascular diseases. In the clinical practice vinpocetine is usually administered to the patients in intravenous infusion followed by long-term oral treatment. Until presently human data describing vinpocetine's kinetics and brain distribution came from ex vivo (blood, plasma, liquor) and post mortem (brain autoradiography) measurements. The authors wished to investigate the kinetics and distribution of vinpocetine in the brain and body after oral administration with PET in order to prove, that PET is useful in the non-invasive in vivo determination of these parameters. Vinpocetine was labelled with carbon-11 and the radioactivity was measured by PET in the stomach, liver, brain, colon and kidneys in healthy male volunteers. The radioactivity in the blood and urine was also determined. After oral administration, [11C]vinpocetine appeared immediately in the stomach and within minutes in the liver and the blood. In the blood the level of radioactivity continuously increased until the end of the measurement period, whereas the fraction of the unchanged mother compound decreased. Radioactivity uptake and distribution in the brain were demonstrable from the tenth minute after the oral administration of the labelled drug (average maximum uptake: 0.7% of the administered total dose). Brain distribution was heterogeneous (with preferences in the thalamus, basal ganglia and occipital cortex), similar to the distribution previously reported by the authors after intravenous administration. Vinpocetine, administered orally to human volunteers, readily entered the bloodstream from the stomach and the gastrointestinal tract and thereafter passed the

  8. Monitoring variables affecting positron emission tomography measurements of cerebral blood flow in anaesthetized pigs

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Zois, Nora Elisabeth; Simonsen, Mette

    Background: Positron emission tomography (PET) imaging of anaesthetised pig brains is a useful tool in neuroscience. Stable cerebral blood flow (CBF) is essential for PET, since variations can affect the kinetics of several radiotracers. However, the impact of physiological factors regulating CBF...

  9. Positron emission tomography in the diagnosis and staging of lung cancer

    DEFF Research Database (Denmark)

    Fischer, B M; Mortensen, J; Højgaard, L

    2001-01-01

    positron emission tomography (PET) and gamma-camera PET in the diagnostic investigation of non-small-cell lung cancer (NSCLC). A systematic literature search was carried out in the MEDLINE and EMBASE databases and the Cochrane Controlled Trials Register. We identified 55 original works on the diagnostic...

  10. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors

    DEFF Research Database (Denmark)

    Binderup, Tina; Knigge, Ulrich; Loft, Annika

    2010-01-01

    PURPOSE: (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) is currently not used on a routine basis for imaging of neuroendocrine (NE) tumors. The aim of this study was to investigate the prognostic value of FDG-PET in patients with NE tumors. EXPERIMENTAL DESIGN: Ninety...

  11. Monitoring of herpes simplex virus thymidine kinase enzyme activity using positron emission tomography

    NARCIS (Netherlands)

    Hospers, GAP; Calogero, Anna; van Waarde, A; Doze, P; Vaalburg, W; Mulder, NH; de Vries, EFJ

    2000-01-01

    9-[(1-[F-18]Fluoro-3-hydroxy-2-propoxy)methyl]guanine ([F-18]FHPG) wasevaluated as a tracer for noninvasive positron emission tomography (PET) imaging of herpes simplex virus type 1 thymidine kinase (HSV-tk) gene expression. C6 rat glioma cells with and without the HSV-tk gene were incubated with

  12. Tomography by positrons emission: integral unit to the service of Mexico

    International Nuclear Information System (INIS)

    Lopez D, F.A.

    2005-01-01

    The applications of the Positron emission tomography (PET) together with the one radiopharmaceutical 2 - [ 18 F]-fluoro-2-deoxy-D-glucose in the area of the medical imaging is expanding quickly and it possesses a bigger impact at the moment in favor of those patient to who suffers an oncological, cardiac or neurological illness in Mexico. (Author)

  13. Small animal positron emission tomography imaging and in vivo studies of atherosclerosis

    DEFF Research Database (Denmark)

    Hag, Anne Mette Fisker; Ripa, Rasmus Sejersten; Pedersen, Sune Folke

    2013-01-01

    Atherosclerosis is a growing health challenge globally, and despite our knowledge of the disease has increased over the last couple of decades, many unanswered questions remain. As molecular imaging can be used to visualize, characterize and measure biological processes at the molecular and cellu...... knowledge obtained from in vivo positron emission tomography studies of atherosclerosis performed in small animals....

  14. Fluorodeoxyglucose-based positron emission tomography imaging to monitor drug responses in hematological tumors

    NARCIS (Netherlands)

    Newbold, Andrea; Martin, Ben P.; Cullinane, Carleen; Bots, Michael

    2014-01-01

    Positron emission tomography (PET) can be used to monitor the uptake of the labeled glucose analog fluorodeoxyglucose (¹⁸F-FDG), a process that is generally believed to reflect viable tumor cell mass. The use of ¹⁸F-FDG PET can be helpful in documenting over time the reduction in tumor mass volume

  15. Paul Lecoq assembles a read head made with special crystals for a PET (positron emission tomography) scanner. He is the initiator of the Crystal Clear collaboration, which aims to transfer crystals developed at CERN to applications in medical imaging.

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Paul Lecoq assembles a read head made with special crystals for a PET (positron emission tomography) scanner. He is the initiator of the Crystal Clear collaboration, which aims to transfer crystals developed at CERN to applications in medical imaging.

  16. Oxygen-15 labelled water production for positron emission tomography

    International Nuclear Information System (INIS)

    Janus, A.; Sachinidis, J.I.; Chan, J.G.; Tochon-Danguy, H.J.

    1998-01-01

    Full text: Functional imaging using positron emission tomography (PET) and 15 O-labelled compounds is both scientifically and clinically challenging. The short half-life of oxygen-15 (t 1/2 = 2 min) allows for multiple administration to a patient without exceeding acceptable levels of absorbed radiation dose and without excessive delay between administrations. The clinical usefulness of [ 15 O]-labelled water for cerebral blood flow measurements has been well established. Here we report the development and construction of a [ 15 O]water generator based on an earlier design from Hammersmith Hospital, London. The cyclotron produces a continuous flow of [ 15 O]O 2 gas by the irradiation of a natural nitrogen target (1% O 2 in N 2 ) with a 5 MeV deuteron beam, via the nuclear reaction ( 14 N(d,n) 15 O). The radioactive gas is then mixed with 5% hydrogen in nitrogen and piped to the water generator located in the scanner room. The O 2 /N 2 gas mixture is reacted over a palladium catalyst at 1500 deg C to produce [ 15 O]H 2 O vapour. The vapour passes through an exchanger where it diffuses across a semi-permeable membrane (cellulose acetate) into saline solution. At the optimum gas flow- rate of 500 mL/min, more than 95% of the radioactive oxygen is converted to radioactive water. Waste radioactive gas is piped back to the cyclotron vault to decay before release into the atmosphere. The saline solution (0.9% NaCl) is pumped continuously through the system at 6 mL/min with an infusion pump (3M AVI470). The present system has been in operation for more than a year and has been used for clinical evaluation of stroke patients and for brain activation research studies

  17. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of primary pulmonary angiosarcomas

    International Nuclear Information System (INIS)

    Krishnamurthy, Arvind; Nayak, Deepika; Ramshankar, Vijayalakshmi; Majhi, Urmila

    2015-01-01

    Angiosarcoma is a malignant vascular tumor that originates from the mesenchymal cells which have undergone angioblastic differentiation. Pulmonary angiosarcomas are invariably (>90%) metastatic tumors form primaries of the skin, bone, liver, breast, or heart. Primary pulmonary angiosarcomas are exceedingly rare, with just about 20 cases being reported in the literature. We report an additional case with a brief review of the literature of a primary pulmonary angiosarcoma in a 26-year-old lady who presented with intractable hemoptysis. In addition, we highlight the potential of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography as an important diagnostic tool in the evaluation of this tumor and thus contribute to the existing sparse literature on this fascinating yet devastating disease

  18. Diagnosis of temporal lobe epilepsy by positron emission tomography

    International Nuclear Information System (INIS)

    Shimizu, Hiroyuki; Ishijima, Buichi; Iio, Masaaki.

    1985-01-01

    Positron emission tomography(PET) was performed in 18 temporal lobe epileptics. About 20 mCi of 11 C-glucose was perorally administered to the patients and 30 minutes later scanning was started when the transport of 11 C-glucose from blood to the brain tissue reached equilibrium. At the level of 25mm above orbitomeatal line, the slice image of the temporal lobe shows a relatively high metabolic oval ring involving the amygdala, hippocapal formation and the hippocampal gyrus medially and the T 1 , T 2 and T 3 neocortices laterally in normal subjects. The epileptic focus, when detected on PET images, was observed as a defect in this oval ring. In 15(83.3%) out of 18 cases, the location of epileptic focus was confirmed as a low metabolic defect. This diagnosis rate was higher than that of other focal epilepsy by PET study. The locations of foci were devided into three types: mesial (5 cases), lateral (4 cases) and combined (6 cases). The seizure symptoms of the patients were analyzed in terms of the correspondence to the focus types. The results showed that automatism and pseudoabsence had a close relation to the mesial and combined types and psychical, vertiginous or visual seizures correlated to the combined and lateral types. Visceral or motor seizures were induced equally by any focus types. These facts suggested that automatism and pseudoabsence were correlated with the mesial organs such as the amygdala and hippocampus and psychical, vertiginous or visual seizures had origin in lateral neocortices. Visceral or motor seizures were supposed to be the results of the spread from the temporal focus to the adjacent structures. It was concluded that PET was very useful in localization diagnosis of temporal lobe epilepsy. In surgical treatment of epilepsy, in which the knowledge of the exact extent of epileptic foci is strongly demanded, PET study will offer invaluable data to the strategy of operation and foreseeing its prognosis. (author)

  19. Alcohol ADME in primates studied with positron emission tomography.

    Directory of Open Access Journals (Sweden)

    Zizhong Li

    Full Text Available The sensitivity to the intoxicating effects of alcohol as well as its adverse medical consequences differ markedly among individuals, which reflects in part differences in alcohol's absorption, distribution, metabolism, and elimination (ADME properties. The ADME of alcohol in the body and its relationship with alcohol's brain bioavailability, however, is not well understood.The ADME of C-11 labeled alcohol, CH(3 (11CH(2OH, 1 and C-11 and deuterium dual labeled alcohol, CH(3 (11CD(2OH, 2 in baboons was compared based on the principle that C-D bond is stronger than C-H bond, thus the reaction is slower if C-D bond breaking occurs in a rate-determining metabolic step. The following ADME parameters in peripheral organs and brain were derived from time activity curve (TAC of positron emission tomography (PET scans: peak uptake (C(max; peak uptake time (T(max, half-life of peak uptake (T(1/2, the area under the curve (AUC(60 min, and the residue uptake (C(60 min.For 1 the highest uptake occurred in the kidney whereas for 2 it occurred in the liver. A deuterium isotope effect was observed in the kidneys in both animals studied and in the liver of one animal but not the other. The highest uptake for 1 and 2 in the brain was in striatum and cerebellum but 2 had higher uptake than 1 in all brain regions most evidently in thalamus and cingulate. Alcohol's brain uptake was significantly higher when given intravenously than when given orally and also when the animal was pretreated with a pharmacological dose of alcohol.The study shows that alcohol metabolism in peripheral organs had a large effect on alcohol's brain bioavailability. This study sets the stage for clinical investigation on how genetics, gender and alcohol abuse affect alcohol's ADME and its relationship to intoxication and medical consequences.

  20. Prognostic Evaluation of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Endometrial Cancer

    DEFF Research Database (Denmark)

    Vilstrup, Mie Holm; Jochumsen, Kirsten M; Hess, Søren

    2017-01-01

    .19-8.49) and 1.93 (0.80-4.68), respectively. Whole-body cTLG of greater than or equal to 176.1 g yielded a hazard ratio of 5.70 (1.94-16.78) for OS in a multivariate analysis. CONCLUSIONS: Preoperative SUVmax and cTLG showed potential as independent prognostic markers of OS in patients with primarily high...... and a preoperative F-fluorodeoxyglucose positron emission tomography/computed tomography before curatively intended treatment were included. The scans were evaluated using standard uptake values [maximum standard uptake value (SUVmax) and partial volume corrected (c) mean standardized uptake value (SUVmean...... proportional regression models were used for prognostic evaluation. RESULTS: Eighty-three patients (median age, 69.9 y; range, 26.8-91.1) with primarily high-risk endometrial cancer or suspected high The International Federation of Gynecology and Obstetrics stage were included. Mean follow-up time was 3...

  1. Positron emission tomography/computed tomography and radioimmunotherapy of prostate cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Capala, Jacek; Oehr, Peter

    2009-01-01

    of a number of diagnostic and therapeutic strategies. J591, a monoclonal antibody, which targets the extracellular domain of prostate-specific membrane antigen, shows promising results. HER2 receptors may also have a potential as target for PET/CT imaging and RIT of advanced prostate cancer. SUMMARY: PET......PURPOSE OF REVIEW: Traditional morphologically based imaging modalities are now being complemented by positron emission tomography (PET)/computed tomography (CT) in prostate cancer. Metastatic prostate cancer is an attractive target for radioimmunotherapy (RIT) as no effective therapies...... are available. This review highlights the most important achievements within the last year in PET/CT and RIT of prostate cancer. RECENT FINDINGS: Conflicting results exist on the use of choline for detection of malignant disease in the prostate gland. The role of PET/CT in N-staging remains to be elucidated...

  2. Positron emission tomography in urological cancer; Positronenemissionstomographie bei urologischen Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Wit, M. de [Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. Onkologie/Haematologie, Medizinische Klinik; Kotzerke, J. [Universitaetsklinikum Ulm (DE). Radiologie III (Nuklearmedizin)

    2000-09-01

    In staging cancer of the urinary bladder, the kidneys and the prostate and of testicular cancer there is a need for detecting tumor involvement of the lymph nodes to avoid surgical exploration. Positron emission tomography (PET) using fluorodeoxyglucose (FDG) can detect tumorous lymph nodes (sensitivity: 70%, specificity: 85%) which is helpful for several patients. In carcinoma of the prostate, other radiotracers than FDG (e.g. C-11-choline) might be more sensitive to detect tumorous lymph nodes. Up to now no diagnostical benefit of PET in germ cell tumors could be demonstrated in the published small series. In principle FDG-PET is useful in diagnosis of recurrence. In germ cell cancer FDG-PET seems to identify effectively persistent vital tumor tissue after chemotherapy. A multicenter study was initiated to demonstrate the potential of FDG-PET in a sufficient number of patients with germ cell tumor. (orig.) [German] Bei Harnblasen-, Nieren-, Prostata- und Hodenkarzinomen besteht aus klinischer Sicht ein Bedarf an verbessertem Lymphknoten-Staging, um die operative Evaluation zu vermeiden. Die Positronenemissionstomographie (PET) mit Fluordeoxyglukose (FDG) kann daher im Einzelfall bei Harnblasen- und Nierenkarzinomen hilfreich sein (bei Sensitivitaet um 70% und Spezifitaet um 85%). Beim Prostatakarzinom koennten sich andere Radiotracer (z.B. C-11-Cholin) bei der Detektion von tumoroesen Lymphknoten ueberlegen erweisen. Bei Keimzelltumoren konnte ein Nutzen der PET im primaeren Staging bei den bisher publizierten kleinen Studien nicht nachgewiesen werden. Fuer die Rezidivdiagnostik ist bei den genannten Tumoren aus grundsaetzlicher Ueberlegung der Einsatz von DFG-PET sinnvoll. Die Erkennung von vitalem malignen Tumorgewebe nach Chemotherapie erscheint bei Keimzelltumoren mit FDG-PET weitgehend sicher zu gelingen. Eine multizentrische Studie wurde begonnen, die hierueber Aufschluss geben wird. (orig.)

  3. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    Science.gov (United States)

    Sürücü, Erdem; Demir, Yusuf; Dülger, Ahmet C.; Batur, Abdüssamed; Ölmez, Şehmus; Kitapçı, Mehmet T.

    2016-01-01

    A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT) scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG) uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT. PMID:27751978

  4. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    Directory of Open Access Journals (Sweden)

    Erdem Sürücü

    2016-10-01

    Full Text Available A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT.

  5. Nonhuman primate positron emission tomography neuroimaging in drug abuse research.

    Science.gov (United States)

    Howell, Leonard Lee; Murnane, Kevin Sean

    2011-05-01

    Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also characterized in vivo drug interactions with specific protein targets in the brain, including neurotransmitter receptors and transporters. In vivo determinations of cerebral blood flow and metabolism have localized brain circuits implicated in the effects of abused drugs and drug-associated stimuli. Moreover, determinations of the predisposing factors to chronic drug use and long-term neurobiological consequences of chronic drug use, such as potential neurotoxicity, have led to novel insights regarding the pathology and treatment of drug addiction. However, similar approaches clearly need to be extended to drug classes other than stimulants. Although dopaminergic systems have been extensively studied, other neurotransmitter systems known to play a critical role in the pharmacological effects of abused drugs have been largely ignored in nonhuman primate PET neuroimaging. Finally, the study of brain activation with PET neuroimaging has been replaced in humans mostly by functional magnetic resonance imaging (fMRI). There has been some success in implementing pharmacological fMRI in awake nonhuman primates. Nevertheless, the unique versatility of PET imaging will continue to complement the systems-level strengths of fMRI, especially in the context of nonhuman primate drug abuse research.

  6. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    Science.gov (United States)

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  7. Simulation study of a depth-encoding positron emission tomography detector inserting horizontal-striped glass between crystal layers

    Science.gov (United States)

    Kim, Kyu Bom; Choi, Yong; Kang, Jihoon

    2017-10-01

    This study introduces a depth-encoding positron emission tomography (PET) detector inserting a horizontal-striped glass between the pixilated scintillation crystal layers. This design allows light spreading so that scintillation photons can travel only through the X direction and allows alteration in the light distribution so that it can generate a unique pattern diagram of the two-dimensional (2-D) flood histogram that identifies depth position as well as X-Y position of γ-ray interaction. A Monte Carlo simulation was conducted for the assessment of the depth of interaction (DOI)-PET detector. The traced light distribution for each event was converted into the 2-D flood histogram. Light loss caused by inserting the horizontal-striped glass between the crystal layers was estimated. Applicable weighting factors were examined for each DOI-PET detector. No considerable degradation of light loss was observed. The flood histogram, without overlapping of each crystal position, can be generated for the DOI detector based on each crystal block by inserting the horizontal-striped glass with a thickness of >1 mm and the modified resistive charge division networks with applicable weighting factors. This study demonstrated that the proposed DOI-PET detector can extract the three-dimensional γ-ray interaction position without considerable performance degradations of the PET detector from the 2-D flood histogram.

  8. A Dual Reporter Iodinated Labeling Reagent for Cancer Positron Emission Tomography Imaging and Fluorescence-Guided Surgery

    Science.gov (United States)

    2018-01-01

    The combination of early diagnosis and complete surgical resection offers the greatest prospect of curative cancer treatment. An iodine-124/fluorescein-based dual-modality labeling reagent, 124I-Green, constitutes a generic tool for one-step installation of a positron emission tomography (PET) and a fluorescent reporter to any cancer-specific antibody. The resulting antibody conjugate would allow both cancer PET imaging and intraoperative fluorescence-guided surgery. 124I-Green was synthesized in excellent radiochemical yields of 92 ± 5% (n = 4) determined by HPLC with an improved one-pot three-component radioiodination reaction. The A5B7 carcinoembryonic antigen (CEA)-specific antibody was conjugated to 124I-Green. High tumor uptake of the dual-labeled A5B7 of 20.21 ± 2.70, 13.31 ± 0.73, and 10.64 ± 1.86%ID/g was observed in CEA-expressing SW1222 xenograft mouse model (n = 3) at 24, 48, and 72 h post intravenous injection, respectively. The xenografts were clearly visualized by both PET/CT and ex vivo fluorescence imaging. These encouraging results warrant the further translational development of 124I-Green for cancer PET imaging and fluorescence-guided surgery. PMID:29388770

  9. Evaluation of esophageal cancer by positron emission tomography

    International Nuclear Information System (INIS)

    Himeno, Shinji; Yasuda, Seiei; Shimada, Hideo; Tajima, Tomoo; Makuuchi, Hiroyasu

    2002-01-01

    A retrospective study was performed to determine the indications for positron emission tomography (PET) using [ 18 F]fluorodeoxyglucose (FDG) in patients with esophageal cancer, including those with early cancer, and to investigate whether the tumor-to-normal ratio (T/N ratio) could be used as a substitute for the standardized uptake value (SUV). Thirty-six patients were included in the study. Thirty-one patients who had 36 biopsy-proven lesions (35 squamous cell carcinomas and one small cell carcinoma) underwent PET study prior to treatment. PET images were evaluated visually and the relationship between the depth of invasion and the PET findings were examined in 22 lesions of 19 patients from whom specimens were obtained from the primary tumor by surgery or endoscopic mucosal resection. PET results were also compared with computed tomography (CT) and endoscopic ultrasonography (EUS) for detection of regional lymph node metastases in 18 patients who underwent extended lymph node dissection. Five patients underwent PET studies for the detection of recurrence and the PET findings were compared with their CT findings. The T/N ratio and the SUV were calculated for 20 primary tumors. Among the 15 tumors that were pT1b or greater, all 15 were positive on PET and all seven of the lesions confined to the mucosa (Tis or T1a) were negative. The sensitivity, specificity and accuracy of detecting nodal involvement were, respectively, 37.5, 96.1 and 88.3% by CT, 30.8, 88.5 and 81.0% by EUS and 41.7, 100 and 92.2% by PET. More sites of recurrence were detected by PET than by CT. There was no statistically significant correlation between the SUV and the T/N ratio. PET imaging can detect primary esophageal cancer with a depth of invasion of T1b or greater, but Tis and T1a tumors are undetectable. PET seems to be more accurate than CT or EUS for diagnosing lymph node metastasis. The T/N ratio cannot be used as a substitute for the SUV. (author)

  10. Fluorodeoxyglucose positron emission tomography scan may be helpful in the case of ductal variant prostate cancer when prostate specific membrane antigen ligand positron emission tomography scan is negative

    International Nuclear Information System (INIS)

    McEwan, Louise M.; Wong, David; Yaxley, John

    2017-01-01

    Gallium-68 prostate specific membrane antigen ligand (Ga-68 PSMA) positron emission tomography/computed tomography (PET/CT) scanning is emerging as a useful imaging modality for the staging of suspected and known recurrent or metastatic prostate cancer and in staging of newly diagnosed higher grade prostate cancer. However, we have observed at our institution that in some cases of the more aggressive ductal variant, Ga-68 PSMA uptake has sometimes been poor compared with prominent 18-fluorodeoxyglucose (F-18 FDG) avidity seen in F-18 FDG PET/CT, which would suggest that FDG PET/CT scans are important in staging of ductal pattern prostate cancer.

  11. Measuring temporal stability of positron emission tomography standardized uptake value bias using long-lived sources in a multicenter network.

    Science.gov (United States)

    Byrd, Darrin; Christopfel, Rebecca; Arabasz, Grae; Catana, Ciprian; Karp, Joel; Lodge, Martin A; Laymon, Charles; Moros, Eduardo G; Budzevich, Mikalai; Nehmeh, Sadek; Scheuermann, Joshua; Sunderland, John; Zhang, Jun; Kinahan, Paul

    2018-01-01

    Positron emission tomography (PET) is a quantitative imaging modality, but the computation of standardized uptake values (SUVs) requires several instruments to be correctly calibrated. Variability in the calibration process may lead to unreliable quantitation. Sealed source kits containing traceable amounts of [Formula: see text] were used to measure signal stability for 19 PET scanners at nine hospitals in the National Cancer Institute's Quantitative Imaging Network. Repeated measurements of the sources were performed on PET scanners and in dose calibrators. The measured scanner and dose calibrator signal biases were used to compute the bias in SUVs at multiple time points for each site over a 14-month period. Estimation of absolute SUV accuracy was confounded by bias from the solid phantoms' physical properties. On average, the intrascanner coefficient of variation for SUV measurements was 3.5%. Over the entire length of the study, single-scanner SUV values varied over a range of 11%. Dose calibrator bias was not correlated with scanner bias. Calibration factors from the image metadata were nearly as variable as scanner signal, and were correlated with signal for many scanners. SUVs often showed low intrascanner variability between successive measurements but were also prone to shifts in apparent bias, possibly in part due to scanner recalibrations that are part of regular scanner quality control. Biases of key factors in the computation of SUVs were not correlated and their temporal variations did not cancel out of the computation. Long-lived sources and image metadata may provide a check on the recalibration process.

  12. Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging Data to Constrain a Positron Emission Tomography Kinetic Model: Theory and Simulations

    Directory of Open Access Journals (Sweden)

    Jacob U. Fluckiger

    2013-01-01

    Full Text Available We show how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI data can constrain a compartmental model for analyzing dynamic positron emission tomography (PET data. We first develop the theory that enables the use of DCE-MRI data to separate whole tissue time activity curves (TACs available from dynamic PET data into individual TACs associated with the blood space, the extravascular-extracellular space (EES, and the extravascular-intracellular space (EIS. Then we simulate whole tissue TACs over a range of physiologically relevant kinetic parameter values and show that using appropriate DCE-MRI data can separate the PET TAC into the three components with accuracy that is noise dependent. The simulations show that accurate blood, EES, and EIS TACs can be obtained as evidenced by concordance correlation coefficients >0.9 between the true and estimated TACs. Additionally, provided that the estimated DCE-MRI parameters are within 10% of their true values, the errors in the PET kinetic parameters are within approximately 20% of their true values. The parameters returned by this approach may provide new information on the transport of a tracer in a variety of dynamic PET studies.

  13. (18)F-fluoride positron emission tomography/computed tomography and bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer patients: study protocol for a multicentre, diagnostic test accuracy study.

    Science.gov (United States)

    Fonager, Randi F; Zacho, Helle D; Langkilde, Niels C; Petersen, Lars J

    2016-01-11

    For decades, planar bone scintigraphy has been the standard practice for detection of bone metastases in prostate cancer and has been endorsed by recent oncology/urology guidelines. It is a sensitive method with modest specificity. (18)F-fluoride positron emission tomography/computed tomography has shown improved sensitivity and specificity over bone scintigraphy, but because of methodological issues such as retrospective design and verification bias, the existing level of evidence with (18)F-fluoride positron emission tomography/computed tomography is limited. The primary objective is to compare the diagnostic properties of (18)F-fluoride positron emission tomography/computed tomography versus bone scintigraphy on an individual patient basis. One hundred forty consecutive, high-risk prostate cancer patients will be recruited from several hospitals in Denmark. Sample size was calculated using Hayen's method for diagnostic comparative studies. This study will be conducted in accordance with recommendations of standards for reporting diagnostic accuracy studies. Eligibility criteria comprise the following: 1) biopsy-proven prostate cancer, 2) PSA ≥ 50 ng/ml (equals a prevalence of bone metastasis of ≈ 50% in the study population on bone scintigraphy), 3) patients must be eligible for androgen deprivation therapy, 4) no current or prior cancer (within the past 5 years), 5) ability to comply with imaging procedures, and 6) patients must not receive any investigational drugs. Planar bone scintigraphy and (18)F-fluoride positron emission tomography/computed tomography will be performed within a window of 14 days at baseline. All scans will be repeated after 26 weeks of androgen deprivation therapy, and response of individual lesions will be used for diagnostic classification of the lesions on baseline imaging among responding patients. A response is defined as PSA normalisation or ≥ 80% reduction compared with baseline levels, testosterone below castration levels

  14. GABA-A stimulation in normal volunteers and during temporal epilepsy measured by 18FDG with positron emission tomography

    International Nuclear Information System (INIS)

    Cinotti, L.; Le Bars, D.; Garcia-Larrea, L.; Peyron, R.; Gregoire, M.C.; Lavenne, F.; Comar, D.; Mauguiere, F.; Krogsgaard-Larsen, P.

    1996-01-01

    The γ-amino butyric acid (GABA) is the principal inhibitory neurotransmitter of the brain and it has been evoked in epilepto-genesis. Using a GABA analog, the THIP, we tried to establish if the gabaergic neurotransmission was modified in the epileptic focus. For this purpose, we measured the effects of this specific GABA agonist on the cerebral glucose consumption (CMRGlu) as measured by 18F-fluoro-deoxyglucose ( 18 FDG) with positron emission tomography (PET). Eight patients presenting temporal epilepsy and three normal volunteers received two 18 FDG PET studies, after placebo and THIP injection, in random order. Clinical symptoms and electroencephalographic data demonstrated a trend towards sleepiness and a diminution of alpha waves after THIP injection. CMRGlu was globally increased with THIP in cortical regions, cerebellum and caudate nuclei. The average increase was 17% in grey matter while it did not reach significancy in white matter. Under the placebo condition, the asymmetry between the focus and the controlateral internal temporal zone was 18% as an average, and reduced significantly to 11% after THIP injection. In the external temporal zones, the asymmetry decreased from 28% to 14%. These results suggest that gabaergic inhibition requires energy in the normal brain tissue and in this with temporal epilepsy. Since the asymmetry of glucose consumption tends to diminish, the inhibitory GABA system appears preserved in temporal epilepsy with an enhanced sensitivity in the focus. (Authors). 6 refs., 4 figs

  15. [18F]-FDG positron emission tomography--an established clinical tool opening a new window into exercise physiology.

    Science.gov (United States)

    Rudroff, Thorsten; Kindred, John H; Kalliokoski, Kari K

    2015-05-15

    Positron emission tomography (PET) with [(18)F]-fluorodeoxyglucose (FDG) is an established clinical tool primarily used to diagnose and evaluate disease status in patients with cancer. PET imaging using FDG can be a highly valuable tool to investigate normal human physiology by providing a noninvasive, quantitative measure of glucose uptake into various cell types. Over the past years it has also been increasingly used in exercise physiology studies to identify changes in glucose uptake, metabolism, and muscle activity during different exercise modalities. Metabolically active cells transport FDG, an (18)fluorine-labeled glucose analog tracer, from the blood into the cells where it is then phosphorylated but not further metabolized. This metabolic trapping process forms the basis of this method's use during exercise. The tracer is given to a participant during an exercise task, and the actual PET imaging is performed immediately after the exercise. Provided the uptake period is of sufficient duration, and the imaging is performed shortly after the exercise; the captured image strongly reflects the metabolic activity of the cells used during the task. When combined with repeated blood sampling to determine tracer blood concentration over time, also known as the input function, glucose uptake rate of the tissues can be quantitatively calculated. This synthesis provides an accounting of studies using FDG-PET to measure acute exercise-induced skeletal muscle activity, describes the advantages and limitations of this imaging technique, and discusses its applications to the field of exercise physiology. Copyright © 2015 the American Physiological Society.

  16. Development of a New Positron Emission Tomography Tracer for Targeting Tumor Angiogenesis: Synthesis, Small Animal Imaging, and Radiation Dosimetry

    Directory of Open Access Journals (Sweden)

    David S. Lalush

    2013-05-01

    Full Text Available Angiogenesis plays a key role in cancer progression and correlates with disease aggressiveness and poor clinical outcomes. Affinity ligands discovered by screening phage display random peptide libraries can be engineered to molecularly target tumor blood vessels for noninvasive imaging and early detection of tumor aggressiveness. In this study, we tested the ability of a phage-display-selected peptide sequence recognizing specifically bone marrow- derived pro-angiogenic tumor-homing cells, the QFP-peptide, radiolabeled with 64Cu radioisotope to selectively image tumor vasculature in vivo by positron emission tomography (PET. To prepare the targeted PET tracer we modified QFP-phage with the DOTA chelator and radiolabeled the purified QFP-phage-DOTA intermediate with 64Cu to obtain QFP-targeted radioconjugate with high radiopharmaceutical yield and specific activity. We evaluated the new PET tracer in vivo in a subcutaneous (s.c. Lewis lung carcinoma (LLC mouse model and conducted tissue distribution, small animal PET/CT imaging study, autoradiography, histology, fluorescence imaging, and dosimetry assessments. The results from this study show that, in the context of the s.c. LLC immunocompetent mouse model, the QFP-tracer can target tumor blood vessels selectively. However, further optimization of the biodistribution and dosimetry profile of the tracer is necessary to ensure efficient radiopharmaceutical applications enabled by the biological specificity of the QFP-peptide.

  17. Usefulness of Whole-Body Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography in Patients with Neurofibromatosis Type 1: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Giorgio Treglia

    2012-01-01

    Full Text Available Aim. To systematically review the role of positron emission tomography (PET with fluorine-18-fluorodeoxyglucose (FDG in patients with neurofibromatosis type 1 (NF1. Methods. A comprehensive literature search of published studies regarding FDG-PET and PET/CT in patients with NF1 was performed. No beginning date limit and language restriction were used; the search was updated until December 2011. Only those studies or subsets in studies including whole-body FDG-PET or PET/CT scans performed in patients with NF1 were included. Results. We identified 12 studies including 352 NF1 patients. Qualitative evaluation was performed in about half of the studies and semiquantitative analysis, mainly based on different values of SUV cutoff, in the others. Most of the studies evaluated the role of FDG-PET for differentiating benign from malignant peripheral nerve sheath tumors (MPNSTs. Malignant lesions were detected with a sensitivity ranging between 100% and 89%, but with lower specificity, ranging between 100% and 72%. Moreover, FDG-PET seems to be an important imaging modality for predicting the progression to MPNST and the outcome in patients with MPNST. Two studies evaluated the role of FDG-PET in pediatric patients with NF1. Conclusions. FDG-PET and PET/CT are useful methods to identify malignant change in neurogenic tumors in NF1 and to discriminate malignant from benign neurogenic lesions.

  18. A study of verbal and spatial information processing using event-related potentials and positron emission tomography

    International Nuclear Information System (INIS)

    Ninomiya, Hideaki; Ichimiya, Atsushi; Chen, Chung-Ho; Onitsuka, Toshiaki; Kuwabara, Yasuo; Otsuka, Makoto; Ichiya, Yuichi

    1997-01-01

    The activated cerebral regions and the timing of information processing in the hemispheres was investigated using event-related potentials (ERP) and regional cerebral blood flow (rCBF) as the neurophysiological indicators. Seven men and one woman (age 19-27 years) were asked to categorize two-syllable Japanese nouns (verbal condition) and to judge the difference between pairs of rectangles (spatial condition), both tests presented on a monochrome display. In the electroencephalogram (EEG) session, EEG were recorded from 16 electrode sites, with linked earlobe electrodes as reference. In the positron emission tomography (PET) session, rCBF were measured by the 15 O-labeled H 2 O bolus injection method. Regions of interest were the frontal, temporal, parietal, occipital and central lobes, and the entire cerebral hemispheres. When the subtracted voltages of the ERP in homologous scalp sites were compared for the verbal and spatial conditions, the significant differences were at F7·F8 and T5·T6 (the 10-20 system). The latencies of the differences at T5·T6 were around 200, 250 and 320 ms. A significant difference in rCBF between the verbal and spatial conditions was found only in the temporal region. It was concluded that early processing of information, that is, registration and simple recognition, may be performed mainly in the left temporal lobe for verbal information and in the right for spatial information. (author)

  19. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography.

    Science.gov (United States)

    Zheng, Hua-Guang; Zhang, Rong; Li, Xin; Li, Fang-Fei; Wang, Ya-Chen; Wang, Xue-Mei; Lu, Ling-Long; Feng, Tao

    2015-07-05

    The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial. In this study, we aimed to assess the function of presynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis. Thirty-three consecutive patients with mRT were enrolled prospectively. The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET. Striatal asymmetry index (SAI) was calculated, and a normal DAT-PET was defined as a SAI of hygiene score, walking in motor experiences of daily living (Part II) and motor examination (Part III) were significant different between two groups (P postural tremor tend to be higher in the SWEDDs group (P = 0.08 and P = 0.05, respectively). mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration, which can be determined by DAT-PET brain imaging. Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs.

  20. Usefulness of Whole-Body Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography in Patients with Neurofibromatosis Type 1: A Systematic Review

    International Nuclear Information System (INIS)

    Treglia, G.; Taralli, S.; Giordano, A.; Bertagna, F.; Salsano, M.; Maggi, F.; Muoio, B.; Novellis, P.; Vita, M.L.

    2012-01-01

    To systematically review the role of positron emission tomography (PET) with fluorine-18-fluorodeoxyglucose (FDG) in patients with neurofibromatosis type 1 (NF1). Methods. A comprehensive literature search of published studies regarding FDG-PET and PET/CT in patients with NF1 was performed. No beginning date limit and language restriction were used; the search was updated until December 2011. Only those studies or subsets in studies including whole-body FDG-PET or PET/CT scans performed in patients with NF1 were included. Results. We identified 12 studies including 352 NF1 patients. Qualitative evaluation was performed in about half of the studies and semiquantitative analysis, mainly based on different values of SUV cutoff, in the others. Most of the studies evaluated the role of FDG-PET for differentiating benign from malignant peripheral nerve sheath tumors (MPNSTs). Malignant lesions were detected with a sensitivity ranging between 100% and 89%, but with lower specificity, ranging between 100% and 72%. Moreover, FDG-PET seems to be an important imaging modality for predicting the progression to MPNST and the outcome in patients with MPNST. Two studies evaluated the role of FDG-PET in pediatric patients with NF1. Conclusions. FDG-PET and PET/CT are useful methods to identify malignant change in neurogenic tumors in NF1 and to discriminate malignant from benign neurogenic lesions

  1. Positron emission tomography and [{sup 18}F]BPA: A perspective application to assess tumour extraction of boron in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, L. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy)], E-mail: luca.menichetti@ifc.cnr.it; Cionini, L. [Unit of Radiotherapy, AOUP-University Hospital, Pisa (Italy); Sauerwein, W.A. [Department of Radiation Oncology, University Duisburg-Essen, University Hospital Essen (Germany); Altieri, S. [University of Pavia, Department of Nuclear Physics, Pavia (Italy); Solin, O.; Minn, H. [Turku PET Centre, University of Turku (Finland); Salvadori, P.A. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy)

    2009-07-15

    Positron emission tomography (PET) has become a key imaging tool in clinical practice and biomedical research to quantify and study biochemical processes in vivo. Physiologically active compounds are tagged with positron emitters (e.g. {sup 18}F, {sup 11}C, {sup 124}I) while maintaining their biological properties, and are administered intravenously in tracer amounts (10{sup -9}-10{sup -12} M quantities). The recent physical integration of PET and computed tomography (CT) in hybrid PET/CT scanners allows a combined anatomical and functional imaging: nowadays PET molecular imaging is emerging as powerful pharmacological tool in oncology, neurology and for treatment planning as guidance for radiation therapy. The in vivo pharmacokinetics of boron carrier for BNCT and the quantification of {sup 10}B in living tissue were performed by PET in the late nineties using compartmental models based on PET data. Nowadays PET and PET/CT have been used to address the issue of pharmacokinetic, metabolism and accumulation of BPA in target tissue. The added value of the use of L-[{sup 18}F]FBPA and PET/CT in BNCT is to provide key data on the tumour extraction of {sup 10}B-BPA versus normal tissue and to predict the efficacy of the treatment based on a single-study patient analysis. Due to the complexity of a binary treatment like BNCT, the role of PET/CT is currently to design new criteria for patient enrolment in treatment protocols: the L-[{sup 18}F]BPA/PET methodology could be considered as an important tool in newly designed clinical trials to better estimate the concentration ratio of BPA in the tumour as compared to neighbouring normal tissues. Based on these values for individual patients the decision could be made whether BNCT treatment could be advantageous due to a selective accumulation of BPA in an individual tumour. This approach, applicable in different tumour entities like melanoma, glioblastoma and head and neck malignancies, make this methodology as reliable

  2. 4.5 Tesla magnetic field reduces range of high-energy positrons -- Potential implications for positron emission tomography

    International Nuclear Information System (INIS)

    Wirrwar, A.; Vosberg, H.; Herzog, H.; Halling, H.; Weber, S.; Mueller-Gaertner, H.W.; Forschungszentrum Juelich GmbH

    1997-01-01

    The authors have theoretically and experimentally investigated the extent to which homogeneous magnetic fields up to 7 Tesla reduce the spatial distance positrons travel before annihilation (positron range). Computer simulations of a noncoincident detector design using a Monte Carlo algorithm calculated the positron range as a function of positron energy and magnetic field strength. The simulation predicted improvements in resolution, defined as full-width at half-maximum (FWHM) of the line-spread function (LSF) for a magnetic field strength up to 7 Tesla: negligible for F-18, from 3.35 mm to 2.73 mm for Ga-68 and from 3.66 mm to 2.68 mm for Rb-82. Also a substantial noise suppression was observed, described by the full-width at tenth-maximum (FWTM) for higher positron energies. The experimental approach confirmed an improvement in resolution for Ga-68 from 3.54 mm at 0 Tesla to 2.99 mm FWHM at 4.5 Tesla and practically no improvement for F-18 (2.97 mm at 0 Tesla and 2.95 mm at 4.5 Tesla). It is concluded that the simulation model is appropriate and that a homogeneous static magnetic field of 4.5 Tesla reduces the range of high-energy positrons to an extent that may improve spatial resolution in positron emission tomography

  3. The role of {sup 18}F-fluorodeoxyglucose positron emission tomography in gestational trophoblastic tumours: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ting Chang; Wu, Yen Ching; Wu, Tzu I. [University College of Medicine, Division of Gynecologic Oncology, Taoyuan (Taiwan); Yen, Tzu Chen; Chang, Yu.Cheng [Chang Gung Memorial Hospital, Department of Nuclear Medicine, Taoyuan (Taiwan); Li, Yiu Tai [Kuo General Hospital, Department of Obstetrics and Gynecology, Tainan (Taiwan); Ng, Koon Kwan [Chang Gung University College of Medicine, Departments of Diagnostic Radiology, Taoyuan (Taiwan); Jung, Shih Ming [Chang Gung Memorial Hospital, Anatomic Pathology, Taoyuan (Taiwan); Lai, Chyong Huey [University College of Medicine, Division of Gynecologic Oncology, Taoyuan (Taiwan); Chang Gung Memorial Hospital Linkou Medical Center, Department of Obstetrics and Gynecology, Taoyuan (Taiwan)

    2006-02-01

    We conducted a pilot trial to evaluate the value of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) in gestational trophoblastic tumours (GTTs). Patients with placental site trophoblastic tumour (PSTT), high-risk GTT (World Health Organisation score {>=}8, disease onset at postpartum or greater than 6 months after antecedent pregnancy), metastatic GTT, recurrent/resistant GTT after chemotherapy, or post-molar GTT with unexplained abnormal {beta}-hCG regression and patients undergoing re-evaluation after salvage treatment were enrolled. PET was undertaken within 1 week after computed tomography (CT). Clinical impacts of additional PET were determined on a scan basis. A total of 14 patients were recruited. Sixteen PET scans were performed, with one patient having three serial studies. Benefits of additional PET were seen in 7 of 16 (43.8%) scans; these benefits included disclosure of chemotherapy-resistant lesions (n=2), exclusion of false-positive CT lesions (n=1), detection of an additional lesion not found by conventional imaging (n=1) in high-risk GTT at the start of primary chemotherapy, and confirmation of complete response to treatment for PSTT or to salvage therapy for recurrent/resistant GTT (n=3). On the other hand, in two instances there were false-negative PET findings, six scans yielded no benefit, and one showed an indeterminate lesion. Our preliminary results suggest that {sup 18}F-FDG PET is potentially useful in selected patients with GTT by providing precise mapping of metastases and tumour extent upfront, by monitoring treatment response and by localising viable tumours after chemotherapy. A larger study is necessary to further define the role of {sup 18}F-FDG PET in GTT. (orig.)

  4. The role of 18F-fluorodeoxyglucose positron emission tomography in gestational trophoblastic tumours: a pilot study

    International Nuclear Information System (INIS)

    Chang, Ting Chang; Wu, Yen Ching; Wu, Tzu I.; Yen, Tzu Chen; Chang, Yu.Cheng; Li, Yiu Tai; Ng, Koon Kwan; Jung, Shih Ming; Lai, Chyong Huey

    2006-01-01

    We conducted a pilot trial to evaluate the value of 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET) in gestational trophoblastic tumours (GTTs). Patients with placental site trophoblastic tumour (PSTT), high-risk GTT (World Health Organisation score ≥8, disease onset at postpartum or greater than 6 months after antecedent pregnancy), metastatic GTT, recurrent/resistant GTT after chemotherapy, or post-molar GTT with unexplained abnormal β-hCG regression and patients undergoing re-evaluation after salvage treatment were enrolled. PET was undertaken within 1 week after computed tomography (CT). Clinical impacts of additional PET were determined on a scan basis. A total of 14 patients were recruited. Sixteen PET scans were performed, with one patient having three serial studies. Benefits of additional PET were seen in 7 of 16 (43.8%) scans; these benefits included disclosure of chemotherapy-resistant lesions (n=2), exclusion of false-positive CT lesions (n=1), detection of an additional lesion not found by conventional imaging (n=1) in high-risk GTT at the start of primary chemotherapy, and confirmation of complete response to treatment for PSTT or to salvage therapy for recurrent/resistant GTT (n=3). On the other hand, in two instances there were false-negative PET findings, six scans yielded no benefit, and one showed an indeterminate lesion. Our preliminary results suggest that 18 F-FDG PET is potentially useful in selected patients with GTT by providing precise mapping of metastases and tumour extent upfront, by monitoring treatment response and by localising viable tumours after chemotherapy. A larger study is necessary to further define the role of 18 F-FDG PET in GTT. (orig.)

  5. D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride

    International Nuclear Information System (INIS)

    Farde, L.; Wiesel, F.A.; Stone-Elander, S.; Halldin, C.; Nordstroem, A.L.H.; Hall, H.; Sedvall, G.

    1990-01-01

    Several groups have reported increased densities of D2 dopamine receptors in the basal ganglia of schizophrenic brains postmortem. The significance of this finding has been questioned, since an upregulation of receptor number may be a neuronal response to neuroleptic drug treatment. We have used positron emission tomography and [ 11 C]raclopride to examine central D2 dopamine receptor binding in 20 healthy subjects and 18 newly admitted, young, neuroleptic-naive patients with schizophrenia. An in vivo saturation procedure was applied for quantitative determination of D2 dopamine receptor density (Bmax) and affinity (Kd). When the two groups were compared, no significant difference in Bmax or Kd values was found in the putamen or the caudate nucleus. The hypothesis of generally elevated central D2 dopamine receptor densities in schizophrenia was thus not supported by the present findings. In the patients but not in the healthy controls, significantly higher densities were found in the left than in the right putamen but not in the caudate nucleus

  6. Sex-related differences in the muscarinic acetylcholinergic receptor in the healthy human brain. A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tsuyoshi; Kuwabara, Yasuo; Sasaki, Masayuki; Ichimiya, Atsushi; Takita, Masashi; Ogomori, Koji; Masuda, Kouji [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences; Fukumura, Toshimitsu; Ichiya, Yuichi

    2000-04-01

    We evaluated the sex-related differences in the decline of the cerebral muscarinic acetylcholinergic receptor (mACh-R) due to aging by using {sup 11}C-N-methyl-4-piperidyl benzilate ({sup 11}C-NMPB) and positron emission tomography (PET). The subjects consisted of 37 (20 males and 17 females) healthy volunteers. The {sup 11}C-NMPB uptake was evaluated by the ratio method (regional {sup 11}C-NMPB uptake/Cerebellar {sup 11}C-NMPB uptake; rNMPB ratio). The correlation between sex, aging, and the rNMPB ratio in normal aging was evaluated by a multiple regression analysis. The rNMPB ratio was higher in females than in males throughout the entire cerebral region (p<0.01-p<0.0001) and the rNMPB ratio might thus possibly decline with age more rapidly in females. Our study therefore revealed the existence of sex-related differences in the cerebral mACh-R. (author)

  7. A positron emission tomography study of the neural basis of informational and energetic masking effects in speech perception

    Science.gov (United States)

    Scott, Sophie K.; Rosen, Stuart; Wickham, Lindsay; Wise, Richard J. S.

    2004-02-01

    Positron emission tomography (PET) was used to investigate the neural basis of the comprehension of speech in unmodulated noise (``energetic'' masking, dominated by effects at the auditory periphery), and when presented with another speaker (``informational'' masking, dominated by more central effects). Each type of signal was presented at four different signal-to-noise ratios (SNRs) (+3, 0, -3, -6 dB for the speech-in-speech, +6, +3, 0, -3 dB for the speech-in-noise), with listeners instructed to listen for meaning to the target speaker. Consistent with behavioral studies, there was SNR-dependent activation associated with the comprehension of speech in noise, with no SNR-dependent activity for the comprehension of speech-in-speech (at low or negative SNRs). There was, in addition, activation in bilateral superior temporal gyri which was associated with the informational masking condition. The extent to which this activation of classical ``speech'' areas of the temporal lobes might delineate the neural basis of the informational masking is considered, as is the relationship of these findings to the interfering effects of unattended speech and sound on more explicit working memory tasks. This study is a novel demonstration of candidate neural systems involved in the perception of speech in noisy environments, and of the processing of multiple speakers in the dorso-lateral temporal lobes.

  8. Sex-related differences in the muscarinic acetylcholinergic receptor in the healthy human brain. A positron emission tomography study

    International Nuclear Information System (INIS)

    Yoshida, Tsuyoshi; Kuwabara, Yasuo; Sasaki, Masayuki; Ichimiya, Atsushi; Takita, Masashi; Ogomori, Koji; Masuda, Kouji; Fukumura, Toshimitsu; Ichiya, Yuichi

    2000-01-01

    We evaluated the sex-related differences in the decline of the cerebral muscarinic acetylcholinergic receptor (mACh-R) due to aging by using 11 C-N-methyl-4-piperidyl benzilate ( 11 C-NMPB) and positron emission tomography (PET). The subjects consisted of 37 (20 males and 17 females) healthy volunteers. The 11 C-NMPB uptake was evaluated by the ratio method (regional 11 C-NMPB uptake/Cerebellar 11 C-NMPB uptake; rNMPB ratio). The correlation between sex, aging, and the rNMPB ratio in normal aging was evaluated by a multiple regression analysis. The rNMPB ratio was higher in females than in males throughout the entire cerebral region (p<0.01-p<0.0001) and the rNMPB ratio might thus possibly decline with age more rapidly in females. Our study therefore revealed the existence of sex-related differences in the cerebral mACh-R. (author)

  9. Comparison between 18F-Fluorodeoxyglucose Positron Emission Tomography and Sentinel Lymph Node Biopsy for Regional Lymph Nodal Staging in Patients with Melanoma: A Review of the Literature

    International Nuclear Information System (INIS)

    Mirk, Paoletta; Treglia, Giorgio; Salsano, Marco; Basile, Pietro; Giordano, Alessandro; Bonomo, Lorenzo

    2011-01-01

    Aim. to compare 18 F-Fluorodeoxyglucose positron emission tomography (FDG-PET) to sentinel lymph node biopsy (SLNB) for regional lymph nodal staging in patients with melanoma. Methods. We performed a literature review discussing original articles which compared FDG-PET to SLNB for regional lymph nodal staging in patients with melanoma. Results and Conclusions. There is consensus in the literature that FDG-PET cannot replace SLNB for regional lymph nodal staging in patients with melanoma

  10. Head and neck: normal variations and benign findings in FDG positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Højgaard, Liselotte; Berthelsen, Anne Kiil; Loft, Annika

    2014-04-01

    Positron emission tomography (PET)/computed tomography with FDG of the head and neck region is mainly used for the diagnosis of head and neck cancer, for staging, treatment evaluation, relapse, and planning of surgery and radio therapy. This article is a practical guide of imaging techniques, including a detailed protocol for FDG PET in head and neck imaging, physiologic findings, and pitfalls in selected case stories. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. 2-¹⁸fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) for postchemotherapy seminoma residual lesions

    DEFF Research Database (Denmark)

    Bachner, M; Loriot, Y; Gross-Goupil, M

    2012-01-01

    2-¹⁸fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) has been recommended in international guidelines in the evaluation of postchemotherapy seminoma residuals. Our trial was designed to validate these recommendations in a larger group of patients.......2-¹⁸fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) has been recommended in international guidelines in the evaluation of postchemotherapy seminoma residuals. Our trial was designed to validate these recommendations in a larger group of patients....

  12. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning

    DEFF Research Database (Denmark)

    Ashraf, H; Dirksen, A; Jakobsen, Annika Loft

    2011-01-01

    In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules.......In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules....

  13. Patterns of brown fat uptake of 18F-fluorodeoxyglucose in positron emission tomography/computed tomography scan

    International Nuclear Information System (INIS)

    Chakraborty, Dhritiman; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    Fluorodeoxyglucose (FDG) positron emission tomography (PET) has become the common imaging modality in oncological practice. FDG uptake is seen in brown adipose tissue in a significant number of patients. Recognizing the uptake patterns is important for optimal FDG PET interpretation. The introduction of PET/computed tomography (PET/CT) revolutionized PET imaging, bringing much-needed anatomical information. Careful review and correlation of FDG PET images with anatomical imaging should be performed to characterize accurately any lesion having high FDG uptake

  14. In Vivo Treatment Sensitivity Testing With Positron Emission Tomography/Computed Tomography After One Cycle of Chemotherapy for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Hutchings, Martin; Kostakoglu, Lale; Zaucha, Jan Maciej

    2014-01-01

    PURPOSE: Negative [(18)F]fluorodeoxyglucose (FDG) -positron emission tomography (PET)/computed tomography (CT) after two cycles of chemotherapy indicates a favorable prognosis in Hodgkin lymphoma (HL). We hypothesized that the negative predictive value would be even higher in patients responding....... In the absence of precise pretherapeutic predictive markers, PET1 is the best method for response-adapted strategies designed to select patients for less intensive treatment....

  15. Trails on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Leading to Diagnosis of Testicular Adrenal Rest Tumor.

    Science.gov (United States)

    Kashyap, Raghava

    2018-01-01

    Testicular adrenal rest tumors (TARTs) are secondary to hypertrophy of adrenal rest cells in the rete testis in settings of hypersecretion of androgens. We present a case of congenital adrenal hyperplasia with TART with clues to the diagnosis on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT). To the best of our knowledge, this is the first reported case on the role of 18 F-FDG PET/CT in TART.

  16. PET, Positron emission tomography: Presentation of a clinical case; PET, Tomografia por emision de positrones: Presentacion de un caso clinico

    Energy Technology Data Exchange (ETDEWEB)

    Sierralta C, Paulina; Jofre M, M Josefina; Gonzalez E, Patricio; Massardo V, Teresa; Humeres A, Pamela; Canessa G, Jose [Hospital Militar de Santiago, Servicio de Medicina Nuclear, Centro PET de Imagenes Moleculares, Santiago (Chile)

    2003-07-01

    A patient with a solitary pulmonary nodule is presented. She was studied with PET using F-18 FDG. The metabolic images demonstrated increased uptake in the nodule and 2 additional areas suggestive of extension, not seen in anatomic diagnostic procedures. These findings were compatible with a malignant tumour with metastasis (au)

  17. Metastasis in urothelial carcinoma mimicking prostate cancer metastasis in Ga-68 prostate-specific membrane antigen positron emission tomography-computed tomography in a case of synchronous malignancy

    International Nuclear Information System (INIS)

    Gupta, Manoj; Choudhury, Partha Sarathi; Gupta, Gurudutt; Gandhi, Jatin

    2016-01-01

    Prostate cancer is the second most common cancer in man. It commonly presents with urinary symptoms, bone pain, or diagnosed with elevated prostate-specific antigen.(PSA) levels. Correct staging and early diagnosis of recurrence by a precise imaging tool are the keys for optimum management. Molecular imaging of prostate cancer with Ga-68 prostate-specific membrane antigen.(PSMA), positron emission tomography-computed tomography.(PET-CT) has recently received significant attention and frequently used with a signature to prostate cancer-specific remark. However, this case will highlight the more cautious use of it. A-72-year-old male treated earlier for synchronous double malignancy.(invasive papillary urothelial carcinoma right ureter and carcinoma prostate) presented with rising PSA.(0.51.ng/ml) and referred for Ga-68 PSMA PET-CT, which showed a positive enlarged left supraclavicular lymph node. Lymph node biopsy microscopic and immunohistochemistry examination revealed metastatic carcinoma favoring urothelial origin. Specificity of PSMA scan to prostate cancer has been seen to be compromised in a certain situation mostly due to neoangiogenesis, and false positives emerged in renal cell cancer, differentiated thyroid cancer, glioblastoma, breast cancer brain metastasis, and paravertebral schwannomas. Understanding the causes of false positive will further enhance the confidence of interpretating PSMA scans

  18. 18F-fluorodeoxyglucose positron emission tomography/computed tomography for primary thyroid langerhans histiocytosis: A case report and literature review

    International Nuclear Information System (INIS)

    Long, Qi; Shaoyan, Wang; Hui, Wang

    2015-01-01

    Langerhans cell histiocytosis (LCH) is a rare clonal proliferative disease, with an incidence rate of 4.0–5.4/1 million individuals. LCH encompasses a spectrum of disorders with diverse clinical presentations ranging from a single organ to multiple organ involvement. LCH rarely involves the thyroid gland. We presented a case with LCH of thyroid gland. The patient had painless progressive neck enlargement and then diabetes insipidus. Ultrasonic scan and magnetic resonance imaging scan revealed nodular goiter and pituitary stalk enlargement, respectively. Histopathological analysis revealed features of histiocytoid cells. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) was performed in order to rule out the presence of whole body infiltration. 18F-FDG PET/CT also demonstrated increased uptake in the thickening pituitary stalk and maxillofacial skin lesion, in addition to the bilateral thyroid nodules, CT showed the left lung nodule and the skull destruction without 18F-FDG uptake. This report emphasizes the role of 18F-FDG PET/CT in multiple organs involvement of patients with LCH

  19. Efficacy of 3D-positron emission tomography/computed tomography for upper abdomen.

    Science.gov (United States)

    Murakami, Koji; Nakahara, Tadaki

    2014-04-01

    Recent advancement in computed tomography (CT) enables us to obtain high spatial resolution image and made it possible to construct extensive high-definition three-dimensional (3D) images. But a lack of contrast resolution in CT alone is still remained problem. Meanwhile, as fluorodeoxyglucose-positron emission tomography (PET) can visualize tumors in high contrast, we can create 3D images fusing the accumulation in tumors on PET/CT images. Such images can play the role of a "map of body" which makes it easy to understand the anatomical information before surgery. We also try to evaluate segmental liver function by using PET/CT fusion images. By using (11) C-methionine PET/contrast-enhanced CT, superior image quality compared to single photon emission computed tomography/CT can be obtained. CT, especially with contrast enhancement for obtaining anatomical imaging information plus PET for obtaining functional imaging information is a highly compatible combination, and adding these two types information will further increase clinical usefulness. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  20. ¹⁸F-fluorodeoxyglucose-positron emission tomography/computed tomography in malignancies of the thyroid and in head and neck squamous cell carcinoma: a review of the literature.

    Science.gov (United States)

    Lauridsen, Jeppe Kiilerich; Rohde, Max; Thomassen, Anders

    2015-01-01

    18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is a valuable diagnostic tool in a spectrum of malignant and benign conditions, because of a high sensitivity to detect even very small lesions with increased metabolism. This review focuses on the use of FDG-PET/CT in malignancies of the thyroid gland and in head and neck squamous cell carcinoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Update on nodal staging in non-small cell lung cancer with integrated positron emission tomography/computed tomography: a meta-analysis.

    Science.gov (United States)

    Pak, Kyoungjune; Park, Sohyun; Cheon, Gi Jeong; Kang, Keon Wook; Kim, In-Joo; Lee, Dong Soo; Kim, E Edmund; Chung, June-Key

    2015-06-01

    Nowadays, the number of primary studies on fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has been increasing rapidly. Thus, we updated meta-analysis to evaluate the test performance of FDG PET/CT for nodal staging in non-small cell lung cancer (NSCLC) including the most recent studies. We performed a systematic search of MEDLINE and EMBASE for English publications using keywords "positron emission tomography", "lung cancer", and "lymph node". All searches were limited to human studies. Inclusion criteria were studies of the initial nodal staging of NSCLC with PET/CT. The reasons for exclusion are as follows: (1) studies with PET, (2) previous therapy before PET/CT, (3) nodal staging not confirmed by histology, and (4) reviews, abstracts, and editorial materials. 786 articles were identified through database searching. 28 studies including 3,255 patients and 11,887 lymph nodes (LN) were eligible for this study. The pooled sensitivity was 0.62 (95% CI 0.54-0.70), widely ranging from 0.13 to 0.98. The specificity ranged between 0.72 and 0.98 with an overall estimated specificity of 0.92 (0.88-0.95) for node-based data. The pooled sensitivity, specificity, positive and negative likelihood ratio were 0.67 (0.54-0.79), 0.87 (0.82-0.91), 5.20 (3.59-7.54), and 0.37 (0.25-0.55) for patient-based data. Studies from tuberculosis (Tb) endemic countries showed lower sensitivity (0.56 vs 0.68, p = 0.03) for node-based data and lower specificity (0.83 vs 0.89, p < 0.01) for patient-based ones. PET/CT has a high specificity, but low sensitivity for detecting LN metastasis in patients with NSCLC. Tb might be one of the main reasons for lower sensitivity of PET/CT in several countries. The primary clinicians of lung cancer should be aware of the possibility of hidden metastatic LNs in bilateral FDG uptake of mediastinal and hilar LNs, especially in the Tb endemic countries.

  2. Imaging for carbon translocation to a fruit of tomato with carbon-11-labeled carbon dioxide and positron emission tomography

    International Nuclear Information System (INIS)

    Kawachi, N.; Suzui, N.; Ishii, S.; Fujimaki, S.; Ishioka, N.; Kikuchi, K.; Watanbe, H.

    2009-01-01

    Carbon kinetics in the fruit is an agricultural issue on the growth and development of the fruit to be harvested. Particularly, photo-assimilate translocation and distribution are important topics for understanding the mechanism. In the present work, carbon-11 ( 11 C) labeled photo-assimilate translocation into fruits of tomato has been imaged using carbon-11-labeled carbon dioxide and the positron emission tomography (PET). Dynamic PET data of gradual increasing of 11 C activity and its distribution is acquired quantitatively in intact plant body. This indicates that the three dimensional photo-assimilate translocation into the fruits is imaged successfully and carbon kinetics is analyzed to understand the plant physiology and nutrition. (authors)

  3. Imaging Spectrum and Pitfalls of (11)C-Methionine Positron Emission Tomography in a Series of Patients with Intracranial Lesions.

    Science.gov (United States)

    Ito, Kimiteru; Matsuda, Hiroshi; Kubota, Kazoo

    2016-01-01

    (11)C-methionine (Met) positron emission tomography (PET) is one of the most commonly used PET tracers for evaluating brain tumors. However, few reports have described tips and pitfalls of (11)C-Met PET for general practitioners. Physiological (11)C-Met uptake, anatomical variations, vascular disorders, non-tumorous lesions such as inflammation or dysplasia, benign brain tumors and patient condition during (11)C-Met PET examination can potentially affect the image interpretation and cause false positives and negatives. These pitfalls in the interpretation of (11)C-Met PET images are important for not only nuclear medicine physicians but also general radiologists. Familiarity with the spectrum and pitfalls of (11)C-Met images could help prevent unfavorable clinical results caused by misdiagnoses.

  4. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    Science.gov (United States)

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  5. [{sup 11}C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Alan A., E-mail: alan.wilson@camhpet.c [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Garcia, Armando; Parkes, Jun [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Tong, Junchao [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 (Canada); Vasdev, Neil [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada)

    2011-02-15

    Introduction: Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. Methods: A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([{sup 11}C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. Results: Upon intravenous injection into rats, [{sup 11}C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [{sup 11}C]CURB was irreversibly bound to FAAH

  6. [11C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography

    International Nuclear Information System (INIS)

    Wilson, Alan A.; Garcia, Armando; Parkes, Jun; Houle, Sylvain; Tong, Junchao; Vasdev, Neil

    2011-01-01

    Introduction: Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. Methods: A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([ 11 C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. Results: Upon intravenous injection into rats, [ 11 C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [ 11 C]CURB was irreversibly bound to FAAH. Conclusions

  7. 76 FR 6143 - Draft Guidance on Positron Emission Tomography Drug Applications-Content and Format for New Drug...

    Science.gov (United States)

    2011-02-03

    ...; formerly Docket No. 00D-0892] Draft Guidance on Positron Emission Tomography Drug Applications--Content and... Applications for Certain Positron Emission Tomography Drug Products; Availability,'' issued on March 10, 2000... and ANDAs.'' The draft guidance is intended to assist manufacturers of certain positron emission...

  8. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism

    International Nuclear Information System (INIS)

    Booij, J.; Tissingh, G.; Winogrodzka, A.; Royen, E.A. van

    1999-01-01

    Parkinsonism is a feature of a number of neurodegenerative diseases, including Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. The results of post-mortem studies point to dysfunction of the dopaminergic neurotransmitter system in patients with parkinsonism. Nowadays, by using single-photon emission tomography (SPET) and positron emission tomography (PET) it is possible to visualise both the nigrostriatal dopaminergic neurons and the striatal dopamine D 2 receptors in vivo. Consequently, SPET and PET imaging of elements of the dopaminergic system can play an important role in the diagnosis of several parkinsonian syndromes. This review concentrates on findings of SPET and PET studies of the dopaminergic neurotransmitter system in various parkinsonian syndromes. (orig.)

  9. Fabrication of polycrystalline scintillators for the positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Karim, Kamran Said

    2010-01-01

    Transparent ceramics are becoming more and more important for two new types of applications. On the one hand in cases where high mechanical and thermal demands in combination with optical properties are required, on the other hand where the optical properties of transparent materials like glass are not sufficient e.g. in positron-emission-tomography (PET) diagnostics. Most state of the art PET-scanners are using high-priced single crystals as scintillator material. The technological challenge is to replace single crystal by cost-efficient transparent ceramics. Producing transparent ceramics is ordered in synthesis of the powders and in manufacturing of these into transparent ceramics. The aim of this work was to synthesize single phase yttrium-alumina-and Luthetiumalumina-garnet (YAG, LuAG) powders partially doped with neodymium or praseodymium by four different synthesis routes (Pechini-synthesis, sol-gel-route, coprecipitation and solid state reactions). Additionally industrial LuAG and LuPO 4 powders were characterized and manufactured. The powders were processed as submicron- and nanopowders. The compaction of nanopowder greenbodies sintered at high temperatures leads to a ''cross-over'' between both manufacturing route. Newly produced single-phase powders were homogenized with additions of sintering additives like tetraethyl orthosilicate (TEOS) and binders like polyvinyl alcohol (PVA). Moulding the powders were carried out by uniaxial pressing, cold isostatic pressing and in individual cases also by slip casting. The achieved green densities were in a range of 25-42 %. Examination of calcination behaviour leads to a calcination temperature of 1000 C with 2 hours dwell time in air atmosphere. Only solid state reactions resulted into transparent YAG, YAG:Pr, LuAG, LuAG:Pr ceramics. Solid state reactions of nanopowders resulted in heterogeneously transparent samples. Ceramics made by powders of other synthetic routes gave nontransparent ceramics due to porosity

  10. Use of positron emission tomography in colorectal cancer; Uso de la tomografia de emision de positrones en el cancer colorrectal

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez E, Patricio; Jofre E, Josefina; Massardo V, Teresa; Humeres, Pamela; Canessa G, Jose; Sierralta C, Paulina [Hospital Militar de Santiago, Medicina Nuclear, Centro PET de Imagenes Moleculares, Santiago (Chile)

    2002-07-01

    The value of PET (Positron Emission Tomography) in colorectal cancer is presented. PET is a novel technique that uses F-18-FDG (fluorodeoxiglucose) to assess glucose metabolism by whole body imaging. It has been demonstrated that malignant cells have both increase of glucose uptake and utilization. In colorectal cancer, PET is indicated for staging, assess recurrence, liver metastasis and treatment follow-up. PET is more sensitive and specific than CT (Computed Tomography) and is cost effective. In 30% of cases PET may change patient management, avoiding unnecessary procedures (au)

  11. Positron emission tomography quantification of serotonin(1A) receptor binding in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Sullivan, Gregory M; Oquendo, Maria A; Milak, Matthew; Miller, Jeffrey M; Burke, Ainsley; Ogden, R Todd; Parsey, Ramin V; Mann, J John

    2015-02-01

    Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin(1A) autoreceptor in the brainstem raphe of individuals who die by suicide. To determine the relationships between brain serotonin(1A) binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin(1A) antagonist radiotracer carbon C 11 [11C]-labeled WAY-100635. Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin(1A) binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin(1A) BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin(1A) BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin(1A )BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in participants with

  12. Positron Emission Tomography Quantification of Serotonin1A Receptor Binding in Suicide Attempters With Major Depressive Disorder

    Science.gov (United States)

    Sullivan, Gregory M.; Oquendo, Maria A.; Milak, Matthew; Miller, Jeffrey M.; Burke, Ainsley; Ogden, R. Todd; Parsey, Ramin V.; Mann, J. John

    2015-01-01

    IMPORTANCE Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin1A autoreceptor in the brainstem raphe of individuals who die by suicide. OBJECTIVES To determine the relationships between brain serotonin1A binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin1A antagonist radiotracer carbon C 11 [11C]–labeled WAY-100635. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin1A binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. MAIN OUTCOMES AND MEASURES The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. RESULTS Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin1A BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin1A BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin1A BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in

  13. Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Larsson, Henrik B W; Hansen, Adam E

    2012-01-01

    PURPOSE: To investigate the within and between subject variability of quantitative cerebral blood flow (CBF) measurements in normal subjects using various MRI techniques and positron emission tomography (PET). MATERIALS AND METHODS: Repeated CBF measurements were performed in 17 healthy, young...

  14. Measurement of blood-brain barrier permeability with positron emission tomography in patients with multiple sclerosis

    International Nuclear Information System (INIS)

    Fieschi, C.; Pozzilli, C.; Bernardi, S.; Bozzao, L.; Lenzi, G.L.; Picozzi, P.; Iannotti, F.; Conforti, P.

    1988-01-01

    The purpose of the investigation was to elucidate the role of positron emission tomography using 68 Ga-EDTA in the study of blood-brain barrier abnormalities associated with multiple sclerosis. 14 refs.; 1 figure

  15. Measurement of regional cerebral glucose utilization in man by positron emission tomography

    International Nuclear Information System (INIS)

    Baron, J.C.

    1986-05-01

    The various methods available for the study of regional cerebral glucose consumption in man by positron emission tomography are described and their applications, limitations and principal physiopathological results are presented [fr

  16. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  17. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  18. Simulation of Si P-i-N diodes for use in a positron emission tomography detector module

    International Nuclear Information System (INIS)

    Bailey, M.J.; University of Wollongong, NSW; Rosenfeld, A.; Lerch, M.; Taylor, G.; Heiser, G.

    2000-01-01

    Full text: Current Positron Emission Tomography (PET) systems consist of scintillation crystals optically coupled to photomultiplier tubes with associated electronics used to detect photons generated within the scintillator. The cost of photomultiplier tubes (PMTs) is considerable and is the major factor in the cost of PET systems. It has been suggested that Si P-i-N diodes can replace PMTs and provide Depth of Interaction (DOI) information for improved spatial resolution. Si P-i-N diodes of 25mm x 300μm and 3mm x 300μm cross sectional area were simulated using a 2D Monte Carlo program (PClD V5) from the UNSW photovoltics group. The diffusion lengths were varied from 0.5μm to 5μm and the charge collection characteristics of the diodes were observed. A 400nm monochromatic light source was used for the excitation as an approximation of the mean wavelength output from LSO crystal. The diodes were reverse biased with voltages 40V, 20V and 10V. The optimum diffusion length of up to 2μm and bias voltage of 40V were determined using the electric field, current density, carrier density and potential distribution results. These parameters will be used for the design of a device for optimal charge collection capabilities for the wavelengths encountered in PET applications. Further studies need to be conducted using spectra from LSO rather than a monochromatic source. The response of various Si P-i-N diodes to a monochromatic light source have been modeled in order to design a device for application in a PET detector module for DOI measurements. The charge collection within the first 2μm has been emphasized due to the strong absorption of photons from LSO near the surface.Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  19. Relevance of positron emission tomography (PET) in oncology

    International Nuclear Information System (INIS)

    Weber, W.A.; Avril, N.; Schwaiger, M.

    1999-01-01

    Background: The clinical use of positron emission tomography (PET) for detection and staging of malignant tumors is rapidly increasing. Furthermore, encouraging results for monitoring the effects of radio- and chemotherapy have been reported. Methods: This review describes the technical principles of PET and the biological characteristics of tracers used in oncological research and patient studies. The results of clinical studies published in peer reviewed journals during the last 5 years are summarized and clinical indications for PET scans in various tumor types are discussed. Results and Conclusions: Numerous studies have documented the high diagnostic accuracy of PET studies using the glucose analogue F-18-fluordeoxyglucose (FDG-PET) for detection and staging of malignant tumors. In this field, FDG-PET has been particularly successful in lung cancer, colorectal cancer, malignant lymphoma and melanoma. Furthermore, FDG-PET has often proven to be superior to morphological imaging techniques for differentation of tumor recurrence from scar tissue. Due to the high glucose utilization of normal gray matter radiolabeled amino-acids like C-11-methionine are superior to FDG for detection and delineation of brain tumors by PET. In the future, more specific markers of tumor cell proliferation and gene expression may allow the application of PET not only for dianostic imaging also but for non-invasive biological characterization of malignant tumors and early monitoring of therapeutic interventions. (orig.) [de

  20. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.

    Science.gov (United States)

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R

    2008-03-11

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.

  1. Clinical application of positron emission tomography imaging in urologic tumors

    International Nuclear Information System (INIS)

    Tang Ganghua; Wu Guangyuan

    2007-01-01

    Positron emission tomography (PET) is an advanced noninvasive molecular imaging modality that is being investigated for use in the differentiation, diagnosis, and guiding therapy ora variety of cancer types. FDG PET has the unique clinical value in the differentiation, diagnosis, and monitoring therapy of prostate, such as bladder, renal, and testicle cancer. However, high false-positive and false-negative findings are observed in the detection of these tumors with FDG PET. 11 C-Choline (CH) and 11 C-acetate (AC) can overcome the pitfall of FDG, and appear to be more successful than FGD in imaging prostate cancer and bladder cancer. The short half-life of 11 C prevents the widespread use of CH and AC and 18 F-fluorocholine (FCH) and 18 F-fluoroacetate (FAC) seem to be potential tracers. Potential clinical value of the new PET tracers, such as 3'-deoxy-3'- 18 F-fluorothymidine (FLT), 18 F-fluorodihydrotestosterone (FDHT), and 9-(4- 18 F-3-hydroxymethylbutyl)-guanine( 18 F-FHBG) in the detection of urologic tumors, can deserve further study. (authors)

  2. A silicon photo-multiplier signal readout using strip-line and waveform sampling for Positron Emission Tomography

    Science.gov (United States)

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Kao, C.-M.

    2016-09-01

    A strip-line and waveform sampling based readout is a signal multiplexing method that can efficiently reduce the readout channels while fully exploiting the fast time characteristics of photo-detectors such as the SiPM. We have applied this readout method for SiPM-based time-of-flight (TOF) positron emission tomography (PET) detectors. We have prototyped strip-line boards in which 8 SiPMs (pitch 5.2 mm) are connected by using a single strip-line, and the signals appearing at the ends of the strip-line are acquired by using the DRS4 waveform sampler at a nominal sampling frequency of 1-5 GS/s. Experimental tests using laser and LYSO scintillator are carried out to assess the performance of the strip-line board. Each SiPM position, which is inferred from the arrival time difference of the two signals at the ends of the strip-line, is well identified with 2.6 mm FWHM resolution when the SiPMs are coupled to LYSO crystals and irradiated by a 22Na source. The average energy and coincidence time resolution corresponding to 511 keV photons are measured to be ∼32% and ∼510 ps FWHM, respectively, at a 5.0 GS/s DRS4 sampling rate. The results show that the sampling rate can be lowered to 1.5 GS/s without performance degradation. These encouraging initial test results indicate that the strip-line and waveform sampling readout method is applicable for SiPM-based TOF PET development.

  3. Drug distribution in man: a positron emission tomography study after oral administration of the labelled neuroprotective drug vinpocetine

    International Nuclear Information System (INIS)

    Gulyas, Balazs; Halldin, Christer; Sandell, Johan; Farde, Lars; Sovago, Judit; Cselenyi, Zsolt; Vas, Adam; Kiss, Bela; Karpati, Egon

    2002-01-01

    Direct information on the distribution of a drug requires measurements in various tissues. Such data have until now been obtained in animals, or have indirectly been calculated from plasma measurements in humans using mathematical models. Here we suggest the use of positron emission tomography (PET) as a method to obtain direct measurements of drug distribution in the human body. The distribution in body and brain of vinpocetine, a neuroprotective drug widely used in the prevention and treatment of cerebrovascular diseases, was followed after oral administration. Vinpocetine was labelled with carbon-11 and radioactivity was measured by PET in stomach, liver, brain and kidney in six healthy volunteers. The radioactivity in blood and urine as well as the fractions of [ 11 C]vinpocetine and labelled metabolites in plasma were also determined. After oral administration, [ 11 C]vinpocetine appeared immediately in the stomach and within minutes in the liver and the blood. In the blood the level of radioactivity continuously increased until the end of the measurement period, whereas the fraction of the unchanged mother compound decreased. Radioactivity uptake and distribution in the brain were demonstrable from the tenth minute after the administration of the labelled drug. Brain distribution was heterogeneous, similar to the distribution previously reported after intravenous administration. These findings indicate that vinpocetine, administered orally in humans, readily enters the bloodstream from the stomach and gastrointestinal tract and, consequently, passes the blood-brain barrier and enters the brain. Radioactivity from [ 11 C]vinpocetine was also demonstrated in the kidneys and in urine, indicating that at least a part of the radioactive drug and labelled metabolites is eliminated from the body through the kidneys. This study is the first to demonstrate that PET might be a useful, direct and non-invasive tool to study the distribution and pharmacokinetics of orally

  4. Cerebral interregional correlations of associative language processing: a positron emission tomography activation study using fluorine-18 fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Schreckenberger, M.; Sabri, O.; Arning, C.; Schulz, G.; Tuttass, T.; Wagenknecht, G.; Kaiser, H.J.; Buell, U.; Gouzoulis-Mayfrank, E.; Sass, H.

    1998-01-01

    Even though there have been numerous positron emission tomography (PET) activation studies on the perfusional and metabolic bases of language processing, little is known about the intracerebral functional network of language and cognitive processes. It was the aim of this study to investigate the cerebral interregional correlations during voluntary word association versus word repetition in healthy subjects to gain insight into the functional connectivity of associative speech processing. Due to individual variability in functional anatomy, the study protocol was designed as an averaged single-subject study. Eight healthy volunteers performed a verbal association task during fluorine-18 fluorodeoxyglucose ( 18 F-FDG) PET scanning. Two different tasks were performed in randomized order: (a) word repetition (after auditory presentation of nouns) as a control condition, and (b) word association (after auditory presentation of nouns) as a specific semantic activation. The regional metabolic rate of glucose (rMRGlu) was calculated after brain regionalization [112 regions of interest on individual 3D flash magnetic resonance imaging (MRI)] and PET/MRI realignment. Statistical analysis was performed for comparison of association and repetition and for calculation of interregional correlation coefficients during both tasks. Compared with word repetition, word association was associated with significant increases in rMRGlu in the left prefrontal cortex, the left frontal operculum (Broca's area) and the left insula, indicating involvement of these areas in associative language processing. Decreased rMRGlu was found in the left posterior cingulum during word association. During word repetition, highly significant negative correlations were found between the left prefrontal cortex, the contralateral cortex areas and the ipsilateral posterior cingulum. These negative correlations were almost completely eliminated during the association task, suggesting a functional decoupling

  5. Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a non-invasive determination of biological activity possible?

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, M.; Hartwig, E.; Sarkar, M.R.; Schultheiss, M. [Department of Trauma, Hand- and Reconstructive Surgery, University Hospital Ulm (Germany); Brecht-Krauss, D.; Guhlmann, A.; Diederichs, C.G.; Kotzerke, J.; Reske, S.N. [Department of Nuclear Medicine, University Hospital Ulm (Germany); Heymer, B. [Department of Pathology, University Hospital Ulm (Germany)

    1999-06-01

    Since musculoskeletal tumours comprise a large heterogeneous group of entities with different biological behaviour, clinical diagnosis of such lesions can be very difficult. The aim of this prospective study was to assess the usefulness of 2-[F-18]-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) in the non-invasive evaluation of soft tissue tumours. One hundred and two patients with suspected soft tissue neoplasms were investigated by FDG-PET. The uptake of FDG was evaluated semiquantitatively by determining the tumour to background ratio (TBR). All patients underwent biopsy, resulting in the histological detection of 39 high-grade sarcomas, 16 intermediate-grade sarcomas, 11 low-grade sarcomas, 25 benign tumours, 10 tumour-like lesions such as spontaneous myositis ossificans (n = 6) and one non-Hodgkin lymphoma. All lesions except for two lipomas disclosed an increased FDG uptake. Sarcomas showed significantly higher TBR values than latent or active benign lesions (P<0.001) and aggressive benign lesions (P<0.05). Using a TBR cut-off level of 3.0 for malignancy, sensitivity of FDG-PET was 97.0%, specificity 65.7% and accuracy 86.3%. From our data there are three main conclusions: (1) Except for patients with pseudotumoral myositis ossificans, lesions with a TBR >3 were sarcomas (91.7%) or aggressive benign tumours (8.3%). (2) Tumours with a TBR <1.5 were latent or active benign lesions, exclusively. (3) The group with intermediate TBR values (<3 and >1.5) comprised primarily latent or active benign lesions, but also four aggressive benign tumours and two low-grade sarcomas. Our data suggest that FDG-PET represents a useful tool for the evaluation of the biological activity of soft tissue neoplasms. (orig.) With 5 figs., 2 tabs., 26 refs.

  6. [11C]metaraminol, a false neurotransmitter: Preparation, metabolite studies and positron emission tomography examination in monkey

    International Nuclear Information System (INIS)

    Naagren, Kjell; Halldin, Christer; Swahn, Carl-Gunnar; Suhara, Tetsuya; Farde, Lars

    1996-01-01

    No-carrier-added racemic [ 11 C]metaraminol was prepared by a selective condensation of [ 11 C]nitroethane with 3-hydroxy-benzaldehyde using tetrabutylammonium fluoride in tetrahydrofuran (THF) as a catalyst, followed by a reduction with Raney nickel in formic acid. [ 11 C]Metaraminol was produced in 30 to 45% decay-corrected yield from [ 11 C]nitroethane (13 to 20% decay corrected from [ 11 C]CO 2 ) within 45 to 55 min total synthesis time. Reversed phase high-performance liquid chromatography (HPLC) was used for the separation of the racemic erythro- and threo-forms of [ 11 C]metaraminol. The radiochemical purity was higher than 98%, and the specific radioactivity at the end of synthesis was 500 to 800 Ci/mmol (18 to 30 GBq/μmol). Positron emission tomography (PET) examination of racemic erythro-[ 11 C]metaraminol in a Cynomolgus monkey showed a high uptake of radioactivity in the heart. Following