WorldWideScience

Sample records for positron beam energy

  1. Experimentation with low-energy positron beams

    International Nuclear Information System (INIS)

    Mills, A.P. Jr.

    1983-01-01

    The capability of studying the interactions of positrons with surfaces has recently been exploited by using ultra-high-vacuum techniques. The result has been a new understanding of how positrons interact with surfaces and because of this we are now able to make much stronger fluxes of slow positrons. The higher beam strengths in turn are opening up new possibilities for experimentation on surfaces and solids and for studying the atomic physics of positronium and positron-molecule scattering at low energies. The lectures are intended to review some of the history of this subject and to outline the present state of our knowledge of experimentation with low-energy positron beams. (orig./TW)

  2. Beam-beam interaction in high energy linear electron-positron colliders

    International Nuclear Information System (INIS)

    Ritter, S.

    1985-04-01

    The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)

  3. Description of the intense, low energy, monoenergetic positron beam at Brookhaven

    International Nuclear Information System (INIS)

    Lynn, K.G.; Mills, A.P. Jr.; Roellig, L.O.; Weber, M.

    1985-01-01

    An intense (4 x 10 7 s -1 ), low energy (approx. =1.0 eV), monoenergetic (ΔE approx. = 75 MeV) beam of positrons has been built at the Brookhaven National Laboratory. This flux is more than 10 times greater than any existing beam from radioactive sources. Plans are underway to increase further the flux by more than an order of magnitude. The intense low energy positron beam is made by utilizing the High Flux Beam Reactor at Brookhaven to produce the isotope 64 Cu with an activity of 40 curies of positrons. Source moderation techniques are utilized to produce the low energy positron beam from the high energy positrons emitted from 64 Cu. 31 refs., 7 figs

  4. Automation of variable low-energy positron beam experiments

    CERN Document Server

    Jayapandian, J; Amarendra, G; Venugopal-Rao, G; Purniah, B; Viswanathan, B

    2000-01-01

    By exploiting the special BIOS interrupt (INT 1CH) of PC in conjunction with a compatible high-voltage controller card and menu-driven control program, we report here the automation of variable low-energy positron beam experiments. The beam experiment consists of monitoring the Doppler broadening lineshape parameters corresponding to the annihilation 511 keV gamma-ray at various positron beam implantation energies. The variation and monitoring of the sample high voltage, which determines positron beam energy, is carried out using a controller add-on card coupled to a 0-30 kV high-voltage unit. The design features of this controller card are discussed. This controller card is housed in a PC, which also houses a multichannel analyser (MCA) card. The MCA stores the Doppler energy spectrum of the annihilation gamma-ray. The interactive control program, written in Turbo C, carries out the assigned tasks. The design features of the automation and results are presented.

  5. The beam energy measurement system for the Beijing electron-positron collider

    International Nuclear Information System (INIS)

    Abakumova, E.V.; Achasov, M.N.; Blinov, V.E.; Cai, X.; Dong, H.Y.; Fu, C.D.; Harris, F.A.; Kaminsky, V.V.; Krasnov, A.A.; Liu, Q.; Mo, X.H.; Muchnoi, N.Yu.; Nikolaev, I.B.; Qin, Q.; Qu, H.M.; Olsen, S.L.; Pyata, E.E.; Shamov, A.G.; Shen, C.P.; Todyshev, K.Yu.

    2011-01-01

    The beam energy measurement system (BEMS) for the upgraded Beijing electron-positron collider BEPC-II is described. The system is based on measuring the energies of Compton back-scattered photons. The relative systematic uncertainty of the electron and positron beam energy determination is estimated as 2×10 -5 . The relative uncertainty of the beam's energy spread is about 6%.

  6. The beam energy measurement system for the Beijing electron-positron collider

    International Nuclear Information System (INIS)

    Zhang, J.Y.; Abakumova, E.V.; Achasov, M.N.; Blinov, V.E.; Cai, X.; Dong, H.Y.; Fu, C.D.; Harris, F.A.; Kaminsky, V.V.; Krasnov, A.A.; Liu, Q.; Mo, X.H.; Muchnoi, N.Yu.; Nikolaev, I.B.; Qin, Q.; Qu, H.M.; Olsen, S.L.; Pyata, E.E.; Shamov, A.G.; Shen, C.P.

    2012-01-01

    The beam energy measurement system (BEMS) for the upgraded Beijing electron-positron collider BEPC-II is described. The system is based on measuring the energies of Compton back-scattered photons. The relative systematic uncertainty of the electron and positron beam energy determination is estimated as 2⋅10 -5 .

  7. Bulk Materials Analysis Using High-Energy Positron Beams

    International Nuclear Information System (INIS)

    Glade, S C; Asoka-Kumar, P; Nieh, T G; Sterne, P A; Wirth, B D; Dauskardt, R H; Flores, K M; Suh, D; Odette, G.R.

    2002-01-01

    This article reviews some recent materials analysis results using high-energy positron beams at Lawrence Livermore National Laboratory. We are combining positron lifetime and orbital electron momentum spectroscopic methods to provide electron number densities and electron momentum distributions around positron annihilation sites. Topics covered include: correlation of positron annihilation characteristics with structural and mechanical properties of bulk metallic glasses, compositional studies of embrittling features in nuclear reactor pressure vessel steel, pore characterization in Zeolites, and positron annihilation characteristics in alkali halides

  8. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  9. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    Science.gov (United States)

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  10. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  11. Low-energy positron beams - origins, developments and applications

    International Nuclear Information System (INIS)

    Beling, C.D.; Charlton, M.

    1987-01-01

    Over the last 15 years there have been rapid advances in the technology associated with low-energy positron beams. The origins of these advances, and some of the major developments, are discussed. Some applications from the diverse fields of surface physics, atomic scattering and positronium studies are highlighted. (author)

  12. Variable-energy positron-beam studies of Ni implanted with He

    International Nuclear Information System (INIS)

    Lynn, K.G.; Chen, D.M.; Nielsen, B.; Pareja, R.; Myers, S.

    1986-01-01

    Variable-energy positron-beam studies have been made on well-annealed polycrystalline Ni samples implanted with 30-, 90-, and 180-keV 4 He ions. The positron-annihilation characteristics were measured with a solid-state Ge detector at a number of different incident-positron energies and after isochronal annealing at various temperatures. The Doppler broadening of the annihilation photons was found to be strongly influenced by the 4 He implantations. The data indicate that trapping of the positrons occurred predominantly at small He bubbles. The variation of the broadening with incident-positron energy was sensitive to the depth distribution of the traps. A diffusion model assuming a square concentration-defect profile was developed and analytically fitted to the parametrized momentum data. These fitted results were compared to Monte Carlo range calculations for 4 He in Ni, and fairly good agreement was found. This investigation demonstrates the capabilities of positron annihilation for nondestructive depth profiling in ion-implanted systems. In addition, it establishes parallels between the trapping behavior of positrons and that reported elsewhere for hydrogen, thereby augmenting the present level of understanding of the technologically important trapping of hydrogen by the bubbles

  13. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Piochacz, Christian

    2009-11-20

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55{+-}0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 {mu}m. The efficiency of the re-moderation process in this second stage was 24.5{+-}4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the

  14. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    International Nuclear Information System (INIS)

    Piochacz, Christian

    2009-01-01

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55±0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 μm. The efficiency of the re-moderation process in this second stage was 24.5±4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the SPM

  15. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    Science.gov (United States)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  16. Plasma Wakefield Acceleration of an Intense Positron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wake that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions

  17. Low energy positron beam system for the investigation of 2D and porous materials

    International Nuclear Information System (INIS)

    Chrysler, M D; Chirayath, V A; Mcdonald, A D; Gladen, R W; Fairchild, A J; Koymen, A R; Weiss, A H

    2017-01-01

    An advanced variable energy positron beam (∼2 eV to 20 keV) has been designed, tested and utilized for coincidence Doppler broadening (CDB) measurements at the University of Texas at Arlington (UTA). A high efficiency solidified rare gas (Neon) moderator was used for the generation of a slow positron beam. The gamma rays produced as a result of the annihilation of positrons with the sample electrons are measured using a high purity Germanium (HPGe) detector in coincidence with a NaI(Tl) detector. Modifications to the system, currently underway, permits simultaneous measurements utilizing Positron annihilation induced Auger Electron Spectroscopy (PAES) and CDB. The tendency of positrons to become trapped in an image potential well at the surface will allow the new system to be used in measurements of the chemical structure of surfaces, internal or external and interfaces. The system will utilize a time of flight (TOF) technique for electron energy measurements. A 3m flight path from the sample to a micro-channel plate (MCP) in the new system will give it superior energy resolution at higher electron energies as compared to previous TOF systems utilizing shorter flight paths. (paper)

  18. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    Science.gov (United States)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  19. Generation of an intense pulsed positron beam and its applications

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki; Chiwaki, Mitsukuni; Yamazaki, Tetsuo; Kobayashi, Yoshinori.

    1994-01-01

    A positron pulsing system for an intense positron beam generated by an electron linac has been developed at the Electrotechnical Laboratory. The pulsing system generates an intense pulsed positron beam of variable energy and variable pulse period. The pulsed positron beam is used as a non destructive probe for various materials researches. In this paper, we report the present status of the pulsed positron beam and its applications. (author)

  20. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  1. Intense positron beam and its application to surface science

    International Nuclear Information System (INIS)

    Ito, Y.; Hirose, M.; Kanazawa, I.; Sueoka, O.; Takamura, S.; Okada, S.

    1992-01-01

    Intense pulsed slow positron beam has been produced using the 100 MeV electron LINAC of JAERI · Tokai. In order to use the beam for surface studies such as positron diffraction and positron microscopy, it was transferred from the solenoid magnetic field to field free region and then was brightness-enhanced. The beam size was reduced from 10 mmφ (in the magnetic field) to 0.5 mmφ after two stages of re-moderation. Using the intense brightness-enhanced positron beam we have observed for the first time RHEPD (Reflection High-Energy Positron Diffraction) patterns. A design of re-emission positron microscopy is also described. (author)

  2. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    Science.gov (United States)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  3. Performance of a slow positron beam using a hybrid lens design

    International Nuclear Information System (INIS)

    Cheung, C.K.; Naik, P.S.; Beling, C.D.; Fung, S.; Weng, H.M.

    2006-01-01

    The University of Hong Kong positron beam employs conventional magnetic field transport to the target, but has a special hybrid lens design around the positron moderator that allows the beam to be focused to millimeter spot sizes at the target. The good focusing capabilities of the beam are made possible by extracting work-function positrons from the moderator in a magnetic field free region using a conventional Soa lens thus minimizing beam canonical angular momentum. An Einzel lens is used to focus the positrons into the magnetic funnel at the end of transportation magnetic field while at the same time bringing up the beam energy to the intermediate value of 7.5 keV. The beam is E x B filtered at this intermediate energy. The final beam energy is obtained by floating the Soa-Einzel system, E x B filter and flight tube, and accelerating the positrons just before the target. External beam steering saddle coils fine tune the position, and the magnetic field around the target chamber is adjusted so as to keep one of the beam foci always on the target. The system is fully computer controlled. Variable energy-Doppler broadened annihilation radiation (VEDBAR) data for a GaN sample are shown which demonstrate the performance of the positron beam system

  4. Development of slow positron beam lines and applications

    Science.gov (United States)

    Mondal, Nagendra Nath

    2018-05-01

    A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.

  5. Positron beams: The journey from fundamental physics to industrial application

    International Nuclear Information System (INIS)

    Coleman, P.G.

    2002-01-01

    Monoenergetic beams of positrons developed for fundamental atomic physics experiments have evolved - via basic and applied research in condensed matter physics and chemistry - to a phase in which possibilities for commercial exploitation are becoming apparent. The evolution of positron beam technology, from table-top laboratory-based apparatus with positrons of energies controllable in the 10 0 -10 2 eV energy range and beam intensities of ∼1 s -1 , to systems capable of delivering positrons of energies from 0.02 eV to MeV at intensities as high as 10 8 s -1 , has been both steady and saltatory. The journey from fundamental research to industrial application is a classic example of scientific development; a brief summary of steps on the way is followed by an example in which an attempt is being made to harness the efficacy of positron beams applied to defect spectroscopy of semiconductor structures to create an instrument of value to the ion implantation industry

  6. Intense positron beams and possible experiments

    International Nuclear Information System (INIS)

    Lynn, K.G.; Frieze, W.E.

    1983-07-01

    In this paper, we survey some of the ideas that have been proposed regarding the production of intense beams of low energy positrons. Various facilities to produce beams of this type are already under design or construction and other methods beyond those in use have been previously discussed. Moreover, a variety of potential experiments utilizing intense positron beams have been suggested. It is to be hoped that this paper can serve as a useful summary of some of the current ideas, as well as a stimulation for new ideas to be forthcoming at the workshop. 31 references

  7. Positron annihilation induced Auger electron spectroscopy and its implementation at accelerator based low energy positron factories

    International Nuclear Information System (INIS)

    Weiss, A.; Koeymen, A.R.; Mehl, D.; Lee, K.H.; Yang Gimo; Jensen, K.

    1991-01-01

    Positron annihilation induced auger electron spectroscopy (PAES) makes use of a beam of low energy positrons to excite Auger transitions by annihilating core electrons. The large secondary electron background usually present in Auger spectra can be eliminated by setting the positron beam energy well below the Auger electron energy. This allows true Auger lineshapes to be obtained. Further, because the positron is localized just outside the surface before it annihilates, PAES is extremely sensitive to the topmost atomic layer. Recent PAES results obtained at the University of Texas at Arlington will be presented. In addition, the use of high resolution energy analyzers with multichannel particle detection schemes to prevent problems due to the high data rates associated with accelerator based positron beams will be discussed. (orig.)

  8. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    Science.gov (United States)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  9. Depth profiling of boron implanted silicon by positron beam

    International Nuclear Information System (INIS)

    Oevuenc, S.

    2004-01-01

    Positron depth profiling analyses of low energy implants of silicon aim to observe tbe structure and density of the vacancies generating by implantation and the effect of annealing. This work present the results to several set of data starting S and W parameters. Boron implanted Silicon samples with different implantation energies,20,22,24,and 26 keV are analyzed by Slow positron beam (0-40 keV and 10 5 e + /s )(Variable Energy Positron) at the Positron Centre Delf-HOLLAND

  10. Positron Beam Characteristics at NEPOMUC Upgrade

    Science.gov (United States)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.; Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik, S.

    2014-04-01

    In 2012, the new neutron induced positron source NEPOMUC upgrade was put into operation at FRMII. Major changes have been made to the source which consists of a neutron-γ-converter out of Cd and a Pt foil structure for electron positron pair production and positron moderation. The new design leads to an improvement of both intensity and brightness of the mono-energetic positron beam. In addition, the application of highly enriched 113Cd as neutron-γ-converter extends the lifetime of the positron source to 25 years. A new switching and remoderation device has been installed in order to allow toggling from the high-intensity primary beam to a brightness enhanced remoderated positron beam. At present, an intensity of more than 109 moderated positrons per second is achieved at NEPOMUC upgrade. The main characteristics are presented which comprise positron yield and beam profile of both the primary and the remoderated positron beam.

  11. Production and application of pulsed slow-positron beam using an electron LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Tetsuo; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Kobayashi, Yoshinori

    1997-03-01

    Slow-positron beam is quite useful for non-destructive material research. At the Electrotechnical Laboratory (ETL), an intense slow positron beam line by exploiting an electron linac has been constructed in order to carry out various experiments on material analysis. The beam line can generates pulsed positron beams of variable energy and of variable pulse period. Many experiments have been carried out so far with the beam line. In this paper, various capability of the intense pulsed positron beam is presented, based on the experience at the ETL, and the prospect for the future is discussed. (author)

  12. Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes

    International Nuclear Information System (INIS)

    Howell, R.H.; Cowan, T.E.; Hartley, J.; Sterne, P.; Brown, B.

    1996-05-01

    We are developing a defect analysis capability based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is operational and positron lifetime analysis is performed with a 3 MeV positron beam on thick samples. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for insitu measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopies is under development at the LLNL high current positron source. This beam will enable defect specific, 3-D maps of defect concentration with sub-micron location resolution and when coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification

  13. On the average luminosity of electron positron collider and positron-producing energy

    International Nuclear Information System (INIS)

    Xie Jialin

    1985-01-01

    In this paper, the average luminosity of linac injected electron positron collider is investigated from the positron-producing energy point of view. When the energy of the linac injector is fixed to be less than the operating energy of the storage ring, it has been found that there exists a positron-producing energy to give optimum average luminosity. Two cases have been studied, one for an ideal storage ring with no single-beam instability and the other for practical storage ring with fast head-tail instability. The result indicates that there is a positron-producing energy corresponding to the minimum injection time, but this does not correspond to the optimum average luminosity for the practical storage rings. For Beijing Electron Positron Collider (BEPC), the positron-producing energy corresponding to the optimum average luminosity is about one tenth of the total injector energy

  14. Use of specific features of electron and positron interactions with monocrystals for the control of high-energy particle beam parameters

    International Nuclear Information System (INIS)

    Bochek, G.L.; Vit'ko, V.I.; Grishaev, I.A.; Kovalenko, G.D.; Kulibaba, V.I.; Morokhovskij, V.L.; Shramenko, B.I.

    1977-01-01

    To study possibilities of using the effect of high energy positron and electron interactions with crystals in practice at the 2 GeV Kharkov lineac the effect of a light particle charge sign on the processes of bremsstrahlung, elastic scattering and revealing ''blocking effect'' in elastic scatterina has been investigated experimentally of 1 GeV electron (positron) beam is directed to a silicon crystal of 185 μkm thickness. Dependence of total bremsstrahlung flow on the angle between the beam direction and crystal axis has shown, that positron bremsstrahlung is minimum (positrons are channelling, but electron bremsstrahlung is maximum, when crystallographic axis direction coincides with particle direction. The process of positron annihilation in flight has been investigated in 300 μkm thick silicon monocrystal. Bremsstrahlung intensity for channeling positrons drops 4.4 times, and intensity of annihilation radiation - 1.6 times as compared to the case, when channeling regime is absent. Experimental data point out the possibility of using monocrystals for control of the parameters of high-energy particle control beams

  15. Positron lifetime measurements and positron-annihilation induced auger electron spectroscpy using slow positron beams; Teisoku yodenshi bimu wo mochiita yodenshi jumyo sokutei oyobi yodenshi shometsu reiki oje denshi bunko

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R. [Electrotechnical Lab., Tsukuba (Japan)

    1996-02-20

    Slow positron beam with less than several eV can be controlled freely such as accelerating, throttling the beam size, shortening the pulse or making pulse with short time width and so forth. These low positron beams are applied to various measurements like Doppler broadening measurement of annihilation {gamma} rays or lifetime measurement of positron, and secondary particle measurements using positron microscope, positron electron ray diffraction, flight time method and so forth. In particular, these recent years, high intensity slow positron beams were possible using accelerators like electron linac and its application is increasing. In this report, pulse shortening method for high intensity slow positron beam, and incidence energy variable positron lifetime measurement method using this slow pulsed beam and flight time type positron-annihilation-induced auger electron spectroscopy are outlined. In future, these measurements can be possible to carry out with high resolution and also with high counting rate if higher intensity monochromatic excellent positron beam than present one is produced. 31 refs., 5 figs.

  16. The generation and development of the moderators for slow positron beam

    International Nuclear Information System (INIS)

    Yu Weizhong; Yuan Jiaping

    2001-01-01

    The positron annihilation technique is a sensitive tool for studying microdefects and phase transitions in various materials. Usually the energy of positrons is on the order of MeV and the implantation depth about 100 microns, so the bulk average defect density can be studied. In a slow positron beam the positron energy is about keV and the implantation depth a few microns, so surface defects can be detected. Positron moderator is the key device for obtaining a slow positron beam. The authors review the history and development of the positron moderator, including four methods that convert fast positrons into slow mono-energetic positrons and five array types. The tungsten moderator is the most widely used one while the inert gas solid moderator is the most efficient. Field-enhanced moderators with their high efficiency have great potential but need to be developed. The vane arrangement is the most commonly found

  17. Dynamics of positron beam from a convertor target while beam additional accelerating in a travelling wave electron linac

    International Nuclear Information System (INIS)

    Dzhilavyan, L.Z.; Karev, A.I.

    1981-01-01

    The results of experimental and theoretical investigations of the dynamics of a positron beam produced in a tantalum converter of the 6 mm thickness in the process of beam reacceleration in an electron linac (ELA) are presented. The mean finite positron currents and their dependences on the accelerating electric field are measured. The energy spectra of accelerated positrons are given. A good agreement between the calculated and experimental data is shown. As a result of investigations some peculiarities of positron production on the ELA intersection targets, which are defined by both the initial positron beam parameters from the converter and the dynamics of positron reacceleration in the ELA [ru

  18. A Southern African positron beam

    International Nuclear Information System (INIS)

    Britton, D.T.; Haerting, M.; Teemane, M.R.B.; Mills, S.; Nortier, F.M.; Van der Walt, T.N.

    1997-01-01

    The first stage of a state of the art positron beam, being constructed at the University of Cape Town, is currently being brought into operation. This is the first positron beam on the African continent, as well as being the first positron beam dedicated to solid and surface studies in the southern hemisphere. The project also contains a high proportion of local development, including the encapsulated 22 Na positron source developed by our collaboration. Novel features in the design include a purely magnetic in-line deflector, working in the solenoidal guiding field, to eliminate unmoderated positrons and block the direct line of sight to the source. A combined magnetic projector and single pole probe forming lens is being implemented in the second phase of construction to achieve a spot size of 10 μm without remoderation

  19. Generation of slow positron beam and beam bunching

    International Nuclear Information System (INIS)

    Azuma, O.; Satoh, T.; Shitoh, M.; Kaneko, N.; Kawaratani, T.; Hara, O.

    1994-01-01

    Two items are described in this report. One is about the outline of our slow positron beam system, which has been fabricated as a commercial prototype. The other is about the calculation result of positron beam bunching, which will be an additional function to the system. (author)

  20. Positron-acoustic waves in an electron-positron plasma with an electron beam

    International Nuclear Information System (INIS)

    Nejoh, Y.N.

    1996-01-01

    The nonlinear wave structures of large-amplitude positron-acoustic waves are studied in an electron-positron plasma in the presence of an electron beam with finite temperature and hot electrons and positrons. The region where positron-acoustic waves exist is presented by analysing the structure of the pseudopotential. The region depends sensitively on the positron density, the positron temperature and the electron beam temperature. It is shown that the maximum amplitude of the wave decreases as the positron temperature increases, and the region of positron-acoustic waves spreads as the positron temperature increases. 11 refs., 5 figs

  1. Present status of the low energy linac-based slow positron beam and positronium spectrometer in Saclay

    Science.gov (United States)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Reymond, J.-M.; Ruiz, N.; Sacquin, Y.; Vallage, B.

    2014-04-01

    A new slow positron beamline featuring a large acceptance positronium lifetime spectrometer has been constructed and tested at the linac-based slow positron source at IRFU CEA Saclay, France. The new instrument will be used in the development of a dense positronium target cloud for the GBAR experiment. The GBAR project aims at precise measurement of the gravitational acceleration of antihydrogen in the gravitational field of the Earth. Beyond application in fundamental science, the positron spectrometer will be used in materials research, for testing thin porous films and layers by means of positronium annihilation. The slow positron beamline is being used as a test bench to develop further instrumentation for positron annihilation spectroscopy (Ps time-of-flight, pulsed positron beam). The positron source is built on a low energy linear electron accelerator (linac). The 4.3 MeV electron energy used is well below the photoneutron threshold, making the source a genuine on-off device, without remaining radioactivity. The spectrometer features large BGO (Bismuth Germanate) scintillator detectors, with sufficiently large acceptance to detect all ortho-positronium annihilation lifetime components (annihilation in vacuum and in nanopores).

  2. The proposed INEL intense slow positron source, beam line, and positron microscope facility

    International Nuclear Information System (INIS)

    Makowitz, H.; Denison, A.B.; Brown, B.

    1993-01-01

    A program is currently underway at the Idaho National Engineering Laboratory (INEL) to design and construct an Intense Slow Positron Beam Facility with an associated Positron Microscope. Positron beams have been shown to be valuable research tools and have potential application in industrial processing and nondestructive evaluation (microelectronics, etc.). The limit of resolution or overall usefulness of the technique has been limited because of lack of sufficient intensity. The goal of the INEL positron beam is ≥ 10 12 slow e+/s over a 0.03 cm diameter which represents a 10 3 to 10 4 advancement in beam current over existing beam facilities. The INEL is an ideal site for such a facility because of the nuclear reactors capable of producing intense positron sources and the personnel and facilities capable of handling high levels of radioactivity. A design using 58 Co with moderators and remoderators in conjunction with electrostatic positron beam optics has been reached after numerous computer code studies. Proof-of-principle electron tests have demonstrated the feasibility of the large area source focusing optics. The positron microscope development is occurring in conjunction with the University of Michigan positron microscope group. Such a Beam Facility and associated Intense Slow Positron Source (ISPS) can also be utilized for the generation and study of positron, and positron electron plasmas at ≤ 10 14 particles/cm 3 with plasma temperatures ranging from an eV to many keV, as well as an intense x-ray source via positron channeling radiation. The possibility of a tunable x-ray laser based on channeling positron radiation also exists. In this discussion the authors will present a progress report on various activities associated with the INEL ISPS

  3. Scattering of thermal photons by a 46 GeV positron beam at LEP

    International Nuclear Information System (INIS)

    Bini, C.; De Zorzi, G.; Diambrini-Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1991-01-01

    The scattering of thermal photons present in the vacuum pipe of LEP against the high energy positron beam has been detected. The spectrum of the back-scattered photons is presented for a positron beam energy of 46.1 GeV. Measurements have been performed in the interaction region 1 with the LEP-5 experiment calorimeter. (orig.)

  4. Studies of defects in the near-surface region and at interfaces using low energy positron beams

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.

    1995-01-01

    Positron Annihilation Spectroscopy (PAS) is a powerful probe to study open-volume defects in solids. Its success is due to the propensity of positrons to seek out low-density regions of a solid, such as vacancies and voids, and the emissions of gamma rays from their annihilations that carry information about the local electronic environment. The development of low-energy positron beams allows probing of defects to depths of few microns, and can successfully characterize defects in the near-surface and interface regions of several technologically important systems. This review focuses on recent studies conducted on semiconductor-based systems

  5. Studies of defects in the near-surface region and at interfaces using low energy positron beams

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.

    1997-01-01

    Positron annihilation spectroscopy (PAS) is a powerful probe to study open-volume defects in solids. Its success is due to the propensity of positrons to seek out low-density regions of a solid, such as vacancies and voids, and the emissions of gamma rays from their annihilations that carry information about the local electronic environment. The development of low-energy positron beams allows probing of defects to depths of few microns, and can successfully characterize defects in the near-surface and interface regions of several technologically important systems. This review focuses on recent studies conducted on semiconductor-based systems. (author)

  6. A Magnetic Transport Middle Eastern Positron Beam

    International Nuclear Information System (INIS)

    Al-Qaradawi, I.Y.; Britton, D.T.; Rajaraman, R.; Abdulmalik, D.

    2008-01-01

    A magnetically guided slow positron beam is being constructed at Qatar University and is currently being optimised for regular operation. This is the first positron beam in the Middle East, as well as being the first Arabic positron beam. Novel features in the design include a purely magnetic in-line deflector, working in the solenoid guiding field, to eliminate un-moderated positrons and block the direct line of sight to the source. The impact of this all-magnetic transport on the Larmor radius and resultant beam characteristics are studied by SIMION simulations for both ideal and real life magnetic field variations. These results are discussed in light of the coupled effect arising from electrostatic beam extraction

  7. Positron annihilation in a metal-oxide semiconductor studied by using a pulsed monoenergetic positron beam

    Science.gov (United States)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.

    1993-12-01

    The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.

  8. Opportunities and challenges of a low-energy positron source in the LERF

    Science.gov (United States)

    Benson, Stephen; Wojtsekhowski, Bogdan; Vlahovic, Branislav; Golge, Serkan

    2018-05-01

    Though there are many applications of low energy positrons, many experiments are source limited. Using the LERF accelerator at the Thomas Jefferson National Accelerator Facility, it is possible to build a high brightness source of very low-energy positrons. The accelerator requirements are well within the capabilities of the installed hardware. The accelerator can produce 120 kW of beam with a beam energy of up to 170 MeV. For these experiments, we only need run at up to 120 MeV. The gamma-to-positron converter must be able to absorb 20% of the beam power that the linac delivers. At this low an energy the converter, though challenging, is possible. The transport of the low energy positrons from the production target to the next stage, where the energy is reduced even further, must have a very large acceptance to be able to efficiently transport the flux of positrons from the positron production target to the moderator. We propose to accomplish such a transport by means of a guiding solenoidal field with a novel endcap design. In this presentation, we will present the proposed schemes necessary to realize such a high brightness positron source.

  9. Techniques for slow positron beam generation and the applications

    International Nuclear Information System (INIS)

    Okada, Sohei

    1994-01-01

    Slow positron beams have been expected to be a powerful tool for observation of nature in wide range of research fields from materials science to basic physics, chemistry and biology. In this paper, at first, the beam technology is reviewed, which includes the positron generation, the transformation to slow positron beams and the beam manipulation such as beam stretching, bunching and brightness enhancement. Next, the present status of the slow positron beam applications to a variety of fields is demonstrated in terms of special characteristics of positron, that is, depth controllability, surface sensitivity, unique ionization channels and elemental anti-particle properties. Finally, prospects to produce intense slow positron beams are described. (author) 65 refs

  10. On Positronium Formation in Crystalline and Amorphous Ice at Low Positron Energy

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1986-01-01

    The positronium (Ps) yield for ice, measured by Eldrup et al. using a low-energy positron beam, is discussed in terms of the spur model of Ps formation. The pronounced maxima in the Ps yield for crystalline ice at positron energies below 65 eV are well explained by effects due to energy conservat......The positronium (Ps) yield for ice, measured by Eldrup et al. using a low-energy positron beam, is discussed in terms of the spur model of Ps formation. The pronounced maxima in the Ps yield for crystalline ice at positron energies below 65 eV are well explained by effects due to energy...

  11. The Intense Slow Positron Beam Facility at the NC State University PULSTAR Reactor

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Moxom, Jeremy; Hathaway, Alfred G.; Brown, Benjamin; Gidley, David W.; Vallery, Richard; Xu, Jun

    2009-01-01

    An intense slow positron beam is in its early stages of operation at the 1-MW open-pool PULSTAR research reactor at North Carolina State University. The positron beam line is installed in a beam port that has a 30-cmx30-cm cross sectional view of the core. The positrons are created in a tungsten converter/moderator by pair-production using gamma rays produced in the reactor core and by neutron capture reactions in cadmium cladding surrounding the tungsten. Upon moderation, slow (∼3 eV) positrons that are emitted from the moderator are electrostatically extracted, focused and magnetically guided until they exit the reactor biological shield with 1-keV energy, approximately 3-cm beam diameter and an intensity exceeding 6x10 8 positrons per second. A magnetic beam switch and transport system has been installed and tested that directs the beam into one of two spectrometers. The spectrometers are designed to implement state-of-the-art PALS and DBS techniques to perform positron and positronium annihilation studies of nanophases in matter.

  12. Status of positron beams for dark photons experiments

    Directory of Open Access Journals (Sweden)

    Valente Paolo

    2017-01-01

    Full Text Available High energy positron beams are an important tool for fixed-target experiments searching for new particles produced in the annihilation on atomic electrons of a target. The status of existing or planned infrastructures is reviewed.

  13. Formation of a high intensity low energy positron string

    Science.gov (United States)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  14. Formation of a high intensity low energy positron string

    International Nuclear Information System (INIS)

    Donets, E.D.; Donets, E.E.; Syresin, E.M.; Itahashi, T.; Dubinov, A.E.

    2004-01-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5x10 9 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production

  15. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhe, E-mail: zhe.duan@ihep.ac.cn [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Bai, Mei [Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Barber, Desmond P. [Deutsches Elektronen-Synchrotron, DESY, 22607 Hamburg (Germany); Qin, Qing [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China)

    2015-09-01

    With the recently emerging global interest in building a next generation of circular electron–positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code (PTC) (Schmidt et al., 2002 [1]) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1979 [2]) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called “correlated” crossing of spin resonances during synchrotron oscillations at current energies evolves into “uncorrelated” crossing of spin resonances at ultra-high energies.

  16. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    International Nuclear Information System (INIS)

    Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing

    2015-04-01

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.

  17. A new slow positron beam facility using a compact cyclotron

    International Nuclear Information System (INIS)

    Hirose, Masafumi

    1998-01-01

    In 1993, Sumitomo Heavy Industries became the first in the world to successfully produce a slow positron beam using a compact cyclotron. Slow positron beam production using an accelerator had mainly consisted of using an electron linear accelerator (LINAC). However, the newly developed system that uses a compact cyclotron enabled cost reduction, downsizing of equipment, production of a DC slow positron beam, a polarized slow positron beam, and other benefits. After that, a genuine slow positron beam facility was developed with the construction of compact cyclotron No.2, and beam production in the new facility has already been started. The features of this new slow positron beam facility are explained below. 1) It is the world's first compact slow positron beam facility using a compact cyclotron. 2) It is the only genuine slow positron beam facility in the world which incorporates the production and use of a slow positron beam in the design stage of the cyclotron. To use a slow positron beam for non-destructive detection of lattice defects in semiconductor material, it is necessary to convert the beam into ultra-short pulses of several hundreds of pico-seconds. Sumitomo Heavy Industries has devised a new short-pulsing method (i.e. an induction bunching method) that enables the conversion of a slow positron beam into short pulses with an optimum pulsing electric field change, and succeeded in converting a slow positron beam into short pulses using this method for the first time in the world. Non-destructive detection of lattice defects in semiconductor material using this equipment has already been started, and some information about the depth distribution, size, density, etc. of lattice defects has already been obtained. (J.P.N.)

  18. Investigation and realization of a slow-positron beam

    International Nuclear Information System (INIS)

    Ruiz, Nicolas

    2011-01-01

    This research thesis first proposes a presentation of the GBAR project (Gravitational Behaviour of Anti-hydrogen at Rest) within which this research took place, and which aims at performing the first direct test of the Weak Equivalence Principle on anti-matter by studying the free fall of anti-hydrogen atoms in the Earth gravitational field. The author presents different aspects of this project: scientific objective, experiment principle and structure, detailed structure (positron beam, positron trap, positron/positronium conversion, anti-proton beam, trapping, slowing down and neutralisation of anti-hydrogen ions). The author then reports the design of the positron beam: study of source technology, studies related to the fast positron source, design of the low positron line (approach, functions, simulations, technology). The two last chapters report the construction and the characterization of the slow-positron line [fr

  19. Application of electron beam, ion beam and positron beam to polymer sciences

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1999-01-01

    Full text: Particle beams are finding increasing application in material sciences and the interest covers both applied as well as fundamental investigations. In the present talk application of electron and ion beams in several polymers such as polysilanes, polystyrene, polyolefins, polymethylmethacrylates and related polymers will be presented. It includes among other investigations (such as product analysis) pulse radiolysis studies and effect of LET on polymers. Importance of positron studies in material sciences especially bulk polymers is well documented. A relatively new technique, namely, positron beam application especially in thin film polymers is a new and emerging areas. The interest ranges from applied aspects as well as fundamental understanding of surfaces and interfaces. The present talk will detail the development of a pulsed positron beam using LINAC at Institute of Scientific and Industrial Research (ISIR) as well as its applications to polymer thin films

  20. Beam Collimation Studies for the ILC Positron Source

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.; /Fermilab; Nosochkov, Y.; Zhou, F.; /SLAC

    2008-06-26

    Results of the collimation studies for the ILC positron source beam line are presented. The calculations of primary positron beam loss are done using the ELEGANT code. The secondary positron and electron beam loss, the synchrotron radiation along the beam line and the bremsstrahlung radiation in the collimators are simulated using the STRUCT code. The first part of the collimation system, located right after the positron source target (0.125 GeV), is used for protection of the RF Linac sections from heating and radiation. The second part of the system is used for final collimation before the beam injection into the Damping Ring at 5 GeV. The calculated power loss in the collimation region is within 100 W/m, with the loss in the collimators of 0.2-5 kW. The beam transfer efficiency from the target to the Damping Ring is 13.5%.

  1. Positron beam studies of solids and surfaces: A summary

    International Nuclear Information System (INIS)

    Coleman, P.G.

    2006-01-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations

  2. Positron beam studies of solids and surfaces: A summary

    Science.gov (United States)

    Coleman, P. G.

    2006-02-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations.

  3. Low-energy positron and electron diffraction and positron-stimulated secondary electron emission from Cu(100)

    International Nuclear Information System (INIS)

    Weiss, A.H.

    1983-01-01

    The results of two series of experiments are reported. In the first, an electrostatically guided beam of low-energy (40-400 eV) positrons, delta/sub p/ was used to study low-energy positron diffraction (LEPD) from a Cu(100) surface under ultrahigh-vacuum conditions. Low-energy electron diffraction (LEED) data were obtained from the same sample in the same apparatus. Comparison of LEPD and LEED intensity versus energy data with model calculations made using computer programs developed by C.B. Duke and collaborators indicated that: LEPD data is adequately modeled using potentials with no exchange-correlation term. The inelastic mean free path, lambda/sub ee/, is shorter for positrons than for electrons at low (< approx.80 eV). LEED is better than LEPD at making a determination of the first-layer spacing of Cu(100) for the particular data set reported. In the second set of experiments, the same apparatus and sample were used to compare positron- and electron-stimulated secondary-electron emission (PSSEE and ESSEE). The results were found to be consistent with existing models of secondary-electron production for metals. The energy distributions of secondary-electrons had broad low-energy (<10 eV) peaks for both positron and electron stimulation. But the PSEE distribution showed no elastic peak. Measurements of secondary-electron angular distributions, found to be cosine-like in both the PSSEE and ESSEE case, were used to obtain total secondary yield ratios, delta, at four beam energies ranging from 40-400 eV. The secondary yield ratio for primary positrons and the yield for primary electrons, delta/sub e/, were similar at these energies. For 400-eV primary particles the secondary yields were found to be delta/sub p/ = 0.94 +/- 0.12 and delta/sub e/ = 0.94 +/- 0./12, giving a ratio of unity for positron-stimulated secondary yield to electron-stimulated secondary yield

  4. Low-energy positron interactions with atoms and molecules

    International Nuclear Information System (INIS)

    Surko, C M; Gribakin, G F; Buckman, S J

    2005-01-01

    This paper is a review of low-energy positron interactions with atoms and molecules. Processes of interest include elastic scattering, electronic and vibrational excitation, ionization, positronium formation and annihilation. An overview is presented of the currently available theoretical and experimental techniques to study these phenomena, including the use of trap-based positron beam sources to study collision processes with improved energy resolution. State-resolved measurements of electronic and vibrational excitation cross sections and measurement of annihilation rates in atoms and molecules as a function of incident positron energy are discussed. Where data are available, comparisons are made with analogous electron scattering cross sections. Resonance phenomena, common in electron scattering, appear to be less common in positron scattering. Possible exceptions include the sharp onsets of positron-impact electronic and vibrational excitation of selected molecules. Recent energy-resolved studies of positron annihilation in hydrocarbons containing more than a few carbon atoms provide direct evidence that vibrational Feshbach resonances underpin the anomalously large annihilation rates observed for many polyatomic species. We discuss open questions regarding this process in larger molecules, as well as positron annihilation in smaller molecules where the theoretical picture is less clear. (topical review)

  5. Vacancy-type defects and their annealing processes in ion-implanted Si studied by a variable-energy positron beam

    International Nuclear Information System (INIS)

    Uedono, A.; Wei, L.; Tanigawa, S.; Sugiura, J.; Ogasawara, M.

    1992-01-01

    Vacancy-type defects in B + -, P + - and Si + -ion implanted SiO 2 (43 nm)/Si(100) and Si(100) were studied by a variable-energy positron beam. Depth distributions of vacancy-type defects were obtained from measurements of Doppler broadening profiles of the positron annihilation as a function of incident positron energy. For 200-keV P + -implanted specimen with a dose of 5 x 10 13 P/cm 2 , the damaged layers induced by ion-implantation were found to extend far beyond the stopping range of P-atoms. For 80-keV B + -implanted SiO 2 (43 nm)/Si(100) specimens with different ion-currents, an increase of the ion-current introduced a homogeneous amorphous layer in the subsurface region. Dominant defect species in B + - and P + -implanted specimen were identified as vacancy clusters from their annealing behavior. (author)

  6. Next generation of electron-positron colliding beam machines

    International Nuclear Information System (INIS)

    Richter, B.

    1979-03-01

    The contribution of electron-positron colliding beam experiments to high-energy physics in the 1970's has been prodigious. From the research done with the two highest-energy e + e - machines of the present generation of these devices, have come such things as the discovery and illumination of the properties of the psi family, charmed particles, a new heavy lepton, non-ambigious evidence for hadronic jets, etc. The rapid pace of new developments in physics from such machines comes about for two reasons. First, the electron-positron annihilation process at present energies is particularly simple and well understood, making the problem of determining the quantum numbers and properties of new particles particularly simple. Second, in electron-positron annihilation all final states are on a relatively equal footing, and small production cross sections are compensated for by a lack of confusing background. For example, the rate of production of charmed particles at the SPEAR storage ring at SLAC and the DORIS storage ring at DESY is 3 or 4 orders of magnitude less than the rate of production at FNAL and the SPS. Yet these particles were first found at the storage rings where the background cross sections are comparable to the signal cross section, and have not yet been observed directly by their hadronic decays at the proton machines where the background cross sections are 4 orders of magnitude larger than the signal cross sections. The machines PEP at SLAC and PETRA at DESY will soon be operating at 35 to 40 GeV cm to explore new regions of energy. Studies of electron-positron annihilation at much higher energies than presently planned have a great deal to teach, not only about particle structure and dynamics, but also about the nature of the weak interaction. Some of the physics which can be done with such machines is discussed with a view toward getting an idea of the minimum required energy for the new generation of colliding beam devices

  7. Performance analysis of the intense slow-positron beam at the NC State University PULSTAR reactor

    International Nuclear Information System (INIS)

    Moxom, J.; Hathaway, A.G.; Bodnaruk, E.W.; Hawari, A.I.; Xu, J.

    2007-01-01

    An intense positron beam, for application in nanophase characterization, is now under construction at the 1 MW PULSTAR nuclear reactor at North Carolina State University (NCSU). A tungsten converter/moderator is used, allowing positrons to be emitted from the surface with energies of a few electron volts. These slow positrons will be extracted from the moderator and formed into a beam by electrostatic lenses and then injected into a solenoidal magnetic field for transport to one of three experimental stations, via a beam switch. To optimize the performance of the beam and to predict the slow-positron intensity, a series of simulations were performed. A specialized Monte-Carlo routine was integrated into the charged-particle transport calculations to allow accounting for the probabilities of positron re-emission and backscattering from multiple-bank moderator/converter configurations. The results indicate that either a two-bank or a four-bank tungsten moderator/converter system is preferred for the final beam design. The predicted slow-positron beam intensities range from nearly 7x10 8 to 9x10 8 e + /s for the two-bank and the four-bank systems, respectively

  8. Design of an efficient pulsing system for a slow-positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Nagayasu; Suzuki, Takenori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Kanazawa, Ikuzo; Ito, Yasuo

    1996-07-01

    In this paper, a new design of a pulsed slow positron system for PALS measurement is reported. By using this new system, it will be possible to obtain a short-pulsed slow-positron beam with high efficiency ({>=}50%) and a relatively low minimum energy ({approx}200 eV). This system is also easy to construct on the laboratory scale. (J.P.N.)

  9. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    Science.gov (United States)

    Lazzeroni, Marta; Brahme, Anders

    2014-02-01

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET-CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator.

  10. CO ionization and fragmentation by low-energy positrons.

    Science.gov (United States)

    Schrader, D. M.; Moxom, J.

    2000-06-01

    Using the positron beam associated with the electron LINAC ORELA at Oak Ridge National Laboratory, ion yields from carbon monoxide colliding with positrons of low energy are observed as functions of positron beam energy from threshold to 100 eV. Observed appearence potentials are compared with those for electron bombardment, and are interpreted with the aid of potential energy curves for CO, CO^+, and CO^2+. The latter are calculated in the present work at the FORS/MCSCF level using the code GAMESS.^(a) Present results are compared with those of Bluhme, et al.^(b) Progress on our work with the targets N2 and O2 will be discussed and with present results for CO. It is significant that CO and N2 are very similar, but that CO gives a richer mass spectrum because the atomic cations are experimentally distinguishable from the molecular dication. ^(a) M. W. Schmidt, et al., J. Comput. Chem. 14, 1347 (1993). ^(b) H. Bluhme, et al., J. Phys. B 32, 5825 (1999).

  11. KEK-IMSS Slow Positron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, T; Wada, K; Yagishita, A; Kosuge, T; Saito, Y; Kurihara, T; Kikuchi, T; Shirakawa, A; Sanami, T; Ikeda, M; Ohsawa, S; Kakihara, K; Shidara, T, E-mail: toshio.hyodo@kek.jp [High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps{sup -}). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a {sup 22}Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  12. Positron beam analysis of polymer/metal interfaces under stress

    NARCIS (Netherlands)

    Escobar Galindo, R.; van Veen, A.; Garcia, A.A.; Schut, H.; de Hosson, J.T.M.; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    The polymers Epoxy and Poly(Methyl MethAcrylate) spin coated on Interstitial Free (IF) steel were subjected to external stresses and studied using the Delft Variable Energy Positron (VEP) beam facility. The polymer/metal interface was identified using an S-W map. After tensile experiments vacancy

  13. Planned Positron Factory project

    International Nuclear Information System (INIS)

    Okada, Sohei

    1990-01-01

    The Japan Atomic Energy Research Institute, JAERI, has started, drafting a construction plan for the 'Positron Factory', in which intense energy-controllable monoenergetic positron beams are produced from pair-production reactions caused by high-energy electrons from a linac. The JAERI organized a planning committee to provide a basic picture for the Positron Factory. This article presents an overview of the interactions of positrons, intense positron sources and the research program and facilities planned for the project. The interactions of positrons and intense positron sources are discussed focusing on major characteristics of positrons in different energy ranges. The research program for the Positron Factory is then outlined, focusing on advanced positron annihilation techniques, positron spectroscopy (diffraction, scattering, channeling, microscopy), basic positron physics (exotic particle science), and positron beam technology. Discussion is also made of facilities required for the Positron Factory. (N.K.)

  14. Developments on positron scattering experiments including beam production and detection

    International Nuclear Information System (INIS)

    Selim, F.A.; Golovchenko, J.A.

    2001-01-01

    Positron scattering and channeling experiments require high quality (low emittance) beams. A new electrostatic optics system for extracting positrons from a moderator is presented. The system features improved efficiency of focusing and beam transport of moderated positrons emitted with angular spreads up to ± 30 , with good phase space characteristics. The presented optics also provides a high degree of freedom in controlling exit beam trajectories. The system has been installed in the LLNL Pelletron accelerator and showed great enhancement on the beam quality. On the detection side, image plates were used to measure the angular distributions of positrons transmitted through the gold crystals. The measurements demonstrate the advantages of image plates as quantitative position sensitive detectors for positrons. (orig.)

  15. Multi-GeV electron-positron beam generation from laser-electron scattering.

    Science.gov (United States)

    Vranic, Marija; Klimo, Ondrej; Korn, Georg; Weber, Stefan

    2018-03-16

    The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments.

  16. A novel design for a variable energy positron lifetime spectrometer

    International Nuclear Information System (INIS)

    Chen, D.; Zhang, J.D.; Cheng, C.C.; Beling, C.D.; Fung, S.

    2008-01-01

    We present computer simulations of a new design of a variable energy positron lifetime beam that uses for a start signal the secondary electron emission from a 25-nm thick carbon foil (C-foil) located in front of the sample. A needle of ∼30 μm diameter is positioned on-axis right behind the foil, creating a radial electric field that deflects the secondary electrons radially outward so as to miss the sample and to hit the micro-channel plate (MCP) detector placed down beam. The MCP signal provides the start signal for the positron lifetime spectrometer. A grid can be further introduced between the sample holder and the MCP to yield a cleaner signal by preventing the positrons with large transmitted scattering angle from hitting the MCP. The cylindrical symmetry of this design reduces the experimental complexity and offers good timing resolution. We show that the design is robust against the transmitted energy and angle of the secondary electrons and positrons

  17. The energy stabilization for the SLC scavenger beam

    International Nuclear Information System (INIS)

    Hsu, I.; Browne, M.; Himel, T.; Humphrey, R.; Jobe, K.; Ross, M.; Pellegrin, J.L.; Seeman, J.

    1991-01-01

    The energy of the SLC scavenger beam which is used to produce positrons must be carefully maintained so that the beam can be transported through the collimators in the dispersive region of the extraction line which leads from the Linac to the positron target. A feedforward control loop has been developed to compensate the energy fluctuations due to the beam intensity fluctuations. The loop detects the beam intensities in the damping rings and then calculates how much energy needs to be compensated due to beam loading effects. The energy is corrected by adjusting the acceleration phases of two sets of klystrons right before the extraction. Because there is feedback loop using the same controls, their interaction needs to be carefully treated. This paper presents an overview of the feedforward algorithms

  18. The energy stabilization for the SLC scavenger beam

    International Nuclear Information System (INIS)

    Hsu, Ian; Browne, M.; Himel, T.; Humphrey, R.; Jobe, K.; Ross, M.; Pellegrin, J.L.; Seeman, J.

    1990-08-01

    The energy of the SLC scavenger beam which is used to produce positrons must be carefully maintained so that the beam can be transported through the collimators in the dispersive region of the extraction line which leads from the Linac to the positron target. A feedforward control loop has been developed to compensate the energy fluctuations due to the beam intensity fluctuations. The loop detects the beam intensities in the damping rings and then calculates how much energy needs to be compensated due to beam loading effects. The energy is corrected by adjusting the acceleration phases of two sets of klystrons right before the extraction. Because there is feedback loop using the same controls, their interaction needs to be carefully treated. This paper presents an overview of the feedforward algorithms. 3 figs

  19. Positron astrophysics and areas of relation to low-energy positron physics

    International Nuclear Information System (INIS)

    Guessoum, N.

    2014-01-01

    I briefly review our general knowledge of positron astrophysics, focusing mostly on the theoretical and modelling aspects. The experimental/observational aspects of the topic have recently been reviewed elsewhere [E. Churazov et al., Mon. Nat. R. Astron. Soc. 411, 1727 (2011); N. Prantazos et al., Rev. Mod. Phys. 83, 1001 (2011)]. In particular, I highlight the interactions and cross sections of the reactions that the positrons undergo in various cosmic media. Indeed, these must be of high interest to both the positron astrophysics community and the low-energy positron physics community in trying to find common areas of potential collaboration for the future or areas of research that will help the astrophysics community make further progress on the problem. The processes undergone by positrons from the moments of their birth to their annihilation (in the interstellar medium or other locations) are thus examined. The physics of the positron interactions with gases and solids (dust grains) and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation take place, are briefly reviewed. An explanation is given about how all the relevant physical information is taken into account in order to calculate annihilation rates and spectra of the 511 keV emission in the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. In particular, an attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of low-energy positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place

  20. BEPC II positron source

    International Nuclear Information System (INIS)

    Pei Guoxi; Sun Yaolin; Liu Jintong; Chi Yunlong; Liu Yucheng; Liu Nianzong

    2006-01-01

    BEPC II-an upgrade project of the Beijing Electron Positron Collider (BEPC) is a factory type of e + e - collider. The fundamental requirements for its injector linac are the beam energy of 1.89 GeV for on-energy injection and a 40 mA positron beam current at the linac end with a low beam emittance of 1.6 μm and a low energy spread of ±0.5% so as to guarantee a higher injection rate (≥50 mA/min) to the storage ring. Since the positron flux is proportional to the primary electron beam power on the target, the authors will increase the electron gun current from 4A to 10A by using a new electron gun system and increase the primary electron energy from 120 MeV to 240 MeV. The positron source itself is an extremely important system for producing more positrons, including a positron converter target chamber, a 12kA flux modulator, the 7m focusing module with DC power supplies and the support. The new positron production linac from the electron gun to the positron source has been installed into the tunnel. In what follows, the authors will emphasize the positron source design, manufacture and tests. (authors)

  1. Nuclear-charge and positron-energy dependence of the single-quantum annihilation of positrons

    International Nuclear Information System (INIS)

    Palathingal, J.C.; Asoka-Kumar, P.; Lynn, K.G.; Wu, X.Y.

    1995-01-01

    We report an experimental study of the single-quantum annihilation of positrons in a number of elements having atomic numbers between 49 and 90, utilizing a monoenergetic positron beam. Measurements were made of the differential cross sections for the forward direction for the K, L, and M atomic shells in targets of Th, Pb, Au, Hf, Gd, and In, having thicknesses that vary between 2.7 and 4.4 mg/cm 2 . A shielded HPGe detector of high relative photopeak efficiency was used for recording the photon spectrum. Values for the individual atomic shells were obtained in the positron kinetic-energy range 1.02--2.24 MeV. It was observed that the differential cross sections measured for the forward direction varied with energy for each major shell almost alike so that the shell ratios appeared to remain constant while the positron energy varied. The dependence of the cross section on the atomic number Z of the target element was tested for each of the major shells at various energies of measurement. It was seen that the cross sections follow a Z ν relation with ν∼5.1 as the exponent for the K shell. For the higher shells, the exponent is approximately 6.4, which is significantly larger. It was also noted that this pattern is fairly independent of the positron energy. The results on the Z dependence are seen to be clearly at variance with the most updated theoretical predictions

  2. A high intensity positron beam at the Brookhaven reactor

    International Nuclear Information System (INIS)

    Weber, M.; Lynn, K.G.; Roellig, L.O.; Mills, A.P. Jr.; Moodenbaugh, A.R.

    1987-01-01

    We describe a high intensity, low energy positron beam utilizing high specific activity /sup 64/Cu sources (870 Ci/g) produced in a reactor with high thermal neutron flux. Fast-to-slow moderation can be performed in a self moderation mode or with a transmission moderator. Slow positron rates up to 1.6 x 10/sup 8/ e/sup +//s with a half life of 12.8 h are calculated. Up to 1.0 x 10/sup 8/ e/sup +//s have been observed. New developments including a Ne moderator and an on-line isotope separation process are discussed. 21 refs., 9 figs

  3. Ice and Atoms: experiments with laboratory-based positron beams

    International Nuclear Information System (INIS)

    Coleman, P G

    2011-01-01

    This short review presents results of new positron and positronium (Ps) experiments in condensed matter and atomic physics, as an illustration of the satisfying variety of scientific endeavours involving positron beams which can be pursued with relatively simple apparatus in a university laboratory environment. The first of these two studies - on ice films - is an example of how positrons and Ps can provide new insights into an important system which has been widely interrogated by other techniques. The second is an example of how simple positron beam systems can still provide interesting information - here on a current interesting fundamental problem in positron atomic physics.

  4. Positron astrophysics and areas of relation to low-energy positron physics

    Science.gov (United States)

    Guessoum, Nidhal

    2014-05-01

    I briefly review our general knowledge of positron astrophysics, focusing mostly on the theoretical and modelling aspects. The experimental/observational aspects of the topic have recently been reviewed elsewhere [E. Churazov et al., Mon. Nat. R. Astron. Soc. 411, 1727 (2011); N. Prantazos et al., Rev. Mod. Phys. 83, 1001 (2011)]. In particular, I highlight the interactions and cross sections of the reactions that the positrons undergo in various cosmic media. Indeed, these must be of high interest to both the positron astrophysics community and the low-energy positron physics community in trying to find common areas of potential collaboration for the future or areas of research that will help the astrophysics community make further progress on the problem. The processes undergone by positrons from the moments of their birth to their annihilation (in the interstellar medium or other locations) are thus examined. The physics of the positron interactions with gases and solids (dust grains) and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation take place, are briefly reviewed. An explanation is given about how all the relevant physical information is taken into account in order to calculate annihilation rates and spectra of the 511 keV emission in the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. In particular, an attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of low-energy positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place

  5. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    Science.gov (United States)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  6. Positron deposition in plasmas by positronium beam ionization and transport of positrons in tokamak plasmas

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1986-11-01

    In a recently proposed positron transport experiment, positrons would be deposited in a fusion plasma by forming a positronium (Ps) beam and passing it through the plasma. Positrons would be deposited as the beam is ionized by plasma ions and electrons. Radial transport of the positrons to the limiter could then be measured by detecting the gamma radiation produced by annihilation of positrons with electrons in the limiter. This would allow measurements of the transport of electron-mass particles and might shed some light on the mechanisms of electron transport in fusion plasmas. In this paper, the deposition and transport of positrons in a tokamak are simulated and the annihilation signal determined for several transport models. Calculations of the expected signals are necessary for the optimal design of a positron transport experiment. There are several mechanisms for the loss of positrons besides transport to the limiter. Annihilation with plasma electrons and reformation of positronium in positron-hydrogen collisions are two such processes. These processes can alter the signal and place restrictions ons on the plasma conditions in which positron transport experiments can be effectively performed

  7. Proposal for an intense slow positron beam facility at PSI

    International Nuclear Information System (INIS)

    Waeber, W.B.; Taqqu, D.; Zimmermann, U.; Solt, G.

    1990-05-01

    In the domain of condensed matter physics and materials sciences monoenergetic slow positrons in the form of highest intensity beams are demonstrated to be extreamly useful and considered to be highly needed. This conclusion has been reached and the scientific relevance of the positron probe has been highlighted at an international workshop in November 1989 at PSI, where the state of the art and the international situation on slow positron beams, the fields of application of intense beams and the technical possibilities at PSI for installing intense positron sources have been evaluated. The participants agreed that a high intensity beam as a large-scale user facility at PSI would serve fundamental and applied research. The analysis of responses given by numerous members of a widespread positron community has revealed a large research potential in the domain of solid-state physics, atomic physics and surface, thin-film and defect physics, for example. The excellent feature of slow positron beams to be a suitable probe also for lattice defects near surfaces or interfaces has attracted the interest not only of science but also of industry.In this report we propose the installation of an intense slow positron beam facility at PSI including various beam lines of different qualities and based on the Cyclotron production of β + emitting source material and on a highest efficiency moderation scheme which exceeds standard moderation efficiencies by two orders of magnitude. In its proposed form, the project is estimated to be realizable in the nineties and costs will amount to between 15 and 20 MSFr. (author) 10 figs., 6 tabs., 78 refs

  8. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    International Nuclear Information System (INIS)

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  9. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  10. Renormalization theory of beam-beam interaction in electron-positron colliders

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1989-07-01

    This note is devoted to explaining the essence of the renormalization theory of beam-beam interaction for carrying out analytical calculations of equilibrium particle distributions in electron-positron colliding beam storage rings. Some new numerical examples are presented such as for betatron tune dependence of the rms beam size. The theory shows reasonably good agreements with the results of computer simulations. 5 refs., 6 figs

  11. Magnetic focusing of an intense slow positron beam for enhanced depth-resolved analysis of thin films and interfaces

    CERN Document Server

    Falub, C V; Mijnarends, P E; Schut, H; Veen, A V

    2002-01-01

    The intense reactor-based slow positron beam (POSH) at the Delft research reactor has been coupled to a Two-Dimensional Angular Correlation of Annihilation Radiation (2D-ACAR) setup. The design is discussed with a new target chamber for the 2D-ACAR setup based on Monte Carlo simulations of the positron trajectories, beam energy distribution and beam transmission in an increasing magnetic field gradient. Numerical simulations and experiment show that when the slow positron beam with a FWHM of 11.6 mm travels in an increasing axial magnetic field created by a strong NdFeB permanent magnet, the intensity loss is negligible above approx 6 keV and a focusing factor of 5 in diameter is achieved. Monte Carlo simulations and Doppler broadening experiments in the target region show that in this configuration the 2D-ACAR setup can be used to perform depth sensitive studies of defects in thin films with a high resolution. The positron implantation energy can be varied from 0 to 25 keV before entering the non-uniform mag...

  12. Calibration of an advanced photon source linac beam position monitor used for positron position measurement of a beam containing both positrons and electrons

    International Nuclear Information System (INIS)

    Sereno, Nicholas S.

    1998-01-01

    The Advanced Photon Source (APS) linac beam position monitors can be used to monitor the position of a beam containing both positrons and electrons. To accomplish this task, both the signal at the bunching frequency of 2856 MHz and the signal at 2x2856 MHz are acquired and processed for each stripline. The positron beam position is obtained by forming a linear combination of both 2856 and 5712 MHz signals for each stripline and then performing the standard difference over sum computation. The required linear combination of the 2856 and 5712 MHz signals depends on the electrical calibration of each stripline/cable combination. In this paper, the calibration constants for both 2856 MHz and 5712 MHz signals for each stripline are determined using a pure beam of electrons. The calibration constants are obtained by measuring the 2856 and 5712 MHz stripline signals at various electron beam currents and positions. Finally, the calibration constants measured using electrons are used to determine positron beam position for the mixed beam case

  13. Observation of the undulator radiation from the positron beam

    International Nuclear Information System (INIS)

    Maezawa, Hideki.

    1986-02-01

    A spectral measurement of the 1st harmonic of the undulator radiation emitted from positron beam was made on Dec. 21, 1985 during a test operation of the Photon Factory storage ring with the 2.5 GeV positron beam which was stored up to 5.5 mA. In comparison to the same measurement performed with the electron beam, no appreciable difference in the spectral properties of the undulator radiation was found between the two cases under the condition of the low beam current of a few mA. (author)

  14. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    International Nuclear Information System (INIS)

    Umlor, M.T.; Keeble, D.J.; Cooke, P.W.

    1994-01-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al 0.32 Ga 0.68 As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al 0.32 Ga 0.68 :Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700 degrees C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450 degrees C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500 degrees C. The nature of the defect was shown to be different for material grown at 350 and 230 degrees C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230 degrees C, respectively

  15. Variable low energy positron beams for depth resolved defect spectroscopy in thin film structures

    International Nuclear Information System (INIS)

    Amarendra, G.; Viswanathan, B.; Venugopal Rao, G.; Parimala, J.; Purniah, B.

    1997-01-01

    The design, development and commissioning details of an ultra high vacuum compatible, magnetically-guided and compact variable low energy positron beam facility are reported. Information pertaining to the nature, concentration and spatial distribution of defects present at various depths in the near-surface layers of a material can be obtained using this technique. Some of the experimental results obtained using this facility, in terms of surface-sensitive positronium fraction measurements on Cu surfaces as well as defect-sensitive Doppler broadening measurements on semiconductor interfaces and ion irradiated silicon are presented. These results essentially provide an illustration of the research capability of the technique for the study of sub-surface regions and thin film interfaces. (author)

  16. Study of surface layer assessment of solids by ultra-slow and short-pulsed positron beams

    International Nuclear Information System (INIS)

    Suzuki, Ryouichi; Ohdaira, Toshiyuki; Mikado, Tomohisa; Yamada, Kawakatsu

    2004-01-01

    Thin films of insulators with low dielectric constant, as a candidate for next generation LSI (large scale integration), were assessed by two dimensional positron life time and wave height measurements using variable incident energy and also short pulsed positron beams. Linkages and openness of nano-scale voids in the films were evaluated by the measurements. Amorphous SiO 2 films were compared with SiCOH films synthesized by plasma CVD (Chemical Vapor Deposition) by measurements of the correlation between positron lifetime and momentum using short-pulsed positron beams. From the measurements, many hydrocarbons were found on void surface of SiCOH films. Positron lifetime measurement gives information about void sizes, and Doppler broadening due to annihilation γ-rays offers electron momentum distribution, which is a counterpart of positron annihilation. Two γ-rays are emitted on the positron annihilation. Coincident measurements of these two γ-rays provide the correlation spectra between positron lifetime and momentum. An instrument for positron annihilation excitation Auger electron spectroscopy (PAES) was improved, and a time-of-flight (TOF) PAES instrument was developed. Double counting rate and high resolution, compared with a conventional Auger electron spectrometer, were attained in elementary analysis using above TOF-PAES instrument. (Y. Kazumata)

  17. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  18. Study of the production and confinement of positron beams. An application to the Linear Accelerator of Orsay

    International Nuclear Information System (INIS)

    Chehab, Robert.

    1975-04-01

    This study on the production and confinement of positron beams is divided into three parts. In the first one, an analytical approximation of lateral, angular and energy distribution is given. This survey is based on the late tables of Messel et Crawford (1970) and is in good agreement with SLAC and FRASCATI estimations and measurements. Positron beam focusing is investigated in the second part: ''quarter wave'' and adiabatically tapered solenoids as well as pediodic multiplets are considered. More specially, positron injector focussing for DCI collision rings is described. In the last part of this work, a comparison between ''quarter wave'' and adiabatically tapered solenoids is presented. Larger total acceptance of the latter is pointed out in the range of medium and higher energy (>=1 GeV) accelerators [fr

  19. EPOS-An intense positron beam project at the ELBE radiation source in Rossendorf

    International Nuclear Information System (INIS)

    Krause-Rehberg, R.; Sachert, S.; Brauer, G.; Rogov, A.; Noack, K.

    2006-01-01

    EPOS, the acronym of ELBE Positron Source, describes a running project to build an intense pulsed beam of mono-energetic positrons (0.2-40 keV) for materials research. Positrons will be created via pair production at a tungsten target using the pulsed 40 MeV electron beam of the superconducting linac electron linac with high brilliance and low emittance (ELBE) at Forschungszentrum Rossendorf (near Dresden, Germany). The chosen design of the system under construction is described and results of calculations simulating the interaction of the electron beam with the target are presented, and positron beam formation and transportation is also discussed

  20. Positron Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Sohei; Sunaga, Hiromi; Kaneko, Hirohisa; Kawasuso, Atsuo; Masuno, Shin-ichi; Takizawa, Haruki; Yotsumoto, Keiichi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    We have started drafting a construction program for the Positron Factory, in which linac-based intense monoenergetic positron beams are planned to be applied for materials science, biotechnology and basic physics and chemistry. A technical survey study confirmed the feasibility of manufacturing a dedicated electron linac of 100 kW class with a beam energy of 100 MeV, which will produce a world-highest monoenergetic positron beam of more than 10{sup 10}/sec in intensity. A self-driven rotating converter (electrons to positrons and photons) suitable for the high power electron beam was devised and successfully tested. The practicability of simultaneous extraction of multi-channel monoenergetic positron beams with multiple moderator assemblies, which had been originated on the basis of a Monte Carlo simulation, was demonstrated by an experiment using an electron linac. An efficient moderator structure, which is composed of honeycomb-like assembled moderator foils and reflectors, is also proposed. (author)

  1. Simulation of a Positron Source for CEBAF

    International Nuclear Information System (INIS)

    S. Golge; A. Freyberger; C. Hyde-Wright

    2007-01-01

    A positron source for the 6 GeV (or the proposed 12 GeV upgrade) recirculating linacs at Jefferson Lab is presented. The proposed 100nA CW positron source has several unique characteristics; high incident beam power (100kW), 10 MeV incident electron beam energy, CW incident beam and CW production. Positron production with 10 MeV electrons has several advantages; the energy is below neutron threshold so the production target will not become activated during use and the absolute energy spread is bounded by the low incident energy. These advantages are offset by the large angular distribution of the outgoing positrons. Results of simulations of the positron production, capture, acceleration and injection into the recirculating linac are presented. Energy flow and thermal management of the production target present a challenge and are included in the simulations

  2. Construction of a pulsed MeV positron beam line

    Energy Technology Data Exchange (ETDEWEB)

    Masuno, Shin-ichi; Okada, Sohei; Kawasuso, Atsuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    To develop a fast (1 MeV) and short pulsed (100 ps) positron beam which enables defect behavior analysis of bulk states of materials even at high temperatures where a usual positron source would melt, we have been performing design study and construction of the beam line in a three-year program since 1994. This report describes the components, design study results and experimental results of the completed parts until now. (author)

  3. Energy variable monoenergetic positron beam study of oxygen atoms in Czochralski grown Si

    International Nuclear Information System (INIS)

    Tanigawa, S.; Wei, L.; Tabuki, Y.; Nagai, R.; Takeda, E.

    1992-01-01

    A monoenergetic positron beam has been used to investigate the state of interstitial oxygen in Czochralski-grown Si with the coverage of SiO 2 (100 nm) and poly-Si (200 nm)/SiO 2 (100 nm), respectively. It was found that (i) the growth of SiO 2 gives rise to a strong Doppler broadening of positron annihilation radiations in the bulk of Si, (ii) such a broadening can be recovered to the original level by annealing at 450degC, by the removal of overlayers using chemical etching and long-term aging at room temperature, (iii) the film stress over the CZ-grown Si is responsible for the rearrangement of oxygen atoms in S and (iv) only tensile stress gives rise to the clustering of oxygen atoms. The observed broadening was assigned to arise from the positron trapping by oxygen interstitial clusters. It was concluded that film stress is responsible for the rearrangement of oxygen atoms in CZ-grown Si. (author)

  4. A transmission positron microscope and a scanning positron microscope being built at KEK, Japan

    International Nuclear Information System (INIS)

    Doyama, M.; Inoue, M.; Kogure, Y.; Kurihara, T.; Yagishita, A.; Shidara, T.; Nakahara, K.; Hayashi, Y.; Yoshiie, T.

    2001-01-01

    This paper reports the plans of positron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan improving used electron microscopes. The kinetic energies of positron produced by accelerators or by nuclear decays have not a unique value but show a spread over in a wide range. Positron beam will be guided near electron microscopes, a transmission electron microscope (JEM100S) and a scanning electron microscope (JSM25S). Positrons are slowed down by a tungsten foil, accelerated and focused on a nickel sheet. The monochromatic focused beam will be injected into an electron microscope. The focusing of positrons and electrons is achieved by magnetic system of the electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (orig.)

  5. Status and Perspectives for a Slow Positron Beam Facility at the HH-NIPNE Bucharest

    Science.gov (United States)

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed-is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)-the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  6. Status and Perspectives for a Slow Positron Beam Facility at the HH—NIPNE Bucharest

    Science.gov (United States)

    Constantin, Florin; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Straticiuc, Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed—is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)—the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  7. Relevance of slow positron beam research to astrophysical studies of positron interactions and annihilation in the interstellar medium

    International Nuclear Information System (INIS)

    Guessoum, N.; Jean, P.; Gillard, W.

    2006-01-01

    The processes undergone by positrons in the interstellar medium (ISM) from the moments of their birth to their annihilation are examined. Both the physics of the positron interactions with gases and solids (dust grains), and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation taking place, are reviewed. An explanation is given as to how all the relevant physical information are taken into account in order to calculate annihilation rates and spectra of the 511 keV emission for the various phases of the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. An attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of slow positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the solid-state positron communities is strongly emphasized and specific experimental work is suggested which could assist the modeling of the interaction and annihilation of positrons in the ISM

  8. Relevance of slow positron beam research to astrophysical studies of positron interactions and annihilation in the interstellar medium

    Energy Technology Data Exchange (ETDEWEB)

    Guessoum, N. [American University of Sharjah, Physics Department, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: nguessoum@aus.ac.ae; Jean, P. [Centre d' Etude Spatiale des Rayonnements, Toulouse (France); Gillard, W. [Centre d' Etude Spatiale des Rayonnements, Toulouse (France)

    2006-02-28

    The processes undergone by positrons in the interstellar medium (ISM) from the moments of their birth to their annihilation are examined. Both the physics of the positron interactions with gases and solids (dust grains), and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation taking place, are reviewed. An explanation is given as to how all the relevant physical information are taken into account in order to calculate annihilation rates and spectra of the 511 keV emission for the various phases of the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. An attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of slow positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the solid-state positron communities is strongly emphasized and specific experimental work is suggested which could assist the modeling of the interaction and annihilation of positrons in the ISM.

  9. Automatic sup sup 1 sup sup 8 F positron source supply system for a monoenergetic positron beam

    CERN Document Server

    Saito, F; Itoh, Y; Goto, A; Fujiwara, I; Kurihara, T; Iwata, R; Nagashima, Y; Hyodo, T

    2000-01-01

    A system which supplies an intense sup sup 1 sup sup 8 F (half life 110 min) positron source produced by an AVF cyclotron through sup sup 1 sup sup 8 O(p,n) sup sup 1 sup sup 8 F reaction has been constructed. Produced sup sup 1 sup sup 8 F is transferred to a low background experiment hall through a capillary. It is electro-deposited on a graphite rod and used for a source of a slow positron beam. In the meantime the next batch of target sup sup 1 sup sup 8 O water is loaded and proton irradiation proceeds. This system makes it possible to perform continuous positron beam experiments using the 18 F positron source.

  10. Positron and positronium annihilation in silica-based thin films studied by a pulsed positron beam

    International Nuclear Information System (INIS)

    Suzuki, R.; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Shioya, Y.; Ishimaru, T.

    2003-01-01

    Positron and positronium annihilation in silica-based thin films has been investigated by means of measurement techniques with a monoenergetic pulsed positron beam. The age-momentum correlation study revealed that positron annihilation in thermally grown SiO 2 is basically the same as that in bulk amorphous SiO 2 while o-Ps in the PECVD grown SiCOH film predominantly annihilate with electrons of C and H at the microvoid surfaces. We also discuss time-dependent three-gamma annihilation in porous low-k films by two-dimensional positron annihilation lifetime spectroscopy

  11. Positron beam studies of transients in semiconductors

    International Nuclear Information System (INIS)

    Beling, C.D.; Ling, C.C.; Cheung, C.K.; Naik, P.S.; Zhang, J.D.; Fung, S.

    2006-01-01

    Vacancy-sensing positron deep level transient spectroscopy (PDLTS) is a positron beam-based technique that seeks to provide information on the electronic ionization levels of vacancy defects probed by the positron through the monitoring of thermal transients. The experimental discoveries leading to the concept of vacancy-sensing PDLTS are first reviewed. The major problem associated with this technique is discussed, namely the strong electric fields establish in the near surface region of the sample during the thermal transient which tend to sweep positrons into the contact with negligible defect trapping. New simulations are presented which suggest that under certain conditions a sufficient fraction of positrons may be trapped into ionizing defects rendering PDLTS technique workable. Some suggestions are made for techniques that might avoid the problematic electric field problem, such as optical-PDLTS where deep levels are populated using light and the use of high forward bias currents for trap filling

  12. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation

    DEFF Research Database (Denmark)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte...... Carlo simulations with SHIELD-HIT10A reasonably matched the most abundant PET isotopes 11C and 15O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10A and measurement. Improved modeling requires more accurate measurements of cross-section values....

  13. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  14. In-beam PET at high-energy photon beams: a feasibility study

    Science.gov (United States)

    Müller, H.; Enghardt, W.

    2006-04-01

    For radiation therapy with carbon ion beams, either for the stable isotope 12C or for the radioactive one 11C, it has been demonstrated that the β+-activity distribution created or deposited, respectively, within the irradiated volume can be visualized by means of positron emission tomography (PET). The PET images provide valuable information for quality assurance and precision improvement of ion therapy. Dedicated PET scanners have been integrated into treatment sites at the Heavy Ion Medical Accelerator at Chiba (HIMAC), Japan, and the Gesellschaft für Schwerionenforschung (GSI), Germany, to make PET imaging feasible during therapeutic irradiation (in-beam PET). A similar technique may be worthwhile for radiotherapy with high-energy bremsstrahlung. In addition to monitoring the dose delivery process which in-beam PET has been primarily developed for, it may be expected that radiation response of tissue can be detected by means of in-beam PET. We investigate the applicability of PET for treatment control in the case of using bremsstrahlung spectra produced by 15-50 MeV electrons. Target volume activation due to (γ, n) reactions at energies above 20 MeV yields moderate β+-activity levels, which can be employed for imaging. The radiation from positrons produced by pair production is not presently usable because the detectors are overloaded due to the low duty factor of medical electron linear accelerators. However, the degradation of images caused by positron motion between creation and annihilation seems to be tolerable.

  15. Slow positron beam production by a 14 MeV C.W. electron accelerator

    Science.gov (United States)

    Begemann, M.; Gräff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.

    1982-10-01

    A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface ofsurface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two NaI-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 × 10 5 slow positrons per second reaching thedetector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons.

  16. Slow positron beam production by a 14 MeV c.w. electron accelerator

    International Nuclear Information System (INIS)

    Begemann, M.; Graeff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.

    1982-01-01

    A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two Nal-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 x 10 5 slow positrons per second reaching the detector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons. (orig.)

  17. The cryogenic source of slow monochromatic positrons

    International Nuclear Information System (INIS)

    Meshkov, I.N.; Pavlov, V.N.; Sidorin, A.O.; Yakovenko, S.L.

    2008-01-01

    The cryogenic source of slow monochromatic positrons based on the 22 Na isotope has been designed and constructed at JINR. Positrons emitted from radioactive source 22 Na have a very broad energy spectrum up to 0.5 MeV. To generate monochromatic beam of slow positrons the solid neon is used as a moderator. The solid neon allows forming slow positron beam of the energy of 1.2 eV at the spectrum width of 1 eV. The efficiency of moderation is 1 % of total positron flux

  18. Annealing of low-temperature GaAs studied using a variable energy positron beam

    International Nuclear Information System (INIS)

    Keeble, D.J.; Umlor, M.T.; Asoka-Kumar, P.; Lynn, K.G.; Cooke, P.W.

    1993-01-01

    The annihilation characteristics of monoenergetic positrons implanted in a molecular beam epitaxy layer of low-temperature (LT) GaAs annealed at temperatures from 300 to 600 degree C were measured. A gallium vacancy concentration of approximately 3x10 17 cm -3 is inferred for the as-grown material. The S parameter increased significantly upon anneal to 500 degree C. The dominant positron traps in samples annealed at and below 400 degree C are distinct from those acting for samples annealed to 500 or 600 degree C. The change in S parameter for the 600 degree C annealed sample compared to the GaAs substrate, S LT,600 =1.047S sub , is consistent with divacancies or larger open volume defects

  19. Investigation of positron moderator materials for electron-linac-based slow positron beamlines

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki; Uedono, Akira

    1998-01-01

    Positron re-emission properties were studied on moderator materials in order to improve the positron moderation system of electron-linac-based intense slow positron beamlines. The re-emitted positron fraction was measured on tungsten, SiC, GaN, SrTiO 3 , and hydrogen-terminated Si with a variable-energy pulsed positron beam. The results suggested that tungsten is the best material for the primary moderator of the positron beamlines while epitaxially grown n-type 6H-SiC is the best material for the secondary moderator. Defect characterization by monoenergetic positron beams and surface characterization by Auger electron spectroscopy were carried out to clarify the mechanism of tungsten moderator degradation induced by high-energy electron irradiation. The characterization experiments revealed that the degradation is due to both radiation-induced vacancy clusters and surface carbon impurities. For the restoration of degraded tungsten moderators, oxygen treatment at ∼900degC is effective. Furthermore, it was found that oxygen at the tungsten surface inhibits positronium formation; as a result, it can increase the positron re-emission fraction. (author)

  20. Operating instructions for ORELA [Oak Ridge Electron Linear Accelerator] positron beam line

    International Nuclear Information System (INIS)

    Donohue, D.L.; Hulett, L.D. Jr.; Lewis, T.A.

    1990-11-01

    This report will contain details of the construction and operation of the positron beam line. Special procedures which are performed on a less frequent basis will also be described. Appendices will contain operating instructions for experiments which make use of the positron beam and are connected to the beam line. Finally, a review of safety-related considerations will be presented

  1. Resonant production of dark photons in positron beam dump experiments

    Science.gov (United States)

    Nardi, Enrico; Carvajal, Cristian D. R.; Ghoshal, Anish; Meloni, Davide; Raggi, Mauro

    2018-05-01

    Positrons beam dump experiments have unique features to search for very narrow resonances coupled superweakly to e+e- pairs. Due to the continued loss of energy from soft photon bremsstrahlung, in the first few radiation lengths of the dump a positron beam can continuously scan for resonant production of new resonances via e+ annihilation off an atomic e- in the target. In the case of a dark photon A' kinetically mixed with the photon, this production mode is of first order in the electromagnetic coupling α , and thus parametrically enhanced with respect to the O (α2)e+e-→γ A' production mode and to the O (α3)A' bremsstrahlung in e- -nucleon scattering so far considered. If the lifetime is sufficiently long to allow the A' to exit the dump, A'→e+e- decays could be easily detected and distinguished from backgrounds. We explore the foreseeable sensitivity of the Frascati PADME experiment in searching with this technique for the 17 MeV dark photon invoked to explain the Be 8 anomaly in nuclear transitions.

  2. High current pulsed positron microprobe

    International Nuclear Information System (INIS)

    Howell, R.H.; Stoeffl, W.; Kumar, A.; Sterne, P.A.; Cowan, T.E.; Hartley, J.

    1997-01-01

    We are developing a low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopy to provide a new defect analysis capability at the 10 10 e + s -l beam at the Lawrence Livermore National Laboratory electron linac. When completed, the pulsed positron microprobe will enable defect specific, 3-dimensional maps of defect concentrations with sub-micron resolution of defect location. By coupling these data with first principles calculations of defect specific positron lifetimes and positron implantation profiles we will both map the identity and concentration of defect distributions

  3. Energy transparency and symmetries in the beam-beam interaction

    CERN Document Server

    Krishnagopal, S

    2000-01-01

    We have modified the beam-beam simulation code CBI to handle asymmetric beams and used it to look at energy transparency and symmetries in the beam-beam interaction. We find that even a small violation of energy transparency, or of the symmetry between the two beams, changes the character of the collective (coherent) motion; in particular, period-n oscillations are no longer seen. We speculate that the one-time observation of these oscillations at LEP, and the more ubiquitous observation of the flip-flop instability in colliders around the world, may be a consequence of breaking the symmetry between the electron and positron beams. We also apply this code to the asymmetric collider PEP-II, and find that for the nominal parameters of PEP-II, in particular, the nominal tune-shift parameter of xi /sub 0/=0.03, there are no collective beam-beam issues. Collective quadrupole motion sets in only at xi /sub 0/=0.06 and above, consistent with earlier observations for symmetric beams. (6 refs).

  4. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    Conventional slow positron beams have been widely and profitably used to study atomic collisions and have been instrumental in understanding the dynamics of ionization. The next generation of positron atomic collision studies are possible with the use of charged particle traps. Not only can large...... instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...

  5. Development of a transmission positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Matsuya, M., E-mail: matsuya@jeol.co.jp [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Jinno, S. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan); Ootsuka, T.; Inoue, M. [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Kurihara, T. [High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Doyama, M.; Inoue, M. [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0913 (Japan); Fujinami, M. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan)

    2011-07-21

    A practical transmission positron microscope (TPM) JEM-1011B has been developed to survey differences in the interaction of positron and electron beams with materials, and is installed in the Slow Positron Facility of High Energy Accelerator Research Organization (KEK). The TPM can share positron and electron beams, and can also be used as a transmission electron microscope (TEM). Positron transmission images up to magnification 10,000x (resolution: 50 nm) and positron diffraction patterns up to 044 family were successfully obtained by the TPM comparing them with those of electrons. The differences in material transmittances for both beams have been measured, and can be explained by the calculated results of the Monte Carlo simulation code PENELOPE-2008.

  6. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  7. Recent developments in the theory of positrons at surfaces

    International Nuclear Information System (INIS)

    Walker, A.B.

    1989-01-01

    Positron beams of ever brighter intensity are now establishing themselves as a novel surface probe enabling a wide variety of spectroscopies. The production of high positron intensities and exploitation of the beams depends critically on our understanding of the complex behaviour of positrons at and near surfaces. I will review progress on the theory of positron-surface interactions and of the implantation and diffusion of low energy positrons. Applications of this theory to a variety of experimental techniques such as ACAR (Angular Correlation by Annihilation Radiation) spectra, angle resolved positronium (Ps) spectroscopy, REPELS (Reemitted Positron Energy Loss Spectroscopy), LEPD (Low Energy Positron Diffraction) and measurements of defect profiles will be discussed. 24 refs. (author)

  8. An adiabatic matching device for the Orsay linear positron accelerator

    International Nuclear Information System (INIS)

    Chehab, R.; Le Meur, G.; Mouton, B.; Renard, M.

    1983-03-01

    An adiabatically tapered solenoidal magnetic field is used to match positron beam source emittance to accelerating section acceptance. Such a matching system improves the accepted energy band which has been accurately computed and compared with analytical determination. The tapered field is provided by stacked pancakes and solenoids of various radii; total lens length is about 0.75m. The adiabatic matching system took place of a quarter wave transformer system and has been in operation for two years. Positron conversion ratio is 3.3% for a 1 GeV incident beam and presents a factor of nearly two of improvement for the positron yield. Energy bandwidth of positron beam has also been increased by a factor of nearly 2.5; the output positron beam energy is of 1.2 GeV

  9. 14th International Workshop on Slow Positron Beam Techniques and Applications

    International Nuclear Information System (INIS)

    2017-01-01

    These proceedings arose from the 14th International Workshop on Slow Positron Beam Techniques (SLOPOS14), which was held at Kunibiki Messe, Matsue, Shimane prefecture, Japan, from the 22nd—27th May 2016. Meetings in the SLOPOS series are held every three years. The SLOPOS workshop series has traditionally been devoted to investigations on the production of positron and positronium beams, their fundamental physics and chemistry, and their applications to materials such as metals, semiconductors and soft matter. During the workshop numerous applications using positron and positronium beams were also presented, clearly demonstrating the usefulness of such beams to the determination of surface structure, defect characterization as well as to fundamental scientific studies. For SLOPOS14 the main subjects of the workshop included the following: • Positron transport and beam technology • Pulsed positron beams and positron traps • Defect profiling in bulk and layered structures • Nano structures, porous materials and thin films • Surface and interface analysis • Positronium formation, emission and beamsPositron and positronium interactions with atoms and molecules • Many positrons and anti-hydrogen • Improvement of experimental techniques 106 delegates from 14 countries participated in the SLOPOS14, including 31 student delegates, which was a most encouraging sign for the future. The scientific program comprised 5 plenary talks, 22 invited talks, 32 contributed talks and 46 posters presented during two poster sessions. Student prizes were awarded for the best presented scientific contributions by 4 students from University of College London, Universität der Bundeswehr München and The University of Tokyo. On a sad note, delegates paid tribute to the contributions of our recently deceased colleagues, Prof. A. Seeger, Prof. R.N. West, Prof. T.C. Griffith, and Prof. Z. Tang. Memorial talks were given and a one minute silence was observed before the

  10. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G

    2004-03-25

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  11. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  12. Applications and advances of positron beam spectroscopy: appendix a

    Energy Technology Data Exchange (ETDEWEB)

    Howell, R. H., LLNL

    1997-11-05

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory jointly sponsored by the DOE-Division of Materials Science, The Materials Research Institute at LLNL and the University of California Presidents Office. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques will play in materials analysis and the demand for the data. There were general discussions lead by review talks on positron analysis techniques, and their applications to problems in semiconductors, polymers and composites, metals and engineering materials, surface analysis and advanced techniques. These were followed by focus sessions on positron analysis opportunities in these same areas. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of science based stockpile stewardship. There was a detailed discussion of the LLNL capabilities and a tour of the facilities. The Livermore facilities now include the worlds highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. This document is a supplement to the written summary report. It contains a complete schedule, list of attendees and the vuegraphs for the presentations in the review and focus sessions.

  13. Production and applications of positron microbeams

    International Nuclear Information System (INIS)

    Brandes, G.R.; Canter, K.F.; Horsky, T.N.; Lippel, P.H.; Mills, A.P. Jr.

    1989-01-01

    The production of a positron microbeam using the high-brightness beam developed at Brandeis University and possible applications of this microbeam to spatially resolved defect studies and positron microscopy are reviewed. The high-brightness beam consists of a W(110) primary moderator and two remoderation stages which provide a 500-fold increase in brightness. With this brightness increase and microbeam optics, we are able to form a 12 μm FWHM beam (48 mrad pencil half-angle) at 5 keV beam energy. The well characterised small-diameter beam is particularly adaptable for determining defect concentration and structure, both laterally and in a depth-profiling mode. In the case of a transmission positron microscope or a positron re-emission microscope operating in a high-magnification mode, efficient image formation requires the use of a microbeam to maximise the number of positrons in the area being imaged. Results of the scanning microbeam tests and the application of a microbeam to positron microscopy and defect studies are reviewed. (author)

  14. Production of slow positron beam with small diameter using electron linac in Osaka University

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Yoshihide; Sawada, Junichi; Yamada, Masaki; Maekawa, Masaki; Okuda, Shuichi; Yoshida, Yoichi; Isoyama, Goro; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Yamamoto, Takayoshi

    1997-03-01

    A slow positron facility using an electron linac was designed and constructed. The specifications were mainly decided by numerical calculations. The slow positrons are transported along magnetic field line. The cross sectional size of slow positron beam is 1-2cm and the maximum conversion rate from electron to positron is about 1.5 x 10{sup -6}. This value is about 1/4 of ideal case in our system. Extraction of slow positron beam from magnetic field region was made and preliminary brightness enhancement experiment was also performed. (author)

  15. Defects introduced by Ar plasma exposure in GaAs probed by monoenergetic positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Wada, Kazumi; Nakanishi, Hideo

    1994-10-01

    Ar-plasma-induced defects in n-type GaAs were probed by a monoenergetic positron beam. The depth distribution of the defects was obtained from measurements of Doppler broadening profiles of the annihilation radiation as a function of incident positron energy. The damaged layer induced by the exposure was found to extend far beyond the stopping range of Ar ions, and the dominant defects were identified as interstitial-type defects. After 100degC annealing, such defects were annealed. Instead, vacancy-type defects were found to be the dominant defects in the subsurface region. (author).

  16. Progress of the intense positron beam project EPOS

    International Nuclear Information System (INIS)

    Krause-Rehberg, R.; Brauer, G.; Jungmann, M.; Krille, A.; Rogov, A.; Noack, K.

    2008-01-01

    EPOS (the ELBE POsitron Source) is a running project to build an intense, bunched positron beam for materials research. It makes use of the bunched electron beam of the ELBE radiation source (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (40 MeV, 1 mA). ELBE has unique timing properties, the bunch length is <5 ps and the repetition time is 77 ns. In contrast to other Linacs made for Free Electron Lasers (e.g., TTF at DESY, Hamburg), ELBE can be operated in full cw-mode, i.e., with an uninterrupted sequence of bunches. The article continues an earlier publication. It concentrates on details of the timing system and describes issues of radiation protection

  17. Present status of positron factory project

    International Nuclear Information System (INIS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Tachibana, H.; Yotsumoto, K.; Okamoto, J.

    1992-01-01

    The Japan Atomic Energy Research Institute, JAERI, has been promoting design studies for the 'Positron Factory', in which linac-based intense monoenergetic positron beams are planned to be applied to advanced materials characterization and new fields of basic research. A tentative goal of the beam intensity is 10 10 s -1 , which is assumed to be realized with an electron linac of 100 kW class with a beam energy around 100 to 150 MeV. We performed a technical survey on the dedicated linac. It confirmed technical feasibility of manufacturing the state-of-the-art machine. We have been carrying out a design study of the target. A new concept of the target design is proposed, which is expected to supply intense slow positron beams simultaneously for multiple beam channels, on the basis of Monte Carlo simulations. (author)

  18. Expectations for prospective applications of new beam technology to atomic energy research

    International Nuclear Information System (INIS)

    Tomimasu, Takio; Yamazaki, Tetsuo; Tanaka, Ryuichi; Tanigawa, Shoichiro; Konashi, Kenji; Mizumoti, Motoharu.

    1991-01-01

    Recently, the new beam technology based on high energy electron beam, for example free electron laser, low speed positrons and so on, has developed remarkably. Moreover, also in the field of ion beams, toward the utilization of further high level, the plans of using micro-beams, heightening energy, increasing electric current and so on are in progress. In near future, it is expected that the advanced application of such new beam technology expands more and more in the fields of materials, physical properties, isotope separation, biology, medical science, medical treatment and so on. In this report, placing emphasis on the examples of application, the development and application of new beam technology are described. Takasaki ion accelerators for advanced radiation application in Japan Atomic Energy Research Institute, the generation of low speed positrons and the utilization for physical property studies, the annihilation treatment of long life radioactive nuclides, and the generation of free electron laser and its application are reported. (K.I.)

  19. Observation of defects associated with the Cu/W(110) interface as studied with variable-energy positrons

    International Nuclear Information System (INIS)

    Schultz, P.J.; Lynn, K.G.; Frieze, W.E.; Vehanen, A.

    1983-01-01

    Positron emission from a W(110) single crystal has been studied as a function of copper coverage utilizing a variable-energy positron beam in conjunction with low-energy electron diffraction and Auger-electron spectroscopy. Evidence is presented that indicates that sig- p nificant positron localization occurs at defects associated with the Cu/W(110) interface, which can be removed by high-temperature annealing. Our data also reveal new information about the islanding of copper on tungsten, providing a reliable means of identifying and quantifying the relative two-dimensional coverage of the surface by these islands

  20. Exploring of defects in He+ implanted Si(100) by slow positron beam

    International Nuclear Information System (INIS)

    Zhang Tianhao; Weng Huimin; Fan Yangmei; Du Jiangfeng; Zhou Xianyi; Han Rongdian; Zhang Miao; Lin Chenglu

    2001-01-01

    Si(100) crystal implanted by 5 x 10 16 cm -2 , 140 keV He + was probed by slow positron beam, and defect distribution along depth was obtained from the relation between S parameter and positron incidence energy. The near surface region of implanted sample was only slightly damaged. Small vacancies and vacancy clusters less than 1 nm in diameter were the dominant defects, while the deeper region around the He + projected range was heavily damaged and had dense larger helium micro-bubbles and microvoids. Thermal anneal study at different temperatures showed that low temperature annealing could remove most vacancy-type defects effectively. However, annealing at high temperature enlarged the diameters of micro-bubbles and microvoids

  1. Variable energy positron beam study of Xe-implanted uranium oxide

    International Nuclear Information System (INIS)

    Djourelov, Nikolay; Marchand, Benoît; Marinov, Hristo; Moncoffre, Nathalie; Pipon, Yves; Nédélec, Patrick; Toulhoat, Nelly; Sillou, Daniel

    2013-01-01

    Doppler broadening of annihilation gamma-line combined with a slow positron beam was used to measure the momentum density distribution of annihilating pair in a set of sintered UO 2 samples. The influence of surface polishing, of implantation with 800-keV 136 Xe 2+ at fluences of 1 × 10 15 and 1 × 10 16 Xe cm −2 , and of annealing were studied by following the changes of the momentum distribution shape by means of S and W parameters. The program used for this purpose was VEPFIT. At the two fluences in the stoichiometric as-implanted UO 2 , formation of Xe bubbles was not detected. The post-implantation annealing and over-stoichiometry in the as-implanted sample caused Xe precipitation and formation of Xe bubbles.

  2. Simulation of the magnetic mirror effect on a beam of positrons

    CERN Document Server

    Boursette, Delphine

    2014-01-01

    I simulated a beam of positrons at the entrance of a 5 Tesla magnet for the Aegis experiment. The goal was to show how many positrons are lost because of the magnetic mirror effect. To do my simulation, I used Comsol to create the magnetic field map and Geant4 to draw the trajectories of the positrons in this field map.

  3. Imaging instrument for positron emitting heavy ion beam injection

    International Nuclear Information System (INIS)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated

  4. Design of a transmission electron positron microscope

    International Nuclear Information System (INIS)

    Doyama, Masao; Inoue, M.; Kogure, Y.; Hayashi, Y.; Yoshii, T.; Kurihara, T.; Tsuno, K.

    2003-01-01

    This paper reports the plans and design of positron-electron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan. A used electron microscope is altered. The kinetic energies of positrons produced by accelerators or by nuclear decays are not a unique value but show a spread over in a wide range. Positron beam is guided to a transmission electron microscope (JEM100SX). Positrons are moderated by a tungsten foil, are accelerated and are focused on a nickel sheet. The monochromatic focused beam is injected into an electron microscope. The focusing and aberration of positrons are the same as electrons in a magnetic system which are used in commercial electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (author)

  5. A study of vacancy-type defects in B+-implanted SiO2/Si by a slow positron beam

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Sugiura, Jun; Ogasawara, Makoto.

    1989-01-01

    Variable-energy (0∼30 keV) positron beam studies have been carried out on 80 keV B + -implanted SiO 2 (43 nm)/Si specimens. Doppler broadening profiles of the positron annihilation as a function of the incident positron energy were shown to be quite sensitive for the detection of vacancy-type defects introduced by B + -implantation. The average depth of the defected regions was found to shift towards the surface of the specimen with increasing the dose of B + ions. This effect is attributed to the accumulation of vacancy-type defects at the SiO 2 /Si interface. Dominant defect species were identified as vacancy clusters by their annealing stage. (author)

  6. Precise and fast beam energy measurement at the international linear collider

    International Nuclear Information System (INIS)

    Viti, Michele

    2010-02-01

    The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10 34 cm -2 s -1 . For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of ΔE b /E b =10 -4 . (orig.)

  7. Defect distribution in low-temperature molecular beam epitaxy grown Si/Si(100), improved depth profiling with monoenergetic positrons

    International Nuclear Information System (INIS)

    Szeles, C.; Asoka-Kumar, P.; Lynn, K.G.; Gossmann, H.; Unterwald, F.C.; Boone, T.

    1995-01-01

    The depth distribution of open-volume defects has been studied in Si(100) crystals grown by molecular beam epitaxy at 300 degree C by the variable-energy monoenergetic positron beam technique combined with well-controlled chemical etching. This procedure gave a 10 nm depth resolution which is a significant improvement over the inherent depth resolving power of the positron beam technique. The epitaxial layer was found to grow defect-free up to 80 nm, from the interface, where small vacancy clusters, larger than divacancies, appear. The defect density then sharply increases toward the film surface. The result clearly shows that the nucleation of small open-volume defects is a precursor state to the breakdown of epitaxy and to the evolution of an amorphous film

  8. Properties of the electron cloud in a high-energy positron and electron storage ring

    International Nuclear Information System (INIS)

    Harkay, K.C.; Rosenberg, R.A.

    2003-01-01

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  9. Preliminary studies on a variable energy positron annihilation lifetime spectroscopy system

    International Nuclear Information System (INIS)

    Kwan, P.Y.; Cheung, C.K.; Beling, C.D.; Fung, S.

    2006-01-01

    There are many advantages in being able to perform positron annihilation lifetime spectroscopy (PALS) using a variable energy positron beam, the most obvious being the easy identification of different defect types at different depths. The difficulty in conducting variable energy (VE) PALS studies lies in the fact that a 'start' signal is required to signal the entry of the positron into the target. Two methods have been used to overcome this problem, namely the bunching technique, which employs radio frequency (RF) cavities and choppers, and secondly the use of secondary electrons emitted from the target. The latter technique is in terms of experimental complexity much simpler, but has in the past suffered from poor time resolution (typically ∼500 ps). In this work, we present a series of computer simulations of a design based on the secondary electron emission from thin C-foils in transmission mode which shows that significant improvements in time resolution can be made with resolutions ∼200 ps being in principle possible

  10. Generation and application of slow positrons based on a electron LINAC

    International Nuclear Information System (INIS)

    Kurihara, Toshikazu

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses 58 Co, 64 Cu, 11 C, 13 N, 15 O and 18 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihilation excitation and positron reemission microscope are developed. (S.Y.)

  11. Slow positron applications at slow positron facility of institute of materials structure science, KEK

    Science.gov (United States)

    Hyodo, Toshio; Mochizuki, Izumi; Wada, Ken; Toge, Nobukazu; Shidara, Tetsuo

    2018-05-01

    Slow Positron Facility at High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy-tunable (0.1 - 35 keV) slow positron beam created by a dedicated ˜ 50 MeV linac. It operates in a short pulse (width 1-12 ns, variable, 5×106 e+/s) and a long pulse (width 1.2 µs, 5×107 e+/s) modes of 50 Hz. High energy positrons from pair creation are moderated by reemission after thermalization in W foils. The reemitted positrons are then electrostatically accelerated to a desired energy up to 35 keV and magnetically transported. A pulse-stretching section (pulse stretcher) is installed in the middle of the beamline. It stretches the slow positron pulse for the experiments where too many positrons annihilating in the sample at the same time has to be avoided. Four experiment stations for TRHEPD (total-reflection high-energy positron diffraction), LEPD (low-energy positron diffraction), Ps- (positronium negative ion), and Ps-TOF (positronium time-of-flight) experiments are connected to the beamline branches, SPF-A3, SPF-A4, SPF-B1 and SPF-B2, respectively. Recent results of these stations are briefly described.

  12. Precise and fast beam energy measurement at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Viti, Michele

    2010-02-15

    The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10{sup 34} cm{sup -2}s{sup -1}. For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of {delta}E{sub b}/E{sub b}=10{sup -4}. (orig.)

  13. Millimeter positron focusing using a hybrid lens design

    International Nuclear Information System (INIS)

    Cheung, C.K.; Kwan, P.Y.; Shan, Y.Y.; Naik, P.S.; Weng, H.M.; Beling, C.D.; Fung, S.

    2004-01-01

    The study of metal-semiconductor and metal-oxide-semiconductor systems with low energy positrons is made considerably easier if structures of millimeter dimension can be studied. For this reason the production of a positron beam of sub-millimeter dimension has been a long-term goal of the positron research group at the university of Hong Kong. The hybrid lens system employed consists of a standard Soa extraction lens in a magnetic field free region followed by a gridded Einzel lens that focuses positrons into a 100G magnetic funnel at an energy of 10keV for transportation to the target. Here we report on the present progress, by showing the capability of obtaining millimeter diameter focusing at a preliminary 7.5 kV beam energy. (orig.)

  14. Positron sources for electron-positron colliders application to the ILC and CLIC

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The increased demanding qualities for positron sources dedicated to e+e- colliders pushed on investigations oriented on new kinds of e+ sources. The different kinds of positron sources polarized and no polarized are considered. Their main features (intensity, emittance) are described and analysed. Comparison between the different sources is worked out. The characteristics of the positron beam available in the collision point are greatly depending on the capture device and on the positron accelerator. Different kinds of capture systems are considered and their qualities, compared. Intense positron sources which are necessary for the colliders require intense incident beams (electrons or photons). The large number of pairs created in the targets leads to important energy deposition and so, thermal heating, which associated to temperature gradients provoke mechanical stresses often destructive. Moreover, the important Coulomb collisions, can affect the atomic structure in crystal targets and the radiation resist...

  15. Fast and Precise Beam Energy Measurement using Compton Backscattering at e+e- Colliders

    CERN Document Server

    Kaminskiy, V V; Muchnoi, N Yu; Zhilich, V N

    2017-01-01

    The report describes a method for a fast and precise beam energy measurement in the beam energy range 0.5-2 GeV and its application at various e+e- colliders. Low-energy laser photons interact head-on with the electron or positron beam and produce Compton backscattered photons whose energy is precisely measured by HPGe detector. The method allows measuring the beam energy with relative accuracy of ∼2-5.10-5. The method was successfully applied at VEPP-4M, VEPP-3, VEPP-2000 (BINP, Russia) and BEPC-II (IHEP, China).

  16. Transient beam loading in electron-positron storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1978-01-01

    In this note the fundamental of transient beam loading in electron-positron storage rings will be reviewed. The notation, and some of the material, has been introduced previously. The present note is, however, more tutorial in nature, and in addition the analysis is extended to include the transient behaviour of the cavity fields and reflected power between bunch passages. Since we are not bound here by the rigid space limitations of a paper for publication, an attempt is made to give a reasonably coherent and complete discussion of transient beam loading that can hopefully be followed even by the uninitiated. The discussion begins with a consideration of the beam-cavity interaction in the ''single-pass'' limit. In this limit it is assumed that the fields induced in the cavity by the passage of a bunch have decayed essentially to zero by the time the next bunch has arrived. The problem of the maximum energy that can be extracted from a cavity by a bunch is given particular attention, since this subject seems to be the source of some confusion. The analysis is then extended to the ''multiple-pass'' case, where the beam-induced fields do not decay to zero between bunches, and to a detailed consideration of the transient variation of cavity fields and reflected power. The note concludes with a brief discussion of the effect of transient beam loading on quantum lifetime

  17. Positron annihilation spectroscopy using high-energy photons

    International Nuclear Information System (INIS)

    Butterling, Maik; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Anwand, Wolfgang; Brauer, Gerhard; Cowan, Thomas E.; Hartmann, Andreas; Kosev, Krasimir; Schwengner, Ronald; Wagner, Andreas

    2010-01-01

    The superconducting electron accelerator ELBE (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (Germany) serves as a high-intensity bremsstrahlung photon-source delivering a pulsed beam (26 MHz) with very short bunches (<5 ps). The photons are being converted into positrons by means of pair production inside the target material thus forming an intense positron source. The accelerator machine pulse is used as time reference allowing positron lifetime spectroscopy. We performed positron annihilation spectroscopy by pair production in different sample materials and used coincidence techniques to reduce the background due to scattered photons significantly in order resulting in spectra of extraordinary high quality. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Toward a European Network of Positron Laboratories

    Directory of Open Access Journals (Sweden)

    Karwasz Grzegorz P.

    2015-12-01

    Full Text Available Some applications of controlled-energy positron beams in material studies are discussed. In porous organic polysilicates, measurements of 3γ annihilation by Doppler broadening (DB method at the Trento University allowed to trace pore closing and filling by water vapor. In silicon coimplanted by He+ and H+, DB data combined with positron lifetime measurements at the München pulsed positron beam allowed to explain Si blistering. Presently measured samples of W for applications in thermonuclear reactors, irradiated by W+ and electrons, show vast changes of positron lifetimes, indicating complex dynamics of defects.

  19. Generation and application of slow positrons based on a electron LINAC

    CERN Document Server

    Kurihara, T

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses sup 5 sup 8 Co, sup 6 sup 4 Cu, sup 1 sup 1 C, sup 1 sup 3 N, sup 1 sup 5 O and sup 1 sup 8 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihil...

  20. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    Science.gov (United States)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  1. Intense γ-ray generation for a polarized positron beam in a linear collider

    Directory of Open Access Journals (Sweden)

    Y. Miyahara

    2001-12-01

    Full Text Available γ-ray generation by Compton backscattering in an optical lens series with periodic focal points is considered to produce a polarized positron beam for a linear collider. The lens series is composed of 20 unit cells with a length of 210 mm. Each lens has a hole to pass an electron beam with an energy of 5.8 GeV and the generated γ rays. It is shown by diffraction analysis that laser beam loss in the series is very small, and the beam size is periodically reduced to 26 μm. Electron beam size is reduced to 34 μm in a superconducting solenoid with a field of 15 T. To get a required γ-ray yield of 7×10^{15} γ/s, only one circularly polarized CO_{2} laser source with a power of 24 kW is needed.

  2. Application of activity pencil beam algorithm using measured distribution data of positron emitter nuclei for therapeutic SOBP proton beam

    International Nuclear Information System (INIS)

    Miyatake, Aya; Nishio, Teiji

    2013-01-01

    Purpose: Recently, much research on imaging the clinical proton-irradiated volume using positron emitter nuclei based on target nuclear fragment reaction has been carried out. The purpose of this study is to develop an activity pencil beam (APB) algorithm for a simulation system for proton-activated positron-emitting imaging in clinical proton therapy using spread-out Bragg peak (SOBP) beams.Methods: The target nuclei of activity distribution calculations are 12 C nuclei, 16 O nuclei, and 40 Ca nuclei, which are the main elements in a human body. Depth activity distributions with SOBP beam irradiations were obtained from the material information of ridge filter (RF) and depth activity distributions of compounds of the three target nuclei measured by BOLPs-RGp (beam ON-LINE PET system mounted on a rotating gantry port) with mono-energetic Bragg peak (MONO) beam irradiations. The calculated data of depth activity distributions with SOBP beam irradiations were sorted in terms of kind of nucleus, energy of proton beam, SOBP width, and thickness of fine degrader (FD), which were verified. The calculated depth activity distributions with SOBP beam irradiations were compared with the measured ones. APB kernels were made from the calculated depth activity distributions with SOBP beam irradiations to construct a simulation system using the APB algorithm for SOBP beams.Results: The depth activity distributions were prepared using the material information of RF and the measured depth activity distributions with MONO beam irradiations for clinical therapy using SOBP beams. With the SOBP width widening, the distal fall-offs of depth activity distributions and the difference from the depth dose distributions were large. The shapes of the calculated depth activity distributions nearly agreed with those of the measured ones upon comparison between the two. The APB kernels of SOBP beams were prepared by making use of the data on depth activity distributions with SOBP beam

  3. Development and applications of time-bunched and velocity-selected positron beams

    DEFF Research Database (Denmark)

    Merrison, J.P.; Charlton, M.; Aggerholm, P.

    2003-01-01

    the buncher was used to compress positron pulses produced from an electron accelerator-based beam. Computer simulations of particle trajectories in the buncher have been performed resulting in a detailed evaluation of the factors that govern and limit the time resolution of the instrument. A sector magnet...... for propagation of the applied voltage pulse along the electrode system and to facilitate operation at frequencies up to 100 kHz. A parabolic potential distribution for time focusing was used. Tests with a dc positron beam produced from a radioactive source are described, together with measurements in which...

  4. Feasibility studies of a polarized positron source based on the Bremsstrahlung of polarized electrons

    International Nuclear Information System (INIS)

    Dumas, J.

    2011-09-01

    The nuclear and high-energy physics communities have shown a growing interest in the availability of high current, highly-polarized positron beams. A sufficiently energetic polarized photon or lepton incident on a target may generate, via Bremsstrahlung and pair creation within a solid target foil, electron-positron pairs that should carry some fraction of the initial polarization. Recent advances in high current (> 1 mA) spin polarized electron sources at Jefferson Lab offer the perspective of creating polarized positrons from a low energy electron beam. This thesis discusses polarization transfer from electrons to positrons in the perspective of the design optimization of a polarized positron source. The PEPPo experiment, aiming at a measurement of the positron polarization from a low energy (< 10 MeV) highly spin polarized electron beam is discussed. A successful demonstration of this technique would provide an alternative scheme for the production of low energy polarized positrons and useful information for the optimization of the design of polarized positron sources in the sub-GeV energy range. (author)

  5. Beam Commissioning of the PEP-II High Energy Ring

    International Nuclear Information System (INIS)

    Wienands, U.; Anderson, S.; Assmann, R.; Bharadwaj, V.; Cai, Y.; Clendenin, J.; Corredoura, P.; Decker, F.J.; Donald, M.; Ecklund, S.; Emma, P.; Erickson, R.; Fox, J.; Fieguth, T.; Fisher, A.; Heifets, S.; Hill, A.; Himel, T.; Iverson, R.; Johnson, R.; Judkins, J.; Krejcik, P.; Kulikov, A.; Lee, M.; Mattison, T.; Minty, M.; Nosochkov, Y.; Phinney, N.; Placidi, M.; Prabhakar, S.; Ross, M.; Smith, S.; Schwarz, H.; Stanek, M.; Teytelman, D.; Traller, R.; Turner, J.; Zimmermann, F.; Barry, W.; Chattopadhyay, S.; Corlett, J.; Decking, W.; Furman, M.; Nishimura, H.; Portmann, G.; Rimmer, R.; Zholents, A.; Zisman, M.; Kozanecki, W.; Hofmann, A.; Zotter, B.; Steier, C.; Bialowons, W.; Lomperski, M.; Lumpkin, A.; Reichel, I.; Safranek, J.; Smith, V.; Tighe, R.; Sullivan, M.; Byrd, J.; Li, D.

    1998-01-01

    The PEP-II High Energy Ring (HER), a 9 GeV electron storage ring, has been in commissioning since spring 1997. Initial beam commissioning activities focused on systems checkout and commissioning and on determining the behavior of the machine systems at high beam currents. This phase culminated with the accumulation of 0.75 A of stored beam-sufficient to achieve design luminosity--in January 1998 after 3.5 months of beam time. Collisions with the 3 GeV positron beam of the Low Energy Ring (LER) were achieved in Summer of 1998. At high beam currents, collective instabilities have been seen. Since then, commissioning activities for the HER have shifted in focus towards characterization of the machine and a rigorous program to understand the machine and the beam dynamics is presently underway

  6. Polarization Study for NLC Positron Source Using EGS4

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C

    2000-09-20

    SLAC is exploring a polarized positron source to study new physics for the NLC project. The positron source envisioned in this paper consists of a polarized electron source, a 50-MeV electron accelerator, a thin target less-than-or-equal-to 0.2 radiation length for positron production, and a capture system for high-energy, small angular divergence positrons. The EGS4 code was used to study the yield, energy spectra, emission-angle distribution, and the mean polarization of the positrons emanating from W-Re and Ti targets hit by longitudinally polarized electron and photon beams. To account for polarization within the EGS4 code a method devised by Flottmann was used, which takes into account polarization transfer for pair production, bremsstrahlung, and Compton interactions. A mean polarization of 0.85 for positrons with energies greater than 25 MeV was obtained. Most of the high-energy positrons were emitted within a forward angle of 20 degrees. The yield of positrons above 25 MeV per incident photon was 0.034, which was about 70 times higher than that obtained with an electron beam.

  7. Polarization effects in the reaction of charm baryon production on colliding electron-positron beams

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Korzh, A.P.; Barannik, V.P.

    1980-01-01

    To calculate energy and angular distributions of various decay products of charm baAyons, which are prodUced in reactions on colliding e + e - beams, it is necessary to know the differential cross sections of the e + e - → C+anti C process which correspond to different polarized states of produced C and anti C (C - charm baryon). These differential cross sections are calculated for a single-photon mechanism with respect to the contribution of the anapole and electric dipole form factors of C-baryon. Polarizations of colliding electron-positron beams are taken into account in a full volume

  8. Ion-irradiated polymer studied by a slow positron beam

    International Nuclear Information System (INIS)

    Kobayashi, Yoshinori; Kojima, Isao; Hishita, Shunichi; Suzuki, Takenori.

    1995-01-01

    Poly (aryl-ether-ether ketone) (PEEK) films were irradiated with 1MeV and 2MeV 0 + ions and the positron annihilation Doppler broadening was measured as a function of the positron energy. The annihilation lines recorded at relatively low positron energies were found to become broader with increasing the irradiation dose, suggesting that positronium (Ps) formation may be inhibited in the damaged regions. A correlation was observed between the Doppler broadening and spin densities determined by electron spin resonance (ESR). (author)

  9. Positron emission medical measurements with accelerated radioactive ion beams

    International Nuclear Information System (INIS)

    Llacer, J.

    1988-01-01

    This paper reviews in some detail the process by which a heavy ion accelerator can be used to inject positron emitting radioactive particles into a human body for a range of possible medical measurements. The process of radioactive beam generation and injection is described, followed by a study of the relationship between activity that can be injected versus dose to the patient as a function of which of the positron emitting ions is used. It is found that 6 C 10 and 10 Ne 19 are the two isotopes that appear more promising for injection into humans. The design considerations for a non-tomographic instrument to obtain images from beam injections are outlined and the results of 10 Ne 19 preliminary measurements with human phantoms and actual patients for the determination of end-of-range of cancer therapy ion beams is reported. Accuracies in the order of ±1 mm in the measurements of stopping point of a therapy beam with safe doses to the patient are reported. The paper concludes with a simple analysis of requirements to extend the technique to on-line verification of cancer treatment and to nuclear medicine research and diagnostics measurements. 17 refs.; 16 figs.; 3 tabs

  10. Super High Energy Colliding Beam Accelerators

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    2009-01-01

    This lecture presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evolution of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab and the Large Hadron Collider (LHC) which is now planned as a 14-TeV machine in the 27 kilometer tunnel of the Large Electron Positron (LEP) collider at CERN. Then presentation is given of the Superconducting Supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 kilometers in circumference under the country surrounding Waxahachie in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particle.

  11. Measurement of the positron polarization at an helical undulator based positron source for the international linear collider ILC. The E-166 experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Laihem

    2008-06-05

    A helical undulator based polarized positron source is forseen at a future International Linear Collider (ILC). The E-166 experiment has tested this scheme using a one meter long, short-period, pulsed helical undulator installed in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 46.6 GeV electron beam passing through this undulator generated circularly polarized photons with energies up to about 8 MeV. The generated photons of several MeV with circular polarization are then converted in a relatively thin target to generate longitudinally polarized positrons. Measurements of the positron polarization have been performed at 5 different energies of the positrons. In addition electron polarization has been determined for one energy point. For a comparison of the measured asymmetries with the expectations detailed simulations were necessary. This required upgrading GEANT4 to include the dominant polarization dependent interactions of electrons, positrons and photons in matter. The measured polarization of the positrons agrees with the expectations and is for the energy point with the highest polarization at 6MeV about 80%. (orig.)

  12. Positron Studies of Oxide-Semiconductor Structures

    OpenAIRE

    Uedono , A.; Wei , L.; Kawano , T.; Tanigawa , S.; Suzuki , R.; Ohgaki , H.; Mikado , T.

    1995-01-01

    The annihilation characteristics of positrons in SiO2 films grown on Si substrates were studied by using monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured as a function of incident positron energy for SiO2/Si structures fabricated by various oxidation techniques. From the measurements, it was found that the formation probability of positronium (Ps) atoms in SiO2 films strongly depends on the growth condition...

  13. The PEP [positron-electron-proton] electron-positron ring: An update

    International Nuclear Information System (INIS)

    1975-03-01

    The first stage of the positron-electron-protron (PEP) colliding-beam system, which has been under joint study by a Lawrence Berkeley Laboratory--Stanford Linear Accelerator Center team for the past two years, will be the electron-positron storage ring. The physics justification for the e + e/sup /minus// ring is summarized briefly and the proposed facility is described. The ring will have six arcs having gross radii of about 220 m and six interaction regions located at the centers of straight sections about 130 m long. The longitudinal distance left free for experimental apparatus around the interaction regions was set provisionally at 20 m. The range of operating beam energies will be from 5 GeV to 15 GeV. The design luminosity at 15 GeV will be 10 32 cm/sup /minus/2/s/sup /minus/1/, and the luminosity will vary approximately as the square of the beam energy. Alternative methods under consideration for adjusting the beam cross section are discussed. The designs of the storage ring subsystems and of the conventional facilities including the experimental halls at the interaction regions are described. 7 figs., 3 tabs

  14. Study of an hybrid positron source using channeling for CLIC

    CERN Document Server

    Dadoun, O; Chehab, R; Poirier, F; Rinolfi, L; Strakhovenko, V; Variola, A; Vivoli, A

    2009-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for positron production. The hybrid source uses a few GeV electron beam impinging on a crystal tungsten radiator. With the tungsten crystal oriented on its axis it results an intense, relatively low energy photon beam due mainly to channeling radiation. Those photons are then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. In this note the optimization of the positron yield and the peak energy deposition density in the amorphous target are studied according to the distance between the crystal and the amorphous targets, the primary electron energy and the amorphous target thickness.

  15. Analysis of defects near the surface and the interface of semiconductors by monoenergetic positron beam

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro

    1989-01-01

    A monoenergetic low-speed positron beam line is constructed and a study is made on defects near the surface and the interface of semiconductors by using the beam line. Sodium-22 is used as beam source. Ion implantation, though being an essential technique for semiconductor integrated circuit production, can introduce lattice defects, affecting the yield and reliability of the resultant semiconductor devices. Some observations are made on the dependence of the Doppler broadening on the depth, and the ΔS-E relationship in P + -ion implanted SiO 2 (43nm)-Si. These observations demonstrate that monoenergetic positron beam is useful to detect hole-type defects resulting from ion implantation over a very wide range of defect density. Another study is made for the detection of defects near an interface. Positrons are expected to drift when left in an electric field with a gradient. Observations made here show that positrons can be concentrated at any desired interface by introducing an electric field intensity gradient in the oxide. This process also serves for accurate measurement of the electronic structure at the interface, and the effect of ion implantation and radiations on the interface. (N.K.)

  16. Beam transport of PF (Positron Factory) 2.5-GeV linac

    International Nuclear Information System (INIS)

    Shiraga, Takahiro; Asami, Akira; Suwada, Tsuyoshi; Kobayashi, Hitoshi.

    1993-01-01

    The beam transport is one of the most important problems in the linac to be used as the injector for the B-FACTORY accelerators. A basic problem of the beam transport is how to correct transport parameters immediately when a klystron becomes off. This is studied with the PF (Positron Factory) 2.5-GeV linac. (author)

  17. A numerical study of the characteristics of the LEALE photon beam

    International Nuclear Information System (INIS)

    Lucherini, V.; De Sanctis, E.; Di Giacomo, P.

    1978-01-01

    At the LEALE laboratory a monochromatic photon beam with energy in the range 80/300 MeV is available. Photons are produced by positron annihilation on a liquid hydrogen target. The characteristics of the beam are calculated for various conditions (positron energy, photon collimator, target thickness), taking into account the effects contributing to the beam spreading (energy loss and multiple scattering of protons in the annihilation target, energy distribution and angular divergence of the positron beam). (author)

  18. The Baseline Positron Production and Capture Scheme for CLIC

    CERN Document Server

    Dadoun, Olivier; Lepercq, Pierre; Poirier, Freddy; Variola, Alessandro; Chehab, Robert; Rinolfi, Louis; Vivoli, Alessandro; Strakhovenko, Vladimir; Xu, Chengai

    2010-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for unpolarised positron production. The hybrid source uses a few GeV electron beam impinging on a tungsten crystal target. With the crystal oriented on its axis it results an intense relatively low energy photon beam. The later is then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. Downstream the amorphous target, a capture section based on an adiabatic matching device followed by a 2 GHz Pre- Injector Linac focuses and accelerates the positron beam up to around 200 MeV

  19. The effects of low-energy scattering on positron implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ritley, K.A. (Dept. of Physics and Materials Research Laboratory, Univ. of Illinois, Urbana, IL (United States)); Lynn, K.G.; Ghosh, V.; Welch, D.O. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    Existing Monte Carlo models are capable of simulating the behavior of positrons incident at keV energies, then following the energy loss process to arbitrary final kinetic energies of from 20 eV to 100 eV. This work describes a Monte Carlo simulation of the final stages of positron thermalization in Al, from 25 eV to thermal energies, via the mechanisms of conduction-electron and longitudinal acoustic phonon scattering. The latter stages of thermalization can have important effects on the stopping profiles and mean depth. A novel way to obtain information about positron energy loss by considering the time-evolution of a point-concentration (delta-function distribution) of positrons is described. The effects of a positive positron work function are examined for the first time in the context of a positron Monte Carlo calculation. Finally, some issues relating to the agreement of Monte Carlo calculations with experimental data are discussed. 6 figs., 16 refs.

  20. The effects of low-energy scattering on positron implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ritley, K.A. [Dept. of Physics and Materials Research Laboratory, Univ. of Illinois, Urbana, IL (United States); Lynn, K.G.; Ghosh, V.; Welch, D.O. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-31

    Existing Monte Carlo models are capable of simulating the behavior of positrons incident at keV energies, then following the energy loss process to arbitrary final kinetic energies of from 20 eV to 100 eV. This work describes a Monte Carlo simulation of the final stages of positron thermalization in Al, from 25 eV to thermal energies, via the mechanisms of conduction-electron and longitudinal acoustic phonon scattering. The latter stages of thermalization can have important effects on the stopping profiles and mean depth. A novel way to obtain information about positron energy loss by considering the time-evolution of a point-concentration (delta-function distribution) of positrons is described. The effects of a positive positron work function are examined for the first time in the context of a positron Monte Carlo calculation. Finally, some issues relating to the agreement of Monte Carlo calculations with experimental data are discussed. 6 figs., 16 refs.

  1. Application of positron annihilation to polymer and development of a radioisotopes-based pulsed slow positron beam apparatus

    International Nuclear Information System (INIS)

    Suzuki, Takenori

    2004-01-01

    Positrons injected into polymer behave as nanometer probes, which can detect the size and amount of intermolecular spaces among polymer structures. Although positrons can probe the characteristics of polymer, they induce a radiation effect on polymer samples. At low temperature, the radiation effect induces free electrons, which can be trapped in a shallow potential created among intermolecular structures after freezing molecular motions. These trapped electrons can be released after the disappearance of the shallow potential due to the reappearance of molecular motion above the relaxation temperature. Thus, positrons can be used as a probe for relaxation studies. Coincidence of Doppler broadening spectroscopy (CDBS) can improve the S/N ratio to 10 7 , which makes it possible to detect trace elements, since CDBS can separate the high-momentum component of core electrons. A pulsed slow positron beam apparatus is necessary for measuring holes in the polymer film and allows the measurement of the characteristics of thin film coated on semiconductors used widely in electronics industries. (author)

  2. Positron and positronium annihilation in low-dielectric-constant films studied by a pulsed positron beam

    International Nuclear Information System (INIS)

    Suzuki, R.; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Yu, R.S.; Shioya, Y.; Ichikawa, H.; Hosomi, H.; Ishikiriyama, K.; Shirataki, H.; Matsuno, S.; Xu, J.

    2004-01-01

    Positron and positronium annihilation in porous low-dielectric-constant (low-k) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and spin-on dielectric (SOD) have been investigated by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The ortho-positronium (o-Ps) lifetime strongly depends on the deposition condition. In general, PECVD low-k films have shorter o-Ps lifetimes than SOD low-k films, indicating PECVD low-k films have smaller pores. Since o-Ps diffusion and escaping from the surface occurs in most of porous SOD films, three-gamma annihilation measurement is important. To investigate o-Ps behavior in SOD films, we have carried out two-dimensional (2D) PALS measurement, which measures annihilation time and pulse-height of the scintillation detector simultaneously. Monte-Carlo simulation of the o-Ps diffusion and escaping in porous films has been carried out to simulate the 2D-PALS results. (orig.)

  3. The PEP [positron-electron-proton] electron-positron ring: PEP Stage I

    International Nuclear Information System (INIS)

    Rees, J.R.

    1974-01-01

    The first stage of the positron-electron-proton (PEP) colliding-beam system which has been under joint study by a Lawrence Berkeley Laboratory-Stanford Linear Accelerator Center team for the past two years, will be the electron-positron storage ring. The physics justification for the e/sup /plus//e/sup /minus// ring is summarized briefly and the proposed facility is described. The ring will have six arcs having gross radii of about 220 m and six interaction regions located at the centers of straight sections about 130 m long. The longitudinal distance left free for experimental apparatus around the interaction regions will be 20 m. The range of operating beam energies will be from 5 GeV to 15 GeV. The design luminosity at 15 GeV will be 10 32 cm/sup /minus/2/s/sup/minus/1/, and the luminosity will vary approximately as the square of the beam energy. Alternative methods under consideration for adjusting the beam cross-section are discussed. The designs of the storage ring subsystems and of the conventional facilities including the experimental halls at the interaction regions are described. 7 refs., 8 figs., 3 tabs

  4. Design and Characterization of a Three-Dimensional Positron Annihilation Spectroscopy System Using a Low-Energy Positron Beam

    Science.gov (United States)

    2012-03-22

    Technique Applied to Measure Oxygen -Atom Defects in 6H Silicon Carbide”. 2010. [31] Y. C. Jean , P. E. Mallon and D. M. Schrader. Principles and Applications...that result in β+ emission, by photon interactions with nuclei and subsequent pair production, or by β+ decays from radioactive isotopes made by...reactions for creating positrons [7], some of which are used to to create radioactive isotopes that β+ decay. Regardless of the positron source, positrons

  5. Effect of μe universality violation in muon pair production on colliding electron-positron beams

    International Nuclear Information System (INIS)

    Guliev, N.A.; Dzhafarov, I.G.; Mekhtiev, B.I.

    1981-01-01

    The muonic pair production in colliding electron-positron beams is treated assuming the electron and muon weak interaction constants to be different. General formulae for the differential and total cross sections applicable at arbitrary energies of the colliding beams are obtained taking simultaneously into account arbitrary polarizations of the incident particles and longitudinal polarization of the muon (μ - ). It is shown that study of some polarization characteristics of a given reaction allows to distinguish possible weak interaction μe universality breaking effects. The revealing effects are analysed in the framework of unified gauge SU(2)xU(1) models, of weak and electromagnetic interactions [ru

  6. Characteristics of the positron annihilation process in the matter

    International Nuclear Information System (INIS)

    Dryzek, J.

    2000-01-01

    In this report the positrons annihilation spectroscopy, as a method for the matter study is described. The interaction of positrons of high as well as thermal energies are discussed and different models of mentioned interactions are presented. Special attention is paid for positrons interaction with crystal lattice and its defects. The influence of positron beams characteristics on measured values are also discussed

  7. Development of positron diffraction and holography at LLNL

    International Nuclear Information System (INIS)

    Hamza, A.; Asoka-Kumar, P.; Stoeffl, W.; Howell, R.; Miller, D.; Denison, A.

    2003-01-01

    A low-energy positron diffraction and holography spectrometer is currently being constructed at the Lawrence Livermore National Laboratory (LLNL) to study surfaces and adsorbed structures. This instrument will operate in conjunction with the LLNL intense positron beam produced by the 100 MeV LINAC allowing data to be acquired in minutes rather than days. Positron diffraction possesses certain advantages over electron diffraction which are discussed. Details of the instrument based on that of low-energy electron diffraction are described

  8. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    International Nuclear Information System (INIS)

    Bauer, J; Unholtz, D; Kurz, C; Parodi, K

    2013-01-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β + activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β + activity induced in the investigated

  9. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    Science.gov (United States)

    Bauer, J.; Unholtz, D.; Kurz, C.; Parodi, K.

    2013-08-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β+ activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β+ activity induced in the investigated

  10. Time of flight spectra of electrons emitted from graphite after positron annihilation

    International Nuclear Information System (INIS)

    Gladen, R W; Chirayath, V A; Chrysler, M D; Mcdonald, A D; Fairchild, A J; Shastry, K; Koymen, A R; Weiss, A H

    2017-01-01

    Low energy (∼2 eV) positrons were deposited onto the surface of highly oriented pyrolytic graphite (HOPG) using a positron beam equipped with a time of flight (TOF) spectrometer. The energy of the electrons emitted as a result of various secondary processes due to positron annihilation was measured using the University of Texas at Arlington’s (UTA) TOF spectrometer. The positron annihilation-induced electron spectra show the presence of a carbon KLL Auger peak at ∼263 eV. The use of a very low energy beam allowed us to observe a new feature not previously seen: a broad peak which reached to a maximum intensity at ∼4 eV and extended up to a maximum energy of ∼15 eV. The low energy nature of the peak was confirmed by the finding that the peak was eliminated when a tube in front of the sample was biased at -15 V. The determination that the electrons in the peak are leaving the surface with energies up to 7 times the incoming positron energy indicates that the electrons under the broad peak were emitted as a result of a positron annihilation related process. (paper)

  11. Brilliant positron sources for CLIC and other collider projects

    CERN Document Server

    Rinolfi, Louis; Dadoun, Olivier; Kamitani, Takuya; Strakhovenko, Vladimir; Variola, Alessandro

    2013-01-01

    The CLIC (Compact Linear Collider), as future linear collider, requires an intense positron source. A brief history is given up to the present baseline configuration which assumes unpolarized beams. A conventional scheme, with a single tungsten target as source of e-e+ pairs, has been studied several years ago. But, in order to reduce the beam energy deposition on the e+ target converter, a double-target system has been studied and proposed as baseline for CLIC. With this ‘‘hybrid target’’, the positron production scheme is based on the channeling process. A 5 GeV electron beam impinges on a thin crystal tungsten target aligned along its axis, enhancing the photon production by channeling radiation. A large number of photons are sent to a thick amorphous tungsten target, generating large number of e-e+ pairs, while the charged particles are bent away, reducing the deposited energy and the PEDD (Peak Energy Deposition Density). The targets parameters are optimized for the positron production. Polarize...

  12. A new experiment to investigate the origin of optical activity using a low energy positron beam of controlled helicity. [molecular biology

    Science.gov (United States)

    Gidley, D. W.; Rich, A.; Van House, J. C.; Zitzewitz, P. W.

    1981-01-01

    Previous experiments undertaken in search of a correlation between the origin of optical activity in biological molecules and the helicity of beta particles emitted in nuclear beta decay have not provided any useful results. A description is presented of an experiment in which a low energy polarized positron beam of controlled helicity interacts with an optically active material to form positronium in vacuum. Advantages of the current study compared to the previous experiments are mainly related to a much greater sensitivity. Initially, it will be possible to detect a helicity-dependent asymmetry in triplet positronium formation of 1 part in 10,000. Improvements to better than 1 part in 100,000 should be attainable.

  13. Undulator-based production of polarized positrons

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G. [Tel-Aviv Univ. (Israel); Barley, J. [Cornell Univ., Ithaca, NY (United States); Batygin, Y. [SLAC, Menlo Park, CA (US)] (and others)

    2009-05-15

    Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9 MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a one-meter-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6 GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5 MeV. In addition, the electron polarization has been determined at 6.7MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of GEANT4 that includes the dominant polarization-dependent interactions of electrons, positrons, and photons with matter. The measurements agree with calculations, corresponding to 80% polarization for positrons near 6 MeV and 90% for electrons near 7 MeV. (orig.)

  14. Design of an 18 MW vortex flow water beam dump for 500 GeV electrons/positrons of an international linear collider

    International Nuclear Information System (INIS)

    Satyamurthy, Polepalle; Rai, Pravin; Tiwari, Vikas; Kulkarni, Kiran; Amann, John; Arnold, Raymond G.; Walz, Dieter; Seryi, Andrei; Davenne, Tristan; Caretta, Ottone; Densham, Chris; Appleby, Robert B.

    2012-01-01

    Beam dumps are essential components of any accelerator system. They are usually located at the end of the beam delivery systems and are designed to safely absorb and dissipate the particle energy. In the second stage of the proposed International Linear Collider (ILC), the electron and positron beams are accelerated to 500 GeV each (1 TeV total). Each bunch will have 2×10 10 electrons/positrons, and 2820 bunches form one beam bunch train with time duration of 0.95 ms and 4 Hz frequency. The average beam power will be 18 MW with a peak power of 4.5 GW. The FLUKA code was used to determine the power deposited by the beam at all critical locations. This data forms the input into the thermal hydraulic analysis CFD code for detailed flow and thermal evaluation. Both 2D and 3D flow analyses were carried out at all the critical regions to arrive at optimum geometry and flow parameters of the beam dump. The generation and propagation of pressure waves due to rapid deposition of heat has also been analyzed.

  15. Automatically controlled correlation spectrometer with a bounded positron beam

    International Nuclear Information System (INIS)

    Grone, R.

    1991-01-01

    The spectrometer consists of a frame which carries a fixed arm with collimating slits and a pair of scintillator units positioned against each other, and a movable arm which moves in the horizontal plane and also holds collimating slits and two scintillator units positioned against each other. In the centre of the frame is a shielding cover with a chamber housing a slidable positron source. The end of the cover is fitted with a replaceable diaphragm against which a sample holder is positioned. The chamber with a bounded positron beam can be employed to measure a sample at preselected sites and thus gain information concerning various parts of the sample surface and its inhomogeneity. (M.D.). 3 figs

  16. Trapping and accumulation of positrons from a pulsed beam produced by a linear accelerator for gravitational interaction of antimatter study

    International Nuclear Information System (INIS)

    Grandemange, Pierre

    2013-01-01

    The Gravitational Behaviour of Anti-hydrogen at Rest experiment - GBAR - is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration (g-bar) of anti-hydrogen atoms in free fall. Its originality is to produce H-bar + ions and use sympathetic cooling to achieve μK temperature. H-bar + ions are produced by the reactions: p-bar + Ps → H-bar + e - , and H-bar + Ps → H-bar + + e - , where p-bar is an antiproton, Ps stands for positronium (the bound-state of a positron and an electron), H-bar is the anti-hydrogen and H-bar + the anti-ion associated. To produce enough Ps atoms, 2*10 10 positrons must be impinged on a porous SiO 2 target within 100 ns. Such an intense flux requires the accumulation (collection and cooling) of the positrons in a particle trap. This thesis describes the injector being commissioned at CEA Saclay for GBAR. It consists of a Penning-Malmberg trap (moved from RIKEN) fed by a slow positron beam. A 4.3 MeV linear accelerator shooting electrons on a tungsten target produces the pulsed positron beam, which is moderated by a multi-grid tungsten moderator. The slow positron flux is 10 4 e + /pulse, or 2*10 6 e + /s at 200 Hz. This work presents the first ever accumulation of low-energy positrons produced by an accelerator (rather than a radioactive source) and their cooling by a prepared reservoir of 2*10 10 cold electrons. (author) [fr

  17. Analysis of experimental positron-molecule binding energies

    International Nuclear Information System (INIS)

    Danielson, J R; Surko, C M; Young, J A

    2010-01-01

    Experiments show that positron annihilation on molecules frequently occurs via capture into vibrational Feshbach resonances. In these cases, the downshifts in the annihilation spectra from the vibrational mode spectra provide measures of the positron-molecule binding energies. An analysis of these binding energy data is presented in terms of the molecular dipole polarizability, the permanent dipole moment, and the number of π bonds in aromatic molecules. The results of this analysis are in reasonably good agreement with other information about positron-molecule bound states. Predictions for other targets and promising candidate molecules for further investigation are discussed.

  18. Channeling crystals for positron production

    International Nuclear Information System (INIS)

    Decker, F.J.

    1991-05-01

    Particles traversing at small angles along a single crystal axis experience a collective scattering force of many crystal atoms. The enormous fields can trap the particles along an axis or plane, called channeling. High energy electrons are attracted by the positive nuclei and therefore produce strongly enhanced so called coherent bremsstrahlung and pair production. These effects could be used in a positron production target: A single tungsten crystal is oriented to the incident electron beam within 1 mrad. At 28 GeV/c the effective radiation length is with 0.9 mm about one quarter of the amorphous material. So the target length can be shorter, which yields a higher conversion coefficient and a lower emittance of the positron beam. This makes single crystals very interesting for positron production targets. 18 refs., 2 figs

  19. Measurement of positron reemission from thin single-crystal W(100) films

    International Nuclear Information System (INIS)

    Chen, D.M.; Lynn, K.G.; Pareja, R.; Nielsen, B.

    1985-01-01

    Epitaxial thin single-crystal (100) tungsten films 1000, 2500, and 5000 A thick have been fabricated by high-vacuum electron-beam evaporation. These films were subsequently used as thin-film moderators for the study of the positron-transmission-reemission process with a variable-energy (0--80 keV) monoenergetic positron beam in an ultrahigh-vacuum system. The films were shown to be routinely cleanable by heating first in oxygen (10 -6 Torr) and then in vacuum (10 -9 Torr). Transmission and back reemission of slow positrons from these surfaces was observed. The positron work function, phi/sub +/ has been determined to be approx. =3.0 eV ( +- 0.3 eV). The transmission slow positrons were emitted in a narrow cone with a full width at half maximum of approx. =30 0 consistent with the angular distribution of back-reemission positrons. The reemitted yields as a function of incident positron energy were found to be very different between forward reemission and back reemission. The maximum forward-reemission yields were 18% for 1000-A-thick W film and 12% for 2500-A-thick W film at 5 and 10 keV optimum incident positron energies, respectively. These results show that one can use thin single-crystal tungsten films as positron moderators or remoderators

  20. Characterization of ion-irradiated ODS Fe–Cr alloys by doppler broadening spectroscopy using a positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Parente, P.; Leguey, T. [Departamento de Física and IAAB, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Castro, V. de, E-mail: vanessa.decastro@uc3m.es [Departamento de Física and IAAB, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Gigl, T.; Reiner, M.; Hugenschmidt, C. [FRM II and Physics Department, Technische Universität München, 85747 Garching (Germany); Pareja, R. [Departamento de Física and IAAB, Universidad Carlos III de Madrid, 28911 Leganés (Spain)

    2015-09-15

    The damage profile of oxide dispersion strengthened steels after single-, or simultaneous triple-ion irradiation at different conditions has been characterized using a low energy positron beam in order to provide information on microstructural changes induced by irradiation. Doppler broadening and coincident Doppler broadening measurements of the positron annihilation line have been performed on different Fe–Cr–(W,Ti) alloys reinforced with Y{sub 2}O{sub 3}, to identify the nature and stability of irradiation-induced open-volume defects and their possible association with the oxide nanoparticles. It was found that irradiation induced vacancy clusters are associated with Cr atoms. The results are of highest interest for modeling the damage induced by 14 MeV neutrons in reduced activation Fe–Cr alloys relevant for fusion devices.

  1. Characterization of ion-irradiated ODS Fe–Cr alloys by doppler broadening spectroscopy using a positron beam

    International Nuclear Information System (INIS)

    Parente, P.; Leguey, T.; Castro, V. de; Gigl, T.; Reiner, M.; Hugenschmidt, C.; Pareja, R.

    2015-01-01

    The damage profile of oxide dispersion strengthened steels after single-, or simultaneous triple-ion irradiation at different conditions has been characterized using a low energy positron beam in order to provide information on microstructural changes induced by irradiation. Doppler broadening and coincident Doppler broadening measurements of the positron annihilation line have been performed on different Fe–Cr–(W,Ti) alloys reinforced with Y 2 O 3 , to identify the nature and stability of irradiation-induced open-volume defects and their possible association with the oxide nanoparticles. It was found that irradiation induced vacancy clusters are associated with Cr atoms. The results are of highest interest for modeling the damage induced by 14 MeV neutrons in reduced activation Fe–Cr alloys relevant for fusion devices

  2. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    International Nuclear Information System (INIS)

    Mayer, Jakob

    2010-01-01

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to ΔE/E∼10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION registered ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to ΔE/E 2,3 VV-transition with PAES. Thus, within this thesis two objectives were achieved: Firstly, the PAES spectrometer was renewed and improved by at least one order of magnitude with respect to the signal to noise ratio, the measurement time and the energy resolution. Secondly, several measurements have been carried out, demonstrating the high performance of the spectrometer. Amongst them are first dynamic PAES measurements and a high resolution measurement of the CuM 2,3 VV

  3. Production And Characterization Of Tungsten-Based Positron Moderators

    International Nuclear Information System (INIS)

    Lucio, O. G. de; Morales, J. G.; Cruz-Manjarrez, H.

    2011-01-01

    Experiments of interest in Atomic Physics require production of well-defined low-energy positron beams through a moderation process of high-energy positrons, which can be produced by either the use of a radioactive source or by accelerator based pair production process. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency, high work function and relatively low cost. In this work we present different methods to produce tungsten-based candidate moderators in a variety of shapes. We also present results from characterizing these candidate moderators by ion beam analysis and microscopy techniques.

  4. Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee

    CERN Document Server

    Haerer, Bastian; Prof. Dr. Schmidt, Ruediger; Dr. Holzer, Bernhard

    Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched the Future Circular Collider Study (FCC) to investigate the feasibility of large-scale circular colliders for future high energy physics research. This thesis presents the considerations taken into account during the design process of the magnetic lattice in the arc sections of the electron-positron version FCC-ee. The machine is foreseen to operate at four different centre-of-mass energies in the range of 90 to 350 GeV. Different beam parameters need to be achieved for every energy, which requires a flexible lattice design in the arc sections. Therefore methods to tune the horizontal beam emittance without re-positioning machine components are implemented. In combination with damping and excitation wigglers a precise adjustment of the emittance can be achieved. A very first estimation of the vertical emittance arising from lattice imperfections is performed. Special emphasis is put on the optimisation of the ...

  5. Bremsstrahlung pair-production of positrons with low neutron background

    International Nuclear Information System (INIS)

    Lessner, E.

    1998-01-01

    Minimization of component activation is highly desirable at accelerator-based positron sources. Electrons in the 8- to 14-MeV energy range impinging on a target produce photons energetic enough to create electron-positron pairs; however, few of the photons are energetic enough to produce photoneutrons. Slow positron production by low-energy electrons impinging on a multilayer tungsten target with and without electromagnetic extraction between the layers was studied by simulation. The neutron background from 14-MeV electrons is expected to be significantly lower than that encountered with higher-energy electron beams. Numerical results are presented and some ideas for a low-activation slow-positron source are discussed

  6. Ion-implantation induced defects in ZnO studied by a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A.; Sekiguchi, T.; Suzuki, R.

    2004-01-01

    Introduction and annealing behavior of defects in Al + -implanted ZnO have been studied using an energy variable slow positron beam. Vacancy clusters are produced after Al + -implantation. With increasing ion dose above 10 14 Al + /cm 2 the implanted layer is amorphized. Heat treatment up to 600 C enhances the creation of large voids that allow the positronium formation. The large voids disappear accompanying the recrystallization process by further heat treatment above 600 C. Afterwards, implanted Al impurities are completely activated to contribute to the n-type conduction. The ZnO crystal quality is also improved after recrystallization. (orig.)

  7. Embedded design based virtual instrument program for positron beam automation

    International Nuclear Information System (INIS)

    Jayapandian, J.; Gururaj, K.; Abhaya, S.; Parimala, J.; Amarendra, G.

    2008-01-01

    Automation of positron beam experiment with a single chip embedded design using a programmable system on chip (PSoC) which provides easy interfacing of the high-voltage DC power supply is reported. Virtual Instrument (VI) control program written in Visual Basic 6.0 ensures the following functions (i) adjusting of sample high voltage by interacting with the programmed PSoC hardware, (ii) control of personal computer (PC) based multi channel analyzer (MCA) card for energy spectroscopy, (iii) analysis of the obtained spectrum to extract the relevant line shape parameters, (iv) plotting of relevant parameters and (v) saving the file in the appropriate format. The present study highlights the hardware features of the PSoC hardware module as well as the control of MCA and other units through programming in Visual Basic

  8. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  9. ILC beam energy measurement by means of laser Compton backscattering

    International Nuclear Information System (INIS)

    Muchnoi, N.; Schreiber, H.J.; Viti, M.

    2008-10-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered γ-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10 -4 or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  10. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.; DILMANIAN, F.A.; PEGGS, S.G.; SCHLYEER, D.J.; VASKA, P.

    2002-01-01

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12 C, 14 N, and 16 O. These radioisotopes, mainly 11 C, 13 N and 15 O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner

  11. Neutron dosimetry at a high-energy electron-positron collider

    Science.gov (United States)

    Bedogni, Roberto

    Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.

  12. Study of tungsten based positron moderators

    International Nuclear Information System (INIS)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C.; DuBois, R.D.

    2015-01-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies

  13. Study of tungsten based positron moderators

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México DF (Mexico); DuBois, R.D. [Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-07-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies.

  14. High efficiency positron moderation

    International Nuclear Information System (INIS)

    Taqqu, D.

    1990-01-01

    A new positron moderation scheme is proposed. It makes use of electric and magnetic fields to confine the β + emitted by a radioactive source forcing them to slow down within a thin foil. A specific arrangement is described where an intermediary slowed-down beam of energy below 10 keV is produced. By directing it towards a standard moderator optimal conversion into slow positrons is achieved. This scheme is best applied to short lived β + emitters for which a 25% moderation efficiency can be reached. Within the state of the art technology a slow positron source intensity exceeding 2 x 10 10 e + /sec is achievable. (orig.)

  15. A positron beam for the linear collider scheme of a B-meson factory

    International Nuclear Information System (INIS)

    Chehab, R.

    1988-02-01

    An approach for a conventional positron source intended to a BantiB linear collider scheme is here given. Optical matching devices between the source and the accelerator are considered and some comparisons are made regarding the maximum acceptance and the positron beam qualities. Focusing in the preaccelerator and in the main linac are also considered. Heating and radiation problems which may introduce severe limitations are only partly examined

  16. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I. [Nuclear Reactor Program, Department of Nuclear Engineering, North Carolina State University, P.O. Box 7909, Raleigh, NC 27695 (United States); Gidley, David W. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor MI 48109 (United States)

    2013-04-19

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e{sup +}-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e{sup +}-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  17. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    Science.gov (United States)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-01

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e+-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e+-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  18. High beam current shut-off systems in the APS linac and low energy transfer line

    International Nuclear Information System (INIS)

    Wang, X.; Knott, M.; Lumpkin, A.

    1994-01-01

    Two independent high beam current shut-off current monitoring systems (BESOCM) have been installed in the APS linac and the low energy transport line to provide personnel safety protection in the event of acceleration of excessive beam currents. Beam current is monitored by a fast current transformer (FCT) and fully redundant supervisory circuits connected to the Access Control Interlock System (ACIS) for beam intensity related shutdowns of the linac. One FCT is located at the end of the positron linac and the other in the low energy transport line, which directs beam to the positron accumulator ring (PAR). To ensure a high degree of reliability, both systems employ a continuous self-checking function, which injects a test pulse to a single-turn test winding after each ''real'' beam pulse to verify that the system is fully functional. The system is designed to be fail-safe for all possible system faults, such as loss of power, open or shorted signal or test cables, loss of external trigger, malfunction of gated integrator, etc. The system has been successfully commissioned and is now a reliable part of the total ACIS

  19. Development of positron annihilation spectroscopy to test accelerated weathering of protective polymer coatings

    CERN Document Server

    Zhang, R; Chen, H M; Mallon, P; Sandreczki, T C; Richardson, J R; Jean, Y C; Nielsen, B; Suzuki, R; Ohdaira, T

    2000-01-01

    A variable mono-energetic positron beam with a computer-controlled system has recently been constructed at the University of Missouri-Kansas City for weathering studies of polymeric coatings. The beam is designed to measure the S-parameter from Doppler-broadening energy spectra and the sub-nanometer defect properties from positron annihilation lifetimes (PAL). Significant variations of S-parameter and ortho-positronium intensity in coatings, as obtained from the newly built beam and from the Electrotechnical Laboratory's beam, respectively, are observed as a function of depth and exposure time due to the Xe-light irradiation. A high sensitivity of positron annihilation signal response to the early stage of degradation is observed. Development of positron annihilation spectroscopy to test accelerated weathering of polymeric coatings is discussed.

  20. Construction report of the PF slow-positron source. 1

    International Nuclear Information System (INIS)

    Enomoto, Atsushi; Kurihara, Toshikazu; Kobayashi, Hitoshi

    1993-12-01

    The slow positron source utilizing the electron beam of the 2.5 GeV electron beam accelerator which is the synchrotron radiation injector is being constructed. The outline of the project and the present state of construction are reported. As of November, 1993, by injecting the electron beam of about 10 W to the targets for producing positrons, the slow positrons of 4 x 10 4 e + /s has been obtained in the laboratory. Finally, with the electron beam of 30 kW, it is aimed at to obtain the slow positron beam of 2 x 10 9 e + /s. In the slow positron source, the electron beam from the 2.5 GeV linear accelerator is used as the primary beam. This beam is led to the target with electromagnets. Radiation shields were strengthened, and the electrostatic lens system was attached to efficiently extract and send out slow positrons. The conveying system for slow positrons is explained. Primary electron beam, target and moderator for producing slow positrons, the change to continuous current of pulsed slow positron beam and the heightening of luminance of slow positron beam, and the experiment on the utilization of slow positron beam, and the control system for positron conveyance path are reported. (K.I.)

  1. Positron annihilation and thermally stimulated current of electron beam irradiated polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Shigetaka; Shinyama, Katsuyoshi; Baba, Makoto [Hachinohe Inst. of Tech., Hachinohe, Aomori (Japan); Suzuki, Takenori

    1997-03-01

    Positron lifetime measurements were applied to electron beam irradiated poly(ether-ether-ketone). The lifetime, {tau}{sub 3}, of the ortho-positronium of unirradiated and 5 MGy irradiated specimen became rapidly longer above about 150degC. {tau}{sub 3} of 50 MGy and 100 MGy irradiated specimen was shorter than that of unirradiated one. Thermally stimulated current (TSC) decreased with increasing the dose before voltage application. In the case of voltage application, a TSC peak appeared and the peak value decreased with increased the dose. The correlation between the results of positron annihilation and TSC was investigated. (author)

  2. Stress evaluation at the ILC positron source

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, Andriy; Moortgat-Pick, Gudrid [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Luruper Chaussee 149, 22761 Hamburg (Germany); Riemann, Sabine; Dietrich, Felix [Deutsches Elektronen-Synchrotron (DESY), Standort Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Aulenbacher, Kurt; Tyukin, Valery; Heil, Philipp [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernphysik, Johann-Joachim-Becher-Weg 45, 55128 Mainz (Germany)

    2016-07-01

    High luminosity is required at future Linear Colliders which is particularly challenging for all corresponding positron sources. At the International Linear Collider (ILC), polarized positrons are obtained from electron-positron pairs by converting high-energy photons produced by passing the high-energy main electron beam through a helical undulator. The conversion target undergoes cyclic stress with high peak values. To distribute the thermal load, the target is designed as wheel spinning in vacuum with 100 m/s. However, the cyclic stress over long time at high target temperatures could exceed the fatigue stress limit. In the talk, an overview of the ILC positron source is given. The prospects to study material parameters under conditions as expected at the ILC are discussed.

  3. Application of positron annihilation techniques for semiconductor studies

    International Nuclear Information System (INIS)

    Karwasz, G.P.; Zecca, A.; Brusa, R.S.; Pliszka, D.

    2004-01-01

    Positron annihilation techniques, being non-destructive, allowing depth profiling down to a few micrometers and detecting open-volume defects (vacancies, dislocations etc.) at single ppm concentrations constitute a valuable and complementary method, compared to other solid-state-physics studies. We give examples of investigation in the field of semiconductors with different techniques, both with and without use of positron low-energy beams. The Doppler broadening of the 511 keV annihilation line method and the slow positron beam were used to study helium-implanted silicon and the surface reduction processes in semiconducting glasses. The positron lifetime technique and coincidence spectra of the Doppler broadening were used for systematic studies of metals and semiconductors. Doppler-coincidence method was then used to identify the kinetics of oxygen precipitates in Czochralski-grown silicon

  4. Metal/oxide/semiconductor interface investigated by monoenergetic positrons

    Science.gov (United States)

    Uedono, A.; Tanigawa, S.; Ohji, Y.

    1988-10-01

    Variable-energy positron-beam studies have been carried out for the first time on a metal/oxide/semiconductor (MOS) structure of polycrystalline Si/SiO 2/Si-substrate. We were successful in collecting injected positrons at the SiO 2/Si interface by the application of an electric field between the MOS electrodes.

  5. Low energy positron diffraction from Cu(111): Importance of surface loss processes at large angles of incidence

    International Nuclear Information System (INIS)

    Lessor, D.L.; Duke, C.B.; Lippel, P.H.; Brandes, G.R.; Canter, K.F.; Horsky, T.N.

    1990-10-01

    Intensities of positrons specularly diffracted from Cu(111) were measured at the Brandeis positron beam facility and analyzed in the energy range 8eV i = 4eV. At lower energies strong energy dependences occur associated both with multiple elastic scattering phenomena within atomic layers of Cu parallel to the surface and with the thresholds of inelastic channels (e.g., plasmon creation). Use of the free electron calculation of V i shows that energy dependence of inelastic processes is necessary to obtain a satisfactory description of the absolute magnitude of the diffracted intensities below E = 50eV. Detailed comparison of the calculated and observed diffraction intensities reveals the necessity of incorporating surface loss processes explicitly into the model in order to achieve a quantitative description of the measured intensities for E 40 degree. 30 refs., 5 figs., 1 tab

  6. New parameter-free polarization potentials in low-energy positron collisions

    Science.gov (United States)

    Jain, Ashok

    1990-01-01

    The polarization potential plays a decisive role in shaping up the cross sections in low energy positron collisions with atoms and molecules. However, its inclusion without involving any adjustable parameter, is still a challenge. Various other techniques employed so far for positron collisions are summarized, and a new, nonadjustable and very simple form of the polarization potential for positron-atom (molecule) collisions below the threshold of positronium formation is discussed. This new recently proposed potential is based on the correlation energy of a single positron in a homogeneous electron gas. The correlation energy was calculated by solving the Schrodinger equation of the positron-electron system and fitted to an analytical form in various ranges of the density parameter. In the outside region, the correlation energy is joined smoothly with the correct asymptotic form. This new positron correlation polarization (PCOP) potential was tested on several atomic and molecular targets such as the Ar, CO, and CH4. The results on the total and differential cross sections on these targets are shown along with the experimental data where available.

  7. Ion-implantation induced defects in ZnO studied by a slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A. [Japan Atomic Energy Research Institute, Gunma (Japan); Sekiguchi, T. [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan); Suzuki, R. [National Inst. of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)

    2004-07-01

    Introduction and annealing behavior of defects in Al{sup +}-implanted ZnO have been studied using an energy variable slow positron beam. Vacancy clusters are produced after Al{sup +}-implantation. With increasing ion dose above 10{sup 14} Al{sup +}/cm{sup 2} the implanted layer is amorphized. Heat treatment up to 600 C enhances the creation of large voids that allow the positronium formation. The large voids disappear accompanying the recrystallization process by further heat treatment above 600 C. Afterwards, implanted Al impurities are completely activated to contribute to the n-type conduction. The ZnO crystal quality is also improved after recrystallization. (orig.)

  8. The PEP electron-positron ring

    International Nuclear Information System (INIS)

    Rees, J.R.

    1988-01-01

    The first stage of the positron-electron-proton (PEP) colliding-beam system which has been under joint study by a Lawrence Berkeley Laboratory-Stanford Linear Accelerator Center team for the past two years, will be the electron-positron storage ring. The physics justification for the e + e/sup minus/ ring is summarized briefly and the proposed facility is described. The ring will have six arcs having gross radii of about 220 m and six interaction regions located at the centers of straight sections about 130 m long. The longitudinal distance left free for experimental apparatus at the intersection regions will be 20 m. The range of operating beam energies will be from 5 GeV to 15 GeV. The design luminosity at 15 GeV will be 10 32 cm/sup minus 2/s/sup minus 1/, and the luminosity will vary approximately as the square of the beam energy. Alternative methods under consideration for adjusting the beam cross-section are discussed. The designs of the storage ring subsystems and of the conventional facilities including the experimental halls at the interaction regions are described

  9. The Positron-Electron Correlation Energy In ZnO Calculated With The Modified Single Wave Function Of Positron

    International Nuclear Information System (INIS)

    Chau Van Tao; Trinh Hoa Lang; Le Hoang Chien; Nguyen Huu Loc; Nguyen Anh Tuan

    2011-01-01

    Positron-electron correlation energy of the ZnO - positron system is studied on assumption that positron binds with the outer shell electrons of Zinc and Oxygen to form the pseudo ZnO - positron molecule before it annihilates with one of these electrons. In this work, the single wave function for positron is form by LCAO approximation and is modified according to the principle of linear superposition, and by using Variational Quantum Monte Carlo method (VQMC) [7] the correlation energy of this system is estimated with the value E c e-p = - 9.3 ± 1.1 eV. In the theoretical aspect it turns out that this result is more reasonable and closer to those of other methods [3] than the one which is done without modifying the wave function of positron [1]. To confirm this legitimate approach, however, the further calculations of positron annihilation rate in ZnO have to be carried out in our next work. (author)

  10. Modelling the line shape of very low energy peaks of positron beam induced secondary electrons measured using a time of flight spectrometer

    International Nuclear Information System (INIS)

    Fairchild, A J; Chirayath, V A; Gladen, R W; Chrysler, M D; Koymen, A R; Weiss, A H

    2017-01-01

    In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed. (paper)

  11. Optical model theory of elastic electron- and positron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Joachain, C.J.

    1977-01-01

    It is stated that the basic idea of the optical model theory is to enable analysis of the elastic scattering of a particle from a complex target by replacing the complicated interactions between the beam and the target by an optical potential, or pseudopotential, in which the incident particle moves. Once the optical potential is determined the original many-body elastic scattering problem reduces to a one-body situation. The resulting optical potential is, however, a very complicated operator, and the formal expressions obtained from first principles for the optical potential can only be evaluated approximately in a few simple cases, such as high energy elastic hadron-nucleus scattering, for the the optical potential can be expressed in terms of two-body hadron-nucleon amplitudes, and the non-relativistic elastic scattering of fast charged particles by atoms. The elastic scattering of an electron or positron by a neutral atom at intermediate energies is here considered. Exchange effects between the projectile and the atomic electrons are considered; also absorption and polarisation effects. Applications of the full-wave optical model have so far only been made to the elastic scattering of fast electrons and positrons by atomic H, He, Ne, and Ar. Agreements of the optical model results with absolute measurements of differential cross sections for electron scattering are very good, an agreement that improves as the energy increases, but deteriorates quickly as the incident energy becomes lower than 50 eV for atomic H or 100 eV for He. For more complex atoms the optical model calculations also appear very encouraging. With regard to positron-atom elastic scattering the optical model results for positron-He scattering differ markedly at small angles from the corresponding electron-He values. It would be interesting to have experimental angular distributions of positron-atom elastic scattering in order to check predictions of the optical model theory. (U.K.)

  12. Results on positron diffusion in Si

    International Nuclear Information System (INIS)

    Nielsen, B.; Lynn, K.G.; Vehanen, A.; Schultz, P.J.

    1984-10-01

    Positron diffusion in Si(100) and Si(111) has been measured using a variable energy positron beam. The diffusion related parameter, E 0 is found to be 4.2 +- 0.2 keV, significantly longer than previously reported values. The positron diffusion coefficient is estimated at D/sub +/ = 2.3 +- 0.4 cm 2 /sec, the uncertainty arising mainly from the characteristics of the assumed positron implantation profile. A drastic reduction in E 0 is found after heating the sample to 1300 0 K, showing that previously reported low values of E 0 are associated with the thermal history of the sample. A high sensitivity to defects introduced by low energy ion bombardment is found, and the defect recovery was followed during heat treatments. Reconstruction of the Si(111) surface into the so-called 7 x 7 structure had no detectable influence on the positron diffusion behavior. No changes in the positron diffusion was observed after covering the surface with atomic hydrogen. However the yield of positronium formation at the surface was enhanced, attributed to an increased density of states at the surface

  13. Defect layer in SiO2-Sic interface proved by a slow positron beam

    International Nuclear Information System (INIS)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Miyashita, A.; Suzuki, R.; Ohdaira, T.

    2006-01-01

    The structure of the SiO 2 -4ph-SiC interface layer produced by dry oxidation has been studied by positron annihilation spectroscopy using slow positron beams. From Doppler broadening measurements, the interface layer was clearly distinguished from the SiO 2 and SiC layers and was observed to be defective. At the interface layer, a single long positron lifetime of 451 ps, which is close to the second lifetime in the SiO 2 layer, was obtained, thus suggesting that the structure of the interface layer resembles an amorphous SiO 2 network. A comparison was made between the obtained electron momentum distribution at the interface layer and the theoretical calculation. It was found that positrons annihilate with oxygen valence electrons. By annealing after the oxidation, the annihilation probability of the positrons with oxygen valence electrons and the number of interface traps decreased in the same temperature range, thus suggesting a correlation between interface traps and positron annihilation sites

  14. High efficiency cyclotron trap assisted positron moderator

    OpenAIRE

    Gerchow, L.; Cooke, D. A.; Braccini, S.; Döbeli, M.; Kirch, K.; Köster, U.; Müller, A.; Van Der Meulen, N. P.; Vermeulen, C.; Rubbia, A.; Crivelli, P.

    2017-01-01

    We report the realisation of a cyclotron trap assisted positron tungsten moderator for the conversion of positrons with a broad keV- few MeV energy spectrum to a mono-energetic eV beam with an efficiency of 1.8(2)% defined as the ratio of the slow positrons divided by the $\\beta^+$ activity of the radioactive source. This is an improvement of almost two orders of magnitude compared to the state of the art of tungsten moderators. The simulation validated with this measurement suggests that usi...

  15. Native defects in ZnO films studied by slow positron beam

    International Nuclear Information System (INIS)

    Peng Chengxiao; Weng Huimin; Ye Bangjiao; Zhou Xianyi; Han Rongdian; Yang Xiaojie

    2005-01-01

    Native defects in ZnO films grown by radio frequency (RF) reactive magnetron sputtering under variable oxygen fraction conditions have been investigated by using monoenergetic positrons beam technique. The results show that the same type defects dominate in these ZnO samples grown at oxygen fraction less than 70% in the process chamber; and zinc vacancies are preponderant in the ZnO films fabricated in richer oxygen environment. The concentration of zinc vacancies increases with oxygen partial fraction rising. While oxygen fraction reaches 85%, zinc vacancies that could trap positrons decrease, which suggests that impurities could shield zinc vacancies. A combination between hydrogen atoms and the dangling bonds in the lattice could weaken the trap of positrons under the 50% oxygen fraction condition. The concentration of zinc vacancies varies in different oxygen fraction films, which is in agreement with the conclusion of photoluminescence spectroscopy. (authors)

  16. A time-pulsed positronium beam and a study of oxides on silicon using positrons

    International Nuclear Information System (INIS)

    Khatri, R.K.

    1993-01-01

    The studies on rare gas solid moderators were carried out with a 350 μCi 22 Na radioactive source. The corrected efficiency for neon moderator in conical geometrical configuration was as high as (1.4 ± 0.2)%. The conical configuration moderator performed better by a factor of (2.2 ± 0.2) than the cylindrical configuration. A time pulsed positron beam was built to carry out investigations on the positronium formation processes and positronium beam. This beam has the capability to store low energy e + in a magnetic bottle, with a magnetic bottle at one end and an electrostatic mirror at the other. These stored e + are then bunched to form a pulse with a buncher. The bunched beam had a FWHM of 17 nsec and contained 1 to 2 e + /pulse. A thin carbon foil of 50 angstrom thickness was used for positronium formation by process of charge exchange. Positronium Annihilation Spectroscopy (PAS) was utilized to carry out studies on the activation energy of hydrogen at the interface of oxide and silicon substrate and the effect of irradiation on the oxides in SiO 2 /Si(100) sample. The activation energy of hydrogen at the interface of SiO 2 /Si(100) samples with n- and p-type substrate was measured to be 2.60(6) eV and 2.47(6) eV respectively. The investigations of the samples irradiated with x-ray and γ-ray led to the first time identification of creation of E' centers with PAS

  17. Design of an intense positron source for linear colliders

    International Nuclear Information System (INIS)

    Ida, H.; Yamada, K.; Funahashi, Y.

    1994-01-01

    The Japan Linear Collider (JLC) requires an intense positron source of 8x10 11 particles per rf-pulse. A computer simulation reveals the possibility of such an intense positron source using 'conventional' technology. In order to relax the limitation of the incident electron energy density due to thermal stress in the converter target, the incident beam radius is enlarged within the range so as not to reduce the positron capture efficiency. A pre-damping ring and beam transport system to the pre-damping ring, which have a large transverse acceptance, play important roles for a high capture efficiency. A prototype positron source has been designed and installed at downstream of 1.54 GeV S-band linac in Accelerator Test Facility (ATF) in order to carry out experiments to develop the essential technology for JLC. The simulated results will be tested in experiments with the prototype positron source. (author)

  18. New techniques of positron annihilation

    International Nuclear Information System (INIS)

    1983-02-01

    Studies on new techniques of positron annihilation and its application to various fields are presented. First, production of slow positron and its characteristic features are described. The slow positron can be obtained from radioisotopes by using a positron moderator, proton beam bombardment on a boron target, and pair production by using an electron linear accelerator. Bright enhancement of the slow positron beam is studied. Polarized positron beam can be used for the study of the momentum distribution of an electron in ferromagnetic substances. Production of polarized positrons and measurements of polarization are discussed. Various phases of interaction between slow positrons and atoms (or molecules) are described. A comparative study of electron scavenging effects on luminescence and on positronium formation in cyclohexane is presented. The positron annihilation phenomena are applicable for the surface study. The microscopic information on the surface of porous material may be obtained. The slow positrons are also useful for the surface study. Production and application of slow muon (positive and negative) are presented in this report. (Kato, T.)

  19. Low-energy positron-argon collisions by using parameter-free positron correlation polarization potentials

    International Nuclear Information System (INIS)

    Jain, A.

    1990-01-01

    We report differential, integral, and momentum-transfer cross sections and the scattering length (A 0 ) for positron (e + )-argon scattering at low energies below the positronium formation threshold. An optical-potential approach is employed in which the repulsive Coulombic interaction is calculated exactly at the Hartree-Fock level and the attractive polarization and correlation effects are included approximately via a parameter-free positron correlation polarization (PCP) potential recently proposed by us. The PCP model is based on the correlation energy var-epsilon corr of one positron in a homogeneous electron gas; in the outside region, the var-epsilon corr is joined smoothly with the correct asymptotic form of the polarization interaction (-α 0 /2r 4 , where α 0 is the target polarizability) where they cross each other for the first time. The total optical potential of the e + -argon system is treated exactly in a partial-wave analysis to extract the scattering parameters. It is found that the PCP potential gives much better qualitative results, particularly for the differential cross sections and the scattering length, than the corresponding results obtained from an electron polarization potential used as such for the positron case. We also discuss the ''critical'' points (representing the minima in the differential scattering) in the low-energy e + -Ar scattering. The present results involve no fitting procedure

  20. Point defects in MnSi and YBCO studied by Doppler Broadening Spectroscopy using a positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, Markus

    2015-10-28

    The positron beam NEPOMUC was used in order to investigate MnSi and YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) single crystals. The Doppler broadening of the annihilation radiation of electron-positron pairs was analyzed. Thus, the concentration of Mn vacancies in MnSi crystals was determined. In thin YBCO films, the Doppler broadening is correlated with the oxygen deficiency δ. Its spatial distribution and its high-temperature behavior were studied using positrons.

  1. 4.5 Tesla magnetic field reduces range of high-energy positrons -- Potential implications for positron emission tomography

    International Nuclear Information System (INIS)

    Wirrwar, A.; Vosberg, H.; Herzog, H.; Halling, H.; Weber, S.; Mueller-Gaertner, H.W.; Forschungszentrum Juelich GmbH

    1997-01-01

    The authors have theoretically and experimentally investigated the extent to which homogeneous magnetic fields up to 7 Tesla reduce the spatial distance positrons travel before annihilation (positron range). Computer simulations of a noncoincident detector design using a Monte Carlo algorithm calculated the positron range as a function of positron energy and magnetic field strength. The simulation predicted improvements in resolution, defined as full-width at half-maximum (FWHM) of the line-spread function (LSF) for a magnetic field strength up to 7 Tesla: negligible for F-18, from 3.35 mm to 2.73 mm for Ga-68 and from 3.66 mm to 2.68 mm for Rb-82. Also a substantial noise suppression was observed, described by the full-width at tenth-maximum (FWTM) for higher positron energies. The experimental approach confirmed an improvement in resolution for Ga-68 from 3.54 mm at 0 Tesla to 2.99 mm FWHM at 4.5 Tesla and practically no improvement for F-18 (2.97 mm at 0 Tesla and 2.95 mm at 4.5 Tesla). It is concluded that the simulation model is appropriate and that a homogeneous static magnetic field of 4.5 Tesla reduces the range of high-energy positrons to an extent that may improve spatial resolution in positron emission tomography

  2. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  3. Slow positron beam study of hydrogen ion implanted ZnO thin films

    Science.gov (United States)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  4. Characterization of vacancy-type defects induced by the implantation of Se and Si ions into GaAs by a slow positron beam

    International Nuclear Information System (INIS)

    Fujii, Satoshi; Shikata, Shinichi; Wei Long; Tanigawa, Shoichiro.

    1992-01-01

    Variable-energy (0-30keV) positron beam studies have been carried out on 200 keV Se-implanted and 70 keV Si-implanted GaAs specimens before and after annealing for electrical activation. From the measurements of Doppler broadened profiles as a function of incident positron energy, it was found that vacancy clusters with high concentration were introduced in the annealed specimen after Se implantation. From the parallel measurement of electrical characteristics, a higher activation efficiency was found for the higher concentration of vacancy clusters. That fact implies that electrons supplied by the activation of Se also convert the charge state of As vacancies from positive to negative. In contrast, no vacancy clusters were introduced in the Si-implanted GaAs. (author)

  5. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B. S., E-mail: ben.cooper.13@ucl.ac.uk; Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  6. Tunable pores in mesoporous silica films studied using a pulsed slow positron beam

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Ohdaira, Toshiyuki; Oshima, Nagayasu; Kinomura, Atsushi; Suzuki, Ryoichi; Kobayashi, Yoshinori

    2007-01-01

    Positron annihilation lifetime spectroscopy (PALS) based on a pulsed slow positron beam was applied to study mesoporous silica films, synthesized using amphiphilic PEO-PPO-PEO triblock copolymers as structure-directing agents. The pore size depends on the loading of different templates. Larger pores were formed in silica films templated by copolymers with higher molecular-weights. Using 2-dimensional PALS, open porosity of silica films was also found to be influenced by the molecular-weight as well as the ratio of hydrophobic PPO moiety of the templates

  7. Spectra of electrons emitted as a result of the sticking and annihilation of low energy positrons to the surfaces of graphene and highly oriented pyrolytic graphite (HOPG)

    Science.gov (United States)

    Chrysler, M.; Chirayath, V.; McDonald, A.; Lim, Z.; Shastry, K.; Gladen, R.; Fairchild, A.; Koymen, A.; Weiss, A.

    Positron annihilation induced Auger electron spectroscopy (PAES) was used to study the positron induced low energy electron spectra from HOPG and a sample composed of 6-8 layers of graphene grown on polycrystalline copper. A low energy (~2eV) beam of positrons was used to implant positrons into a surface localized state on the graphene and HOPG samples. Measurements of the energy spectra of the positron induced electrons obtained using a TOF spectrometer indicate the presence of an annihilation induced KLL C Auger peak (at ~263 eV) along with a narrow low energy secondary peak due to an Auger mediated positron sticking (AMPS) process. A broad spectral feature was also observed below ~15 eV which we believe may be due to a VVV C Auger transition not previously observed. The energy dependence of the integrated intensity of the AMPS peak was measured for a series of incident positron kinetic energies ranging from ~1.5 eV up to 11 eV from which the binding energy of the surface localized positron state on graphene and HOPG was estimated. The implication of our results regarding the applicability of AMPS and PAES to the study of graphene surfaces and interfaces will be discussed. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  8. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy

  9. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.H.; Stoeffl, W.

    1998-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectra

  10. Slow positron beam study of hydrogen ion implanted ZnO thin films

    International Nuclear Information System (INIS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-01-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×10 15 and 1×10 16 ions cm −2 . Zn vacancy and OH bonding (V Zn +OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process. - Highlights: • Hydrogen introduced by ion implantation can form hydrogen-related defect complex. • V Zn +OH defect complex is identified by positron annihilation and IR spectroscopy. • Irradiation defects suppress the luminescence process

  11. Isochronous 180 degree turns for the SLC positron system

    International Nuclear Information System (INIS)

    Helm, R.H.; Clendenin, J.E.; Ecklund, S.D.; Kulikov, A.V.; Pitthan, R.

    1991-05-01

    The design of the compact, achromatic, second order isochronous 180 degrees turn for the SLC positron transport system will be described. Design criteria require an energy range of 200±20 MeV, energy acceptance of ±5%, transverse admittance of 25π mm-mr, and minimal lengthening of the 3 to 4 mm (rms) positron bunch. The devices had to fit within a maximum height or width of about 10 ft. Optics specifications and theoretical performance are presented and compared to experimental results based on streak camera measurements of bunch length immediately after the first isochronous turn (200 MeV) and positron beam energy spread after S-band acceleration to 1.15 GeV. 5 refs., 7 figs

  12. Physical design of the positron induced auger electron spectrometer

    International Nuclear Information System (INIS)

    Qin Xiubo; Jiang Xiaopan; Wang Ping; Yu Runsheng; Wang Baoyi; Wei Long

    2009-01-01

    Positron Annihilation Induced Auger Electron Spectroscopy (PAES) has several advantages over those excited by X-rays, high energy electrons or neutrons, such as excellent surface selectivity, high signal-to-noise ratio, low radiation damage,etc. A physical design of time of flight PAES (TOF-PAES) apparatus based on the Beijing Intense Slow Positron Beam (BIPB) is described in this paper. The positrons and electrons are transported in a 4 x 10 -3 T uniform magnetic field, and the gradient of magnetic field is designed to pluralize the Auger electrons emitted with 2π angle. The Auger electron energy is adjusted by a Faraday cage to optimize the energy resolution,which can be better than 2 eV. (authors)

  13. Polarized positrons in Jefferson lab electron ion collider (JLEIC)

    Science.gov (United States)

    Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong

    2018-05-01

    The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.

  14. Study of a positron generation

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Enomoto, A.; Ikeda, M.; Ohsawa, S.; Kamitani, T.; Hosoyama, K.; Takei, H.; Emoto, T.; Tani, S.

    1998-03-01

    In the Power Reactor and Nuclear Fuel Development Corporation (PNC), the following are examined as part of an application technology using a high power electron linac: monochromatic gamma ray sources, free electron lasers, and intense positron sources. This report presents the study of an intense positron source, which has been developed jointly by High Energy Accelerator Research Organization (KEK) and PNC. In this report, we describe following items for an adaptive estimate of a superconducting magnet in order to efficiently converge a positron beam. (1) The cryostat which included the superconducting magnet is manufactured. (2) An excitement test of the superconducting magnet is carried out with a magnetic substance such as the electromagnet yoke. (author)

  15. Elastic positron-cadmium scattering at low energies

    International Nuclear Information System (INIS)

    Bromley, M. W. J.; Mitroy, J.

    2010-01-01

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e + -Cd system. The s-wave binding energy is estimated to be 126±42 meV, with a scattering length of A scat =(14.2±2.1)a 0 , while the threshold annihilation parameter, Z eff , was 93.9±26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z eff of 91±17 at a collision energy of about 490±50 meV.

  16. Electroproduction of pairs at beam-beam collision

    International Nuclear Information System (INIS)

    Bajer, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1989-01-01

    Charged particle pair production at beam-beam collision in electron-positron linear colliders has been discussed taking into account a finite size of the beams (both longitudinal and transverse) and end effects. Contributions of the main acting mechanisms are singled out which depend on the energy of initial particles and the masses of created particles. A spectral distribution of produced particles is presented. 15 refs

  17. Measurement of high-Q{sup 2} charged current deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Faculty of Exact Sciences, School of Physics; Max-Planck-Inst., Munich (Germany); Abt, I. [Max-Planck-Inst. fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2010-08-15

    Measurements of the cross sections for charged current deep inelastic scattering in e{sup +}p collisions with a longitudinally polarised positron beam are presented. The measurements are based on a data sample with an integrated luminosity of 132 pb{sup -1} collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is presented at positive and negative values of the longitudinal polarisation of the positron beams. The single-differential cross sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy are presented for Q{sup 2}>200 GeV{sup 2}. The reduced cross-section {sigma} is presented in the kinematic range 200

  18. Defects in heavily phosphorus-doped Si epitaxial films probed by monoenergetic positron beams

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Suzuki, Ryoichi; Ohgaki, Hideaki; Mikado, Tomohisa.

    1994-01-01

    Vacancy-type defects in heavily phosphorus-doped Si epitaxial films were probed by monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured for the epitaxial films grown on the Si substrates by plasma chemical vapor deposition. For the as-deposited film, divacancy-phosphorus complexes were found with high concentration. After 600degC annealing, vacancy clusters were formed near the Si/Si interface, while no drastic change in the depth distribution of the divacancy-phosphorus complexes was observed. By 900degC annealing, the vacancy clusters were annealed out; however, the average number of phosphorus atoms coupled with divacancies increased. The relationship between the vacancy-type defects probed by the positron annihilation technique and the carrier concentration was confirmed. (author)

  19. Defects in heavily phosphorus-doped Si epitaxial films probed by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Suzuki, Ryoichi; Ohgaki, Hideaki; Mikado, Tomohisa

    1994-11-01

    Vacancy-type defects in heavily phosphorus-doped Si epitaxial films were probed by monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured for the epitaxial films grown on the Si substrates by plasma chemical vapor deposition. For the as-deposited film, divacancy-phosphorus complexes were found with high concentration. After 600degC annealing, vacancy clusters were formed near the Si/Si interface, while no drastic change in the depth distribution of the divacancy-phosphorus complexes was observed. By 900degC annealing, the vacancy clusters were annealed out; however, the average number of phosphorus atoms coupled with divacancies increased. The relationship between the vacancy-type defects probed by the positron annihilation technique and the carrier concentration was confirmed. (author).

  20. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world close-quote s highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy. copyright 1999 American Institute of Physics

  1. Implantation profile of low-energy positrons in solids

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Lynn, K.G.

    1990-01-01

    A simple form for an implantation profile of monoenergetic, low-energy (1--10 keV) positrons in solids is presented. Materials studied include aluminum, copper, molybdenum, palladium, and gold with atomic number ranging from 13 to 79. A simple set of parameters can describe the currently used Makhov profile in slow positron studies of solids. We provide curves and tables for the parameters that can be used to describe the implantation profiles of positrons in any material with atomic number in between 13 and 79

  2. Future e+e- linear colliders and beam-beam effects

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1986-05-01

    Numerous concepts, ranging from conventional to highly exotic, hae been proposed for the acceleration of electrons and positrons to very high energies. For any such concept to be viable, it must be possible to produce from it a set of consistent parameters for one of these ''benchmark'' machines. Attention is directed to the choice of parameters for a collider in the 300 GeV energy range, operating at a gradient on the order of 200 MV/m, using X-band power sources to drive a conventional disk-loaded accelerating structure. These rf power sources, while not completely conventional represent a reasonable extrapolation from present technology. The choice of linac parameters is strongly coupled to various beam-beam effects which take place when the electron and positron bunches collide. We summarize these beam-beam effects, and then return to the rf design of a 650 GeV center-of-mass collider. 14 refs

  3. Application of positron annihilation induced auger electron spectroscopy to the study of surface chemistry

    International Nuclear Information System (INIS)

    Weiss, A.H.; Yang, G.; Nangia, A.; Kim, J.H.; Fazleev, N.G.

    1996-01-01

    Positron annihilation induced Auger Electron Spectroscopy (PAES), makes use a beam of low energy positrons to excite Auger transitions by annihilating core electrons. This novel mechanism provides PAES with a number of unique features which distinguishes it from other methods of surface analysis. In PAES the very large collisionally induced secondary electron background which is present under the low energy Auger peaks using conventional techniques can be eliminated by using a positron beam whose energy is below the range of Auger electron energies. In addition, PAES is more surface selective than conventional Auger Spectroscopy because the PAES signal originates almost exclusively from the topmost atomic layer due to the fact that the positrons annihilating with the core electrons are trapped in an image correlation well just outside the surface. In this paper, recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) to the study of surface structure and surface chemistry will be discussed including studies of the growth, alloying and inter-diffusion of ultrathin layers of metals, metals on semiconductors, and semiconductors on semiconductors. In addition, the possibilities for future application of PAES to the study of catalysis and surface chemistry will be outlined. (author)

  4. Development of a Slow Positron Facility at Hebrew University of Jerusalem

    Science.gov (United States)

    Kelleher, Aidan

    2013-03-01

    Positron annihilation spectroscopy provides both depth of penetration to study bulk defects in materials as well as nano-scale resolution. This measurement range is achieved by slowing positrons from a radioactive source, typically 22Na, by sending them through a moderator, typically W or solid Ne. The nearly thermal positrons are then accelerated to the desired energy by means of an electrostatic potential. The SPOT project at The Hebrew University of Jerusalem proposes to increase the luminosity of the beam by applying the best practices currently in us, as well as using a short-lived source of positrons, 18F. Simulations based on our current designs indicate this project will be able to deliver positrons in the energy range of 50-50000eV with an energy resolution of 1eV is possible. We will present the unique technical challenges of using this source of positrons, how we plan to overcome them, the results of simulations, and facility construction progress.

  5. Formation of oxygen-related defects enhanced by fluorine in BF{sub 2}{sup +}-implanted Si studied by a monoenergetic positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Nagai, Ryo; Umeda, Kazunori

    1995-12-01

    Defects in 25-keV BF{sub 2}{sup +}- or As{sup +}-implanted Si specimens were probed by a monoenergetic positron beam. For the As{sup +}-implanted specimen, the depth profile of defects was obtained from measurements of Doppler broadening profiles as a function of incident positron energy. The major species of the defects was identified as divacancies. For ion-implanted specimens after annealing treatment, oxygen-related defects were found to be formed. For the BF{sub 2}{sup +}-implanted specimen before annealing treatment, such defects were formed in the subsurface region, where oxygen atoms were implanted by recoil from oxide films. This was attributed to enhanced formation of oxygen-related defects by the presence of F atoms. (author)

  6. Helium implanted RAFM steels studied by positron beam Doppler Broadening and Thermal Desorption Spectroscopy

    International Nuclear Information System (INIS)

    Carvalho, I; Schut, H; Fedorov, A; Luzginova, N; Desgardin, P; Sietsma, J

    2013-01-01

    Reduced Activation Ferritic/Martensitic steels are being extensively studied because of their foreseen application in fusion and Generation IV fission reactors. To mimic neutron irradiation conditions, Eurofer97 samples were implanted with helium ions at energies of 500 keV and 2 MeV and doses of 5x10 15 -10 16 He /cm 2 , creating atomic displacements in the range 0.07–0.08 dpa. The implantation induced defects were characterized by positron beam Doppler Broadening (DB) and Thermal Desorption Spectroscopy (TDS). The DB data could be fitted with one or two layers of material, depending on the He implantation energy. The S and W values obtained for the implanted regions suggest the presence of not only vacancy clusters but also positron traps of the type present in a sub-surface region found on the reference sample. The traps found in the implanted layers are expected to be He n V m clusters. For the 2 MeV, 10 16 He/cm 2 implanted sample, three temperature regions can be observed in the TDS data. Peaks below 450 K can be ascribed to He released from vacancies in the neighbourhood of the surface, the phase transition is found at 1180 K and the peak at 1350 K is likely caused by the migration of bubbles.

  7. Suppression of oxygen diffusion by thin Al2O3 films grown on SrTiO3 studied using a monoenergetic positron beam

    International Nuclear Information System (INIS)

    Uedono, A.; Kiyohara, M.; Yasui, N.; Yamabe, K.

    2005-01-01

    The annealing behaviors of oxygen vacancies introduced by the epitaxial growth of thin SrTiO 3 and Al 2 O 3 films on SrTiO 3 substrates were studied by using a monoenergetic positron beam. The films were grown by molecular-beam epitaxy without using an oxidant. The Doppler broadening spectra of the annihilation radiation were measured as a function of the incident positron energy for samples fabricated under various growth conditions. The line-shape parameter S, corresponding to the annihilation of positrons in the substrate, was increased by the film growth, suggesting diffusion of oxygen from the substrate into the film and a resultant introduction of vacancies (mainly oxygen vacancies). A clear correlation between the value of S and the substrate conductivity was obtained. From isochronal annealing experiments, the Al 2 O 3 thin film was found to suppress the penetration of oxygen from the atmosphere for annealing temperatures below 600 deg. C. Degradation of the film's oxygen blocking property occurred due to the annealing at 700 deg. C, and this was attributed to the oxidation of the Al 2 O 3 by the atmosphere and the resultant introduction of vacancy-type defects

  8. Performance characterisation and optimisation of the HIPOS positron generator setup

    Energy Technology Data Exchange (ETDEWEB)

    Tucek, K., E-mail: kamil.tucek@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Zeman, A.; Daquino, G.; Debarberis, L. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Hogenbirk, A. [Nuclear Research and Consultancy Group (NRG), P.O. Box 25, NL-1755 ZG Petten (Netherlands)

    2012-01-01

    As part of an Exploratory Research Project at the Institute for Energy and Transport (Joint Research Centre of the European Commission), a feasibility assessment was performed for the construction and placement of a high-intensity positron facility (HIPOS) in a beam tube, HB9, at the High flux reactor (HFR) in Petten. This paper reports on the results of Monte Carlo simulations to optimise the concept of the HIPOS positron generator and to determine the performance characteristics of the chosen generator design. In the first step, a detailed model of the HFR reactor core, reflector, instrumentation and HB9 beam tube was prepared, and coupled neutron and photon transport calculations were carried out with the MCNP4C3 code to establish neutron and photon source terms on boundary surfaces of the HB9 beam tube. These sources were subsequently used with the MCNPX code to optimise the positron generator concept and geometry. The results showed that the positron beam can reach an integral intensity of 10{sup 13} e{sup +}/s before the moderation stage, easily meeting the specified target and confirming the hypothesis that very high positron yields can be obtained by using combined neutron and gamma radiation sources from a high flux reactor. Full details of the research work are reported in this study.

  9. Positron Production in Multiphoton Light-by-Light Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Koffas, Thomas

    2003-07-28

    We present the results of an experimental study on e{sup +}e{sup -} pair production during the collision of a low emittance 46.6 GeV electron beam with terawatt laser pulses from a Nd:glass laser at 527 nm wavelength and with linear polarization. The experiment was conducted at the Final Focus Test Beam facility in the Stanford Linear Accelerator Center. Results with a 49.1 GeV electron beam are also included. A signal of 106 {+-} 14 positrons for the 46.6 GeV electron beam case and of 22 {+-} 10 positrons for the 49.1 GcV case above background, has been detected. We interpret the positrons as the products of a two-step process during which laser photons are backscattered to high energy gamma photons that absorb in their turn several laser photons in order to produce a e{sup +}e{sup -} pair. The data compare well with the existing theoretical models. This is the first observation in the laboratory of inelastic Light-by-Light scattering with only real photons. Alternatively, the data are interpreted as a manifestation of the spontaneous breakdown of the vacuum under the influence of an intense external alternating electric field.

  10. PREFACE 12th International Workshop on Slow Positron Beam Techniques

    Science.gov (United States)

    Buckman, Stephen; Sullivan, James; White, Ronald

    2011-01-01

    Preface These proceedings arose from the 12th International Workshop on Slow Positron Beam Techniques (SLOPOS12), which was held on Magnetic Island, North Queensland, Australia, between 1-6th August 2010. Meetings in the SLOPOS series are held (roughly) every three years and have now been held on (almost) all continents, indicating the truly international nature of the field. SLOPOS12 marked the second time that the Workshop had been held in the southern hemisphere, and the first time in Australia. SLOPOS12 attracted 122 delegates from 16 countries. Most encouraging was the attendance of 28 student delegates, and that about half of the overall delegates were early career researchers - a good sign for the future of our field. We also enjoyed the company of more than a dozen partners and families of delegates. In a slight departure from previous SLOPOS meetings, the International Advisory Committee approved a broader scope of scientific topics for inclusion in the program for the 2010 Workshop. This broader scope was intended to capture the applications of positrons in atomic, molecular and biomedical areas and was encapsulated in the byeline for SLOPOS-12: The 12th International Workshop on Slow Positron Beam Techniques for Solids, Surfaces, Atoms and Molecules. The scientific and social program for the meeting ran over 6 days with delegates gathering on Sunday August 1st and departing on August 6th. The scientific program included plenary, invited, contributed and student lectures, the latter being the subject of a student prize. In all there were 53 oral presentations during the week. There were also two poster sessions, with 63 posters exhibited, and a prize was awarded for the best poster by a student delegate. The standard of the student presentations, both oral and posters, was outstanding, so much so that the judging panel recommended an additional number of prizes be awarded. Topics that were the focus of invited presentations and contributed papers at

  11. Emerging science and technology of antimatter plasmas and trap-based beams

    International Nuclear Information System (INIS)

    Surko, C.M.; Greaves, R.G.

    2004-01-01

    Progress in the ability to accumulate and cool positrons and antiprotons is enabling new scientific and technological opportunities. The driver for this work is plasma physics research - developing new ways to create and manipulate antimatter plasmas. An overview is presented of recent results and near-term goals and challenges. In atomic physics, new experiments on the resonant capture of positrons by molecules provide the first direct evidence that positrons bind to 'ordinary' matter (i.e., atoms and molecules). The formation of low-energy antihydrogen was observed recently by injecting low-energy antiprotons into a cold positron plasma. This opens up a range of new scientific opportunities, including precision tests of fundamental symmetries such as invariance under charge conjugation, parity, and time reversal, and study of the chemistry of matter and antimatter. The first laboratory study of electron-positron plasmas has been conducted by passing an electron beam through a positron plasma. The next major step in these studies will be the simultaneous confinement of electron and positron plasmas. Although very challenging, such experiments would permit studies of the nonlinear behavior predicted for this unique and interesting plasma system. The use of trap-based positron beams to study transport in fusion plasmas and to characterize materials is reviewed. More challenging experiments are described, such as the creation of a Bose-condensed gas of positronium atoms. Finally, the future of positron trapping and beam formation is discussed, including the development of a novel multicell trap to increase by orders of magnitude the number of positrons trapped, portable antimatter traps, and cold antimatter beams (e.g., with energy spreads ≤1 meV) for precision studies of positron-matter interactions

  12. Vacancy defects in epitaxial La0.7Sr0.3MnO3 thin films probed by a slow positron beam

    International Nuclear Information System (INIS)

    Jin, S W; Zhou, X Y; Wu, W B; Zhu, C F; Weng, H M; Wang, H Y; Zhang, X F; Ye, B J; Han, R D

    2004-01-01

    Vacancy defects in epitaxial La 0.7 Sr 0.3 MnO 3 (LSMO) thin films on LaAlO 3 substrates were detected using a variable energy positron beam. The line-shape S parameter of the epitaxial thin films deposited at different oxygen pressures was measured as a function of the implanting positron energy E. Our results show that the S parameter of the films changes non-monotonically with their deposition oxygen pressures. For the films deposited at lower oxygen pressures, the increase in S value in the films is attributed to the increase in oxygen vacancies and/or related defect-V O complexes, and for those deposited at higher oxygen pressures, the larger S parameter of the films is caused by the grain boundaries and/or metallic ion vacancies. The surface morphology of the films was also characterized to analyse the open volume defects in the LSMO films

  13. Low-energy positron and electron scattering from nitrogen dioxide

    International Nuclear Information System (INIS)

    Chiari, Luca; Brunger, M J; Zecca, Antonio; García, Gustavo; Blanco, Francisco

    2013-01-01

    Total cross section (TCS) measurements for positron scattering from nitrogen dioxide (NO 2 ) are presented in the energy range 0.2–40 eV. The TCS, the elastic integral and differential cross sections, and the integral cross section accounting of all the inelastic processes (including positronium formation) have also been computed using the independent atom model with screening corrected additivity rule (IAM-SCAR) for incident energies from 1 to 1000 eV. A qualitative level of agreement is found between the present TCS experiment and theory at the common energies. As no previous measurements or calculations for positron–NO 2  scattering exist in the literature, we also computed the TCS for electron collisions with NO 2  employing the IAM-SCAR method. A comparison of those results to the present positron cross sections and the earlier electron-impact data and calculations is provided. To investigate the role that chemical substitution plays in positron scattering phenomena, we also compare the present positron–NO 2  data with the TCSs measured at the University of Trento for positron scattering from N 2 O and CO 2 . (paper)

  14. Study on quantum beam science by using ultra short electron pulse, FEL, and slow positron beam at ISIR (Institute of Science and Industrial Research), Osaka University

    International Nuclear Information System (INIS)

    Yoshida, Y.; Tagawa, S.; Okuda, S.; Honda, Y.; Kimura, N.; Yamamoto, T.; Isoyama, G.

    1995-01-01

    Three projects for quantum beam science, an ultra fast electron pulse, a free electron laser, and a slow positron beam, has been started by using 38 MeV L-band and 150 MeV S-band linacs at ISIR in Osaka University. Both study on the production of three beams and study on quantum material science by using three beams will play an important role in the beam science. (author)

  15. Applications of positron annihilation spectroscopy to polymeric and biological systems

    International Nuclear Information System (INIS)

    Jean, Y.C.; Chen, Hongmin; Liu, Guang; Chakka, Lakshmi; Gadzia, Joseph E.

    2007-01-01

    Positron annihilation spectroscopy (PAS) is a novel radio-analytical technique which uses the positron (anti-electron) and is capable of probing the atomic and molecular scale (0.2-2 nm) free-volume and hole properties in polymeric and biological materials. Recently, we developed positron annihilation lifetime and Doppler broadening of energy spectroscopies coupled with a variable mono-energetic positron beam to measure the free-volume depth profile from the surface, interfaces, and to the bulk. This paper presents applications of PAS to determine multi-layer structures, glass transition temperatures in nano-scale polymeric films and to detect cancer in the human skin. (author)

  16. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Jakob

    2010-04-03

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to {delta}E/E{approx}10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION {sup registered} ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to {delta}E/E < 1. The exceptional surface sensitivity and elemental selectivity of PAES was demonstrated in measurements of Pd and Fe, both coated with Cu layers of varying thickness. PAES showed that with 0.96 monolayer of Cu on Fe, more than 55% of the detected Auger electrons stem from Cu. In the case of the Cu coated Pd sample 0.96 monolayer of Cu resulted in a Cu Auger fraction of more than 30% with PAES and less than 5% with electron induced Auger spectroscopy

  17. Electron-positron annihilation at high luminosity colliding beams

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Khodzhamiryan, A.Yu.

    1977-01-01

    Experiments are discussed, which can be carried out at the electron-positron storage rings with increased luminosity (up to 10 34 cm -2 sec -1 ) and corresponding improvement of detectors at total energy region up to 10 GeV. This improvement of the experimental conditions may provide valuable physical information from the theoretical point of view. The comparison is made with analogous experimental possibilities of the projected high energy e + e - storage rings with luminosity up to 10 32 cm -2 sec -1

  18. Low energy positron interactions with uracil—Total scattering, positronium formation, and differential elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E. K.; Boadle, R. A.; Machacek, J. R.; Makochekanwa, C.; Sullivan, J. P. [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Chiari, L. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Buckman, S. J., E-mail: Stephen.buckman@anu.edu.au [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Brunger, M. J. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Garcia, G. [Instituto de Fısica Fundamental, Consejo Superior de Investigationes Cientıficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, F. [Departamento de Fısica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ingolfsson, O. [Department of Chemistry, Science Institute, University of Iceland, Reykjavík 107 (Iceland)

    2014-07-21

    Measurements of the grand total and total positronium formation cross sections for positron scattering from uracil have been performed for energies between 1 and 180 eV, using a trap-based beam apparatus. Angular, quasi-elastic differential cross section measurements at 1, 3, 5, 10, and 20 eV are also presented and discussed. These measurements are compared to existing experimental results and theoretical calculations, including our own calculations using a variant of the independent atom approach.

  19. Thermalisation of high energy electrons and positrons in water vapour

    Science.gov (United States)

    Munoz, A.; Blanco, F.; Limao-Vieira, P.; Thorn, P. A.; Brunger, M. J.; Buckman, S. J.; Garcia, G.

    2008-07-01

    In this study we describe a method to simulate single electron tracks of electrons in molecular gases, particularly in water vapour, from relatively high energies, where Born (Inokuti 1971) approximation is supposed to be valid, down to thermal energies paying special attention to the low energy secondary electrons which are abundantly generated along the energy degradation procedure. Experimental electron scattering cross sections (Munoz et al. 2007) and energy loss spectra (Thorn et al. 2007) have been determined, where possible, to be used as input parameters of the simulating program. These experimental data have been complemented with optical potential calculation (Blanco and Garcia 2003) providing a complete set of interaction probability functions for each type of collision which could take place in the considered energy range: elastic, ionization, electronic excitation, vibrational and rotational excitation. From the simulated track structure (Munoz et al. 2005) information about energy deposition and radiation damage at the molecular level can be derived. A similar procedure is proposed to the study of single positron tracks in gases. Due to the lack of experimental data for positron interaction with molecules, especially for those related to energy loss and excitation cross sections, some distribution probability data have been derived from those of electron scattering by introducing positron characteristics as positroniun formation. Preliminary results for argon are presented discussing also the utility of the model to biomedical applications based on positron emitters.

  20. Positron annihilation studies on bulk metallic glass and high intensity positron beam developments

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Stoeffl, W.

    2003-01-01

    Positron annihilation spectroscopy is an ideal probe to examine atomic scale open-volume regions in materials. Below, we summarize the recent results on studies of open-volume regions of a multicomponent Zr-Ti-Ni-Cu-Be bulk metallic glass. Our studies establish two types of open-volume regions, one group that is too shallow to trap positrons at room temperature and becomes effective only at low temperatures and the other group that localizes positrons at room temperature and is large enough to accommodate hydrogen. The second half of the paper will concentrate on the high intensity positron program at Lawrence Livermore National Laboratory. A new positron production target is under development and we are constructing two experimental end stations to accommodate a pulsed positron microprobe and an experiment on positron diffraction and holography. Important design considerations of these experiments will be described. (author)

  1. Theory, development, and applications of the scanning positron microbeam and positron reemission microscope

    International Nuclear Information System (INIS)

    Brandes, G.R.

    1990-01-01

    The theory, design, development, and applications of two new imaging instruments, the scanning positron microbeam (SPM) and positron reemission microscope (PRM), are discussed. The SPM consists of a sectored lens which focuses and rasters the positrons from the beam across the sample. The results of rastering the 10μm x 50μm beam across a test grid demonstrate the SPM's ability to scan a 500μm diameter region and to resolve features with ∼ 5μm resolution. The SPM was used to examine the location of defects in a Si-on-SiO 2 sample. Possible applications to three dimensional defect spectroscopy and the observation of small samples are considered. In the PRM, the positrons from the brightness-enhanced beam are focused at 5keV to an 8/Am diameter spot (FWHM) onto a thin metal single crystal. An image of the opposing side of the film is formed by accelerating and focusing the reemitted thermalized positrons with a cathode lens objective and a projector lens. The final image (real) is a record of the thermal positron emission intensity versus position. Images of surface and subsurface defect structures, taken at magnifications up to 4400x and with a resolution up to 80nm, are presented and discussed. The ultimate resolution capabilities and possible applications of the PRM are examined. The implantation and diffusion process of positrons was studied with the PRM by examining the positron emission profile of 3-9keV positrons implanted into a 2200 angstrom thick Ni single crystal

  2. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility

    International Nuclear Information System (INIS)

    Golge, S.; Vlahovic, B.; Wojtsekhowski, B.

    2014-01-01

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10 10  e + /s. Reaching this intensity in our design relies on the transport of positrons (T + below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e + beam from the converter to the moderator, extraction of the e + beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e + from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  3. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B. [North Carolina Central University, Durham, North Carolina 27707 (United States); Wojtsekhowski, B. [Jefferson Laboratory, 12000 Jefferson Ave., Newport News, Virginia 23606 (United States)

    2014-06-21

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10 }e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +} beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  4. Positron Source from Betatron X-rays Emitted in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.K.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Barnes, C.D.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; Krejcik, P.; O' Connell, C.L.; Siemann, R.; Walz, D.R.; /SLAC; Deng, S.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2006-04-21

    In the E-167 plasma wakefield accelerator (PWFA) experiments in the Final Focus Test Beam (FFTB) at the Stanford Linear Accelerator Center (SLAC), an ultra-short, 28.5 GeV electron beam field ionizes a neutral column of Lithium vapor. In the underdense regime, all plasma electrons are expelled creating an ion column. The beam electrons undergo multiple betatron oscillations leading to a large flux of broadband synchrotron radiation. With a plasma density of 3 x 10{sup 17}cm{sup -3}, the effective focusing gradient is near 9 MT/m with critical photon energies exceeding 50 MeV for on-axis radiation. A positron source is the initial application being explored for these X-rays, as photo-production of positrons eliminates many of the thermal stress and shock wave issues associated with traditional Bremsstrahlung sources. Photo-production of positrons has been well-studied; however, the brightness of plasma X-ray sources provides certain advantages. In this paper, we present results of the simulated radiation spectra for the E-167 experiments, and compute the expected positron yield.

  5. Trapping of positrons in a Penning Malmberg trap in the view of accumulating them with the use of a pulsed beam

    International Nuclear Information System (INIS)

    Dupre, P.

    2011-09-01

    The weak equivalence principle, a fundament of Einstein general relativity, states that gravitational mass and inertial mass are equal whatever the body. This equivalence principle has never been directly tested with antimatter. The GBAR (Gravitational Behaviour of Antimatter at Rest) experiment intends to test it by measuring the acceleration of ultra cold anti-hydrogens in free fall. The production of such anti-atoms requires a pulse of about 10 10 positrons in a few tens of nanoseconds. This thesis focuses on the development of a new accumulation technique of positrons in a Penning-Malmberg trap in order to create this pulse. This new method is an improvement of the accumulation technique of Oshima et al.. This technique requires a non-neutral electron plasma to cool down positrons in the trap in order to confine them. A continuous beam delivers positrons and the trapping efficiency is about 0.4%. The new method needs a positron pulsed beam and the method efficiency is estimated at 80%. A part of this thesis was performed at Riken (Tokyo) on the trap of Oshima et al. to study the behavior of non-neutral plasmas in this type of trap and the first accumulation method. A theoretical model was developed to simulate the positron trapping efficiency. The description and the systematic study of the new accumulation technique with a pulsed positron beam are presented. They includes notably the optimization through simulation of the electromagnetic configuration of the trap and of the parameters of the used non-neutral plasmas. (author)

  6. A feasibility study of high intensity positron sources for the S-band and TESLA linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, R.

    1997-10-01

    Future high energy linear colliders require luminosities above 10{sup 33} cm{sup -2}s{sup -1}. Therefore beam intensities have to be provided up to two orders of magnitude higher than achieved at present. It is comparably simple to reach high electron intensities. Positron intensities in this range, however, are difficult to realize with conventional positron sources. A new method of positron production was proposed in 1979 by V.E. Balakin and A.A. Mikhailichenko. The photons, necessary for pair production, are not generated by bremsstrahlung but by high energy electrons passing through an undulator. Based on this principle, a high intensity, unpolarized and polarized positron source for linear colliders was developed by K.Floettmann. In the present work, the requirements derived by K.Floettmann are used to study the feasibility of both the polarized and the unpolarized positron source. For economical reasons it is advantageous to use the beam after the interaction for positron production. In the main part of the present work a beam line is developed which guarantees a stable operation of the unpolarized wiggler-based positron source for the S-Band and TESLA linear collider. The requirements on the electron beam emittances are much higher for the polarized undulator-based source. For TESLA it is shown, that an operation of the polarized source is possible for design interactions. For a stable operation, taking into account perturbations at the interaction point, further investigations are necessary. For the SBLC, an operation of the polarized source is not possible with the present design.

  7. Polarized positron sources for the future linear colliders

    International Nuclear Information System (INIS)

    Chaikovska, I.

    2012-01-01

    This thesis introduces the polarized positron source as one of the key element of the future Linear Collider (LC). In this context, the different schemes of the polarized positron source are described highlighting the main issues in this technology. In particular, the main focus is on the Compton based positron source adopted by the CLIC as a preferred option for the future positron source upgrade. In this case, the circularly polarized high energy gamma rays resulting from Compton scattering are directed to a production target where an electromagnetic cascade gives rise to the production of positrons by e + -e - pair conversion. To increase the efficiency of the gamma ray production stage, a multiple collision point line integrated in energy recovery linac is proposed. The simulations of the positron production, capture and primary acceleration allow to estimate the positron production efficiency and provide a simple parametrization of the Compton based polarized positron source in the view of the future LC requirements. The storage ring based Compton source option, so-called Compton ring, is also described. The main constraint of this scheme is given by the beam dynamics resulting in the large energy spread and increased bunch length affecting the gamma ray production rate. An original theoretical contribution is shown to calculate the energy spread induced by Compton scattering. Moreover, an experiment to test the gamma ray production by Compton scattering using a state-of-art laser system developed at LAL has been conducted in the framework of the 'Mighty Laser' project at the ATF, KEK. The experimental layout as well as the main results obtained are discussed in details. The studies carried out in this thesis show that the polarized positron source based on Compton scattering is a promising candidate for the future LC polarized positron source. (author)

  8. Characterizing free volumes and layer structures in polymeric membranes using slow positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Jean, Y C; Chen Hongmin; Awad, Somia; Zhang Sui; Chen Hangzheng; Lau, Cher Hon; Wang Huan; Li Fuyun; Chung, Tai-Shung; Lee, L James; Huang, James

    2011-01-01

    Positron annihilation spectroscopy coupled with a newly built slow positron beam at National University of Singapore has been used to study the free volume, pore, and depth profile (0 - 10 μm) in cellulose acetate polymeric membrane at the bottom and top sides of membranes for ionic separation in water purification applications. The S and R parameters from Doppler broadening energy of annihilation radiation representing free volumes (0.1-1 nm size) and pores (>1 nm-μm) as a function of depth have been analyzed into multilayers, i.e. skin dense, transition, and porous layers, respectively. The top side of membrane has large free volumes and pores and the bottom side has a skin dense layer, which plays a key role in membrane performance. Positron annihilation lifetime results provide additional information about free-volume size and distribution at the atomic and molecular scale in polymeric membrane systems. Doppler broadening energy and lifetime spectroscopies coupled with a variable mono-energy slow positron beam are sensitive and novel techniques for characterization of polymeric membrane in separation applications.

  9. Experimental Study of a Positron\\\\ Source Using Channeling

    CERN Multimedia

    Gavrykov, V; Kulibaba, V; Baier, V; Beloborodov, K; Bojenok, A; Bukin, A; Burdin, S; Dimova, T; Druzhinin, V; Dubrovin, M; Seredniakov, S; Shary, V; Strakhovenko, V; Keppler, P; Major, J; Bogdanov, A V; Potylitsin, A; Vnoukov, I; Artru, X; Lautesse, P; Poizat, J-C; Remillieux, J

    2002-01-01

    Many simulations have predicted that the yield of positrons, resulting from the interaction of fast electrons in a solid target, increases if the target is a crystal oriented with a major axis parallel to the electron beam. Tests made at Orsay and Tokyo confirmed these expectations. The experiment WA 103 concerns the determination of the main characteristics (emittance, energy spread) of a crystal positron source which could replace advantageously the conventional positron converters foreseen in some linear collider projects. The main element of the set-up is a magnetic spectrometer, using a drift chamber, where the positron trajectories are reconstructed (see Figure 1) A first run has been operated in july 2000 and the first results showed, as expected, a significant enhancement in photon and positron generation along the $$ axis of the tungsten crystal. Indications about a significant increase in the number of soft photons and positrons were also gathered : this point is of importance for the positron colle...

  10. Current status and future view of generation of slow positrons and applications of available antiparticles

    International Nuclear Information System (INIS)

    Tomimasu, T.

    1988-01-01

    The positron is the antielectron and annihilates with an electron from the surrounding medium dominantly into two 511 keV γ-rays. The two annihilation γ-rays are modified by the momentum and energy distributions of the electrons in the annihilation site. The annihilation rates are proportional to the electron density in the site. Therefore, the two annihilation γ-rays and the average lifetime of positrons can provide unique informations on a wide variety of problems in condensed matter physics. Slow positrons with narrow energy spread are more useful, compared with white positrons from radioactive isotopes, to the positron annihilation experiment, the low energy positron diffraction, the positron microscope and so on. This review describes the current status and future view on (1) the applications of the positron annihilation to the condensed matter physics, (2) the generation of slow positrons using electron linacs, (3) the positron beam handling system including the pulse stretcher with a Penning trap and (4) the applications of available antiparticles including monoenergetic positrons, muons, pions and antiprotons to the analysis and evaluation of materials, the energy storage and positronium radiations. (author)

  11. Topics in electron-positron interactions

    International Nuclear Information System (INIS)

    Soeding, P.

    1983-01-01

    This chapter investigates the collision of an electron and a positron in a high energy storage ring in which a large energy Q=W=√s=2 E /SUB beam/ is dumped into a tiny region of space-time. If the electron and positron annihilate each other almost all of this energy becomes concentrated in a single field quantum. Points out 3 consequences: 1) all flavored particles existing in nature are expected to be pair-produced provided their mass is not larger than W/2; 2) the pair production process acts as an effective ''filter'' for fundamental (i.e. pointlike) particles; and 3) particles without flavor (i.e. the gluons) are not directly pair-produced in e - e + interactions. Discusses basic processes; probing QED and lepton structure; hadron production at high energies; resonances; e - e + storage rings; detectors; electroweak interaction and new particles (leptons, quarks); restrictions on a more general weak interaction scenario; limits on pair production of scalar particles; and jets and QCD tests

  12. Imaging optimizations with non-pure and high-energy positron emitters in small animal positron computed tomography

    International Nuclear Information System (INIS)

    Harzmann, Sophie

    2014-01-01

    The contribution on imaging optimizations with non-pure and high-energy positron emitters in small animal positron emission tomography (PET) covers the following topics: physical fundamentals of PET, mathematical image reconstruction and data analyses, Monte-Carlo simulations and implemented correction scheme, quantification of cascade gamma coincidences based on simulations and measurements, sinogram based corrections, restoration of the spatial resolution, implementation of full corrections.

  13. The correlations of electrochromism and thermochromism of tungsten oxide films studied by slow positron beam

    International Nuclear Information System (INIS)

    Ma Chuangxin; Zhou Chunlan; Zhang Zhiming; Wang Baoyi; Wei Long

    2004-01-01

    Electrochromic (EC) and thermochromic (TC) tungsten oxide (WO 3 ) films, deposited by magnetron sputtering and vacuum thermal evaporation, were studied systematically by means of slow positron measurements. The S parameters of colored amorphous WO 3 film and crystalline WO 3 film behaved quite similarly in the processes of thermochromism and electrochromism, little influenced by the different deposition methods. It indicates that the coloration processes under various external conditions are correlated with each other. It also shows that the slow positron beam technique may play a particular role in the study of chromogenic materials. (orig.)

  14. Vector mesons in reactions with colliding electron-positron beams

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Gakh, G.I.

    1980-01-01

    Polarization phenomena in the processes of vector meson production in reactions with colliding electron-positron beams e + e - → V+X, where V is a vector meson, X is a nondetected set of particles are investigated. For the one-photon mechanism of the process, where V and X are hadrons, the mutually unambiguous correspondence between the structural functions is found. The dependence of the e + e - → VX differential cross section upon the electron and positron polarizations is calculated using the virtual photon density matrix in the helicity basis. This formalism permits to take explicitly into account the P-invariance consequences for the angular distribution of the V-meson decay products. For the processes e + e - → πA 1 , and e + e - → rho + rho - the structural functions are calculated in terms of the corresponding electromagnetic form factors. It is noted that six functions out ten real structural functions describing the e + e - → VX reaction can be determined by means of investigation of the angular distribution of the V-meson decay products which is produced in collisions of unpolarized leptons. To study the collision of polarized leptons one more structural function can be determined. The formation of the X system with definite values of parity and spin is characterized by seven structural functions, five of which can be found while studying the angular distribution of the V-meson decay products produced in e + e - collisions with unpolarized (polarized) particles. If the spin of the X state is 1, in experiments with polarized beams all structural functions can be determined while investigating the angular distribution of the V-meson decay products

  15. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1989-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal fields - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders

  16. Observation of diffraction effects in positron channeling

    International Nuclear Information System (INIS)

    Palathingal, J.C.; Peng, J.P.; Lynn, K.G.; Wu, X.Y.; Schultz, P.J.

    1994-01-01

    An experimental investigation of positron channeling was made with a high-angular resolution apparatus, employing positrons of kinetic energy 1 MeV, derived from the Brookhaven National Laboratory Dynamitron. The pattern of transmission through a Si (100) single crystal of thickness 0.245 μm was investigated for a number of major planes. The authors have observed for the first time, in excellent detail, the fine structure of the channeling pattern expected to arise from the particle diffraction effects, theoretically explainable in terms of the quantum-mechanical many-beam calculations

  17. Hydrogen interaction with oxidized Si(111) probed with positrons

    International Nuclear Information System (INIS)

    Lynn, K.G.; Nielsen, B.; Welch, D.O.

    1989-01-01

    A variable-energy positron beam was utilized to study the interface action of hydrogen with Si(111) covered by an ultrahigh-vacuum thermally grown oxide of 2-3 nm thickness. It was observed that positrons implanted at shallow depth (< 100 nm) after diffusion are trapped either at the interface between the oxide and the Si or in the oxide. The positron-annihilation characteristics of these trapped positrons are found to be very sensitive to hydrogen exposure. The momentum distribution of the annihilating positron-electron pair, as observed in the Doppler broadening of the annihilation line, broadens considerably after exposure to hydrogen. The effect recovers after annealing at ≅ 1100 K, suggesting a hydrogen binding at the interface of ∼ 3 ± 0.3 eV. (author). 18 refs., 3 figs

  18. Project of positron source at the U-120 Cyclotron, Bucharest. Status report

    International Nuclear Information System (INIS)

    Racolta, P.M.; Popa Simil, L.; Voiculescu, Dana; Miron, N.

    1999-01-01

    To extend the applications with our U-120 Cyclotron we started a project of off-line and on-line positron sources produced at the cyclotron. This machine may be successfully used for producing positron sources with few day half-life for off-line positron studies (eg. 48 V), or a cyclotron on-line intense positron beam (eg. 27 Si) with a variable energy for various materials study experiments, enough to cover a depth range from few micrometers down to tens of nanometers. Until now, using a 48 V positron source we performed experiments for determination of the Doppler broadening of the 511 KeV peak for different materials (copper, lead, indium). This research is carrier out on a cooperation agreement between IFIN-HH Bucharest and LISES-Chisinau. The positron source project is now in its initial stage. This stage consists of the experiments on the off-line version using positron sources produced in the cyclotron (eg. 48 V, 22 Na), to develop experience with detection chains (Doppler broadening and positron annihilation lifetime spectroscopy), to choose proper experiments in order to select moderator materials (W, Mo, Pt, etc.) and to study and design the different versions for the on-line production of positrons with the cyclotron. Slow positrons are valuable tools in atomic physics, materials science and solid state physics research. The controlled energy beam facility can be used to probe defects in metals, to study Fermi surfaces and materials surfaces and interfaces and to obtain detailed information about the electronic structure of materials. The aim of this project is to perform applications in the semiconductor industry, for coating materials, polymers, biomaterials etc. (authors)

  19. Project of positron source at the U-120 cyclotron Bucharest status report

    International Nuclear Information System (INIS)

    Racolta, P.M.; Simil Popa, L.; Voiculescu, Dana; Miron, N.

    2000-01-01

    To extend the applications with our U-120 Cyclotron we started a project of off-line positron sources produced at the cyclotron. This machine may be successfully used for producing positron sources with few day half-life for off-line positron studies (e.g. 48 V), or a cyclotron on-line intense positron beam (e.g. 27 Si) with a variable energy for various materials study experiments, enough to cover a depth range from a few micrometers down to tens of nanometers. Until now, using a 48 V positron source we performed experiments for determination of the Doppler broadening of the 511 keV peak for different materials (copper, lead, indium). This research is carried out on a cooperation agreement between IFIN-HH Bucharest and LISES-Chisinau. The positron source project is now in its initial stage. This stage consists of the experiments on the off-line version using positron source produced in the cyclotron (e.g. 48 V, 22 Na), to develop experience with detection chains (Doppler broadening and positron annihilation lifetime spectroscopy) to choose proper experiments in order to select moderator materials (W, Mo, Pt, etc.) and to study and design the different versions for the on-line positron production by cyclotron. Slow positrons are valuable tools in atomic physics, materials science and solid state physics research. The controlled energy beam facility can be used to probe defects in metals, to study Fermi surfaces and materials surfaces and interfaces and to obtained detailed information about electronic structures of materials. The aim of this project is to perform applications in the semiconductor industry, for coating materials, polymers, biomaterials, etc. (authors)

  20. Positron annihilation studies on proton irradiated nitrile rubber

    International Nuclear Information System (INIS)

    Ravi Chandran, T.S.G.; Lobo, Blaise; Ranganath, M.R.; Gopal, S.; Sreeramalu, V.

    1996-01-01

    NBR (Nitrile Butadiene Rubber) was irradiated with 4 MeV proton beam from a variable energy cyclotron (VEC) at VEC Centre, Calcutta, to a flux of 10 16 ions/cm 2 , in a vacuum of 10 -9 Torr and was studied through positron lifetime measurements

  1. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  2. Positron energy distributions from a hybrid positron source based on channeling radiation

    International Nuclear Information System (INIS)

    Azadegan, B.; Mahdipour, A.; Dabagov, S.B.; Wagner, W.

    2013-01-01

    A hybrid positron source which is based on the generation of channeling radiation by relativistic electrons channeled along different crystallographic planes and axes of a tungsten single crystal and subsequent conversion of radiation into e + e − -pairs in an amorphous tungsten target is described. The photon spectra of channeling radiation are calculated using the Doyle–Turner approximation for the continuum potentials and classical equations of motion for channeled particles to obtain their trajectories, velocities and accelerations. The spectral-angular distributions of channeling radiation are found applying classical electrodynamics. Finally, the conversion of radiation into e + e − -pairs and the energy distributions of positrons are simulated using the GEANT4 package

  3. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Doche, A.; Beekman, C.; Corde, S.

    2017-01-01

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positron bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.

  4. The production of collimated beams of o-Ps atoms using charge exchange in positron-gas collisions

    International Nuclear Information System (INIS)

    Laricchia, G.; Charlton, M.; Davies, S.A.; Beling, C.D.; Griffith, T.C.

    1987-01-01

    Using positron-gas collisions in a short scattering cell it is demonstrated that, at certain impact energies, approximately 4% of the scattered positrons can be detected as o-Ps atoms collimated in a 6 0 cone about the incident positron direction. (author)

  5. 4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy

    International Nuclear Information System (INIS)

    Parodi, Katia; Saito, Nami; Chaudhri, Naved; Richter, Christian; Durante, Marco; Enghardt, Wolfgang; Rietzel, Eike; Bert, Christoph

    2009-01-01

    Purpose: Clinically safe and effective treatment of intrafractionally moving targets with scanned ion beams requires dedicated delivery techniques such as beam tracking. Apart from treatment delivery, also appropriate methods for validation of the actual tumor irradiation are highly desirable. In this contribution the feasibility of four-dimensionally (space and time) resolved, motion-compensated in-beam positron emission tomography (4DibPET) was addressed in experimental studies with scanned carbon ion beams. Methods: A polymethyl methracrylate block sinusoidally moving left-right in beam's eye view was used as target. Radiological depth changes were introduced by placing a stationary ramp-shaped absorber proximal of the moving target. Treatment delivery was compensated for motion by beam tracking. Time-resolved, motion-correlated in-beam PET data acquisition was performed during beam delivery with tracking the moving target and prolonged after beam delivery first with the activated target still in motion and, finally, with the target at rest. Motion-compensated 4DibPET imaging was implemented and the results were compared to a stationary reference irradiation of the same treatment field. Data were used to determine feasibility of 4DibPET but also to evaluate offline in comparison to in-beam PET acquisition. Results: 4D in-beam as well as offline PET imaging was found to be feasible and offers the possibility to verify the correct functioning of beam tracking. Motion compensation of the imaged β + -activity distribution allows recovery of the volumetric extension of the delivered field for direct comparison with the reference stationary condition. Observed differences in terms of lateral field extension and penumbra in the direction of motion were typically less than 1 mm for both imaging strategies in comparison to the corresponding reference distributions. However, in-beam imaging retained a better spatial correlation of the measured activity with the delivered

  6. Electron-Positron Accumulator (EPA)

    CERN Multimedia

    Photographic Service

    1986-01-01

    After acceleration in the low-current linac LIL-W, the electrons and positrons are accumulated in EPA to obtain a sufficient intensity and a suitable time-structure, before being passed on to the PS for further acceleration to 3.5 GeV. Electrons circulate from right to left, positrons in the other direction. Dipole bending magnets are red, focusing quadrupoles blue, sextupoles for chromaticity-control orange. The vertical tube at the left of the picture belongs to an optical transport system carrying the synchrotron radiation to detectors for beam size measurement. Construction of EPA was completed in spring 1986. LIL-W and EPA were conceived for an energy of 600 MeV, but operation was limited to 500 MeV.

  7. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1994-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal field - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders. Some new ideas associated with these sources are also presented. (orig.)

  8. SiO 2/SiC interface proved by positron annihilation

    Science.gov (United States)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Itoh, H.

    2003-06-01

    We have studied positron annihilation in a Silicon carbide (SiC)-metal/oxide/semiconductor (MOS) structure using a monoenergetic positron beam. The Doppler broadening of annihilation quanta were measured as functions of the incident positron energy and the gate bias. Applying negative gate bias, significant increases in S-parameters were observed. This indicates the migration of implanted positrons towards SiO 2/SiC interface and annihilation at open-volume type defects. The behavior of S-parameters depending on the bias voltage was well correlated with the capacitance-voltage ( C- V) characteristics. We observed higher S-parameters and the interfacial trap density in MOS structures fabricated using the dry oxidation method as compared to those by pyrogenic oxidation method.

  9. SiO2/SiC interface proved by positron annihilation

    International Nuclear Information System (INIS)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Itoh, H.

    2003-01-01

    We have studied positron annihilation in a Silicon carbide (SiC)-metal/oxide/semiconductor (MOS) structure using a monoenergetic positron beam. The Doppler broadening of annihilation quanta were measured as functions of the incident positron energy and the gate bias. Applying negative gate bias, significant increases in S-parameters were observed. This indicates the migration of implanted positrons towards SiO 2 /SiC interface and annihilation at open-volume type defects. The behavior of S-parameters depending on the bias voltage was well correlated with the capacitance-voltage (C-V) characteristics. We observed higher S-parameters and the interfacial trap density in MOS structures fabricated using the dry oxidation method as compared to those by pyrogenic oxidation method

  10. First Measurements of Beam Backgrounds at SuperKEKB

    CERN Document Server

    Vahsen, S.E.; Jaegle, I.; Nakayama, H.; Aloisio, A.; Ameli, F.; Barrett, M.; Beaulieu, A.; Bosisio, L.; Branchini, P.; Browder, T.E.; Budano, A.; Cautero, G.; Cecchi, C.; Chen, Y.-T.; Chu, K.-N.; Cinabro, D.; Cristaudo, P.; de Jong, S.; de Sangro, R.; Finocchiaro, G.; Flanagan, J.; Funakoshi, Y.; Gabriel, M.; Giordano, R.; Giuressi, D.; Hedges, M. T.; Honkanen, N.; Ikeda, H.; Ishibashi, T.; Kaji, H.; Kanazawa, K.; Kiesling, C.; Koirala, S.; Križan, P.; La Licata, C.; Lanceri, L.; Liau, J.-J.; Lin, F.-H.; Lin, J.-C.; Liptak, Z.; Longo, S.; Manoni, E.; Marinas, C.; Miyabayashi, K.; Mulyani, E.; Morita, A.; Nakao, M.; Nayak, M.; Ohnishi, Y.; Passeri, A.; Poffenberger, P.; Ritzert, M.; Roney, J M.; Rossi, A.; Röder, T.; Seddon, R.M.; Seong, I.S.; Shiu, J.-G.; Simon, F.; Soloviev, Y.; Suetsugu, Y.; Szalay, M.; Terui, S.; Tortone, G.; van der Kolk, N.; Vitale, L.; Wang, M.Z.; Windel, H.; Yokoyama, S.

    2018-01-01

    The high design luminosity of the SuperKEKB electron-positron collider is expected to result in challenging levels of beam-induced backgrounds in the interaction region. Properly simulating and mitigating these backgrounds is critical to the success of the Belle~II experiment. We report on measurements performed with a suite of dedicated beam background detectors, collectively known as BEAST II, during the so-called Phase 1 commissioning run of SuperKEKB in 2016, which involved operation of both the high energy ring (HER) of 7 GeV electrons as well as the low energy ring (LER) of 4 GeV positrons. We describe the BEAST II detector systems, the simulation of beam backgrounds, and the measurements performed. The measurements include standard ones of dose rates versus accelerator conditions, and more novel investigations, such as bunch-by-bunch measurements of injection backgrounds and measurements sensitive to the energy spectrum and angular distribution of fast neutrons. We observe beam-gas, Touschek, beam-dust...

  11. A test beam upgrade based on the BEPC-LINAC

    International Nuclear Information System (INIS)

    Li Jiacai; Wu Yuanming; Cui Xiangzong; Zhang Liangsheng; Zhou Baoqing; Liu Zhengquan; Zhang Shaoping; Sun Changchun; Zhang Zhuxiang; Zhang Caidi; Zheng Linsheng; Liu Shixing; Shen Ji; Yin Zejie; Zhang Yongming; Chen Ziyu

    2004-01-01

    A total of three beam lines, E1, E2 and E3 have based on the LINAC of BEPC. The E1 beam is to be used for intense slow-positron facility. The E2 is a primary positron or electron beam with an energy of 1.3-1.5 GeV. The E3 is a secondary electron or pion test beam with a momentum can be adjustable continuously. The position accuracy of a detected particle is 0.2-0.4 mm with an event rate of 3 - 4 Hz. This beam has been successfully used for some detectors beam test. (author)

  12. Channeling and coherent bremsstrahlung effects for relativistic positrons and electrons

    International Nuclear Information System (INIS)

    Walker, R.L.

    1976-01-01

    Channeling of positrons in single crystals of silicon was observed in transmission and scattering measurements for incident energies from 16 to 28 MeV. In addition, the spectral dependence upon crystal orientation of the forward coherent bremsstrahlung produced by beams of 28-MeV positrons and electrons incident upon a 5 μm thick single crystal of silicon was measured with a NaI photon spectrometer. Effects of channeling and perhaps of the nonvalidity of the first Born approximation were observed for beam directions near the [111] axis of the crystal, and coherent peaks near 0.5 MeV were observed for a compound interference direction, in agreement with first-order theoretical calculations. 32 fig

  13. DHCAL with Minimal Absorber: Measurements with Positrons

    CERN Document Server

    Freund, B; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Antequera, J.Berenguer; Calvo Alamillo, E.; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; Kolk, N.van der; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-01-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  14. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    The study of low energy ionization of atomic hydrogen has undergone a rapid ... Three distinct theories for describing low energy ionization can now .... clear evidence that the backward peak for ΘЅѕ = 180° is due to positron-nucleus scat-.

  15. Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements

    International Nuclear Information System (INIS)

    Tattersall, Wade; Chiari, Luca; Machacek, J. R.; Anderson, Emma; Sullivan, James P.; White, Ron D.; Brunger, M. J.; Buckman, Stephen J.; Garcia, Gustavo; Blanco, Francisco

    2014-01-01

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions

  16. Present and future colliding beam facilities at SLAC

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1977-07-01

    In April 1972, the 3-GeV electron positron storage ring, SPEAR, was put into operation at the end of the linear accelerator at Stanford. By the recent discoveries in high energy physics the value of electron-positron storage rings for high energy physics has been clearly demonstrated. This development certainly encouraged the relatively early funding of the new electron-positron storage ring, PEP, at SLAC. In addition to its role as a particle physics research tool, SPEAR has been and remains a priceless model or prototype for larger storage rings like PEP. A few of the recent observations in SPEAR which have important implications to the design of PEP are described. Although the PEP design follows closely the SPEAR concept in many respects, it has its own distinctive and important features which are discussed in detail. Topics discussed include synchrotron-betatron resonances, beam losses, beam bunching, PEP design luminosity and energy, chromaticity correction in PEP, and the high energy cabability of PEP

  17. An improved theoretical value for Zsub(eff) for low-energy positron-hydrogen-molecule scattering

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Baker, D.J.

    1986-01-01

    The value of Zsub(eff), the effective number of electrons per molecule available to the positron for annihilation, is calculated for low-energy positron-hydrogen-molecule scattering using a scattering wavefunction containing terms in which the positron-electron distance is included linearly as a factor. The results at very low energy are much closer to the experimental value than any that have been obtained previously. (author)

  18. Positron emission tomography in a national research centre

    International Nuclear Information System (INIS)

    Weinreich, R.

    1989-01-01

    The example of the Paul Scherrer Institute shows that positron emission tomography can be implanted successfully as spin-off into an appropriate environment. The adaption to the existing irradiation facilities of the technique of production of the short-lived positron emitters is complex. However, the basic necessities of a tomography programme can be covered. Moreover, the relatively high energy of the institute's injector cyclotron allows additional production of rare-used longer-lived positron emitters. The scanner exceeded the guaranteed specifications. With respect to the somewhat lower availability of beam time compared to a usual baby cyclotron, the research programme must not be very patient-intense. A strong participation of the pharmaceutical industry has directed research priorities into the pharmacological area. (orig.) [de

  19. Positron deep level transient spectroscopy — a new application of positron annihilation to semiconductor physics

    Science.gov (United States)

    Beling, C. D.; Fung, S.; Au, H. L.; Ling, C. C.; Reddy, C. V.; Deng, A. H.; Panda, B. K.

    1997-05-01

    Recent positron mobility and lifetime measurements made on ac-biased metal on semi-insulating GaAs junctions, which have identified the native EL2 defect through a determination of the characteristic ionization energy of the donor level, are reviewed. It is shown that these measurements point towards a new spectroscopy, tentatively named positron-DLTS (deep level transient spectroscopy), that is the direct complement to conventional DLTS in that it monitors transients in the electric field of the depletion region rather than the inversely related depletion width, as deep levels undergo ionization. In this new spectroscopy, which may be applied to doped material by use of a suitable positron beam, electric field transients are monitored through the Doppler shift of the annihilation radiation resulting from the drift velocity of the positron in the depletion region. Two useful extensions of the new spectroscopy beyond conventional capacitance-DLTS are suggested. The first is that in some instances information on the microstructure of the defect causing the deep level may be inferred from the sensitivity of the positron to vacancy defects of negative and neutral charge states. The second is that the positron annihilation technique is intrinsically much faster than conventional DLTS with the capability of observing transients some 10 6 times faster, thus allowing deep levels (and even shallow levels) to be investigated without problems associated with carrier freeze-out.

  20. Design of a superconducting accelerator for positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Oshima, Nagayasu; Kuroda, Ryunosuke; Suzuki, Ryoichi; Kinomura, Atsushi; Ohdaira, Toshiyuki; Hayashizaki, Noriyosu; Hattori, Toshiyuki

    2008-01-01

    A design of a superconducting accelerator for a positron beam with energy of ∼1 MeV for positron annihilation spectroscopy is proposed. The total system can be extremely small with an application of superconducting technology. Both a miniaturization and easy maintenance of the accelerator can be achieved by usage of a small liquidless refrigerator for cooling of a superconducting RF cavity. Moreover, operation duty cycle of the superconducting cavity is ∼100%. The required RF power to drive the system is only ∼10 W, therefore a large-size klystron is not necessary. The designed system including a slow positron source is small (∼2 m 3 ) enough to be used in a general laboratory. (author)

  1. Positron annihilation studies of mesoporous silica films using a slow positron beam

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Ohdaira, Toshiyuki; Kinomura, Atsushi; Suzuki, Ryoichi; Ito, Kenji; Kabayashi, Yoshinori

    2006-01-01

    Positron annihilation lifetime spectra were measured for mesoporous silica films, which were synthesized using triblock copolymer (EO 106 PO 70 EO 106 ) as a structure-directing agent. Different positron lifetime spectra for the deposited and calcined films indicated the formation of meso-structure after calcination, which was confirmed by Fourier transform infrared (FTIR) spectra and field emission-scanning electron microscopy (FE-SEM) observation. Open porosity or pore interconnectivity of a silica film might be evaluated by a two-dimensional positron annihilation lifetime spectrum of an uncapped film. Pore sizes and their distributions in the silica films were found to be affected by thermal treatments

  2. Pulsars as the sources of high energy cosmic ray positrons

    International Nuclear Information System (INIS)

    Hooper, Dan; Blasi, Pasquale; Serpico, Pasquale Dario

    2009-01-01

    Recent results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 100 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons

  3. A novel source of MeV positron bunches driven by energetic protons for PAS application

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zongquan, E-mail: tqq1123@mail.ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ye, Bangjiao, E-mail: bjye@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e{sup +} bunches are generated. Quasi-monochromatic positrons in the range of 1–10 MeV included in these bunches have a flux of >10{sup 7}/s, peak brightness of 10{sup 14}/s. A magnetic-confinement beamline is utilized to transport the positrons and a “Fast Beam Chopper” is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1–10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  4. A novel source of MeV positron bunches driven by energetic protons for PAS application

    Science.gov (United States)

    Tan, Zongquan; Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei; Ye, Bangjiao

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e+ bunches are generated. Quasi-monochromatic positrons in the range of 1-10 MeV included in these bunches have a flux of >107/s, peak brightness of 1014/s. A magnetic-confinement beamline is utilized to transport the positrons and a "Fast Beam Chopper" is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1-10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  5. Modeling and Simulation of Longitudinal Dynamics for Low Energy Ring-High Energy Ring at the Positron-Electron Project

    International Nuclear Information System (INIS)

    Rivetta, Claudio; Mastorides, T.; Fox, J.D.; Teytelman, D.; Van Winkle, D.

    2007-01-01

    A time domain dynamic modeling and simulation tool for beam-cavity interactions in the Low Energy Ring (LER) and High Energy Ring (HER) at the Positron-Electron Project (PEP-II) is presented. Dynamic simulation results for PEP-II are compared to measurements of the actual machine. The motivation for this tool is to explore the stability margins and performance limits of PEP-II radio-frequency (RF) systems at future higher currents and upgraded RF configurations. It also serves as a test bed for new control algorithms and can define the ultimate limits of the low-level RF (LLRF) architecture. The time domain program captures the dynamic behavior of the beam-cavity-LLRF interaction based on a reduced model. The ring current is represented by macrobunches. Multiple RF stations in the ring are represented via one or two macrocavities. Each macrocavity captures the overall behavior of all the 2 or 4 cavity RF stations. Station models include nonlinear elements in the klystron and signal processing. This enables modeling the principal longitudinal impedance control loops interacting via the longitudinal beam model. The dynamics of the simulation model are validated by comparing the measured growth rates for the LER with simulation results. The simulated behavior of the LER at increased operation currents is presented via low-mode instability growth rates. Different control strategies are compared and the effects of both the imperfections in the LLRF signal processing and the nonlinear drivers and klystrons are explored

  6. Positron beam study of indium tin oxide films on GaN

    International Nuclear Information System (INIS)

    Cheung, C K; Wang, R X; Beling, C D; Djurisic, A B; Fung, S

    2007-01-01

    Variable energy Doppler broadening spectroscopy has been used to study open-volume defects formed during the fabrication of indium tin oxide (ITO) thin films grown by electron-beam evaporation on n-GaN. The films were prepared at room temperature, 200 and 300 deg. C without oxygen and at 200 deg. C under different oxygen partial pressures. The results show that at elevated growth temperatures the ITO has fewer open volume sites and grows with a more crystalline structure. High temperature growth, however, is not sufficient in itself to remove open volume defects at the ITO/GaN interface. Growth under elevated temperature and under partial pressure of oxygen is found to further reduce the vacancy type defects associated with the ITO film, thus improving the quality of the film. Oxygen partial pressures of 6 x 10 -3 mbar and above are found to remove open volume defects associated with the ITO/GaN interface. The study suggests that, irrespective of growth temperature and oxygen partial pressure, there is only one type of defect in the ITO responsible for trapping positrons, which we tentatively attribute to the oxygen vacancy

  7. Study of Coulomb effects using the comparison of positrons and electrons elastic scattering on nuclei

    International Nuclear Information System (INIS)

    Breton, Vincent

    1990-01-01

    We have studied Coulomb effects in the electron-nucleus interaction by measuring electron and positron elastic scattering. The Coulomb field of the nucleus acts differently on theses particles because of their opposite charges. The experiment took place at the Accelerateur Lineaire de Saclay, with 450 MeV electrons and positrons. We measured the emittance of the positron and electron beams. We compared electron and positron beams having the same energy, the same emittance and the same intensity. This way, we measured positron scattering cross sections with 2 % systematic error. By comparing positron and electron elastic scattering cross sections for momentum transfers between 1 and 2 fm -1 , on a Lead 208 target, we showed that the calculations of Coulomb effects in elastic scattering are in perfect agreement with experimental results. The comparison of positron and electron elastic scattering cross sections on Carbon showed that dispersive effects are smaller than 2 % outside the diffraction minima. These two results demonstrate in a definitive way that electron scattering allows to measure charge densities in the center of nuclei with an accuracy of the order of 1 %. (author) [fr

  8. Review of linear collider beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, P.

    1989-01-01

    Three major effects from the interaction of e + e/sup /minus// beams---disruption, beamstrahlung, and electron-positron pair creation---are reviewed. For the disruption effects we discuss the luminosity enhancement factor, the maximum and rms disruption angles, and the ''kink instability''. All the results are obtained from computer simulations. Scaling laws for the numerical results and theoretical explanations of the computer acquired phenomena are offered wherever possible. For the beamstrahlung effects we concentrate only on the final electron energy spectrum resulting from multiple photon radiation process, and the deflection angle associated with low energy particles. For the effects from electron-positron pair creation, both coherent and incoherent processes of beamstrahlung pair creation are discussed. In addition to the estimation on total number of such pairs, we also look into the energy spectrum and the deflection angle. 17 refs., 23 figs., 1 tab

  9. Combined phenomena of beam-beam and beam-electron cloud interactionsin circular e^{+}e^{-} colliders

    Directory of Open Access Journals (Sweden)

    Kazuhito Ohmi

    2002-10-01

    Full Text Available An electron cloud causes various effects in high intensity positron storage rings. The positron beam and the electron cloud can be considered a typical two-stream system with a certain plasma frequency. Beam-beam interaction is another important effect for high luminosity circular colliders. Colliding two beams can be considered as a two-stream system with another plasma frequency. We study the combined phenomena of the beam-electron cloud and beam-beam interactions from a viewpoint of two complex two-stream effects with two plasma frequencies.

  10. Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam

    CERN Document Server

    Lotov, K.V.; Petrenko, A.V.; Amorim, L.D.; Vieira, J.; Fonseca, R.A.; Silva, L.O.; Gschwendtner, E.; Muggli, P.

    2014-01-01

    It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.

  11. Positron depth profiling

    International Nuclear Information System (INIS)

    Coleman, P.

    2001-01-01

    Wide-ranging studies of defects below the surface of semiconductor structures have been performed at the University of Bath, in collaboration with the University of Surrey Centre for Ion Beam Applications and with members of research teams at a number of UK universities. Positron implantation has been used in conjunction with other spectroscopies such as RBS-channeling and SIMS, and electrical characterisation methods. Research has ranged from the development of a positron-based technique to monitor the in situ annealing of near-surface open-volume defects to the provision of information on defects to comprehensive diagnostic investigations of specific device structures. We have studied Si primarily but not exclusively; e.g., we have investigated ion-implanted SiC and SiO 2 /GaAs structures. Of particular interest are the applications of positron annihilation spectroscopy to ion-implanted semiconductors, where by linking ion dose to vacancy-type defect concentration one can obtain information on ion dose and uniformity with a sensitivity not achievable by standard techniques. A compact, user-friendly positron beam system is currently being developed at Bath, in collaboration with SCRIBA, with the intention of application in an industrial environment. (orig.)

  12. Clinical application of in vivo treatment delivery verification based on PET/CT imaging of positron activity induced at high energy photon therapy

    Science.gov (United States)

    Janek Strååt, Sara; Andreassen, Björn; Jonsson, Cathrine; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Näfstadius, Peder; Näslund, Ingemar; Schoenahl, Frederic; Brahme, Anders

    2013-08-01

    The purpose of this study was to investigate in vivo verification of radiation treatment with high energy photon beams using PET/CT to image the induced positron activity. The measurements of the positron activation induced in a preoperative rectal cancer patient and a prostate cancer patient following 50 MV photon treatments are presented. A total dose of 5 and 8 Gy, respectively, were delivered to the tumors. Imaging was performed with a 64-slice PET/CT scanner for 30 min, starting 7 min after the end of the treatment. The CT volume from the PET/CT and the treatment planning CT were coregistered by matching anatomical reference points in the patient. The treatment delivery was imaged in vivo based on the distribution of the induced positron emitters produced by photonuclear reactions in tissue mapped on to the associated dose distribution of the treatment plan. The results showed that spatial distribution of induced activity in both patients agreed well with the delivered beam portals of the treatment plans in the entrance subcutaneous fat regions but less so in blood and oxygen rich soft tissues. For the preoperative rectal cancer patient however, a 2 ± (0.5) cm misalignment was observed in the cranial-caudal direction of the patient between the induced activity distribution and treatment plan, indicating a beam patient setup error. No misalignment of this kind was seen in the prostate cancer patient. However, due to a fast patient setup error in the PET/CT scanner a slight mis-position of the patient in the PET/CT was observed in all three planes, resulting in a deformed activity distribution compared to the treatment plan. The present study indicates that the induced positron emitters by high energy photon beams can be measured quite accurately using PET imaging of subcutaneous fat to allow portal verification of the delivered treatment beams. Measurement of the induced activity in the patient 7 min after receiving 5 Gy involved count rates which were about

  13. Single beam collective effects in FCC-ee due to beam coupling impedance

    CERN Document Server

    Belli, Eleonora; Persichelli, Serena; Zobov, Mikhail

    2016-01-01

    The Future Circular Collider study, hosted by CERN to design post-LHC particle accelerator options in a worldwide context, is focused on proton-proton high-energy and electron-positron high-luminosity frontier machines. This new accelerator complex represents a great challenge under several aspects, which involve R&D on beam dynamics and new technologies. One very critical point in this context is represented by collective effects, generated by the interaction of the beam with self-induced electromagnetic fields, called wake fields, which could produce beam instabilities, thus reducing the machines performance and limiting the maximum stored current. It is therefore very important to be able to predict these effects and to study in detail potential solutions to counteract them. In this paper the resistive wall and some other important geometrical sources of impedance for the FCC electron-positron accelerator are identified and evaluated, and their impact on the beam dynamics, which in some cases could lea...

  14. Single beam collective effects in FCC-ee due to beam coupling impedance

    CERN Document Server

    Belli, Eleonora

    2016-01-01

    The Future Circular Collider study, hosted by CERN to design post-LHC particle accelerator options in a worldwide context, is focused on proton-proton high-energy and electron-positron high-luminosity frontier machines. This new accelerator complex represents a great challenge under several aspects, which involve R&D on beam dynamics and new technologies. One very critical point in this context is represented by collective effects, generated by the interaction of the beam with self-induced electromagnetic fields, called wake fields, which could produce beam instabilities, thus reducing the machines performance and limiting the maximum stored current. It is therefore very important to be able to predict these effects and to study in detail potential solutions to counteract them. In this paper the resistive wall and some other important geometrical sources of impedance for the FCC electron-positron accelera- tor are identified and evaluated, and their impact on the beam dynamics, which in some cases could l...

  15. Energy determination at BEPC-II

    International Nuclear Information System (INIS)

    Achasov, M.N.; Blinov, V.E.; Bogomyagkov, A.V.; Fu ChengDong; Harris, F.A.; Kaminsky, V.V.; Liu, Q.; Mo Xiaohu; Muchnoi, N.Yu.; Nikitin, S.A.; Nikolaev, I.B.; Qin Qing; Qu Huamin; Olsen, S.L.; Pyata, E.E.; Shamov, A.G.; Shen, C.P.; Varner, G.S.; Wang Yifang; Xu Jinqiang

    2009-01-01

    The BEPC-II collider beam energy calibration system is discussed. The system is based on the Compton backscattering method. The expected precision of the electron and positron beam energy ε determination is δε/ε∼3.10 -5 .

  16. Beam scrubbing of beam pipes during the first commissioning of SuperKEKB

    Science.gov (United States)

    Suetsugu, Y.; Shibata, K.; Ishibashi, T.; Kanazawa, K.; Shirai, M.; Terui, S.; Hisamatsu, H.

    2018-02-01

    The first (Phase-1) commissioning of SuperKEKB-an electron-positron collider with asymmetric energies located at KEK, in Tsukuba, Japan-started in February 2016, after more than five years of upgrading work on KEKB, and successfully ended in June of the same year. This paper describes one major task of Phase-1 commissioning: beam scrubbing the surface of the beam pipes, to prepare them for a sufficiently long beam lifetime and low background noise in the next commissioning, when a new particle detector will be installed. The pressure rises per unit beam current (dP/dI [Pa A-1]) were continuously monitored, and the coefficient of photon-stimulated desorption (PSD), η [molecules photon-1], was evaluated in the arc sections. The value of η decreased steadily with the beam dose, as expected. For arc sections in the positron ring, where most of the beam pipes were newly fabricated, the decrease in η against the photon dose (D) was similar to that previously reported; that is: η ∝ D-0.5 ∼ 0.8. At high storage beam currents, the evolution of η was affected by gas desorption resulting from the multipacting of electrons-that is, the electron cloud effect (ECE), which is a phenomenon particular to high-intensity positron rings. For the arc sections in the electron ring, η also decreased smoothly with the photon dose D, approximately as ∝ D-0.8. Given that most of these beam pipes were reused from KEKB, the value of η was much lower than that of the positron ring, and also lower than that of the electron ring of KEKB from the early stages of D. This implies that the surface of the reused beam pipes remembered the conditions in the KEKB, which is a known memory effect. The results obtained for η are compared with those obtained in various other accelerators.

  17. Effect of surface physical and chemical properties on interaction and annihilation mechanisms of positrons

    International Nuclear Information System (INIS)

    Gol'danskij, V.I.; Levin, B.M.; Shantarovich, V.P.

    1982-01-01

    The possibility of positron use is illustrated, to investigate physical and chemical properties of the surface, by a number of effects found by the authors while studying the interaction and annihilation of β + -decay positrons in highly-dispersed heterogeneous systems positronium formation and ortho-para conversion close to the surface of metal particles in a dielectric matrix, postronium oxidation by proton centers on the surface of an aluminosilicate catalyst). The ways, new in the main, are revealed to study the properties of the surface by the technique of monochromatic positron beams of low energy

  18. Experiments and FLUKA simulations of $^{12}C$ and $^{16}O$ beams for therapy monitoring by means of in-beam Positron Emission Tomography

    CERN Document Server

    Sommerer,; Ferrari, A

    2007-01-01

    Since 1997 at the experimental C-12 ion therapy facility at Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, Germany, more than 350 patients have been treated. The therapy is monitored with a dedicated positron emission tomograph, fully integrated into the treatment site. The measured beta+-activity arises from inelastic nuclear interactions between the beam particles an the nuclei of the patients tissue. Because the monitoring is done during the irradiation the method is called in-beam PET. The underlying principle of this monitoring is a comparison between the measured activity and a simulated one. The simulations are presently done by the PETSIM code which is dedicated to C-12 beams. In future ion therapy centers like the Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg, Germany, besides C-12 also proton, $^3$He and O-16 beams will be used for treatment and the therapy will be monitored by means of in-beam PET. Because PETSIM is not extendable to other ions in an easy way, a code capable ...

  19. Studies of Positron Generation from Ultraintense Laser-Matter Interactions

    Science.gov (United States)

    Williams, Gerald Jackson

    Laser-produced pair jets possess unique characteristics that offer great potential for their use in laboratory-astrophysics experiments to study energetic phenomenon such as relativistic shock accelerations. High-flux, high-energy positron sources may also be used to study relativistic pair plasmas and useful as novel diagnostic tools for high energy density conditions. Copious amounts of positrons are produced with MeV energies from directly irradiating targets with ultraintense lasers where relativistic electrons, accelerated by the laser field, drive positron-electron pair production. Alternatively, laser wakefield accelerated electrons can produce pairs by the same mechanisms inside a secondary converter target. This dissertation describes a series of novel experiments that investigate the characteristics and scaling of pair production from ultraintense lasers, which are designed to establish a robust platform for laboratory-based relativistic pair plasmas. Results include a simple power-law scaling to estimate the effective positron yield for elemental targets for any Maxwellian electron source, typical of direct laser-target interactions. To facilitate these measurements, a solenoid electromagnetic coil was constructed to focus emitted particles, increasing the effective collection angle of the detector and enabling the investigation of pair production from thin targets and low-Z materials. Laser wakefield electron sources were also explored as a compact, high repetition rate platform for the production of high energy pairs with potential applications to the creation of charge-neutral relativistic pair plasmas. Plasma accelerators can produce low-divergence electron beams with energies approaching a GeV at Hz frequencies. It was found that, even for high-energy positrons, energy loss and scattering mechanisms in the target create a fundamental limit to the divergence and energy spectrum of the emitted positrons. The potential future application of laser

  20. Measurement of high-Q{sup 2} neutral current deep inelastic e{sup +}p scattering cross sections with a longitudinally polarised positron beam at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science] [and others; Collaboration: ZEUS Collaboration

    2012-08-15

    Measurements of neutral current cross sections for deep inelastic scattering in e{sup +}p collisions at HERA with a longitudinally polarised positron beam are presented. The single-differential cross-sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy and the reduced cross-section {sigma} were measured in the kinematic region Q{sup 2}>185 GeV{sup 2} and y<0.9, where Q{sup 2} is the four-momentum transfer squared, x the Bjorken scaling variable, and y the inelasticity of the interaction. The measurements were performed separately for positively and negatively polarised positron beams. The measurements are based on an integrated luminosity of 135.5 pb{sup -1} collected with the ZEUS detector in 2006 and 2007 at a centre-of-mass energy of 318 GeV. The structure functions F{sub 3} and F{sup {gamma}Z}{sub 3} were determined by combining the e{sup +}p results presented in this paper with previously published e{sup -}p neutral current results. The asymmetry parameter A{sup +} is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.

  1. Polarized positrons for the ILC. Update on simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, A.; Adeyemi, O.S.; Moortgat-Pick, G. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Staufenbiel, F.; Riemann, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-02-15

    To achieve the extremely high luminosity for colliding electron-positron beams at the future International Linear Collider [1] (ILC) an undulator-based source with about 230 meters helical undulator and a thin titanium-alloy target rim rotated with tangential velocity of about 100 meters per second are foreseen. The very high density of heat deposited in the target has to be analyzed carefully. The energy deposited by the photon beam in the target has been calculated in FLUKA. The resulting stress in the target material after one bunch train has been simulated in ANSYS. (orig.)

  2. Observation of Beam Size Flip-Flop in PEP-II

    International Nuclear Information System (INIS)

    Holtzapple, Robert luther

    2002-01-01

    The asymmetric B-factory, PEP-II, has delivered a peak luminosity of 4.6 x 10 33 cm -2 s -1 with less than half the design number of bunches, requiring a luminosity per bunch crossing more than three times larger than the design. As a result, strong beam-beam effects are present. The strong beam-beam forces between colliding electron and positron bunches can result in a ''flip-flop'' of the transverse beam size of some bunches. Focusing on one positron-electron colliding bunch pair, a flip-flop occurs when the transverse size of the positron bunch shrinks and the electron bunch grows. The flip-flop accounts for a reduction in luminosity, a lower positron lifetime, and increased background in the BABAR detector. The flip-flop phenomenon occurs not for all of the colliding bunches, but for the bunches at the front of a mini-train. Once a colliding pair has flipped to its reduced luminosity state it can be changed back to its normal state by raising the horizontal tune in the low-energy ring (LER, positrons) by 0.01. Afterwards the LER x-tune can be reduced nearly back to its original point, resulting in higher luminosity. These observations were verified and quantified with a new time-gated camera with a resolution of 2 ns, making it possible to observe single bunches

  3. Review of linear collider beam-beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.

    1989-01-01

    Three major effects from the interaction of e/sup +/e/sup /minus// beams---disruption, beamstrahlung, and electron-positron pair creation---are reviewed. For the disruption effects we discuss the luminosity enhancement factor, the maximum and rms disruption angles, and the ''kink instability''. All the results are obtained from computer simulations. Scaling laws for the numerical results and theoretical explanations of the computer acquired phenomena are offered wherever possible. For the beamstrahlung effects we concentrate only on the final electron energy spectrum resulting from multiple photon radiation process, and the deflection angle associated with low energy particles. For the effects from electron-positron pair creation, both coherent and incoherent processes of beamstrahlung pair creation are discussed. In addition to the estimation on total number of such pairs, we also look into the energy spectrum and the deflection angle. 17 refs., 23 figs., 1 tab.

  4. The Upgrade of the Neutron Induced Positron Source NEPOMUC

    Science.gov (United States)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Pikart, P.; Reiner, M.; Weber, J.; Zimnik, S.

    2013-06-01

    In summer 2012, the new NEutron induced POsitron Source MUniCh (NEPOMUC) was installed and put into operation at the research reactor FRM II. At NEPOMUC upgrade 80% 113Cd enriched Cd is used as neutron-gamma converter in order to ensure an operation time of 25 years. A structure of Pt foils inside the beam tube generates positrons by pair production. Moderated positrons leaving the Pt front foil are electrically extracted and magnetically guided to the outside of the reactor pool. The whole design, including Pt-foils, the electric lenses and the magnetic fields, has been improved in order to enhance both the intensity and the brightness of the positron beam. After adjusting the potentials and the magnetic guide and compensation fields an intensity of about 3·109 moderated positrons per second is expected. During the first start-up, the measured temperatures of about 90°C ensure a reliable operation of the positron source. Within this contribution the features and the status of NEPOMUC upgrade are elucidated. In addition, an overview of recent positron beam experiments and current developments at the spectrometers is given.

  5. Observation of point defects in impurity-doped zinc selenide films using a monoenergetic positron beam

    International Nuclear Information System (INIS)

    Miyajima, T.; Okuyama, H.; Akimoto, K.; Mori, Y.; Wei, L.; Tanigawa, S.

    1992-01-01

    We studied point defects in ZnSe films grown by molecular beam epitaxy using the positron annihilation method. We found that doping with Ga atoms induces vacancy-type defects such as Zn vacancies, and that heavy doping with oxygen atoms induces interstitial type defects. We think that these defects are one of the causes of active carrier saturation in doped ZnSe films. (author)

  6. Materials characterization of free volume and void properties by two-dimensional positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Chen, Hongmin; Van Horn, J. David; Jean, Y. C.; Hung, Wei-Song; Lee, Kueir-Rarn

    2013-04-01

    Positron annihilation lifetime spectroscopy (PALS) has been widely used to determine the free volume and void properties in polymeric materials. Recently, a two dimensional positron annihilation lifetime spectroscopy (2DPALS) system has been developed for membrane applications. The system measures the coincident signals between the lifetime and the energy which could separate the 2γ and 3γ annihilations and improve the accuracy in the determination of the free volume and void properties. When 2D-PALS is used in coupling with a variable mono-energy slow positron beam, it could be applied to a variety of material characterization. Results of free volumes and voids properties in a multi-layer polymer membrane characterized using 2D-PALS are presented.

  7. Positronium formation in NaY-zeolites studied by lifetime, positron beam Doppler broadening and 3-gamma detection techniques

    CERN Document Server

    Schut, H; Kolar, Z I; Veen, A V; Clet, G

    2000-01-01

    Results of positron annihilation measurements on NaY pressed powders and deposited thin films using slow positron beam and conventional fast positron techniques are presented. In lifetime experiments using an external sup sup 2 sup sup 2 Na source an averaged long lifetime of 1.8 ns with a sum intensity of 27% was observed in pressed powders in the presence of air at room temperature (RT). In literature this lifetime is ascribed to positrons annihilating in water filled alpha or beta cages Habrowska, A.M., Popiel, E.S., 1987. Positron annihilation in zeolite 13X. J. Appl. Phys. 62, 2419. By means of isotopic exchange some of the Na was replaced by sup sup 2 sup sup 2 Na. These powders showed a long lifetime component of 7-8 ns with an intensity increasing from 1 to 12% when heated under normal atmosphere from RT to 200 deg. C. No significant increase of the shorter (1.5 ns) lifetime was observed, while its intensity dropped from 13.4 to 6.6%. Both effects are ascribed to the loss of water from alpha cages onl...

  8. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    Science.gov (United States)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.

    2017-11-01

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  9. Positron scattering by atomic hydrogen at intermediate energies

    International Nuclear Information System (INIS)

    Higgins, K.; Burke, P.G.; Walters, H.R.J.

    1990-01-01

    Results of an accurate calculation based upon the intermediate energy R-matrix theory are reported for elastic scattering of positrons by atomic hydrogen. T-matrix elements for both low and intermediate energy scattering are evaluated for the S e , P o , D e and F o partial wave symmetries. The low-energy elastic phaseshifts are found to be in good agreement with previous accurate variational calculations. Using an optical potential approach to include the effect of the higher partial waves, elastic and total cross sections are presented for energies ranging from near threshold to 3.7 Rydbergs. (author)

  10. Secondary particle tracks generated by ion beam irradiation

    Science.gov (United States)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  11. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world's best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world's best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using 64 Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet

  12. Positron and electron energy bands in several ionic crystals using restricted Hartree-Fock method

    Science.gov (United States)

    Kunz, A. B.; Waber, J. T.

    1981-08-01

    Using a restricted Hartree-Fock formalism and suitably localized and symmetrized wave functions, both the positron and electron energy bands were calculated for NaF, MgO and NiO. The lowest positron state at Γ 1 lies above the vacuum level and negative work functions are predicted. Positron annihilation rates were calculated and found to be in good agreement with measured lifetimes.

  13. Positron annihilation in Si and Si-related materials in thermal equilibrium at high temperature

    International Nuclear Information System (INIS)

    Uedono, A.; Muramatsu, M.; Ubukata, T.; Tanino, H.; Shiraishi, T.; Tanigawa, S.; Takasu, S.

    2001-01-01

    Annihilation characteristics of positrons in the carbon/Si structure in thermal equilibrium at high temperature were studied using a monoenergetic positron beam. Doppler broadening spectra of the annihilation radiation were measured as a function of incident positron energy in the temperature range between 298 K and 1473 K. Above 1173 K, the value of S corresponding to the annihilation of positrons near the carbon/Si interface started to increase, which was attributed to the carbonization of Si and the introduction of open-space defects due to the diffusion of Si atoms toward the carbon layer. The behavior of Ps in a thermally grown SiO 2 film was also studied at 298-1523 K. (orig.)

  14. A calculation of Zsub(eff) for low-energy positron-hydrogen-molecule scattering

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Baker, D.J.

    1985-01-01

    The value of Zsub(eff), the effective number of electrons per molecule available to the positron for annihilation, is calculated for low-energy positron-hydrogen-molecule scattering using the scattering wavefunctions obtained in recent detailed ab initio calculations. The results are higher than those obtained in previous calculations but much lower than the experimental value. (author)

  15. Latest version of the Munich pulsed low energy positron system

    International Nuclear Information System (INIS)

    Bauer-Kugelmann, W.; Sperr, P.; Koegel, G.; Triftshaeuser, W.

    2001-01-01

    Further improvements of the Munich pulsed low energy positron system have been performed. A new chopper, configured as a double plate deflection system with an external resonator and a new buncher working like a classical double gap buncher, are implemented. The complete rf-power electronic was redesigned and operates now at an overall master-frequency of 50 MHz for all bunching and chopping components. A new target station with an enlarged Faraday cage is installed. The sample temperature is variable between 30 K and 600 K. Up to ten samples can be stored in a magazine and transferred under vacuum conditions to the measuring position. With a primary source of 30 mCi 22 Na a count rate of up to 4 kHz can be achieved with a peak-to-background ratio of 3000:1. This ratio can be further improved by the use of a Wien filter. A beam diameter of about 2 mm was determined. The total time resolution (pulsing plus detector system) is 250 ps (FWHM). (orig.)

  16. Proposal for a slow positron facility at Jefferson National Laboratory

    Science.gov (United States)

    Mills, Allen P.

    2018-05-01

    One goal of the JPos-17 International Workshop on Physics with Positrons was to ascertain whether it would be a good idea to expand the mission of the Thomas Jefferson National Accelerator Facility (JLab) to include science with low energy (i.e. "slow") spin polarized positrons. It is probably true that experimentation with slow positrons would potentially have wide-ranging benefits comparable to those obtained with neutron and x-ray scattering, but it is certain that the full range of these benefits will never be fully available without an infrastructure comparable to that of existing neutron and x-ray facilities. The role for Jefferson Laboratory would therefore be to provide and maintain (1) a dedicated set of machines for making and manipulating high intensity, high brightness beams of polarized slow positrons; (2) a suite of unique and easily used instruments of wide utility that will make efficient use of the positrons; and (3) a group of on-site positron scientists to provide scientific leadership, instrument development, and user support. In this note some examples will be given of the science that might make a serious investment in a positron facility worthwhile. At the same time, the lessons learned from various proposed and successful positron facilities will be presented for consideration.

  17. On the Possibility of Accelerating Positron on an Electron Wake at SABER

    International Nuclear Information System (INIS)

    Ischebeck, R.; Joshi, C.; Katsouleas, T.C.; Muggli, P.; Wang, X.

    2008-01-01

    A new approach for positron acceleration in non-linear plasma wakefields driven by electron beams is presented. Positrons can be produced by colliding an electron beam with a thin foil target embedded in the plasma. Integration of positron production and acceleration in one stage is realized by a single relativistic, intense electron beam. Simulations with the parameters of the proposed SABER facility [1] at SLAC suggest that this concept could be tested there

  18. Characterization of nanoparticle and porous ultra low-k using positron beam

    International Nuclear Information System (INIS)

    Xu, Jun; Moxom, J.; Suzuki, R.; Ohdaira, T.; Mills, A.P. Jr.

    2003-01-01

    Nanoparticle materials are important because they exhibit unique properties due to size effects, quantum tunneling, and quantum confinement. As particle sizes are reduced to the nanometer scale, presence of vacancy clusters is expected to affect properties of nanomaterials. A combination of positron lifetime spectroscopy, which tells size of vacancy clusters, and coincidence Doppler broadening of annihilation radiation, which tell where vacancy clusters are located was used to study defect structures on nanomaterials of Au nanoparticles embedded in MgO. Vacancy clusters were found on the surfaces of Au nanoparticles. When the packing density between multilevel interconnects in microelectronic devices increases, a low dielectric constant material is needed to minimize RC delay. Porous oxide films are some of these new low-k materials that have been actively studied by the microelectronics industry. An ideal porous material would consist of a network of closed, small pores with narrow size distribution. However, large and interconnected pores, so called 'killer pores', result in high current leakage and poor mechanical strength. Clearly, characterization and understanding of pore size and interconnectivity are important to optimize the design of porous materials. Using positron beam, we have found that pore percolation in porous methyl-silsesquioxane (MSQ) films strongly depends on the molecular mass of pore generators. (author)

  19. Evolution of voids in Al+-implanted ZnO probed by a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Maekawa, M.; Yamamoto, S.; Kawasuso, A.; Yuan, X.L.; Sekiguchi, T.; Suzuki, R.; Ohdaira, T.

    2004-01-01

    Undoped ZnO single crystals were implanted with aluminum ions up to a dose of 10 15 Al + /cm 2 . Vacancy defects in the implanted layers were detected using positron lifetime and Doppler broadening measurements with slow positron beams. It shows that vacancy clusters, which are close to the size of V 8 , are generated by implantation. Postimplantation annealing shows that the Doppler broadening S parameter increases in the temperature range from 200 deg. C to 600 deg. C suggesting further agglomeration of vacancy clusters to voids. Detailed analyses of Doppler broadening spectra show formation of positronium after 600 deg. C annealing of the implanted samples with doses higher than 10 14 Al + /cm 2 . Positron lifetime measurements further suggest that the void diameter is about 0.8 nm. The voids disappear and the vacancy concentration reaches the detection limit after annealing at 600-900 deg. C. Hall measurement shows that the implanted Al + ions are fully activated with improved carrier mobility after final annealing. Cathodoluminescence measurements show that the ultraviolet luminescence is much stronger than the unimplanted state. These findings also suggest that the electrical and optical properties of ZnO become much better by Al + implantation and subsequent annealing

  20. Conceptual design of a slow positron source based on a magnetic trap

    CERN Document Server

    Volosov, V I; Mezentsev, N A

    2001-01-01

    A unique 10.3 T superconducting wiggler was designed and manufactured at BINP SB RAS. The installation of this wiggler in the SPring-8 storage ring provides a possibility to generate a high-intensity beam of photons (SR) with energy above 1 MeV (Ando et al., J. Synchrotron Radiat. 5 (1998) 360). Conversion of photons to positrons on high-Z material (tungsten) targets creates an integrated positron flux more than 10 sup 1 sup 3 particles per second. The energy spectrum of the positrons has a maximum at 0.5 MeV and the half-width about 1 MeV (Plokhoi et al., Jpn. J. Appl. Phys. 38 (1999) 604). The traditional methods of positron moderation have the efficiency epsilon=N sub s /N sub f of 10 sup - sup 4 (metallic moderators) to 10 sup - sup 2 (solid rare gas moderators) (Mills and Gullikson, Appl. Phys. Lett. 49 (1986) 1121). The high flux of primary positrons restricts the choice to a tungsten moderator that has epsilon approx 10 sup - sup 4 only (Schultz, Nuc. Instr. and Meth. B 30 (1988) 94). The aim of our pr...

  1. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.

    Science.gov (United States)

    Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G

    2017-11-03

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1  T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  2. Low energy scattering of positrons by H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Arretche, F., E-mail: fsc1sem@fsc.ufsc.b [Departamento de Fisica, Universidade do Estado de Santa Catarina, 89223-100, Joinville, Santa Catarina (Brazil); Tenfen, W.; Mazon, K.T.; Michelin, S.E. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina (Brazil); Lima, M.A.P. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Unicamp, 13083-970, Campinas, Sao Paulo (Brazil); Lee, M.-T. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905, Sao Carlos, Sao Paulo (Brazil); Machado, L.E. [Departamento de Fisica, Universidade Federal de Sao Carlos, 13565-905, Sao Carlos, Sao Paulo (Brazil); Fujimoto, M.M. [Departamento de Fisica, Universidade Federal do Parana, 13565-905, Curitiba, Parana (Brazil); Pessoa, O.A. [Departamento de Fisica, Universidade do Estado de Santa Catarina, 89111-100, Sao Bento do Sul, Santa Catarina (Brazil)

    2010-01-15

    We present a theoretical investigation on elastic positron-H{sub 2}O collisions. More specifically, differential and integral cross sections in the 0-10 eV energy range are reported. The calculations were performed using two theoretical approaches, namely, the Schwinger multichannel method and the method of continued fractions. The positron-molecule interaction dynamics is described by using a potential composed of static and correlation-polarization contributions. Comparison of our calculated results with the recent experimental of Zecca et al. [J. Phys. B 39 (2006) 1597] and theoretical results is encouraging.

  3. First on-line positron experiments en route to pair-plasma creation

    Energy Technology Data Exchange (ETDEWEB)

    Stanja, Juliane; Hergenhahn, Uwe; Stenson, Eve V. [Max-Planck-Institut fuer Plasmaphysik (Germany); Niemann, Holger; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik (Germany); Ernst-Moritz-Arndt Universitaet Greifswald (Germany); Saitoh, Haruhiko [Max-Planck-Institut fuer Plasmaphysik (Germany); The University of Tokyo (Japan); Stoneking, Matthew R. [Lawrence University (United States); Hugenschmidt, Christoph; Piochacz, Christian [Technische Universitaet Muenchen (Germany); Schweikhard, Lutz [Ernst-Moritz-Arndt Universitaet Greifswald (Germany)

    2016-07-01

    Electron-positron plasmas are predicted to show a fundamentally different behavior from traditional ion-electron plasmas, because of the equal masses of the two species. Using up to 10{sup 9} positrons per second provided by the NEPOMUC (Neutron-Induced Positron Source Munich) facility, the APEX/PAX team aims to create the first such plasma confined in a toroidal magnetic trap. Positron beam parameters as well as efficient injection and confinement schemes for both species in toroidal geometries are fundamental to the project. In this contribution we present results from first on-line positron experiments. Besides characterizing the NEPOMUC beam we conducted positron injection experiments into a dipole magnetic field configuration. Using static electric fields, a 5-eV positron beam was transported across magnetic field lines into the confinement region. With this method, up to 38% of the incoming particles reach the confinement region and make at least a 180 revolution around the magnet. Under dedicated experimental conditions confinement on the order of 1 ms was realized.

  4. Ion species dependence of the implantation-induced defects in ZnO studied by a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A.; Naramoto, H.

    2007-01-01

    In this work, we implanted B + , O + , Al + , and P + ions into ZnO with energy of 50-380 keV and total doses of 4 x 10 15 cm -2 for each ion. The implantation-induced defects and their thermal recovery were studied using a slow positron beam. Vacancy clusters are produced in all the implanted samples. It is found that the thermal recovery of these vacancies induced by different ions shows much difference. In case of B + and Al + -implantation, the vacancy clusters agglomerate to much larger size and might evolve to microvoids during annealing. However, for O + and P + ions, which are heavier than B + and Al + , the vacancies show a much weaker agglomeration process. The mechanism of such difference is discussed. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  6. A study of energy correction for the electron beam data in the BGO ECAL of the DAMPE

    CERN Document Server

    Li, Zhiying; Wei, Yifeng; Wang, Chi; Zhang, Yunlong; Wen, Sicheng; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun

    2015-01-01

    The DArk Matter Particle Explorer (DAMPE) is an orbital experiment aiming at searching for dark matter indirectly by measuring the spectra of photons, electrons and positrons originating from deep space. The BGO electromagnetic calorimeter is one of the key sub-detectors of the DAMPE, which is designed for high energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, some methods for energy correction are discussed and tried, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The results of Geant4 simulation and beam test data (at CERN) are presented.

  7. Interface properties of 4H-SiC MOS structures studied by a slow positron beam

    International Nuclear Information System (INIS)

    Maekawa, M.; Kawasuso, A.; Ichimiya, A.; Yoshikawa, M.

    2004-01-01

    Interfacial defects existing near the SiO 2 /SiC interface are an important issue for fabrication of high performance SiC devices. We investigate a thermally grown SiO 2 /SiC layer of 4H-SiC MOS structure by positron annihilation spectroscopy. The Doppler broadening of annihilation quanta was measured as a function of the incident positron energy and the gate bias. Applying a negative gate bias, significant increases in S-parameters were observed. This indicates the migration of implanted positrons towards the SiO 2 /SiC interface and annihilation at interfacial defects. Ultraviolet (UV) ray irradiation was used to extract the influence of the positron trapping to the interfacial states. S-parameters in the interface region were reduced by UV irradiation. This shows that positron trapping probability decreased because the charge state of interfacial defects changed to positive. From the recovery of S-parameters after 24 hours, the interfacial states discharge slowly and exist in large quantities, because the changes of S-parameter by the UV irradiation are larger than changes induced by bias change. (orig.)

  8. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    International Nuclear Information System (INIS)

    Hugenschmidt, Christoph; Legl, Stefan

    2006-01-01

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E≅1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube

  9. Concepts for a slow-positron target at the advanced photon source

    International Nuclear Information System (INIS)

    Lessner, E.; White, M.

    1997-01-01

    The Advanced Photon Source (APS) linear accelerator beam could be used to produce slow positrons during the hours between the storage ring injection cycles. Initial concepts for the design of a target that is optimized for slow-positron production are discussed, and simulation results are presented. Some possible ways to increase the nominal linac beam power for improved slow-positron production are also discussed

  10. Measurement of high-Q2 deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA

    NARCIS (Netherlands)

    Chekanov, S.; Kooijman, P.

    2006-01-01

    The cross sections for charged and neutral current deep inelastic scattering in e+p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb−1 at , are given for both

  11. Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons

    Science.gov (United States)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2011-01-01

    This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.

  12. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Yoshihara, Nakaaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Mizushima, Yoriko [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Youngsuk [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Disco Corporation, Ota, Tokyo 143-8580 (Japan); Nakamura, Tomoji [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Ohba, Takayuki [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Oshima, Nagayasu; Suzuki, Ryoichi [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.

  13. New positron annihilation spectroscopy techniques for thick materials

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, J.F.; Kwofie, J.; Erikson, G.; Roney, T.

    2003-01-01

    The Idaho Accelerator Center (IAC) has developed new techniques for positron annihilation spectroscopy (PAS) by using highly penetrating γ-rays to create positrons inside the material via pair production. Two sources of γ-rays have been employed. Bremsstrahlung beams from small-electron linacs (6 MeV) were used to generate positrons inside the material to perform Doppler-broadening spectroscopy. A 2 MeV proton beam was used to obtain coincident γ-rays from 27 Al target and enable lifetime and Doppler-broadening spectroscopy. This technique successfully measured stress/strain in thick samples, and showed promise to extend PAS into a variety of applications

  14. Simulation of ionization effects for high-density positron drivers in future plasma wakefield experiments

    International Nuclear Information System (INIS)

    Bruhwiler, D.L.; Dimitrov, D.A.; Cary, J.R.; Esarey, E.; Leemans, W.P.

    2003-01-01

    The plasma wakefield accelerator (PWFA) concept has been proposed as a potential energy doubler for present or future electron-positron colliders. Recent particle-in-cell (PIC) simulations have shown that the self-fields of the required electron beam driver can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly from that of an electron driver. We will present new PIC simulations, using the OOPIC code, showing the effects of tunneling ionization on the plasma wake generated by high-density positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the energy doubler and the upcoming E-164x experiment at the Stanford Linear Accelerator Center will be considered

  15. Study of Si/Si, Si/SiO2, and metal-oxide-semiconductor (MOS) using positrons

    International Nuclear Information System (INIS)

    Leung, To Chi.

    1991-01-01

    A variable-energy positron beam is used to study Si/Si, Si/SiO 2 , and metal-oxide-semiconductor (MOS) structures. The capability of depth resolution and the remarkable sensitivity to defects have made the positron annihilation technique a unique tool in detecting open-volume defects in the newly innovated low temperature (300C) molecular-beam-epitaxy (MBE) Si/Si. These two features of the positron beam have further shown its potential role in the study of the Si/SiO 2 . Distinct annihilation characteristics has been observed at the interface and has been studied as a function of the sample growth conditions, annealing (in vacuum), and hydrogen exposure. The MOS structure provides an effective way to study the electrical properties of the Si/SiO 2 interface as a function of applied bias voltage. The annihilation characteristics show a large change as the device condition is changed from accumulation to inversion. The effect of forming gas (FG) anneal is studied using positron annihilation and the result is compared with capacitance-voltage (C-V) measurements. The reduction in the number of interface states is found correlated with the changes in the positron spectra. The present study shows the importance of the positron annihilation technique as a non-contact, non-destructive, and depth-sensitive characterization tool to study the Si-related systems, in particular, the Si/SiO 2 interface which is of crucial importance in semiconductor technology, and fundamental understanding of the defects responsible for degradation of the electrical properties

  16. Positron source based on the 48V isotope dedicated to positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Dryzek, Jerzy

    2009-01-01

    In the paper we consider application of the 48 V isotope as a source in the positron lifetime spectroscopy. The isotope was produced in the 48 Ti(p,n) 48 V reaction using 15 MeV proton beam. As a target the natural titanium thin plate was used. The measurements using the typical positron lifetime spectrometer have shown the usefulness of the source obtained for this application. Due to its properties, the source may be used for measurements of positron annihilation characteristics in high temperature or aggressive environments. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Proton-beam energy analyzer

    International Nuclear Information System (INIS)

    Belan, V.N.; Bolotin, L.I.; Kiselev, V.A.; Linnik, A.F.; Uskov, V.V.

    1989-01-01

    The authors describe a magnetic analyzer for measurement of proton-beam energy in the range from 100 keV to 25 MeV. The beam is deflected in a uniform transverse magnetic field and is registered by photographing a scintillation screen. The energy spectrum of the beam is constructed by microphotometry of the photographic film

  18. Positron and positronium physics in atomic and molecular gases: challenges for the 21. century

    Energy Technology Data Exchange (ETDEWEB)

    Gianturco, F.A. [Rome Univ., Dipt. of Chemistry, INFM (Italy)

    2002-12-01

    The increase in the interest of the scientific community in positrons as a research tool follows the development of low-energy positron beams. Preliminary studies have shown that correlation forces between the impinging positron and the bound electrons, either atomic or molecular, are much more important than the same effects in electron collisions. New experimental techniques which exploit positron accumulators have markedly increased our capabilities for investigating positron and positronium (Ps) interactions with matter at very low energies: they work already in the meV range and expectations to reach the {mu}eV are real. The elastic channels and the annihilation channels are always open as the kinetic energy of the probe approaches zero. Ps formation could also be energetically allowed whenever the target ionization energy is below 6,8 eV, the binding energy of the ground state Ps. One of the puzzling questions is to find experimental evidence on the existence of bound states or of metastable resonant states associated to cold positrons and Ps that are made to interact with fairly cold atomic and molecular gases. Experiments on anti-hydrogen are being performed in order to test the CPT invariance of quantum field theory as well as Einstein's equivalence principle (ATHENA experiment). Antiparticles are also considered as possible candidates for the production of Bose Einstein condensation of bosonic Ps by studying the possibility of creating a dense gas of Ps particles within some solid state material. Other experiments involving slow positrons interacting with polyatomic gases have shown that the measured annihilation rate is a linear function of the test gas pressure and the slope linearity yields the value of the rate. (A.C.)

  19. Modelling low energy electron and positron tracks in biologically relevant media

    International Nuclear Information System (INIS)

    Blanco, F.; Munoz, A.; Almeida, D.; Ferreira da Silva, F.; Limao-Vieira, P.; Fuss, M.C.; Sanz, A.G.; Garcia, G.

    2013-01-01

    This colloquium describes an approach to incorporate into radiation damage models the effect of low and intermediate energy (0-100 eV) electrons and positrons, slowing down in biologically relevant materials (water and representative biomolecules). The core of the modelling procedure is a C++ computing programme named 'Low Energy Particle Track Simulation (LEPTS)', which is compatible with available general purpose Monte Carlo packages. Input parameters are carefully selected from theoretical and experimental cross section data and energy loss distribution functions. Data sources used for this purpose are reviewed showing examples of electron and positron cross section and energy loss data for interactions with different media of increasing complexity: atoms, molecules, clusters and condense matter. Finally, we show how such a model can be used to develop an effective dosimetric tool at the molecular level (i.e. nanodosimetry). Recent experimental developments to study the fragmentation induced in biologically material by charge transfer from neutrals and negative ions are also included. (authors)

  20. Positron lifetime and Doppler broadening study of defects created by swift ion irradiation in sapphire

    International Nuclear Information System (INIS)

    Liszkay, L.; Gordo, P.M.; Lima, A. de; Havancsak, K.; Skuratov, V.A.; Kajcsos, Z.

    2004-01-01

    Swift ions create a defect profile penetrating deep into a solid compared to the sampling range of typical slow positron beams, which may consequently study a homogeneous zone of defected materials. To investigate the defect population created by energetic ions, we studied α-Al 2 O 3 single crystals irradiated with swift Kr ions by using conventional and pulsed positron beams. Samples irradiated with krypton at 245 MeV energy in a wide fluence range show nearly saturated positron trapping above 5 x 10 10 ions cm -2 fluence, indicating the creation of monovacancies in high concentration. At 1 x 10 14 ions cm -2 irradiation a 500 ps long lifetime component appears, showing the creation of larger voids. This threshold corresponds well to the onset of the overlap of the damage zones after Bi ion irradiation along the ion trajectories observed with microscopic methods. (orig.)

  1. Research of the internal electron-positron pair production

    International Nuclear Information System (INIS)

    Fenyes, Tibor

    1985-01-01

    The phenomenon of internal electron-positron pair production by excited nuclei is briefly reviewed. The advantages of this phenomenon in nuclear structure investigations are pointed. The new Si(Li)-Si(Li) electron spectrometer with superconducting magnetic transporter (SMS) built at ATOMKI, Hungary, was tested for detection of internal electron-positron pair production events. Proton beam of a Van de Graaff accelerator of 5 MV was used to excite the target nuclei of sup(27)Al, sup(42)Ca and sup(19)F. The internal pair production coefficients were measured and compared with the data of literature. The detection efficiency of SMS is calculated to be (37+-7)%. The test proved that the SMS is suitable for nuclear structure investigations producing electron-positron pairs. The SMS of ATOMKI is recently the top instrument all over the world in this field: its detection efficiency, energy resolution and applicability for multipolarity identification are much better than these properties of other detectors. (D.Gy.)

  2. Beam-energy and laser beam-profile monitor at the BNL LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  3. E-line: A new crystal collimator beam line for source size measurements at CHESS

    International Nuclear Information System (INIS)

    White, Jeffrey A.; Revesz, Peter; Finkelstein, Ken

    2007-01-01

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring

  4. Study on energy and position resolution of MWPC for the Beijing e/π test beam

    International Nuclear Information System (INIS)

    Shen Ji; Chen Ziyu; Ye Yunxiu; Cui Xiangzong; Li Jiacai

    2006-01-01

    This paper describes the research on the energy and position resolution of the MWPC used in the e/π Test Beam on BEPC (Beijing Electron Positron Collider), which localizes the particles of e/π by the readout method of gravity center of the induced charges on the cathode strips. The spatial resolution of about 0.24 mm and energy resolution of 17% for 5.9 keV γ photons are attained at the 3700 V anode voltage. For the 1.1 GeV electrons, the spatial resolution of 0.3 mm is obtained. The contributions of various factors to energy resolution are analysed. It is found that energy resolution is changed with the anode voltage and there exists a least energy resolution. The reasons for these are discussed. (authors)

  5. Bremsstrahlung Based Positron Annihilation Spectroscopy for Material Defect Analysis

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, F.; Kwofie, J.; Lancaster, G.; Jones, J.L.

    2003-01-01

    The Idaho Accelerator Center (IAC) has developed new techniques for Positron Annihilation Spectroscopy (PAS) using highly penetrating γ-rays to create positrons inside the material via pair production. γ-Ray induced positron annihilation spectroscopy can provide highly penetrating probes for material characterization and defect analysis. Bremsstrahlung beams from small, pulsed electron Linacs (6 MeV) have been used to bombard the materials to generate positrons, which annihilate with the material electrons emitting 511 keV radiation. We have also synchronized bremsstrahlung pulses with laser irradiation pulses to study dynamic structural changes in material. In addition, we have developed another method using (p,γ) reactions from a 2 MeV proton beam, which induce coincident γ-rays to perform positron life-time spectroscopy. We have showed the feasibility of extending PAS into thick samples and a wide variety of materials and industrial applications

  6. Nanometer cavities studied by positron annihilation

    International Nuclear Information System (INIS)

    Mogensen, O.E.

    1992-01-01

    Positronium (Ps) is trapped in cavities in insulating solids, and the lifetime of ortho Ps is determined by the size of the cavity. The information on the properties of the cavities obtained by use of the standard slow positron beam and the 'normal' positron annihilation techniques is compared for several selected cases. (author)

  7. The quasi-monochromatic photon beam used in photoneutron experiments from 20-120 MeV at the 600 MeV Saclay Linac

    International Nuclear Information System (INIS)

    Veyssiere, A.; Beil, H.; Bergere, R.; Carlos, P.; Fagot, J.; Lepretre, A.; Ahrens, J.

    1979-01-01

    A beam of 20-130 MeV positrons, with average intensities between 10 nA and 50 nA, is used at the 600 MeV Saclay Linac to create a quasi-monochromatic photon beam with a continuously variable energy. This beam was used to measure photoneutron cross sections and the corresponding photonuclear facility is first described. The computer-controlled methods, implemented to measure the energy spectrum and the emittance of the positron beam are described. The quasi-monochromatic photon lines are produced by the annihilation in flight of monoenergetic positrons in two annihilation radiators with different Z successively. The photon beam emission angle theta is shown to be the most critical parameter in the search for an optimum overall signal to background ratio for a specific photoneutron experiment. The choice of an angle theta approximately 4 0 is explained for absolute measurements of sigma(γ, xn) cross-sections, for which the used average intensities of monochromatic photons were thus purposely reduced to approximately 5 X 10 3 s -1 , with an energy resolution approximately 12%. (Auth.)

  8. Ion species dependence of the implantation-induced defects in ZnO studied by a slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q. [Department of Physics, Wuhan University (China); Maekawa, M.; Kawasuso, A.; Naramoto, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Takasaki, Gunma (Japan)

    2007-07-01

    In this work, we implanted B{sup +}, O{sup +}, Al{sup +}, and P{sup +} ions into ZnO with energy of 50-380 keV and total doses of 4 x 10{sup 15} cm{sup -2} for each ion. The implantation-induced defects and their thermal recovery were studied using a slow positron beam. Vacancy clusters are produced in all the implanted samples. It is found that the thermal recovery of these vacancies induced by different ions shows much difference. In case of B{sup +} and Al{sup +}-implantation, the vacancy clusters agglomerate to much larger size and might evolve to microvoids during annealing. However, for O{sup +} and P{sup +} ions, which are heavier than B{sup +} and Al{sup +}, the vacancies show a much weaker agglomeration process. The mechanism of such difference is discussed. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Proceedings of the 3rd workshop on ion-beam-applied biology

    International Nuclear Information System (INIS)

    Matsuhashi, Shinpei; Suzui, Nobuo; Ishioka, Noriko S.

    2005-09-01

    In order to encourage research on biological application using ion beam at TIARA, we have had the workshop on ion beam applied biology at JAERI Takasaki every year since 2002. The 3rd workshop titled 'Future development of plant research using the positron imaging method - Understanding the plant functions through visualization images-' is held this year. The main topics of this workshop are introduction of the latest studies on the assimilation and transportation of nutrients by plant using positron imaging method. Further, related technologies of the positron imaging and prospect of positron imaging for is discussed. We hope this workshop popularizes positron imaging technology for plants, accelerates cooperation between industries, universities and governmental institutes and contributes future projects of understanding of the physiological functions of plants using the positron imaging method. This workshop was held on September 29th 2004, hosted by JAERI Takasaki and cooperated by The Japan Radioisotope Association, Japanese Society of Soil Science and Plant Nutrition. The Japanese Society of Plant Physiologists, Atomic Energy Society of Japan, The Japanese Society of Nuclear and Radiochemical Science and The Ion Beam Breeding Society. There were 85 participants from not only universities and laboratories but also private company developing the environment conservation technology, so on. Highly qualified presentations were given on biological studies with ion beam, on analysis of plant functions using the positron imaging method and on supporting technology for the positron imaging monitoring. Progress in the elucidation of plant functions is expected to develop the technologies for production of safe provisions and conservation of environment with plant. The 14 of the presented papers are indexed individually. (J.P.N.)

  10. Detailed calculations on low-energy positron-hydrogen-molecule and helium-antihydrogen scattering

    Energy Technology Data Exchange (ETDEWEB)

    Armour, E A G; Cooper, J N; Gregory, M R; Todd, A C [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Jonsell, S [Department of Physics, University of Swansea, Swansea SA2 8PP (United Kingdom); Plummer, M, E-mail: edward.armour@nottingham.ac.u [Computational Science and Engineering, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)

    2010-01-01

    In this paper, we consider two scattering processes: low-energy positron-hydrogen-molecule and helium-antihydrogen scattering. In the positron-hydrogen-molecule scattering calculations, we use the Kohn variational method to calculate Z{sub eff}, the number of target electrons available to the positron for annihilation. In the helium-antihydrogen scattering calculations, we use the Rayleigh-Ritz variational method to calculate a wave function for the leptons as a function of the distance between the helium and the antihydrogen. This is used, together with the associated nuclear wave function and the wave function for {alpha} p-bar + Ps{sup -}, to calculate the cross section for the rearrangement reaction He + H-bar {yields} {alpha} p-bar + Ps{sup -}, using the T-matrix and a form of the distorted wave approximation. For both processes, positron-electron correlation is taken into account accurately using Hylleraas-type functions.

  11. Bruno Touschek: From Betatrons to Electron-Positron Colliders

    Science.gov (United States)

    Bernardini, Carlo; Pancheri, Giulia; Pellegrini, Claudio

    Bruno Touschek’s life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders and storage rings, and made important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology, environmental sciences and cultural heritage studies. We describe Touschek’s life in Austria, where he was born, in Germany, where he participated in the construction of a betatron during WWII, and in Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his lifestyle and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE.

  12. Beam position monitor for energy recovered linac beams

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Thomas; Evtushenko, Pavel

    2017-06-06

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  13. Measurement of beam energy spread in a space-charge dominated electron beam

    Directory of Open Access Journals (Sweden)

    Y. Cui

    2004-07-01

    Full Text Available Characterization of beam energy spread in a space-charge dominated beam is very important to understanding the physics of intense beams. It is believed that coupling between the transverse and longitudinal directions via Coulomb collisions will cause an increase of the beam longitudinal energy spread. At the University of Maryland, experiments have been carried out to study the energy evolution in such intense beams with a high-resolution retarding field energy analyzer. The temporal beam energy profile along the beam pulse has been characterized at the distance of 25 cm from the anode of a gridded thermionic electron gun. The mean energy of the pulsed beams including the head and tail is reported here. The measured rms energy spread is in good agreement with the predictions of the intrabeam scattering theory. As an application of the beam energy measurement, the input impedance between the cathode and the grid due to beam loading can be calculated and the impedance number is found to be a constant in the operation region of the gun.

  14. Using polarized positrons to probe physics beyond the standard model

    Science.gov (United States)

    Furletova, Yulia; Mantry, Sonny

    2018-05-01

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.

  15. Studies of high coverage oxidation of the Cu(100) surface using low energy positrons

    Science.gov (United States)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2012-02-01

    The study of oxidation of single crystal metal surfaces is important in understanding the corrosive and catalytic processes associated with thin film metal oxides. The structures formed on oxidized transition metal surfaces vary from simple adlayers of chemisorbed oxygen to more complex structures which result from the diffusion of oxygen into subsurface regions. In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Calculations are performed for various high coverage missing row structures ranging between 0.50 and 1.50 ML oxygen coverage. The results of calculations of positron binding energy, positron work function, and annihilation characteristics of surface trapped positrons with relevant core electrons as function of oxygen coverage are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES).

  16. Observations of resonance-like structures for positron-atom elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Dou, L.; Kauppila, W.E.; Kwan, C.K.; Stein, T.S.

    1993-01-01

    We have measured absolute values of elastic differential cross sections (DCS's) for positron (e + ) scattering by argon (8.7-300 eV), krypton (6.7-400 eV), and also neon (13.6-400 eV) using a crossed-beam experimental setup. When the DCS's are plotted at fixed scattering angles of 30 degrees, 60 degrees, 90 degrees, and 120 degrees versus energy it has been found that well-defined resonance-like structures were found at an energy of 55-60 eV for argon and at 25 and 200 eV for krypton, with a broader structure found between 100-200 eV for neon. These observed resonance-like structures are unusual because they occur at energies well above the known inelastic thresholds for these atoms. They may represent examples of open-quotes coupled channel shape resonancesclose quotes, first predicted by Higgins and Burke for e + -H scattering in the vicinity of 36 eV (width ∼ 4 eV), which occurs only when both the elastic and positronium formation scattering channels are considered together. A more recent e + -H calculation by Hewitt et al. supports the Higgins and Burke prediction. These predictions and the present observations suggest the existence of a new type of atomic scattering resonance

  17. Vibrational excitation of methane by positron impact: Computed quantum dynamics and sensitivity tests

    International Nuclear Information System (INIS)

    Nishimura, Tamio; Gianturco, Franco A.

    2002-01-01

    We report the quantum dynamical close-coupling equations relevant for vibrationally inelastic processes in low-energy collisions between a beam of positrons and the CH 4 molecule in the gas phase. The interaction potential is described in detail and we report also our numerical technique for solving the scattering equations. The cross sections are obtained for the excitations of all the modes of the title molecule and are compared both with simpler computational approximations and with the recent experiments for the two distinct energy regions that correspond to the combined symmetric and antisymmetric stretching modes and to twisting and scissoring modes, respectively. Our calculations reproduce well the shape and the values of the experimental findings and give useful insights into the microscopic dynamics for molecular excitation processes activated by low-energy positron scattering

  18. Calculations for very low energy scattering of positrons by molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.N. [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)], E-mail: james.cooper@maths.nottingham.ac.uk; Armour, E.A.G. [School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2008-02-15

    We give a progress report on ongoing calculations of phase shifts for very low energy elastic scattering of positrons by molecular hydrogen, using the generalised Kohn variational method. Further, provisional calculations of Z{sub eff} for molecular hydrogen at low energies are presented and discussed. The preliminary nature of the work is emphasised throughout.

  19. ORIC Beam Energy Increase

    CERN Document Server

    Mallory, Merrit L; Dowling, Darryl; Hudson, Ed; Lord, Dick; Tatum, Alan

    2005-01-01

    The detection of and solution to a beam interference problem in the Oak Ridge Isochronous Cyclotron (ORIC) extraction system has yielded a 20% increase in the proton beam energy. The beam from ORIC was designed to be extracted before the nu r equal one resonance. Most cyclotrons extract after the nu r equal one resonance, thus getting more usage of the magnetic field for energy acceleration. We have now determined that the electrostatic deflector septum interferes with the last accelerated orbit in ORIC, with the highest extraction efficiency obtained near the maximum nu r value. This nu r provides a rotation in the betatron oscillation amplitude that is about the same length as the electrostatic septum thus allowing the beam to jump over the interference problem with the septum. With a thinned septum we were able to tune the beam through the nu r equal one resonance and achieve a 20% increase in beam energy. This nu r greater than one extraction method may be desirable for very high field cyclotrons since it...

  20. Positron-containing systems and positron diagnostics

    International Nuclear Information System (INIS)

    1978-01-01

    The results of the experimental and theoretical investigations are presented. Considered are quantum-mechanical calculations of wave functions describing the states of positron-containing atomic systems and of cross-sections of the processes characterizing different interactions, and also the calculations of the behaviour of positrons in gases in the presence of an electric field. The results of experimental tests are presented by the data describing the behaviour of positrons and positronium in liquids, polymers and elastomers, complex oxides and in different solids. New equipment and systems developed on the basis of current studies are described. Examined is a possibility of applying the methods of model and effective potentials for studying the bound states of positron systems and for calculating cross-sections of elementary processes of elastic and inelastic collisions with a positron involved. The experimental works described indicate new possibilities of the positron diagnosis method: investigation of thin layers and films of semiconductor materials, defining the nature of chemical bonds in semiconductors, determination of the dislocation density in deformed semiconductors, derivation of important quantitative information of the energy states of radiation defects in them

  1. Special relativity in beam trajectory simulation in small accelerators

    International Nuclear Information System (INIS)

    Pramudita Anggraita; Budi Santosa; Taufik; Emy Mulyani; Frida Iswinning Diah

    2012-01-01

    Calculation for trajectory simulation of particle beam in small accelerators should account special relativity effect in the beam motion, which differs between parallel and perpendicular direction to the beam velocity. For small electron beam machine of 300 keV, the effect shows up as the rest mass of electron is only 511 keV. Neglecting the effect yields wrong kinetic energy after 300 kV of dc acceleration. For a 13 MeV PET (positron emission tomography) baby cyclotron accelerating proton beam, the effect increases the proton mass by about 1.4% at the final energy. To keep the beam isochronous with the accelerating radiofrequency, a radial increase of the average magnetic field must be designed accordingly. (author)

  2. E-line: A new crystal collimator beam line for source size measurements at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    White, Jeffrey A. [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)], E-mail: jaw7@cornell.edu; Revesz, Peter; Finkelstein, Ken [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)

    2007-11-11

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring.

  3. Relativistic Shear Flow between Electron–Ion and Electron–Positron Plasmas and Astrophysical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Edison; Fu, Wen [Rice University, Houston, TX 77005 (United States); Böttcher, Markus [North-West University, Potchefstroom, 2520 (South Africa)

    2017-10-01

    We present particle-in-cell simulation results of relativistic shear boundary layers between electron–ion and electron–positron plasmas and discuss their potential applications to astrophysics. Specifically, we find that in the case of a fast electron–positron spine surrounded by a slow-moving or stationary electron–ion sheath, lepton acceleration proceeds in a highly anisotropic manner due to electromagnetic fields created at the shear interface. While the highest-energy leptons still produce a beaming pattern (as seen in the quasi-stationary frame of the sheath) of order 1/Γ, where Γ is the bulk Lorentz factor of the spine, for lower-energy particles, the beaming is much less pronounced. This is in stark contrast to the case of pure electron–ion shear layers, in which anisotropic particle acceleration leads to significantly narrower beaming patterns than 1/Γ for the highest-energy particles. In either case, shear-layer acceleration is expected to produce strongly angle-dependent lepton (hence, emanating radiation) spectra, with a significantly harder spectrum in the forward direction than viewed from larger off-axis angles, much beyond the regular Doppler boosting effect from a co-moving isotropic lepton distribution. This may solve the problem of the need for high (and apparently arbitrarily chosen) minimum Lorentz factors of radiating electrons, often plaguing current blazar and GRB jet modeling efforts.

  4. Single-quantum annihilation of positrons with shell-bound atomic electrons

    International Nuclear Information System (INIS)

    Palathingal, J.C.; Asoka-Kumar, P.; Lynn, K.G.; Posada, Y.; Wu, X.Y.

    1991-01-01

    The single-quantum annihilation of positrons has been studied experimentally with a positron beam and a thin lead target, at energies 1 MeV and higher. Spectral peaks corresponding to the K, L, and M shells have been resolved and observed distinctly for the first time. The shell ratios L/K and M/K have been determined. An analysis of the L peak has yielded the (LII+LIII)/L ratio. The first measurements of the directional distributions of the annihilation quanta of the three individual electron shells are also reported. The results are in agreement with theory. They also point out the potential for applying the phenomena to the development of a tunable, highly directional gamma-ray source

  5. Helium implanted Eurofer97 characterized by positron beam Doppler broadening and Thermal Desorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, I., E-mail: i.carvalho@m2i.nl [Materials Innovation Institute (M2i), Delft (Netherlands); Schut, H. [Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Fedorov, A.; Luzginova, N. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Desgardin, P. [CEMHTI-CNRS, 3A Rue de la Férolerie, 45071 Orléans Cedex (France); Sietsma, J. [Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Delft (Netherlands)

    2013-11-15

    Reduced Activation Ferritic/Martensitic steels are being extensively studied because of their foreseen application in fusion and Generation IV fission reactors. To produce irradiation induced defects, Eurofer97 samples were implanted with helium at energies of 500 keV and 2 MeV and doses of 1 × 10{sup 15}–10{sup 16} He/cm{sup 2}, creating atomic displacements in the range 0.07–0.08 dpa. The implantation induced defects were characterized by positron beam Doppler Broadening (DB) and Thermal Desorption Spectroscopy (TDS). Results show that up to ∼600 K peaks that can be attributed to He desorption from overpressured He{sub n}V{sub m} (n > m) clusters and vacancy assisted mechanism in the case of helium in the substitutional position. The temperature range 600–1200 K is related to the formation of larger clusters He{sub n}V{sub m} (n < m). The dissociation of the HeV and the phase transition attributed to a sharp peak in the TDS spectra at 1200 K. Above this temperature, the release of helium from bubbles is observed.

  6. Beam dynamics verification in linacs of linear colliders

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1989-01-01

    The SLAC two-mile linac has been upgraded to accelerate high current, low emittance electron and positron beams to be used in the SLAC Linear Collider (SLC). After the upgrade was completed, extensive beam studies were made to verify that the design criteria have been met. These tests involved the measurement of emittance, beam phase space orientation, energy dispersion, trajectory oscillations, bunch length, energy spectrum and wakefields. The methods, the systems and the data cross checks are compared for the various measurements. Implications for the next linear collider are discussed. 12 refs., 13 figs., 2 tabs

  7. Three bunch energy stabilization for the SLC injector

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Almog, I.; Bambade, P.S.; Clendenin, J.E.; Jobe, R.K.; Phinney, N.; Shoaee, H.; Stiening, R.F.; Thompson, K.A.

    1986-09-01

    Slow feedback has been developed to control the energy and energy spread of the beams which are injected into the SLC damping rings. Within a single RF pulse, two bunches of electrons and one bunch of positrons are accelerated to an energy of 1.21 GeV in the injector of the SLC. The two electron bunches are deflected into the north damping ring while the positrons are targeted into the south ring. In order to fit into the acceptance of the rings, the composite energy deviation and energy spread of the beams must be less than 2% full width. Control of the beam energy characteristics is accomplished with a set of computer controlled feedback loops which monitor the parameters of the three bunches and make adjustments to the available RF energy, RF phasing, and RF timing. This paper presents an overview of the feedback algorithms and of the special hardware developments, and reports on the operational status of the processes

  8. Design studies for the Positron Factory

    International Nuclear Information System (INIS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Masuno, S.; Kawasuso, A.; Sakai, T.; Takizawa, H.; Yotsumoto, K.; Honda, Y.; Tagawa, S.

    1996-01-01

    In the design study for the Positron Factory, a feasibility of simultaneous extraction of multi-channel monoenergetic positron beams, which had been proposed at the previous conference (Linac 94), was demonstrated by an experiment using an electron linac. On the basis of the experimental result, an efficient moderator structure, which is composed of honeycomb-like assembled moderator foils and reflectors, is proposed. (author)

  9. Laser generation of proton beams for the production of short-lived positron emitting radioisotopes

    International Nuclear Information System (INIS)

    Spencer, I.; Ledingham, K.W.D.; Singhal, R.P.; McCanny, T.; McKenna, P.; Clark, E.L.; Krushelnick, K.; Zepf, M.; Beg, F.N.; Tatarakis, M.; Dangor, A.E.; Norreys, P.A.; Clarke, R.J.; Allott, R.M.; Ross, I.N.

    2001-01-01

    Protons of energies up to 37 MeV have been generated when ultra-intense lasers (up to 10 20 W cm -2 ) interact with hydrogen containing solid targets. These protons can be used to induce nuclear reactions in secondary targets to produce β + -emitting nuclei of relevance to the nuclear medicine community, namely 11 C and 13 N via (p, n) and (p,α) reactions. Activities of the order of 200 kBq have been measured from a single laser pulse interacting with a thin solid target. The possibility of using ultra-intense lasers to produce commercial amounts of short-lived positron emitting sources for positron emission tomography (PET) is discussed

  10. Nuclear emulsions for the detection of micrometric-scale fringe patterns: an application to positron interferometry

    Science.gov (United States)

    Aghion, S.; Ariga, A.; Bollani, M.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Lodari, M.; Pistillo, C.; Sala, S.; Scampoli, P.; Vladymyrov, M.

    2018-05-01

    Nuclear emulsions are capable of very high position resolution in the detection of ionizing particles. This feature can be exploited to directly resolve the micrometric-scale fringe pattern produced by a matter-wave interferometer for low energy positrons (in the 10–20 keV range). We have tested the performance of emulsion films in this specific scenario. Exploiting silicon nitride diffraction gratings as absorption masks, we produced periodic patterns with features comparable to the expected interferometer signal. Test samples with periodicities of 6, 7 and 20 μ m were exposed to the positron beam, and the patterns clearly reconstructed. Our results support the feasibility of matter-wave interferometry experiments with positrons.

  11. CLIC Drive Beam Position Monitor

    CERN Document Server

    Smith, S; Gudkov, D; Soby, L; Syratchev, I

    2011-01-01

    CLIC, an electron-positron linear collider proposed to probe the TeV energy scale, is based on a two-beam scheme where RF power to accelerate a high energy luminosity beam is extracted from a high current drive beam. The drive beam is efficiently generated in a long train at modest frequency and current then compressed in length and multiplied in frequency via bunch interleaving. The drive beam decelerator requires >40000 quadrupoles, each holding a beam position monitor (BPM). Though resolution requirements are modest (2 microns) these BPMs face several challenges. They must be compact and inexpensive. They must operate below waveguide cutoff to insure locality of position signals, ruling out processing at the natural 12 GHz bunch spacing frequency. Wakefields must be kept low. We find compact conventional stripline BPM with signals processed below 40 MHz can meet requirements. Choices of mechanical design, operating frequency, bandwidth, calibration and processing algorithm are presented. Calculations of wa...

  12. Depth-dependent positron annihilation in different polymers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Zhang, P.; Cheng, G.D.; Li, D.X.; Wu, H.B.; Li, Z.X.; Cao, X.Z. [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China); Jia, Q.J. [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China); Yu, R.S. [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China); Wang, B.Y., E-mail: wangboy@ihep.ac.cn [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China)

    2013-09-01

    Depth-dependent positron annihilation Doppler broadening measurements were conducted for polymers with different chemical compositions. Variations of the S parameter with respect to incident positron energy were observed. For pure hydrocarbons PP, HDPE and oxygen-containing polymer PC, S parameter rises with increasing positron implantation depth. While for PI and fluoropolymers like PTFE, ETFE and PVF, S parameter decreases with higher positron energy. For chlorine-containing polymer PVDC, S parameter remains nearly constant at all incident positron energies. It is suggested that these three variation trends are resulted from a competitive effect between the depth-dependent positronium formation and the influence of highly electronegative atoms on positron annihilation characteristics.

  13. Interaction of positron beams with thin silver foils and surfaces

    International Nuclear Information System (INIS)

    Rysholt Poulsen, M.

    1994-01-01

    Experimental investigations of positron interactions with solid silver and the necessary platform to analyse the data have been presented. The main objective was to study Ps formation at a Ag(100) surface. The different ingredients of the scenario, including thermalization and diffusion of positrons and emission of Ps, were analysed and quantified in whatever way appropriate. The scattering and possible thermalization were described. The parametrization of Monte-Carlo simulated implantation profiles for semi-infinite materials were presented and the applicability of such profiles to thin foils assessed. The latter was done in conjunction with an analysis of experimental data on thermalization and diffusion in 1900 Aa Ag(100) foils. The necessity for MC simulated rather than parametrized implantation profiles was argued. The velocity of thermally desorbed Ps from a Ag(100) surface at ∼800 K appeared to obey and one-dimensional Maxwell Boltzmann distribution multiplied by a velocity dependent factor. More experimental investigations are needed before firm conclusions can be made on the nature of the emission process. The velocity distribution, though, was found to be near-thermal and indicative of the sample temperature. It has been shown that positrons can be converted into Ps atoms in the transmission geometry of a thin 1900 Aa Ag(100) foil with a high efficiency. Furthermore, 61% of the emitted Ps will have a mean velocity of v z =1.2x10 5 m/sec and 39% will have a maximum kinetic energy of 1.5 eV (v z =5.1x10 5 m/sec) at a foil temperature of 800 K, all velocities that are suitable for producing a 'dense' Ps gas target. (EG) 12 refs

  14. Positrons and positronium

    International Nuclear Information System (INIS)

    Jean, Y.C.; Lambrecht, R.M.

    1988-01-01

    This bibliography includes articles, proceedings, abstracts, reports and patents published between 1930 and 1984 on the subject of positrons, positron annihilation and positronium. The subject covers experimental and theoretical results in the areas of physics and chemistry of low and intermediate energy (< 0.6 MeV) positrons and positronium. The topics of interest are: fundamental properties, interactions with matter, nuclear technology, the history and philosophy of antimatter, the theory of the universe, and the applications of positrons in the chemical, physical, and biomedical sciences

  15. Local vacancies in optical modulation polymers studied by positron annihilation lifetime measurements

    International Nuclear Information System (INIS)

    Shimazu, Akira

    2009-01-01

    The ability of a slow positron beam to prove vacancies at the surface and in bulk regions of optical modulation polymers was demonstrated. A slow positron beam system was found to be a powerful tool to study the change in the microstructure driven by photopolymerization of novel optical modulation polymers. (author)

  16. Development of a Positron Source for JLab at the IAC

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Tony [Idaho State Univ., Pocatello, ID (United States)

    2013-10-12

    We report on the research performed towards the development of a positron sour for Jefferson Lab's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, VA. The first year of work was used to benchmark the predictions of our current simulation with positron production efficiency measurements at the IAC. The second year used the benchmarked simulation to design a beam line configuration which optimized positron production efficiency while minimizing radioactive waste as well as design and construct a positron converter target. The final year quantified the performance of the positron source. This joint research and development project brought together the experiences of both electron accelerator facilities. Our intention is to use the project as a spring board towards developing a program of accelerator based research and education which will train students to meet the needs of both facilities as well as provide a pool of trained scientists.

  17. LIL-W: Positron conversion target and solenoid (pictures 01 and 04).

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    In the direction of the beam, from right to left: a steering dipole (DHZ.25); the arm, at 45 deg, of a wire scanner which measures beam size; the conversion target, housed in the small tank with a window, where positrons are produced; immediately afterwards, invisible inside the vacuum chamber, is a pulsed solenoid to focus the emerging positrons; finally, a large solenoid, consisting of 3 pancakes, further focuses the positrons. Towards the left, the linac LIL-W, its accelerating structure hidden under a continuous outer solenoid mantle.

  18. SU-C-207A-06: On-Line Beam Range Verification with Multiple Scanning Particle Beams: Initial Feasibility Study with Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y; Sun, X; Lu, W; Jia, X; Wang, J; Shao, Y [The University of Texas Southwestern Medical Ctr., Dallas, TX (United States)

    2016-06-15

    Purpose: To investigate the feasibility and requirement for intra-fraction on-line multiple scanning particle beam range verifications (BRVs) with in-situ PET imaging, which is beyond the current single-beam BRV with extra factors that will affect the BR measurement accuracy, such as beam diameter, separation between beams, and different image counts at different BRV positions. Methods: We simulated a 110-MeV proton beam with 5-mm diameter irradiating a uniform PMMA phantom by GATE simulation, which generated nuclear interaction-induced positrons. In this preliminary study, we simply duplicated these positrons and placed them next to the initial protons to approximately mimic the two spatially separated positron distributions produced by two beams parallel to each other but with different beam ranges. These positrons were then imaged by a PET (∼2-mm resolution, 10% sensitivity, 320×320×128 mm^3 FOV) with different acquisition times. We calculated the positron activity ranges (ARs) from reconstructed PET images and compared them with the corresponding ARs of original positron distributions. Results: Without further image data processing and correction, the preliminary study show the errors between the measured and original ARs varied from 0.2 mm to 2.3 mm as center-to-center separations and range differences were in the range of 8–12 mm and 2–8 mm respectively, indicating the accuracy of AR measurement strongly depends on the beam separations and range differences. In addition, it is feasible to achieve ≤ 1.0-mm accuracy for both beams with 1-min PET acquisition and 12 mm beam separation. Conclusion: This study shows that the overlap between the positron distributions from multiple scanning beams can significantly impact the accuracy of BRVs of distributed particle beams and need to be further addressed beyond the established method of single-beam BRV, but it also indicates the feasibility to achieve accurate on-line multi-beam BRV with further improved

  19. Polarizing a stored proton beam by spin flip?

    International Nuclear Information System (INIS)

    Oellers, D.; Barion, L.; Barsov, S.; Bechstedt, U.; Benati, P.; Bertelli, S.; Chiladze, D.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P.F.; Dietrich, J.; Dolfus, N.; Dymov, S.; Engels, R.; Erven, W.; Garishvili, A.; Gebel, R.; Goslawski, P.

    2009-01-01

    We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin-flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.

  20. Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer

    International Nuclear Information System (INIS)

    Jean, Y.C.; Li Ying; Liu Gaung; Chen, Hongmin; Zhang Junjie; Gadzia, Joseph E.

    2006-01-01

    Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 μm depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages

  1. Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jean, Y.C. [Department of Chemistry, University of Missouri-Kansas City, 205 Spenscer Chemistry Building, 5009 Rockhill Road, Kansas City, MO 64110 (United States)]. E-mail: jeany@umkc.edu; Li Ying [Department of Chemistry, University of Missouri-Kansas City, 205 Spenscer Chemistry Building, 5009 Rockhill Road, Kansas City, MO 64110 (United States); Liu Gaung [Department of Chemistry, University of Missouri-Kansas City, 205 Spenscer Chemistry Building, 5009 Rockhill Road, Kansas City, MO 64110 (United States); Chen, Hongmin [Department of Chemistry, University of Missouri-Kansas City, 205 Spenscer Chemistry Building, 5009 Rockhill Road, Kansas City, MO 64110 (United States); Zhang Junjie [Department of Chemistry, University of Missouri-Kansas City, 205 Spenscer Chemistry Building, 5009 Rockhill Road, Kansas City, MO 64110 (United States); Gadzia, Joseph E. [Dermatology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103 (United States); Kansas Medical Clinic, Topeka, KS 66614 (United States)

    2006-02-28

    Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 {mu}m depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages.

  2. Beam energy reduction in an acceleration gap

    International Nuclear Information System (INIS)

    Rhee, M.J.

    1990-01-01

    The subject of high-current accelerators has recently attracted considerable attention. The high-current beam accompanies a substantial amount of field energy in the space between the beam and the drift tube wall, as it propagates through a conducting drift tube of accelerator system. While such a beam is being accelerated in a gap, this field energy is subject to leak through the opening of the gap. The amount of energy lost in the gap is replenished by the beam at the expense of its kinetic energy. In this paper, the authors present a simple analysis of field energy loss in an acceleration gap for a relativistic beam for which beam particle velocity equals to c. It is found that the energy loss, which in turn reduces the beam kinetic energy, is ΔV = IZ 0 : the beam current times the characteristic impedance of the acceleration gap. As a result, the apparent acceleration voltage of the gap is reduced from the applied voltage by ΔV. This effect, especially for generation of high-current beam accelerated by a multigap accelerator, appears to be an important design consideration. The energy reduction mechanism and a few examples are presented

  3. Positron confinement in embedded lithium nanoclusters

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  4. Calculation of positron binding energies using the generalized any particle propagator theory

    International Nuclear Information System (INIS)

    Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés

    2014-01-01

    We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ∼0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach

  5. Polarized positrons and electrons at the linear collider

    International Nuclear Information System (INIS)

    Moortgat-Pick, G.; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Dreiner, H.K.; Eberl, H.; Ellis, J.

    2008-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization

  6. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code

    Science.gov (United States)

    Panettieri, Vanessa; Amor Duch, Maria; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-01

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm2 and a thickness of 0.5 µm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water™ build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water™ cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can

  7. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code.

    Science.gov (United States)

    Panettieri, Vanessa; Duch, Maria Amor; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-07

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm(2) and a thickness of 0.5 microm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can successfully

  8. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  9. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  10. Defects in Czochralski-grown silicon crystals investigated by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, Atsushi; Kawakami, Kazuto; Haga, Hiroyo [Nippon Steel Corp., Sagamihara, Kanagawa (Japan). Electronics Research Labs.; Uedono, Akira; Wei, Long; Kawano, Takao; Tanigawa, Shoichiro

    1994-10-01

    Positron lifetime and Doppler broadening experiments were performed on Czochralski-grown silicon crystals. A monoenergetic positron beam was also used to measure the diffusion length of positrons in the wafer. From the measurements, it was observed that the value of diffusion length of positrons decreased at the region where microdefects were formed during the crystal growth process. It was also found that the line shape parameter S decreased and the lifetime of positrons increased at the region. These results can be attributed to the annihilation of positrons trapped by vacancy oxygen complexes which are formed in association with the microdefects. (author).

  11. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  12. Development of a stripline-type position monitor for the KEK electron/positron linac

    International Nuclear Information System (INIS)

    Suwada, T.; Urano, T.; Lazos, A.; Kobayashi, H.

    1994-01-01

    A stripline-type beam-position monitor (BPM) is under development at the KEK electron/positron linac. This monitor will be installed in order to easily handle the orbit of a high-current electron beam (∼10 nC/pulse) generating a positron beam in the B-factory. The prototype BPM was tested at a test bench and then in the linac using a single-bunch electron beam. In this report some basic characteristics and the experimental results of the BPM are presented

  13. Slow positron beam study of corrosion behavior of AM60B magnesium alloy in NaCl solution

    International Nuclear Information System (INIS)

    Yang, W.; Zhu, Z.J.; Wang, J.J.; Wu, Y.C.; Zhai, T.; Song, G.-L.

    2016-01-01

    Highlights: • Positron annihilation is a sensitive tool to characterize the corrosion layer. • The interfacial voids promoted the formation of Mg(OH) 2 corrosion layer. • Mg(OH) 2 precipitated during early corrosion stage provided a temporary protection. - Abstract: The corrosion behavior of super vacuum die-cast AM60B magnesium alloys immersed in a 5 wt% NaCl solution was investigated by slow positron beam technique, XRD, XPS, SEM and potentiodynamic polarization tests. The XRD and XPS results indicated that Mg(OH) 2 was main corrosion product in the salt solution. With prolonging the immersion time, a significant decrease of Doppler-broadened annihilation line-width parameter near the surface after corrosion was observed and interpreted that the pre-existing interfacial voids between oxide film and matrix might promote the formation of Mg(OH) 2 corrosion layer. Polarization tests found that Mg(OH) 2 could provide a temporary protection.

  14. Vacancy identification in Co+ doped rutile TiO2 crystal with positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Ma Minyang; Qin Xiubo; Wang Baoyi; Wu Weiming

    2013-01-01

    Background: Room temperature Diluted Magnetic Semiconductor (DMS) is a critical path in the study of spin-electronic devices, but there are many disputes in the intrinsic properties and origin of the room temperature ferromagnetism. Positron annihilation spectroscopy (PAS) is a powerful technique for evaluating vacancy-type defects. Purpose: We aim to establish the relationship between the defect structure and ferromagnetism of the materials by analyzing the parameters of positron annihilation. Methods: Co-doped rutile TiO 2 films were synthesized by ion implantation and extensively studied by variable energy positron annihilation Doppler broadening spectroscopy (DBS) and coincidence Doppler broadening (CDB) measurements with variable energy slow positron beam for identification of the vacancies. Results: The results of DBS showed that a newly formed type of vacancy could be concluded by the S-W plot and the CDB results indicated that the oxygen vacancy (Vo) complex Ti-Co-Vo and/or Ti-Vo were formed with Co ions implantation and the vacancy concentration increased with increasing dopant dose. Conclusion: We identify that the generation of Ti-Vo and/or Ti-Co-Vo vacancy complex are induced by the existence of excess Ti 3d electrons around the oxygen vacancy. (authors)

  15. A Symplectic Beam-Beam Interaction with Energy Change

    International Nuclear Information System (INIS)

    Moshammer, Herbert

    2003-01-01

    The performance of many colliding storage rings is limited by the beam-beam interaction. A particle feels a nonlinear force produced by the encountering bunch at the collision. This beam-beam force acts mainly in the transverse directions so that the longitudinal effects have scarcely been studied, except for the cases of a collision with a crossing angle. Recently, however, high luminosity machines are being considered where the beams are focused extensively at the interaction point (IP) so that the beam sizes can vary significantly within the bunch length. Krishnagopal and Siemann have shown that they should not neglect the bunch length effect in this case. The transverse kick depends on the longitudinal position as well as on the transverse position. If they include this effect, however, from the action-reaction principle, they should expect, at the same time, an energy change which depends on the transverse coordinates. Such an effect is reasonably understood from the fact that the beam-beam force is partly due to the electric field, which can change the energy. The action-reaction principle comes from the symplecticity of the reaction: the electromagnetic influence on a particle is described by a Hamiltonian. The symplecticity is one of the most fundamental requirements when studying the beam dynamics. A nonsymplectic approximation can easily lead to unphysical results. In this paper, they propose a simple, approximately but symplectic mapping for the beam-beam interaction which includes the energy change as well as the bunch-length effect. In the next section, they propose the mapping in a Hamiltonian form, which directly assures its symplecticity. Then in section 3, they study the nature of the mapping by interpreting its consequences. The mapping itself is quite general and can be applied to any distribution function. They show in Section 4 how it appears when the distribution function is a Gaussian in transverse directions. The mapping is applied to the

  16. Determination of the LEP beam energy

    CERN Document Server

    Torrence, E

    2000-01-01

    This article describes the determination of the LEP beam energy above the production threshold for W boson pairs. A brief overview of the magnetic extrapolation method is presented which is currently used to determine the LEP beam energy to a relative precision of 2*10/sup -4 /. A new method for beam energy measurements based on an in-line energy spectrometer is presented, and current developments in the commissioning of this device are outlined. (2 refs).

  17. Travelling wave accelerating structure design for TESLA positron injector linac

    CERN Document Server

    Jin, K; Zhou, F; Flöttmann, K

    2000-01-01

    A modified cup-like TW accelerating structure for TESLA Positron Pre-Accelerator (PPA) is designed by optimizing the structure geometry and by changing the iris thickness cell by cell in a section . This structure has high shunt-impedance and a large iris radius to meet with the requirements of high gradient and large transverse acceptance. The beam dynamics in the structure with the optimum solenoid focus field are studied. A satisfactory positron beam transmission and the beam performance at the PPA output have been obtained. In this paper the accelerating structure design is described in detail and the results are presented.

  18. Ps beam production and scattering from gaseous targets

    International Nuclear Information System (INIS)

    Garner, A.J.; Laricchia, G.; Oezen, A.

    1996-01-01

    We have investigated the conversion of a positron beam into an ortho-Ps beam via charge exchange in gaseous H 2 , He and Ar at energies up to 120 eV and gas pressures up to 14 μmHg. H 2 has been found to be the most efficient converter at energies up to 90 eV. At higher energies, Ar has been found to be the best. Total cross sections of ortho-Ps scattering from H 2 and He have also been measured. A comparison with available theories suggests that electron exchange at lower energies and target inelastic collisions at higher energies are playing a major role in the collisions. (author)

  19. Defect characterization of CdTe thin films using a slow positron beam

    International Nuclear Information System (INIS)

    Neretina, S.; Grebennikov, D.; Mascher, P.; Hughes, R.A.; Weber, M.; Lynn, K.G.; Simpson, P.J.; Preston, J.S.

    2007-01-01

    Cadmium Telluride (CdTe) is the most well established II-VI compound largely due to its use as a photonic material. Existing applications, as well as those under consideration, are demanding increasingly stringent control of the material properties. The deposition of high quality thin films is of the utmost importance to such applications. In this regard, we present a report detailing the role of lattice mismatch in determining the film quality. Thin films were deposited on a wide variety of substrate materials using the pulsed laser deposition technique. Common to all substrates was the strong tendency towards the preferential alignment of CdTe's (111) planes parallel to the substrate's surface. X-ray diffraction analysis, however, revealed that the crystalline quality varied dramatically depending upon the substrate used with the best results yielding a single crystal film. This tendency also manifested itself in the surface morphology with higher structural perfection yielding smoother surfaces. Slow positron beam techniques revealed a strong correlation between the defect concentration and the degree of structural perfection. Simulations of the data using the POSTRAP 5 program were used to calculate the defect concentration in relative (atom -1 ) and absolute units and to determine the diffusion lengths of the positrons in the film. All of these characterization techniques point towards lattice mismatch as being the dominant mechanism in determining the quality of CdTe films. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Beam-beam force and storage ring parameters

    International Nuclear Information System (INIS)

    Herrera, J.C.

    1979-01-01

    The fundamental aspects of the beam--beam force as it occurs in Intersecting Storage Rings are reported. The way in which the effect of the beam--particle electromagnetic force (weak--strong interaction) is different in the case of unbunched proton beams which cross each other at an angle (as in the ISR and in ISABELLE) is shown, as compared to the case of electron--positron beams where bunches collide head-on

  1. Production of a Scalar Boson and a Fermion Pair in Arbitrarily Polarized e - e + Beams

    Science.gov (United States)

    Abdullayev, S. K.; Gojayev, M. Sh.; Nasibova, N. A.

    2018-05-01

    Within the framework of the Standard Model (Minimal Supersymmetric Standard Model) we consider the production of the scalar boson HSM (h; H) and a fermion pair ff- in arbitrarily polarized, counterpropagating electron-positron beams e - e + ⇒ HSM (h; H) ff-. Characteristic features of the behavior of the cross sections and polarization characteristics (right-left spin asymmetry, degree of longitudinal polarization of the fermion, and transverse spin asymmetry) are investigated and elucidated as functions of the energy of the electron-positron beams and the mass of the scalar boson.

  2. Solvated Positron Chemistry. Competitive Positron Reactions with Halide Ions in Water

    DEFF Research Database (Denmark)

    Christensen, Palle; Pedersen, Niels Jørgen; Andersen, J. R.

    1979-01-01

    It is shown by means of the angular correlation technique that the binding of positrons to halides is strongly influenced by solvation effects. For aqueous solutions we find increasing values for the binding energies between the halide and the positron with increasing mass of the halide...

  3. Design and commissioning of the APS beam charge and current monitor

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1994-01-01

    The non-intercepting charge and current monitors suitable for a wide range of beam parameters have been developed and installed in the Advanced Photon Source (APS) low energy transport lines, positron accumulator ring (PAR), and injector synchrotron. The positron or electron beam pulse in the APS has charge ranging from 100pC to l0nC with pulse width varying from 30ps to 30ns. The beam charge and current are measured with a current transformer and subsequent current monitoring electronics based on an ultrafast, high precision gated integrator. The signal processing electronics, data acquisition, and communication with the control system are managed by a VME-based system. This paper summarizes the hardware and software features of the systems. The results of recent operations are presented

  4. Design and commissioning of the APS beam charge and current monitors

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1995-01-01

    The non-intercepting charge and current monitors suitable for a wide range of beam parameters have been developed and installed in the Advanced Photon Source (APS) low energy transport lines, positron accumulator ring (PAR), and injector synchrotron. The positron or electron beam pulse in the APS has charge ranging from 100 pC to 10 nC with pulse width varying from 30 ps to 30 ns. The beam charge and current are measured with a current transformer and subsequent current monitoring electronics based on an ultrafast, high precision gated integrator. The signal processing electronics, data acquisition, and communication with the control system are managed by a VME-based system. This paper summarizes the hardware and software features of the systems. The results of recent operations are presented. copyright 1995 American Institute of Physics

  5. The limits of application of variable-energy slow positron beams for investigating TiN hard coatings prepared by PVD

    International Nuclear Information System (INIS)

    Marek, T.; Suevegh, K.; Vertes, A.; Szeles, Cs.; Lynn, K.G.

    2000-01-01

    Samples of TiN hard coatings prepared by physical vapour deposition (PVD) were investigated by means of depth-sensitive positron annihilation spectroscopy. The results indicate that the samples are at the limits of the applicability of this method presumably due to the high defect concentration. Though the samples are thoroughly characterized by other independent methods, they might not be sufficient to explain all aspects of positron-solid interactions in these cases. (author)

  6. Positron effective mass in silicon

    International Nuclear Information System (INIS)

    Panda, B.K.; Shan, Y.Y.; Fung, S.; Beling, C.D.

    1995-01-01

    The positron effective mass in Si is obtained from the first-principles calculations along various crystallographic directions. The effect of electron-positron correlation on the band mass is examined in this work. A positron pseudopotential scheme is worked out to calculate the isotropic band mass without explicitly solving the band energy. The effective mass 1.46m obtained as a sum of band mass and the positron-plasmon interaction compares very well with 1.5m obtained from the positron mobility data

  7. Beam dynamics studies at DAΦNE: from ideas to experimental results

    Science.gov (United States)

    Zobov, M.; DAΦNE Team

    2017-12-01

    DAΦNE is the electron-positron collider operating at the energy of Φ-resonance, 1 GeV in the center of mass. The presently achieved luminosity is by about two orders of magnitude higher than that obtained at other colliders ever operated at this energy. Careful beam dynamic studies such as the vacuum chamber design with low beam coupling impedance, suppression of different kinds of beam instabilities, investigation of beam-beam interaction, optimization of the beam nonlinear motion have been the key ingredients that have helped to reach this impressive result. Many novel ideas in accelerator physics have been proposed and/or tested experimentally at DAΦNE for the first time. In this paper we discuss the advanced accelerator physics studies performed at DAΦNE.

  8. Monte Carlo transport of electrons and positrons through thin foils

    International Nuclear Information System (INIS)

    Legarda, F.; Idoeta, R.

    2000-01-01

    In the different measurements made with electrons traversing matter it becomes useful the knowledge of its transmission through that medium, their paths and their angular distribution through matter so as to process and get information about the traversed medium and to improve and innovate the techniques that employ electrons, as medical applications or materials irradiation. This work presents a simulation of the transport of beams of electrons and positrons through thin foils using an analog Monte Carlo code that simulates in a detailed way every electron movement or interaction in matter. As those particles penetrate thin absorbers it has been assumed that they interact with matter only through elastic scattering, with negligible energy loss. This type of interaction has been described quite precisely because its angular form influences very much the angular distribution of electrons and positrons in matter. With this code it has been calculated the number of particles, with energies between 100 and 3000 keV, that are transmitted through different media of various thicknesses as well as its angular distribution, showing a good agreement with experimental data. The discrepancies are less than 5% for thicknesses lower than about 30% of the corresponding range in the tested material. As elastic scattering is very anisotropic, angular distributions resemble a collimated incident beam for very thin foils becoming slowly more isotropic when absorber thickness is increased. (author)

  9. Outline of application plans of accelerator beams in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Japan Atomic Energy Research Institute (JAERI) has various application plans of accelerators such as; Neutron Science Research Complex (NSRC), Positron Factory, International Fusion Material Irradiation Facility (IFMIF), and Spring-8 Project. Each application plan has its own research program and its own core accelerator. The NSRC is a multi-purpose research complex composed of seven research facilities: slow neutron scattering facility for material science, the nuclear energy research facility like nuclear transmutation and so on. The Positron Factory will be applied to the research of precise analysis of material structure by novel method of positron probing. The IFMIF aims at simulating the wall loading of a demo fusion reactor by producing high intense neutron flux. The SPring-8 is the largest synchrotron radiation source in the world. More than 60 X-ray beam lines will be equipped for the various researches. (author)

  10. Positron annihilation studies in the field induced depletion regions of metal-oxide-semiconductor structures

    Science.gov (United States)

    Asoka-Kumar, P.; Leung, T. C.; Lynn, K. G.; Nielsen, B.; Forcier, M. P.; Weinberg, Z. A.; Rubloff, G. W.

    1992-06-01

    The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions.

  11. Positron annihilation studies in the field induced depletion regions of metal-oxide-semiconductor structures

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Leung, T.C.; Lynn, K.G.; Nielsen, B.; Forcier, M.P.; Weinberg, Z.A.; Rubloff, G.W.

    1992-01-01

    The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions

  12. Temperature dependence of the fraction of re-emitted positrons, the positron work function, and the positronium fraction for Cu(III)+S

    International Nuclear Information System (INIS)

    Schultz, P.J.; Lynn, K.G.

    1982-01-01

    A beam of 1 keV positrons incident on a Cu(111)+S surface has been used to study the dependence on temperature of the positron work function (phi/sub +/), the yield of re-emitted positrons (Y) and of the positronium (Ps) fraction. A positive dependence of the slow-positron yield on temperature is found which is attributed in part to a reduction in the magnitude of phi/sub +/ (approx. 25%) at 50 K relative to its value at 300 K. A similar, though weaker, positive dependence on temperature was seen for the Ps fraction down to 40 K. We present a suggestion for the apparent lack of reflection

  13. Performance of the EUDET-type beam telescopes

    International Nuclear Information System (INIS)

    Jansen, H.; Spannagel, S.; Behr, J.

    2016-05-01

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be (2.88±0.08) μm. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24±0.09) μm. With a 5 GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20 mm is estimated to (1.83±0.03) μm assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams.

  14. Performance of the EUDET-type beam telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Hendrik; Spannagel, Simon; Behr, Joerg; Dreyling-Eschweiler, Jan; Eckstein, Doris; Eichhorn, Thomas; Gregor, Ingrid Maria; Muhl, Carsten; Perrey, Hanno; Peschke, Richard; Roloff, Philipp; Rubinskiy, Igor [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Bulgheroni, Antonio [INFN, Milano (Italy); EC - Joint Research Centre, Karlsruhe (Germany); Claus, Gilles; Goffe, Mathieu; Winter, Marc [IPHC, Strasbourg (France); Corrin, Emlyn; Haas, Daniel [University of Geneva, DPNC, Geneva (Switzerland); Cussans, David [University of Bristol, Bristol (United Kingdom)

    2016-12-15

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA 26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be (2.88 ± 0.08) μm. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24 ± 0.09) μm. With a 5 GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20 mm is estimated to (1.83 ± 0.03) μm assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA 26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams. (orig.)

  15. Interface detection in poly-ethylene terephthalate-metal laminates using variable energy positron annihilation

    International Nuclear Information System (INIS)

    Escobar Galindo, R.; Schut, H.; Veen, A. van; Rastogi, R.; Vellinga, W.P.; Meijer, H.E.H.

    2005-01-01

    Thin coatings of poly-ethylene terephthalate (PET) on metal ('laminates') have been studied with a variable energy positron annihilation technique. A correlation between PET crystallinity and the positron annihilation parameter S related to the free volume in the polymer is found. It is shown that buried interfaces in these systems may be detected provided the S parameter of the polymer coating is lower than that of the substrate and higher than that of the surface. Also it is found that large positron diffusion lengths in the substrate favour interface detection. Further, changes in S parameter of PET-metal laminates were measured during uniaxial deformation and shown to be in qualitative accordance with a very simple model description that accounts for changes in free volume in PET during plastic deformation as well as the area fraction of cracks occurring in the PET

  16. Gamma-induced positron annihilation spectroscopy and application to radiation-damaged alloys

    International Nuclear Information System (INIS)

    Wells, D.P.; Hunt, A.W.; Tchelidze, L.; Kumar, J.; Smith, K.; Thompson, S.; Selim, F.; Williams, J.; Harmon, J.F.; Maloy, S.; Roy, A.

    2006-01-01

    Radiation damage and other defect studies of materials are limited to thin samples because of inherent limitations of well-established techniques such as diffraction methods and traditional positron annihilation spectroscopy (PAS) [P. Hautojarvi, et al., Positrons in Solids, Springer, Berlin, 1979, K.G. Lynn, et al., Appl. Phys. Lett. 47 (1985) 239]. This limitation has greatly hampered industrial and in-situ applications. ISU has developed new methods that use pair-production to produce positrons throughout the volume of thick samples [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D.P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262]. Unlike prior work at other laboratories that use bremsstrahlung beams to create positron beams (via pair-production) that are then directed at a sample of interest, we produce electron-positron pairs directly in samples of interest, and eliminate the intermediate step of a positron beam and its attendant penetrability limitations. Our methods include accelerator-based bremsstrahlung-induced pair-production in the sample for positron annihilation energy spectroscopy measurements (PAES), coincident proton-capture gamma-rays (where one of the gammas is used for pair-production in the sample) for positron annihilation lifetime spectroscopy (PALS), or photo-nuclear activation of samples for either type of measurement. The positrons subsequently annihilate with sample electrons, emitting coincident 511 keV gamma-rays [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D

  17. Positron annihilation near fractal surfaces

    International Nuclear Information System (INIS)

    Lung, C.W.; Deng, K.M.; Xiong, L.Y.

    1991-07-01

    A model for positron annihilation in the sub-surface region near a fractal surface is proposed. It is found that the power law relationship between the mean positron implantation depth and incident positron energy can be used to measure the fractal dimension of the fractal surface in materials. (author). 10 refs, 2 figs

  18. PF slow positron source

    International Nuclear Information System (INIS)

    Shirakawa, A.; Enomoto, A.; Kurihara, T.

    1993-01-01

    A new slow-positron source is under construction at the Photon Factory. Positrons are produced by bombarding a tantalum rod with high-energy electrons; they are moderated in multiple tungsten vanes. We report here the present status of this project. (author)

  19. Study of single Z-boson production and Compton scattering in electron-positron collisions at LEP at centre-of-mass energies up to 209 GeV

    CERN Document Server

    Vasquez Sierra, Ricardo

    2006-01-01

    This thesis discusses two main topics. First, the cross section of the process e + e - [arrow right]Ze + e - is measured with 0.7 ph - of data collected with the L3 detector at LEP. Decays of the Z boson into quarks and muons are considered at center-of-mass energies ranging frond 183 GeV up to 209 GeV. The measurements are found to agree with Standard Model predictions, achieving a precision of about 10% for the hadronic channel. Second, Compton scattering of quasi-real virtual photons, γe ± [arrow right]γe ± , is studied with 0.6 fb - 1 of data collected by the L3 detector at LEP at center-of-mass energies [Special characters omitted.] = 189--209GeV. About 4500 events produced by the interaction of virtual photons emitted by particles of one beam with particles of the opposite beam are collected for effective center-of-mass energies of photon-electron and photon-positron systems in the range [Special characters omitted.] = 35 GeV up to [Special characters omitted.] = 175 GeV, the highest energy at which...

  20. Beam energy control device for thermonuclear device

    International Nuclear Information System (INIS)

    Arimoto, Kimiko.

    1991-01-01

    The present invention comprises a setting section for the previously allowed penetration ratio, a correlation graph setting section for the penetration ratio, a beam energy and a plasma density, a control clock output section for transmitting clocks for every control period, a plasma density collecting section for collecting a plasma density from a plasma main body and a calculating section for a beam energy based on the plasma density. Since the value of the beam energy is controlled on real time based on the density of the plasma main body and the correlation graph of the penetration rate, the beam energy and the plasma density is used as a calculation parameter to conduct calculation such that the penetrating ratio is constant, there is no worry that beams at a high energy are entered to plasmas of low density, to damage a vacuum vessel. Further, when a state of plasmas is satisfactory, beams at an effective energy value can be entered as much as possible, thereby enabling to improve heating efficiency. (N.H.)

  1. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  2. Positron spectroscopy for materials characterization

    International Nuclear Information System (INIS)

    Schultz, P.J.; Snead, C.L. Jr.

    1988-01-01

    One of the more active areas of research on materials involves the observation and characterization of defects. The discovery of positron localization in vacancy-type defects in solids in the 1960's initiated a vast number of experimental and theoretical investigations which continue to this day. Traditional positron annihilation spectroscopic techniques, including lifetime studies, angular correlation, and Doppler broadening of annihilation radiation, are still being applied to new problems in the bulk properties of simple metals and their alloys. In addition new techniques based on tunable sources of monoenergetic positron beams have, in the last 5 years, expanded the horizons to studies of surfaces, thin films, and interfaces. In the present paper we briefly review these experimental techniques, illustrating with some of the important accomplishments of the field. 40 refs., 19 figs

  3. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  4. PREFACE: The International Workshop on Positron Studies of Defects 2014

    Science.gov (United States)

    Sugita, Kazuki; Shirai, Yasuharu

    2016-01-01

    The International Workshop on Positron Studies of Defects 2014 (PSD-14) was held in Kyoto, Japan from 14-19 September, 2014. The PSD Workshop brought together positron scientists interested in studying defects to an international platform for presenting and discussing recent results and achievements, including new experimental and theoretical methods in the field. The workshop topics can be characterized as follows: • Positron studies of defects in semiconductors and oxides • Positron studies of defects in metals • New experimental methods and equipment • Theoretical calculations and simulations of momentum distributions, positron lifetimes and other characteristics for defects • Positron studies of defects in combination with complementary methods • Positron beam studies of defects at surfaces, interfaces, in sub-surface regions and thin films • Nanostructures and amorphous materials

  5. Positron annihilation in germanium in thermal equilibrium at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Komuro, Naoyuki; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Ikari, Atsushi

    1996-09-01

    Annihilation characteristics of positrons in Ge in thermal equilibrium at high temperature were studied using a monoenergetic positron beam. Precise measurements of Doppler broadening profiles of annihilation radiation were performed in the temperature range between 300 K and 1211 K. The line shape parameters of Doppler broadening profiles were found to be almost constant at 300-600 K. The changes in these parameters were observed to start above 600 K. This was attributed to both the decrease in the fraction of positrons annihilating with core electrons and the lowering of the crystal symmetry around the region detected by positron-electron pairs. This suggests that behaviors of positrons are dominated by some form of positron-lattice coupling in Ge at high temperatures. The temperature dependence of the diffusion length of positrons was also discussed. (author)

  6. Focusing an antimatter beam with matter

    CERN Document Server

    CERN. Geneva

    2000-01-01

    An experiment at the Stanford Linear Accelerator Center has recently focused positron beams by means of a plasma lens. This is the first time this process has been observed. The process started with a positron beam from the SLAC PEP-II positron source. This was sent through a damping ring and then accelerated to 28.5 GeV in the SLAC linac with a bunch intensity of 1-2*10/sup 10/. The beam was delivered to the Final Focus Test Beam Facility (FFTB) at a rate of 1 or 10 Hz. At the focal point of the FFTB transport, a special plasma chamber contains a 3 mm diameter pulsed gas nozzle through which either hydrogen or nitrogen gas is "puffed" into the ultrahigh vacuum system at plenum gas pressures up to 75 atm with a discharge time of 800 mu s. The gas is pumped off by a Roots-type pump. On either side of the central chamber are differential pumping sections semi- isolated from each other by thin titanium windows with small (2-5 mm diameter) apertures for the positron beams to pass through. These sections are evacu...

  7. The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects.

    Science.gov (United States)

    Zubiaga, Asier; Warringham, Robbie; Boltz, Marilyne; Cooke, David; Crivelli, Paolo; Gidley, David; Pérez-Ramírez, Javier; Mitchell, Sharon

    2016-04-07

    Recent studies demonstrated the power of positron annihilation lifetime spectroscopy (PALS) to characterise the connectivity and corresponding effectiveness of hierarchical pore networks in zeolites. This was based on the fractional escape of ortho-positronium (Ps), formed within the micropore framework, to vacuum. To further develop this technique, here we assess the impact of the positron implantation energy and of the zeolite crystal size and the particle morphology. Conventional measurements using fast positrons and beam measurements applying moderated positrons both readily distinguish purely microporous ZSM-5 zeolites comprised of single crystals or crystal aggregates. Unlike beam measurements, however, conventional measurements fail to discriminate model hierarchical zeolites with open or constricted mesopore architectures. Several steps are taken to rationalise these observations. The dominant contribution of Ps diffusion to the PALS response is confirmed by capping the external surface of the zeolite crystals with tetraethylorthosilicate, which greatly enhances the sensitivity to the micropore network. A one-dimensional model is constructed to predict the out-diffusion of Ps from a zeolite crystal, which is validated experimentally by comparing coffin-shaped single crystals of varying size. Calculation of the trends expected on the application of fast or moderated positrons indicates that the distinctions in the initial distribution of Ps at the crystal level cannot explain the limited sensitivity of the former to the mesopore architecture. Instead, we propose that the greater penetration of fast positrons within the sample increases the probability of Ps re-entry from intercrystalline voids into mesopores connected with the external surface of zeolite crystals, thereby reducing their fractional escape.

  8. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki

    2016-01-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver......-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag......, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy...

  9. Time-resolved beam energy measurements at LAMPF

    International Nuclear Information System (INIS)

    Hudgings, D.W.; Clark, D.A.; Bryant, H.C.

    1979-01-01

    A narrow atomic photodetachment resonance is used to measure the LAMPF beam energy. Energy and time resolution are adequate to permit the use of this method in studying transient changes in accelerated beam energy

  10. Positron--electron storage ring project: Stanford Linear Accelerator Center, Stanford, California. Final environmental statement

    International Nuclear Information System (INIS)

    1976-08-01

    A final environmental statement is given which was prepared in compliance with the National Environmental Policy Act to support the Energy Research and Development Administration project to design and construct the positron-electron colliding beam storage ring (PEP) facilities at the Stanford Linear Accelerator Center (SLAC). The PEP storage ring will be constructed underground adjacent to the existing two-mile long SLAC particle accelerator to utilize its beam. The ring will be about 700 meters in diameter, buried at depths of 20 to 100 feet, and located at the eastern extremity of the SLAC site. Positron and electron beams will collide in the storage ring to provide higher energies and hence higher particle velocities than have been heretofore achieved. Some of the energy from the collisions is transformed back into matter and produces a variety of particles of immense interest to physicists. The environmental impacts during the estimated two and one-half years construction period will consist of movement of an estimated 320,000 cubic yards of earth and the creation of some rubble, refuse, and dust and noise which will be kept to a practical minimum through planned construction procedures. The terrain will be restored to very nearly its original conditions. Normal operation of the storage ring facility will not produce significant adverse environmental effects different from operation of the existing facilities and the addition of one water cooling tower. No overall increase in SLAC staff is anticipated for operation of the facility. Alternatives to the proposed project that were considered include: termination, postponement, other locations and construction of a conventional high energy accelerator

  11. Electron fluence to dose equivalent conversion factors calculated with EGS3 for electrons and positrons with energies from 100 keV to 20 GeV

    International Nuclear Information System (INIS)

    Rogers, D.W.O.

    1983-01-01

    At NRC the general purpose Monte-Carlo electron-photon transport code EGS3 is being applied to a variety of radiation dosimetry problems. To test its accuracy at low energies a detailed set of depth-dose curves for electrons and photons has been generated and compared to previous calculations. It was found that by changing the default step-size algorithm in EGS3, significant changes were obtained for incident electron beam cases. It was found that restricting the step-size to a 4% energy loss was appropriate below incident electron beam energies of 10 MeV. With this change, the calculated depth-dose curves were found to be in reasonable agreement with other calculations right down to incident electron energies of 100 keV although small (less than or equal to 10%) but persistent discrepancies with the NBS code ETRAN were obtained. EGS3 predicts higher initial dose and shorter range than ETRAN. These discrepancies are typical of a wide range of energies as is the better agreement with the results of Nahum. Data is presented for the electron fluence to maximal dose equivalent in a 30 cm thick slab of ICRU 4-element tissue irradiated by broad parallel beams of electrons incident normal to the surface. On their own, these values only give an indication of the dose equivalent expected from a spectrum of electrons since one needs to fold the spectrum maximal dose equivalent value. Calculations have also been done for incident positron beams. Despite the large statistical uncertainties, maximal dose equivalent although their values are 5 to 10% lower in a band around 10 MeV

  12. Secondary beam course for the medical use at HIMAC

    International Nuclear Information System (INIS)

    Kanazawa, Mitsutaka; Kitagawa, Atsushi; Torikoshi, Masami

    2003-01-01

    To verify the ion range in the cancer treatment, a positron emitter beam is a promising tool. For this purpose we have constructed an irradiation system with secondary beam, where a spot scanning technique was adopted. To measure the three dimensional dose distributions, multi-pad ionization chamber was used. Concerning the experiments with positron camera, wash-out effect of injected positron emitters were measured with rabbit. In this report current status of the beam experiments of the irradiation system are presented. (author)

  13. Beam-induced backgrounds in detectors at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Adrian

    2008-11-15

    There is general consensus in the high-energy physics community that the next particle collider to be built should be a linear electron-positron accelerator. Such a machine, colliding point-like particles with a well-defined initial state, would be an ideal complement to the Large Hadron Collider (LHC) and would allow high-precision measurements of the new physics phenomena that are likely to be discovered at the TeV energy scale. The most advanced project in that context is the International Linear Collider (ILC), aiming for a centre-of-mass energy of 500 GeV and a luminosity of 2 x 10{sup 34} cm{sup -2}s{sup -1} in its first stage. One of the detector concepts that are currently being developed and studied is the so-called International Large Detector (ILD). A prime feature of the ILD concept is the usage of a Time Projection Chamber (TPC) as the main tracker, which allows to reach the required momentum resolution, but which also has excellent particle identification capabilities and a highly robust and efficient tracking. The beam-beam interaction of the strongly focused particle bunches at the ILC will produce beamstrahlung photons, which can in turn scatter to electron-positron pairs. These pairs are a major source of detector backgrounds. This thesis explains the methods to study the effects of beam-induced electron-positron pair backgrounds with Mokka, a full detector simulation for the ILC that is based on Geant4, and it presents the simulation results for different detector configurations and various small modifications. The main focus of the simulations and their analysis is on the vertex detector and the TPC, but results for the inner silicon trackers and the hadronic calorimeters are shown as well. (orig.)

  14. Beam-induced backgrounds in detectors at the ILC

    International Nuclear Information System (INIS)

    Vogel, Adrian

    2008-11-01

    There is general consensus in the high-energy physics community that the next particle collider to be built should be a linear electron-positron accelerator. Such a machine, colliding point-like particles with a well-defined initial state, would be an ideal complement to the Large Hadron Collider (LHC) and would allow high-precision measurements of the new physics phenomena that are likely to be discovered at the TeV energy scale. The most advanced project in that context is the International Linear Collider (ILC), aiming for a centre-of-mass energy of 500 GeV and a luminosity of 2 x 10 34 cm -2 s -1 in its first stage. One of the detector concepts that are currently being developed and studied is the so-called International Large Detector (ILD). A prime feature of the ILD concept is the usage of a Time Projection Chamber (TPC) as the main tracker, which allows to reach the required momentum resolution, but which also has excellent particle identification capabilities and a highly robust and efficient tracking. The beam-beam interaction of the strongly focused particle bunches at the ILC will produce beamstrahlung photons, which can in turn scatter to electron-positron pairs. These pairs are a major source of detector backgrounds. This thesis explains the methods to study the effects of beam-induced electron-positron pair backgrounds with Mokka, a full detector simulation for the ILC that is based on Geant4, and it presents the simulation results for different detector configurations and various small modifications. The main focus of the simulations and their analysis is on the vertex detector and the TPC, but results for the inner silicon trackers and the hadronic calorimeters are shown as well. (orig.)

  15. Measurement of activity yields for 12C(#betta#, n)11C, 14N(#betta#, n)13N, and 16O(#betta#, n)15O reactions as a function of electron beam energy and angle from the electron beam using thick target produced bremsstrahlung

    International Nuclear Information System (INIS)

    Piltingsrud, H.V.

    1983-01-01

    The calculation of activity yields from practical photonuclear target systems designed to produce short-lived positron emitting radionuclides for nuclear medicine purposes requires certain basic information. These include a knowledge of the photon source (bremsstrahlung energy spectrum and intensity as a function of angle from the electron beam) and the #betta#, n activation cross section of the secondary target element. A lack of adequate information concerning these parameters motivated the present study in which activity yields for the reactions 12 C(#betta#, n) 11 C, 14 N(#betta#, n) 13 N, and 16 O(#betta#, n) 15 O were measured as a function of energy of and angle from the electron beam between 16 and 30 MeV and 0 0 and 30.5 0 , respectively. The data indicate highly complex relationships between the activity yield and the experimental variables. Also indicated are possible applications of the data to indicate the energy of an electron beam producing a given bremsstrahlung field in which activation measurements are made

  16. Beam-beam interaction in e+-e- storage rings

    International Nuclear Information System (INIS)

    Le Duff, J.

    1977-01-01

    Colliding beams in electron-positron storage rings are discussed with particular reference to the space charge forces occuring during beam-beam interactions and their effect on beam current and consequently machine performance (maximum luminosity). The first section deals with linear beam-beam effects and discussses linear tune shift; the second section considers non-linear beam-beam effects and the creation on non-linear resonances. The last section poses questions of the possibility of extrapolating present results to future machines and discusses optimization of storage ring performance. (B.D.)

  17. Positron--Electron Project (PEP)

    International Nuclear Information System (INIS)

    Rees, J.R.

    1977-01-01

    PEP, an 18-GeV electron-positron colliding-beam storage ring facility at SLAC, is being built by a team from LBL and SLAC. Construction is under way and completion is scheduled for Fall of 1979. A summary is given of the design of the facility, and the status of the project is reported

  18. Beamed-Energy Propulsion (BEP) Study

    Science.gov (United States)

    George, Patrick; Beach, Raymond

    2012-01-01

    The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.

  19. A method for measuring the energy spectrum of coincidence events in positron emission tomography.

    Science.gov (United States)

    Goertzen, Andrew L; Stout, David B; Thompson, Christopher J

    2010-01-21

    Positron emission tomography (PET) system energy response is typically characterized in singles detection mode, yet there are situations in which the energy spectrum of coincidence events might be different than the spectrum measured in singles mode. Examples include imaging with isotopes that emit a prompt gamma in coincidence with a positron emission, imaging with low activity in a LSO/LYSO-based cameras, in which the intrinsic activity is significant, and in high scatter situations where the two 511 keV photons have different scattering probabilities (i.e. off-center line source). The ability to accurately measure the energy spectrum of coincidence events could be used for validating simulation models, optimizing energy discriminator levels and examining scatter models and corrections. For many PET systems operating in coincidence mode, the only method available for estimating the energy spectrum is to step the lower and upper level discriminators (LLD and ULD). Simple measurement techniques such as using a narrow sliding energy window or stepping only the LLD will not yield a spectrum of coincidence events that is accurate for cases where there are different energy components contributing to the spectrum. In this work we propose a new method of measuring the energy spectrum of coincidence events in PET based on a linear combination of two sets of coincident count measurements: one made by stepping the LLD and one made by stepping the ULD. The method was tested using both Monte Carlo simulations of a Siemens microPET R4 camera and measured data acquired on a Siemens Inveon PET camera. The results show that our energy spectrum calculation method accurately measures the coincident energy spectra for cases including the beta/gamma spectrum of the (176)Lu intrinsic activity present in the LSO scintillator crystals, a (68)Ge source and an (124)I source (in which there are prompt gamma-rays emitted together with the positron).

  20. Can positrons be guided by insulating capillaries?

    International Nuclear Information System (INIS)

    DuBois, R.D.; Toekesi, K.

    2011-01-01

    Complete text of publication follows. Investigations of guiding of few hundred eV antiparticles by macroscopic insulating capillaries have been described. Using subfemtoamp positron and electron beams, we demonstrated that a portion of the entering beams were transmitted and emerged in the direction of the capillary. We also demonstrated that the transmitted intensities decreased as the capillary tilt angle was increased (see Fig. 1). Both of these are indications of guiding. However, a comparison with transmitted photon data implies that the positron transmission may result from geometric factors associated with our diffuse beams and tapered capillary used in these studies. For electrons, the comparison indicates differences which could imply that even very low intensity beams can be guided. Measurements of the transmitted intensity as a function of charge entering the capillary were inconclusive as no major increases in the transmitted intensity were observed. 2D static simulations imply that our beam intensities, although extremely small with respect to previous guiding experiments, were capable of supplying sufficient charge for guiding to occur. Although not definitive, our study implies that sub-femtoamp beam intensities are sufficient to form charge patches and produce guiding. This may have been observed for electrons with the question remaining open for positrons. That guiding was not clearly seen may have been due to the capillary geometry used or it may indicate that although sufficient charge is being supplied, the surface and bulk resistivities of glass permit this charge to dissipate faster than it is formed. This aspect was not taken into consideration in our simulations but a crude estimate of the discharge rate implies that beam intensities on the order of pA, rather than fA as used here, may be required for guiding to occur in the capillaries used here. Additional studies are required to definitively answer the question as to whether antiparticles

  1. Studies of halo distributions under beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, T.; Irwin, J.; Siemann, R.H.

    1995-01-01

    The halo distribution due to the beam-beam interaction in circular electron-positron colliders is simulated with a program which uses a technique that saves a factor of hundreds to thousands of CPU time. The distribution and the interference between the beam-beam interaction and lattice nonlinearities has been investigated. The effects on the halo distribution due to radiation damping misalignment at the collision point, and chromatic effect are presented

  2. A Low-Energy Ring Lattice Design

    International Nuclear Information System (INIS)

    Cai, Yunhai

    2002-01-01

    The PEP-N project at SLAC [1] consists of a Very Low-Energy small electron Ring (VLER) that will collide with the low-energy 3.1 GeV positron beam (LER) of PEP-II, producing center-of-mass energies between the 1.1 GeV and the J/ψ. The beams will collide head-on and will be separated in the detector magnetic field which is part of the Interaction Region [2]. The IP β functions were chosen such as to optimize both luminosity and beam-beam tune shifts, while keeping the LER tune shifts small. This paper describes the lattice design of the VLER for the ''baseline'' at 500 MeV

  3. On-ground detection of an electron-positron annihilation line from thunderclouds.

    Science.gov (United States)

    Umemoto, D; Tsuchiya, H; Enoto, T; Yamada, S; Yuasa, T; Kawaharada, M; Kitaguchi, T; Nakazawa, K; Kokubun, M; Kato, H; Okano, M; Tamagawa, T; Makishima, K

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of gamma-ray emission lasting for ∼60 s. The spectrum of this prolonged emission reached ∼10 MeV, and contained a distinct line emission at 508±3(stat.)±5(sys.) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (∼80keV), and contained 520±50 photons which amounted to ∼10% of the total signal photons of 5340±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  4. Combined analysis of the S and W parameters obtained from positron annihilation spectra

    International Nuclear Information System (INIS)

    Fedorov, A.V.; Veen, A. van; Schut, H.

    2001-01-01

    Variable energy positron beam analysis (PBA) has proven to be a very useful and powerful technique for the study of nanosize layer structures and point defects in various materials. Analysis of the positron annihilation spectra is usually performed with the help of the S and W parameters. By mapping the experimental points in the S-W plane the cluster points characteristic for the layers or defects can be derived. We have developed the program SWAN (S-W analysis) to enable to trace these cluster points and to calculate the fractions of the positrons annihilated at the layers or defects ascribed to the cluster points. In combination with the known computer code VEPFIT, program SWAN was successfully used for analyzing the S and W- curves for a number of samples. As an example, the analysis of SIMOX sample measured by PBA is presented. The program runs on a PC, has a user-friendly interface and is available for distribution. (orig.)

  5. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  6. Scenario for Precision Beam Energy Calibration in FCC-ee

    CERN Document Server

    Koop, I A

    2015-01-01

    The resonance depolarization method was very successfully used in the experiments at LEP, where the mass of the Z-boson was determined with the relative uncertainty [1, 2]. In the future FCC-ee circular electron-positron collider the luminosity at Z-peak (beam energy 45.5 GeV) is expected be 4-5 orders of magnitude higher and one goal is to perform the same experiments as at LEP, but with much greater accuracy, approaching the level of [3]. Obviously this can be done only by measuring the spin precession frequency. But there are many problems which still need to be solved on the way towards a complete design. The first one: the self-polarization takes too long a time. The Sokolov-Ternov polarization time is about 250 hours at Z-peak. One approach is to install the special field-asymmetric polarizing wigglers to make the self-polarization time much shorter [4, 5] and to utilize only few percent of the polarization degree to measure the resonance spin precession frequency. But these very strong wigglers substan...

  7. Monte Carlo simulation of positron induced secondary electrons in thin carbon foils

    International Nuclear Information System (INIS)

    Cai, L H; Yang, B; Ling, C C; Beling, C D; Fung, S

    2011-01-01

    Emission of secondary electrons induced by the passage of low energy positrons through thin carbon foils was studied by the Monte Carlo method. The positron and electron elastic cross sections were calculated by partial wave analysis. The inelastic positron-valence-electron was described by the energy loss function obtained from dielectric theory. The positron-core-electron interaction was modelled by the Gryzinski's excitation function. Positron transport inside the carbon foil was simulated in detail. Secondary electrons created by positrons and high energy secondary electrons through inelastic interactions were tracked through the foil. The positron transmission coefficient and secondary electron yielded in forward and backward geometry are calculated and dependences on positron energy and carbon foil thickness are discussed.

  8. Diffusion length of positrons and positronium investigated using a positronbeam with longitudinal geometry

    Science.gov (United States)

    van Petegem, S.; Dauwe, C.; van Hoecke, T.; de Baerdemaeker, J.; Segers, D.

    2004-09-01

    Positronium emission from single crystalline Al2O3 , MgO and vitreous a-SiO2 surfaces was studied as a function of the positron implantation energy E by means of Doppler broadening spectroscopy and Compton-to-peak ratio analysis. When the Ge-detector is in-line with the positron beam, the emission of para-positronium yields a red-shifted fly-away peak with intensity IpPse . An analysis of IpPse versus E for Al2O3 and MgO where no Ps is formed in the bulk (fPs=0) results in positron diffusion lengths L+(Al2O3)=(18±1)nm and L+(MgO)=(14±1)nm , and efficiencies for the emission of Ps by picking up of a surface electron of fpu(Al2O3)=(0.28±0.2) and fpu(MgO)=(0.24±0.2) . For a-SiO2 the bulk Ps fraction is fPs(a-SiO2)=(0.72±0.01) , fpu(a-SiO2)=(0.12±0.01) and the diffusion lengths of positrons, para-positronium and ortho-positronium are L+(SiO2)=(8±2)nm , LpPs(SiO2)=(14.5±2)nm and LoPs(SiO2)=(11±2)=nm . Depending on the specimen-detector geometry the emission of Ps at low implantation energy may cause either an increase or a decrease of the width of the annihilation line shape at low implantation energies.

  9. Evaluation of scintillators and semiconductor detectors to image three-photon positron annihilation for positron emission tomography

    International Nuclear Information System (INIS)

    Abuelhia, E.; Spyrou, N.M.; Kacperski, K.; College University, Middlesex Hospital, London

    2008-01-01

    Positron emission tomography (PET) is rapidly becoming the main nuclear imaging modality of the present century. The future of PET instrumentation relies on semiconductor detectors because of their excellent characteristics. Three-photon positron annihilation has been recently investigated as a novel imaging modality, which demands the crucial high energy resolution of semiconductor detector. In this work the evaluation of the NaI(Tl) scintillator and HPGe and CdZTe semiconductor detectors, to construct a simple three-photon positron annihilation scanner has been explored. The effect of detector and scanner size on spatial resolution (FWHM) is discussed. The characteristics: energy resolution versus count rate and point-spread function of the three-photon positron annihilation image profile from triple coincidence measurements were investigated. (author)

  10. Characterisation Of The Beam Plasma In High Current, Low Energy Ion Beams For Implanters

    International Nuclear Information System (INIS)

    Fiala, J.; Armour, D. G.; Berg, J. A. van der; Holmes, A. J. T.; Goldberg, R. D.; Collart, E. H. J.

    2006-01-01

    The effective transport of high current, positive ion beams at low energies in ion implanters requires the a high level of space charge compensation. The self-induced or forced introduction of electrons is known to result in the creation of a so-called beam plasma through which the beam propagates. Despite the ability of beams at energies above about 3-5 keV to create their own neutralising plasmas and the development of highly effective, plasma based neutralising systems for low energy beams, very little is known about the nature of beam plasmas and how their characteristics and capabilities depend on beam current, beam energy and beamline pressure. These issues have been addressed in a detailed scanning Langmuir probe study of the plasmas created in beams passing through the post-analysis section of a commercial, high current ion implanter. Combined with Faraday cup measurements of the rate of loss of beam current in the same region due to charge exchange and scattering collisions, the probe data have provided a valuable insight into the nature of the slow ion and electron production and loss processes. Two distinct electron energy distribution functions are observed with electron temperatures ≥ 25 V and around 1 eV. The fast electrons observed must be produced in their energetic state. By studying the properties of the beam plasma as a function of the beam and beamline parameters, information on the ways in which the plasma and the beam interact to reduce beam blow-up and retain a stable plasma has been obtained

  11. Angular-momentum-dominated electron beams and flat-beam generation

    International Nuclear Information System (INIS)

    Sun, Yin-e

    2005-01-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  12. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e [Univ. of Chicago, IL (United States)

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  13. Measurement of the SMC muon beam polarisation using the asymmetry in the elastic scattering off polarised electrons

    CERN Document Server

    Adams, D; Adeva, B; Akdogan, T; Arik, E; Arvidson, A; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Clocchiatti, M; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gatignon, L; Gaussiran, T; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Golutvin, I A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiryushin, Yu T; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Ropelewski, Leszek; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Seitz, R; Semertzidis, Y K; Sergeev, S; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zamiatin, N I; Zhao, J

    2000-01-01

    A muon beam polarimeter was built for the SMC experiment at the CERN SPS, for beam energies of 100 and 190 GeV. The beam polarisation is determined from the asymmetry in the elastic scattering off the polarised electrons of a ferromagnetic target whose magnetisation is periodically reversed. At muon energies of 100 and 190~GeV the measured polarisation is $P_{\\mu}=-0.80 \\pm 0.03 (stat.)\\pm 0.02 (syst.)$ and $P_{\\mu}=-0.797 \\pm 0.011 (stat.)\\pm 0.012 (syst.)$, respectively. These results agree with measurements of the beam polarisation using a shape analysis of the decay positron energy spectrum.

  14. Linear theory of beam depolarization due to vertical betatron motion

    International Nuclear Information System (INIS)

    Chao, A.W.; Schwitters, R.F.

    1976-06-01

    It is well known that vertical betatron motion in the presence of quantum fluctuations leads to some degree of depolarization of a transversely polarized beam in electron-positron storage rings even for energies away from spin resonances. Analytic formulations of this problem, which require the use of simplifying assumptions, generally have shown that there exist operating energies where typical storage rings should exhibit significant beam polarization. Due to the importance of beam polarization in many experiments, we present here a complete calculation of the depolarization rate to lowest order in the perturbing fields, which are taken to be linear functions of the betatron motion about the equilibrium orbit. The results are applicable to most high energy storage rings. Explicit calculations are given for SPEAR and PEP. 7 refs., 8 figs

  15. Collective effects and experimental verification of the CLIC drive beam and decelerator

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00418229; Stapnes, Steinar; Adli, Erik

    The Compact Linear Collider (CLIC) is a potential next-generation particle collider, in which electrons and positrons collide at a center-of-mass energy of up to 3 TeV. In order to reach a high accelerating gradient and reduce the length of the machine, CLIC uses a novel two-beam scheme. Here, the acceleration energy for the main beam is provided by energy extraction from a secondary electron drive beam, by the use of Power Extraction and Transfer Structures (PETS). This Ph.D. thesis describes deceleration measurements from the CLIC Test Facility 3 at CERN, from a beam that had up to 37 % of its kinetic energy converted into 12 GHz rf power. The results are part of the feasibility demonstration of the CLIC scheme. The measured difference in beam energy of the decelerated beam is correlated with particle tracking simulations and with predictions based on analytical formulae, and a very good agreement is demonstrated. The evolution of the transverse emittance was also studied, since it is critical to contain th...

  16. A positronium beam and positronium reflection from LiF(100)

    International Nuclear Information System (INIS)

    Weber, M.; Tang, S.; Berko, S.; Brown, B.L.; Canter, K.F.; Lynn, K.G.; Mills, A.P. Jr.; Roellig, L.O.; Viescas, A.J.

    1988-01-01

    We report results obtained from a variable energy monoenergetic beam of positronium (Ps). Ps was formed by a charge transfer reaction of positrons colliding with Ar gas atoms in a ''gas cell'' with an efficiency of about 3 /times/ 10/sup /minus/4/. The beam was used to measure the fraction, R, of specularly reflected ortho-Ps from LiF(100). We found R to peak at about 30% for 7 eV Ps at a specular scattering angle of 50/degree/ to 60/degree/. At higher energies R drops sharply to values around 0.5% near 60 eV Ps

  17. Energy spectrum control for modulated proton beams

    International Nuclear Information System (INIS)

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-01-01

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to ±21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than ±3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  18. Theoretical aspects of positrons in imperfect solids

    International Nuclear Information System (INIS)

    Puska, M.J.

    1987-01-01

    The efficient use of positron annihilation in defect studies requires a deep understanding of the basic processes of positron-imperfect solid interaction. Three stages, i.e. thermalization, trapping by a defect, and the annihilation can be separated during the evolution of the interaction. The last two processes are the most relevant ones for the positron lifetime spectroscopy and they will be discussed in detail in this review. The complete solution of the problem of a localized positron interacting with the electrons around a defect requires the simultaneous self-consistent calculation of the electronic structure and the positron state. This is in principle possible in the two component density functional theory. However, the approximation, in which the electronic structure without the positron influence is used and the electron-positron correlation effects are described by local enhancement factors, has turned out to be feasible in practice and also accurate enough in predicting positron annihilation characteristics. Moreover, a non-self-consistent electron structure is sufficient in many cases. This enables an efficient calculation method in which the positron wave function can be solved in three dimensions for arbitrary defect geometries. Enhancement models for simple metals, transition metals, and semiconductors are represented. Thereafter, applications to vacancies, vacancy clusters, and vacancy-impurity complexes are shown. The positron trapping by defects is mediated by the transfer of the positron binding energy to the solid in the form of electron-hole pairs and phonons. The trapping phenomenon is discussed in the case of metals and semiconductors. Semiconductors are especially challenging because the existence of the energy gap makes the low energy electron-hole excitations impossible and because the defects have different charge states effecting strongly on the trapping rate. (author)

  19. Quantum Channeling Effects for 1 MeV Positrons

    International Nuclear Information System (INIS)

    Haakenaasen, R.; Vestergaard Hau, L.; Golovchenko, J.A.; Palathingal, J.C.; Peng, J.P.; Asoka-Kumar, P.; Lynn, K.G.

    1995-01-01

    A high resolution angular study of positrons transmitted through a thin single crystal of Si clearly reveals a detailed fine structure due to strong quantum channeling effects. The beam transmitted in the forward direction displays many features associated with dynamical diffraction effects and long coherence lengths. Calculations are presented showing that in flight annihilation of channeled positrons can serve as a solid state probe of electron and spin densities in thin crystals

  20. Realization of beam polarization at the linear collider and its application to EW processes

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Sollova, F.

    2006-07-15

    The use of beam polarization at the future ILC e{sup +}e{sup -} linear collider will benefit the physics program significantly. This thesis explores three aspects of beam polarization: the application of beam polarization to the study of electroweak processes, the precise measurement of the beam polarization, and finally, the production of polarized positrons at a test beam experiment. In the first part of the thesis the importance of beam polarization at the future ILC is exhibited: the benefits of employing transverse beam polarization (in both beams) for the measurement of triple gauge boson couplings (TGCs) in the W-pair production process are studied. The sensitivity to anomalous TGC values is compared for the cases of transverse and longitudinal beam polarization at a center of mass energy of 500 GeV. Due to the suppressed contribution of the t-channel {nu} exchange, the sensitivity is higher for longitudinal polarization. For some physics analyses the usual polarimetry techniques do not provide the required accuracy for the measurement of the beam polarization (around 0.25% with Compton polarimetry). The second part of the thesis deals with a complementary method to measure the beam polarization employing physics data acquired with two polarization modes. The process of single-W production is chosen due to its high cross section. The expected precision for 500 fb{sup -1} and W{yields}{mu}{nu} decays only, is {delta}P{sub e{sup -}}/P{sub e{sup -}}=0.26% and {delta}P{sub e{sup +}}/P{sub e{sup +}}=0.33%, which can be further improved by employing additional W-decay channels. The first results of an attempt to produce polarized positrons at the E-166 experiment are shown in the last part of the thesis. The E-166 experiment, located at the Final Focus Test Beam at SLAC's LINAC employs a helical undulator to induce the emission of circularly polarized gamma rays by the beam electrons. These gamma rays are converted into longitudinally polarized electron-positron