WorldWideScience

Sample records for positively charged gold

  1. Electron beam patterning for writing of positively charged gold colloidal nanoparticles

    Science.gov (United States)

    Zafri, Hadar; Azougi, Jonathan; Girshevitz, Olga; Zalevsky, Zeev; Zitoun, David

    2018-02-01

    Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68 ± 18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate. [Figure not available: see fulltext.

  2. Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells.

    Science.gov (United States)

    Yen, Hui-Ju; Young, Yen-An; Tsai, Tsung-Neng; Cheng, Kuang-Ming; Chen, Xin-An; Chen, Ying-Chuan; Chen, Cheng-Cheung; Young, Jenn-Jong; Hong, Po-da

    2018-03-01

    In this study, we synthesized various quaternary chitosan derivatives and used them to stabilize gold nanoparticles (AuNPs). These chitosan derivatives comprised N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), folate-HTCC, galactosyl-HTCC, and their fluorescein isothiocyanate-conjugated derivatives. Various positively surface-charged AuNPs were prepared under alkaline conditions using glucose as a reducing agent in the presence of the HTCC derivatives (HTCCs). The effects of the concentration of NaOH, glucose, and HTCCs on the particles size, zeta potential, and stability were studied in detail. Cell cycle assays verify that none of the HTCCs or HTCCs-AuNPs was cytotoxic to human umbilical vein endothelial cells. Flow cytometry analysis showed that the folate HTCC-AuNPs were internalized in Caco-2, HepG2, and HeLa cancer cells to a significantly greater extent than AuNPs without folate. But, galactosyl HTCC-AuNPs only showed high cell uptake by HepG2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  4. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-01-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  5. Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and L-cysteine film on an Au electrode

    International Nuclear Information System (INIS)

    Zhang Lingyan; Yuan Ruo; Chai Yaqing; Li Xuelian

    2007-01-01

    Positively charged gold nanoparticle (positively charged nano-Au), which was prepared, characterized by ξ-potential and transmission electron microscopy (TEM) was used in combination with L-cysteine to fabricate a modified electrode for electrocatalytic reaction of biomolecules. Compared with electrodes modified by negatively charged gold nanoparticle/L-cysteine, or L-cysteine alone, the electrode modified by the positively charged gold nanoparticle/L-cysteine exhibited excellent electrochemical behavior toward the oxidation of biomolecules such as ascorbic acid, dopamine and hydrogen peroxide. Moreover, the proposed mechanism for electrocatalytic response of positively charged gold nanoparticle was discussed. The immunosensor showed a specific to ascorbic acid in the range 5.1 x 10 -7 -6.7 x 10 -4 M and a low detection limit of 1.5 x 10 -7 M. The experimental results demonstrate that positively charged gold nanoparticle have more efficient electrocatalytic reaction than negatively charged gold nanoparticle, which opens up new approach for fabricating sensor

  6. Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles

    International Nuclear Information System (INIS)

    Xu, Jingyue; Li, Ying; Bie, Jiaxin; Guo, Jiajia; Luo, Yeli; Shen, Fei; Sun, Chunyan; Jiang, Wei

    2015-01-01

    A sensitive, specific and rapid colorimetric aptasensor for the determination of the plasticizer bisphenol A (BPA) was developed. It is based on the use of gold nanoparticles (AuNPs) that are positively charged due to the modification with cysteamine which is cationic at near-neutral pH values. If aptamers are added to such AuNPs, aggregation occurs due to electrostatic interactions between the negatively-charged aptamers and the positively-charged AuNPs. This results in a color change of the AuNPs from red to blue. If a sample containing BPA is added to the anti-BPA aptamers, the anti-BPA aptamers undergo folding via an induced-fit binding mechanism. This is accompanied by a conformational change, which prevents the aptamer-induced aggregation and color change of AuNPs. The effect was exploited to design a colorimetric assay for BPA. Under optimum conditions, the absorbance ratio of A 527 /A 680 is linearly proportional to the BPA concentration in the range from 35 to 140 ng∙mL −1 , with a detection limit of 0.11 ng∙mL −1 . The method has been successfully applied to the determination of BPA in spiked tap water and gave recoveries between 91 and 106 %. Data were in full accordance with results obtained from HPLC. This assay is selective, easily performed, and in our perception represents a promising alternative to existing methods for rapid quantification of BPA. (author)

  7. Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanospheres: a comparative study with gold nanorods

    Science.gov (United States)

    Pylaev, T. E.; Khanadeev, V. A.; Khlebtsov, B. N.; Dykman, L. A.; Bogatyrev, V. A.; Khlebtsov, N. G.

    2011-07-01

    We introduce a new genosensing approach employing CTAB (cetyltrimethylammonium bromide)-coated positively charged colloidal gold nanoparticles (GNPs) to detect target DNA sequences by using absorption spectroscopy and dynamic light scattering. The approach is compared with a previously reported method employing unmodified CTAB-coated gold nanorods (GNRs). Both approaches are based on the observation that whereas the addition of probe and target ssDNA to CTAB-coated particles results in particle aggregation, no aggregation is observed after addition of probe and nontarget DNA sequences. Our goal was to compare the feasibility and sensitivity of both methods. A 21-mer ssDNA from the human immunodeficiency virus type 1 HIV-1 U5 long terminal repeat (LTR) sequence and a 23-mer ssDNA from the Bacillus anthracis cryptic protein and protective antigen precursor (pagA) genes were used as ssDNA models. In the case of GNRs, unexpectedly, the colorimetric test failed with perfect cigar-like particles but could be performed with dumbbell and dog-bone rods. By contrast, our approach with cationic CTAB-coated GNPs is easy to implement and possesses excellent feasibility with retention of comparable sensitivity—a 0.1 nM concentration of target cDNA can be detected with the naked eye and 10 pM by dynamic light scattering (DLS) measurements. The specificity of our method is illustrated by successful DLS detection of one-three base mismatches in cDNA sequences for both DNA models. These results suggest that the cationic GNPs and DLS can be used for genosensing under optimal DNA hybridization conditions without any chemical modifications of the particle surface with ssDNA molecules and signal amplification. Finally, we discuss a more than two-three-order difference in the reported estimations of the detection sensitivity of colorimetric methods (0.1 to 10-100 pM) to show that the existing aggregation models are inconsistent with the detection limits of about 0.1-1 pM DNA and that

  8. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  9. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters.

    Science.gov (United States)

    Miao, Xiangmin; Cheng, Zhiyuan; Ma, Haiyan; Li, Zongbing; Xue, Ning; Wang, Po

    2018-01-16

    A novel strategy was developed for microRNA-155 (miRNA-155) detection based on the fluorescence quenching of positively charged gold nanoparticles [(+)AuNPs] to Ag nanoclusters (AgNCs). In the designed system, DNA-stabilized Ag nanoclusters (DNA/AgNCs) were introduced as fluorescent probes, and DNA-RNA heteroduplexes were formed upon the addition of target miRNA-155. Meanwhile, the (+)AuNPs could be electrostatically adsorbed on the negatively charged single-stranded DNA (ssDNA) or DNA-RNA heteroduplexes to quench the fluorescence signal. In the presence of duplex-specific nuclease (DSN), DNA-RNA heteroduplexes became a substrate for the enzymatic hydrolysis of the DNA strand to yield a fluorescence signal due to the diffusion of AgNCs away from (+)AuNPs. Under the optimal conditions, (+)AuNPs displayed very high quenching efficiency to AgNCs, which paved the way for ultrasensitive detection with a low detection limit of 33.4 fM. In particular, the present strategy demonstrated excellent specificity and selectivity toward the detection of target miRNA against control miRNAs, including mutated miRNA-155, miRNA-21, miRNA-141, let-7a, and miRNA-182. Moreover, the practical application value of the system was confirmed by the evaluation of the expression levels of miRNA-155 in clinical serum samples with satisfactory results, suggesting that the proposed sensing platform is promising for applications in disease diagnosis as well as the fundamental research of biochemistry.

  10. Adsorption of charged macromolecules at a gold electrode

    NARCIS (Netherlands)

    Kleijn, J.M.; Barten, D.; Cohen Stuart, M.A.

    2004-01-01

    Using an optical reflectometer with impinging-jet system, the adsorption from aqueous solution onto gold of three charged macromolecules has been studied: the strong linear-chain polyelectrolyte polyvinyl pyridine (PVP +), the fifth-generation poly(propylene imine) dendrimer DAB-64, which has a

  11. Influence of Structure and Charge State on the Mechanism of CO Oxidation on Gold Clusters

    Science.gov (United States)

    Johnson, Grant; Burgel, Christian; Reilly, Nelly; Mitric, Roland; Kimble, Michele; Tyo, Eric; Castleman, A. W.; Bonacic-Koutecky, Vlasta

    2008-05-01

    Gas-phase reactivity experiments and high level theoretical calculations have been employed to study the interaction of both positively and negatively charged gold oxide clusters with carbon monoxide (CO). We demonstrate that for negatively charged clusters CO is oxidized to CO2 by an Eley-Ridel-like (ER-) mechanism involving the attack of CO on oxygen rather than gold. In contrast, for positively charged clusters, the oxidation reaction may also occur by a Langmuir-Hinshelwood-like (LH-) mechanism involving the initial binding of CO to a gold atom followed by subsequent migration to an oxygen site. The LH mechanism is made possible through the large energy gain associated with the adsorption of two CO molecules onto cationic gold clusters. Structure-reactivity relationships are also established which demonstrate that terminally bound oxygen atoms are the most active sites for CO oxidation. Bridge bonded oxygen atoms and molecularly bound O2 units are shown to be inert. We also establish an inverse relationship between the binding energy of CO to gold clusters and the energy of the clusters lowest unoccupied molecular orbital (LUMO).

  12. Charge transfer in gold--alkali-metal systems

    International Nuclear Information System (INIS)

    Watson, R.E.; Weinert, M.

    1994-01-01

    Based on conventional electronegativity arguments, gold--alkali-metal compounds are expected to be among the most ''ionic'' of metallic compounds. The concepts of ionicity and charge transfer are difficult to quantify. However, the changes in bonding in the 50/50 Au--alkali-metal systems between the elemental metals and the compounds are so severe that observations can readily be made concerning their character. The results, as obtained from self-consistent electronic-structure calculations, lead to the apparently odd observation that the electron density at the alkali-metal sites in the compound increases significantly and this involves high l componennts in the charge density. This increase, however, can be attributed to Au-like orbitals spatially overlapping the alkali-metal sites. In a chemical sense, it is reasonable to consider the alkali-metal transferring charge to these Au orbitals. While normally the difference in heats of formation between muffin-tin and full-potential calculations for transition-metal--transition-metal and transition-metal--main-group (e.g., Al) compounds having high site symmetry are small, for the gold--alkali-metal systems, the changes in bonding in the compounds cause differences of ∼0.5 eV/atom between the two classes of potential. Any serious estimate of the electronic structure in these systems must account for these aspherical bonding charges. The origin of the semiconducting behavior of the heavy-alkali-metal Au compounds is shown to arise from a combination of the Au-Au separations and the ionic character of the compounds; the light-alkali-metal Au compounds, with their smaller Au-Au separations, do not have a semiconducting gap. Core-level shifts and isomer shifts are also briefly discussed

  13. The Effect of Voltage Charging on the Transport Properties of Gold Nanotube Membranes.

    Science.gov (United States)

    Experton, Juliette; Martin, Charles R

    2018-05-01

    Porous membranes are used in chemical separations and in many electrochemical processes and devices. Research on the transport properties of a unique class of porous membranes that contain monodisperse gold nanotubes traversing the entire membrane thickness is reviewed here. These gold nanotubes can act as conduits for ionic and molecular transports through the membrane. Because the tubes are electronically conductive, they can be electrochemically charged by applying a voltage to the membrane. How this "voltage charging" affects the transport properties of gold nanotube membranes is the subject of this Review. Experiments showing that voltage charging can be used to reversibly switch the membrane between ideally cation- and anion-transporting states are reviewed. Voltage charging can also be used to enhance the ionic conductivity of gold nanotube membranes. Finally, voltage charging to accomplish electroporation of living bacteria as they pass through gold nanotube membranes is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quinone-Enriched Gold Nanoparticles in Bioelectrochemistry and Charge Storage

    DEFF Research Database (Denmark)

    Wagner, Michal; Qvortrup, Katrine; Tanner, David Ackland

    for merging gold nanoparticles with resultant anthraquinones include one-pot microwave assisted synthesis or after-mixing of separately prepared gold nanoparticles with selected compounds. The quinone-enriched gold nanoparticles can be transferred onto different electrode surfaces, thus enabling facile...

  15. Influence of Surface Charge/Potential of a Gold Electrode on the Adsorptive/Desorptive Behaviour of Fibrinogen

    International Nuclear Information System (INIS)

    Dargahi, Mahdi; Konkov, Evgeny; Omanovic, Sasha

    2015-01-01

    Highlights: • Adsorptive/desorptive behavior of fibrinogen (FG) on an electrochemically-polarized gold substrate is reported. • The adsorption affinity of FG (afFG) is constant on a negatively-charged substrate surface. • The afFG increases linearly with an increase in positive substrate surface charge. • The FG adsorption kinetics is strongly dependant on substrate surface charge. • The adsorbed FG layer can be desorbed by electrochemical evolution of hydrogen and oxygen. - Abstract: The effect of gold substrate surface charge (potential) on adsorptive/desorptive behaviour of fibrinogen (FG) was studied by employing differential capacitance (DC) and polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), in terms of FG adsorption thermodynamics, kinetics, and desorption kinetics. The gold substrate surface charge was modulated in-situ within the electrochemical double-layer region by means of electrochemical potentiostatic polarization in a FG-containing electrolyte, thus avoiding the interference of other physico-chemical properties of the gold surface on FG’s interfacial behaviour. The FG adsorption equilibrium was modeled using the Langmuir isotherm. Highly negative values of apparent Gibbs free energy of adsorption (ranging from from −52.1 ± 0.4 to −55.8 ± 0.8 kJ mol −1 , depending on the FG adsorption potential) indicated a highly spontaneous and strong adsorption of FG onto the gold surface. The apparent Gibbs free energy of adsorption was found to be independent of surface charge when the surface was negatively charged. However, when the gold surface was positively charged, the apparent Gibbs free energy of adsorption exhibited a pronounced linear relationship with the surface charge, shifting to more negative values with an increase in positive electrode potential. The adsorption kinetics of FG was also found to be dependent on gold surface charge in a similar manner to the apparent Gibbs free energy of adsorption

  16. Merely Measuring the UV-Visible Spectrum of Gold Nanoparticles Can Change Their Charge State.

    Science.gov (United States)

    Navarrete, Jose; Siefe, Chris; Alcantar, Samuel; Belt, Michael; Stucky, Galen D; Moskovits, Martin

    2018-02-14

    Metallic nanostructures exhibit a strong plasmon resonance at a wavelength whose value is sensitive to the charge density in the nanostructure, its size, shape, interparticle coupling, and the dielectric properties of its surrounding medium. Here we use UV-visible transmission and reflectance spectroscopy to track the shifts of the plasmon resonance in an array of gold nanoparticles buried under metal-oxide layers of varying thickness produced using atomic layer deposition (ALD) and then coated with bulk layers of one of three metals: aluminum, silver, or gold. A significant shift in the plasmon resonance was observed and a precise value of ω p , the plasmon frequency of the gold comprising the nanoparticles, was determined by modeling the composite of gold nanoparticles and metal-oxide layer as an optically homogeneous film of core-shell particles bounded by two substrates: one of quartz and the other being one of the aforementioned metals, then using a Maxwell-Garnett effective medium expression to extract ω p for the gold nanoparticles before and after coating with the bulk metals. Under illumination, the change in the charge density of the gold nanoparticles per particle determined from the change in the values of ω p is found to be some 50-fold greater than what traditional electrostatic contact electrification models compute based on the work function difference of the two conductive materials. Moreover, when using bulk gold as the capping layer, which should have resulted in a negligible charge exchange between the gold nanoparticles and the bulk gold, a significant charge transfer from the bulk gold layer to the nanoparticles was observed as with the other metals. We explain these observations in terms of the "plasmoelectric effect", recently described by Atwater and co-workers, in which the gold nanoparticles modify their charge density to allow their resonant wavelength to match that of the incident light, thereby achieving, a lower value of the

  17. Formation of neutral and charged gold carbonyls on highly facetted gold nanostructures

    Science.gov (United States)

    Chau, Thoi-Dai; Visart de Bocarmé, Thierry; Kruse, Norbert; Wang, Richard L. C.; Kreuzer, Hans Jürgen

    2003-12-01

    We show that gold mono- and di-carbonyls are formed on gold field emitter tips during interaction with carbon monoxide gas at room temperature and in the presence of high electrostatic fields. The experiments are done in a time-of-flight atom probe to obtain mass spectra. The yield of monocarbonyl cations is about twice that of di-carbonyl ions. Density functional theory calculations are reported that explain the field stabilization of adsorbed carbonyls and the desorption yield of their cations.

  18. Selective determination of dopamine using quantum-sized gold nanoparticles protected with charge selective ligands

    Science.gov (United States)

    Kwak, Kyuju; Kumar, S. Senthil; Lee, Dongil

    2012-06-01

    We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid.We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the

  19. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-07

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  20. Radiation from Accelerating Electric Charges: The Third Derivative of Position

    Science.gov (United States)

    Butterworth, Edward

    2010-03-01

    While some textbooks appear to suggest that acceleration of an electric charge is both a necessary and sufficient cause for the generation of electromagnetic radiation, the question has in fact had an intricate and involved history. In particular, the acceleration of a charge in hyperbolic motion, the behavior of a charge supported against a gravitational force (and its implications for the Equivalence Principle), and a charge accelerated by a workless constraint have been the subject of repeated investigation. The present paper examines specifically the manner in which the third derivative of position enters into the equations of motion, and the implications this has for the emission of radiation. Plass opens his review article with the statement that ``A fundamental property of all charged particles is that electromagnetic energy is radiated whenever they are accelerated'' (Plass 1961; emphasis mine). His treatment of the equations of motion, however, emphasizes the importance of the occurrence of the third derivative of position therein, present in linear motion only when the rate of acceleration is increasing or decreasing. There appears to be general agreement that the presence of a nonzero third derivative indicates that this charge is radiating; but does its absence preclude radiation? This question leads back to the issues of charges accelerated by a uniform gravitational field. We will examine the equations of motion as presented in Fulton & Rohrlich (1960), Plass (1961), Barut (1964), Teitelboim (1970) and Mo & Papas (1971) in the light of more recent literature in an attempt to clarify this question.

  1. Positive, Neutral, and Negative Mass-Charges in General Relativity

    Directory of Open Access Journals (Sweden)

    Borissova L.

    2006-07-01

    Full Text Available As shown, any four-dimensional proper vector has two observable projections onto time line, attributed to our world and the mirror world (for a mass-bearing particle, the projections posses are attributed to positive and negative mass-charges. As predicted, there should be a class of neutrally mass-charged particles that inhabit neither our world nor the mirror world. Inside the space-time area (membrane the space rotates at the light speed, and all particles move at as well the light speed. So, the predicted particles of the neutrally mass-charged class should seem as light-like vortices.

  2. One-Step Synthesis of PEGylated Gold Nanoparticles with Tunable Surface Charge

    Directory of Open Access Journals (Sweden)

    Rares Stiufiuc

    2013-01-01

    Full Text Available The present work reports a rapid, simple and efficient one-step synthesis and detailed characterisation of stable aqueous colloids of gold nanoparticles (AuNPs coated with unmodified poly(ethyleneglycol (PEG molecules of different molecular weights and surface charges. By mixing and heating aqueous solutions of PEG with variable molecular chain and gold(III chloride hydrate (HAuCl4 in the presence of NaOH, we have successfully produced uniform colloidal 5 nm PEG coated AuNPs of spherical shape with tunable surface charge and an average diameter of 30 nm within a few minutes. It has been found out that PEGylated AuNPs provide optical enhancement of the characteristic vibrational bands of PEG molecules attached to the gold surface when they are excited with both visible (532 nm and NIR (785 nm laser lines. The surface enhanced Raman scattering (SERS signal does not depend on the length of the PEG molecular chain enveloping the AuNPs, and the stability of the colloid is not affected by the addition of concentrated salt solution (0.1 M NaCl, thus suggesting their potential use for in vitro and in vivo applications. Moreover, by gradually changing the chain length of the biopolymer, we were able to control nanoparticles’ surface charge from −28 to −2 mV, without any modification of the Raman enhancement properties and of the colloidal stability.

  3. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy

    Directory of Open Access Journals (Sweden)

    Wang JY

    2016-07-01

    Full Text Available Jun-Ying Wang,1 Jie Chen,1 Jiang Yang,2 Hao Wang,1 Xiu Shen,1 Yuan-Ming Sun,1 Meili Guo,3 Xiao-Dong Zhang4 1Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 2Environment, Energy and Natural Resources Center, Department of Environmental Science and Engineering, Fudan University, Shanghai, 3Department of Physics, School of Science, Tianjin Chengjian University, 4Department of Physics, School of Science, Tianjin University, Tianjin, People’s Republic of China Abstract: Gold nanoclusters (Au NCs have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system. Keywords: gold clusters, in vivo toxicity, long-term, cancer therapy

  4. Position Reconstruction and Charge Distribution in LHCb VELO Silicon Sensors

    CERN Document Server

    Versloot, TW; Akiba, K; Artuso, M; Van Beuzekom, M; Borel, J; Bowcock, TJV; Buytaert, J; Collins, P; Dumps, R; Dwyer, L; Eckstein, D; Eklund, L; Ferro-Luzzi, M; Frei, R; Gersabek M; Haefeli, G; Hennessy, K; Huse, T; Jans, E; John, M; Ketel, TJ; Keune, A; Lastoviicka, T; Mountain, R; Neufeld, N; Parkes, C; Stone, S; Szumlak, T; Tobin, M; Van Lysebetten, A; Viret, S; De Vries, H; Wang, J

    2007-01-01

    In 2006, a partially equipped LHCb VELO detector half was characterised in a test beam experiment (Alignment Challenge and Detector Commissioning, ACDC3). The position reconstruction and resolution for 2-strip R-sensor clusters was studied as a function of strip pitch and track inclination on the sensor surface. The Charge Density Distribution (CDD) is derived from the weighted charge distribution. It becomes asymmetric for tracks non-perpendicular to the strip surface. It is shown that the asymmetric broadening of the CDD around the track intercept position results in a linear eta-function at higher angles (>6 degrees). The sensor spatial resolution is determined both using a linear weighted mean of strip charges, as well as a third-order polynomial approximation via a eta-correction. The experimental results are in agreement with previous simulations. Future studies are underway to determine the angle and pitch dependent parameters which will be implemented in the LHCb VELO cluster position software tools.

  5. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.

    Science.gov (United States)

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2013-02-01

    Oppan quantized style: By adding a gold precursor at its cathode, a microbial fuel cell (MFC) is demonstrated to form gold nanoparticles that can be used to simultaneously produce bioelectricity and hydrogen. By exploiting the quantized capacitance charging effect, the gold nanoparticles mediate the production of hydrogen without requiring an external power supply, while the MFC produces a stable power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Method and apparatus for positioning a beam of charged particles

    International Nuclear Information System (INIS)

    Michail, M.S.; Woodard, O.C.; Yourke, H.S.

    1975-01-01

    A beam of charged particles is stepped from one predetermined position to another to form a desired pattern on a semiconductor wafer. There is a dynamic correction for the deviation of the actual position of the beam from its predetermined position, so that the beam is applied to the deviated position rather than the predetermined position. Through the location of four registration marks, the writing field is precisely defined. Writing fields may be interconnected by the sharing of registration marks, enabling the construction of chips which are larger than a single writing field. (auth)

  7. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

    Directory of Open Access Journals (Sweden)

    Dickson Joseph

    2014-09-01

    Full Text Available The biocompatibility and ease of functionalization of gold nanoparticles underlie significant potential in biotechnology and biomedicine. Eight different proteins were examined in the preparation of gold nanoparticles (AuNPs in aqueous medium under microwave irradiation. Six of the proteins resulted in the formation of AuNPs. The intrinsic pH of the proteins played an important role in AuNPs with strong surface plasmon bands. The hydrodynamic size of the nanoparticles was larger than the values observed by TEM and ImageJ. The formation of a protein layer on the AuNPs accounts for this difference. The AuNPs exhibited sensitivity towards varying pH conditions, which was confirmed by determining the difference in the isoelectric points studied by using pH-dependent zeta potential titration. Cytotoxicity studies revealed anticancerous effects of the AuNPs at a certain micromolar concentration by constraining the growth of cancer cells with different efficacies due to the use of different proteins as capping agents. The positively charged AuNPs are internalized by the cells to a greater level than the negatively charged AuNPs. These AuNPs synthesized with protein coating holds promise as anticancer agents and would help in providing a new paradigm in area of nanoparticles.

  8. Formation of supported lipid bilayers of charged E. coli lipids on modified gold by vesicle fusion

    Directory of Open Access Journals (Sweden)

    Ileana F. Márquez

    2017-01-01

    Full Text Available We describe a simple way of fusing E. coli lipid vesicles onto a gold surface. Supported lipid bilayers on metal surfaces are interesting for several reasons: transducing a biological signal to an electric readout, using surface analytical tools such as Surface Plasmon Resonance (SPR, Infrared Reflection Absorption Spectroscopy, Neutron Reflectivity or Electrochemistry. The most widely used method to prepare supported lipid membranes is fusion of preexisting liposomes. It is quite efficient on hydrophilic surfaces such as glass, mica or SiO2, but vesicle fusion on metals and metal oxide surfaces (as gold, titanium oxide or indium tin oxide, remains a challenge, particularly for vesicles containing charged lipids, as is the case of bacterial lipids. We describe a simple method based on modifying the gold surface with a charged mercaptopropionic acid self-assembled monolayer and liposomes partially solubilized with detergent. The formed bilayers were characterized using a Quartz Crystal Microbalance with dissipation (QCM-D and Atomic Force Microscopy (AFM. Some advantages of this protocol are that the stability of the self-assembled monolayer allows for repeated use of the substrate after detergent removal of the bilayer and that the amount of detergent required for optimal fusion can be determined previously using the lipid-detergent solubility curve.

  9. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    International Nuclear Information System (INIS)

    Rana, Aniket; Lochan, Abhiram; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.; Gupta, Neeraj; Sharma, G. D.

    2016-01-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  10. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    Science.gov (United States)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  11. Charging and heat collection by a positively charged dust grain in a plasma.

    Science.gov (United States)

    Delzanno, Gian Luca; Tang, Xian-Zhu

    2014-07-18

    Dust particulates immersed in a quasineutral plasma can emit electrons in several important applications. Once electron emission becomes strong enough, the dust enters the positively charged regime where the conventional orbital-motion-limited (OML) theory can break down due to potential-well effects on trapped electrons. A minimal modification of the trapped-passing boundary approximation in the so-called OML(+) approach is shown to accurately predict the dust charge and heat collection flux for a wide range of dust size and temperature.

  12. Small interfering RNA delivery through positively charged polymer nanoparticles

    International Nuclear Information System (INIS)

    Dragoni, Luca; Cesana, Alberto; Moscatelli, Davide; Ferrari, Raffaele; Morbidelli, Massimo; Lupi, Monica; Falcetta, Francesca; Ubezio, Paolo; D’Incalci, Maurizio

    2016-01-01

    Small interfering RNA (siRNA) is receiving increasing attention with regard to the treatment of many genetic diseases, both acquired and hereditary, such as cancer and diabetes. Being a high molecular weight (MW) polyanion, siRNA is not able to cross a cell membrane, and in addition it is unstable in physiological conditions. Accordingly, a biocompatible nanocarrier able to deliver siRNA into cells is needed. In this work, we synthesized biocompatible positively charged nanoparticles (NPs) following a two-step process that involves ring opening polymerization (ROP) and emulsion free radical polymerization (EFRP). Firstly, we proved the possibility of fine tuning the NPs’ characteristics (e.g. size and surface charge) by changing the synthetic process parameters. Then the capability in loading and delivering undamaged siRNA into a cancer cell cytoplasm has been shown. This latter process occurs through the biodegradation of the polymer constituting the NPs, whose kinetics can be tuned by adjusting the polymer’s MW. Finally, the ability of NPs to carry siRNA inside the cells in order to inhibit their target gene has been demonstrated using green flourescent protein positive cells. (paper)

  13. Positively charged phosphorus as a hydrogen bond acceptor

    DEFF Research Database (Denmark)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik Grum

    2014-01-01

    Phosphorus (P) is an element that is essential to the life of all organisms, and the atmospheric detection of phosphine suggests the existence of a volatile biogeochemical P cycle. Here, we investigate the ability of P to participate in the formation of OH···P hydrogen bonds. Three bimolecular......-stretching frequency red shifts and quantum chemical calculations, we find that P is an acceptor atom similar in strength to O and S and that all three P, O, and S atoms are weaker acceptors than N. The quantum chemical calculations show that both H and P in the OH···P hydrogen bond have partial positive charges......, as expected from their electronegativities. However, the electrostatic potentials show a negative potential area on the electron density surface around P that facilitates formation of hydrogen bonds....

  14. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    International Nuclear Information System (INIS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-01-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  15. Charge reversible gold nanoparticles for high efficient absorption and desorption of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Wang Can; Zhuang Jiaqi; Jiang Shan; Li Jun; Yang Wensheng, E-mail: wsyang@jlu.edu.cn [Jilin University, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry (China)

    2012-10-15

    Mercaptoundecylamine and mercaptoundecanoic acid co-modified Au nanoparticles were prepared by two-step ligand exchange of 6-mercaptohexanoic acid modified gold nanoparticles. Such particles terminated by appropriate ratios of the amine and carboxyl groups (R{sub N/C}) were identified to show reversible charge on their surface, which were switchable by pH of the solution. The isoelectric point (IEP) of the particles is tunable by changing the ratios of the amine and carboxyl groups on the particle surfaces. The particles can absorb DNA effectively at pH lower than the IEP driven by the direct electrostatic interactions between DNA and the particle surface. When pH of the solutions was elevated to be higher than the IEP, the absorbed DNA can be released almost completely due to the electrostatic repulsion between the particle surface and DNA. With appropriate R{sub N/C} ratios of 0.8, the absorption and desorption efficiencies of DNA were 97 and 98%, respectively, corresponding an extraction efficiency of 95 %. Such particles with reversible surface charges allow the high efficient extraction of DNA by simply changing pH instead of by changing salt concentration in the conventional salt bridge method.Graphical Abstract.

  16. Effect of a Dual Charge on the DNA-Conjugated Redox Probe on DNA Sensing by Short Hairpin Beacons Tethered to Gold Electrodes.

    Science.gov (United States)

    Kékedy-Nagy, László; Shipovskov, Stepan; Ferapontova, Elena E

    2016-08-16

    Charges of redox species can critically affect both the interfacial state of DNA and electrochemistry of DNA-conjugated redox labels and, as a result, the electroanalytical performance of those systems. Here, we show that the kinetics of electron transfer (ET) between the gold electrode and methylene blue (MB) label conjugated to a double-stranded (ds) DNA tethered to gold strongly depend on the charge of the MB molecule, and that affects the performance of genosensors exploiting MB-labeled hairpin DNA beacons. Positively charged MB binds to dsDNA via electrostatic and intercalative/groove binding, and this binding allows the DNA-mediated electrochemistry of MB intercalated into the duplex and, as a result, a complex mode of the electrochemical signal change upon hairpin hybridization to the target DNA, dominated by the "on-off" signal change mode at nanomolar levels of the analyzed DNA. When MB bears an additional carboxylic group, the negative charge provided by this group prevents intimate interactions between MB and DNA, and then the ET in duplexes is limited by the diffusion of the MB-conjugated dsDNA (the phenomenon first shown in Farjami , E. ; Clima , L. ; Gothelf , K. ; Ferapontova , E. E. Anal. Chem. 2011 , 83 , 1594 ) providing the robust "off-on" nanomolar DNA sensing. Those results can be extended to other intercalating redox probes and are of strategic importance for design and development of electrochemical hybridization sensors exploiting DNA nanoswitchable architectures.

  17. Single-step electron transfer on the nanometer scale: ultra-fast charge shift in strongly coupled zinc porphyrin-gold porphyrin dyads.

    Science.gov (United States)

    Fortage, Jérôme; Boixel, Julien; Blart, Errol; Hammarström, Leif; Becker, Hans Christian; Odobel, Fabrice

    2008-01-01

    The synthesis, electrochemical properties, and photoinduced electron transfer processes of a series of three novel zinc(II)-gold(III) bisporphyrin dyads (ZnP--S--AuP(+)) are described. The systems studied consist of two trisaryl porphyrins connected directly in the meso position via an alkyne unit to tert-(phenylenethynylene) or penta(phenylenethynylene) spacers. In these dyads, the estimated center to center interporphyrin separation distance varies from 32 to 45 A. The absorption, emission, and electrochemical data indicate that there are strong electronic interactions between the linked elements, thanks to the direct attachment of the spacer on the porphyrin ring through the alkyne unit. At room temperature in toluene, light excitation of the zinc porphyrin results in almost quantitative formation of the charge shifted state (.+)ZnP--S--AuP(.), whose lifetime is in the order of hundreds of picoseconds. In this solvent, the charge-separated state decays to the ground state through the intermediate population of the zinc porphyrin triplet excited state. Excitation of the gold porphyrin leads instead to rapid energy transfer to the triplet ZnP. In dichloromethane the charge shift reactions are even faster, with time constants down to 2 ps, and may be induced also by excitation of the gold porphyrin. In this latter solvent, the longest charge-shifted lifetime (tau=2.3 ns) was obtained with the penta-(phenylenethynylene) spacer. The charge shift reactions are discussed in terms of bridge-mediated super-exchange mechanisms as electron or hole transfer. These new bis-porphyrin arrays, with strong electronic coupling, represent interesting molecular systems in which extremely fast and efficient long-range photoinduced charge shift occurs over a long distance. The rate constants are two to three orders of magnitude larger than for corresponding ZnP--AuP(+) dyads linked via meso-phenyl groups to oligo-phenyleneethynylene spacers. This study demonstrates the critical

  18. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...... MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days....

  19. Interaction of Melittin with Negatively Charged Lipid Bilayers Supported on Gold Electrodes

    International Nuclear Information System (INIS)

    Juhaniewicz, Joanna; Sek, Slawomir

    2016-01-01

    ABSTRACT: The interactions of melittin, a cationic antimicrobial peptide, with model lipid membranes consisting of negatively charged phospholipids: 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) or 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS) were investigated using electrochemical techniques and atomic force microscopy. Lipid bilayers were deposited on gold electrodes using a combination of Langmuir-Blodgett and Langmuir-Schaefer methods and the resulting membranes established a barrier for electron transfer between the electrode and the redox probe in the solution. After exposure to melittin, the blocking properties of the membranes were monitored using cyclic voltammetry and electrochemical impedance spectroscopy. It was observed that after treatment with peptide, the charge transfer through lipid bilayer is initially strongly inhibited. However, after longer exposure to melittin, the structure of the lipid film becomes less compact and the electrode reactions are facilitated due to the presence of numerous defect sites exposing bare substrate. We have assumed that such behavior reflects initial adsorption of melittin on top of the membrane and its further insertion which leads to formation of the pores or partial micellization of the lipid film. AFM imaging revealed that the exposure to 10 μM melittin solution induces significant structural changes in DMPG and DMPS membranes. However, melittin seems to affect their organization in a different manner. DMPG film appears to be more susceptible to peptide action compared with DMPS bilayer. In the latter case, long-time exposure to melittin does not result in the rupture of the membrane but rather leads to formation of pore-like defects. This observation is explained in terms of different nanomechanical properties of DMPG and DMPS films and different barrier for the reorientation and insertion of the peptide molecules into the membranes.

  20. Charge dividing mechanism in position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Rehak, P.

    1978-01-01

    A complete charge-division mechanism, including both the diffusion and the electromagnetic wave propagation on resistive electrodes, is presented. The charge injected into such a transmission line divides between the two ends according to the ratio of resistances and independently of the value of the line resistance, of the propagation mechanism and of the distribution of inductance and capacitance along the line. The shortest charge division time is achieved for Rl = 2π (L/C)/sup 1/2), where R, L, C are resistance, inductance and capacitance per unit length and l is the length of the line

  1. The charge spectrum of positive ions in a hydrogen aurora

    Science.gov (United States)

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  2. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Ganesh Kumar, V.; Stalin Dhas, T.; Karthick, V. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Singaravelu, G. [Nanoscience Division, Department of Zoology, Thiruvalluvar University, Vellore 632115 (India); Elanchezhiyan, M. [Department of Microbiology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113 (India)

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet–visible (UV–vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ∼ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus. - Highlights: • Size controlled synthesis of gold nanoparticles from blue green alga Spirulina platensis • Stability of gold nanoparticles at different temperatures • Potent antibacterial efficacy against Gram positive organisms.

  3. Photoinduced charge and energy transfer in phthalocyanine-functionalized gold nanoparticles

    NARCIS (Netherlands)

    Kotiaho, Anne; Lahtinen, Riikka; Efimov, Alexander; Metsberg, Hanna Kaisa; Sariola, Essi; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge

    2010-01-01

    Photoinduced processes in phthalocyanine-functionalized gold nanoparticles (Pc-AuNPs) have been investigated by spectroscopic measurements. The metal-free phthalocyanines used have two linkers with thioacetate groups for bonding to the gold nanoparticle surface, and the attachment was achieved using

  4. Self-charging of 198Au-labeled monodisperse gold aerosols studied with a miniature electrical mobility spectrometer

    International Nuclear Information System (INIS)

    Yeh, H.C.; Newton, G.J.; Raabe, O.G.; Boor, D.R.

    1976-01-01

    Knowledge of the electrostatic character of an aerosol may be essential in assessing its potential inhalation hazard. In inhalation studies with radioactive aerosols, the aerosol charge state may change in the course of transport due to the emission of α, β or γ radiations. This paper describes an experimental study of the self-charging of 198 Au-labeled aerosols of monodisperse gold spheres by β emission. A miniature aerosol electrical mobility spectrometer, suitable for use in inhalation studies with radioactive aerosols, was developed and used in this study. This device is relatively inexpensive, easy to manufacture and its contamination by radioactive material has been minimized. Using polystyrene latex spheres, ranging in diameter from 0.176 to 1.18 μm, the spectrometer was calibrated with flow rates ranging from 400 to 4800 ml/min. Experiments with two sizes of 198 Au-labeled monodisperse gold aerosols were performed. Results indicate that the radioactivity of an aerosol can cause self-charging and affect the charge distribution. (author)

  5. CoPc and CoPcF16 on gold: Site-specific charge-transfer processes

    Directory of Open Access Journals (Sweden)

    Fotini Petraki

    2014-04-01

    Full Text Available Interface properties of cobalt(II phthalocyanine (CoPc and cobalt(II hexadecafluoro-phthalocyanine (CoPcF16 to gold are investigated by photo-excited electron spectroscopies (X-ray photoemission spectroscopy (XPS, ultraviolet photoemission spectroscopy (UPS and X-ray excited Auger electron spectroscopy (XAES. It is shown that a bidirectional charge transfer determines the interface energetics for CoPc and CoPcF16 on Au. Combined XPS and XAES measurements allow for the separation of chemical shifts based on different local charges at the considered atom caused by polarization effects. This facilitates a detailed discussion of energetic shifts of core level spectra. The data allow the discussion of site-specific charge-transfer processes.

  6. Charge exchange studies with Gold ions at the Brookhaven Booster and AGS

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Hseuh, H.C.; Roser, T.

    1994-01-01

    Efficient acceleration of Gold ions to ll GeV/nucleon places strong constraints on the vacuum and also on the choice of thickness and material of the necessary stripping foils. Results of a number of detailed experimental studies performed with the Gold beam at the Brookhaven Booster and AGS to determine the relevant electron stripping and pick-up probabilities are presented. Of particular interest is the lifetime of the relatively low energy, partially stripped Gold beam in the Booster and the stripping efficiency to Helium-like AU +77 for injection into the AGS

  7. Study of correlations of positive and negative charged particles

    International Nuclear Information System (INIS)

    Takahashi, Y.; Chan, C.H.; Dong, B.L.; Duthie, J.G.; Gregory, J.C.; Hayashi, T.; Yokomi, H.; Christl, M.J.; Derrickson, J.H.; Eby, P.B.; Fountain, W.F.; Parnell, T.A.; Roberts, F.E.; Nagamiya, S.; Dake, S.; Tominaga, T.; Fuki, M.; Iyono, A.; Ogata, T.; Miyamura, O.

    1991-01-01

    Particle correlations of the central collision events of 32 S + Pb at 200 GeV/AMU have been studied by utilizing a Magnetic-Interferomagnetic-Emulsion-Chamber (MAGIC) detector. Particle angles, momentum, and charge-signs are measured for all produced charged tracks for each event. Two-particle correlation functions, C 2 = dN (vertical strokep 1 - p 2 vertical stroke = q)/dp 1 dp 2 , for (++), (--) and (+-) particles are examined. A source radius around 4 - 6 fm is observed for overall identical particle correlations, while unexpected short-range correlations of unlike-sign pairs are observed in the high rapidity region. An analysis of unlike-sign pairs in terms of resonance decays indicated that a large amount (40% relative to pions) of η or ω mesons (decaying into 3 π), or of scalar iso-scalar σ mesons (decaying into 2 π) would be required to explain some of the data. Multi-particle charge-sign clusters are recognized; however, their 'run-test' and 'conjugate-test' show small deviations from statistical fluctuations. (orig.)

  8. Macrocluster desorption effect caused by single MCI: charges of gold clusters (2-20 nm) desorbed due to electronic processes induced by fission fragment bombardment in nanodispersed gold targets

    International Nuclear Information System (INIS)

    Baranov, I.; Jarmiychuk, S.; Kirillov, S.; Novikov, A.; Obnorskii, V.; Pchelintsev, A.; Wien, K.; Reimann, C.

    1999-01-01

    In this work the charge state of the negatively charged gold nanocluster ions (2-20 nm) that were desorbed from nanodispersed gold islet targets by 252 Cf fission fragments via electronic processes is studied. Mean cluster charge was calculated as a ratio of mean cluster mass to mean mass-to-charge ratio . Cluster masses were measured by means of a collector technique employing transmission electron microscopy and scanning force microscopy, while m/q was measured by means of a tandem TOF-spectrometer. It is shown that the nanocluster ions are mostly multiply charged (2-16e) and the charge increases non-linearly with the cluster size. The results are discussed

  9. Study of position resolution for cathode readout MWPC with measurement of induced charge distribution

    International Nuclear Information System (INIS)

    Chiba, J.; Iwasaki, H.; Kageyama, T.; Kuribayashi, S.; Nakamura, K.; Sumiyoshi, T.; Takeda, T.

    1983-01-01

    A readout technqiue of multiwire proportional chambers by measurement of charges induced on cathode strips, orthogonal to anode wires, requires an algorithm to relate the measured charge distribution to the avalanche position. With given chamber parameters and under the influence of noise, resolution limits depend on the chosen algorithm. We have studied the position resolution obtained by the centroid method and by the charge-ratio method, both using three consecutive cathode strips. While the centroid method uses a single number, the center of gravity of the measured charges, the charge-ratio method uses the ratios of the charges Qsub(i-1)/Qsub(i) and Qsub(i+1)/Qsub(i) where Qsub(i) is the largest. To obtain a given resolution, the charge-ratio method generally allows wider cathode strips and therefore a smaller number of readout channels than the centroid method. (orig.)

  10. Adsorption of cations onto positively charged surface mesopores.

    Science.gov (United States)

    Neue, Uwe; Iraneta, Pamela; Gritti, Fabrice; Guiochon, Georges

    2013-11-29

    Uwe Neue developed a theoretical treatment to account for the adsorption of ions on mesopores of packing materials the walls of which are bonded to ionic ligands but left this work unfinished. We elaborated upon this treatment and refined it, based on the equivalence that he suggested between charged surface particles and a membrane that separates two ionic solutions but is impermeable to one specification. He had written that the electro-chemical potentials in both ionic solutions are equal (Donnan equilibrium). The equilibrium between the surface and the pore concentrations is accounted for by an homogeneous electrostatically modified Langmuir (EML) isotherm model. The theoretical results are presented for four different charge surface concentrations σ0=0, 0.001, 0.002, and 0.003C/m(2), using a phosphate buffer (W(S)pH=2.65) of ionic strength I=10mM. The average pore size, the specific surface area, and the specific pore volume of the stationary phase were Dp=140Å, Sp=182m(2)/g, and Vp=0.70cm(3)/g, respectively. The theoretical results provide the quantitative difference between the ionic strength, the pH, and the concentrations of all the ions in the pores and in the bulk eluent. The theory predicts (1) that the retention times of cations under linear conditions is lower and (2) that their band widths under overloaded conditions for a given retention factor shrinks when the surface charge density σ0 is increased. These theoretical results are in good agreement with experimental results published previously and explain them. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Conductive scanning probe microscopy of the semicontinuous gold film and its SERS enhancement toward two-step photo-induced charge transfer and effect of the supportive layer

    Science.gov (United States)

    Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.

    2018-05-01

    The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.

  12. Charge correlations in the breakup of gold projectiles in reactions at E/A=600 MeV

    International Nuclear Information System (INIS)

    Kreutz, P.

    1992-09-01

    In the present thesis the charge correlations in the breakup of gold projectiles in heavy ion collisions at an incident energy of E/A=600 MeV were studied. Thereby it has been proved that the sum of the charges from the projectile source under exclusion of the protons (Z bound ) is saliently suited for the classification of the nuclear reactions. At large values of Z bound we fins fission and spallation reactions. For smaller values of Z bound we observe events with an increasing number of medium-heavy fragments. Thereby the multifragment events appear in the Dalitz diagrams as a continuation of more symmetric becoming spallation events. In reactions with Z bound ≅ 35 the conditions for the formation of medium-heavy fragments are optimal and the multifragment events represent the dominating exit channel. A mean multiplicity of the medium-heavy fragments of ≅ 4 is reached. (orig./HSI) [de

  13. Catalytic enhancement of gold nanocages induced by undercoordination-charge-polarization

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-05-01

    Full Text Available Principle behind the highest catalytic ability of the least coordinated gold remains a puzzle. With the aid of density functional theory calculations, we show that in 3-coordinated gold cages (i the Au–Au bond contracts by ∼5% in average, (ii the valance density-of-states shift up to Fermi level when the Au55 cluster turns into an Au12 cage, and (iii the activation energy for CO oxidation drops in sequence, Au55 cluster (13.6 Kcal/mol, Au42 cage (8.0 Kcal/mol, Au13(6.5 Kcal/mol, and Au12 cage (5.1 Kcal/mol, with comparing the reaction paths and spin states. The principle clarified here paves the way for the design of gold nanocatalyst.

  14. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    Science.gov (United States)

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  15. Manganese–gold nanoparticles as an MRI positive contrast agent in mesenchymal stem cell labeling

    International Nuclear Information System (INIS)

    Hunyadi Murph, Simona E.; Jacobs, Stephanie; Liu Jimei; Hu, Tom C.-C.; Siegfired, Matthew; Serkiz, Steven M.; Hudson, Joan

    2012-01-01

    We report a straightforward approach to prepare multifunctional manganese–gold nanoparticles by attaching Mn(II) ions onto the surface of 20 nm citrate-capped gold nanoparticles. In vitro MRI measurements made in agarose gel phantoms exhibited high relaxivity (18.26 ± 1.04 mmol −1 s −1 ). Controlled incubation of the nanoparticles with mesenchymal stem cells (MSCs) was used to study cellular uptake of these particles and this process appeared to be controlled by the size of the nanoparticle aggregates in the extracellular solution. SEM images of live MSCs showed an increased concentration of particles near the cell membrane and a distribution of the size of particles within the cells. Survivability for MSCs in contact with Mn–Au NPs was greater than 97% over the 3-day period and up to the 1 mM Mn used in this study. The high relaxivity and low cell mortality are suggestive of an enhanced positive contrast agent for in vitro or in vivo applications.

  16. Energy distribution extraction of negative charges responsible for positive bias temperature instability

    International Nuclear Information System (INIS)

    Ren Shang-Qing; Yang Hong; Wang Wen-Wu; Tang Bo; Tang Zhao-Yun; Wang Xiao-Lei; Xu Hao; Luo Wei-Chun; Zhao Chao; Yan Jiang; Chen Da-Peng; Ye Tian-Chun

    2015-01-01

    A new method is proposed to extract the energy distribution of negative charges, which results from electron trapping by traps in the gate stack of nMOSFET during positive bias temperature instability (PBTI) stress based on the recovery measurement. In our case, the extracted energy distribution of negative charges shows an obvious dependence on energy, and the energy level of the largest energy density of negative charges is 0.01 eV above the conduction band of silicon. The charge energy distribution below that energy level shows strong dependence on the stress voltage. (paper)

  17. Charge-transfer state and large first hyperpolarizability constant in a highly electronically coupled zinc and gold porphyrin dyad.

    Science.gov (United States)

    Fortage, Jérôme; Scarpaci, Annabelle; Viau, Lydie; Pellegrin, Yann; Blart, Errol; Falkenström, Magnus; Hammarström, Leif; Asselberghs, Inge; Kellens, Ruben; Libaers, Wim; Clays, Koen; Eng, Mattias P; Odobel, Fabrice

    2009-09-14

    We report the synthesis and the characterizations of a novel dyad composed of a zinc porphyrin (ZnP) linked to a gold porphyrin (AuP) through an ethynyl spacer. The UV/Vis absorption spectrum and the electrochemical properties clearly reveal that this dyad exhibits a strong electronic coupling in the ground state as evidenced by shifted redox potentials and the appearance of an intense charge-transfer band localized at lambda = 739 nm in dichloromethane. A spectroelectrochemical study of the dyad along with the parent homometallic system (i.e., ZnP-ZnP and AuP-AuP) was undertaken to determine the spectra of the reduced and oxidized porphyrin units. Femtosecond transient absorption spectroscopic analysis showed that the photoexcitation of the heterometallic dyad leads to an ultrafast formation of a charge-separated state ((+)ZnP-AuP(*)) that displays a particularly long lifetime (tau = 4 ns in toluene) for such a short separation distance. The molecular orbitals of the dyad were determined by DFT quantum-chemical calculations. This theoretical study confirms that the observed intense band at lambda = 739 nm corresponds to an interporphyrin charge-transfer transition from the HOMO orbital localized on the zinc porphyrin to LUMO orbitals localized on the gold porphyrin. Finally, a Hyper-Rayleigh scattering study shows that the dyad possesses a large first molecular hyperpolarizability coefficient (beta = 2100x10(-30) esu at lambda = 1064 nm), thus highlighting the valuable nonlinear optical properties of this new type of push-pull porphyrin system.

  18. Two-dimensional position sensitive silicon photodiode as a charged particle detector

    International Nuclear Information System (INIS)

    Kovacevic, K.; Zadro, M.

    1999-01-01

    A two-dimensional position sensitive silicon photodiode has been tested for measurement of position and energy of charged particles. Position nonlinearity and resolution, as well as energy resolution and ballistic deficit were measured for 5.486 MeV α-particles. The results obtained for different pulse shaping time constants are presented

  19. 2D position sensitive microstrip sensors with charge division along the strip Studies on the position measurement error

    CERN Document Server

    Bassignana, D; Fernandez, M; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I; Vitorero, F

    2013-01-01

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proofof-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphasis ...

  20. Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging

    International Nuclear Information System (INIS)

    Schallenkamp, John M.; Herman, Michael G.; Kruse, Jon J.; Pisansky, Thomas M.

    2005-01-01

    Purpose: To describe the relative positions and motions of the prostate, pelvic bony anatomy, and intraprostatic gold fiducial markers during daily electronic portal localization of the prostate. Methods and Materials: Twenty prostate cancer patients were treated supine with definitive external radiotherapy according to an on-line target localization protocol using three or four intraprostatic gold fiducial markers and an electronic portal imaging device. Daily pretherapy and through-treatment electronic portal images (EPIs) were obtained for each of four treatment fields. The patients' pelvic bony anatomy, intraprostatic gold markers, and a best visual match to the target (i.e., prostate) were identified on simulation digitally reconstructed radiographs and during daily treatment setup and delivery. These data provided quantitative inter- and intrafractional analysis of prostate motion, its position relative to the bony anatomy, and the individual intraprostatic fiducial markers. Treatment planning margins, with and without on-line localization, were subsequently compared. Results: A total of 22,266 data points were obtained from daily pretherapy and through-treatment EPIs. The pretherapy three-dimensional (3D) average displacement of the fiducial markers, as a surrogate for the prostate, was 5.6 mm, which improved to 2.8 mm after use of the localization protocol. The bony anatomy 3D average displacement was 4.4 mm both before and after localization to the prostate (p = 0.46). Along the superior-inferior (SI), anterior-posterior (AP), and right-left (RL) axes, the average prostate displacement improved from 2.5, 3.7, and 1.9 mm, respectively, before localization to 1.4, 1.6, and 1.1 mm after (all p < 0.001). The pretherapy to through-treatment position of the bony landmarks worsened from 1.7 to 2.5 mm (p < 0.001) in the SI axis, remained statistically unchanged at 2.8 mm (p = 0.39) in the AP axis, and improved from 2.0 to 1.2 mm in the RL axis (p < 0.001). There

  1. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    Science.gov (United States)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  2. Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars.

    Science.gov (United States)

    Wang, Shouju; Teng, Zhaogang; Huang, Peng; Liu, Dingbin; Liu, Ying; Tian, Ying; Sun, Jing; Li, Yanjun; Ju, Huangxian; Chen, Xiaoyuan; Lu, Guangming

    2015-04-17

    Shielding nanoparticles from nonspecific interactions with normal cells/tissues before they reach and after they leave tumors is crucial for the selective delivery of NPs into tumor cells. By utilizing the reversible protonation of weak electrolytic groups to pH changes, long-chain amine/carboxyl-terminated polyethylene glycol (PEG) decorated gold nanostars (GNSs) are designed, exhibiting reversible, significant, and sensitive response in cell affinity and therapeutic efficacy to the extracellular pH (pHe) gradient between normal tissues and tumors. This smart nanosystem shows good dispersity and unimpaired photothermal efficacy in complex bioenvironment at pH 6.4 and 7.4 even when their surface charge is neutral. One PEGylated mixed-charge GNSs with certain surface composition, GNS-N/C 4, exhibits high cell affinity and therapeutic efficacy at pH 6.4, and low affinity and almost "zero" damage to cells at pH 7.4. Remarkably, this significant and sensitive response in cell affinity and therapeutic efficacy is reversible as local pH alternated. In vivo, GNS-N/C 4 shows higher accumulation in tumors and improved photothermal therapeutic efficacy than pH-insensitive GNSs. This newly developed smart nanosystem, whose cell affinity reversibly transforms in response to pHe gradient with unimpaired biostability, provides a novel effective means of tumor-selective therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The relation of electrode voltages to charge position in SLC arc and final focus beam position monitors

    International Nuclear Information System (INIS)

    Fordham, C.

    1989-01-01

    The position of a charged particle beam can be measured with a Beam Position Monitor (BPM) by converting the voltages induced on its array of electrodes into a position offset from the array's center. Most of the BPMs in the Arcs and Final Focus of the SLC use four stripline electrodes arranged symmetrically around the beam; normalized voltage differences are calculated as the difference divided by the sum of voltages on opposite electrode pairs. The resulting number is multiplied by a conversion factor, denoted in this paper as S b , to give the offset (in millimeters) of the charge from the center of the BPM. Prior to installation in the beam line, the BPMs were calibrated with a charge pulse on a rod. Owing to geometric effects which will be discussed later, a different conversion factor had to be used for calibration. It will be denoted here by S r . This paper gives the results of calculations and measurements of S r and S b for Arc and Final Focus BPMs. This paper also describes the relevant physical properties of the several types of BPMs and calculations of the expected scale factors, the measurement methods used, and gives the results of measurements, which are compared with the theoretical expectations. 2 refs., 18 figs., 7 tabs

  4. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    Directory of Open Access Journals (Sweden)

    Masato Yasuura

    2014-04-01

    Full Text Available Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  5. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.

    Science.gov (United States)

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-04-23

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  6. Modeling spin selectivity in charge transfer across the DNA/Gold interface

    Energy Technology Data Exchange (ETDEWEB)

    Behnia, S., E-mail: s.behnia@sci.uut.ac.ir [Department of Physics, Urmia University of Technology, Urmia (Iran, Islamic Republic of); Fathizadeh, S. [Department of Physics, Urmia University of Technology, Urmia (Iran, Islamic Republic of); Akhshani, A. [Department of Physics, Urmia Branch, Islamic Azad University, Urmia (Iran, Islamic Republic of)

    2016-09-30

    Highlights: • DNA in spintronics is applied. Nearly pure spin current is observed in the system. • A combined spin-polaronic PBH model is proposed for spin transfer in DNA molecule. • Spin Hall effect in DNA due to spin–orbit coupling is verified. • The temperature dependence of Hall conductivity is appeared. • Regions of parameters were determined that polarization of spin current is maximum. - Abstract: Experimental results show that the photoelectrons emitted from the gold substrate due to laser radiation, passe through DNA nanowires with spin-polarized nature. This study proposes the use of chiral DNA molecule in spintronics and information processing. To investigate the spin transfer in DNA molecules, we established a theoretical model based on a combined spin-polaronic Peyrard–Bishop–Holstein model. Accordingly, a nearly pure spin current is appeared. The simultaneous effects of the incident radiation and external magnetic field create characteristic islands corresponding to the pure spin currents, which can be predicted and detected using the multifractal dimensions spectrum. We can verify the spin Hall effect on DNA oligomers through spin–orbit coupling. As such, we can proceed to our significant purpose, which is to create a nearly pure spin current for information transfer and determine the regions of parameter values from which the maximal polarization in spin current emerges.

  7. Interaction of Cecropin B with Zwitterionic and Negatively Charged Lipid Bilayers Immobilized at Gold Electrode Surface

    International Nuclear Information System (INIS)

    Juhaniewicz, Joanna; Szyk-Warszyńska, Lilianna; Warszyński, Piotr; Sęk, Sławomir

    2016-01-01

    Membranolytic properties of cationic antimicrobial peptide cecropin B were investigated using electrochemical techniques, atomic force microscopy and quartz crystal microbalance with dissipation monitoring. Two types of artificial lipid bilayers supported on gold electrode were used as model systems composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (Chol) at 7:3 molar ratio and L-α-phosphatidylethanolamine (E. coli) (PE), L-α-phosphatidylglycerol sodium salt (E. coli) (PG) at 8:2 molar ratio. Thus the lipid content was intended to represent either mammalian or bacterial membrane respectively. Model bilayers were exposed to cecropin B at 1 μM concentration and the changes in bilayer structure, permeability and morphology were monitored as a function of time. We have found that cecropin B does not show any pronounced effect on POPC/Chol bilayer, while PE/PG system was strongly affected in the presence of the peptide. This observation suggests that cecropin B shows some selectivity with respect to lipid composition of the membrane. In case of PE/PG membrane, we have observed that peptide action involves electrostatically driven adsorption of the cecropin B at the top of the bilayer with simultaneous fluidization and swelling of the membrane. The latter may facilitate the rearrangement and insertion of the molecules into the core of the lipid bilayer, which leads to further rupture and degradation of the film through formation of mixed peptide-lipid aggregates.

  8. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  9. Imaging of Hsp70-positive tumors with cmHsp70.1 antibody-conjugated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Gehrmann MK

    2015-09-01

    Full Text Available Mathias K Gehrmann,1 Melanie A Kimm,2 Stefan Stangl,1 Thomas E Schmid,1 Peter B Noël,2 Ernst J Rummeny,2 Gabriele Multhoff11Department of Radiation Oncology, 2Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, GermanyAbstract: Real-time imaging of small tumors is still one of the challenges in cancer diagnosis, prognosis, and monitoring of clinical outcome. Targeting novel biomarkers that are selectively expressed on a large variety of different tumors but not normal cells has the potential to improve the imaging capacity of existing methods such as computed tomography. Herein, we present a novel technique using cmHsp70.1 monoclonal antibody-conjugated spherical gold nanoparticles for quantification of the targeted uptake of gold nanoparticles into membrane Hsp70-positive tumor cells. Upon binding, cmHsp70.1-conjugated gold nanoparticles but not nanoparticles coupled to an isotype-matched IgG1 antibody or empty nanoparticles are rapidly taken up by highly malignant Hsp70 membrane-positive mouse tumor cells. After 24 hours, the cmHsp70.1-conjugated gold nanoparticles are found to be enriched in the perinuclear region. Specificity for membrane Hsp70 was shown by using an Hsp70 knockout tumor cell system. Toxic side effects of the cmHsp70.1-conjugated nanoparticles are not observed at a concentration of 1–10 µg/mL. Experiments are ongoing to evaluate whether cmHsp70.1 antibody-conjugated gold nanoparticles are suitable for the detection of membrane-Hsp70-positive tumors in vivo.Keywords: heat shock protein 70, tumor biomarker, theranostics, multimodal CT, multispectral CT, k-edge

  10. Charged particles produced in neutron reactions on nuclei from beryllium to gold

    International Nuclear Information System (INIS)

    Haight, R.C.

    1997-01-01

    Charged-particle production in reactions of neutrons with nuclei has been studied over the past several years with the spallation source of neutrons from 1 to 50 MeV at the Los Alamos Neutron Science Center (LANSCE). Target nuclides include 9Be, C, 27Al, Si, 56Fe, 59Co, 58,60Ni, 93Nb and 197Au. Proton, deuteron, triton, 3He and 4He emission spectra, angular distributions and production cross sections have been measured. Transitions from the compound nuclear reaction mechanism to precompound reactions are clearly seen in the data. The data are compared with data from the literature where available, with evaluated nuclear data libraries, and with calculations where the selection of the nuclear level density prescription is of great importance. Calculations normalized at En = 14 MeV can differ from the present data by a factor of 2 for neutron energies between 5 and 10 MeV

  11. Mixed-mode reversed phase/positively charged repulsion chromatography for intact protein separation.

    Science.gov (United States)

    Ding, Ling; Guo, Zhimou; Hu, Zhuo; Liang, Xinmiao

    2017-05-10

    A mixed-mode reversed phase/positively charged repulsion stationary phase C8PN composed of octyl and amino group has been developed for separation of intact protein. Before the separation of proteins, a set of probe compounds were employed to evaluate the chromatographic properties of C8PN, demonstrating typical reversed phase/positively charged repulsion interaction on this stationary phase as estimated. Then the new C8PN stationary phase was used to separate a standard protein mixture on the reversed phase mode. Compared with a commercial C4 stationary phase, it showed different selectivity for some proteins. In order to better understand the properties of C8PN, the effect of acetonitrile content was investigated based on retention equation. Higher values of the equation parameters on C8PN demonstrated that the protein retentions were more sensitive to the change of acetonitrile content. Besides, the influences of buffer salt additives on the protein retentions were also studied. The retention factors of the proteins got larger with the increase of buffer salt concentration, which confirmed the positively charged repulsion interaction on the column. Finally, the C8PN was further applied to separate oxidized- and reduced- forms of Recombinant Human Growth Hormone. Our study indicated the advantages and application potential of mixed-mode reversed phase/positively charged repulsion stationary phase for intact protein separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.

    Science.gov (United States)

    Aissaoui, Nesrine; Moth-Poulsen, Kasper; Käll, Mikael; Johansson, Peter; Wilhelmsson, L Marcus; Albinsson, Bo

    2017-01-05

    Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.

  13. PEPTIDE SOLUBILITY, STRUCTURE AND CHARGE POSITION EFFECT ON ADSORPTION BY ALUMINIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Mary Trujillo

    2008-04-01

    Full Text Available Solubility, structure and position of charges in a peptide antigen sequence can be mentioned as being amongst the basic features of adsorption. In order to study their effect on adsorption, seven analogue series were synthesized from a MSP-1 peptide sequence by systematically replacing each one of the positions in the peptide sequence by aspartic acid, glutamic acid, serine, alanine, asparagine, glutamine or lysine. Such modifications in analogue peptide sequences showed a non-regular tendency regarding solubility and adsorption data. Aspartic acid and Glutamic acid analogue series showed great improvements in adsorption, especially in peptides where Lysine in position 6 and Arginine in position 13 were replaced. Solubility of position 5 analogue was greater than the position 6 analogue in Aspartic acid series; however, the position 6 analogue showed best adsorption results whilst the Aspartic acid in position 5 analogue showed no adsorption in the same conditions. Nuclear Magnetic Resonance structural analysis revealed differences in the -helical structureextension between these analogues. The Aspartic acid in position 6, located in the polar side of the helix, may allow this analogueto fit better onto the adsorption regions suggesting that the local electrostatic charge is responsible for this behavior.

  14. Differential multi-electron emission induced by swift highly charged gold ions penetrating carbon foils

    Science.gov (United States)

    Rothard, H.; Moshammer, R.; Ullrich, J.; Kollmus, H.; Mann, R.; Hagmann, S.; Zouros, T. J. M.

    2007-05-01

    First results on swift heavy ion induced electron emission from solids obtained with a reaction microscope are presented. This advanced technique, which is successfully used since quite some time to study electron ejection in ion-atom collisions, combines the measurement of the time-of-flight of electrons with imaging techniques. A combination of electric and magnetic fields guides the ejected electrons onto a position sensitive detector, which is capable to accept multiple hits. From position and time-of-flight measurement the full differential emission characteristics of up to 10 electrons per single incoming ion can be extracted. As a first example, we show energy spectra, angular distributions and the multiplicity distribution of electrons from impact of Au24+ (11 MeV/u) on a thin carbon foil (28 μg/cm2).

  15. Differential multi-electron emission induced by swift highly charged gold ions penetrating carbon foils

    International Nuclear Information System (INIS)

    Rothard, H.; Moshammer, R.; Ullrich, J.; Kollmus, H.; Mann, R.; Hagmann, S.; Zouros, T.J.M.

    2007-01-01

    First results on swift heavy ion induced electron emission from solids obtained with a reaction microscope are presented. This advanced technique, which is successfully used since quite some time to study electron ejection in ion-atom collisions, combines the measurement of the time-of-flight of electrons with imaging techniques. A combination of electric and magnetic fields guides the ejected electrons onto a position sensitive detector, which is capable to accept multiple hits. From position and time-of-flight measurement the full differential emission characteristics of up to 10 electrons per single incoming ion can be extracted. As a first example, we show energy spectra, angular distributions and the multiplicity distribution of electrons from impact of Au 24+ (11 MeV/u) on a thin carbon foil (28 μg/cm 2 )

  16. Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption.

    Science.gov (United States)

    Cheng, Xiuting; Li, Na; Zhu, Mengfu; Zhang, Lili; Deng, Yu; Deng, Cheng

    2016-06-01

    To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater. Copyright © 2016. Published by Elsevier B.V.

  17. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  18. Position readout by charge division in large two-dimensional detectors

    International Nuclear Information System (INIS)

    Alberi, J.L.

    1976-10-01

    The improvement in readout spatial resolution for charge division systems with subdivided readout electrodes has been analyzed. This readout forms the position and sum signals by a linear, unambiguous analogue summation technique. It is shown that the readout resolution is a function of only electrode capacitance and shaping parameters. The line width improves as 1/N/sup 1 / 2 /, where N is the number of electrode subdivisions

  19. Ligand-modulated interactions between charged monolayer-protected Au144 (SR)60 gold nanoparticles in physiological saline

    Science.gov (United States)

    Villarreal, Oscar; Chen, Liao; Whetten, Robert; Yacaman, Miguel

    2015-03-01

    We studied the interactions of functionalized Au144 nanoparticles (NPs) in a near-physiological environment through all-atom molecular dynamics simulations. The AuNPs were coated with a homogeneous selection of 60 thiolates: 11-mercapto-1-undecanesulfonate, 5-mercapto-1-pentanesulfonate, 5-mercapto-1-pentane-amine, 4-mercapto-benzoate or 4-mercapto-benzamide. These ligands were selected to elucidate how the aggregation behavior depends on the ligands' sign of charge, length, and flexibility. Simulating the dynamics of a pair of identical AuNPs in a cell of saline of 150 mM NaCl in addition to 120 Na+/Cl- counter-ions, we computed the aggregation affinities from the potential of mean force as a function of the pair separation. We found that NPs coated with negatively charged, short ligands have the strongest affinities mediated by multiple Na+ counter-ions residing on a plane in-between the pair and forming ``salt bridges'' to both NPs. Positively charged NPs have weaker affinities, as Cl counter-ions form fewer and weaker salt bridges. The longer ligands' large fluctuations disfavor the forming of salt bridges, enable hydrophobic contact between the exposed hydrocarbon chains and interact at greater separations due to the fact that the screening effect is rather incomplete. Supported by the CONACYT, NIH, NSF and TACC.

  20. Directional rolling of positively charged nanoparticles along a flexibility gradient on long DNA molecules.

    Science.gov (United States)

    Park, Suehyun; Joo, Heesun; Kim, Jun Soo

    2018-01-31

    Directing the motion of molecules/colloids in any specific direction is of great interest in many applications of chemistry, physics, and biological sciences, where regulated positioning or transportation of materials is highly desired. Using Brownian dynamics simulations of coarse-grained models of a long, double-stranded DNA molecule and positively charged nanoparticles, we observed that the motion of a single nanoparticle bound to and wrapped by the DNA molecule can be directed along a gradient of DNA local flexibility. The flexibility gradient is constructed along a 0.8 kilobase-pair DNA molecule such that local persistence length decreases gradually from 50 nm to 40 nm, mimicking a gradual change in sequence-dependent flexibility. Nanoparticles roll over a long DNA molecule from less flexible regions towards more flexible ones as a result of the decreasing energetic cost of DNA bending and wrapping. In addition, the rolling becomes slightly accelerated as the positive charge of nanoparticles decreases due to a lower free energy barrier of DNA detachment from charged nanoparticle for processive rolling. This study suggests that the variation in DNA local flexibility can be utilized in constructing and manipulating supramolecular assemblies of DNA molecules and nanoparticles in structural DNA nanotechnology.

  1. Reduction of digital errors of digital charge division type position-sensitive detectors

    International Nuclear Information System (INIS)

    Uritani, A.; Yoshimura, K.; Takenaka, Y.; Mori, C.

    1994-01-01

    It is well known that ''digital errors'', i.e. differential non-linearity, appear in a position profile of radiation interactions when the profile is obtained with a digital charge-division-type position-sensitive detector. Two methods are presented to reduce the digital errors. They are the methods using logarithmic amplifiers and a weighting function. The validities of these two methods have been evaluated mainly by computer simulation. These methods can considerably reduce the digital errors. The best results are obtained when both methods are applied. ((orig.))

  2. Study of electric field distorted by space charges under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  3. Positive column of a glow discharge in neon with charged dust grains (a review)

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.

  4. Positive column of a glow discharge in neon with charged dust grains (a review)

    International Nuclear Information System (INIS)

    Polyakov, D. N.; Shumova, V. V.; Vasilyak, L. M.

    2017-01-01

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.

  5. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  6. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    Science.gov (United States)

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Negative and positive magnetoresistance in bilayer graphene: Effects of weak localization and charge inhomogeneity

    International Nuclear Information System (INIS)

    Chen Yungfu; Bae, Myung-Ho; Chialvo, Cesar; Dirks, Travis; Bezryadin, Alexey; Mason, Nadya

    2011-01-01

    We report measurements of magnetoresistance in bilayer graphene as a function of gate voltage (carrier density) and temperature. We examine multiple contributions to the magnetoresistance, including those of weak localization (WL), universal conductance fluctuations (UCF), and inhomogeneous charge transport. A clear WL signal is evident at all measured gate voltages (in the hole doped regime) and temperature ranges (from 0.25 to 4.3 K), and the phase coherence length extracted from the WL data does not saturate at low temperatures. The WL data is fit to demonstrate that the electron-electron Nyquist scattering is the major source of phase decoherence. A decrease in UCF amplitude with increase in gate voltage and temperature is shown to be consistent with a corresponding decrease in the phase coherence length. In addition, a weak positive magnetoresistance at higher magnetic fields is observed, and attributed to inhomogeneous charge transport. -- Research highlights: → Weak localization theory describes low-field magnetoresistance in bilayer graphene. → Electron-electron Nyquist scattering limits phase coherence in bilayer graphene. → Positive magnetoresistance reveals charge inhomogeneity in bilayer graphene.

  8. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Nimai C [Singapore-MIT Alliance, Manufacturing Systems and Technology Programme, Nanyang Technological University, 65 Nanyang Drive, 637460 (Singapore); Shin, Kwanwoo [Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsoo-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of)], E-mail: ncnayak@gmail.com

    2008-07-02

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism.

  9. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    International Nuclear Information System (INIS)

    Nayak, Nimai C; Shin, Kwanwoo

    2008-01-01

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism

  10. Simulation of the interaction of positively charged beams and electron clouds

    International Nuclear Information System (INIS)

    Markovik, Aleksandar

    2013-01-01

    The incoherent (head-tail) effect on the bunch due to the interaction with electron clouds (e-clouds) leads to a blow up of the transverse beam size in storage rings operating with positively charged beams. Even more the e-cloud effects are considered to be the main limiting factor for high current, high-brightness or high-luminosity operation of future machines. Therefore the simulation of e-cloud phenomena is a highly active field of research. The main focus in this work was set to a development of a tool for simulation of the interaction of relativistic bunches with non-relativistic parasitic charged particles. The result is the Particle-In-Cell Program MOEVE PIC Tracking which can track a 3D bunch under the influence of its own and external electromagnetic fields but first and foremost it simulates the interaction of relativistic positively charged bunches and initially static electrons. In MOEVE PIC Tracking the conducting beam pipe can be modeled with an arbitrary elliptical cross-section to achieve more accurate space charge field computations for both the bunch and the e-cloud. The simulation of the interaction between positron bunches and electron clouds in this work gave a detailed insight of the behavior of both particle species during and after the interaction. Further and ultimate goal of this work was a fast estimation of the beam stability under the influence of e-clouds in the storage ring. The standard approach to simulate the stability of a single bunch is to track the bunch particles through the linear optics of the machine by multiplying the 6D vector of each particle with the transformation matrices describing the lattice. Thereby the action of the e-cloud on the bunch is approximated by a pre-computed wake kick which is applied on one or more points in the lattice. Following the idea of K.Ohmi the wake kick was pre-computed as a two variable function of the bunch part exiting the e-cloud and the subsequent parts of a bunch which receive a

  11. SFG and SPR Study of Sodium Dodecyl Sulfate Film Assembly on Positively Charged Surfaces

    Science.gov (United States)

    Song, Sanghun; Weidner, Tobias; Wagner, Matthew; Castner, David

    2012-02-01

    This study uses sum frequency generation (SFG) vibrational spectroscopy and surface plasmon resonance (SPR) sensing to investigate the structure of sodium dodecyl sulfate (SDS) films formed on positively charged and hydrophilic surfaces. The SPR signals show a good surface coverage suggesting that full monolayer coverage is reached at 1 mM. SFG spectra of SDS adsorbed exhibits well resolved CH3 peaks and OH peaks. At both 0.2 mM and 1 mM SDS concentration the intensity of both the CH3 and OH peaks decreased close to background levels. We found that the loss of SFG signal at 0.2 mM occurs at this concentration independent of surface charge density. It is more likely that the loss of signal is related to structural inhomogeneity induced by a striped phase - stand-up phase transition. This is supported by a distinct change of the relative SFG phase between CH3/OH near 0.2 mM. The second intensity minimum might be related to charge compensation effects. We observed a substrate dependence for the high concentration transition. We also observed distinct SFG signal phase changes for water molecules associated with SDS layers at different SDS solution concentrations indicating that the orientation of bound water changed with SDS surface structure.

  12. Daily Prostate Volume and Position Monitoring Using Implanted Gold Markers and On-Board Imaging during Radiotherapy

    Directory of Open Access Journals (Sweden)

    Linda Kašaová

    2011-01-01

    Full Text Available Purpose: This study aimed to evaluate prostate volume changes and prostate motions during radiotherapy. Methods: In 2010, twenty-five patients were treated for prostate cancer by external beam radiotherapy with implanted fiducial markers. Coordinates of three gold markers on kilovoltage images were calculated daily. Volume changes in target structure were observed through changes in intermarker distances. Differences in patient position between laser-tattoo alignment and gold marker localization were evaluated. Intrafraction motion was assessed by measuring marker displacement on kilovoltage images acquired before and after fraction delivery. Results: Prostate shrinkage was observed in 60% of patients. The average shrinkage was 7% of the prostate’s initial volume. Corrections after laser-tattoo alignment remained mostly below 1 cm. The difference between marker centroid position on the actual images and the planning images was 2 ± 1 mm on average. The extension of intrafraction movements was 7.6 ± 0.2 mm on average. Conclusions: In our retrospective study, the possibility for prostate volume changes during radiotherapy was revealed. Intrafraction movements turned out to be the limiting factor in safety margin reduction.

  13. Onset of turbulence induced by electron nonthermality in a complex plasma in presence of positively charged dust grains

    Directory of Open Access Journals (Sweden)

    Susmita Sarkar

    2018-03-01

    Full Text Available In this paper onset of turbulence has been detected from the study of non linear dust acoustic wave propagation in a complex plasma considering electrons nonthermal and equilibrium dust charge positive. Dust grains are charged by secondary electron emission process. Our analysis shows that increase in electron nonthermality makes the grain charging process faster by reducing the magnitude of the nonadiabaticity induced pseudo viscosity. Consequently nature of dust charge variation changes from nonadiabatic to adiabatic one. For further increase of electron nonthermality, this pseudo viscosity becomes negative and hence generates a turbulent grain charging behaviour. This turbulent grain charging phenomenon is exclusively the outcome of this nonlinear study which was not found in linear analysis.

  14. Clinical feasibility study for the use of implanted gold seeds in the prostate as reliable positioning markers during megavoltage irradiation

    International Nuclear Information System (INIS)

    Dehnad, Homan; Nederveen, Aart J.; Heide, Uulke A. van der; Moorselaar, R. Jeroen A. van; Hofman, Pieter; Lagendijk, Jan J.W.

    2003-01-01

    Background and purpose: The aim of this study was to assess the feasibility of using gold seed implants in the prostate for position verification, using an a-Si flat panel imager as a detector during megavoltage irradiation of prostate carcinoma. This is a study to guarantee positioning accuracy in intensity-modulated radiotherapy. Methods and materials: Ten patients with localized prostate carcinoma (T2-3) received between one and three fiducial gold markers in the prostate. All patients were treated with 3-D conformal radiotherapy with an anterior-posterior (AP) and two lateral wedge fields. The acute gastrointestinal (GI) and genitourinary (GU) toxicities were scored using common toxicity criteria scales (CTC). Using three consecutive CT scans and portal images obtained during the treatment we have studied the occurrence of any change in prostate shape (deformation), seed migration and the magnitude of translations and rotations of the prostate. Results: We observed no acute major complications for prostate irradiation regarding the seed implantation. The maximum acute GU toxicity grade 2 (dysuria and frequency) was observed in seven patients during the treatment. The maximum grade 2 (diarrhoea) was scored in two patients regarding the acute GI toxicities. No significant prostate deformation could be detected in the consecutive CT scans. It appeared that the distances between the markers only slightly changed during treatment (S.D. 0.5 mm). Random prostate translations were (1 S.D.) 2.1, 3.2 and 2.2 mm in the lateral (LR), AP and cranial-caudal (CC) directions, respectively, whereas systematic translations were 3.3, 4.8 and 3.5 mm in the LR, AP and CC directions, respectively. Random prostate rotations were (1 S.D.) 3.6, 1.7 and 1.9 deg. around the LR, AP and CC axis, respectively, whereas systematic rotations were 4.7, 2.0 and 2.7 deg. around the LR, AP and CC axis, respectively. Conclusions: We found that the fiducial gold seeds are a safe and appropriate

  15. Electrical Conductivity of Rocks and Dominant Charge Carriers. Part 1; Thermally Activated Positive Holes

    Science.gov (United States)

    Freund, Friedemann T.; Freund, Minoru M.

    2012-01-01

    The prevailing view in the geophysics community is that the electrical conductivity structure of the Earth's continental crust over the 5-35 km depth range can best be understood by assuming the presence of intergranular fluids and/or of intragranular carbon films. Based on single crystal studies of melt-grown MgO, magma-derived sanidine and anorthosite feldspars and upper mantle olivine, we present evidence for the presence of electronic charge carriers, which derive from peroxy defects that are introduced during cooling, under non-equilibrium conditions, through a redox conversion of pairs of solute hydroxyl arising from dissolution of H2O.The peroxy defects become thermally activated in a 2-step process, leading to the release of defect electrons in the oxygen anion sublattice. Known as positive holes and symbolized by h(dot), these electronic charge carriers are highly mobile. Chemically equivalent to O(-) in a matrix of O(2-) they are highly oxidizing. Being metastable they can exist in the matrix of minerals, which crystallized in highly reduced environments. The h(dot) are highly mobile. They appear to control the electrical conductivity of crustal rocks in much of the 5-35 km depth range.

  16. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Science.gov (United States)

    Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi

    2012-01-01

    This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).

  17. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Directory of Open Access Journals (Sweden)

    Kenichi Yanagida

    2012-01-01

    Full Text Available This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM that detects higher-order (multipole moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420  μm (circular and ≧550  μm (elliptical.

  18. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays.

    Science.gov (United States)

    Yuan, Yuan; Zhang, Yugen

    2017-10-01

    Cicada wing surfaces are covered with dense patterns of nano-pillar structure that prevent bacterial growth by rupturing adhered microbial cells. To mimic the natural nano-pillar structure, we developed a general and simple method to grow metal organic framework (MOF) nano-dagger arrays on a wide range of surfaces. These nano-daggers possess high bactericidal activity, with log reduction >7 for Escherichia coli and Staphylococcus aureus. It was hypothesized that the positively-charged ZIF-L nano-dagger surfaces enhance bacterial cell adhesion, facilitating selective and efficient bacteria killing by the rigid and sharp nano-dagger tips. This research provides a safe and clean antimicrobial surface technology which does not require external chemicals and will not cause drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Positively Charged Nanostructured Lipid Carriers and Their Effect on the Dissolution of Poorly Soluble Drugs

    Directory of Open Access Journals (Sweden)

    Kyeong-Ok Choi

    2016-05-01

    Full Text Available The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.

  20. Positively Charged Nanostructured Lipid Carriers and Their Effect on the Dissolution of Poorly Soluble Drugs.

    Science.gov (United States)

    Choi, Kyeong-Ok; Choe, Jaehyeog; Suh, Seokjin; Ko, Sanghoon

    2016-05-20

    The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC) to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.

  1. Position dependence of charge collection in prototype sensors for the CMS pixel detector

    CERN Document Server

    Rohe, Tilman; Chiochia, Vincenzo; Cremaldi, Lucien M; Cucciarelli, Susanna; Dorokhov, Andrei; Konecki, Marcin; Prokofiev, Kirill; Regenfus, Christian; Sanders, David A; Son Seung Hee; Speer, Thomas; Swartz, Morris

    2004-01-01

    This paper reports on the sensor R&D activity for the CMS pixel detector. Devices featuring several design and technology options have been irradiated up to a proton fluence1 of 1 multiplied by 10**1**5 n //e//q/cm**2 at the CERN PS. Afterward, they were bump bonded to unirradiated readout chips and tested using high energy pions in the H2 beam line of the CERN SPS. The readout chip allows a nonzero suppressed full analogue readout and therefore a good characterization of the sensors in terms of noise and charge collection properties. The position dependence of signal is presented and the differences between the two sensor options are discussed. 20 Refs.

  2. The role of surface charging during the coadsorption of mercaptohexanol to DNA layers on gold: direct observation of desorption and layer reorientation.

    Science.gov (United States)

    Arinaga, K; Rant, U; Tornow, M; Fujita, S; Abstreiter, G; Yokoyama, N

    2006-06-20

    We study the coadsorption of mercaptohexanol onto preimmobilized oligonucleotide layers on gold. Monitoring the position of the DNA relative to the surface by optical means directly shows the mercaptohexanol-induced desorption of DNA and the reorientation of surface-tethered strands in situ and in real time. By simultaneously recording the electrochemical electrode potential, we are able to demonstrate that changes in the layer conformation are predominantly of electrostatic origin and can be reversed by applying external bias to the substrate.

  3. Think positive : phase separation enables a positively charged additive to induce dramatic changes in calcium carbonate morphology

    NARCIS (Netherlands)

    Cantaert, B.; Kim, Y.; Ludwig, H.; Nudelman, F.; Sommerdijk, N.A.J.M.; Meldrum, F.C.

    2012-01-01

    Soluble macromolecules are essential to Nature's control over biomineral formation. Following early studies where macromolecules rich in aspartic and glutamic acid were extracted from nacre, research has focused on the use of negatively charged additives to control calcium carbonate precipitation.

  4. Studies of the pulse charge of lead-acid batteries for PV applications. Part I. Factors influencing the mechanism of the pulse charge of the positive plate

    Energy Technology Data Exchange (ETDEWEB)

    Kirchev, A.; Perrin, M.; Lemaire, E.; Karoui, F.; Mattera, F. [Commissariat de l' Energie Atomique, Institut National de l' Energie Solaire, INES-RDI, Parc Technologique de Savoie Technolac, 50 Avenue du Lac Leman, 73377 Le Bourget du Lac Cedex (France)

    2008-02-15

    The mechanism of the positive plate charge in pulse regime was studied in model lead-acid cells with one positive and two negative plates (8 Ah each) and Ag/Ag{sub 2}SO{sub 4} reference electrodes. The results showed that the evolution of the electrode potential is much slower on the positive plate than on the negative plate. Regardless of this fact, the calculated capacitive current of charge and self-discharge of the electrochemical double layer (EDL) during the 'ON' and 'OFF' half-periods of the pulse current square waves is comparable with the charge current amplitude. The result is due to the high values of the EDL on the surface of the lead dioxide active material. The influence of different factors like state of charge, state of health, pulse frequency, current amplitude and open circuit stay before the polarization was discussed. The previously determined optimal frequency of 1 Hz was associated with a maximum in the average double layer current on frequency dependence. The average double layer current is also maximal at SOC between 75 and 100%. The exchange of the constant current polarization with pulse polarization does not change substantially the mechanism and the overvoltage of the oxygen evolution reaction on the positive plate. The mechanism of the self-discharge of the EDL was also estimated analyzing long-time PPP transients (up to 2 h). It was found that when the PPP is lower than 1.2 V the preferred mechanism of EDL self-discharge is by coupling with the lead sulphate oxidation reaction. At higher values of PPP the EDL self-discharge happens via oxygen evolution. The high faradic efficiency of the pulse charge is due to the chemical oxidation of the Pb(II) ions by the O atoms and OH radicals formed at the oxygen evolution both during the 'ON' and 'OFF' periods. (author)

  5. Position statement on ethics, equipoise and research on charged particle radiation therapy.

    Science.gov (United States)

    Sheehan, Mark; Timlin, Claire; Peach, Ken; Binik, Ariella; Puthenparampil, Wilson; Lodge, Mark; Kehoe, Sean; Brada, Michael; Burnet, Neil; Clarke, Steve; Crellin, Adrian; Dunn, Michael; Fossati, Piero; Harris, Steve; Hocken, Michael; Hope, Tony; Ives, Jonathan; Kamada, Tadashi; London, Alex John; Miller, Robert; Parker, Michael; Pijls-Johannesma, Madelon; Savulescu, Julian; Short, Susan; Skene, Loane; Tsujii, Hirohiko; Tuan, Jeffrey; Weijer, Charles

    2014-08-01

    The use of charged-particle radiation therapy (CPRT) is an increasingly important development in the treatment of cancer. One of the most pressing controversies about the use of this technology is whether randomised controlled trials are required before this form of treatment can be considered to be the treatment of choice for a wide range of indications. Equipoise is the key ethical concept in determining which research studies are justified. However, there is a good deal of disagreement about how this concept is best understood and applied in the specific case of CPRT. This report is a position statement on these controversies that arises out of a workshop held at Wolfson College, Oxford in August 2011. The workshop brought together international leaders in the relevant fields (radiation oncology, medical physics, radiobiology, research ethics and methodology), including proponents on both sides of the debate, in order to make significant progress on the ethical issues associated with CPRT research. This position statement provides an ethical platform for future research and should enable further work to be done in developing international coordinated programmes of research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Positively versus negatively charged moral emotion expectancies in adolescence: the role of situational context and the developing moral self.

    Science.gov (United States)

    Krettenauer, Tobias; Johnston, Megan

    2011-09-01

    The study analyses adolescents' positively charged versus negatively charged moral emotion expectancies. Two hundred and five students (M= 14.83 years, SD= 2.21) participated in an interview depicting various situations in which a moral norm was either regarded or transgressed. Emotion expectancies were assessed for specific emotions (pride, guilt) as well as for overall strength and valence. In addition, self-importance of moral values was measured by a questionnaire. Results revealed that positively charged emotion expectancies were more pronounced in contexts of prosocial action than in the context of moral transgressions, whereas the opposite was true for negatively charged emotions. At the same time, expectations of guilt and pride were substantially related to the self-importance of moral values. ©2010 The British Psychological Society.

  7. Improving Positioning in High-Dose Radiotherapy for Prostate Cancer: Safety and Visibility of Frequently Used Gold Fiducial Markers

    Energy Technology Data Exchange (ETDEWEB)

    Fonteyne, Valerie, E-mail: valerie.fonteyne@uzgent.be [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium); Ost, Piet [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium); Villeirs, Geert [Department of Radiology, Ghent University Hospital, Ghent (Belgium); Oosterlinck, Willem [Department of Urology, Ghent University Hospital, Ghent (Belgium); Impens, Aline; De Gersem, Werner; De Wagter, Carlos; De Meerleer, Gert [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium)

    2012-05-01

    Purpose: The use of gold fiducial markers (GFMs) for prostate positioning in high-dose radiotherapy is gaining interest. The purpose of this study was to compare five GFMs regarding feasibility of ultrasound-based implantation in the prostate and intraprostatic lesion (IPL); toxicity; visibility on transabdominal ultrasound (TU) and cone-beam CT (CBCT); reliability of automatic, soft tissue, and GFM-based CBCT patient positioning by comparing manual and automatic fusion CBCT. Methods and Materials: Twenty-five patients were included. Pain and toxicity were scored after implantation and high-dose radiotherapy. Fisher exact test was used to evaluate the correlation of patients' characteristics and prostatitis. Positioning was evaluated on TU and kilovoltage CBCT images. CBCT fusion was performed automatically (Elekta XVI technology, release 3.5.1 b27, based on grey values) and manually on soft tissue and GFMs. Pearson correlation statistics and Bland-Altman evaluation were used. Five GFMs were compared. Results: Twenty percent of the patients developed prostatitis despite antibiotic prophylaxis. Cigarette smoking was significantly correlated with prostatitis. The visualization of all GFMs on TU was disappointing. Consequently we cannot recommend the use of these GFMs for TU-based prostate positioning. For all GFMs, there was only fair to poor linear correlation between automatic and manual CBCT images, indicating that even when GFMs are used, an operator evaluation is imperative. However, when GFMs were analyzed individually, a moderate to very strong correlation between automatic and manual positioning was found for larger GFMs in all directions. Conclusion: The incidence of prostatitis in our series was high. Further research is imperative to define the ideal preparation protocol preimplantation and to select patients. Automatic fusion is more reliable with larger GFMs at the cost of more scatter. The stability of all GFMs was proven.

  8. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  9. The role of NH2-terminal positive charges in the activity of inward rectifier KATP channels.

    Science.gov (United States)

    Cukras, C A; Jeliazkova, I; Nichols, C G

    2002-09-01

    Approximately half of the NH(2) terminus of inward rectifier (Kir) channels can be deleted without significant change in channel function, but activity is lost when more than approximately 30 conserved residues before the first membrane spanning domain (M1) are removed. Systematic replacement of the positive charges in the NH(2) terminus of Kir6.2 with alanine reveals several residues that affect channel function when neutralized. Certain mutations (R4A, R5A, R16A, R27A, R39A, K47A, R50A, R54A, K67A) change open probability, whereas an overlapping set of mutants (R16A, R27A, K39A, K47A, R50A, R54A, K67A) change ATP sensitivity. Further analysis of the latter set differentiates mutations that alter ATP sensitivity as a consequence of altered open state stability (R16A, K39A, K67A) from those that may affect ATP binding directly (K47A, R50A, R54A). The data help to define the structural determinants of Kir channel function, and suggest possible structural motifs within the NH(2) terminus, as well as the relationship of the NH(2) terminus with the extended cytoplasmic COOH terminus of the channel.

  10. Osteoblasts with impaired spreading capacity benefit from the positive charges of plasma polymerised allylamine

    Directory of Open Access Journals (Sweden)

    F Kunz

    2015-03-01

    Full Text Available Bone diseases such as osteoporosis, osteoarthritis and rheumatoid arthritis, impinge on the performance of orthopaedic implants by impairing bone regeneration. For this reason, the development of effective surface modifications supporting the ingrowth of implants in morbid bone tissue is essential. Our study is designed to elucidate if cells with restricted cell-function limiting adhesion processes benefit from plasma polymer deposition on titanium. We used the actin filament disrupting agent cytochalasin D (CD as an experimental model for cells with impaired actin cytoskeleton. Indeed, the cell’s capacity to adhere and spread was drastically reduced due to shortened actin filaments and vinculin contacts that were smaller. The coating of titanium with a positively charged nanolayer of plasma polymerised allylamine (PPAAm abrogated these disadvantages in cell adhesion and the CD-treated osteoblasts were able to spread significantly. Interestingly, PPAAm increased spreading by causing enhanced vinculin number and contact length, but without significantly reorganising actin filaments. PPAAm with the monomer allylamine was deposited in a microwave-excited low-pressure plasma-processing reactor. Cell physiology was monitored by flow cytometry and confocal laser scanning microscopy, and the length and number of actin filaments was quantified by mathematical image processing. We showed that biomaterial surface modification with PPAAm could be beneficial even for osteoblasts with impaired cytoskeleton components. These insights into in vitro conditions may be used for the evaluation of future strategies to design implants for morbid bone tissue.

  11. Charge-state distributions of 100, 175, 275, and 352 MeV gold ions emerging from thin carbon foils

    International Nuclear Information System (INIS)

    Martin, J.A.; Auble, R.L.; Erb, K.A.; Jones, C.M.; Olsen, D.K.

    1985-01-01

    These measurements were undertaken as a consequence of our failure early this year to accelerate Au +46 ions in the Oak Ridge Isochronous Cyclotron using an injected beam of 352 MeV 197 Au +17 from the 25 MV tandem accelerator. Following that unsuccessful test, we made a preliminary measurement of the charge-state distribution of 352 MeV 197 Au ions emerging from a carbon foil using the bending magnet that is a part of the cyclotron beam injection system. The measured mean charge was approx.38.5, about 4.5 charge-states lower than predicted by the Sayer semi-empirical formula. The measurements reported here were done more precisely and systematically confirm that preliminary result. 12 refs., 5 figs., 4 tabs

  12. Charge-state distributions of 100, 175, 275, and 352 MeV gold ions emerging from thin carbon foils

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.A.; Auble, R.L.; Erb, K.A.; Jones, C.M.; Olsen, D.K.

    1985-01-01

    These measurements were undertaken as a consequence of our failure early this year to accelerate Au/sup +46/ ions in the Oak Ridge Isochronous Cyclotron using an injected beam of 352 MeV /sup 197/Au/sup +17/ from the 25 MV tandem accelerator. Following that unsuccessful test, we made a preliminary measurement of the charge-state distribution of 352 MeV /sup 197/Au ions emerging from a carbon foil using the bending magnet that is a part of the cyclotron beam injection system. The measured mean charge was approx.38.5, about 4.5 charge-states lower than predicted by the Sayer semi-empirical formula. The measurements reported here were done more precisely and systematically confirm that preliminary result. 12 refs., 5 figs., 4 tabs.

  13. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    International Nuclear Information System (INIS)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-01-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20–25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30–60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p + implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO 2 interface charge densities ( Q f ) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p + implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Q f , that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  14. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    Science.gov (United States)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-09-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p+ implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Qf) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p+ implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Qf, that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  15. Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes.

    Science.gov (United States)

    Lee, Mian Rong; Lee, Hiang Kwee; Yang, Yijie; Koh, Charlynn Sher Lin; Lay, Chee Leng; Lee, Yih Hong; Phang, In Yee; Ling, Xing Yi

    2017-11-15

    We demonstrate a one-step precise direct metal writing of well-defined and densely packed gold nanoparticle (AuNP) patterns with tunable physical and optical properties. We achieve this by using two-photon lithography on a Au precursor comprising poly(vinylpyrrolidone) (PVP) and ethylene glycol (EG), where EG promotes higher reduction rates of Au(III) salt via polyol reduction. Hence, clusters of monodisperse AuNP are generated along raster scanning of the laser, forming high-particle-density, well-defined structures. By varying the PVP concentration, we tune the AuNP size from 27.3 to 65.0 nm and the density from 172 to 965 particles/μm 2 , corresponding to a surface roughness of 12.9 to 67.1 nm, which is important for surface-based applications such as surface-enhanced Raman scattering (SERS). We find that the microstructures exhibit an SERS enhancement factor of >10 5 and demonstrate remote writing of well-defined Au microstructures within a microfluidic channel for the SERS detection of gaseous molecules. We showcase in situ SERS monitoring of gaseous 4-methylbenzenethiol and real-time detection of multiple small gaseous species with no specific affinity to Au. This one-step, laser-induced fabrication of AuNP microstructures ignites a plethora of possibilities to position desired patterns directly onto or within most surfaces for the future creation of multifunctional lab-on-a-chip devices.

  16. Separation analysis of macrolide antibiotics with good performance on a positively charged C18HCE column.

    Science.gov (United States)

    Wei, Jie; Shen, Aijin; Yan, Jingyu; Jin, Gaowa; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2016-03-01

    The separation of basic macrolide antibiotics suffers from peak tailing and poor efficiency on traditional silica-based reversed-phase liquid chromatography columns. In this work, a C18HCE column with positively charged surface was applied to the separation of macrolides. Compared with an Acquity BEH C18 column, the C18HCE column exhibited superior performance in the aspect of peak shape and separation efficiency. The screening of mobile phase additives including formic acid, acetic acid and ammonium formate indicated that formic acid was preferable for providing symmetrical peak shapes. Moreover, the influence of formic acid content was investigated. Analysis speed and mass spectrometry compatibility were also taken into account when optimizing the separation conditions for liquid chromatography coupled with tandem mass spectrometry. The developed method was successfully utilized for the determination of macrolide residues in a honey sample. Azithromycin was chosen as the internal standard for the quantitation of spiramycin and tilmicosin, while roxithromycin was used for erythromycin, tylosin, clarithromycin, josamycin and acetylisovaleryltylosin. Good correlation coefficients (r(2) > 0.9938) for all macrolides were obtained. The intra-day and inter-day recoveries were 73.7-134.7% and 80.7-119.7% with relative standard deviations of 2.5-8.0% and 3.9-16.1%, respectively. Outstanding sensitivity with limits of quantitation (S/N ≥ 10) of 0.02-1 μg/kg and limits of detection (S/N ≥ 3) of 0.01-0.5 μg/kg were achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantum size correction to the work function and the centroid of excess charge in positively ionized simple metal clusters

    Directory of Open Access Journals (Sweden)

    M. Payami

    2003-12-01

    Full Text Available  In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different values . For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes in the framework of local spin-density approximation and stabilized jellium model (SJM as well as simple jellium model (JM with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere.

  18. Quantum size correction to the work function and centroid of excess charge in positively ionized simple metal clusters

    International Nuclear Information System (INIS)

    Payami, M.

    2004-01-01

    In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different r s values (2≤ r s ≥ 7). For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes 2≤ N ≥100 in the framework of local spin-density approximation and stabilized jellium model as well as simple jellium model with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere

  19. Charge dividing mechanism on resistive electrode in position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Rehak, P.

    1978-10-01

    A complete charge-division mechanism, including both the diffusion and the electromagnetic wave propagation on resistive electrodes, is presented. The charge injected into such a transmission line divides between the two ends according to the ratio of resistancies and independently of the value of the line resistance, of the propagation mechanism and of the distribution of inductance and capacitance along the line. The shortest charge division time is achieved for Rl = 2π (L/C) 1 / 2 , where R, L, C are resistance, inductance and capacitance per unit length and l is the length of the line

  20. Long-Term Charge/Discharge Cycling Stability of MnO2 Aqueous Supercapacitor under Positive Polarization

    KAUST Repository

    Ataherian, Fatemeh; Wu, Nae-Lih

    2011-01-01

    The long-term charge/discharge cycling stability of MnO 2 electrode under positive polarization in aqueous KCl electrolyte has been studied over different potential windows spanning from the open circuit potential to varied higher-end potential

  1. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process

    Directory of Open Access Journals (Sweden)

    Tanujjal Bora

    2011-10-01

    Full Text Available Zinc oxide (ZnO nanorods decorated with gold (Au nanoparticles have been synthesized and used to fabricate dye-sensitized solar cells (DSSC. The picosecond-resolved, time-correlated single-photon-count (TCSPC spectroscopy technique was used to explore the charge-transfer mechanism in the ZnO/Au-nanocomposite DSSC. Due to the formation of the Schottky barrier at the ZnO/Au interface and the higher optical absorptions of the ZnO/Au photoelectrodes arising from the surface plasmon absorption of the Au nanoparticles, enhanced power-conversion efficiency (PCE of 6.49% for small-area (0.1 cm2 ZnO/Au-nanocomposite DSSC was achieved compared to the 5.34% efficiency of the bare ZnO nanorod DSSC. The TCSPC studies revealed similar dynamics for the charge transfer from dye molecules to ZnO both in the presence and absence of Au nanoparticles. A slower fluorescence decay associated with the electron recombination process, observed in the presence of Au nanoparticles, confirmed the blocking of the electron transfer from ZnO back to the dye or electrolyte by the Schottky barrier formed at the ZnO/Au interface. For large area DSSC (1 cm2, ~130% enhancement in PCE (from 0.50% to 1.16% was achieved after incorporation of the Au nanoparticles into the ZnO nanorods.

  2. Charge Spreading and Position Sensitivity in a Segmented Planar Germanium Detector (Preprint)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Gehrels, N; Johnson, W. N; Kurfess, J. D; Phlips, B. P; Tueller, J

    1998-01-01

    The size of the charge cloud collected in a segmented germanium detector is limited by the size of the initial cloud, uniformity of the electric field, and the diffusion of electrons and holes through the detector...

  3. Geodynamic condition of formation of favorable structural positions for ore-grade gold placement in auminzatau-beltau ore area (the central kyzyl kum, western uzbekistan)

    Science.gov (United States)

    Janibekov, Bobir Omonovich; Turapov, M. K.

    2017-09-01

    Work is directed on studying of a geodynamic condition under which the structural positions controlling process of endogenous ore formation were formed. It is shown that explosive region tectonics under the influence of regional tectonic efforts formed structural elements (positions) which controlled formation of gold deposits. It is recognized that structural positions are defined by variety of systems of disjunctive dislocation and their relationship among themselves. Formation of favorable positions depends as well on morphology of ore controlling structures, on degree of their tectonic activity and spatial situation in relation to the direction of tectonic (geodynamic) efforts.

  4. The regiochemical distribution of positive charges along cholesterol polyamine carbamates plays significant roles in modulating DNA binding affinity and lipofection.

    Science.gov (United States)

    Geall, A J; Eaton, M A; Baker, T; Catterall, C; Blagbrough, I S

    1999-10-15

    We have quantified the effects of the regiochemical distribution of positive charges along the polyamine moiety in lipopolyamines for DNA molecular recognition. High affinity binding leads to charge neutralisation, DNA condensation and ultimately to lipofection. Binding affinities for calf thymus DNA were determined using an ethidium bromide displacement assay and condensation was detected by changes in turbidity using light scattering. The in vitro transfection competence of cholesterol polyamine carbamates was measured in CHO cells. In the design of DNA condensing and transfecting agents for non-viral gene therapy, the interrelationship of ammonium ions, not just their number, must be considered.

  5. Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria

    International Nuclear Information System (INIS)

    Thiramanas, Raweewan; Laocharoensuk, Rawiwan

    2016-01-01

    The article describes a simple and rapid method for colorimetric detection of bacteria. It is based on competitive binding of positively charged polyethyleneimine-coated gold nanoparticles (PEI-AuNPs) to negatively charged enzymes and bacteria. The PEI-AuNPs are electrostatically attracted by both the bacterial surface and the enzyme β-galactosidase (β-Gal). Binding to the latter results in the inhibition of enzyme activity. However, in the presence of a large number of bacteria, the PEI-AuNPs preferentially bind to bacteria. Hence, the enzyme will not be inhibited and its activity can be colorimetrically determined via hydrolysis of the chromogenic substrate chlorophenol red β-D-galactopyranoside (CPRG). The detection limit of this assay is as low as 10 cfu·mL −1 , and the linear range extends from 10 6 to 10 8 cfu·mL −1 . The assay is applicable to both Gram-negative (such as enterotoxigenic Escherichia coli; ETEC) and Gram-positive (Staphylococcus aureus; S. aureus) bacteria. Results are obtained within 10 min using an optical reader, and within 2–3 h by bare-eye detection. The method was applied to the identification of ETEC contamination at a level of 10 cfu·mL −1 in spiked drinking water. Given its low detection limit and rapidity (sample preconcentration is not required), this method holds great promise for on-site detection of total bacterial contamination. (author)

  6. On a possibility of creation of positive space charge cloud in a system with magnetic insulation of electrons

    International Nuclear Information System (INIS)

    Goncharov, A.A.; Dobrovol'skii, A.M.; Dunets, S.P.; Evsyukov, A.N.; Protsenko, I.M.

    2009-01-01

    We describe a new approach for creation an effective, low-cost, low-maintenance axially symmetric plasma optical tools for focusing and manipulating high-current beams of negatively charged particles, electrons and negative ions. This approach is based on fundamental plasma optical concept of magnetic insulation of electrons and non-magnetized positive ions providing creation of controlled uncompensated cloud of the space charge. The axially symmetric electrostatic plasma optical lens is well-known and well developed tool where this concept is used successfully. This provides control and focusing high-current positive ion beams in wide range of parameters. Here for the first time we present optimistic experimental results describing the application of an idea of magnetic insulation of electrons for generation of the stable cloud of positive space charge by focusing onto axis the converging stream of heavy ions produced by circular accelerator with closed electron drift. The estimations of a maximal concentration of uncompensated cloud of positive ions are also made

  7. Effect of scanning in the supine and prone positions on dilation of air-charged colon in CTVC

    International Nuclear Information System (INIS)

    Ye Jing; Chen Junkun; Zhang Zongjun; Wang Junpeng; Gao Dazhi

    2003-01-01

    Objective: To evaluate the effect of scanning in the supine and prone positions on dilation of air-charged colon in CT virtual colonoscopy (CTVC). Methods: Thirty cases underwent CTVC scanning in both the supine and prone positions immediately before colonoscopy, and the dilation of each intestine was graded. The differences of colon dilation in different positions were compared. Results: In supine and prone position, there were 26 (17.3%) and 22 (14.7%) insufficient dilating colon segments, respectively, and only 5 (3.3%) insufficient dilating colon segments in double positions. 15(50.0%) and 13(43.3%) colons dilated insufficiently in supine and prone position, respectively, and decreased to 5 (16.7%) in double positions. The dilation of rectum, sigmoid colon, and transverse colon had significant difference in different positions. Conclusion: When performing CTVC, it is highly necessary to scan in both the supine and prone positions in order to ensure the sufficient dilation of colon. In supine position, the dilation of transverse colon is better, while the dilation of rectum and sigmoid colon in prone position is superior to that in supine position

  8. Development and use of thin film composite based positively charged nanofiltration membranes in separation of aqueous streams and nuclear effluents

    International Nuclear Information System (INIS)

    Dey, T.K.; Bindal, R.C.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    A new, positively charged, thin film composite (TFC) type nanofiltration membrane has been developed and studied for its use in various aqueous stream separations. The membrane, containing fixed quaternary ammonium moieties, was developed by insitu interfacial polymerization of a functionalized amine (polyethyleneimine) and terephthaloyl chloride on a suitable base membrane. The nature of the charge on the membrane was established by ATR FT IR spectroscopy and was estimated by determination of its ion exchange capacity. The membrane was tested for its performance in single solute feed systems containing salts of various combinations of univalent and bivalent ions (NaCl, Na 2 SO 4 , CaCl 2 and MgSO 4 ) in test cell as well as in 2512 spiral modules. The membrane gave differential separation profile for these solutes with high rejection for CaCl 2 and low rejection for Na 2 SO 4 due to positive charge on the membrane and the type of charge constituting the salts. The membrane was also used for separation of simulated effluent solution containing uranyl nitrate in combination with ammonium nitrate which is a common effluent generated in nuclear industry. Here also the membrane gave differential separation profile for uranyl nitrate and ammonium nitrate in their mixture by concentrating the former salt and passing the later. This helped separation of these two solutes in the mixture into two different streams. (author)

  9. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    International Nuclear Information System (INIS)

    Gomes, Inês; Feio, Maria J.; Santos, Nuno C.; Eaton, Peter; Serro, Ana Paula; Saramago, Benilde; Pereira, Eulália; Franco, Ricardo

    2012-01-01

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV– visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  10. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Ines [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal); Feio, Maria J. [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Santos, Nuno C. [Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular (Portugal); Eaton, Peter [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Serro, Ana Paula; Saramago, Benilde [Centro de Quimica Estrutural, Instituto Superior Tecnico (Portugal); Pereira, Eulalia [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Franco, Ricardo, E-mail: ricardo.franco@fct.unl.pt [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal)

    2012-12-15

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV- visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  11. Dosimetric implications of inter- and intrafractional prostate positioning errors during tomotherapy : Comparison of gold marker-based registrations with native MVCT.

    Science.gov (United States)

    Wust, Peter; Joswig, Marc; Graf, Reinhold; Böhmer, Dirk; Beck, Marcus; Barelkowski, Thomasz; Budach, Volker; Ghadjar, Pirus

    2017-09-01

    For high-dose radiation therapy (RT) of prostate cancer, image-guided (IGRT) and intensity-modulated RT (IMRT) approaches are standard. Less is known regarding comparisons of different IGRT techniques and the resulting residual errors, as well as regarding their influences on dose distributions. A total of 58 patients who received tomotherapy-based RT up to 84 Gy for high-risk prostate cancer underwent IGRT based either on daily megavoltage CT (MVCT) alone (n = 43) or the additional use of gold markers (n = 15) under routine conditions. Planned Adaptive (Accuray Inc., Madison, WI, USA) software was used for elaborated offline analysis to quantify residual interfractional prostate positioning errors, along with systematic and random errors and the resulting safety margins after both IGRT approaches. Dosimetric parameters for clinical target volume (CTV) coverage and exposition of organs at risk (OAR) were also analyzed and compared. Interfractional as well as intrafractional displacements were determined. Particularly in the vertical direction, residual interfractional positioning errors were reduced using the gold marker-based approach, but dosimetric differences were moderate and the clinical relevance relatively small. Intrafractional prostate motion proved to be quite high, with displacements of 1-3 mm; however, these did not result in additional dosimetric impairments. Residual interfractional positioning errors were reduced using gold marker-based IGRT; however, this resulted in only slightly different final dose distributions. Therefore, daily MVCT-based IGRT without markers might be a valid alternative.

  12. Enhancement of plasmon-induced charge separation efficiency by coupling silver nanocubes with a thin gold film

    Science.gov (United States)

    Akiyoshi, Kazutaka; Saito, Koichiro; Tatsuma, Tetsu

    2016-10-01

    Plasmon-induced charge separation (PICS), in which an energetic electron is injected from a plasmonic nanoparticle (NP) to a semiconductor on contact, is often inhibited by a protecting agent adsorbed on the NP. We addressed this issue for an Ag nanocube-TiO2 system by coating it with a thin Au layer or by inserting the Au layer between the nanocubes (NCs) and TiO2. Both of the electrodes exhibit much higher photocurrents due to PICS than the electrodes without the Au film or the Ag NCs. These photocurrent enhancements can be explained in terms of PICS with accelerated electron transfer, in which electron injection from the Ag NCs or Ag@Au core-shell NCs to TiO2 is promoted by the Au film, or PICS enhanced by a nanoantenna effect, in which the electron injection from the Au film to TiO2 is enhanced by optical near field generated by the Ag NC.

  13. Lithium position and occupancy fluctuations in a cathode during charge/discharge cycling of lithium-ion battery

    International Nuclear Information System (INIS)

    Sharma, N.; Yu, D.; Zhu, Y.; Wu, Y.; Peterson, V. K.

    2012-01-01

    Lithium-ion batteries are undergoing rapid development to meet the energy demands of the transportation and renewable energy-generation sectors. The capacity of a lithium-ion battery is dependent on the amount of lithium that can be reversibly incorporated into the cathode. Neutron diffraction provides greater sensitivity towards lithium relative to other diffraction techniques. In conjunction with the penetration depth afforded by neutron diffraction, the information concerning lithium gained in a neutron diffraction study allows commercial lithium-ion batteries to be explored with respect to the lithium content in the whole cathode. Furthermore, neutron diffraction instruments featuring area detectors that allow relatively fast acquisitions enable perturbations of lithium location and occupancy in the cathode during charge/discharge cycling to be determined in real time. Here, we present the time, current, and temperature dependent lithium transfer occurring within a cathode functioning under conventional charge-discharge cycling. The lithium location and content, oxygen positional parameter, and lattice parameter of the Li 1+y Mn 2 0 4 cathode are measured and linked to the battery's charge/discharge characteristics (performance). We determine that the lithium-transfer mechanism involves two crystallographic sites, and that the mechanism differs between discharge and charge, explaining the relative ease of discharging (compared with charging) this material. Furthermore, we find that the rate of change of the lattice is faster on charging than discharging, and is dependent on the lithium insertion/ extraction processes (e.g. dependent on how the site occupancies evolve). Using in situ neutron diffraction data the atomic-scale understanding of cathode functionality is revealed, representing detailed information that can be used to direct improvements in battery performance at both the practical and fundamental level.

  14. CE-MS analysis of heroin and its basic impurities using a charged polymer-protected gold nanoparticle-coated capillary.

    Science.gov (United States)

    Zhang, Zhengxiang; Yan, Bo; Liu, Kelin; Liao, Yiping; Liu, Huwei

    2009-01-01

    The first application of charged polymer-protected gold nanoparticles (Au NPs) as semi-permanent capillary coating in CE-MS was presented. Poly(diallyldimethylammonium chloride) (PDDA) was the only reducing and stabilizing agent for Au NPs preparation. Stable and repeatable coating with good tolerance to 0.1 M HCl, methanol, and ACN was obtained via a simple rinsing procedure. Au NPs enhanced the coating stability toward flushing by methanol, improved the run-to-run and capillary-to-capillary repeatabilities, and improved the separation efficiency of heroin and its basic impurities for tracing geographical origins of illicit samples. Baseline resolution of eight heroin-related alkaloids was achieved on the PDDA-protected Au NPs-coated capillary under the optimum conditions: 120 mM ammonium acetate (pH 5.2) with addition of 13% methanol, separation temperature 20 degrees C, applied voltage -20 kV, and capillary effective length 60.0 cm. CE-MS analysis with run-to-run RSDs (n=5) of migration time in the range of 0.43-0.62% and RSDs (n=5) of peak area in the range of 1.49-4.68% was obtained. The established CE-MS method would offer sensitive detection and confident identification of heroin and related compounds and provide an alternative to LC-MS and GC-MS for illicit drug control.

  15. Position and Orientation Control of a Photo- and Electrochromic Dithienylethene Using a Tripodal Anchor on Gold Surfaces

    NARCIS (Netherlands)

    Pijper, Thomas C.; Ivashenko, Oleksii; Walko, Martin; Rudolf, Petra; Browne, Wesley R.; Feringa, Ben L.

    2015-01-01

    A tripodal system for anchoring photochromic dithienylethenes on gold surfaces is reported. The self-assembled monolayers of a tripod-functionalized dithienylethene were characterized by cyclic voltammetry, surface-enhanced Raman spectroscopy (SERS), and X-ray photoelectron spectroscopy (XPS). These

  16. Effect of positively charged particles on sputtering damage of organic electro-luminescent diodes with Mg:Ag alloy electrodes fabricated by facing target sputtering

    Directory of Open Access Journals (Sweden)

    Kouji Suemori

    2017-04-01

    Full Text Available We investigated the influence of the positively charged particles generated during sputtering on the performances of organic light-emitting diodes (OLEDs with Mg:Ag alloy electrodes fabricated by sputtering. The number of positively charged particles increased by several orders of magnitude when the target current was increased from 0.1 A to 2.5 A. When a high target current was used, many positively charged particles with energies higher than the bond energy of single C–C bonds, which are typically found in organic molecules, were generated. In this situation, we observed serious OLED performance degradation. On the other hand, when a low target current was used, OLED performance degradation was not observed when the number of positively charged particles colliding with the organic underlayer increased. We concluded that sputtering damage caused by positively charged particles can be avoided by using a low target current.

  17. Effect of position and momentum constraints on charge distribution in heavy-ion collisions

    International Nuclear Information System (INIS)

    Rajni; Kumar, Suneel

    2012-01-01

    The rich phenomenology of multifragmentation has been widely explored after two decades of its discovery. It has been experimentally shown that in one single heavy ion collision many intermediate mass fragments (IMFs) are produced, where IMFs are defined as fragments with 5 ≤ A ≤ A tot /6. In the earlier literature, the multifragmentation was studied by Jakobsson et al. who measured the charge particle distribution along with their kinetic energy spectra in 16 O/ 36 Ar induced reaction between 25 and 200 MeV/nucleon representing the various phenomena in heavy ion collisions

  18. Elaboration of Stable and Antibody Functionalized Positively Charged Colloids by Polyelectrolyte Complexation between Chitosan and Hyaluronic Acid

    Directory of Open Access Journals (Sweden)

    Ramona C. Polexe

    2013-07-01

    Full Text Available In this study, we describe the elaboration of multifunctional positively charged polyelectrolyte complex (PEC nanoparticles, designed to be stable at physiological salt concentration and pH, for effective targeted delivery. These nanoparticles were obtained by charge neutralization between chitosan (CS as polycation and hyaluronic acid (HA as polyanion. We showed that the course of the complexation process and the physico-chemical properties of the resulting colloids were impacted by (i internal parameters such as the Degree of Acetylation (DA, i.e., the molar ration of acetyl glucosamine residues and molar mass of CS, the HA molar mass and (ii external parameters like the charge mixing ratio and the polymer concentrations. As a result, nonstoichiometric colloidal PECs were obtained in water or PBS (pH 7.4 and remained stable over one month. The polymer interactions were characterized by thermal analysis (DSC and TGA and the morphology was studied by scanning electron microscopy. A model antibody, anti-ovalbumine (OVA immunoglobulin A (IgA was sorbed on the particle surface in water and PBS quantitatively in 4 h. The CS-HA/IgA nanoparticles average size was between 425–665 nm with a positive zeta potential. These results pointed out that CS-HA can be effective carriers for use in targeted drug delivery.

  19. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study

    International Nuclear Information System (INIS)

    Abbaszadegan, A.; Ghahramani, Y.; Nabavizadeh, M.; Gholami, A.; Hemmateenejad, I.; Dorostkar, S.; Sharghi, H.

    2014-01-01

    The bactericidal efficiency of various positively and negatively charged silver nanoparticles has been extensively evaluated in literature, but there is no report on efficacy of neutrally charged silver nanoparticles. The goal of this study is to evaluate the role of electrical charge at the surface of silver nanoparticles on antibacterial activity against a panel of microorganisms. Three different silver nanoparticles were synthesized by different methods, providing three different electrical surface charges (positive, neutral, and negative). The antibacterial activity of these nanoparticles was tested against gram-positive (i.e., Staphylococcus aureus, Streptococcus mutans, and Streptococcus pyogenes) and gram-negative (i.e., Escherichia coli and Proteus vulgaris) bacteria. Well diffusion and micro-dilution tests were used to evaluate the bactericidal activity of the nanoparticles. According to the obtained results, the positively-charged silver nanoparticles showed the highest bactericidal activity against all microorganisms tested. The negatively charged silver nanoparticles had the least and the neutral nanoparticles had intermediate antibacterial activity. The most resistant bacteria were Proteus vulgaris. We found that the surface charge of the silver nanoparticles was a significant factor affecting bactericidal activity on these surfaces. Although the positively charged nanoparticles showed the highest level of effectiveness against the organisms tested, the neutrally charged particles were also potent against most bacterial species.

  20. Strategic implication of a segmentation and positioning model for the South African gold narrow reef mining market.

    OpenAIRE

    2012-01-01

    M.Comm. Many variables exist that influence buyer behaviour in the narrow reef gold mining market. Since some variables are real but subjective in nature, such as the opinion and charisma of mine managers or influential individuals, it is difficult to quantify and analyse them. The question is ? Which variables, 8 quantifiable or not, are more dominant in shaping buyer behaviour and how should they be prioritised? What is needed is a logical segmentation model which reflects true buyer beh...

  1. Radiographic study of bone deformans on charged condylar head position in TMJ arthrosis

    International Nuclear Information System (INIS)

    You, Dong Soo

    1983-01-01

    The author analyzed the morphologic changes of bone structure from 848 radiographics (424 joints) of 212 patients with temporomandibular joint arthrosis, which were obtained by the oblique-lateral transcranial projection and ortho pantomography. The interrelation of the bone changes and condylar head positions the results were as follows: 1. In the 212 patients with TMJ arthrosis, 210 patients (99.05%) show the condylar positional changes. Among them, 187 patients (89.05%) show the bone changes. 2. In TMJ arthrosis patients with bone changes, 108 patients (57.75%) show both the condylar positional changes and bone changes. 66 patients show the condylar positional changes bilaterally and bone changes unilaterally. On the other hand, 11 patients (5.88%) show the condylar positional changes unilaterally and bone change bilaterally. 3. The bone changes in the TMJ arthrosis patients with the condylar positional changes were as follows: There were the flattening of articular surface in 103 cases (26.55%) the erosion in 99 cases (25.52%), and the erosion in 88 cases (22.68%). There were not much differences among the three types of bone changes. And the deformity in 70 cases (18.04%), the sclerosis in 22 cases (5.67%), the marginal proliferation in 6 cases (1.55%) were seen. 4. The regions of bone changes in TMJ arthrosis patients with condylar positional changes were as follows: They occurred at the condyle head (51.04%), the articular eminence (39.20%) and the articular fossa (9.60%) in that order. The condylar positional changes and bone changes according to the regions were as follows: a) In the bone changes at the condylar head, the flattening (34.63%) was a most frequent finding and the deformity (27.63%) the erosion (34.63%) in the order. In the condylar positional changes, the downward positioning of condyle (41.44%) was a most frequent finding in the mouth closed state and the restricted movement within the articular fossa (35.46%) in the mouth open state. b) In

  2. Radiographic study of bone deformans on charged condylar head position in TMJ arthrosis

    Energy Technology Data Exchange (ETDEWEB)

    You, Dong Soo [Department of Oral Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1983-11-15

    The author analyzed the morphologic changes of bone structure from 848 radiographics (424 joints) of 212 patients with temporomandibular joint arthrosis, which were obtained by the oblique-lateral transcranial projection and ortho pantomography. The interrelation of the bone changes and condylar head positions the results were as follows: 1. In the 212 patients with TMJ arthrosis, 210 patients (99.05%) show the condylar positional changes. Among them, 187 patients (89.05%) show the bone changes. 2. In TMJ arthrosis patients with bone changes, 108 patients (57.75%) show both the condylar positional changes and bone changes. 66 patients show the condylar positional changes bilaterally and bone changes unilaterally. On the other hand, 11 patients (5.88%) show the condylar positional changes unilaterally and bone change bilaterally. 3. The bone changes in the TMJ arthrosis patients with the condylar positional changes were as follows: There were the flattening of articular surface in 103 cases (26.55%) the erosion in 99 cases (25.52%), and the erosion in 88 cases (22.68%). There were not much differences among the three types of bone changes. And the deformity in 70 cases (18.04%), the sclerosis in 22 cases (5.67%), the marginal proliferation in 6 cases (1.55%) were seen. 4. The regions of bone changes in TMJ arthrosis patients with condylar positional changes were as follows: They occurred at the condyle head (51.04%), the articular eminence (39.20%) and the articular fossa (9.60%) in that order. The condylar positional changes and bone changes according to the regions were as follows: a) In the bone changes at the condylar head, the flattening (34.63%) was a most frequent finding and the deformity (27.63%) the erosion (34.63%) in the order. In the condylar positional changes, the downward positioning of condyle (41.44%) was a most frequent finding in the mouth closed state and the restricted movement within the articular fossa (35.46%) in the mouth open state. b) In

  3. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper( ii ) and a positively charged dye

    KAUST Repository

    Sehaqui, H.

    2015-01-01

    © The Royal Society of Chemistry. Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby introducing positive charges onto the surface of the pulp fibers, and subsequently mechanically disintegrated into high surface area cellulose nanofibers (CNF). CNF with three different charge contents were produced and their adsorption capacity towards HA was investigated with UV-spectrophotometry, quartz crystal microbalance with dissipation, and ζ-potential measurements. Substantial coverage of the CNF surface with HA in a wide pH range led to a reversal of the positive ζ-potentials of CNF suspensions. The HA adsorption capacity and the kinetics of HA uptake were found to be promoted by both acidic pH conditions and the surface charge content of CNF. It is suggested that HA adsorption onto CNF depends on electrostatic interactions between the two components, as well as on the conformation of HA. At pH ∼ 6, up to 310 mg g-1 of HA were adsorbed by the functionalized CNF, a substantially higher capacity than that of previously reported HA sorbents in the literature. It is further shown that CNF-HA complexes could be freeze-dried into "soil-mimicking" porous foams having good capacity to capture Cu(ii) ions and positive dyes from contaminated water. Thus, the most abundant natural polymer, i.e., cellulose could effectively bind the most abundant natural organic matter for environmental remediation purpose.

  4. Memory for media: investigation of false memories for negatively and positively charged public events.

    Science.gov (United States)

    Porter, Stephen; Taylor, Kristian; Ten Brinke, Leanne

    2008-01-01

    Despite a large body of false memory research, little has addressed the potential influence of an event's emotional content on susceptibility to false recollections. The Paradoxical Negative Emotion (PNE) hypothesis predicts that negative emotion generally facilitates memory but also heightens susceptibility to false memories. Participants were asked whether they could recall 20 "widely publicised" public events (half fictitious) ranging in emotional valence, with or without visual cues. Participants recalled a greater number of true negative events (M=3.31/5) than true positive (M=2.61/5) events. Nearly everyone (95%) came to recall at least one false event (M=2.15 false events recalled). Further, more than twice as many participants recalled any false negative (90%) compared to false positive (41.7%) events. Negative events, in general, were associated with more detailed memories and false negative event memories were more detailed than false positive event memories. Higher dissociation scores were associated with false recollections of negative events, specifically.

  5. Charge Inversion of Phospholipids by Dimetal Complexes for Positive Ion-Mode Electrospray Ionization Mass Spectrometry Analysis

    DEFF Research Database (Denmark)

    Svane, Simon; Gorshkov, Vladimir; Kjeldsen, Frank

    2015-01-01

    charges per phosphate group. Three different phosphoinositide phosphates (mono-, di-, and triphosphorylated inositides), a phosphatidic acid, a phosphatidylcholine, a phosphatidylethanolamine, and a phosphatidylglycerol were investigated. The intensities obtained in positive ion-mode of phosphoinositide...... phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID...

  6. Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite

    International Nuclear Information System (INIS)

    Zhao, Shou; Feng, Chenghong; Huang, Xiangning; Li, Baohua; Niu, Junfeng; Shen, Zhenyao

    2012-01-01

    Highlights: ► Al 13 modification changes As(V) sorption mechanism of montmorillonites. ► Intercalated ion charges mainly affects As(V) adsorption kinetics. ► Uniform pore structure exhibit more excellent As(V) adsorption performance. - Abstract: Four modified montmorillonite adsorbents with varied Al 13 contents (i.e., Na-Mont, AC-Mont, PAC 20 -Mont, and Al 13 -Mont) were synthesized and characterized by N 2 adsorption/desorption, X-ray diffraction, and Fourier-transform infrared analyses. The arsenate adsorption performance of the four adsorbents were also investigated to determine the role of intercalated Al 13 , especially its high purity, high positive charge (+7), and special Keggin structure. With increased Al 13 content, the physicochemical properties (e.g., surface area, structural uniformity, basal spacing, and pore volume) and adsorption performance of the modified montmorillonites were significantly but disproportionately improved. The adsorption data well fitted the Freundlich and Redlich–Peterson isotherm model, whereas the kinetic data better correlated with the pseudo-second-order kinetic model. The arsenate sorption mechanism of the montmorillonites changed from physical to chemisorption after intercalation with Al 13 . Increasing charges of the intercalated ions enhanced the arsenate adsorption kinetics, but had minimal effect on the structural changes of the montmorillonites. The uniform pore structure formed by intercalation with high-purity Al 13 greatly enhanced the pore diffusion and adsorption rate of arsenate, resulting in the high adsorption performance of Al 13 -Mont.

  7. Effect of nuclear shielding in collision of positive charged helium ions with helium atoms

    Science.gov (United States)

    Ghavaminia, Hoda; Ghavaminia, Shirin

    2018-03-01

    Differential in angle and absolute cross sections in energy of the scattered particles are obtained for single charge exchange in ^3He^+-^4He collisions by means of the four body boundary-corrected first Born approximation (CB1-4B). The quantum-mechanical post and prior transition amplitudes are derived in terms of two-dimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The effect of the dynamic electron correlation through the complete perturbation potential and the nuclear-screening influence of the passive electrons on the electron capture process is investigated. The results obtained in the CB1-4B method are compared with the available experimental data. For differential cross sections, the present results are in better agreement with experimental data than other theoretical data at extreme forward scattering angles. The integral cross sections are in excellent agreement with the experiment. Also, total cross sections for single electron capture, has been investigated using the classical trajectory Monte Carlo method. The present calculated results are found to be in an excellent agreement with the experimental data.

  8. High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Energy Technology Data Exchange (ETDEWEB)

    Chabaan, Rakan [Hyundai American Technical Center Inc. (HATCI), Superior Twp, MI (United States)

    2017-12-01

    The objective of this project is to develop, implement, and demonstrate a wireless power transfer (WPT) system that is capable of the following metrics: Total system efficiencies of more than 85 percent with minimum 20 cm coil-to-coil gap; System output power at least 6.6 kW; but design system up to 19.2 kW for future higher power study; Maximum lateral positioning tolerance achievable while meeting regulatory emission guidelines.

  9. The Positively Charged Hyperbranched Polymers with Tunable Fluorescence and the Cell Imaging Application.

    Science.gov (United States)

    Ma, Hengchang; Qin, Yanfang; Yang, Zenming; Yang, Manyi; Ma, Yucheng; Yin, Pei; Yang, Yuan; Wang, Tao; Lei, Ziqiang; Yao, Xiaoqiang

    2018-04-25

    Fluorescence-tunable materials are becoming increasingly attractive for their potential application in optics, electronics, and biomedical technology. Herein, a multi-color molecular pixel system is realized using simple copolymerization method. Bleeding both of complementary colors from blue and yellow fluorescence segments, reproduced a serious multicolor fluorescence materials. Interestingly, the emission colors of the polymers can be fine-tuned in solid state, solution phase, and in hydrogel state. More importantly, the positive fluorescent polymers exhibited cell-membrane permeable ability, and were found to accumulate on the cell nucleus, exhibiting remarkable selectivity to give bright fluorescence. The DNA/RNA selectivity experiments in vitro and in vivo verified that [tris(4-(pyridin-4-yl)phenyl)amine]-[1,8-dibromooctane] (TPPA-DBO) has prominent selectivity to DNA over RNA inside cells.

  10. Supplementary Material for: Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.

    2017-01-01

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  11. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad

    2016-08-22

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  12. Influence of joint direction and position of explosive charge on fragmentation

    International Nuclear Information System (INIS)

    Hafsaoui, Abdellah; Talhi, Korichi

    2009-01-01

    Although researchers have realized varying degrees of success in small-scale physical in situ testing, most will agree that the greatest uncertainty stems from the uncontrollable field variables. Given the diverse nature of field conditions encountered, there exists no reliable and proven method of predicting fragmentation. Due to the lack of adequate field controls, it is unlikely that a universal physical model will ever be developed for all blasting. This paper presents the results of a test conducted at the Hadjar Essoud quarry to investigate the problems associated with the discontinuities in the rock, which are among the factors causing the reduction of the resistance of the rocks to the explosive. Nevertheless, the distance between the joints, their dip and strike, and the position of the detonator play a significant role in the final fragmentation of the rock. In this work, we studied the role of the abovementioned factors on models of limestone rock of 150 X 375 X 450 mm. Accurate measurement of blast, fragmentation is important in mining and quarrying operations, in monitoring blasts, and optimizing their design. We shall use the Kuznetsov-Rammler method to measure fragmentation. It shows great potential as a practical aid to predict and control the quality of the fragmented material in the Hadjar Essoud quarry. (author)

  13. Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c

    CERN Document Server

    Abgrall, N.; Anticic, T.; Antoniou, N.; Argyriades, J.; Baatar, B.; Blondel, A.; Blumer, J.; Bogusz, M.; Boldizsar, L.; Bravar, A.; Brooks, W.; Brzychczyk, J.; Bubak, A.; Bunyatov, S.A.; Busygina, O.; Cetner, T.; Choi, K.U.; Christakoglou, P.; Czopowicz, T.; Davis, N.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Engel, R.; Ereditato, A.; Esposito, L.S.; Feofilov, G.A.; Fodor, Z.; Ferrero, A.; Fulop, A.; Garrido, X.; Gazdzicki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hakobyan, H.; Hasegawa, T.; Idczak, R.; Ivanov, Y.; Ivashkin, A.; Kadija, K.; Kapoyannis, A.; Katrynska, N.; Kielczewska, D.; Kikola, D.; Kim, J.H.; Kirejczyk, M.; Kisiel, J.; Kobayashi, T.; Kochebina, O.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalski, S.; Krasnoperov, A.; Kuleshov, S.; Kurepin, A.; Lacey, R.; Lagoda, J.; Laszlo, A.; Lyubushkin, V.V.; Mackowiak-Pawlowska, M.; Majka, Z.; Malakhov, A.I.; Marchionni, A.; Marcinek, A.; Maris, I.; Marin, V.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Meregaglia, A.; Messina, M.; Mrowczynski, St.; Murphy, S.; Nakadaira, T.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A.D.; Paul, T.; Peryt, W.; Petukhov, O.; Planeta, R.; Pluta, J.; Popov, B.A.; Posiadala, M.; Pulawski, S.; Rauch, W.; Ravonel, M.; Renfordt, R.; Robert, A.; Rohrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sekiguchi, T.; Seyboth, P.; Shibata, M.; Skrzypczak, E.; Slodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Strabel, C.; Strobele, H.; Susa, T.; Szaflik, P.; Szuba, M.; Tada, M.; Taranenko, A.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V.V.; Vesztergombi, G.; Wilczek, A.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Yi, J.G.; Yoo, I.K.; Zambelli, L.; Zipper, W.

    2012-01-01

    Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published...

  14. Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields

    Institute of Scientific and Technical Information of China (English)

    M Eshghi; H Mehraban; S M Ikhdair

    2017-01-01

    We solve the Schr(o)dinger equation with a position-dependent mass (PDM) charged particle interacted via the superposition of the Morse-plus-Coulomb potentials and is under the influence of external magnetic and Aharonov-Bohm (AB) flux fields.The nonrelativistic bound state energies together with their wave functions are calculated for two spatially-dependent mass distribution functions.We also study the thermal quantifies of such a system.Further,the canonical formalism is used to compute various thermodynamic variables for second choosing mass by using the Gibbs formalism.We give plots for energy states as a function of various physical parameters.The behavior of the internal energy,specific heat,and entropy as functions of temperature and mass density parameter in the inverse-square mass case for different values of magnetic field are shown.

  15. Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields

    International Nuclear Information System (INIS)

    Eshghi, M; Mehraban, H; Ikhdair, S M

    2017-01-01

    We solve the Schrödinger equation with a position-dependent mass (PDM) charged particle interacted via the superposition of the Morse-plus-Coulomb potentials and is under the influence of external magnetic and Aharonov–Bohm (AB) flux fields. The nonrelativistic bound state energies together with their wave functions are calculated for two spatially-dependent mass distribution functions. We also study the thermal quantities of such a system. Further, the canonical formalism is used to compute various thermodynamic variables for second choosing mass by using the Gibbs formalism. We give plots for energy states as a function of various physical parameters. The behavior of the internal energy, specific heat, and entropy as functions of temperature and mass density parameter in the inverse-square mass case for different values of magnetic field are shown. (paper)

  16. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Science.gov (United States)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  17. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    International Nuclear Information System (INIS)

    Muranaka, T; Debu, P; Dupre, P; Liszkay, L; Mansoulie, B; Perez, P; Rey, J M; Ruiz, N; Sacquin, Y; Crivelli, P; Gendotti, U; Rubbia, A

    2010-01-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·10 11 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  18. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, T; Debu, P; Dupre, P; Liszkay, L; Mansoulie, B; Perez, P; Rey, J M; Ruiz, N; Sacquin, Y [Irfu, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Crivelli, P; Gendotti, U; Rubbia, A, E-mail: tomoko.muranaka@cea.f [Institut fuer TelichenPhysik, ETHZ, CH-8093 Zuerich (Switzerland)

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5{center_dot}10{sup 11} per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  19. Long-Term Charge/Discharge Cycling Stability of MnO2 Aqueous Supercapacitor under Positive Polarization

    KAUST Repository

    Ataherian, Fatemeh

    2011-01-01

    The long-term charge/discharge cycling stability of MnO 2 electrode under positive polarization in aqueous KCl electrolyte has been studied over different potential windows spanning from the open circuit potential to varied higher-end potential limited by O 2 evolution. Cycling up to 1.2 V (vs Ag/AgCl (aq)) causes partial (35) capacitance fading to a plateau value within the initial cycles, accompanied by morphological reconstruction, reduction of surface Mn ions and oxygen evolution. The surface Mn-ion reduction has been attributed to a two-step oxidation-reduction mechanism involving OH oxidation in electrolyte, based on electrochemical analysis. When cycling potential extends to 1.4 V, extensive oxygen evolution takes place. The combination of surface passivation of current collector and extensive gas bubbling, which deteriorates electrical contact among the constituent particles within the electrode, results in further monotonic capacitance reduction. © 2011 The Electrochemical Society.

  20. Multifunctional gold nanoparticles for photodynamic therapy of cancer

    Science.gov (United States)

    Khaing Oo, Maung Kyaw

    As an important and growing branch of photomedicine, photodynamic therapy (PDT) is being increasingly employed in clinical applications particularly for the treatment of skin cancer. This dissertation focuses on the synthesis, characterization and deployment of gold nanoparticles for enhanced PDT of fibrosarcoma cancer cells. We have developed robust strategies and methods in fabrication of gold nanoparticles with positively- and negatively-tethered surface charges by photo-reduction of gold chloride salt using branched polyethyleneimine and sodium citrate respectively. An optimal concentration window of gold salt has been established to yield the most stable and monodispersed gold nanoparticles. 5-aminolevulinic acid (5-ALA), a photosensitizing precursor, has been successfully conjugated on to positively charged gold nanoparticles through electrostatic interactions. The 5-ALA/gold nanoparticle conjugates are biocompatible and have shown to be preferably taken up by cancer cells. Subsequent light irradiation results in the generation of reactive oxygen species (ROS) in cancer cells, leading to their destruction without adverse effects on normal fibroblasts. We have demonstrated for the first time that gold nanoparticles can enhance PDT efficacy by 50% compared to the treatment with 5-ALA alone. Collected evidence has strongly suggested that this enhancement stems from the elevated formation of ROS via the strongly localized electric field of gold nanoparticles. Through single cell imaging using surface-enhanced Raman scattering enabled by the very same gold nanoparticles, we have shown that multifunctionality of gold nanoparticles can be harvested concurrently for biomedical applications in general and for PDT in specific. In other words, gold nanoparticles can be used not only for targeted drug delivery and field-enhanced ROS formation, but also for monitoring cell destructions during PDT. Finally, our COMSOL Multiphysics simulation of the size-dependent electric

  1. Effect of positively charged short peptides on stability of cubic phases of monoolein/dioleoylphosphatidic acid mixtures.

    Science.gov (United States)

    Masum, Shah Md; Li, Shu Jie; Awad, Tarek S; Yamazaki, Masahito

    2005-06-07

    To elucidate the stability and phase transition of cubic phases of biomembranes with infinite periodic minimal surface is indispensable from biological and physicochemical aspects. In this report, we investigated the effect of positively charged peptide-3K (LLKKK) and poly(L-lysine) on the phase stability of monoolein (MO) membranes containing negatively charged dioleoylphosphatidic acid (DOPA) (i.e., DOPA/MO membranes) using small-angle X-ray scattering. At first, the effect of peptide-3K on 10% DOPA/90% MO membrane in excess water, which is in the Q229 phase, was investigated. At 3.4 mM peptide-3K, a Q229 to Q230 phase transition occurred, and at >3.4 mM peptide-3K, the membrane was in the Q230 phase. Poly(L-lysine) (M(w) 1K-4K) also induced the Q230 phase, but peptide-2K (LLKK) could not induce it in the same membrane. We also investigated the effect of peptide-3K on the multilamellar vesicle (MLV) of 25% DOPA/75% MO membrane, which is in L(alpha) phase. In the absence of peptide, the spacing of MLV was very large (11.3 nm), but at > or = 8 mM peptide-3K, it greatly decreased to a constant value (5.2 nm), irrespective of the peptide concentration, indicating that peptide-3K and the membranes form an electrostatically stabilized aggregation with low water content. Poly(L-lysine) also decreased greatly the spacing of the 25% DOPA/75% MO MLV, indicating the formation of a similar aggregation. To compare the effects of peptide-3K and poly(L-lysine) with that of osmotic stress on stability of the cubic phase, we investigated the effect of poly(ethylene glycol) with molecular weight 7500 (PEG-6K) on the phase stability of 10% DOPA/90% MO membrane. With an increase in PEG-6K concentration, i.e., with an increase in osmotic stress, the most stable phase changed as follows; Q229 (Schwartz's P surface) --> Q224 (D) --> Q230 (G). On the basis of these results, we discuss the mechanism of the effects of the positively charged short peptides (peptide-3K) and poly

  2. Dosimetric implications of inter- and intrafractional prostate positioning errors during tomotherapy. Comparison of gold marker-based registrations with native MVCT

    Energy Technology Data Exchange (ETDEWEB)

    Wust, Peter; Joswig, Marc; Graf, Reinhold; Boehmer, Dirk; Beck, Marcus; Barelkowski, Thomasz; Budach, Volker; Ghadjar, Pirus [Charite Universitaetsmedizin Berlin, Department of Radiation Oncology and Radiotherapy, Berlin (Germany)

    2017-09-15

    For high-dose radiation therapy (RT) of prostate cancer, image-guided (IGRT) and intensity-modulated RT (IMRT) approaches are standard. Less is known regarding comparisons of different IGRT techniques and the resulting residual errors, as well as regarding their influences on dose distributions. A total of 58 patients who received tomotherapy-based RT up to 84 Gy for high-risk prostate cancer underwent IGRT based either on daily megavoltage CT (MVCT) alone (n = 43) or the additional use of gold markers (n = 15) under routine conditions. Planned Adaptive (Accuray Inc., Madison, WI, USA) software was used for elaborated offline analysis to quantify residual interfractional prostate positioning errors, along with systematic and random errors and the resulting safety margins after both IGRT approaches. Dosimetric parameters for clinical target volume (CTV) coverage and exposition of organs at risk (OAR) were also analyzed and compared. Interfractional as well as intrafractional displacements were determined. Particularly in the vertical direction, residual interfractional positioning errors were reduced using the gold marker-based approach, but dosimetric differences were moderate and the clinical relevance relatively small. Intrafractional prostate motion proved to be quite high, with displacements of 1-3 mm; however, these did not result in additional dosimetric impairments. Residual interfractional positioning errors were reduced using gold marker-based IGRT; however, this resulted in only slightly different final dose distributions. Therefore, daily MVCT-based IGRT without markers might be a valid alternative. (orig.) [German] Bei der hochdosierten Bestrahlung des Prostatakarzinoms sind die bildgesteuerte (IGRT) und die intensitaetsmodulierte Bestrahlung (IMRT) Standard. Offene Fragen gibt es beim Vergleich von IGRT-Techniken im Hinblick auf residuelle Fehler und Beeinflussungen der Dosisverteilung. Bei 58 Patienten, deren Hochrisiko-Prostatakarzinom am

  3. Simulation study on discrete charge effects of SiNW biosensors according to bound target position using a 3D TCAD simulator.

    Science.gov (United States)

    Chung, In-Young; Jang, Hyeri; Lee, Jieun; Moon, Hyunggeun; Seo, Sung Min; Kim, Dae Hwan

    2012-02-17

    We introduce a simulation method for the biosensor environment which treats the semiconductor and the electrolyte region together, using the well-established semiconductor 3D TCAD simulator tool. Using this simulation method, we conduct electrostatic simulations of SiNW biosensors with a more realistic target charge model where the target is described as a charged cube, randomly located across the nanowire surface, and analyze the Coulomb effect on the SiNW FET according to the position and distribution of the target charges. The simulation results show the considerable variation in the SiNW current according to the bound target positions, and also the dependence of conductance modulation on the polarity of target charges. This simulation method and the results can be utilized for analysis of the properties and behavior of the biosensor device, such as the sensing limit or the sensing resolution.

  4. Simulation study on discrete charge effects of SiNW biosensors according to bound target position using a 3D TCAD simulator

    International Nuclear Information System (INIS)

    Chung, In-Young; Moon, Hyunggeun; Jang, Hyeri; Lee, Jieun; Kim, Dae Hwan; Seo, Sung Min

    2012-01-01

    We introduce a simulation method for the biosensor environment which treats the semiconductor and the electrolyte region together, using the well-established semiconductor 3D TCAD simulator tool. Using this simulation method, we conduct electrostatic simulations of SiNW biosensors with a more realistic target charge model where the target is described as a charged cube, randomly located across the nanowire surface, and analyze the Coulomb effect on the SiNW FET according to the position and distribution of the target charges. The simulation results show the considerable variation in the SiNW current according to the bound target positions, and also the dependence of conductance modulation on the polarity of target charges. This simulation method and the results can be utilized for analysis of the properties and behavior of the biosensor device, such as the sensing limit or the sensing resolution. (paper)

  5. Interaction of β-sheet folds with a gold surface.

    Directory of Open Access Journals (Sweden)

    Martin Hoefling

    Full Text Available The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111 surface using computational molecular dynamics (MD simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN. We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance.

  6. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor.

    Science.gov (United States)

    Masuda, Tetsuya; Kigo, Satomi; Mitsumoto, Mayuko; Ohta, Keisuke; Suzuki, Mamoru; Mikami, Bunzo; Kitabatake, Naofumi; Tani, Fumito

    2018-01-01

    Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137), which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A) were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20-40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.

  7. Bose-Einstein study of position-momentum correlations of charged pions in hadronic $Z^{0}$ decays

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.M.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A., Jr.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, M.; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2007-01-01

    A study of Bose-Einstein correlations in pairs of identically charged pions produced in e+e- annihilations at the Z0 peak has been performed for the first time assuming a non-static emitting source. The results are based on the high statistics data obtained with the OPAL detector at LEP. The correlation functions have been analyzed in intervals of the average pair transverse momentum and of the pair rapidity, in order to study possible correlations between the pion production points and their momenta (position-momentum correlations). The Yano-Koonin and the Bertsch-Pratt parameterizations have been fitted to the measured correlation functions to estimate the geometrical parameters of the source as well as the velocity of the source elements with respect to the overall centre-of-mass frame. The source rapidity is found to scale approximately with the pair rapidity, and both the longitudinal and transverse source dimensions are found to decrease for increasing average pair transverse momenta.

  8. The role of space charge in the performance of the bunching system for the ATLAS Positive Ion Injector

    International Nuclear Information System (INIS)

    Pardo, R.C.; Smith, R.

    1995-01-01

    The bunching system of the ATLAS Positive Ion Injector consists of a four-frequency harmonic buncher, a beam-tail removing chopper, and a 24.25 MHz spiral resonator sine-wave rebuncher. The system is designed to efficiently create beam pulses of approximately 0.25 nsec FWHM for injection into mid acceleration by the ATLAS superconducting linac. Studies of the effect of space charge on the performance of the system have been undertaken and compared to simulations as part of the design process for a new bunching system to be developed for a second ion source. Results of measurements and modeling studies indicate that the present system suffers significant bunching performance deterioration at beam currents as low as 5 eμA for 238 U 26+ at a velocity of β=0.0085. The low beam current tolerance of the present system is in reasonable agreement with computer simulation. Studies of two alternatives to the present bunching system are discussed and their limitations are explored

  9. Facile synthesis of gold nanoparticles on propylamine functionalized SBA-15 and effect of surface functionality of its enhanced bactericidal activity against gram positive bacteria

    International Nuclear Information System (INIS)

    Bhuyan, Diganta; Saikia, Mrinal; Saikia, Lakshi; Gogoi, Animesh; Saikia, Ratul

    2015-01-01

    The facile synthesis of an SBA-15-pr- + NH 3 .Au 0 nano-hybrid material by spontaneous autoreduction of aqueous chloroaurate anions on propylamine functionalized SBA-15 was successfully demonstrated. The as-synthesized SBA-15-pr- + NH 3 .Au 0 nano-hybrid material was well characterized using low and wide angle x-ray diffraction (XRD), N 2 adsorption–desorption isotherms, Fourier transform infrared (FTIR), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX), x-ray photoelectron spectroscopy (XPS), UV-Visible spectroscopy and atomic absorption spectroscopy (AAS). The activity of the nano-hybrid material as a potent bactericidal agent was successfully tested against Gram positive/negative bacteria viz. Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The colony killing percentage of Gram positive bacteria was found to be higher than Gram negative bacteria due to the stronger electrostatic interaction between the positively-charged amine functionality of SBA-15 and the negatively charged functionality of the bacterial cell wall. (paper)

  10. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  11. The noise analysis and optimum filtering techniques for a two-dimensional position sensitive orthogonal strip gamma ray detector employing resistive charge division

    International Nuclear Information System (INIS)

    Gerber, M.S.; Muller, D.W.

    1976-01-01

    The analysis of an orthogonal strip, two-dimensional position sensitive high purity germanium gamma ray detector is discussed. Position sensitivity is obtained by connecting each electrode strip on the detector to a resistor network. Charge, entering the network, divides in relation to the resistance between its entry point and the virtual earth points of the charge sensitive preamplifiers located at the end of each resistor network. The difference of the voltage pulses at the output of each preamplifier is proportional to the position at which the charge entered the resistor network and the sum of the pulse is proportional to the energy of the detected gamma ray. The analysis and spatial noise resolution is presented for this type of position sensitive detector. The results of the analysis show that the position resolution is proportional to the square root of the filter amplifier's output pulse time constant and that for energy measurement the resolution is maximized at the filter amplifier's noise corner time constant. The design of the electronic noise filtering system for the prototype gamma ray camera was based on the mathematical energy and spatial resolution equations. For the spatial channel a Gaussian trapezoidal filtering system was developed. Gaussian filtering was used for the energy channel. The detector noise model was verified by taking rms noise measurements of the filtered energy and spatial pulses from resistive readout charge dividing detectors. These measurements were within 10% of theory. (Auth.)

  12. Effects of dissolucytotic gold ions on recovering brain lesions.

    Science.gov (United States)

    Danscher, Gorm; Larsen, Agnete

    2010-04-01

    Recent experimental research has shown that metallic gold releases charged gold atoms when placed intracerebrally and that the liberated gold ions affect inflammation in the brain. The observations suggest that metallic gold can be used as a safe suppressor of inflammation in the central nervous system.

  13. Cellobiose Dehydrogenase Aryl Diazonium Modified Single Walled Carbon Nanotubes: Enhanced Direct Electron Transfer through a Positively Charged Surface

    Science.gov (United States)

    2011-01-01

    One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm−2 at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. PMID:21417322

  14. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor

    Directory of Open Access Journals (Sweden)

    Tetsuya Masuda

    2018-02-01

    Full Text Available Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137, which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20–40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.

  15. Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The mechanism for the gold-catalyzed aerobic oxidation of alcohols was studied using a series of para-substituted benzyl alcohols (Hammett methodology). The competition experiments clearly show that the rate-determining step of the reaction involves the generation of a partial positive charge in ...

  16. Performance of a position sensitive Si(Li) x-ray detector dedicated to Compton polarimetry of stored and trapped highly-charged ions

    International Nuclear Information System (INIS)

    Weber, G; Braeuning, H; Hess, S; Maertin, R; Spillmann, U; Stoehlker, Th

    2010-01-01

    We report on a novel two-dimensional position sensitive Si(Li) detector dedicated to Compton polarimetry of x-ray radiation arising from highly-charged ions. The performance of the detector system was evaluated in ion-atom collision experiments at the ESR storage ringe at GSI, Darmstadt. Based on the data obtained, the polarimeter efficiency is estimated in this work.

  17. Alpha-conotoxin analogs with additional positive charge show increased selectivity towards Torpedo californica and some neuronal subtypes of nicotinic acetylcholine receptors

    NARCIS (Netherlands)

    Kasheverov, I.E.; Zhmak, M.N.; Vulfius, C.A.; Corbacheva, E.V.; Mordvintsev, D.Y.; Utkin, Y.N.; van Elk, R.; Smit, A.B.; Tsetlin, V.I.

    2006-01-01

    α-Conotoxins from Conus snails are indispensable tools for distinguishing various subtypes of nicotinic acetylcholine receptors (nAChRs), and synthesis of α-conotoxin analogs may yield novel antagonists of higher potency and selectivity. We incorporated additional positive charges into α-conotoxins

  18. Environmental charging of spacecraft-tests of thermal control materials for use on the global positioning system flight space vehicle. Part 2: Specimen 6 to 9

    Science.gov (United States)

    Stevens, N. J.; Berkopec, F. D.; Blech, R. A.

    1976-01-01

    The NASA/USAF program on the Environmental Charging of Spacecraft Surfaces consists, in part, of experimental efforts directed toward evaluating the response of materials to the environmental charged particle flux. Samples of thermal blankets of the type to be used on the Global Positioning System Flight Space Vehicles were tested to determine their response to electron flux. The primary result observed was that no discharges were obtained with the quartz-fiber-fabric-covered multilayer insulation specimen. The taped aluminized polyester grounding system used on all specimens did not appear to grossly deteriorate with time; however, the specimens require specific external pressure to maintain constant grounding system resistance.

  19. Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces

    International Nuclear Information System (INIS)

    Scherbahn, Vitali; Nizamov, Shavkat; Mirsky, Vladimir M.

    2016-01-01

    It has recently been shown that surface plasmon microscopy (SPM) allows single nanoparticles (NPs) on sensor surfaces to be detected and analyzed. The authors have applied this technique to study the adsorption of single metallic and plastic NPs. Binding of gold NPs (40, 60 and 100 nm in size) and of 100 nm polystyrene NPs to gold surfaces modified by differently ω-functionalized alkyl thiols was studied first. Self-assembled monolayers (SAM) with varying terminal functions including amino, carboxy, oligo(ethylene glycol), methyl, or trimethylammonium groups were deposited on gold films to form surfaces possessing different charge and hydrophobicity. The affinity of NPs to these surfaces depends strongly on the type of coating. SAMs terminated with trimethylammonium groups and carboxy group display highly different affinity and therefore were preferred when creating patterned charged surfaces. Citrate-stabilized gold NPs and sulfate-terminated polystyrene NPs were used as negatively charged NPs, while branched polyethylenimine-coated silver NPs were used as positively charged NPs. It is shown that the charged patterned areas on the gold films are capable of selectively adsorbing oppositely charged NPs that can be detected and analyzed with an ∼1 ng⋅mL −1 detection limit. (author)

  20. Positively charged polymers modulate the fate of human mesenchymal stromal cells via ephrinB2/EphB4 signaling

    Directory of Open Access Journals (Sweden)

    Ilenia De Luca

    2016-09-01

    Full Text Available Understanding the mechanisms by which mesenchymal stromal cells (MSCs interact with the physical properties (e.g. topography, charge, ζ-potential, and contact angle of polymeric surfaces is essential to design new biomaterials capable of regulating stem cell behavior. The present study investigated the ability of two polymers (pHM1 and pHM3 with different positive surface charge densities to modulate the differentiation of MSCs into osteoblast-like phenotype via cell-cell ephrinB2/EphB4 signaling. Although pHM1 promoted the phosphorylation of EphB4, leading to cell differentiation, pHM3, characterized by a high positive surface charge density, had no significant effect on EphB4 activation or MSCs differentiation. When the MSCs were cultured on pHM1 in the presence of a forward signaling blocking peptide, the osteoblast differentiation was compromised. Our results demonstrated that the ephrinB2/EphB4 interaction was required for MSCs differentiation into an osteoblast-like phenotype and that the presence of a high positive surface charge density altered this interaction.

  1. The 4-pyridylmethyl ester as a protecting group for glutamic and aspartic acids: 'flipping' peptide charge states for characterization by positive ion mode ESI-MS.

    Science.gov (United States)

    Garapati, Sriramya; Burns, Colin S

    2014-03-01

    Use of the 4-pyridylmethyl ester group for side-chain protection of glutamic acid residues in solid-phase peptide synthesis enables switching of the charge state of a peptide from negative to positive, thus making detection by positive ion mode ESI-MS possible. The pyridylmethyl ester moiety is readily removed from peptides in high yield by hydrogenation. Combining the 4-pyridylmethyl ester protecting group with benzyl ester protection reduces the number of the former needed to produce a net positive charge and allows for purification by RP HPLC. This protecting group is useful in the synthesis of highly acidic peptide sequences, which are often beset by problems with purification by standard RP HPLC and characterization by ESI-MS. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  2. A low cost microwave synthesis method for preparation of gold nanoparticles

    International Nuclear Information System (INIS)

    Ngo Vo Ke Thanh; Lam Quang Vinh; Nguyen Dang Giang; Huynh Thanh Dat

    2014-01-01

    The gold nanoparticles (GNPs) in 15-20 nm size range have attention for fabrication of smart sensing devices in biomedical sciences as diagnostic tools. Citrate capped GNPs are negatively charged, which can be exploited for electrostatic interactions with some positively charged biomolecules like antibody. In this study, we are developing a low-cost technique by using a common microwave system with medium power for synthesizing gold nanoparticles with using sodium citrate (Na 3 Ct) reduction in chloroauric acid (HAuCl 4 .3H 2 O). It was found that the comparing with normal thermal method, the reaction by the microwave irradiation was much faster. Besides, the effects the sodium citrate concentration and optical properties of gold nanoparticles were studied. The optical properties of gold nanoparticles suspension were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-Vis absorption spectroscopy (UV-Vis). Maximum absorbance wavelengths (λ max ) for gold nanoparticles are ∼ 518-524 nm with the size of 12-25 nm. The size of gold nanoparticles decreases with increasing concentration of sodium citrate. Besides, the morphology of gold nanoparticles have a spherical shape with face-centered-cubic (fcc) crystalline structure. (author)

  3. Extension of the charge separated-state lifetime by supramolecular association of a tetrathiafulvalene electron donor to a zinc/gold bisporphyrin.

    Science.gov (United States)

    Boixel, Julien; Fortage, Jérôme; Blart, Errol; Pellegrin, Yann; Hammarström, Leif; Becker, Hans-Christian; Odobel, Fabrice

    2010-02-14

    Supramolecular triads were prepared by self-assembly of 4'-pyridyl-2-tetrathiafulvalene axially bound on ZnP-spacer-AuP(+) dyads; the lifetime of the charge separated state ((+)TTF-ZnP-Spacer-AuP ) formed upon light excitation of the triad is greatly increased with respect to that found in the parent dyad.

  4. Doubly versus Singly Positively Charged Oxygen Ions Back-Scattering from a Silicon Surface under Dynamic O2+ Bombardment

    Czech Academy of Sciences Publication Activity Database

    Franzreb, K.; Williams, P.; Lörinčík, Jan; Šroubek, Zdeněk

    203-204, 1/4 (2003), s. 39-42 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z2067918; CEZ:AV0Z4040901 Keywords : low-energy ion scattering * doubly charged ions * molecular orbital Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.284, year: 2003

  5. Combined photothermo-chemotherapy using gold nanoshells on drug-loaded micelles for colorectal cancer treatment

    Science.gov (United States)

    Lee, Shin-Yu; Shieh, Ming-Jium

    2018-02-01

    Combined photothermo-chemotherapy is a new strategy for cancer treatment which improves the therapeutic outcome by synergistic effects of both therapies. Here, we presented a multifunctional gold nanoshell that exhibited excellent photothermal conversion and delivered the hydrophobic chemotherapy drug, SN-38. The positively charged SN-38-loaded PDMA-PCL micelles were decorated with a gold layer by in situ reduction of chloroauric acid on the surface of micelles. Scanning and transmission electron microscopy images proved micelles were successfully decorated and the resulting gold nanoshells had a spherical morphology with a narrow size distribution. The synthesized gold nanoshells displayed a broad surface plasmon resonance peak in the near-infrared wavelength region and a great photothermal conversion ability. After pegylation, gold nanoshells were stable in biological media and appeared highly biocompatible in the absence of laser irradiation. Upon near-infrared laser irradiation, incident energy was converted into heat by gold nanoshells on SN-38-loaded micelles (SN-38@pGNS), which causes local temperature increase and triggers the release of encapsulated drug. Compared to SN-38, SN-38-loaded micelles, or laser with drug-free gold nanoshells alone, combined photothermo-chemotherapy using SN-38@pGNS with laser irradiation killed colorectal cancer cells with higher efficacy in vitro and demonstrated significant tumor suppression in vivo, suggesting that gold nanoshells on drug-loaded micelles delivered SN-38 and photothermal therapy in synergistic actions and might be a potential candidate for future colorectal cancer therapy.

  6. Accumulation and dissipation of positive charges induced on a PMMA build-up cap of an ionisation chamber by 60Co gamma-ray irradiation

    International Nuclear Information System (INIS)

    Morishita, Y.; Takata, N.

    2013-01-01

    The signal current from an ionisation chamber with a PMMA build-up cap decreases with irradiation time due to electric fields produced by positive charges induced on the cap. In the present study, it was confirmed that the signal current decreases faster for irradiation using narrower 60 Co gamma-ray beams. This is because the number of secondary electrons that are emitted from surrounding materials and penetrate the build-up cap is smaller in a narrower gamma-ray beam, so that fewer positive charges are neutralised. The ionisation chamber was first subjected to continuous gamma-ray irradiation for 24 h, following which it was irradiated with shorter periodic gamma-ray bursts while measuring the current signal. This allowed the coefficients of positive charge accumulation and dissipation to be determined. It was found that the dissipation coefficient has a large constant value during gamma-ray irradiation and decreases asymptotically to a small value after irradiation is stopped. From the coefficients, the minimum signal current was calculated, which is the value when accumulation and dissipation balance each other under continuous irradiation. The time required for the signal current to recover following irradiation was also calculated. (authors)

  7. Integrative Approach with Electrophysiological and Theoretical Methods Reveals a New Role of S4 Positively Charged Residues in PKD2L1 Channel Voltage-Sensing.

    Science.gov (United States)

    Numata, Tomohiro; Tsumoto, Kunichika; Yamada, Kazunori; Kurokawa, Tatsuki; Hirose, Shinichi; Nomura, Hideki; Kawano, Mitsuhiro; Kurachi, Yoshihisa; Inoue, Ryuji; Mori, Yasuo

    2017-08-29

    Numerical model-based simulations provide important insights into ion channel gating when experimental limitations exist. Here, a novel strategy combining numerical simulations with patch clamp experiments was used to investigate the net positive charges in the putative transmembrane segment 4 (S4) of the atypical, positively-shifted voltage-dependence of polycystic kidney disease 2-like 1 (PKD2L1) channel. Charge-neutralising mutations (K452Q, K455Q and K461Q) in S4 reduced gating charges, positively shifted the Boltzmann-type activation curve [i.e., open probability (P open )-V curve] and altered the time-courses of activation/deactivation of PKD2L1, indicating that this region constitutes part of a voltage sensor. Numerical reconstruction of wild-type (WT) and mutant PKD2L1-mediated currents necessitated, besides their voltage-dependent gating parameters, a scaling factor that describes the voltage-dependence of maximal conductance, G max . Subsequent single-channel conductance (γ) measurements revealed that voltage-dependence of G max in WT can be explained by the inward-rectifying property of γ, which is greatly changed in PKD2L1 mutants. Homology modelling based on PKD2 and Na V Ab structures suggest that such voltage dependence of P open and γ in PKD2L1 could both reflect the charged state of the S4 domain. The present conjunctive experimental and theoretical approaches provide a framework to explore the undetermined mechanism(s) regulating TRP channels that possess non-classical voltage-dependent properties.

  8. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  9. Entanglements in Marginal Solutions: A Means of Tuning Pre-Aggregation of Conjugated Polymers with Positive Implications for Charge Transport

    KAUST Repository

    Hu, Hanlin

    2015-06-17

    The solution-processing of conjugated polymers, just like commodity polymers, is subject to solvent and molecular weight-dependent solubility, interactions and chain entanglements within the polymer, all of which can influence the crystallization and microstructure development in semi-crystalline polymers and consequently affect charge transport and optoelectronic properties. Disentanglement of polymer chains in marginal solvents was reported to work via ultrasonication, facilitating the formation of photophysically ordered polymer aggregates. In this contribution, we explore how a wide range of technologically relevant solvents and formulations commonly used in organic electronics influence chain entanglement and the aggregation behaviour of P3HT using a combination of rheological and spectrophotometric measurements. The specific viscosity of the solution offers an excellent indication of the degree of entanglements in the solution, which is found to be related to the solubility of P3HT in a given solvent. Moreover, deliberately disentangling the solution in the presence of solvophobic driving forces, leads consistently to formation of photophysically visible aggregates which is indicative of local and perhaps long range order in the solute. We show for a broad range of solvents and molecular weights that disentanglement ultimately leads to significant ordering of the polymer in the solid state and a commensurate increase in charge transport properties. In doing so we demonstrate a remarkable ability to tune the microstructure which has important implications for transport properties. We discuss its potential implications in the context of organic photovoltaics.

  10. Entanglements in Marginal Solutions: A Means of Tuning Pre-Aggregation of Conjugated Polymers with Positive Implications for Charge Transport

    KAUST Repository

    Hu, Hanlin; Zhao, Kui; Fernandes, Nikhil J.; Boufflet, Pierre; Bannock, James Henry; Yu, Liyang; de Mello, John C; Stingelin, Natalie; Heeney, Martin; Giannelis, Emmanuel P.; Amassian, Aram

    2015-01-01

    The solution-processing of conjugated polymers, just like commodity polymers, is subject to solvent and molecular weight-dependent solubility, interactions and chain entanglements within the polymer, all of which can influence the crystallization and microstructure development in semi-crystalline polymers and consequently affect charge transport and optoelectronic properties. Disentanglement of polymer chains in marginal solvents was reported to work via ultrasonication, facilitating the formation of photophysically ordered polymer aggregates. In this contribution, we explore how a wide range of technologically relevant solvents and formulations commonly used in organic electronics influence chain entanglement and the aggregation behaviour of P3HT using a combination of rheological and spectrophotometric measurements. The specific viscosity of the solution offers an excellent indication of the degree of entanglements in the solution, which is found to be related to the solubility of P3HT in a given solvent. Moreover, deliberately disentangling the solution in the presence of solvophobic driving forces, leads consistently to formation of photophysically visible aggregates which is indicative of local and perhaps long range order in the solute. We show for a broad range of solvents and molecular weights that disentanglement ultimately leads to significant ordering of the polymer in the solid state and a commensurate increase in charge transport properties. In doing so we demonstrate a remarkable ability to tune the microstructure which has important implications for transport properties. We discuss its potential implications in the context of organic photovoltaics.

  11. Charging and exciton-mediated decharging of metal nanoparticles in organic semiconductor matrices

    International Nuclear Information System (INIS)

    Ligorio, Giovanni; Vittorio Nardi, Marco; Christodoulou, Christos; Florea, Ileana; Ersen, Ovidiu; Monteiro, Nicolas-Crespo; Brinkmann, Martin; Koch, Norbert

    2014-01-01

    Gold nanoparticles (Au-NPs) were deposited on the surface of n- and p-type organic semiconductors to form defined model systems for charge storage based electrically addressable memory elements. We used ultraviolet photoelectron spectroscopy to study the electronic properties and found that the Au-NPs become positively charged because of photoelectron emission, evidenced by spectral shifts to higher binding energy. Upon illumination with light that can be absorbed by the organic semiconductors, dynamic charge neutrality of the Au-NPs could be re-established through electron transfer from excitons. The light-controlled charge state of the Au-NPs could add optical addressability to memory elements

  12. Gold monetization and gold discipline

    OpenAIRE

    Robert P. Flood; Peter M. Garber

    1981-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  13. Bounds on the g/sub K//sub N//sub Σ/ 2 coupling constant from positivity and charge-exchange data

    International Nuclear Information System (INIS)

    Antolin, J.

    1987-01-01

    Positivity of the imaginary part of the forward K - n elastic amplitude on the unphysical cut allows the calculation of bounds on the g/sub K//sub N//sub Σ/ 2 coupling constant using the forward differential cross sections of the charge-exchange reaction K - p→K-bar 0 n, the scarce K - n real-part data, and a Stieltjes parametrization of the K - p real-part data. The bounds on the coupling constant are 2.11 2 - n amplitude: (0.35 +- 0.05) +- (0.16 +- 0.04)i GeV/c

  14. Doubly versus singly positively charged oxygen ions back-scattered from a silicon surface under dynamic O2+ bombardment

    International Nuclear Information System (INIS)

    Franzreb, Klaus; Williams, Peter; Loerincik, Jan; Sroubek, Zdenek

    2003-01-01

    Mass-resolved (and emission-charge-state-resolved) low-energy ion back-scattering during dynamic O 2 + bombardment of a silicon surface was applied in a Cameca IMS-3f secondary ion mass spectrometry (SIMS) instrument to determine the bombarding energy dependence of the ratio of back-scattered O 2+ versus O + . While the ratio of O 2+ versus O + drops significantly at reduced bombarding energies, O 2+ back-scattered from silicon was still detectable at an impact energy (in the lab frame) as low as about 1.6 keV per oxygen atom. Assuming neutralization prior to impact, O 2+ ion formation in an asymmetric 16 O→ 28 Si collision is expected to take place via 'collisional double ionization' (i.e. by promotion of two outer O 2p electrons) rather than by the production of an inner-shell (O 2s or O 1s) core hole followed by Auger-type de-excitation during or after ejection. A molecular orbital (MO) correlation diagram calculated for a binary 'head-on' O-Si collision supports this interpretation

  15. Adsorption of a linear polyelectrolyte on a gold electrode

    NARCIS (Netherlands)

    Barten, D.; Kleijn, J.M.; Cohen Stuart, M.A.

    2003-01-01

    The adsorption of quaternized poly-2-vinyl pyridine (PVP+), which has a fixed charge per monomer, onto a gold electrode was investigated using reflectometry. The double layer charge and potential of the gold substrate were controlled by means of either the solution pH or by applying an external

  16. Hard X-ray polarimetry with position sensitve germanium detectors. Studies of the recombination transitions into highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav

    2005-07-01

    In this work a first study of the photon polarization for the process of radiative recombination has been performed. This was done at the ESR storage ring at GSI for uranium ions colliding with N2 at various collision energies. For this measurement a high purity Ge Pixel Detector with a 4 x 4 segmentation matrix was applied. The investigation was performed at the Gas-jet target of the ESR. The detector was placed at 60 and 90 observation angles. The sensitivity of the Compton scattering effect to the linear polarization of the X-Ray radiation was employed for the polarization measurement. Detailed investigations of the scattering and geometrical effects inside the detector were performed in order to develop a method to interpret the experimental data and extract the degree of the linear polarization in the hard X-Ray regime with a high precision. A special emphasis was given to the geometry of the detector and it's influence on the measured pixel-to-pixel Compton scattering intensities. The developed method enabled to achieve a precision of the order of 10% with the Pixel Detector which is dominated by the statistical uncertainties. The obtained results show a good agreement with the theoretical values derived from the exact relativistic calculations. For the case of the linear polarization of the K-REC photons, the measured data con rm the theoretical prediction that strong depolarization effects occur for high projectile charges in the forward hemisphere. The latter is in disagreement with the nonrelativistic theory which predicts a 100 % polarization regardless of the emission angle. (orig.)

  17. Hard X-ray polarimetry with position sensitve germanium detectors. Studies of the recombination transitions into highly charged ions

    International Nuclear Information System (INIS)

    Tashenov, Stanislav

    2005-01-01

    In this work a first study of the photon polarization for the process of radiative recombination has been performed. This was done at the ESR storage ring at GSI for uranium ions colliding with N2 at various collision energies. For this measurement a high purity Ge Pixel Detector with a 4 x 4 segmentation matrix was applied. The investigation was performed at the Gas-jet target of the ESR. The detector was placed at 60 and 90 observation angles. The sensitivity of the Compton scattering effect to the linear polarization of the X-Ray radiation was employed for the polarization measurement. Detailed investigations of the scattering and geometrical effects inside the detector were performed in order to develop a method to interpret the experimental data and extract the degree of the linear polarization in the hard X-Ray regime with a high precision. A special emphasis was given to the geometry of the detector and it's influence on the measured pixel-to-pixel Compton scattering intensities. The developed method enabled to achieve a precision of the order of 10% with the Pixel Detector which is dominated by the statistical uncertainties. The obtained results show a good agreement with the theoretical values derived from the exact relativistic calculations. For the case of the linear polarization of the K-REC photons, the measured data con rm the theoretical prediction that strong depolarization effects occur for high projectile charges in the forward hemisphere. The latter is in disagreement with the nonrelativistic theory which predicts a 100 % polarization regardless of the emission angle. (orig.)

  18. The infra-red spectrum of the molecular dication (doubly positively charged molecule) D35Cl2+

    International Nuclear Information System (INIS)

    Abusen, R.A.

    1999-07-01

    The ion-beam/laser-beam spectrometer used in this work was designed, built and commissioned for the experimental investigation of doubly charged molecular species [Shiell 1995]. Using this spectrometer the photodissociation spectrum of the X 3 Σ - state of the molecular dication D 35 Cl 2+ was measured in the infrared. It has not yet been possible to assign and fit the observed transitions in the usual way, but comparisons of our spectra with ab-initio generated spectra show good agreement and form the basis for our preliminary assignments. Our preliminary analysis shows a good agreement between the measured spectra and an ab-initio theoretical spectra of the ν = 2-1 band, including the rotational constants and tunneling lifetimes, calculated from the potential energy of Bennett and McNab [1995]. The theoretical spectrum was brought into agreement with the measured spectra by moving its band origin by -21.1 cm -1 . The theoretical rotational constants that give good agreement with the spectrum are (in cm -1 ) B'' = 3.898, D'' = 3.561, H'' = 1.04 x 10 -9 , B' = 3.648, D' = 3.163 x 10 -4 , H' = -9.269 x 10 -8 . The shifted origin of the ν = 2-1 band is 994.3 cm -1 . A Fortran computer program was written to simulate 3Σ-3Σ vibration-rotation spectra. The theoretical spectrum obtained with this computer program has been compared with our measured spectrum. Our experimentally measured line widths and wavenumbers have been compared with the ab-initio theoretical spectrum and a good agreement obtained. This is good evidence that we are observing the ν=2-1 band of D 35 CI 2+ in the ground electronic state (X 3 Σ - state). Good agreement between measured and predicted hyperfine patterns was found using a Fermi contact constant (for the chlorine nucleus) of 190 MHz. (author)

  19. The effect of desulfation of chondroitin sulfate on interactions with positively charged growth factors and upregulation of cartilaginous markers in encapsulated MSCs.

    Science.gov (United States)

    Lim, Jeremy J; Temenoff, Johnna S

    2013-07-01

    Sulfated glycosaminoglycans (GAGs) are known to interact electrostatically with positively charged growth factors to modulate signaling. Therefore, regulating the degree of sulfation of GAGs may be a promising approach to tailor biomaterial carriers for controlled growth factor delivery and release. For this study, chondroitin sulfate (CS) was first desulfated to form chondroitin, and resulting crosslinked CS and chondroitin hydrogels were examined in vitro for release of positively charged model protein (histone) and for their effect on cartilaginous differentiation of encapsulated human mesenchymal stem cells (MSCs). Desulfation significantly increased the release of histone from chondroitin hydrogels (30.6 ± 2.3 μg released over 8 days, compared to natively sulfated CS with 20.2 ± 0.8 μg), suggesting that sulfation alone plays a significant role in modulating protein interactions with GAG hydrogels. MSCs in chondroitin hydrogels significantly upregulated gene expression of collagen II and aggrecan by day 21 in chondrogenic medium (115 ± 100 and 23.1 ± 7.9 fold upregulation of collagen II and aggrecan, respectively), compared to CS hydrogels and PEG-based swelling controls, indicating that desulfation may actually enhance the response of MSCs to soluble chondrogenic cues, such as TGF-β1. Thus, desulfated chondroitin materials present a promising biomaterial tool to further investigate electrostatic GAG/growth factor interactions, especially for repair of cartilaginous tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  1. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  2. Novel use of positively charged nylon transfer membranes for trapping indoleacetic acid or other small anions during efflux from plant tissues

    Science.gov (United States)

    Evans, M. L.; Hangarter, R. P.

    1993-01-01

    Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.

  3. Interaction of cationic porphyrins with DNA: Importance of the number and position of the charges and minimum structural requirements for intercalation

    International Nuclear Information System (INIS)

    Sari, M.A.; Battioni, J.P.; Dupre, D.; Mansuy, D.; Le Pecq, J.B.

    1990-01-01

    Thirty-three porphyrins or metalloporphyrins corresponding to the general formula [meso-[N-methyl-4(or 3 or 2)-pyridiniumyl] n (aryl) 4-n porphyrin]M (M = H 2 , Cu II , or ClFe III ), with n = 2-4, have been synthesized and characterized by UV-visible and 1 H NMR spectroscopy and mass spectrometry. These porphyrins differ not only in the number (2-4) and position of their cationic charges but also in the steric requirements to reach even temporarily a completely planar geometry. Interaction of these porphyrins or metalloporphyrins with calf thymus DNA has been studied and their apparent affinity binding constants have been determined by use of a competition method with ethidium bromide which was applicable not only for all the free base porphyrins but also for their copper (II) or iron (III) complexes. Whatever their mode of binding may be, their apparent affinity binding constants were relatively high and a linear decrease of log K app with the number of porphyrin charges was observed. Studies of porphyrin-DNA interactions by UV and fluorescence spectroscopy, viscosimetry, and fluorescence energy transfer experiments showed that not only the tetracationic meso-tetrakis[N-methyl-4(or 3)-pyridiniumyl]porphyrins, which both involved four freely rotating meso-aryl groups, but also the corresponding tri- and dicationic porphyrins were able to intercalate into calf thymus DNA. These results show that only half of the porphyrin ring is necessary for intercalation to occur

  4. Gold--a controversial sensitizer

    DEFF Research Database (Denmark)

    Bruze, M; Andersen, Klaus Ejner

    1999-01-01

    allergy to gold sodium thiosulfate were published at the beginning of the 1990s, the allergic nature of the reported positive patch test reactions to gold was questioned. The major argument for such questioning was the lack of demonstrable clinical relevance in most positive reactors. A major reason......Until recently, gold allergy was considered to be extremely rare. Gold has been used and worshipped for thousands of years without any obvious complaints of skin problems, either in those participating in mining and other ways of prospecting, or in those wearing jewellery. When studies on contact...... for the questioning may have been confusion in differentiating between contact allergy and allergic contact dermatitis. To arrive at a diagnosis of allergic contact dermatitis, 3 steps have, in principle, to be fulfilled: (i) establishment of contact allergy; (ii) demonstration of present exposure; (iii) assessment...

  5. Impact of the interaction with the positive charge in adsorption of benzene and other organic compounds from aqueous solutions on carbons

    Science.gov (United States)

    Terzyk, Artur P.; Ćwiertnia, Magdalena S.; Wiśniewski, Marek; Gauden, Piotr A.; Rychlicki, Gerhard; Szymański, Grzegorz S.

    2007-02-01

    We present the results of benzene adsorption at the acidic pH level determined on the series of chemically modified activated carbons and at three temperatures. The influence of carbon surface chemical composition on benzene adsorption is discussed. It is shown that the decrease in the pH level from 7 up to 1.5 increases benzene adsorption and the only exception is carbon modified with gaseous ammonia. Basing on the results of current work and those published previously (for phenol, paracetamol, acetanilide and aniline) and using the results of quantum chemistry calculations (DFT, Gaussian 98) we show, that the value of the energy of interaction with unit positive charge is crucial during the analysis of the influence of pH level on adsorption. Obtained results allow to predict the changes in adsorption of aromatics on carbons with the decrease in the pH level.

  6. Modulational instability of ultra-low-frequency shear dust Alfvén waves in a plasma medium of positive and negatively charged dust fluids

    International Nuclear Information System (INIS)

    Mamun, A. A.

    2014-01-01

    The propagation of finite amplitude ultra-low-frequency shear dust Alfvén (SDA) waves, and their modulational instability in a magnetized plasma medium of positive and negatively charged dust fluids have been theoretically investigated by using the reductive perturbation method. The derivative nonlinear Schrödinger equation is derived to examine the stability analysis of such SDA waves. It is found that the SDA waves propagating in such an opposite polarity dust plasma medium are modulationally unstable, and that the instability criterion and the growth rate of these unstable SDA waves in such a novel opposite polarity dust plasma medium are found to be significantly different from those in electron–ion or electron–positron plasma media. The implications of the present investigation in different space environments and laboratory devices are briefly discussed.

  7. A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells.

    Science.gov (United States)

    Deryabin, Dmitry G; Efremova, Ludmila V; Vasilchenko, Alexey S; Saidakova, Evgeniya V; Sizova, Elena A; Troshin, Pavel A; Zhilenkov, Alexander V; Khakina, Ekaterina A; Khakina, Ekaterina E

    2015-08-08

    The cause-effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate's size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characteristics affect the bioenergetics of freshwater Escherichia coli and marine Photobacterium phosphoreum bacteria. Dynamic light scattering, laser Doppler micro-electrophoresis, agarose gel electrophoresis, atomic force microscopy, and bioluminescence inhibition assay were used to characterize the fullerene aggregation behavior in aqueous solution and their interaction with the bacterial cell surface, following zeta potential changes and toxic effects. Dynamic light scattering results indicated the formation of self-assembled [60]fullerene aggregates in aqueous suspensions. The measurement of the zeta potential of the particles revealed that they have different surface charges. The relationship between these physicochemical characteristics was presented as an exponential regression that correctly described the dependence of the aggregate's size of penta-substituted [60]fullerene derivatives in salt-free aqueous suspension from zeta potential value. The prevalence of DLVO-related effects was shown in salt-added aqueous suspension that decreased zeta potential values and affected the aggregation of [60]fullerene derivatives expressed differently for individual compounds. A bioluminescence inhibition assay demonstrated that the toxic effect of [60]fullerene derivatives against E. coli cells was strictly determined by their positive zeta potential charge value being weakened against P. phosphoreum cells in an aquatic system of high salinity. Atomic force microscopy data suggested that the

  8. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  9. Enhanced Stability of Gold Magnetic Nanoparticles with Poly(4-styrenesulfonic acid-co-maleic acid): Tailored Optical Properties for Protein Detection

    Science.gov (United States)

    Zhang, Xiaomei; Zhang, Qinlu; Ma, Ting; Liu, Qian; Wu, Songdi; Hua, Kai; Zhang, Chao; Chen, Mingwei; Cui, Yali

    2017-09-01

    Gold magnetic nanoparticles (GoldMag) have attracted great attention due to their unique physical and chemical performances combining those of individual Fe3O4 and Au nanoparticles. Coating GoldMag with polymers not only increases the stability of the composite particles suspended in buffer but also plays a key role for establishing point-of-care optical tests for clinically relevant biomolecules. In the present paper, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), a negatively charged polyelectrolyte with both sulfonate and carboxylate anionic groups, was used to coat the positively charged GoldMag (30 nm) surface. The PSS-MA-coated GoldMag complex has a stable plasmon resonance adsorption peak at 544 nm. A pair of anti-D-dimer antibodies has been coupled on this GoldMag composite nanoparticle surface, and a target protein, D-dimer was detected, in the range of 0.3-6 μg/mL. The shift of the characteristic peak, caused by the assembly of GoldMag due to the formation of D-dimer-antibody sandwich bridges, allowed the detection.

  10. The electron trap parameter extraction-based investigation of the relationship between charge trapping and activation energy in IGZO TFTs under positive bias temperature stress

    Science.gov (United States)

    Rhee, Jihyun; Choi, Sungju; Kang, Hara; Kim, Jae-Young; Ko, Daehyun; Ahn, Geumho; Jung, Haesun; Choi, Sung-Jin; Myong Kim, Dong; Kim, Dae Hwan

    2018-02-01

    Experimental extraction of the electron trap parameters which are associated with charge trapping into gate insulators under the positive bias temperature stress (PBTS) is proposed and demonstrated for the first time in amorphous indium-gallium-zinc-oxide thin-film transistors. This was done by combining the PBTS/recovery time-evolution of the experimentally decomposed threshold voltage shift (ΔVT) and the technology computer-aided design (TCAD)-based charge trapping simulation. The extracted parameters were the trap density (NOT) = 2.6 × 1018 cm-3, the trap energy level (ΔET) = 0.6 eV, and the capture cross section (σ0) = 3 × 10-19 cm2. Furthermore, based on the established TCAD framework, the relationship between the electron trap parameters and the activation energy (Ea) is comprehensively investigated. It is found that Ea increases with an increase in σ0, whereas Ea is independent of NOT. In addition, as ΔET increases, Ea decreases in the electron trapping-dominant regime (low ΔET) and increases again in the Poole-Frenkel (PF) emission/hopping-dominant regime (high ΔET). Moreover, our results suggest that the cross-over ΔET point originates from the complicated temperature-dependent competition between the capture rate and the emission rate. The PBTS bias dependence of the relationship between Ea and ΔET suggests that the electric field dependence of the PF emission-based electron hopping is stronger than that of the thermionic field emission-based electron trapping.

  11. Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157:H7

    International Nuclear Information System (INIS)

    Ngo, Vo Ke Thanh; Nguyen, Hoang Phuong Uyen; Huynh, Trong Phat; Tran, Nguyen Nguyen Pham; Lam, Quang Vinh; Huynh, Thanh Dat

    2015-01-01

    Gold nanoparticles (AuNPs) of 15–20 nm size range have attracted attention for producing smart sensing devices as diagnostic tools in biomedical sciences. Citrate capped AuNPs are negatively charged, which can be exploited for electrostatic interactions with some positively charged biomolecules like antibodies. In this paper we describe a method for the low cost synthesis of gold nanoparticles using sodium citrate (Na_3Ct) reduction in chloroauric acid (HAuCl_4.3H_2O) by microwave heating (diameter about 13–15 nm). Gold nanoparticles were functionalized with surface activation by 3-mercaptopropionic acid for attaching antibody. These nanoparticles were then reacted with anti-E. coli O157:H7, using N-hydroxy succinimide (NHS) and carbondimide hydrochloride (EDC) coupling chemistry. The product was characterized with UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and zeta potential. In addition, the binding of antibody-gold nanoparticles conjugates to E. coli O157:H7 was demonstrated using transmission electron microscopy (TEM). (paper)

  12. Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle-particle-surface interactions.

    Science.gov (United States)

    Nepal, Dhriti; Onses, M Serdar; Park, Kyoungweon; Jespersen, Michael; Thode, Christopher J; Nealey, Paul F; Vaia, Richard A

    2012-06-26

    The synergy of self- and directed-assembly processes and lithography provides intriguing avenues to fabricate translationally ordered nanoparticle arrangements, but currently lacks the robustness necessary to deliver complex spatial organization. Here, we demonstrate that interparticle spacing and local orientation of gold nanorods (AuNR) can be tuned by controlling the Debye length of AuNR in solution and the dimensions of a chemical contrast pattern. Electrostatic and hydrophobic selectivity for AuNR to absorb to patterned regions of poly(2-vinylpyridine) (P2VP) and polystyrene brushes and mats was demonstrated for AuNR functionalized with mercaptopropane sulfonate (MS) and poly(ethylene glycol), respectively. For P2VP patterns of stripes with widths comparable to the length of the AuNR, single- and double-column arrangements of AuNR oriented parallel and perpendicular to the P2VP line were obtained for MS-AuNR. Furthermore, the spacing of the assembled AuNR was uniform along the stripe and related to the ionic strength of the AuNR dispersion. The different AuNR arrangements are consistent with predictions based on maximization of packing of AuNR within the confined strip.

  13. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  14. Goldenphilicity: Luminescent gold compounds

    International Nuclear Information System (INIS)

    Sansores, L.E.

    2002-01-01

    In the solids and molecules different types of bonds are presented depending on the involved atoms, covalent bonds are common among elements of open shell, where more bond orbitals are filled than anti bond orbitals. It is expected that ionic bonds among closed shell atoms which have charges of opposite sign. Bonds type Van der Waals are presented among molecules which have a bipolar moment. It would not be expected bonds among zero charge species, or more generally with the same nominal charge and in any case the attractive forces would be very small. In fact it is expected that two metallic cations to be repelled each other. There recently is evidence that in organic or organometallic compounds could exist attractive interactions between two cations of the d 8 -d 10 -s 2 families. These bonds are weak but stronger than those of Van der Waals. They are compared with the hydrogen bonds. In this work it was reviewed some examples in which the goldenphilicity plays an important role in the luminescence that the gold complexes present. Examples of mono, bi and trinuclear and the structures that these organometallic compounds could take are examined. (Author)

  15. Charged particle detector

    International Nuclear Information System (INIS)

    Hagen, R.D.

    1975-01-01

    A device for detecting the emission of charged particles from a specimen is described. The specimen is placed within an accumulator means which statically accumulates any charged particles emitted from the specimen. The accumulator means is pivotally positioned between a first capacitor plate having a positive electrical charge and a second capacitor plate having a negative electrical charge. The accumulator means is attracted to one capacitor plate and repelled from the other capacitor plate by an amount proportional to the amount and intensity of charged particles emitted by the specimen. (auth)

  16. Influence of the pH value of a colloidal gold solution on the absorption spectra of an LSPR-assisted sensor

    International Nuclear Information System (INIS)

    Zhu, Jin; Li, Wenbin; Zhu, Mao; Zhang, Wei; Niu, Wencheng; Liu, Guohua

    2014-01-01

    The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates that self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH

  17. Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes.

    Science.gov (United States)

    Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto

    2017-02-08

    Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.

  18. Positively-charged semi-tunnel is a structural and surface characteristic of polyphosphate-binding proteins: an in-silico study.

    Directory of Open Access Journals (Sweden)

    Zheng Zachory Wei

    Full Text Available Phosphate is essential for all major life processes, especially energy metabolism and signal transduction. A linear phosphate polymer, polyphosphate (polyP, linked by high-energy phosphoanhydride bonds, can interact with various proteins, playing important roles as an energy source and regulatory factor. However, polyP-binding structures are largely unknown. Here we proposed a putative polyP binding site, a positively-charged semi-tunnel (PCST, identified by surface electrostatics analyses in polyP kinases (PPKs and many other polyP-related proteins. We found that the PCSTs in varied proteins were folded in different secondary structure compositions. Molecular docking calculations revealed a significant value for binding affinity to polyP in PCST-containing proteins. Utilizing the PCST identified in the β subunit of PPK3, we predicted the potential polyP-binding domain of PPK3. The discovery of this feature facilitates future searches for polyP-binding proteins and discovery of the mechanisms for polyP-binding activities. This should greatly enhance the understanding of the many physiological functions of protein-bound polyP and the involvement of polyP and polyP-binding proteins in various human diseases.

  19. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    Science.gov (United States)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further

  20. Density functional study of structural and electronic properties of bimetallic silver-gold clusters: Comparison with pure gold and silver clusters

    Science.gov (United States)

    Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo

    2002-08-01

    Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic

  1. An ab initio study of the field-induced position change of a C60 molecule adsorbed on a gold tip

    DEFF Research Database (Denmark)

    Stadler, Robert; Kubatkin, S.; Bjørnholm, Thomas

    2007-01-01

    lightning rod effect which might explain the switching between configurations found in experiments. We also analyse our results for the adsorption energetics in terms of an electrostatic expression for the total energy, where the dependence of the polarizability of the junction on the position of the C60...

  2. Toward efficient modification of large gold nanoparticles with DNA

    NARCIS (Netherlands)

    Gill, R.; Göeken, Kristian L; Subramaniam, V.

    2014-01-01

    DNA-coated gold nanoparticles are one of the most researched nano-bio hybrid systems. Traditionally their synthesis has been a long and tedious process, involving slow salt addition and long incubation steps. This stems from the fact that both DNA and gold particles are negatively charged, therefore

  3. Using gold nanostars modified pencil graphite electrode as a novel substrate for design a sensitive and selective Dopamine aptasensor

    Energy Technology Data Exchange (ETDEWEB)

    Talemi, Rasoul Pourtaghavi, E-mail: rasoulpourtaghavi@gmail.com [Faculty of Chemistry, Kharazmi University, Tehran (Iran, Islamic Republic of); Mousavi, Seyed Mehdi [Faculty of Chemistry, Kharazmi University, Tehran (Iran, Islamic Republic of); Afruzi, Hossein [Department of Chemistry, Faculty of Science, Lorestan University, Lorestan (Iran, Islamic Republic of)

    2017-04-01

    For the first time, gold nanostars (GNS) were applied for electrostatic and covalent immobilizing a thiol modified Dopamine aptamer on the pencil graphite electrode and signal amplification. Dopamine aptamer was immobilized on the gold nanostars through electrostatic interaction between negatively charged phosphate groups of aptamer and positively charged gold nanostars and Au−S well known covalent interaction. In the presence of Dopamine in the test solution, the charge transfer resistance (R{sub CT}) on the electrode surface increased with the increase of the Dopamine concentration due to specific interaction between Dopamine aptamer and Dopamine molecules, which made a barrier for electrons and inhibited the electron-transfer. So, the proposed approach showed a high sensitivity and a wide linearity to Dopamine in the range from 1.0 (± 0.1) to 100.0 (± 0.3) ng L{sup −1} (ppt) with detection and quantification limits of 0.29 (± 0.10) and 0.90 (± 0.08) ng L{sup −1} (ppt), respectively. Finally, the sensor was successfully used for determination of Dopamine in biological (human blood plasma and urine) samples. The results open up the path for manufacturing cost effective aptasensors for other biomedical applications. - Highlights: • A novel impedimetric aptasensor was prepared for dopamine ultra-trace determination. • Gold nanostar used for electrostatic and covalent immobilization of a thiolated dopamine aptamer. • The proposed aptasensor had high sensitivity, specificity, and regeneration ability.

  4. Using gold nanostars modified pencil graphite electrode as a novel substrate for design a sensitive and selective Dopamine aptasensor

    International Nuclear Information System (INIS)

    Talemi, Rasoul Pourtaghavi; Mousavi, Seyed Mehdi; Afruzi, Hossein

    2017-01-01

    For the first time, gold nanostars (GNS) were applied for electrostatic and covalent immobilizing a thiol modified Dopamine aptamer on the pencil graphite electrode and signal amplification. Dopamine aptamer was immobilized on the gold nanostars through electrostatic interaction between negatively charged phosphate groups of aptamer and positively charged gold nanostars and Au−S well known covalent interaction. In the presence of Dopamine in the test solution, the charge transfer resistance (R CT ) on the electrode surface increased with the increase of the Dopamine concentration due to specific interaction between Dopamine aptamer and Dopamine molecules, which made a barrier for electrons and inhibited the electron-transfer. So, the proposed approach showed a high sensitivity and a wide linearity to Dopamine in the range from 1.0 (± 0.1) to 100.0 (± 0.3) ng L −1 (ppt) with detection and quantification limits of 0.29 (± 0.10) and 0.90 (± 0.08) ng L −1 (ppt), respectively. Finally, the sensor was successfully used for determination of Dopamine in biological (human blood plasma and urine) samples. The results open up the path for manufacturing cost effective aptasensors for other biomedical applications. - Highlights: • A novel impedimetric aptasensor was prepared for dopamine ultra-trace determination. • Gold nanostar used for electrostatic and covalent immobilization of a thiolated dopamine aptamer. • The proposed aptasensor had high sensitivity, specificity, and regeneration ability.

  5. A 90-day study of sub-chronic oral toxicity of 20 nm positively charged zinc oxide nanoparticles in Sprague Dawley rats

    Directory of Open Access Journals (Sweden)

    Park HS

    2014-12-01

    Full Text Available Hark-Soo Park,1 Seon-Ju Kim,1 Taek-Jin Lee,1 Geon-Yong Kim,1 EunHo Meang,1 Jeong-Sup Hong,1 Su-Hyon Kim,1 Sang-Bum Koh,1 Seung-Guk Hong,1 Yle-Shik Sun,1 Jin Seok Kang,2 Yu-Ri Kim,3 Meyoung-Kon Kim,3 Jayoung Jeong,4 Jong-Kwon Lee,4 Woo-Chan Son,5 Jae-Hak Park61General Toxicology Team, Korea Testing and Research Institute, Seoul, 2Department of Biomedical Laboratory Science, Namseoul University, Cheonan, 3Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, 4National Institute of Food and Drug Safety Evaluation, Seoul, 5Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 6Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, KoreaPurpose: The study reported here was conducted to determine the systemic oral toxicity and to find the no-observed-adverse-effect level of 20 nm positively charged zinc oxide (ZnOSM,20(+ nanoparticles in Sprague Dawley rats for 90 days.Methods: For the 90-day toxicity study, the high dose was set as 500 mg per kg of body weight (mg/kg and the middle and low dose were set to 250 mg/kg and 125 mg/kg, respectively. The rats were held for a 14-day recovery period after the last administration, to observe for the persistence or reduction of any toxic effects. A distributional study was also carried out for the systemic distribution of ZnOSM,20(+ NPs.Results: No rats died during the test period. There were no significant clinical changes due to the test article during the experimental period in functional assessment, body weight, food and water consumption, ophthalmological testing, urine analysis, necropsy findings, or organ weights, but salivation was observed immediately after administration in both sexes. The total red blood cell count was increased, and hematocrit, albumin, mean cell volume, mean cell hemoglobin, and mean cell hemoglobin concentration were decreased significantly compared with

  6. Sol-gel niobia sorbent with a positively charged octadecyl ligand providing enhanced enrichment of nucleotides and organophosphorus pesticides in capillary microextraction for online HPLC analysis.

    Science.gov (United States)

    Kesani, Sheshanka; Malik, Abdul

    2018-04-01

    A niobia-based sol-gel organic-inorganic hybrid sorbent carrying a positively charged C 18 ligand (Nb 2 O 5 -C 18 (+ve)) was synthesized to achieve enhanced enrichment capability in capillary microextraction of organophosphorus compounds (which include organophosphorus pesticides and nucleotides) before their online analysis by high-performance liquid chromatography. The sorbent was designed to simultaneously provide three different types of molecular level interactions: electrostatic, Lewis acid-base, and van der Waals interactions. To understand relative contributions of various molecular level analyte-sorbent interactions in the extraction process, two other sol-gel niobia sorbents were also created: (a) a purely inorganic sol-gel niobia sorbent (Nb 2 O 5 ) and (b) an organic-inorganic hybrid sol-gel niobia sorbent carrying an electrically neutral-bonded octadecyl ligand (Nb 2 O 5 -C 18 ). The extraction efficiency of the created sol-gel niobia sorbent (Nb 2 O 5 -C 18 (+ve)) was compared with that of analogously designed and synthesized titania-based sol-gel sorbent (TiO 2 -C 18 (+ve)), taking into consideration that titania-based sorbents present state-of-the-art extraction media for organophosphorus compounds. In capillary microextraction with high-performance liquid chromatography analysis, Nb 2 O 5 -C 18 (+ve) had shown 40-50% higher specific extraction values (a measure of extraction efficiency) over that of TiO 2 -C 18 (+ve). Compared to TiO 2 -C 18 (+ve), Nb 2 O 5 -C 18 (+ve) also provided superior analyte desorption efficiency (96 vs. 90%) during the online release of the extracted organophosphorus pesticides from the sorbent coating in the capillary microextraction capillary to the chromatographic column using reversed-phase high-performance liquid chromatography mobile phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Positively charged residues at the five-fold symmetry axis of cell culture-adapted foot-and-mouth disease virus permit novel receptor interactions.

    Science.gov (United States)

    Berryman, Stephen; Clark, Stuart; Kakker, Naresh K; Silk, Rhiannon; Seago, Julian; Wadsworth, Jemma; Chamberlain, Kyle; Knowles, Nick J; Jackson, Terry

    2013-08-01

    Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-(Q)110(K)). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (α5β1 and αvβ5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-(Q)110(K) substitution did not use these integrins. In contrast, the VP1-(Q)110(K) substitution appeared to result in enhanced interactions with αvβ6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use αvβ6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of αvβ6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable.

  8. A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

    Science.gov (United States)

    Curtis, Colin K; Marek, Antonin; Smirnov, Alex I

    2017-01-01

    This article reports a comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively (hydroxylated) or negatively (carboxylated) charged nanodiamonds (ND). Immersion in −ND suspensions resulted in a decrease in the macroscopic friction coefficients to values in the range 0.05–0.1 for both stainless steel and alumina, while +ND suspensions yielded an increase in friction for stainless steel contacts but little to no increase for alumina contacts. Quartz crystal microbalance (QCM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements were employed to assess nanoparticle uptake, surface polishing, and resistance to solid–liquid interfacial shear motion. The QCM studies revealed abrupt changes to the surfaces of both alumina and stainless steel upon injection of –ND into the surrounding water environment that are consistent with strong attachment of NDs and/or chemical changes to the surfaces. AFM images of the surfaces indicated slight increases in the surface roughness upon an exposure to both +ND and −ND suspensions. A suggested mechanism for these observations is that carboxylated −NDs from aqueous suspensions are forming robust lubricious deposits on stainless and alumina surfaces that enable gliding of the surfaces through the −ND suspensions with relatively low resistance to shear. In contrast, +ND suspensions are failing to improve tribological performance for either of the surfaces and may have abraded existing protective boundary layers in the case of stainless steel contacts. This study therefore reveals atomic scale details associated with systems that exhibit starkly different macroscale tribological properties, enabling future efforts to predict and design complex lubricant interfaces. PMID:29046852

  9. Positively Charged Residues at the Five-Fold Symmetry Axis of Cell Culture-Adapted Foot-and-Mouth Disease Virus Permit Novel Receptor Interactions

    Science.gov (United States)

    Berryman, Stephen; Clark, Stuart; Kakker, Naresh K.; Silk, Rhiannon; Seago, Julian; Wadsworth, Jemma; Chamberlain, Kyle; Knowles, Nick J.

    2013-01-01

    Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-Q110K). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (α5β1 and αvβ5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-Q110K substitution did not use these integrins. In contrast, the VP1-Q110K substitution appeared to result in enhanced interactions with αvβ6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use αvβ6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of αvβ6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable. PMID:23740982

  10. A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

    Directory of Open Access Journals (Sweden)

    Colin K. Curtis

    2017-09-01

    Full Text Available This article reports a comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively (hydroxylated or negatively (carboxylated charged nanodiamonds (ND. Immersion in −ND suspensions resulted in a decrease in the macroscopic friction coefficients to values in the range 0.05–0.1 for both stainless steel and alumina, while +ND suspensions yielded an increase in friction for stainless steel contacts but little to no increase for alumina contacts. Quartz crystal microbalance (QCM, atomic force microscopy (AFM and scanning electron microscopy (SEM measurements were employed to assess nanoparticle uptake, surface polishing, and resistance to solid–liquid interfacial shear motion. The QCM studies revealed abrupt changes to the surfaces of both alumina and stainless steel upon injection of –ND into the surrounding water environment that are consistent with strong attachment of NDs and/or chemical changes to the surfaces. AFM images of the surfaces indicated slight increases in the surface roughness upon an exposure to both +ND and −ND suspensions. A suggested mechanism for these observations is that carboxylated −NDs from aqueous suspensions are forming robust lubricious deposits on stainless and alumina surfaces that enable gliding of the surfaces through the −ND suspensions with relatively low resistance to shear. In contrast, +ND suspensions are failing to improve tribological performance for either of the surfaces and may have abraded existing protective boundary layers in the case of stainless steel contacts. This study therefore reveals atomic scale details associated with systems that exhibit starkly different macroscale tribological properties, enabling future efforts to predict and design complex lubricant interfaces.

  11. Covariance of charged amino acids at positions 322 and 440 of HIV-1 Env contributes to coreceptor specificity of subtype B viruses, and can be used to improve the performance of V3 sequence-based coreceptor usage prediction algorithms.

    Directory of Open Access Journals (Sweden)

    Kieran Cashin

    Full Text Available The ability to determine coreceptor usage of patient-derived human immunodeficiency virus type 1 (HIV-1 strains is clinically important, particularly for the administration of the CCR5 antagonist maraviroc. The envelope glycoprotein (Env determinants of coreceptor specificity lie primarily within the gp120 V3 loop region, although other Env determinants have been shown to influence gp120-coreceptor interactions. Here, we determined whether conserved amino acid alterations outside the V3 loop that contribute to coreceptor usage exist, and whether these alterations improve the performance of V3 sequence-based coreceptor usage prediction algorithms. We demonstrate a significant covariant association between charged amino acids at position 322 in V3 and position 440 in the C4 Env region that contributes to the specificity of HIV-1 subtype B strains for CCR5 or CXCR4. Specifically, positively charged Lys/Arg at position 322 and negatively charged Asp/Glu at position 440 occurred more frequently in CXCR4-using viruses, whereas negatively charged Asp/Glu at position 322 and positively charged Arg at position 440 occurred more frequently in R5 strains. In the context of CD4-bound gp120, structural models suggest that covariation of amino acids at Env positions 322 and 440 has the potential to alter electrostatic interactions that are formed between gp120 and charged amino acids in the CCR5 N-terminus. We further demonstrate that inclusion of a "440 rule" can improve the sensitivity of several V3 sequence-based genotypic algorithms for predicting coreceptor usage of subtype B HIV-1 strains, without compromising specificity, and significantly improves the AUROC of the geno2pheno algorithm when set to its recommended false positive rate of 5.75%. Together, our results provide further mechanistic insights into the intra-molecular interactions within Env that contribute to coreceptor specificity of subtype B HIV-1 strains, and demonstrate that incorporation

  12. Scanning tunneling microscopy studies of glucose oxidase on gold surface

    International Nuclear Information System (INIS)

    Losic, D.; Shapter, J.G.; Gooding, J.J.

    2002-01-01

    Full text: Three immobilization methods have been used for scanning tunneling microscopy (STM) studies of glucose oxidase (GOD) on gold. They are based on a) physical adsorption from solution, b) microcontact printing and c) covalent bonding onto self-assembled monolayers (SAM) of 3-mercaptopropionic acid (MPA). The STM images are used to provide information about the organization of individual GOD molecules and more densely packed monolayers of GOD on electrode surfaces, thus providing information of the role of interfacial structure on biosensor performance. The use of atomically flat gold substrates enables easy distinction of deposited enzyme features from the flat gold substrate. Microcontact printing is found to be a more reliable method than adsorption from solution for preparing individual GOD molecules on the gold surface STM images of printed samples reveal two different shapes of native GOD molecules. One is a butterfly shape with dimensions of 10 ± 1 nm x 6 ± 1 nm, assigned to the lying position of molecule while the second is an approximately spherical shape with dimensions of 6.5 ± 1 nm x 5 ± 1nm assigned to a standing position. Isolated clusters of 5 to 6 GOD molecules are also observed. With monolayer coverage, GOD molecules exhibit a tendency to organize themselves into a two dimensional array with adequate sample stability to obtain high-resolution STM images. Within these two-dimensional arrays are clearly seen repeating clusters of five to six enzyme molecules in a unit STM imaging of GOD monolayers covalently immobilized onto SAM (MPA) are considerably more difficult than when the enzyme is adsorbed directly onto the metal. Cluster structures are observed both high and low coverage despite the fact that native GOD is a negatively charged molecule. Copyright (2002) Australian Society for Electron Microscopy Inc

  13. Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method

    Science.gov (United States)

    Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Ran, Fen

    2017-09-01

    Nano-Co3O4 decorated with gold nanoparticles is synthesized by a simple method of in-situ reduction of HAuCl4 by sodium citrate for energy storage application, and the effect of gold content in the product on electrochemical performance is investigated in detail. Introducing gold nanoparticles into nano-Co3O4 bulk would contribute to reduce internal resistance of charge transmission. The results show that after in-situ reduction reaction gold nanoparticles imbed uniformly into nano-Co3O4 with irregular nanoparticles. The gold nanoparticles decorated nano-Co3O4 exhibits specific capacitance of 681 F g-1 higher than that of pristine Co3O4 of 368 F g-1. It is interesting that a good cycle life with the specific capacitance retention of 83.1% is obtained after 13000 cycles at 5 A g-1, which recovers to initial specific capacitance value when the test current density is turned to 2 A g-1. In addition, the device of asymmetric supercapacitor, assembled with gold nanoparticles decorated nano-Co3O4 as the positive electrode and activated carbon as the negative electrode, exhibits good energy density of 25 Wh kg-1, which is comparable to the asymmetric device assembled with normal nano-Co3O4, or the symmetric device assembled just with activated carbon.

  14. Space-charge effects of the proportional counters in a multiple-ionization chamber

    International Nuclear Information System (INIS)

    Mang, M.

    1993-01-01

    At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z 4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected

  15. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  16. Photosynthetic light reactions at the gold interface

    NARCIS (Netherlands)

    Kamran, Muhammad

    2014-01-01

    In the project described in this thesis we studied a simple bio-electronic device for solar energy conversion by surface-assembly of photosynthetic pigment-protein complexes on a bare gold-electrode. Optical excitation of the photosynthetic pigments gives rise to charge separation in the so-called

  17. Fabrication of highly active and cost effective SERS plasmonic substrates by electrophoretic deposition of gold nanoparticles on a DVD template

    Energy Technology Data Exchange (ETDEWEB)

    Leordean, Cosmin; Marta, Bogdan; Gabudean, Ana-Maria; Focsan, Monica; Botiz, Ioan; Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro

    2015-09-15

    Highlights: • Simple and cost effective electrophoretic method to fabricate plasmonic substrates. • SERS performance at three different excitation laser lines. • Promising applicability in SERS based biosensing. - Abstract: In this work we present a simple, rapid and cost effective method to fabricate highly active SERS substrates. This method consists in an electrophoretic deposition of gold nanoparticles on a metallic nanostructured template of a commercial digital versatile disk (DVD). The negatively charged gold nanoparticles self-assemble on the positively charged DVD metallic film connected to a positive terminal of a battery, due to the influence of the electric field. When gold nanoparticles self-assembled on DVD metallic film, a 10-fold additional enhancement of Raman signal was observed when compared with the case of GNPs self-assembled on a polycarbonate DVD substrate only. Finite-difference time-domain simulations demonstrated that the additional electromagnetic field arising in the hot-spots created between gold nanoparticles and DVD metallic film induces an additional enhancement of the Raman signal. SERS efficiency of the fabricated plasmonic substrate was successfully demonstrated through detection of para-aminothiophenol molecule with three different excitation laser lines (532, 633 and 785 nm). The enhancement factor was calculated to be 10{sup 6} and indicates that plasmonic substrates fabricated through this method could be a promising platform for future SERS based sensors.

  18. SN38 conjugated hyaluronic acid gold nanoparticles as a novel system against metastatic colon cancer cells.

    Science.gov (United States)

    Hosseinzadeh, Hosniyeh; Atyabi, Fatemeh; Varnamkhasti, Behrang Shiri; Hosseinzadeh, Reza; Ostad, Seyed Nasser; Ghahremani, Mohammad Hossein; Dinarvand, Rassoul

    2017-06-30

    Combination of chemotherapy and photothermal therapy has been proposed for better treatment of metastatic colon cancer. In this study SN38, a highly potent cytotoxic agent, was conjugated to negatively charged hyaluronic acid (HA), which was deposited on the surface of the positively charged gold nanoparticles via electrostatic interaction. The drug conjugation and its interaction with gold nanoparticles were verified by 1 H NMR and UV-vis spectroscopies, respectively. The prepared SN38-HA gold NPs are negatively charged spherical nanoparticles with an average size of 75±10nm. In vitro release study revealed that drug release in acidic conditions (pH 5.2) was faster than that in physiological pH. Red light emitting diode (LED, 630nm, 30mW) was used as a light source for photothermal experiments. The drug release in acidic conditions was increased up to 30% using red LED illumination (6min) in comparison with experiment carried out indark. The cytotoxicity study on MUC1 positive HT29, SW480 colon cancer cells and MUC1 negative CHO cells, showed higher toxicity of the nanoparticles on HT29 and SW480 cell lines compared to CHO cells. Confocal microscopy images along with flow cytometry analysis confirm the cytotoxicity results. The incubation time for reaching IC50 decreases from 48h to 24h by LED illumination after nanoparticle treatment. Migratory potential of the HT29 and SW480 cell lines was reduced by co-application of SN38-HA gold NPs and LED radiation. Also anti-proliferative study indicates that LED radiation has increased the cytotoxicity of the nanoparticles and this effect is remained up to 8days. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thermionic field emission in gold nitride Schottky nanodiodes

    Science.gov (United States)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  20. Measuring momentum for charged particle tomography

    Science.gov (United States)

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  1. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  2. Positive photocatalysis of a Diels-Alder reaction by quenching of excited naphthalene-indole charge-transfer complex with cyclohexadiene.

    Science.gov (United States)

    Gonzalez-Béjar, María; Stiriba, Salah-Eddine; Miranda, Miguel A; Pérez-Prieto, Julia

    2007-02-01

    [reaction: see text] Naphthalene photo-catalyzes formation of cyclohexadiene-indole cycloadducts in a wavelength-dependent process. Steady-state irradiation and time-resolved fluorescence studies agree well with NP-InH ground-state charge transfer (CT) complexes as the key species responsible for the photo-catalyzed process.

  3. Adhesion, growth and osteogenic differentiation of human bone marrow mesenchymal stem cells on positively and negatively charged and uncharged ferroelectric crystal surfaces\

    Czech Academy of Sciences Publication Activity Database

    Vandrovcová, Marta; Bačáková, Lucie; Vaněk, Přemysl; Petzelt, Jan

    2016-01-01

    Roč. 19, č. 135 (2016), s. 2-7 ISSN 1429-7248 R&D Projects: GA ČR(CZ) GA15-01558S Institutional support: RVO:67985823 ; RVO:68378271 Keywords : electroactive ceramics * surface charge * cell number * bone matrix mineralization Subject RIV: EI - Biotechnology ; Bionics; BO - Biophysics (FZU-D)

  4. Deciphering the "chemical" nature of the exotic isotopes of hydrogen by the MC-QTAIM analysis: the positively charged muon and the muonic helium as new members of the periodic table.

    Science.gov (United States)

    Goli, Mohammad; Shahbazian, Shant

    2014-04-14

    This report is a primarily survey on the chemical nature of some exotic species containing the positively charged muon and the muonic helium, i.e., the negatively charged muon plus helium nucleus, as exotic isotopes of hydrogen, using the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) analysis, employing ab initio non-Born-Oppenhiemer wavefunctions. Accordingly, the "atoms in molecules" analysis performed on various asymmetric exotic isotopomers of the hydrogen molecule, recently detected experimentally [Science, 2011, 331, 448], demonstrates that both the exotic isotopes are capable of forming atoms in molecules and retaining the identity of hydrogen atoms. Various derived properties of atomic basins containing the muonic helium cast no doubt that apart from its short life time, it is a heavier isotope of hydrogen while the properties of basins containing the positively charged muon are more remote from those of the orthodox hydrogen basins, capable of appreciable donation of electrons as well as large charge polarization. However, with some tolerance, they may also be categorized as hydrogen basins though with a smaller electronegativity. All in all, the present study also clearly demonstrates that the MC-QTAIM analysis is an efficient approach to decipher the chemical nature of species containing exotic constituents, which are difficult to elucidate by experimental and/or alternative theoretical schemes.

  5. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  6. Charge imbalance

    International Nuclear Information System (INIS)

    Clarke, J.

    1981-01-01

    This article provides a long theoretical development of the main ideas of charge imbalance in superconductors. Concepts of charge imbalance and quasiparticle charge are introduced, especially in regards to the use of tunnel injection in producing and detecting charge imbalance. Various mechanisms of charge relaxation are discussed, including inelastic scattering processes, elastic scattering in the presence of energy-gap anisotropy, and various pair-breaking mechanisms. In each case, present theories are reviewed in comparison with experimental data

  7. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  8. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

      Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  9. Nuclear shape transition in light gold isotopes

    International Nuclear Information System (INIS)

    Wallmeroth, K.; Bollen, G.; Dohn, A.; Egelhof, P.; Kroenert, U.; Heyde, K.; Coster, C. de; Wood, J.L.; Kluge, H.J.; European Organization for Nuclear Research, Geneva; European Organization for Nuclear Research, Geneva

    1989-01-01

    The hyperfine structure and isotope shifts of short-lived gold isotopes with 185≤A≤190 and the 11/2 - isomer of 189 Au have been investigated by application of on-line resonance ionization mass spectroscopy. A detection efficiency of ε=10 -8 for gold atoms was observed at a background of about one event per 1000 laser shots. The deduced charge radii show a drastic change between A=187 and A=186 which is interpreted as an onset of strong deformation (β 2 ≅ 0.25) in 186 Au and 185 Au due to the influence of the π1h 9/2 intruder orbital. (orig.)

  10. Inner-Sphere versus Outer-Sphere Coordination of BF4– in a NHC-Gold(I) Complex

    KAUST Repository

    Veenboer, Richard M. P.

    2017-07-20

    The role of counterions in chemistry mediated by gold complexes stretches much further than merely providing charge balance to cationic gold species. Interplay between their basicities and coordination strengths influences interactions with both the gold center and substrates in catalysis. Actual monogold(I) active species are generally believed to be monocoordinated species, formed from the abstraction or the decoordination of a second ligand from precursor complexes, but only a small amount of experimental evidence exists to underpin the existence of these transient species. The formation of a bench-stable neutral IPrCl-gold(I) tetrafluoroborate complex is reported herein. Experimental studies by X-ray diffraction analysis and NMR spectroscopy and theoretical studies by DFT calculations were conducted to determine the composition, structure, and behavior of this complex. The absence of an auxiliary ligand resulted in inner-sphere coordination of the counterion in the solid state. In solution, an equilibrium between two conformations was found with the counterion occupying inner-sphere and outer-sphere positions, respectively. Stoichiometric and catalytic reactivity studies with the tetrafluoroborate complex have been conducted. These confirmed the lability of the inner-sphere coordinating counterion that gives the IPrCl-gold(I) fragment behavior similar to that of related systems.

  11. Inner-Sphere versus Outer-Sphere Coordination of BF4– in a NHC-Gold(I) Complex

    KAUST Repository

    Veenboer, Richard M. P.; Collado, Alba; Dupuy, Sté phanie; Lebl, Tomas; Falivene, Laura; Cavallo, Luigi; Cordes, David B.; Slawin, Alexandra M. Z.; Cazin, Catherine S. J.; Nolan, Steven P.

    2017-01-01

    The role of counterions in chemistry mediated by gold complexes stretches much further than merely providing charge balance to cationic gold species. Interplay between their basicities and coordination strengths influences interactions with both the gold center and substrates in catalysis. Actual monogold(I) active species are generally believed to be monocoordinated species, formed from the abstraction or the decoordination of a second ligand from precursor complexes, but only a small amount of experimental evidence exists to underpin the existence of these transient species. The formation of a bench-stable neutral IPrCl-gold(I) tetrafluoroborate complex is reported herein. Experimental studies by X-ray diffraction analysis and NMR spectroscopy and theoretical studies by DFT calculations were conducted to determine the composition, structure, and behavior of this complex. The absence of an auxiliary ligand resulted in inner-sphere coordination of the counterion in the solid state. In solution, an equilibrium between two conformations was found with the counterion occupying inner-sphere and outer-sphere positions, respectively. Stoichiometric and catalytic reactivity studies with the tetrafluoroborate complex have been conducted. These confirmed the lability of the inner-sphere coordinating counterion that gives the IPrCl-gold(I) fragment behavior similar to that of related systems.

  12. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  13. Enzymatic synthesis of gold nanoflowers with trypsin

    International Nuclear Information System (INIS)

    Li Linmei; Weng Jian

    2010-01-01

    A one-step and eco-friendly approach for the room-temperature synthesis of trypsin-mediated three-dimensional (3D) gold nanoflowers (AuNFs) with high colloidal stability is demonstrated. To prepare AuNFs, ascorbic acid (AA) was quickly added into the premixed solution of HAuCl 4 and trypsin at pH = 5.0. The results show that the molar ratio and feeding order of reactant agents, pH and reaction time play important roles in the formation of NFs. The growth mechanism of AuNFs is suggested as three steps: (1) immobilization of AuCl 4 - ions with a positively charged trypsin template, (2) spontaneous reduction of AuCl 4 - ions with AA in situ and capping Au 0 by 12 cysteines of trypsin, (3) reduction of more AuCl 4 - ions on the Au nuclei formed in the initial stages and anisotropic growth into AuNFs.

  14. First charge collection and position-precision data on the medium-resistivity silicon strip detectors before and after neutron irradiation up to 2x1014 n/cm2

    International Nuclear Information System (INIS)

    Li Zheng; Dezillie, B.; Eremin, V.; Li, C.J.; Verbitskaya, E.

    1999-01-01

    Test strip detectors of 125 μm, 500 μm, and 1 mm pitches with about 1 cm 2 areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 kΩ cm). Detectors of 500 μm pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2x10 14 n/cm 2 ) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 kΩ cm (300 μm thick) can be fully depleted before and after an irradiation of 2x10 14 n/cm 2 . For a 500 μm pitch strip detector made of 2.7 kΩ cm tested with an 1030 nm laser light with 200 μm spot size, the position reconstruction error is about 14 μm before irradiation, and 17 μm after about 1.7x10 13 n/cm 2 irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 μm absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction

  15. Charge Carrier Dynamics at Silver Nanocluster-Molecular Acceptor Interfaces

    KAUST Repository

    Almansaf, Abdulkhaleq

    2017-07-01

    A fundamental understanding of interfacial charge transfer at donor-acceptor interfaces is very crucial as it is considered among the most important dynamical processes for optimizing performance in many light harvesting systems, including photovoltaics and photo-catalysis. In general, the photo-generated singlet excitons in photoactive materials exhibit very short lifetimes because of their dipole-allowed spin radiative decay and short diffusion lengths. In contrast, the radiative decay of triplet excitons is dipole forbidden; therefore, their lifetimes are considerably longer. The discussion in this thesis primarily focuses on the relevant parameters that are involved in charge separation (CS), charge transfer (CT), intersystem crossing (ISC) rate, triplet state lifetime, and carrier recombination (CR) at silver nanocluster (NCs) molecular-acceptors interfaces. A combination of steady-state and femto- and nanosecond broadband transient absorption spectroscopies were used to investigate the charge carrier dynamics in various donor-acceptor systems. Additionally, this thesis was prolonged to investigate some important factors that influence the charge carrier dynamics in Ag29 silver NCs donor-acceptor systems, such as the metal doping and chemical structure of the nanocluster and molecular acceptors. Interestingly, clear correlations between the steady-state measurements and timeresolved spectroscopy results are found. In the first study, we have investigated the interfacial charge transfer dynamics in positively charged meso units of 5, 10, 15, 20-tetra (1- methyl-4-pyridino)-porphyrin tetra (p-toluene sulfonate) (TMPyP) and neutral charged 5, 10, 15, 20-tetra (4-pyridyl)-porphyrin (TPyP), with negatively charged undoped and gold (Au)- doped silver Ag29 NCs. Moreover, this study showed the impact of Au doping on the charge carrier dynamics of the system. In the second study, we have investigated the interfacial charge transfer dynamics in [Pt2 Ag23 Cl7 (PPh3

  16. Nature vs. nurture: gold perpetuates "stemness".

    Science.gov (United States)

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs.

  17. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  18. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  19. Gold mineralogy and extraction

    International Nuclear Information System (INIS)

    Cashion, J.D.; Brown, L.J.

    1998-01-01

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed

  20. NA35: sulphur-gold collision

    CERN Multimedia

    1991-01-01

    In this image the real particles produced by the collision of a 6400 GeV sulphur ion with a gold target can be seen as they pass through a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. The NA35 experiment, which was in operation in the 1980s, was part of CERN's ongoing heavy ion project.

  1. Byzantine gold coins and jewellery

    International Nuclear Information System (INIS)

    Oddy, A.; La Niece, S.

    1986-01-01

    The article deals with the dating of Byzantine gold coinage. The results of such a study are of fundamental importance for the study of the economic history of the later Byzantine Empire and they are also of importance for the historian of technology when studying the composition of the contemporary Byzantine jewellery. Although Carbon-14 dating cannot be used as a method af dating, historians can still benefit from the analysis of the alloy of which the antiquity is made, as this is sometimes characteristic of the period in which it was used. A number of pieces of Byzantine jewellery has been analysed by x-ray fluorescence analysis, after first gently abrading a small area of the surface of the gold with the carborundum paper in an inconspicious position on the back or side of the object. A table is given on the results of this analysis

  2. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  3. Charge gradient microscopy

    Science.gov (United States)

    Roelofs, Andreas; Hong, Seungbum

    2018-02-06

    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.

  4. The determination of gold depth distribution in semiconductor silicon-potential interferences inherent in NAA by radiation damages

    International Nuclear Information System (INIS)

    Rudolph, P.; Lange, A.; Flachowsky, J.

    1986-01-01

    Gold is used quite extensively to control the charge storage time of high speed diodes and transistors. Therefore, the diffusion of gold into silicon wafers of finite thickness is important in the design and fabrication of these devices. Therefore it is necessary to estimate exactly concentration and depth distribution of gold formed by gold doping. Usually, gold content and depth distribution has been estimate by neutron activation analysis with step by step etching techniques. But during the irradiation in a nuclear fuel reactor the silicon wafers undergo minute or pronounced radiation damages which may affect the depth profiles of gold concentration. (author)

  5. Questioning the efficacy of 'gold' open access to published articles.

    Science.gov (United States)

    Fredericks, Suzanne

    2015-07-01

    To question the efficacy of 'gold' open access to published articles. Open access is unrestricted access to academic, theoretical and research literature that is scholarly and peer-reviewed. Two models of open access exist: 'gold' and 'green'. Gold open access provides everyone with access to articles during all stages of publication, with processing charges paid by the author(s). Green open access involves placing an already published article into a repository to provide unrestricted access, with processing charges incurred by the publisher. This is a discussion paper. An exploration of the relative benefits and drawbacks of the 'gold' and 'green' open access systems. Green open access is a more economic and efficient means of granting open access to scholarly literature but a large number of researchers select gold open access journals as their first choices for manuscript submissions. This paper questions the efficacy of gold open access models and presents an examination of green open access models to encourage nurse researchers to consider this approach. In the current academic environment, with increased pressures to publish and low funding success rates, it is difficult to understand why gold open access still exists. Green open access enhances the visibility of an academic's work, as increased downloads of articles tend to lead to increased citations. Green open access is the cheaper option, as well as the most beneficial choice, for universities that want to provide unrestricted access to all literature at minimal risk.

  6. BROOKHAVEN: High energy gold

    International Nuclear Information System (INIS)

    Bleser, Ed

    1992-01-01

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  7. Charge preamplifier

    International Nuclear Information System (INIS)

    Chaminade, R.; Passerieux, J.P.

    1961-01-01

    We describe a charge preamplifier having the following properties: - large open loop gain giving both stable gain and large input charge transfer; - stable input grid current with aging and without any adjustment; - fairly fast rise; - nearly optimum noise performance; - industrial material. (authors)

  8. Charge Meter

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Charge Meter: Easy Way to Measure Charge and Capacitance: Some Interesting Electrostatic Experiments. M K Raghavendra V Venkataraman. Classroom Volume 19 Issue 4 April 2014 pp 376-390 ...

  9. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  10. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S. [Univ. of Michigan, Ann Arbor, MI (United States)

    1999-07-01

    XANES measurements on gold-bearing arsenian pyrite from the Twin Creeks Carlin-type gold deposits show that gold is present as both Au{sup 0} and Au{sup 1+} and arsenic is present as As{sup 1{minus}}. Au{sup 0} is attributed to sub-micrometer size inclusions of free gold, whereas Au{sup 1+} is attributed to gold in the lattice of the arsenian pyrite. STEM observations suggest that As{sup 1{minus}} is probably concentrated in angstrom-scale, randomly distributed layers with a marcasite or arsenopyrite structure. Ionic gold (Au{sup 1+}) could be concentrated in these layers as well, and is present in both twofold- and fourfold-coordinated forms, with fourfold-coordinated Au{sup 1+} more abundant. Twofold-coordinated Au{sup 1+} is similar to gold in Au{sub 2}S in which it is linearly coordinated to two sulfur atoms. The nature of fourfold-coordinated Au{sup 1+} is not well understood, although it might be present as an Au-As-S compound where gold is bonded in fourfold coordination to sulfur and arsenic atoms, or in vacancy positions on a cation site in the arsenian pyrite. Au{sup 1+} was probably incorporated into arsenian pyrite by adsorption onto pyrite surfaces during crystal growth. The most likely compound in the case of twofold-coordinated Au{sup 1+} was probably a tri-atomic surface complex such as S{sub pyrite}-Au{sup 1+}-S{sub bi-sulfide}H or Au{sup 1+}-S-Au{sup 1+}. The correlation between gold and arsenic might be related to the role of arsenic in enhancing the adsorption of gold complexes of this type on pyrite surfaces, possibly through semiconductor effects.

  11. Influence of Silver and Gold Nanoparticles and Thin Layers on Charge Carrier Generation in InGaN/GaN Multiple Quantum Well Structures and Crystalline Zinc Oxide Films

    Science.gov (United States)

    Mezdrogina, M. M.; Vinogradov, A. Ya.; Kozhanova, Yu. V.; Levitskii, V. S.

    2018-04-01

    It has been shown that Ag and Au nanoparticles and thin layers influence charge carrier generation in InGaN/GaN multiple quantum well structures and crystalline ZnO films owing to the surface morphology heterogeneity of the semiconductors. When nanoparticles 10 films, the radiation intensity has turned out to grow considerably because of a plasmon resonance with the participation of localized plasmons. The application of Ag or Au layers on the surface of the structures strongly attenuates the radiation. When Ag and Au nanoparticles are applied on crystalline ZnO films obtained by rf magnetron sputtering, the radiation intensity in the short-wavelength part of the spectrum increases insignificantly because of their highly heterogeneous surface morphology.

  12. Radiation-electrochemistry of the colloidal gold micro-electrode: Hydrogen formation by organic free radicals

    International Nuclear Information System (INIS)

    Westerhausen, J.; Henglein, A.; Lilie, J.

    1981-01-01

    Various organic free radicals as well as Ni + ions produce hydrogen in the presence of some 10 -4 M of colloidal gold. The gold catalyst was prepared via the reduction of HAuCl 4 either thermally by citrate or by γ-irradiation. The organic radicals were radiolytically produced. The mechanism of H 2 formation includes electron transfer from the organic radicals to the gold particles, storage of a large number of electrons per gold particle, conversion of the electrons into adsorbed H-atoms and desorption of the latter to form H 2 . - The rates of some of these steps were measured using the method of pulse radiolysis. 1-Hydroxy-1-methyl ethyl radicals, (CH 3 ) 2 COH, react with colloidal gold particles almost diffusion controlled provided that the gold particles are not charged with excess electrons. Charged gold particles react at a substantially lower rate. The stored electrons live seconds or even minutes depending on their number per gold particle. In the stationary state, up to 0.38 Coulomb of electrons could be stored per liter of a 2.9x10 -4 molar gold solution, each gold particle carrying about 39 electrons. A comparison is also made between the catalytic activities of colloidal gold and silver. Due to the relative fast conversion of electrons into adsorbed H-atoms, colloidal gold has less capacity for the storage of electrons than colloidal silver. - The dependence of the hydrogen yield on the pH of the solution, the concentration of gold, the size of the gold particles, the concentration of the polyvinyl alcohol stabilizer, and the intensity of radiation was also investigated. At high intensities, some of the radicals are destroyed in a gold catalysed disproportionation. (orig.)

  13. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  14. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  15. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  16. Medicinal gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.; Cottrill, S.M.

    1987-01-01

    A major use of gold compounds in the pharmaceutical industry is for anti-arthritic agents. The disease itself is not understood and little is known about the way in which the drugs act, but detailed pictures of the distribution of gold in the body are available, and some of the relevant biochemistry is beginning to emerge. The purpose of this article is to give a survey of the types of compounds presently employed in medicine, of the distribution of gold in the body which results from their use, and of some relevant chemistry. Emphasis is placed on results obtained in the last few years

  17. Rapid charging of nickel-cadmium accumulators

    Energy Technology Data Exchange (ETDEWEB)

    Bruck, F

    1972-01-01

    Four types of charging of gas-tight Ni-Cd accumulators (a) normal; (b) accelerated; (c) rapid; and (d) ultra-rapid are described. For rapid charging, a built-in temperature sensor cuts off charging current at a prescribed point. In ultra-rapid charging, 50% charge can be attained in 3.5 min. and 25% charge within 50 sec. In the second phase of ultra-rapid charging, a surplus of oxygen is released at the positive electrode and a safety valve is provided for pressure reduction. Characteristic curves are given for various rates of charging and some data on discharge rates is also given.

  18. A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles.

    Science.gov (United States)

    Ai Tran, Hoang Ngoc; Sousa, Fernanda; Moda, Fabio; Mandal, Subhra; Chanana, Munish; Vimercati, Chiara; Morbin, Michela; Krol, Silke; Tagliavini, Fabrizio; Legname, Giuseppe

    2010-12-01

    Gold nanoparticles coated with oppositely charged polyelectrolytes, such as polyallylamine hydrochloride and polystyrenesulfonate, were examined for potential inhibition of prion protein aggregation and prion (PrPSc) conversion and replication. Different coatings, finishing with a positive or negative layer, were tested, and different numbers of layers were investigated for their ability to interact and reduce the accumulation of PrPSc in scrapie prion infected ScGT1 and ScN2a cells. The particles efficiently hampered the accumulation of PrPSc in ScN2a cells and showed curing effects on ScGT1 cells with a nanoparticle concentration in the picomolar range. Finally, incubation periods of prion-infected mice treated with nanomolar concentrations of gold nanoparticles were significantly longer compared to untreated controls.

  19. Polyethylenimine-assisted seed-mediated synthesis of gold nanoparticles for surface-enhanced Raman scattering studies

    Science.gov (United States)

    Philip, Anish; Ankudze, Bright; Pakkanen, Tuula T.

    2018-06-01

    Large-sized gold nanoparticles (AuNPs) were synthesized with a new polyethylenimine - assisted seed - mediated method for surface-enhanced Raman scattering (SERS) studies. The size and polydispersity of gold nanoparticles are controlled in the growth step with the amounts of polyethylenimine (PEI) and seeds. Influence of three silicon oxide supports having different surface morphologies, namely halloysite (Hal) nanotubes, glass plates and inverse opal films of SiO2, on the performance of gold nanoparticles in Raman scattering of a 4-aminothiophenol (4-ATP) analyte was investigated. Electrostatic interaction between positively charged polyethylenimine-capped AuNPs and negatively charged surfaces of silicon oxide supports was utilized in fabrication of the SERS substrates using deposition and infiltration methods. The Au-photonic crystal of the three SERS substrate groups is the most active one as it showed the highest analytical enhancement factor (AEF) and the lowest detection limit of 1x10-8 M for 4-ATP. Coupling of the optical properties of photonic crystals with the plasmonic properties of AuNPs provided Au-photonic crystals with the high SERS activity. The AuNPs clusters formed both in the photonic crystal and on the glass plate are capable of forming more hot spots as compared to sparsely distributed AuNPs on Hal nanotubes and thereby increasing the SERS enhancement.

  20. Synthesis of positively charged hybrid PHMB-stabilized silver nanoparticles: the search for a new type of active substances used in plant protection products

    Science.gov (United States)

    Krutyakov, Yurii A.; Kudrinsky, Alexey A.; Gusev, Alexander A.; Zakharova, Olga V.; Klimov, Alexey I.; Yapryntsev, Alexey D.; Zherebin, Pavel M.; Shapoval, Olga A.; Lisichkin, Georgii V.

    2017-07-01

    Modern agriculture calls for a decrease in pesticide application, particularly in order to decrease the negative impact on the environment. Therefore the development of new active substances and plant protection products (PPP) to minimize the chemical load on ecosystems is a very important problem. Substances based on silver nanoparticles are a promising solution of this problem because of the fact that in correct doses such products significantly increase yields and decrease crop diseases while displaying low toxicity to humans and animals. In this paper we for the first time propose application of polymeric guanidine compounds with varying chain lengths (from 10 to 130 elementary links) for the design and synthesis of modified silver nanoparticles to be used as the basis of a new generation of PPP. Colloidal solutions of nanocrystalline silver containing 0.5 g l-1 of silver and 0.01-0.4 g l-1 of polyhexamethylene biguanide hydrochloride (PHMB) were obtained by reduction of silver nitrate with sodium borohydride in the presence of PHMB. The field experiment has shown that silver-containing solutions have a positive effect on agronomic properties of potato, wheat and apple. Also the increase in activity of such antioxidant system enzymes as peroxidase and catalase in the tissues of plants treated with nanosilver has been registered.

  1. Adjacent effect on positive charge transfer from radical cation of n-dodecane to scavenger studied by supbicosecond pulse radiolysis, statistical and Monte Carlo approach

    International Nuclear Information System (INIS)

    Saeki, A.; Tagawa, S.; Kozawa, T.; Yoshida, Y.

    2003-01-01

    Time-dependent behaviors of radical cation in n-dodecane in the presence of high-concentrated cation scavenger triethylamine were measured by subpicosecond pulse radiolysis system. The significant reduction of the initial yield in the optical density was observed. This reduction were not able to be explained by the first order rate constant. Therefore, we assumed that this phenomena occur due to the adjacent effect of the solute molecules. We approached this effect by the statistical model and configurational-bias Monte Carlo method. In both methods, we supposed a condition that the cation site in the radical cation is delocalized and will be scavenged rapidly within the time resolution if the solute molecules is adjacent to any sites of the solvent. In addition to the adjacent effect, the fact that a large part of the solvent molecules is excluded by the solute molecules especially at high concentration was taken into consideration. First, we formulated this effect by a statistical model. In addition to the above assumption, this model is based on the following assumption; the effects of molecule's shape, conformation and interaction among molecules were ignored and the aggregation of the solute molecules were treated randomly. As a result, the formula indicated good agreement with the experimental data. Second, as another approach, we adopted the configurational-bias Monte Carlo simulation to reproduce the liquid system. The OLPS model was used to describe the intermolecular and intramolecular potentials. The adjacent effect estimated by this method corresponded to the experimental data with a threshold of 0.5 nm. This value are close to a typical reaction radius. The average number of adjacent solvent molecules and the distribution of aggregated solute's number were also collected from the position data

  2. Effects of biodegradation and mechanical activation on gold recovery by thiourea leaching

    Science.gov (United States)

    Kušnierová, Mária; Šepelák, Vladimír; Briančin, Jaroslav

    1993-12-01

    The work reported here shows the positive influence of the biodegradation of the crystal lattice of sulfides on the thiourea leaching of gold from an arsenopyrite-pyrite concentrate. Physical processing of the original as well as of the biologically processed concentrate favorably influenced gold recovery. Mechanical activation appears to be unimportant for gold extraction from the investigated concentrate.

  3. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  4. Gold nanoprobes for theranostics

    Science.gov (United States)

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  5. Facts and Fantasies about Gold

    OpenAIRE

    Klement, Joachim

    2015-01-01

    Due to the increasing popularity of gold as an investment the demand for effective risk management techniques for gold investments has increased as well. In this paper we analyze several drivers of the price of gold that have been proposed in the past. Our analysis indicates that short-term volatility of the price of gold remains rather unpredictable with many of the explanations like the fund flows in physical gold ETF either unreliable or unstable over time. Our analysis suggests that there...

  6. sp magnetism in clusters of gold thiolates

    International Nuclear Information System (INIS)

    Ayuela, A; Hernando, A; Echenique, P M; Crespo, P; García, M A

    2012-01-01

    Using first-principles calculations, we consider the bond between thiolate and small Au clusters, with particular emphasis on the resulting magnetic moment. The moment of pure gold clusters is 1 μ B for clusters with an odd number of Au atoms and zero for those with an even number. The addition of the thiolate, having an odd number of electrons itself, shifts the phase of the odd-even oscillations so that particles with an even number of Au atoms now have unit moment. Surprisingly, gold thiolate exhibits a dramatic and non-intuitive distribution of charge and spin moment. Our results show that the S-Au bond is such that sulfur does not get charge and an electron is transferred to the Au cluster. This extra electron is mainly sp in character and resides in an electronic shell below the Au surface. The calculations suggest that any thiolate-induced magnetism occurs in the gold nanoparticle and not the thiolate, and can be controlled by modifying the thiolate coverage. (paper)

  7. Interactions of Fluorescein Dye with Spherical and Star Shaped Gold Nanoparticles.

    Science.gov (United States)

    Pal, Gopa Dutta; Paul, Somnath; Bardhan, Munmun; Ganguly, Tapan

    2018-04-01

    UV-vis absorption, FT-IR, steady state fluorescence and fluorescence lifetime measurements were made on Fluorescein dye (Fl dye) molecules in presence of gold nanoparticles of different morphologies: spherical gold nanoparticles (GNP) and star shaped gold nanoparticles (GNS). The experimental observations demonstrate that Fl dye molecules form dimers when adsorbed on nanosurface of spherical gold particles. On the other hand possibly due to lack of adsorption on the surface of GNS the dye molecules were unable to form dimers. The projected tips on the surface of GNS may possibly hinder the dyes to adsorb on the surface of this nanoparticle. From the spectral analysis and measurements of thermodynamic parameters it is inferred that two different types of ground state interactions occur between Fl-dye-GNP and Fl dye-GNS systems. Both the observed negative values of the thermodynamic parameters ΔH and ΔS in the case of the former system predict the possibility of occurrences of hydrogen bonding interactions between two neighboring Fl dye molecules when adsorbed on the nanosurface of GNP. On the other hand in Fl dye-GNS system electrostatic interactions appear to occur, as evidenced from negative ΔH and positive value of ΔS, between the positive charges residing on the tips of the nanoparticles and anionic form of Fl dye. It has been concluded that as the adsorption of organic dyes on solid surfaces is prerequisite for the degradation of dye pollutants, the present experimental observations demonstrate that GNP could be used as a better candidate than GNS in degradation mechanism of the xanthenes dyes.

  8. New porphyrins bearing positively charged peripheral groups linked by a sulfonamide group to meso-tetraphenylporphyrin: interactions with calf thymus DNA.

    Science.gov (United States)

    Manono, Janet; Marzilli, Patricia A; Marzilli, Luigi G

    2009-07-06

    New water-soluble cationic meso-tetraarylporphyrins (TArP, Ar = 4-C(6)H(4)) and some metal derivatives have been synthesized and characterized. One main goal was to assess if N-methylpyridinium (N-Mepy) groups must be directly attached to the porphyrin core for intercalative binding of porphyrins to DNA. The new porphyrins have the general formula, [T(R(2)R(1)NSO(2)Ar)P]X(4/8) (R(1) = CH(3) or H and R(2) = N-Mepy-n-CH(2) with n = 2, 3, or 4; or R(1) = R(2) = Et(3)NCH(2)CH(2)). Interactions of selected porphyrins and metalloporphyrins (Cu(II), Zn(II)) with calf thymus DNA were investigated by visible circular dichroism (CD), absorption, and fluorescence spectroscopies. The DNA-induced changes in the porphyrin Soret region (a positive induced CD feature and, at high DNA concentration, increases in the Soret band and fluorescence intensities) indicate that the new porphyrins interact with DNA in an outside, non-self-stacking binding mode. Several new metalloporphyrins did not increase DNA solution viscosity and thus do not intercalate, confirming the conclusion drawn from spectroscopic studies. Porphyrins known to intercalate typically bear two or more N-Mepy groups directly attached to the porphyrin ring, such as the prototypical meso-tetra(N-Mepy)porphyrin tetracation (TMpyP(4)). The distances between the nitrogens of the N-Mepy group are estimated to be approximately 11 A (cis) and 16 A (trans) for the relatively rigid TMpyP(4). For the new flexible porphyrin, [T(N-Mepy-4-CH(2)(CH(3))NSO(2)Ar)P]Cl(4), the distances between the nitrogens are estimated to be able to span the range from approximately 9 to approximately 25 A. Thus, the N-Mepy groups in the new porphyrins can adopt the same spacing as in known intercalators such as TMpyP(4). The absence of intercalation by the new porphyrins indicates that the propensity for the N-Mepy group to facilitate DNA intercalation of cationic porphyrins requires direct attachment of N-Mepy groups to the porphyrin core.

  9. Structures, stabilities, and electronic properties for rare-earth lanthanum doped gold clusters

    International Nuclear Information System (INIS)

    Zhao, Ya-Ru

    2015-01-01

    The structures, stabilities, and electronic properties of rare-earth lanthanum doped gold La 2 Au n (n = 1-9) and pure gold Au n (n ≤ 11) clusters have been investigated by using density functional theory. The optimized geometries show that the lowest energy structures of La 2 Au n clusters favour the 3D structure at n ≥ 3. The lanthanum atoms can strongly enhance the stabilities of gold clusters and tend to occupy the most highly coordinated position. By analysing the gap, vertical ionization potential, and chemical hardness, it is found that the La 2 Au 6 isomer possesses higher stability for small-sized La 2 Au n clusters (n = 1-9). The charges in the La 2 Au n clusters transfer from La atoms to the Au n host. In addition, Wiberg bond indices analysis reveals that the intensity of different bonds of La 2 Au n clusters exhibits a sequence of La-La bond > La-Au bond > Au-Au bond.

  10. Hereditary folate malabsorption: A positively charged amino acid at position 113 of the proton-coupled folate transporter (PCFT/SLC46A1) is required for folic acid binding

    International Nuclear Information System (INIS)

    Lasry, Inbal; Berman, Bluma; Glaser, Fabian; Jansen, Gerrit; Assaraf, Yehuda G.

    2009-01-01

    The proton-coupled folate transporter (PCFT/SLC46A1) mediates intestinal folate uptake at acidic pH. Some loss of folic acid (FA) transport mutations in PCFT from hereditary folate malabsorption (HFM) patients cluster in R113, thereby suggesting a functional role for this residue. Herein, unlike non-conservative substitutions, an R113H mutant displayed 80-fold increase in the FA transport Km while retaining parental Vmax, hence indicating a major fall in folate substrate affinity. Furthermore, consistent with the preservation of 9% of parental transport activity, R113H transfectants displayed a substantial decrease in the FA growth requirement relative to mock transfectants. Homology modeling based on the crystal structures of the Escherichia coli transporter homologues EmrD and glycerol-3-phosphate transporter revealed that the R113H rotamer properly protrudes into the cytoplasmic face of the minor cleft normally occupied by R113. These findings constitute the first demonstration that a basic amino acid at position 113 is required for folate substrate binding.

  11. Resonance charge exchange processes

    International Nuclear Information System (INIS)

    Duman, E.L.; Evseev, A.V.; Eletskij, A.V.; Radtsig, A.A.; Smirnov, B.M.

    1979-01-01

    The calculation results for the resonance charge exchange cross sections for positive and negative atomic and molecular ions are given. The calculations are performed on the basis of the asymptotic theory. The factors affecting the calculation accuracy are analysed. The calculation data for 28 systems are compared with the experiment

  12. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  13. Formation and optical characterisation of colloidal gold monolayers

    NARCIS (Netherlands)

    Kooij, Ernst S.; Brouwer, E.A.M.; Wormeester, Herbert; Poelsema, Bene

    2003-01-01

    We study the deposition of charge-stabilised gold nanocolloids on silicon substrates, which have been derivatised with (aminopropyl)triethoxysilane. Atomic force microscopy (AFM) and spectroscopic ellipsometry are employed to investigate the nanocrystal monolayers ex situ. Analysis of AFM images

  14. Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

    Directory of Open Access Journals (Sweden)

    Christina Rosman

    2014-12-01

    Full Text Available In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell–substrate impedance sensing, ECIS was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm2 (which corresponds to 0.5% of surface coverage with nanoparticles diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.

  15. Rational Design in Catalysis: A Mechanistic Study of β-Hydride Eliminations in Gold(I) and Gold(III) Complexes Based on Features of the Reaction Valley.

    Science.gov (United States)

    Castiñeira Reis, Marta; López, Carlos Silva; Kraka, Elfi; Cremer, Dieter; Faza, Olalla Nieto

    2016-09-06

    β-Hydride eliminations for ethylgold(III) dichloride complexes are identified as reactions with an unusually long prechemical stage corresponding to the conformational preparation of the reaction complex and spanning six phases. The prechemical process is characterized by a geared rotation of the L-Au-L group (L = Cl) driving methyl group rotation and causing a repositioning of the ligands. This requires more than 28 kcal/mol of the total barrier of 34.0 kcal/mol, according to the unified reaction valley approach, which also determines that the energy requirements of the actual chemical process leading to the β-elimination product are only about 5.5 kcal/mol. A detailed mechanistic analysis was used as a basis for a rational design of substrates (via substituents on the ethyl group) and/or ligands, which can significantly reduce the reaction barrier. This strategy takes advantage of either a higher trans activity of the ligands or a tuned electronic demand of the ethyl group. The β-hydride elimination of gold(I) was found to suffer from strong Coulomb and exchange repulsion when a positively charged hydrogen atom enforces a coordination position in a d(10)-configured gold atom, thus triggering an unassisted σ-π Au(I)-C conversion.

  16. Influence of aspartic acid and lysine on the uptake of gold nanoparticles in rice.

    Science.gov (United States)

    Ye, Xinxin; Li, Hongying; Wang, Qingyun; Chai, Rushan; Ma, Chao; Gao, Hongjian; Mao, Jingdong

    2018-02-01

    The interactions between plants and nanomaterials (NMs) can shed light on the environmental consequences of nanotechnology. We used the major crop plant rice (Oryza sativa L.) to investigate the uptake of gold nanoparticles (GNPs) coated with either negatively or positively charged ligands, over a 5-day period, in the absence or presence of one of two amino acids, aspartic acid (Asp) or lysine (Lys), acting as components of rice root exudates. The presence of Asp or Lys influenced the uptake and distribution of GNPs in rice, which depended on the electrical interaction between the coated GNPs and each amino acid. When the electrical charge of the amino acid was the same as that of the surface ligand coated onto the GNPs, the GNPs could disperse well in nutrient solution, resulting in increased uptake of GNPs into rice tissue. The opposite was true where the charge on the surface ligand was different from that on the amino acid, resulting in agglomeration and reduced Au uptake into rice tissue. The behavior of GNPs in the hydroponic nutrient solution was monitored in terms of agglomeration, particle size distribution, and surface charge in the presence and absence of Asp or Lys, which depended strongly on the electrostatic interaction. Results from this study indicated that the species of root exudates must be taken into account in assessing the bioavailability of nanomaterials to plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Sources for charged particles

    International Nuclear Information System (INIS)

    Arianer, J.

    1997-01-01

    This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.)

  18. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    Science.gov (United States)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  19. Associating Oligonucleotides with Positively Charged Liposomes

    Czech Academy of Sciences Publication Activity Database

    Jurkiewicz, P.; Okruszek, A.; Hof, Martin; Langner, M.

    2003-01-01

    Roč. 8, č. 1 (2003), s. 77-84 ISSN 1425-8153 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : oligonucleotides * fluorescence correlation spectroscopy * DOTAP Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.455, year: 2003

  20. First charge collection and position-precision data on the medium-resistivity silicon strip detectors before and after neutron irradiation up to 2x10 sup 1 sup 4 n/cm sup 2

    CERN Document Server

    Li Zheng; Eremin, V; Li, C J; Verbitskaya, E

    1999-01-01

    Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm sup 2 areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k OMEGA cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2x10 sup 1 sup 4 n/cm sup 2) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k OMEGA cm (300 mu m thick) can be fully depleted before and after an irradiation of 2x10 sup 1 sup 4 n/cm sup 2. For a 500 mu m pitch strip detector made of 2.7 k OMEGA cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7x10 sup 1 sup 3 n/cm sup 2 irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We als...

  1. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions

    Directory of Open Access Journals (Sweden)

    Seifert Oliver

    2012-11-01

    Full Text Available Abstract Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1 were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or

  2. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  3. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  4. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  5. Mercury Exposure and Health Problems in Urban Artisanal Gold Mining (UAGM in Makassar, South Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Hasriwiani Habo Abbas

    2017-06-01

    Full Text Available Urban artisanal gold mining (UAGM in Makassar, South Sulawesi, Indonesia, has been run by a number of urban gold workers with gold jewelry manufacture as its core activity. The wastes generated from goldsmiths’ activities were further processed by the gold smelters to recover fine gold particles. Smelting gold doré, amalgamation, and burning out the amalgam were the mercury-based gold process usually applied in their work. While working the gold workers are, therefore, potentially exposed to a source of mercury pollution that may cause health problems because of working without proper protection. The aims of this research are to characterize the process of urban artisanal gold mining with the potential mercury exposures during the process, and to assess the health of the gold workers. The results showed that the gold workers had a low educational background, but a relatively high income. The total mercury concentration of gold workers was higher than the control group. They were exposed to intoxicatingly high levels of mercury with the average total mercury concentrations of 6.6 and 10.8 µg/g in the hair of indirect and direct exposed workers, respectively. The health assessment showed that 85% of the gold workers suffered neurological symptoms, such as tremors, and 44%–56% of them experienced restricted fields of vision, slow reflexes, sensory disturbances, unbalanced rigidity, and ataxia. The results also showed that the working years have reasonable correlation with the sum of the positive findings in the 10 neurological symptoms.

  6. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles

    Science.gov (United States)

    Mohan Kumar, Kesarla; Mandal, Badal Kumar; Sinha, Madhulika; Krishnakumar, Varadhan

    2012-02-01

    Biologically inspired experimental process in synthesising nanoparticles is of great interest in present scenario. Biosynthesis of nanoparticles is considered to be one of the best green techniques in synthesising metal nanoparticles. Here, an in situ green biogenic synthesis of gold nanoparticles using aqueous extracts of Terminalia chebula as reducing and stabilizing agent is reported. Gold nanoparticles were confirmed by surface plasmon resonance in the range of 535 nm using UV-visible spectrometry. TEM analysis revealed that the morphology of the particles thus formed contains anisotropic gold nanoparticles with size ranging from 6 to 60 nm. Hydrolysable tannins present in the extract of T. chebula are responsible for reductions and stabilization of gold nanoparticles. Antimicrobial activity of gold nanoparticles showed better activity towards gram positive S. aureus compared to gram negative E. coli using standard well diffusion method.

  7. Gold Nanofilm Redox Catalysis for Oxygen Reduction at Soft Interfaces

    International Nuclear Information System (INIS)

    Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Girault, Hubert H.

    2016-01-01

    ABSTRACT: Functionalization of a soft or liquid-liquid interface by a one gold nanoparticle thick “nanofilm” provides a conductive pathway to facilitate interfacial electron transfer from a lipophilic electron donor to a hydrophilic electron acceptor in a process known as interfacial redox catalysis. The gold nanoparticles in the nanofilm are charged by Fermi level equilibration with the lipophilic electron donor and act as an interfacial reservoir of electrons. Additional thermodynamic driving force can be provided by electrochemically polarising the interface. Using these principles, the biphasic reduction of oxygen by a lipophilic electron donor, decamethylferrocene, dissolved in α,α,α-trifluorotoluene was catalysed at a gold nanoparticle nanofilm modified water-oil interface. A recently developed microinjection technique was utilised to modify the interface reproducibly with the mirror-like gold nanoparticle nanofilm, while the oxidised electron donor species and the reduction product, hydrogen peroxide, were detected by ion transfer voltammetry and UV/vis spectroscopy, respectively. Metallization of the soft interface allowed the biphasic oxygen reduction reaction to proceed via an alternative mechanism with enhanced kinetics and at a significantly lower overpotential in comparison to a bare soft interface. Weaker lipophilic reductants, such as ferrocene, were capable of charging the interfacial gold nanoparticle nanofilm but did not have sufficient thermodynamic driving force to significantly elicit biphasic oxygen reduction.

  8. Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Chur Chin

    2010-04-01

    Full Text Available Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs, and currents evoked by acetylcholine (Ach can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker

  9. Flower-shaped gold nanoparticles: Preparation, characterization, and electro

    Directory of Open Access Journals (Sweden)

    Islam M. Al-Akraa

    2017-09-01

    Full Text Available The modification of a glassy carbon electrode with gold nanoparticles was pursued, characterized, and examined for electrocatalytic applications. The fabrication process of this electrode involved assembling the gold nanoparticles atop of amino group grafted glassy carbon electrode. The scanning electron microscopy indicated the deposition of gold nanoparticles in flower-shaped nanostructures with an average particle size of ca. 150 nm. Interestingly, the electrode exhibited outstanding enhancement in the electrocatalytic activity toward the oxygen evolution reaction, which reflected from the large negative shift (ca. 0.8 V in its onset potential, in comparison with that observed at the bulk unmodified glassy carbon and gold electrodes. Alternatively, the Tafel plot of the modified electrode revealed a significant increase (∼one order of magnitude in the apparent exchange current density of the oxygen evolution reaction upon the modification, which infers a faster charge transfer. Kinetically, gold nanoparticles are believed to facilitate a favorable adsorption of OH− (fundamental step in oxygen evolution reaction, which allows the charge transfer at reasonably lower anodic polarizations.

  10. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same

  11. Spectroscopic diagnostic of gold plasma

    International Nuclear Information System (INIS)

    Busquet, M.

    1986-01-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included [fr

  12. Spectroscopic diagnostic of gold plasma

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M.

    1986-06-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included.

  13. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  14. Bioassisted Phytomining of Gold

    Science.gov (United States)

    Maluckov, Biljana S.

    2015-05-01

    Bioassisted phytomining implies targeted use of microorganisms and plants for the selective recovery of the metal. Metals from undissolved compounds are dissolved by applying specially chosen microorganisms and therefore become available to the hyperaccumulating plants. In the article, the selective extraction method of base metals and the precious metal gold by using microorganisms and plants is discussed.

  15. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  16. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  17. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  18. Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)-Does it lead to gold analogue of Prussian blue?

    Energy Technology Data Exchange (ETDEWEB)

    Harish, S. [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India); Joseph, James, E-mail: jameskavlam@yahoo.com [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India); Phani, K.L.N. [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India)

    2011-06-30

    Highlights: > In group IB, Cu and Ag form Prussian blue analogues but similar formation of gold hexacyanoferrate was not found in the literature and non-existence of gold hexacyanoferrate remains a mystery. > Potential cycling of gold chloride and potassium ferro/ferri cyanide was resulted in the formation of Au-PB nano-composite. > Redox reaction between gold chloride and potassium ferrocyanide ion is spontaneous but no reaction occurs when gold chloride and potassium ferricyanide is mixed. > We are proposing the formation of a compound with general formula 'KFe{sub x}[Au(CN){sub 2}]{sub y}' and discussing the formation of gold hexacyanoferrate is not feasible by simple chemical or electrochemical reaction in contrast to other PB analogues. - Abstract: Prussian blue analogues are a class of compounds formed by the reaction between metal salt and potassium hexacyanoferrate (II/III). In our earlier report, the formation of Au-Prussian blue nano-composite was noticed on potential cycling the glassy carbon electrode in a medium containing gold (III) chloride and potassium hexacyanoferrate (III). Hence in this work, the formation of gold hexacyanoferrate was attempted by a simple chemical reaction. The reaction of gold (III) chloride with potassium hexacyanoferrate (II/III) was examined by UV-Vis spectroscopy and found that there is no redox reaction between gold (III) chloride and potassium hexacyanoferrate (III). However, the redox reaction occurs between gold (III) chloride and potassium hexacyanoferrate (II) leading to the formation of charge transfer band and the conversion of hexacyanoferrate (II) to hexacyanoferrate (III) was evidenced by the emergence of new absorption peaks in UV-Vis spectra. The oxidation state of gold in Au-Fe complex was found to be +1 from X-ray photoelectron spectroscopy. The stability of the Au-Fe complex was also studied by cyclic voltammetry. Cyclic voltammetric results indicated the presence of high spin iron in Au

  19. Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)-Does it lead to gold analogue of Prussian blue?

    International Nuclear Information System (INIS)

    Harish, S.; Joseph, James; Phani, K.L.N.

    2011-01-01

    Highlights: → In group IB, Cu and Ag form Prussian blue analogues but similar formation of gold hexacyanoferrate was not found in the literature and non-existence of gold hexacyanoferrate remains a mystery. → Potential cycling of gold chloride and potassium ferro/ferri cyanide was resulted in the formation of Au-PB nano-composite. → Redox reaction between gold chloride and potassium ferrocyanide ion is spontaneous but no reaction occurs when gold chloride and potassium ferricyanide is mixed. → We are proposing the formation of a compound with general formula 'KFe x [Au(CN) 2 ] y ' and discussing the formation of gold hexacyanoferrate is not feasible by simple chemical or electrochemical reaction in contrast to other PB analogues. - Abstract: Prussian blue analogues are a class of compounds formed by the reaction between metal salt and potassium hexacyanoferrate (II/III). In our earlier report, the formation of Au-Prussian blue nano-composite was noticed on potential cycling the glassy carbon electrode in a medium containing gold (III) chloride and potassium hexacyanoferrate (III). Hence in this work, the formation of gold hexacyanoferrate was attempted by a simple chemical reaction. The reaction of gold (III) chloride with potassium hexacyanoferrate (II/III) was examined by UV-Vis spectroscopy and found that there is no redox reaction between gold (III) chloride and potassium hexacyanoferrate (III). However, the redox reaction occurs between gold (III) chloride and potassium hexacyanoferrate (II) leading to the formation of charge transfer band and the conversion of hexacyanoferrate (II) to hexacyanoferrate (III) was evidenced by the emergence of new absorption peaks in UV-Vis spectra. The oxidation state of gold in Au-Fe complex was found to be +1 from X-ray photoelectron spectroscopy. The stability of the Au-Fe complex was also studied by cyclic voltammetry. Cyclic voltammetric results indicated the presence of high spin iron in Au-Fe complex. Hence 'as

  20. Adsorption of gold (III) from aqueous solutions on bagasse ash

    International Nuclear Information System (INIS)

    Hussain, G.; Khan, M.A.

    2011-01-01

    To assess the potential of cheap biomass materials for the recovery of gold from industrial, and electroplating waste water effluents, adsorption of gold (III) from dilute solutions of hydrochloric acid on bagasse ash has been studied under various experimental conditions by using batch technique. Percentage extraction of gold (III) on bagasse ash was determined from its distribution coefficients as a function of contact time, pH, adsorbent, adsorbate concentrations, and temperature. The uptake of gold (III) by bagasse ash is time, pH, metal concentration, amount of adsorbate, and temperature dependent. Adsorption data have been interpreted in terms of Langmuir, and the Freundlich equations. Thermodynamic parameters for the adsorption of gold (III) on bagasse ash have been determined at three different temperatures. The positive value of heat of adsorption; delta H 44.52 kJ/mol shows that the adsorption of gold (III) on bagasse ash is endothermic where as the negative value of delta G = -0.5303 kJ/mol at 318 K shows the spontaneity of the process. Delta G becomes more negative with increase in temperature which shows that the adsorption is more favorable at higher temperatures. Under the optimal adsorption conditions the adsorption capacity of gold is 0.70 mg /g of the adsorbent out of which 0.65 mg of gold gets desorbed with 0.1 % thiourea solution. (author)

  1. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  2. Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes

    International Nuclear Information System (INIS)

    Kolodziej, Adam; Figueiredo, Marta C.; Koper, Marc T.M.; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2017-01-01

    Highlights: •The potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode is mediated by the adsorption of phosphate anions on gold electrode. •Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. •Upon reduction of the phosphate-mediated cisplatin adsorption, the platinum deposits are formed by 3D nanoclusters -- Abstract: This manuscript reports the potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode. It was found that this process is mediated by the adsorption of phosphate anions on the gold electrode and that the maximum coverage of Pt adsorbed is given by the maximum coverage of phosphate adsorbed at a given potential. The interaction of cisplatin with the phosphate groups was confirmed by in situ FTIR spectroscopy under external reflexion configuration. Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. Moreover, the relationship between the charge of the Pt deposited and the charge of the electrochemical surface area of the Pt deposited on the gold electrodes indicates that 3D nanoclusters of a few atoms of Pt were formed over the gold electrode upon the electrochemical reduction of the adsorbed cisplatin. The Pt nanoclusters formed under these conditions were later evaluated for the oxidation of a monolayer of carbon monoxide. The Pt nanoclusters showed a high overpotential for the oxidation of the carbon monoxide monolayer and the high oxidation overpotential was attributed to the absence of adsorption sites for OH species on the Pt clusters: only at potentials where the OH species are adsorbed at the edge between the Pt nanocluster and the gold support, the oxidation of the carbon monoxide on the Pt nanoparticles takes place.

  3. Positively charged polysilsesquioxane/iodide lonic liquid as a quasi solid-state redox electrolyte for dye-sensitized photo electrochemical cells: infrared, 29 Si NMR, and electrical studies

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available A new sol-gel precursor based on 1-methyl-3-[3-(trimethoxy- λ 4 -silylpropyl]-1 H -imidazolium iodide (MTMSPI + I − was synthesized and investigated as a potential novel quasi solid-state ionic liquid redox electrolyte for dye-synthesized photoelectrochemical (DSPEC cells of the Graetzel type. MTMSPI + I − was hydrolyzed with acidified water and the reaction products of the sol-gel condensation reactions assessed with the help of 29 Si NMR and infrared spectroscopic techniques. Results of the time-dependent spectra analyses showed the formation of positively charged polyhedral cube-like silsesquioxane species that still contained a small amount of silanol end groups, which were removed after heating at 200 ° C . After cooling, the resulting material formed is a tough, yellowish, and transparent solid, which could be reheated again and used for assembling DSPEC cells. The addition of iodine increased the specific conductivity of the hydrolyzed and nonhydrolyzed MTMSPI + I − , which we attributed to the formation of triiodide ions contributed to the conductivity via the Grotthus mechanism. DSPEC cells based on a titania-dye system with MTMSPI + I − electrolyte containing iodine (0.1 M reached an overall efficiency between 3.3–3.7%.

  4. Worth their weight in gold

    International Nuclear Information System (INIS)

    Van Ryssen, E.

    1986-01-01

    A radiotherapeutic method of treating tumours in, on and around the eye, developed and improved over more than a decade of research at the University of Cape Town's Medical School and at the city's Groote Schuur Hospital, has won worldwide recognition. A problem when irradiating eye tumours is that the rays can damage surrounding tissues. Professor Sealy's team overcome this problem by using tailor-made gold or stainless steel shields moulded indiridually to fit the curve of the eyeball of each patient. Depending on the location of the tumour, small radioactive seeds of iodine 125 are placed on the inner or outer curve of the shield in such a way that their rays are confined to the desired location. The number and position of the seeds is worked out to give the desired dose of radiation

  5. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  6. Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells.

    Science.gov (United States)

    Kumar, Sathish Sundar Dhilip; Mahesh, Ayyavu; Antoniraj, M Gover; Rathore, Hanumant Singh; Houreld, N N; Kandasamy, Ruckmani

    2018-04-01

    In this study, the green synthesis of gum kondagogu capped gold nanoparticles (GK-GNPs) was prepared using a naturally available polysaccharide. The anionic gum capped GK-GNPs enabled the successful coupling of folic acid (FA) and fluorescein isothiocyanate (FITC) to produce a fluorescently labelled GNP (F2-GNP). F2-GNPs were further characterized using different physicochemical methods Cellular viability, cellular imaging, and targeted delivery of F2-GNPs were further evaluated in both folate receptor positive (MCF-7) and folate receptor negative (A549) cancer cells. Physicochemical characterization revealed a nanoparticle with a small size (37 nm), smooth surface (surface charge of -23.7 mV), crystallinity of gold nanoparticles and existence of gum kondagogu in the F2-GNPs. Cellular uptake of F2-GNPs indicated a greater affinity towards folate receptor positive cells. This study shows that the F2-GNPs is as an effective nanocarrier for targeted drug delivery and cellular imaging via folate receptors. Copyright © 2017. Published by Elsevier B.V.

  7. One-step synthesis of gold bimetallic nanoparticles with various metal-compositions

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoaneta; Takai, Osamu; Saito, Nagahiro

    2013-01-01

    Highlights: ► Synthesis of bimetallic nanoparticles in an aqueous solution discharge. ► Alloying gold with divalent sp metals, trivalent sp metals, 3d or 4d metals. ► Formation mechanism of bimetallic nanoparticles by metal reduction and gold erosion. ► Blue and red shift of surface plasmon resonance. -- Abstract: A rapid, one-step process for the synthesis of bimetallic nanoparticles by simultaneous metal reduction and gold erosion in an aqueous solution discharge was investigated. Gold bimetallic nanoparticles were obtained by alloying gold with various types of metals belonging to one of the following categories: divalent sp metals, trivalent sp metals, 3d or 4d metals. The composition of the various gold bimetallic nanoparticles obtained depends on electrochemical factors, charge transfer between gold and other metal, and initial concentration of metal in solution. Transmission electron microscopy and energy dispersive spectroscopy show that the gold bimetallic nanoparticles were of mixed pattern, with sizes of between 5 and 20 nm. A red-shift of the surface plasmon resonance band in the case of the bimetallic nanoparticles Au–Fe, Au–Ga, and Au–In, and a blue-shift of the plasmon band of the Au–Ag nanoparticles was observed. In addition, the interaction of gold bimetallic nanoparticles with unpaired electrons, provided by a stable free radical molecule, was highest for those NPs obtained by alloying gold with a 3d metal

  8. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  9. For the love of gold

    International Nuclear Information System (INIS)

    Young, J.E.

    1993-01-01

    Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described

  10. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sit...... affluent than the others, suggesting that movement can be rewarding for those willing to 'try their luck' with the hard work and social networking demands of mining another site.......African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...

  11. Gold' 82 - technical sessions

    International Nuclear Information System (INIS)

    Viewing, K.

    1983-01-01

    Sulphur-isotope studies had been applied by Dr. I. Lambert to a number of deposits in Western Australia and also to certain samples from Vubachickwe and other deposits in Zimbabwe. A study of the sulphur isotopes at the Dickenson Mine, revealed a wide spread of values in the mineralised zones. Metamorphic processes were likely to be significant in the concentration of gold. The iron formations at the Old Jardine Mine had been unfolded by Dr. W.S. Hallager and the pattern of sedimentation was unraveled. A gold-rich zone was separated by a barren gap from the other part of the mineralised zone. Research was also done on the effects of the metamorphic processes, and the ages of mineralisation

  12. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  13. Model improvements to simulate charging in SEM

    Science.gov (United States)

    Arat, K. T.; Klimpel, T.; Hagen, C. W.

    2018-03-01

    Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. The improvements include both modelling of low energy electron scattering and charging of insulators. The new first-principle scattering models provide a more realistic charge distribution cloud in the material, and a better match between non-charging simulations and experimental results. Improvements on charging models mainly focus on redistribution of the charge carriers in the material with an induced conductivity (EBIC) and a breakdown model, leading to a smoother distribution of the charges. Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.

  14. Thunderstorm Charge Structures Producing Negative Gigantic Jets

    Science.gov (United States)

    Boggs, L.; Liu, N.; Riousset, J. A.; Shi, F.; Rassoul, H.

    2016-12-01

    Here we present observational and modeling results that provide insight into thunderstorm charge structures that produce gigantic jet discharges. The observational results include data from four different thunderstorms producing 9 negative gigantic jets from 2010 to 2014. We used radar, very high frequency (VHF) and low frequency (LF) lightning data to analyze the storm characteristics, charge structures, and lightning activity when the gigantic jets emerged from the parent thunderstorms. A detailed investigation of the evolution of one of the charge structures by analyzing the VHF data is also presented. The newly found charge structure obtained from the observations was analyzed with fractal modeling and compared with previous fractal modeling studies [Krehbiel et al., Nat. Geosci., 1, 233-237, 2008; Riousset et al., JGR, 115, A00E10, 2010] of gigantic jet discharges. Our work finds that for normal polarity thunderstorms, gigantic jet charge structures feature a narrow upper positive charge region over a wide middle negative charge region. There also likely exists a `ring' of negative screening charge located around the perimeter of the upper positive charge. This is different from previously thought charge structures of the storms producing gigantic jets, which had a very wide upper positive charge region over a wide middle negative charge region, with a very small negative screening layer covering the cloud top. The newly found charge structure results in leader discharge trees in the fractal simulations that closely match the parent flashes of gigantic jets inside and outside the thundercloud. The previously used charge structures, while vital to the understanding of gigantic jet initiation and the role of charge imbalances inside the cloud, do not produce leader discharge trees that agree with observed gigantic jet discharges.Finally, the newly discovered gigantic jet charge structures are formed near the end of a convective pulse [Meyer et al., JGR, 118

  15. Charge transport problem

    International Nuclear Information System (INIS)

    Lee, E.P.

    1977-01-01

    In a recent report (UCID 17346, ''Relativistic Particle Beam in a Semi-Infinite Axially Symmetric conducting channel extending from a perfectly conducting plane,'' Dec. 13, 1976) Cooper and Neil demonstrate that the net charge transported by a beam pulse injected into a channel of finite conductivity equals the charge of the beam itself. The channel is taken to be infinite in the positive z direction, has finite radius and is terminated by a conducting ground plane at z =0. This result is not an obvious one, and it is restricted in its applicability by the special model assumed for the channel. It is the purpose to explain the result of Cooper and Neil in more qualitative terms and to make similar calculations using several other channel models. It must be emphasized that these calculations are not concerned with the fate of the transported charge after the pulse has stopped, but rather with how much charge leaves the ground plane assuming the pulse does not stop

  16. Obtaining and characterization of thin films polyelectrolyte with gold nanoparticles

    International Nuclear Information System (INIS)

    Popiolski, Tatiane M.; Crespo, Janaina S.; Silva, Renato B.

    2011-01-01

    Thin films of polyelectrolytes are manufactured via sequential adsorption of weak polyelectrolytes from aqueous solutions based on electrostatic interaction of oppositely charged polymers. Metal containing polymeric compounds are of particular interest to the production of materials with electrical interface and optical properties. In this sense, the objective of this study was to obtain thin films of weak polyelectrolytes and analyze the distribution of gold nanoparticles stabilized by sodium citrate and by poly (vinylpyrrolidone). The characterization was performed using UV-visible, X-ray diffraction and atomic force microscopy. The techniques of UV-visible and X-ray diffraction was confirmed the presence of gold in the films, the atomic force microscopy images were used to analyze the morphology of the films and check the behavior of the diffusion of gold nanoparticles. (author)

  17. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Choi, Kyung Cheol, E-mail: shkp@kaist.ac.kr, E-mail: kyungcc@kaist.ac.kr [School of Electrical Engineering, KAIST, Daejeon 34141 (Korea, Republic of); Park, Sang-Hee Ko, E-mail: shkp@kaist.ac.kr, E-mail: kyungcc@kaist.ac.kr [Department of Material Science and Engineering, KAIST, Daejeon 34141 (Korea, Republic of)

    2016-05-02

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al{sub 2}O{sub 3}, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔV{sub th}) was 0 V even after a PBS time (t{sub stress}) of 3000 s under a gate voltage (V{sub G}) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔV{sub th} value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔV{sub th} values resulting from PBS quantitatively, the average oxide charge trap density (N{sub T}) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher N{sub T} resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of N{sub T} near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  18. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Choi, Kyung Cheol; Park, Sang-Hee Ko

    2016-01-01

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al_2O_3, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔV_t_h) was 0 V even after a PBS time (t_s_t_r_e_s_s) of 3000 s under a gate voltage (V_G) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔV_t_h value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔV_t_h values resulting from PBS quantitatively, the average oxide charge trap density (N_T) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher N_T resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of N_T near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  19. Fuel charging machine

    International Nuclear Information System (INIS)

    Uchikawa, Sadao.

    1978-01-01

    Purpose: To enable continuous fuel discharging and charging steps in a bwr type reactor by effecting positioning only for once by providing a plurality of fuel assembly grippers and their drives co-axially on a rotatable surface. Constitution: A plurality of fuel assembly grippers and their drives are provided co-axially on a rotatable surface. For example, a gripper A, a drive B, a gripper C and a drive D are arranged co-axially in symmetric positions on a disk rotated on rails by wheels and rotational drives. A new fuel in a fuel pool is gripped by the gripper A and transported above the reactor core. Then, the disk is positioned so that the gripper C can grip the spent fuel in the core, and the fuel to be discharged is gripped and raised by the gripper C. Then the disk is rotated by 180 0 and the new fuel in the gripper A is charged into the position from which the old fuel has been discharged and, finally, the discharged fuel is sent to the fuel pool for storage. (Seki, T.)

  20. Immunological properties of gold nanoparticles.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2017-03-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.

  1. CHARGE Association

    Directory of Open Access Journals (Sweden)

    Semanti Chakraborty

    2012-01-01

    Full Text Available We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy, gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age, GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 ΅IU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient′s karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness. [1] These anomalies have a higher probability of occurring together. In this report, we have

  2. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.

    Science.gov (United States)

    Alkilany, Alaaldin M; Lohse, Samuel E; Murphy, Catherine J

    2013-03-19

    agent in nanoparticle solutions is known, researchers can employ strategies to mitigate toxicity. For example, the surfactant used at high concentration in the synthesis (0.1 M) of gold nanorods remains on their surface in the form of a bilayer and can be toxic to certain cells at 200 nM concentrations. Several strategies can alleviate the toxic response. Polyelectrolyte layer-by-layer wrapping can cover up the surfactant bilayer, or researchers can exchange the surfactant with chemically similar molecules. Researchers can also replace the surfactant with a biocompatible thiol or use a polymerizable surfactant that can be "stitched" onto the nanorods and reduce its lability. In all these cases, however, proteins or other molecules from the cellular media cover the engineered surface of the nanoparticles, which can drastically change the charges and functional groups on the nanoparticle surface.

  3. A sensitive label–free amperometric immunosensor for alpha-fetoprotein based on gold nanorods with different aspect ratio

    Science.gov (United States)

    Zhou, Chunyang; Liu, Dali; Xu, Lin; Li, Qingling; Song, Jian; Xu, Sai; Xing, Ruiqing; Song, Hongwei

    2015-01-01

    A simple and accurate label–free amperometric immunosensor for α–fetoprotein (AFP) detection is developed based on gold nanorods (GNRs) with different aspect ratio and compared with gold particles (GNPs). The positively charged GNRs and GNPs due to the surface immobilized cetyltrimethyl ammonium bromide (CTAB) can adsorb the negatively charged AFP antibody (Ab) directly. The presence of the GNRs not only enhanced the immobilized amount of biomolecules, but also improved the electrochemical properties of the immunosensor. With the aid of GNRs, the electrochemical signal was greatly enhanced in comparison with GNPs. Under optimal conditions, the proposed immunosensor could detect AFP in a linear range from 0.1 to 200 ng/mL with a detection limit of 0.04 ng/mL (signal–to–noise ratio = 3), and it also possessed good reproducibility and storage stability. Moreover, the detection of AFP in five human serum samples also showed satisfactory accuracy. The proposed methodology was potentially attractive for clinical immunoassay. PMID:25909588

  4. Substance Use and Cognitive Function as Drivers of Condomless Anal Sex Among HIV-Positive Gay, Bisexual, and Other Men Who Have Sex with Men Aged 50 and Older: The Gold Studies.

    Science.gov (United States)

    Kupprat, Sandra A; Krause, Kristen D; Ompad, Danielle C; Halkitis, Perry N

    2017-12-01

    Substance use has been linked to the sexual transmission of HIV among gay, bisexual, and other men who have sex with men (MSM) across the lifespan. Among older, HIV-positive, MSM populations, cognitive dysfunction associated with age and HIV disease progression also may play a role in sexual risk-taking. People aged 50 years and older represent a growing proportion of the overall HIV-positive population. This study aimed to explore relationships between substance use and cognitive function, and their impact on condomless anal sex (CAS) among HIV-positive gay, bisexual, and other MSM aged 50 years and older. Data from a cross-sectional study of HIV-positive MSM, aged 50 and older (N = 169) were gathered using a computer-assisted survey, researcher-administered behavioral and neurocognitive measures. More than 50% of the men used substances and had one or more cognitive impairments. However, only 25% were at higher risk for dementia (i.e., two or more cognitive impairments). Multivariable modeling indicated that use of alcohol to intoxication and date of HIV diagnosis were the strongest predictors of CAS in both a model that included dementia risk and a model that included impaired executive function risk. Current illicit substance use was a significant predictor of CAS only in the model that included dementia risk. Those with better cognitive and executive function had higher odds of CAS. However, only executive function was a significant cognitive predictor of CAS. Further research is needed to clarify the impact of cognitive function and substance use on sexual risk behaviors as these HIV-positive men achieve normal life expectancies, while continuing to use substances and engage in CAS. Furthermore, addiction treatment remains a critical need for this group even as they transition into later adulthood.

  5. The extractive metallurgy of gold

    Energy Technology Data Exchange (ETDEWEB)

    Kongolo, K.; Mwema, M.D. [University of Lubumbashi, Zaire, Gecamines Metallurgical Research Centre, Likasi, Zaire, c/o Gecamines Brussels (Belgium)

    1998-12-15

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied.

  6. The extractive metallurgy of gold

    Science.gov (United States)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  7. The extractive metallurgy of gold

    International Nuclear Information System (INIS)

    Kongolo, K.; Mwema, M.D.

    1998-01-01

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied

  8. Surface-stabilized gold nanocatalysts

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  9. Identification of Paracoccidioides brasiliensis by gold nanoprobes

    Science.gov (United States)

    Martins, Jaciara F. S.; Castilho, Maiara L.; Cardoso, Maria A. G.; Carreiro, Andrea P.; Martin, Airton A.; Raniero, Leandro

    2012-01-01

    Paracoccidioides brasiliensis (P. brasiliensis) is a thermal dimorphic fungus and causal agent of paracoccidioidomycosis. Epidemiological data shows that it is mainly concentrated in Central and South America countries, with most registered cases in Colombia, Brazil, and Venezuela. The histopathological similarity with others fungal infection makes the diagnosis of P. brasiliensis more complicated. Therefore, the aim of this work was to find a positive and negative test for P. brasiliensis using gold nanoprobes as a new tool for P. brasiliensis detection. Gold nanoparticles were synthesized by reduction of gold chloride with sodium citrate. The results of this procedure is a wine-red solution with a maximum absorption in the range of ~520-530nm. A specific P. brasiliensis sequence of oligonucleotide was bonded to the nanoparticles, which maintained the wine-red color. The color changes from red to blue for negative diagnostic and is unchanged for a positive test. The H-bond interaction of DNA with the complementary DNA keeps strands together and forms double helical structure, maintaining the colloid stability. However, for non-complimentary DNA sequence the nanoprobes merge into a cluster, changing the light absorption.

  10. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...

  11. Nucleon-gold collisions at 200 A GeV using tagged d + Au interactions in the PHOBOS detector

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.; Phobos Collaboration

    2015-09-01

    Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d +Au , p +Au , and n +Au collisions at √{sN N}=200 GeV . The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p +Au and n +Au collisions in the data. A weighted combination of the yield of p +Au and n +Au is constructed to build a reference for Au +Au collisions that better matches the isospin composition of the gold nucleus. The pT and centrality dependence of the yield of this improved reference system is found to match that of d +Au . The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p +p ¯ to central d +Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p +Au is compared to that of n +Au . No significant asymmetry is observed at midrapidity. These studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p +A and d +A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.

  12. Determining gold content

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1981-01-01

    A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of γ-rays having an energy of 279 keV arising from the reaction 179 Au(nn') 179 Au → 279 keV. The apparatus has means for conveying the materials past an assembly, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. (author)

  13. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...... is not to accumulate state or market wealth, but for entrepreneurial skills to become tools towards the liberation of the individual from oppressive systems of control – essentially to add public value rather than economic value. In this presentation I will sketch an anarchist perspective on entrepreneurship, looking...

  14. Deactivation of nickel hydroxide-gold modified electrodes

    OpenAIRE

    Caram, Bruno; Tucceri, Ricardo

    2013-01-01

    The aim of the present work was to study how the charge-transport process of a nickel hydroxide film electrochemically synthesized on a gold substrate is modified when the electrode is stored for a long time. It was found that nickel hydroxide films are deactivated under storage, that is, films became less conductive than films immediately prepared (nondeactivated). This study was carried out in the context of the rotating disc electrode voltammetry when the modified electrode contacts an ele...

  15. Kinetics of the QuantiFERON-TB Gold In-Tube test during treatment of patients with sputum smear-positive tuberculosis in relation to initial TST result and severity of disease

    DEFF Research Database (Denmark)

    Idh, Jonna; Abate, Ebba; Westman, Anna

    2010-01-01

    . Smear-positive TB patients (n = 71) were recruited at Gondar University Hospital, Ethiopia. The TST, QFN, CD4+ cell count and clinical symptoms (TB score) were assessed and followed up during treatment. From baseline to 7 months after treatment, there was a significant decrease in QFN reactivity (93.......8% to 62.5% in HIV-negative/TB; 70.3% to 33.3% in HIV-positive/TB patients) down to a level comparable to a control group of blood donors (51.2%). The agreement between TST and QFN was poor in TB patients compared to healthy controls. A negative TST correlated to more advanced TB in contrast to a negative...

  16. Determination of Gold from Gold Matrix of North Western Nigeria ...

    African Journals Online (AJOL)

    The research paper presents analytical results of Au, Mn and V concentrations of some Nigerian gold ores using two techniques: epithermal neutron activation analysis (ENAA) and proton induced X-ray emission (PIXE). Fourteen samples were collected from gold fields of North Western Nigeria, prepared separately to a ...

  17. Preparation and characterization of nano gold supported over montmorillonite clays

    International Nuclear Information System (INIS)

    Suraja, P.V.; Binitha, N.N.; Yaakob, Z.; Silija, P.P.

    2009-01-01

    Full text: The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl 4 ·3H 2 O by deposition-precipitation (DP) methods. However, it is difficult to prepare nano scale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. Here there is no need of increasing the pH of the solution to reduce the Au 3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-Vis Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method. (author)

  18. Spontaneous formation of gold nanostructures in aqueous microdroplets.

    Science.gov (United States)

    Lee, Jae Kyoo; Samanta, Devleena; Nam, Hong Gil; Zare, Richard N

    2018-04-19

    The synthesis of gold nanostructures has received widespread attention owing to many important applications. We report the accelerated synthesis of gold nanoparticles (AuNPs), as well as the reducing-agent-free and template-free synthesis of gold nanoparticles and nanowires in aerosol microdroplets. At first, the AuNP synthesis are carried out by fusing two aqueous microdroplet streams containing chloroauric acid and sodium borohydride. The AuNPs (~7 nm in diameter) are produced within 60 µs at the rate of 0.24 nm µs -1 . Compared to bulk solution, microdroplets enhance the size and the growth rate of AuNPs by factors of about 2.1 and 1.2 × 10 5 , respectively. Later, we find that gold nanoparticles and nanowires (~7 nm wide and >2000 nm long) are also formed in microdroplets in the absence of any added reducing agent, template, or externally applied charge. Thus, water microdroplets not only accelerate the synthesis of AuNPs by orders of magnitude, but they also cause spontaneous formation of gold nanostructures.

  19. Pulse-voltammetric glucose detection at gold junction electrodes.

    Science.gov (United States)

    Rassaei, Liza; Marken, Frank

    2010-09-01

    A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.

  20. Preparation and Characterization of Nano Gold Supported over Montmorillonite Clays

    Energy Technology Data Exchange (ETDEWEB)

    Suraja, P V; Binitha, N N; Yaakob, Z; Silija, P P, E-mail: binithann@yahoo.co.in [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2011-02-15

    The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl4{center_dot}3H2O by deposition-precipitation (DP) methods. However, it is difficult to prepare nanoscale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. There is no need of increasing the pH of the solution to reduce the Au3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-VIS Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method.

  1. Booster gold beam injection efficiency and beam loss

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Ahrens, L.A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) at the BNL requires the AGS to provide Gold beam with the intensity of 10 9 ions per bunch. Over the years, the Tandem Van de Graaff has provided steadily increasing intensity of gold ion beams to the AGS Booster. However, the gold beam injection efficiency at the Booster has been found to decrease with the rising intensity of injected beams. As the result, for Tandem beams of the highest intensity, the Booster late intensity is lower than with slightly lower intensity Tandem beam. In this article, the authors present two experiments associated with the Booster injection efficiency and beam intensity. One experiment looks at the Booster injection efficiency by adjusting the Tandem beam intensity, and another looks at the beam life time while scraping the beam in the Booster. The studies suggest that the gold beam injection efficiency at the AGS Booster is related to the beam loss in the ring, rather than the intensity of injected beam or circulating beam. A close look at the effect of the lost gold ion at the Booster injection leads to the prediction that the lost gold ion creates large number of positive ions, and even larger number of electrons. The lost gold beam is also expected to create large numbers of neutral particles. In 1998 heavy ion run, the production of positive ions and electrons due to the lost gold beam has been observed. Also the high vacuum pressure due to the beam loss, presumably because of the neutral particles it created, has been measured. These results will be reported elsewhere

  2. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    KAUST Repository

    Wang, Liang

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.

  3. Electron-beam-charged dielectrics: Internal charge distribution

    Science.gov (United States)

    Beers, B. L.; Pine, V. W.

    1981-01-01

    Theoretical calculations of an electron transport model of the charging of dielectrics due to electron bombardment are compared to measurements of internal charge distributions. The emphasis is on the distribution of Teflon. The position of the charge centroid as a function of time is not monotonic. It first moves deeper into the material and then moves back near to the surface. In most time regimes of interest, the charge distribution is not unimodal, but instead has two peaks. The location of the centroid near saturation is a function of the incident current density. While the qualitative comparison of theory and experiment are reasonable, quantitative comparison shows discrepancies of as much as a factor of two.

  4. Study of gold-platinum and platinum-gold surface modification and its influence on hydrogen evolution and oxygen reduction

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2005-02-01

    Full Text Available Surface modification of the electrodes was conducted from sulfuric acid solutions containing the corresponding metal–chloride complexes using cyclic voltammetry. Comparing the charges of the hydrogen underpotential deposition region, and the corresponding oxide reduction regions, it is concluded that a platinum overlayer on gold forms 3D islands, while gold on platinum forms 2D islands. Foreign metals present in an amount of up to one monolayer exert an influence on the change in reaction rate with respect to both hydrogen evolution (HER and oxygen reduction (ORR reactions. Aplatinum overlayer on a gold substrate increases the activity forHER and for ORR, compared with pure gold. These results can be understood in terms of a simple model, in which the change in the H and OH binding energies are directly proportional to the shift of the d-bond center of the overlayer. On the contrary, a gold layer on platinum slightly decreases the activity for both reactions compared with pure platinum.

  5. Activation analysis in gold industry

    International Nuclear Information System (INIS)

    Kist, A. A.

    2003-01-01

    Nuclear techniques and methods were, are, and will be very important for many fields of science, agriculture, industry, etc. Among other examples one can remember role of the nuclear medicine (radiotherapy and radiodiagnostic methods) or semiconductors (communication, computing, information, etc.) which industrial production has been on initial stage based on activation analysis. One of very illustrative examples is application of nuclear methods in gold industry. This is given by favorable nuclear properties of gold. Uzbekistan is one of the main producers of gold. Open-cast mining and hydro metallurgic extraction (using leaching by cyanide and sorption by ion-exchange resin) is the mostly used technology. The typical gold ores are sulfide and contain elevated concentration of As and Sb. That needs special technology of gold extraction. Importance of gold for Uzbekistan economy is a reason why for many years there are carried out studies concerning to gold production. These studies include also nuclear methods and their results are successfully used in gold industry. The present paper gives a brief overview for period of 25 years. For many reasons most of these studies were not published before completely. Despite some results are obtained decades ago we decided to present the overview as an example how nuclear methods can cover requirements of the whole process. We are trying to sort these studies according to methods and applications

  6. Residual dust charges in discharge afterglow

    International Nuclear Information System (INIS)

    Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A.

    2006-01-01

    An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar

  7. Workplace Charging. Charging Up University Campuses

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  8. Electrostatic charge characteristics of jet nebulized aerosols.

    Science.gov (United States)

    Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim

    2010-06-01

    Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from

  9. Reversible end-to-end assembly of gold nanorods using a disulfide-modified polypeptide

    International Nuclear Information System (INIS)

    Walker, David A; Gupta, Vinay K

    2008-01-01

    Directing the self-assembly of colloidal particles into nanostructures is of great interest in nanotechnology. Here, reversible end-to-end assembly of gold nanorods (GNR) is induced by pH-dependent changes in the secondary conformation of a disulfide-modified poly(L-glutamic acid) (SSPLGA). The disulfide anchoring group drives chemisorption of the polyacid onto the end of the gold nanorods in an ethanolic solution. A layer of poly(vinyl pyrrolidone) is adsorbed on the positively charged, surfactant-stabilized GNR to screen the surfactant bilayer charge and provide stability for dispersion of the GNR in ethanol. For comparison, irreversible end-to-end assembly using a bidentate ligand, namely 1,6-hexanedithiol, is also performed. Characterization of the modified GNR and its end-to-end linking behavior using SSPLGA and hexanedithiol is performed using dynamic light scattering (DLS), UV-vis absorption spectroscopy and transmission electron microscopy (TEM). Experimental results show that, in a colloidal solution of GNR-SSPLGA at a pH∼3.5, where the PLGA is in an α-helical conformation, the modified GNR self-assemble into one-dimensional nanostructures. The linking behavior can be reversed by increasing the pH (>8.5) to drive the conformation of the polypeptide to a random coil and this reversal with pH occurs rapidly within minutes. Cycling the pH multiple times between low and high pH values can be used to drive the formation of the nanostructures of the GNR and disperse them in solution.

  10. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  11. Stealing the Gold

    International Nuclear Information System (INIS)

    Whittington, S G

    2005-01-01

    Stealing the Gold presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field, including several Nobel laureates, highlight the historical development as well as new and emerging areas. This book would be of interest to graduate students and researchers in condensed matter physics, statistical physics and theoretical physics. Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics in new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel laureates and a Fields medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. Stealing the Gold, Edwards' favourite caricature of the relationship between theoretical physicists and nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century. (book review)

  12. Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes

    Directory of Open Access Journals (Sweden)

    Dikran Kesal

    2016-04-01

    Full Text Available The impact of electrostatic attraction on the uptake of gold nanoparticles (AuNPs into positively charged strong poly-[2-(Methacryloyloxy ethyl] trimethylammonium chloride (PMETAC polyelectrolyte brushes was investigated. In this work, PMETAC brushes were synthesized via surface-initiated atom transfer radical polymerization (Si-ATRP. PMETAC/AuNP composite materials were prepared by incubation of the polymer brush coated samples into 3-mercaptopropionic acid-capped AuNP (5 nm in diameter suspension. The electrostatic interactions were tuned by changing the surface charge of the AuNPs through variations in pH value, while the charge of the PMETAC brush was not affected. Atomic-force microscopy (AFM, ellipsometry, UV/Vis spectroscopy, gravimetric analysis and transmission electron microscopy (TEM were employed to study the loading and penetration into the polymer brush. The results show that the number density of attached AuNPs depends on the pH value and increases with increasing pH value. There is also strong evidence that the particle assembly is dependent on the pH value of the AuNP suspension. Incubation of PMETAC brushes in AuNP suspension at pH 4 led to the formation of a surface layer on top of the brush (2D assembly due to sterical hindrance of the clustered AuNPs, while incubation in AuNP suspension at pH 8 led to deeper particle penetration into the brush (3D assembly. The straightforward control of particle uptake and assembly by tuning the charge density of the nanoparticle surface is a valuable tool for the development of materials for colorimetric sensor applications.

  13. Reduction of the Work Function of Gold by N-Heterocyclic Carbenes

    KAUST Repository

    Kim, Hye Kyung

    2017-04-12

    N-Heterocyclic carbenes (NHCs) bind strongly to gold and other metals. This work experimentally probes the effect of NHCs on the work function (WF) of gold for the first time, theoretically analyzes the origin of this effect, and examines the effectiveness of NHC-modified gold as an electron-injecting electrode. UV photoelectron spectroscopy shows the WF of planar gold is reduced by nearly 2 eV to values of 3.3–3.5 eV. This effect is seen for NHCs with various heterocyclic cores, and with either small or large N,N′-substituents. DFT calculations indicate the WF reduction results from both the interface dipole formed between the NHC and the gold and from the NHC molecular dipole. For N,N′-diisopropyl-NHCs, an important contributor to the former is charge transfer associated with coordination of the carbene carbon atom to gold. In contrast, the carbene carbon of N,N′-2,6-diisopropylphenyl-NHCs is not covalently bound to gold, resulting in a lower interface dipole; however, a larger molecular dipole partially compensates for this. Single-layer C60 diodes with NHC-modified gold as the bottom electrode demonstrate high rectification ratios and show that these electrodes can act as effective electron-injecting contacts, suggesting they may be useful for a variety of materials applications.

  14. Reduction of the Work Function of Gold by N-Heterocyclic Carbenes

    KAUST Repository

    Kim, Hye Kyung; Hyla, Alexander; Winget, Paul; Li, Hong; Wyss, Chelsea M.; Jordan, Abraham J.; Larrain, Felipe A.; Sadighi, Joseph P.; Fuentes-Hernandez, Canek; Kippelen, Bernard; Bredas, Jean-Luc; Barlow, Stephen; Marder, Seth R.

    2017-01-01

    N-Heterocyclic carbenes (NHCs) bind strongly to gold and other metals. This work experimentally probes the effect of NHCs on the work function (WF) of gold for the first time, theoretically analyzes the origin of this effect, and examines the effectiveness of NHC-modified gold as an electron-injecting electrode. UV photoelectron spectroscopy shows the WF of planar gold is reduced by nearly 2 eV to values of 3.3–3.5 eV. This effect is seen for NHCs with various heterocyclic cores, and with either small or large N,N′-substituents. DFT calculations indicate the WF reduction results from both the interface dipole formed between the NHC and the gold and from the NHC molecular dipole. For N,N′-diisopropyl-NHCs, an important contributor to the former is charge transfer associated with coordination of the carbene carbon atom to gold. In contrast, the carbene carbon of N,N′-2,6-diisopropylphenyl-NHCs is not covalently bound to gold, resulting in a lower interface dipole; however, a larger molecular dipole partially compensates for this. Single-layer C60 diodes with NHC-modified gold as the bottom electrode demonstrate high rectification ratios and show that these electrodes can act as effective electron-injecting contacts, suggesting they may be useful for a variety of materials applications.

  15. Two-photon luminescence microscopy of field enhancement at gold nanoparticles

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.

    2005-01-01

    Using a reflection scanning optical microscope detecting two-photon luminescence (TPL) we have imaged square gold bumps positioned in a periodic array either on a smooth gold film or directly on a glass substrate. The second-harmonic (SH) and TPL response from these structures show both...

  16. A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Shekhawat G

    2009-07-01

    Full Text Available Abstract Background The synthesis of gold nanoparticles (GNPs has received considerable attention with their potential applications in various life sciences related applications. Recently, there has been tremendous excitement in the study of nanoparticles synthesis by using some natural biological system, which has led to the development of various biomimetic approaches for the growth of advanced nanomaterials. In the present study, we have demonstrated the synthesis of gold nanoparticles by a novel bacterial strain isolated from a site near the famous gold mines in India. A promising mechanism for the biosynthesis of GNPs by this strain and their stabilization via charge capping was investigated. Results A bacterial isolate capable of gold nanoparticle synthesis was isolated and identified as a novel strain of Stenotrophomonas malophilia (AuRed02 based on its morphology and an analysis of its 16S rDNA gene sequence. After 8 hrs of incubation, monodisperse preparation of gold nanoparticles was obtained. Gold nanoparticles were characterized and found to be of ~40 nm size. Electrophoresis, Zeta potential and FTIR measurements confirmed that the particles are capped with negatively charged phosphate groups from NADP rendering them stable in aqueous medium. Conclusion The process of synthesis of well-dispersed nanoparticles using a novel microorganism isolated from the gold enriched soil sample has been reported in this study, leading to the development of an easy bioprocess for synthesis of GNPs. This is the first study in which an extensive characterization of the indigenous bacterium isolated from the actual gold enriched soil was conducted. Promising mechanism for the biosynthesis of GNPs by the strain and their stabilization via charge capping is suggested, which involves an NADPH-dependent reductase enzyme that reduces Au3+ to Au0 through electron shuttle enzymatic metal reduction process.

  17. The Case for Gold Revisited: A Safe Haven Or A Hedge ?

    Directory of Open Access Journals (Sweden)

    Sudi Apak

    2012-09-01

    Full Text Available This paper attempts to analyze the relation among gold prices and other macroeconomic and financial variables and addresses the question whether gold is a safe haven or a hedge for investors. The study investigates the relationship by using an econometric analysis for top gold exporter and importer countries, for a sample period of 11 years from 2000 to 2011. The results are twofold (i return of silver, USD returns and change in the volatility index influences gold returns positively whereas, Swiss Franc and Canadian Dollar returns influence gold returns negatively regardless of presence of the 2008 crisis. (ii In times of stress, our findings indicate that Swiss Franc, Norwegian Krone and Canadian Dollar function as haven whereas, on average, Swiss Franc, Canadian Dollar and 10 year US treasuries function as a hedge against gold but the results show no evidence for the US dollar.  

  18. Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.

    Science.gov (United States)

    Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G

    2015-03-07

    The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.

  19. A comparative evaluation of drilling techniques for deposits containing free gold using radioactive gold particles as tracers

    International Nuclear Information System (INIS)

    Clarkson, R.

    1998-01-01

    In the summers of 1992 and 1994, the author designed and carried out a statistically valid research program using radioactivated gold particles as tracers (radiotracers). Two types of fully cased normal circulation (N / C) drills, two types of reverse circulation (R/C) drills and three solid auger drills were evaluated under a variety of field conditions. A frozen cylindrical core of compacted gravels containing four sizes ( 1.2, 0.60, 0.30 and 0.15 mm), (+l4,+28,+48and+100 mesh)of radiotracers was placed in 44 drill holes and the holes were re drilled. Scintillometers were used to track free gold losses due to spillage and blow-by around the collar (top) of the hole. Some gold particles were located in temporary traps in the drilling equipment and these particles would have contaminated subsequent samples (as carry-over). Several myths commonly attributed to particular drilling methods were dispelled. There was no significant difference between the recovery of the four sizes of gold particles with any of the drills tested. Observations and down-hole scintillometer records indicated that the free gold particles did not follow the bit down the hole and were either carried out of the hole or forced onto the sides of the hole at or above the depth at which the radioactive gold was positioned. A comparative evaluation of the results of these tests is presented

  20. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  1. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J

    2012-09-01

    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  2. Enhancement of gold recovery using bioleaching from gold concentrate

    Science.gov (United States)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  3. In harmony with gold and uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A profile is given on Mr Clive Knobbs as managing director of Harmony gold mine. From March 1 1983 he succeeded as deputy chairman of the group's gold and uranium division, and became the Rand Mines representative on the Gold Producers Committee and the Executive Committee of the Chamber of Mines. The article also takes a look at gold and uranium mining in general

  4. 41 CFR 101-45.002 - Gold.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  5. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    Science.gov (United States)

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis.

  6. Conduction channels at finite bias in single-atom gold contacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Kobayashi, Nobuhiko; Tsukada, Masaru

    1999-01-01

    We consider the effect of a finite voltage bias on the conductance of single-atom gold contacts. We employ a nonorthogonal spn-tight-binding Hamiltonian combined with a local charge neutrality assumption. The conductance and charge distributions for finite bias are calculated using the nonequilib......We consider the effect of a finite voltage bias on the conductance of single-atom gold contacts. We employ a nonorthogonal spn-tight-binding Hamiltonian combined with a local charge neutrality assumption. The conductance and charge distributions for finite bias are calculated using...... of the eigenchannels projected onto tight-binding orbitals. We find a single almost fully transmitting channel with mainly s character for low bias while for high bias this channel becomes less transmitting and additional channels involving only d orbitals start to conduct....

  7. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  8. Interaction of Freshwater Diatom with Gold Nanoparticles: Adsorption, Assimilation, and Stabilization by Cell Exometabolites

    Directory of Open Access Journals (Sweden)

    Aridane G. González

    2018-03-01

    Full Text Available The rising concern about the potential toxicity of synthetic gold nanoparticles (AuNPs in aquatic environments requires a rigorous estimation of physico-chemical parameters of reactions between AuNPs and major freshwater microorganisms. This study addresses the interaction of 10-nm size, positively charged AuNPs with periphytic freshwater diatoms (Eolimna minima. The adsorption experiments on viable cells were performed in 10 mM NaCl and 5 mM NaCl + 5 mM NaHCO3 solution at a variable pH (3–10, at an AuNPs concentration from 1 µg/L to 10,000 µg/L, and an exposure time from a few minutes to 55 days. Three types of experiments, adsorption as a function of time (kinetics, pH-dependent adsorption edge, and constant-pH “Langmuirian” type isotherms, were conducted. In addition, long-term interactions (days to weeks of live diatoms (under light and in the darkness were performed. The adsorption was maximal at a pH from 3 to 6 and sizably decreased at a pH of 6 to 10. Results of adsorption experiments were modeled using a second order kinetic model, a Linear Programming Model, Freundlich isotherm, and a ligand binding equation for one site competition. The adsorption of AuNPs(+ most likely occurred on negatively-charged surface sites of diatom cell walls such as carboxylates or phosphorylates, similar to previously studied metal cations. Under light exposure, the AuNPs were stabilized in aqueous solution in the presence of live cells, probably due to the production of exometabolites by diatoms. The adsorbed amount of AuNPs decreased after several days of reaction, suggesting some AuNPs desorption. In the darkness, the adsorption and assimilation were stronger than under light. Overall, the behavior of positively charged AuNPs at the diatom–aqueous solution interface is similar to that of metal cations, but the affinity of aqueous AuNPs to cell exometabolites is higher, which leads to the stabilization of nanoparticles in solution in the

  9. Gold, currencies and market efficiency

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  10. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  11. Lexan Linear Shaped Charge Holder with Magnets and Backing Plate

    Science.gov (United States)

    Maples, Matthew W.; Dutton, Maureen L.; Hacker, Scott C.; Dean, Richard J.; Kidd, Nicholas; Long, Chris; Hicks, Robert C.

    2013-01-01

    A method was developed for cutting a fabric structural member in an inflatable module, without damaging the internal structure of the module, using linear shaped charge. Lexan and magnets are used in a charge holder to precisely position the linear shaped charge over the desired cut area. Two types of charge holders have been designed, each with its own backing plate. One holder cuts fabric straps in the vertical configuration, and the other charge holder cuts fabric straps in the horizontal configuration.

  12. Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films

    International Nuclear Information System (INIS)

    Yu Aimin; Zhang Xing; Zhang Haili; Han, Deyan; Knight, Allan R.

    2011-01-01

    Highlights: → Gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films were prepared via layer-by-layer self-assembly technique. → The electron transfer behaviour of the hybrid thin films were investigated using an electrochemical probe. → The resulting thin films exhibited an electrocatalytic activity towards the oxidation of nitric oxide. - Abstract: Multi-walled carbon nanotubes (MWCNT)/polyelectrolyte (PE) hybrid thin films were fabricated by alternatively depositing negatively charged MWCNT and positively charged (diallyldimethylammonium chloride) (PDDA) via layer-by-layer (LbL) assembly technique. The stepwise growth of the multilayer films of MWCNT and PDDA was characterized by UV-vis spectroscopy. Scanning electron microscopy (SEM) images indicated that the MWCNT were uniformly embedded in the film to form a network and the coverage density of MWCNT increased with layer number. Au nanoparticles (NPs) could be further adsorbed onto the film to form PE/MWCNT/Au NPs composite films. The electron transfer behaviour of multilayer films with different compositions were studied by cyclic voltammetry using [Fe(CN) 6 ] 3-/4- as an electrochemical probe. The results indicated that the incorporation of MWCNT and Au NPs not only greatly improved the electronic conductivity of pure polyelectrolyte films, but also provided excellent electrocatalytic activity towards the oxidation of nitric oxide (NO).

  13. Immunological properties of gold nanoparticles

    OpenAIRE

    Dykman, Lev A.; Khlebtsov, Nikolai G.

    2016-01-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be...

  14. Biosensors based on gold nanostructures

    OpenAIRE

    Vidotti,Marcio; Carvalhal,Rafaela F.; Mendes,Renata K.; Ferreira,Danielle C. M.; Kubota,Lauro T.

    2011-01-01

    The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles bas...

  15. Characterisation of gold from Fiji

    OpenAIRE

    Naden, Jon; Henney, P.J.

    1995-01-01

    This is a study of the variation in chemistry and inclusion mineralogy of bedrock and placer gold from Fiji. It forms part of a large project, undertaking gold characterisation from a wide range of geological environments in Ecuador, Zimbabwe, Malaysia and Fiji. The work was carried out under the Overseas Development AdministratiodBritish Geological Survey Technology Development and Research programme (Project R5549) as part of the British Government’s provision of technical...

  16. Fluctuation charge effects in ionization fronts

    International Nuclear Information System (INIS)

    Arrayas, Manuel; Trueba, Jose L; Baltanas, J P

    2008-01-01

    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster

  17. Fluctuation charge effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel; Trueba, Jose L [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain); Baltanas, J P [Departamento de Fisica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Sevilla (Spain)

    2008-05-21

    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster.

  18. Charging machine for a fast production reactor

    International Nuclear Information System (INIS)

    Artem'ev, L.N.; Kurilkin, V.V.

    1971-01-01

    Charging machine for a fast production reactor is described. The machine contains charging mechanism, mechanism for positioning fresh fuel and spent fuel assemtlies, storage drums with sockets for control rod assemtlies and collet tongs for control rods. Recharging is conducted by means of ramp channel

  19. Charge ratio of muons from atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor

    2003-05-22

    We calculate the intensities and angular distributions of positive and negative muons produced by atmospheric neutrinos. We comment on some sources of uncertainty in the charge ratio. We also draw attention to a potentially interesting signature of neutrino oscillations in the muon charge ratio, and we discuss the prospects for its observation (which are not quite within the reach of currently planned magnetized detectors)

  20. Effect of gold nanoparticles on adipogenic differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Kohl, Yvonne; Gorjup, Erwin; Katsen-Globa, Alisa; Büchel, Claudia; Briesen, Hagen von; Thielecke, Hagen

    2011-01-01

    Gold nanoparticles are very attractive for biomedical products. However, there is a serious lack of information concerning the biological activity of nanosized gold in human tissue cells. An influence of nanoparticles on stem cells might lead to unforeseen consequences to organ and tissue functions as long as all cells arising from the initial stem cell might be subsequently damaged. Therefore the effect of negatively charged gold nanoparticles (9 and 95 nm), which are certified as reference material for preclinical biomedical research, on the adipogenic differentiation of human mesenchymal stem cells (hMSCs) is investigated here. Bone marrow hMSCs are chosen as differentiation model since bone marrow hMSCs are well characterized and their differentiation into the adipogenic lineage shows clear and easily detectable differentiation. In this study effects of gold nanoparticles on adipogenic differentiation are analyzed regarding fat storage and mitochondrial activity after different exposure times (4–21 days). Using time lapse microscopy the differentiation progress under chronically gold nanoparticle treatment is continuously investigated. In this preliminary study, chronically treatment of adipogenic differentiating hMSCs with gold nanoparticles resulted in a reduced number and size of lipid vacuoles and reduced mitochondrial activity depending on the applied concentration and the surface charge of the particles.

  1. Effect of gold nanoparticles on adipogenic differentiation of human mesenchymal stem cells

    Science.gov (United States)

    Kohl, Yvonne; Gorjup, Erwin; Katsen-Globa, Alisa; Büchel, Claudia; von Briesen, Hagen; Thielecke, Hagen

    2011-12-01

    Gold nanoparticles are very attractive for biomedical products. However, there is a serious lack of information concerning the biological activity of nanosized gold in human tissue cells. An influence of nanoparticles on stem cells might lead to unforeseen consequences to organ and tissue functions as long as all cells arising from the initial stem cell might be subsequently damaged. Therefore the effect of negatively charged gold nanoparticles (9 and 95 nm), which are certified as reference material for preclinical biomedical research, on the adipogenic differentiation of human mesenchymal stem cells (hMSCs) is investigated here. Bone marrow hMSCs are chosen as differentiation model since bone marrow hMSCs are well characterized and their differentiation into the adipogenic lineage shows clear and easily detectable differentiation. In this study effects of gold nanoparticles on adipogenic differentiation are analyzed regarding fat storage and mitochondrial activity after different exposure times (4-21 days). Using time lapse microscopy the differentiation progress under chronically gold nanoparticle treatment is continuously investigated. In this preliminary study, chronically treatment of adipogenic differentiating hMSCs with gold nanoparticles resulted in a reduced number and size of lipid vacuoles and reduced mitochondrial activity depending on the applied concentration and the surface charge of the particles.

  2. Radiochemical study of the reactions of heavy ions with gold

    International Nuclear Information System (INIS)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions

  3. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules

    International Nuclear Information System (INIS)

    Diegoli, Sara; Manciulea, Adriana L.; Begum, Shakiela; Jones, Ian P.; Lead, Jamie R.; Preece, Jon A.

    2008-01-01

    The increasing exploitation of nanomaterials into many consumer and other products is raising concerns as these nanomaterials are likely to be released into the environment. Due to our lack of knowledge about the environmental chemistry, transport and ecotoxicology of nanomaterials, it is of paramount importance to study how natural aquatic colloids can interact with manufactured gold nanoparticles as these interactions will determine their environmental fate and behaviour. In this context, our work aims to quantify the effect of naturally occurring riverine macromolecules - International Humic Substances Society (IHSS) Suwannee River Humic Acid Standard (SRHA) - on citrate- and acrylate-stabilized gold nanoparticles. The influence of SRHA on the stability of the gold colloids was studied as a function of pH by UV-visible absorption spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). At high ionic strengths (0.1 M), extensive and rapid aggregation occurred, while more subtle effects were observed at lower ionic strength values. Evidence was found that SRHA enhances particle stability at extreme pH values (ionic strength < 0.01 M) by substituting and/or over-coating the original stabilizer on the gold nanoparticle surface, thus affecting surface charge and chemistry. These findings have important implications for the fate and behaviour of nanoparticles in the environment and their ecotoxicity

  4. Radiochemical study of the reactions of heavy ions with gold

    Energy Technology Data Exchange (ETDEWEB)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions.

  5. Design and Fabrication of Microfiber Containing Gold Nanoparticles

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Wang, Guanghui; Hu, Dora Juan Juan

    2010-01-01

    We present a simple fabrication method for embedding gold nanoparticles (GNPs) in a microfiber with two main advantages. The GNPs are positioned within the microfiber securing maximum enhancement of the electrical field and protection of the GNPs from the surroundings; moreover incoupling losses...

  6. Amoxicillin functionalized gold nanoparticles reverts MRSA resistance

    International Nuclear Information System (INIS)

    Kalita, Sanjeeb; Kandimalla, Raghuram; Sharma, Kaustav Kalyan; Kataki, Amal Chandra; Deka, Manab; Kotoky, Jibon

    2016-01-01

    In this study, we have described the biosynthesis of biocompatible gold nanoparticles (GNPs) from aqueous extract of the aerial parts of a pteridophyte, “Adiantum philippense” by microwave irradiation and its surface functionalization with broad spectrum beta lactam antibiotic, amoxicillin (Amox). The functionalization of amoxicillin on GNPs (GNP-Amox) was carried out via electrostatic interaction of protonated amino group and thioether moiety mediated attractive forces. The synthesized GNPs and GNP-Amox were physicochemically characterized. UV–Vis spectroscopy, Zeta potential, XRD, FTIR and SERS (surface enhanced raman spectra) results confirmed the loading of Amox into GNPs. Loading of Amox to GNPs reduce amoxicillin cytotoxicity, whereas GNPs were found to be nontoxic to mouse fibroblast cell line (L929) as evident from MTT and acridine orange/ethidium bromide (AO/EtBr) live/dead cell assays. The GNP-Amox conjugates demonstrated enhanced broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. Furthermore, in-vitro and in-vivo assays of GNP-Amox revealed potent anti-MRSA activity and improved the survival rate. This indicates the subversion of antibiotic resistance mechanism by overcoming the effect of high levels of β-lactamase produced by methicillin resistant Staphylococcus aureus (MRSA). Taken together, this study demonstrates the positive attributes from GNP-Amox conjugates as a promising antibacterial therapeutic agent against MRSA as well as other pathogens. - Highlights: • Aqueous extract of A. phillippens was used as a reducing and capping agent for synthesis of microwave irradiated gold nanoparticles. • GNPs were loaded with amoxicillin for restoration in antibacterial activity of amoxicillin against MRSA strains. • Gold nanoparticles and GNP-Amox were found biocompitable as tested on L929 cell line. • The nanoparticle antibiotic conjugates exhibited restoration of amoxicillin activity against MRSA in

  7. Amoxicillin functionalized gold nanoparticles reverts MRSA resistance

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Sanjeeb; Kandimalla, Raghuram; Sharma, Kaustav Kalyan [Drug Discovery Lab, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India); Kataki, Amal Chandra [Dr. B. Borooah Cancer Institute, Guwahati, Assam (India); Department of Applied Sciences, Gopinath Bordoloi Nagar, Jalukbari, Gauhati University, Guwahati 781014, Assam (India); Deka, Manab [Department of Applied Sciences, Gopinath Bordoloi Nagar, Jalukbari, Gauhati University, Guwahati 781014, Assam (India); Kotoky, Jibon, E-mail: jkotoky@gmail.com [Drug Discovery Lab, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India)

    2016-04-01

    In this study, we have described the biosynthesis of biocompatible gold nanoparticles (GNPs) from aqueous extract of the aerial parts of a pteridophyte, “Adiantum philippense” by microwave irradiation and its surface functionalization with broad spectrum beta lactam antibiotic, amoxicillin (Amox). The functionalization of amoxicillin on GNPs (GNP-Amox) was carried out via electrostatic interaction of protonated amino group and thioether moiety mediated attractive forces. The synthesized GNPs and GNP-Amox were physicochemically characterized. UV–Vis spectroscopy, Zeta potential, XRD, FTIR and SERS (surface enhanced raman spectra) results confirmed the loading of Amox into GNPs. Loading of Amox to GNPs reduce amoxicillin cytotoxicity, whereas GNPs were found to be nontoxic to mouse fibroblast cell line (L929) as evident from MTT and acridine orange/ethidium bromide (AO/EtBr) live/dead cell assays. The GNP-Amox conjugates demonstrated enhanced broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. Furthermore, in-vitro and in-vivo assays of GNP-Amox revealed potent anti-MRSA activity and improved the survival rate. This indicates the subversion of antibiotic resistance mechanism by overcoming the effect of high levels of β-lactamase produced by methicillin resistant Staphylococcus aureus (MRSA). Taken together, this study demonstrates the positive attributes from GNP-Amox conjugates as a promising antibacterial therapeutic agent against MRSA as well as other pathogens. - Highlights: • Aqueous extract of A. phillippens was used as a reducing and capping agent for synthesis of microwave irradiated gold nanoparticles. • GNPs were loaded with amoxicillin for restoration in antibacterial activity of amoxicillin against MRSA strains. • Gold nanoparticles and GNP-Amox were found biocompitable as tested on L929 cell line. • The nanoparticle antibiotic conjugates exhibited restoration of amoxicillin activity against MRSA in

  8. Gold-195m for studies on regional pulmonary circulation

    International Nuclear Information System (INIS)

    Eriksson, L.; Andersson, L.; Jonson, B.; Westling, H.; White, T.; Wollmer, P.

    1985-01-01

    Six healthy controls, seven patients with coronary heart disease (CHD), and five patients with exercise-induced asthma (EIA) were studied in the sitting position at rest and during maximum exercise. The radionuclide gold-195m was used in the studies. A redistribution of activity toward the lung apex was found during exercise, the change being more pronounced in the healthy controls than in the patients with CHD. In two of the three patients in which exercise induced an asthmatic attack, gross reductions in the activity were seen in different areas of the lung. The authors conclude that gold-195m can be used for studies of rapid changes in regional pulmonary circulation

  9. Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites

    International Nuclear Information System (INIS)

    Patel, Nimitt G.; Kumar, Ajeet; Jayawardana, Veroni N.; Woodworth, Craig D.; Yuya, Philip A.

    2014-01-01

    Chitosan, a naturally derived polymer represents one of the most technologically important classes of active materials with applications in a variety of industrial and biomedical fields. Gold nanoparticles (∼ 32 nm) were synthesized via a citrate reduction method from chloroauric acid and incorporated in Chitosan matrix. Bio-nanocomposite films with varying concentrations of gold nanoparticles were prepared through solution casting process. Uniform distribution of gold nanoparticles was achieved throughout the chitosan matrix and was confirmed with SEM. Synthesis outcomes and prepared nanocomposites were characterized using SEM, TEM, EDX, SAED, UV–vis, XRD, DLS, and Zeta potential for their physical, morphological and structural properties. Nanoscale properties of materials under the influence of temperature were characterized through nanoindentation techniques. From quasi-static nanoindentation, it was observed that hardness and reduced modulus of the nanocomposites were increased significantly in direct proportion to the gold nanoparticle concentration. Gold nanoparticle concentration also showed positive impact on storage modulus and thermal stability of the material. The obtained films were confirmed to be biocompatible by their ability to support growth of human cells in vitro. In summary, the results show enhanced mechanical properties with increasing gold nanoparticle concentration, and provide better understanding of the structure–property relationships of such biocompatible materials for potential biomedical applications. - Highlights: • We fabricated gold reinforced chitosan nanocomposite for biomedical applications. • Gold nanoparticles significantly enhanced nanomechanical properties of chitosan. • Nanocomposite films supported growth of human cells in vitro. • Gold nanoparticles significantly improved cell proliferation on chitosan films

  10. Assessment of gold flux monitor at irradiation facilities of MINT TRIGA MK II reactor

    International Nuclear Information System (INIS)

    Wee Boon Siong; Abdul Khalik Wood; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Md Suhaimi Elias; Nazaratul Ashifa Abd Salim

    2005-01-01

    Neutron source of MINTs TRIGA MK II reactor has been used for activation analysis for many years and neutron flux plays important role in activation of samples at various positions. Currently, two irradiation facilities namely the pneumatic transfer system and rotary rack are available to cater for short and long lived irradiation. Neutron flux variation for both irradiation facilities have been determined using gold wire and gold solution as flux monitor. However, the use of gold wire as flux monitor is costlier if compared to gold solution. The results from analysis of certified reference materials showed that gold solution as flux monitors yield satisfactory results and proved to safe cost on the purchasing of gold wire. Further experiment on self-shielding effects of gold solution at various concentrations has been carried out. This study is crucial in providing vital information on the suitable concentration for gold solution as flux monitor. In the near future, gold solution flux monitor will be applied for routine analysis and hence to improve the capability of the laboratory on neutron activation analysis. (Author)

  11. Structure and bonding in gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.

    1988-01-01

    Recent developments in chemical applications of 197 Au Moessbauer spectroscopy are reviewed. For gold(I) and gold(III), systematic variations in isomer shift and quadrupole splitting are seen as the ligands are changed; the effects of change in coordination number of the gold atoms are also systematic. Data for gold(II) systems involving gold-gold bonds lie between those for corresponding gold(I) and gold(III) materials, showing a small increase in isomer shift and a larger increase in quadrupole splitting as the oxidation state decreases; these trends are explained in terms of the structures. Data for mixed-metal cluster compounds are much more sensitive to structural effects than in homonuclear clusters. Both sets of data show systematic changes with increase in the number of metal atoms to which the gold atom is bound. The connectivity also influences the recoil-free fraction. (orig.)

  12. Dosimeter charging and/or reading apparatus

    International Nuclear Information System (INIS)

    Fine, L.T.; Jackson, T.P.

    1980-01-01

    A device is disclosed for charging and/or reading a capacitor associated with an electrometer incorporated in a radiation dosimeter for the purpose of initializing or ''zeroing'', the dosimeter at the commencement of a radiation measurement cycle or reading it at any time thereafter. The dosimeter electrometer has a movable electrode the position of which is indicative of the charge remaining on the dosimeter capacitor and in turn the amount of radiation incident on the dosimeter since it was zeroed. The charging device also includes means for discharging, immediately upon conclusion of the dosimeter capacitor charging operation, stray capacitance inherent in the dosimeter by reason of its mechanical construction. The charge on the stray capacitance, if not discharged at the conclusion of the dosimeter capacitor charging operation, leaks off during the measurement cycle, introducing measurement errors. A light source and suitable switch means are provided for automatically illuminating the movable electrode of the dosimeter electrometer as an incident to charging the dosimeter capacitor to facilitate reading the initial, or ''zero'', position of the movable electrometer electrode after the dosimeter capacitor has been charged and the stray capacitance discharged. Also included is a manually actuatable switch means, which is operable independently of the aforementioned automatic switch means, to energize the lamp and facilitate reading of the dosimeter without charging

  13. Theoretical study of oxygen adsorption on pure Au-n+1(+) and doped MAun+ cationic gold clusters for M = Ti, Fe and n=3-7

    DEFF Research Database (Denmark)

    Torres, M. Begona; Fernandez Sanchez, Eva; Balbas, Luis C.

    2008-01-01

    A comparative study of the adsorption of an O-2 molecule on pure Au-n+1(+) and doped MAun+ cationic gold clusters for n = 3-7 and M = Ti, Fe is presented. The simultaneous adsorption of two oxygen atoms also was studied. This work was performed by means of first principles calculations based...... with adsorption energies of 0.56 and 0.69 eV, respectively. The ground-state geometry of Au-n(+) is almost unperturbed after O-2 adsorption. The electronic charge flows towards O-2 when the molecule is adsorbed in bridge positions and towards the gold cluster when O-2 is adsorbed on top of An atoms, and both...... with size n are rationalized in terms of O-O and O-M bond distances, as well as charge transfer between oxygen and cluster substrates. The spin multiplicity of those (MAunO2+)(ad) complexes with the highest O-2 adsorption energy is a maximum (minimum) for M = Fe (Ti), corresponding to parallel (anti...

  14. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging

    KAUST Repository

    Croissant, Jonas G.; Zhang, Dingyuan; Alsaiari, Shahad K.; Lu, Jie; Deng, Lin; Tamanoi, Fuyuhiko; Zink, Jeffrey I.; Khashab, Niveen M.

    2016-01-01

    Functional nanocarriers capable of transporting high drug contents without premature leakage and to controllably deliver several drugs are needed for better cancer treatments. To address this clinical need, gold cluster bovine serum albumin (AuNC@BSA) nanogates were engineered on mesoporous silica nanoparticles (MSN) for high drug loadings and co-delivery of two different anticancer drugs. The first drug, gemcitabine (GEM, 40 wt%), was loaded in positively-charged ammonium-functionalized MSN (MSN-NH3+). The second drug, doxorubicin (DOX, 32 wt%), was bound with negatively-charged AuNC@BSA electrostatically-attached onto MSN-NH3+, affording highly loaded pH-responsive MSN-AuNC@BSA nanocarriers. The co-delivery of DOX and GEM was achieved for the first time via an inorganic nanocarrier, possessing a zero-premature leakage behavior as well as drug loading capacities seven times higher than polymersome NPs. Besides, unlike the majority of strategies used to cap the pores of MSN, AuNC@BSA nanogates are biotools and were applied for targeted red nuclear staining and in-vivo tumor imaging. The straightforward non-covalent combination of MSN and gold-protein cluster bioconjugates thus leads to a simple, yet multifunctional nanotheranostic for the next generation of cancer treatments.

  15. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging

    KAUST Repository

    Croissant, Jonas G.

    2016-03-23

    Functional nanocarriers capable of transporting high drug contents without premature leakage and to controllably deliver several drugs are needed for better cancer treatments. To address this clinical need, gold cluster bovine serum albumin (AuNC@BSA) nanogates were engineered on mesoporous silica nanoparticles (MSN) for high drug loadings and co-delivery of two different anticancer drugs. The first drug, gemcitabine (GEM, 40 wt%), was loaded in positively-charged ammonium-functionalized MSN (MSN-NH3+). The second drug, doxorubicin (DOX, 32 wt%), was bound with negatively-charged AuNC@BSA electrostatically-attached onto MSN-NH3+, affording highly loaded pH-responsive MSN-AuNC@BSA nanocarriers. The co-delivery of DOX and GEM was achieved for the first time via an inorganic nanocarrier, possessing a zero-premature leakage behavior as well as drug loading capacities seven times higher than polymersome NPs. Besides, unlike the majority of strategies used to cap the pores of MSN, AuNC@BSA nanogates are biotools and were applied for targeted red nuclear staining and in-vivo tumor imaging. The straightforward non-covalent combination of MSN and gold-protein cluster bioconjugates thus leads to a simple, yet multifunctional nanotheranostic for the next generation of cancer treatments.

  16. Effect of Pyrite on Thiosulfate Leaching of Gold and the Role of Ammonium Alcohol Polyvinyl Phosphate (AAPP

    Directory of Open Access Journals (Sweden)

    Xiaoliang Liu

    2017-07-01

    Full Text Available The effect of pyrite and the role of ammonium alcohol polyvinyl phosphate (AAPP during gold leaching in ammoniacal thiosulfate solutions were investigated using pure gold foils. The results showed that pyrite catalyzed the decomposition and also significantly increased the consumption of thiosulfate. This detrimental effect became more severe with increasing pyrite content. Further, the presence of pyrite also substantially slowed the gold leaching kinetics and reduced the overall gold dissolution. The reduction in gold dissolution was found to be caused primarily by the surface passivation of the gold. The negative effects of pyrite, however, can be alleviated by the addition of AAPP. Comparison of zeta potentials of pyrite with and without AAPP suggests that AAPP had adsorbed on the surface of the pyrite and weakened the catalytic effect of pyrite on the thiosulfate decomposition by blocking the contact between the pyrite and thiosulfate anions. AAPP also competed with thiosulfate anions to complex with the cupric ion at the axial coordinate sites, and thus abated the oxidation of thiosulfate by cupric ions. Moreover, the indiscriminate adsorption of AAPP on the surfaces of gold and passivation species prevented the passivation of the gold surface by surface charge and electrostatic repulsion. Therefore, AAPP effectively stabilized the thiosulfate in the solution and facilitated the gold leaching in the presence of pyrite.

  17. Adsorption effectiveness of β-lactoglobulin onto gold surface determined by quartz crystal microbalance.

    Science.gov (United States)

    Jachimska, B; Świątek, S; Loch, J I; Lewiński, K; Luxbacher, T

    2018-06-01

    Bovine β-lactoglobulin (LGB) is a transport protein that can bind to its structure hydrophobic bioactive molecules. Due to the lack of toxicity, high stability and pH-dependent molecular binding mechanism, lactoglobulin can be used as a carrier of sparingly soluble drugs. Dynamic light scattering has confirmed LGB's tendency to create oligomeric forms. The hydrodynamic diameter of LGB molecules varies from 4 nm to 6 nm in the pH range of 2-10 and ionic strength I = 0.001-0.15 M, which corresponds to the presence of mono or dimeric LGB forms. The LGB zeta potential varies from 26.5 mV to -33.3 mV for I = 0.01 M and from 13.3 mV to -16 mV for I = 0.15 M in the pH range of 2-10. The isoelectric point is at pH 4.8. As a result of strong surface charge compensation, the maximum effective ionization degree of the LGB molecule is 35% for ionic strength I = 0.01 M and 22% for I = 0.15 M. The effectiveness of adsorption is linked with the properties of the protein, as well as those of the adsorption surface. The functionalization of gold surfaces with β-lactoglobulin (LGB) was studied using a quartz crystal microbalance with energy dissipation monitoring (QCM-D). The effectiveness of LGB adsorption correlates strongly with a charge of gold surface and the zeta potential of the molecule. The greatest value of the adsorbed mass was observed in the pH range in which LGB has a positive zeta potential values, below pH 4.8. This observation shows that electrostatic interactions play a dominant role in LGB adsorption on gold surfaces. Based on the adsorbed mass, protein orientation on gold surfaces was determined. The preferential side-on orientation of LGB molecules observed in the adsorption layer is consistent with the direction of the molecule dipole momentum determined by molecular dynamics simulations of the protein (MD). The use of the QCM-D method also allowed us to determine the effectiveness of adsorption of LGB on gold

  18. Bismuth-silver mineralization in the Sergozerskoe gold occurrence

    Directory of Open Access Journals (Sweden)

    Kalinin A. A.

    2017-03-01

    Full Text Available Bismuth-silver mineralization attendant to gold mineralization in the Sergozerskoe gold occurrence has been studied in detail. Bi-Ag mineralization is connected with diorite porphyry dykes, which cut volcanic-sedimentary Lopian complexes of the Strel'ninsky greenstone belt – hornblendite and actinolite-chlorite amphibolites, biotite and bi-micaceous gneisses. Distribution of Bi-Ag mineralization similar to gold mineralization is controlled by 80 m thick zone of silicification. Bi minerals are found in brecciated diorite porphyry. Bismuth-silver mineralization includes native metals (bismuth, electrum, silver, tellurides (hedleyite, hessite, selenides (ikunolite, sulfides and sulfosalts of Bi and Ag (matildite, lillianite, eckerite, jalpaite, prustite, acanthite, a few undiagnosed minerals. All Bi and Ag minerals associate with galena. Composition of mineralization evolved from early to late stages of development, depending on intensity of rock alteration. The earliest Bi-Ag minerals were native bismuth and hedleyite formed dissemination in galena, and electrum with 30-45 mass.% Au. Later native bismuth was partly substituted by silver and bismuth sulfosalts and bismuth sulfides. The latest minerals were low-temperature silver sulfides eckerite, jalpaite, and acanthite, which were noted only in the most intensively altered rocks. As soon as the process of formation of Bi-Ag mineralization is the same as formation of gold, findings of bismuth-silver mineralization can serve as a positive exploration sign for gold in the region.

  19. Deposition of plasmon gold-fluoropolymer nanocomposites

    Science.gov (United States)

    Safonov, Alexey I.; Sulyaeva, Veronica S.; Timoshenko, Nikolay I.; Kubrak, Konstantin V.; Starinskiy, Sergey V.

    2016-12-01

    Degradation-resistant two-dimensional metal-fluoropolymer composites consisting of gold nanoparticles coated with a thin fluoropolymer film were deposited on a substrate by hot wire chemical vapour deposition (HWCVD) and ion sputtering. The morphology and optical properties of the obtained coatings were determined. The thickness of the thin fluoropolymer film was found to influence the position of the surface plasmon resonance peak. Numerical calculations of the optical properties of the deposited materials were performed using Mie theory and the finite-difference time-domain (FDTD) method. The calculation results are consistent with the experimental data. The study shows that the position of the resonance peak can be controlled by changing the surface concentration of particles and the thickness of the fluoropolymer coating. The protective coating was found to prevent the plasmonic properties of the nanoparticles from changing for several months.

  20. Effect of Gold on the Corrosion Behavior of an Electroless Nickel/Immersion Gold Surface Finish

    Science.gov (United States)

    Bui, Q. V.; Nam, N. D.; Yoon, J. W.; Choi, D. H.; Kar, A.; Kim, J. G.; Jung, S. B.

    2011-09-01

    The performance of surface finishes as a function of the pH of the utilized plating solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. In addition, the surface finishes were examined by x-ray diffraction (XRD), and the contact angle of the liquid/solid interface was recorded. NiP films on copper substrates with gold coatings exhibited their highest coating performance at pH 5. This was attributed to the films having the highest protective efficiency and charge transfer resistance, lowest porosity value, and highest contact angle among those examined as a result of the strongly preferred Au(111) orientation and the improved surface wettability.

  1. Annealing relaxation of ultrasmall gold nanostructures

    Science.gov (United States)

    Chaban, Vitaly

    2015-01-01

    Except serving as an excellent gift on proper occasions, gold finds applications in life sciences, particularly in diagnostics and therapeutics. These applications were made possible by gold nanoparticles, which differ drastically from macroscopic gold. Versatile surface chemistry of gold nanoparticles allows coating with small molecules, polymers, biological recognition molecules. Theoretical investigation of nanoscale gold is not trivial, because of numerous metastable states in these systems. Unlike elsewhere, this work obtains equilibrium structures using annealing simulations within the recently introduced PM7-MD method. Geometries of the ultrasmall gold nanostructures with chalcogen coverage are described at finite temperature, for the first time.

  2. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  3. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  4. Current-voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution.

    Science.gov (United States)

    Briechle, Bernd M; Kim, Youngsang; Ehrenreich, Philipp; Erbe, Artur; Sysoiev, Dmytro; Huhn, Thomas; Groth, Ulrich; Scheer, Elke

    2012-01-01

    We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current-voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.

  5. Current–voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution

    Directory of Open Access Journals (Sweden)

    Bernd M. Briechle

    2012-11-01

    Full Text Available We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current–voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.

  6. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Wenya [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zhou, Qun, E-mail: zhq@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Li, Shuangshuang [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Zhao, Wei; Li, Na [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zheng, Junwei, E-mail: jwzheng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2015-10-30

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  7. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    International Nuclear Information System (INIS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-01-01

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  8. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  9. Gold nanoparticles stabilized by chitosan

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Oliveira, Maria Jose A.; Silva, Andressa A. da; Leal, Jessica; Batista, Jorge G.S.; Lugao, Ademar B.

    2015-01-01

    In our laboratory has been growing the interest in studying gold nanoparticles and for this reason, the aim of this work is report the first results of the effect of chitosan as stabilizer in gold nanoparticle formulation. AuNPs were synthesized by reducing hydrogen tetrachloroaurate (HAuCl 4 ) using NaBH 4 or gamma irradiation (25kGy) as reduction agent. The chitosan (3 mol L -1 ) was added at 0.5; 1.0 and 1.5 mL. The gold nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Their physical stability was determined using a UV-Vis spectrophotometer over one week during storage at room temperature. Absorption measurements indicated that the plasmon resonance wavelength appears at a wavelength around 530 nm. Has been observed that Chitosan in such quantities were not effective in stabilizing the AuNPs. (author)

  10. Color and magnetic charge

    International Nuclear Information System (INIS)

    Kim, B.R.

    1976-01-01

    Schwinger's conjecture that the color degree of freedom of a quark is equivalent to its degree of freedom of taking different magnetic charges provides a plausible motivation for extending color to leptons. Leptons are just quarks with zero magnetic charges. It is shown that baryon number and lepton number can be replaced by fermion number and magnetic charge

  11. Submicron position-sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Pugatch, V M; Rosenfeld, A B; Litovchenko, P G; Barabash, L I; Nemets, O F; Pavlenko, Yu N; Vasiliev, Yu O [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. for Nuclear Research

    1992-08-01

    A method has been developed to measure precisely the coordinates of charged particles incident between adjacent strips of a strip detector. The position sensitivity of an inter-strip gap has been studied by means of a pulsed laser beam and irradiation by [alpha]-particles of a [sup 226]Ra-source. The capacitive division of charge generated by the incident particle depends on the position of its track. Its coordinates were determined by two-dimensional amplitude analysis of the charges collected by neighbouring strips. This method of coordinate determination applied to studies of spatial and energy distributions of electromagnetic as well as charged particle beams (including radioactive ion beams) of low intensity could provide the highest level of the precision limited by the track dimensions of charged particles, i.e. percents of a micrometer. (orig.).

  12. Plasmonic Horizon in Gold Nanosponges.

    Science.gov (United States)

    Vidal, Cynthia; Sivun, Dmitry; Ziegler, Johannes; Wang, Dong; Schaaf, Peter; Hrelescu, Calin; Klar, Thomas A

    2018-02-14

    An electromagnetic wave impinging on a gold nanosponge coherently excites many electromagnetic hot-spots inside the nanosponge, yielding a polarization-dependent scattering spectrum. In contrast, a hole, recombining with an electron, can locally excite plasmonic hot-spots only within a horizon given by the lifetime of localized plasmons and the speed carrying the information that a plasmon has been created. This horizon is about 57 nm, decreasing with increasing size of the nanosponge. Consequently, photoluminescence from large gold nanosponges appears unpolarized.

  13. The complex nature of phthalocyanine/gold interfaces

    International Nuclear Information System (INIS)

    Lindner, Susi; Treske, Uwe; Knupfer, Martin

    2013-01-01

    We compare the electronic properties of the interface between Au(1 0 0) and cobalt phthalocyanine (CoPc), fluorinated F 16 CoPc as well as CuPc using X-ray photoemission spectroscopy and valence band ultra-violet photoemission spectroscopy. Our results show that in addition to the formation of an interface dipole at the interfaces of CoPc and F 16 CoPc to gold, there is a local charge transfer to the central Co ion, which as a result is reduced to Co(I).

  14. Laser spectroscopy of laser-desorbed gold isotopes

    International Nuclear Information System (INIS)

    Savard, G.; Crawford, J.E.; Lee, J.K.P.; Thekkadath, G.

    1990-01-01

    Changes in mean-square charge radius δ 2 >, and magnetic dipole moments μ I have been measured for a series of neutron-deficient gold isotopes between A=186 and 196, and for neutron-rich 198,199 Au, using the PILIS system on-line with the ISOCELE mass separator. These measurements confirm the existence of the shape transition between A=186 and 187. The measured μ I values have been compared with calculations using Nilsson, and symmetric-rotor-plus-quasiparticle models. The results are consistent with the interpretation that 186 Au is prolate, and that the heavier isotopes have oblate, or possibly triaxial deformation. (orig.)

  15. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  16. Ligations of Gold Atoms with Iron Porphyrin

    DEFF Research Database (Denmark)

    Zhang, Ling; Kepp, Kasper Planeta; Ulstrup, Jens

    Gold is an exotic material with d-electrons deciding electronic mappings andconfigurations of adsorbed molecules. The specific interaction of Au atoms and S-, Ncappedmolecules make gold nanoparticles widely applied in the medicine transport andimmunoassay. Density functional theory demonstrates t...

  17. Metallic gold beads in hyaluronic acid

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Tran, Thao Phuong; Smidt, Kamille

    2013-01-01

    . In conclusion, our findings support that bio-liberation of gold from metallic gold surfaces have anti-inflammatory properties similar to classic gold compounds, warranting further studies into the pharmacological potential of this novel gold-treatment and the possible synergistic effects of hyaluronic acid....... by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study...... investigates the anti-inflammatory properties of metallic gold/HA on the gene expression of tumor necrosis factor (Tnf-α), Interleukin (Il)-1β, Il-6, Il-10, Colony-stimulating factor (Csf)-v2, Metallothionein (Mt)-1/2, Bcl-2 associated X protein (Bax) and B cell lymphoma (Bcl)-2 in cultured J774 macrophages...

  18. THE ROLE OF DYNAMOMETAMORPHISM IN THE FORMATION OF THE MUKODEK GOLD FIELD (NORTH PRIBAIKALIE

    Directory of Open Access Journals (Sweden)

    V. A. Vanin

    2017-01-01

    Full Text Available The Mukodek gold field is discussed as an example proving that dynamometamorphism is a major factor in the formation of gold deposits in the Abchad fault zone. This deposit belongs to the gold‐silver‐ore zones of mylonitization and schistosity. The ore source is related to the original host rocks with an increased geochemical background concentration of Au. Due to dynamometamorphism processes, gold particles are abundant and mostly enlarged. From the primary rocks, the dynamometamorphites inherit a positive correlation between the number of particles and the concentrations of gold. The dynamometamorphic complex of the ore field developed in two stages, as a minimum. At the early stage (321.0±1.9 Ma, the host rocks were mechanochemically deformed and transformed into the gold‐ bearing mineralized dynamometamorphites containing sericite, chlorite, ankerite, albite, and quartz. In the second stage (280±15 Ma, the albite‐dolomite‐quartz ore veins were formed. Such veins have industrial gold contents.

  19. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  20. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  1. Charge of a macroscopic particle in a plasma sheath

    International Nuclear Information System (INIS)

    Samarian, A.A.; Vladimirov, S.V.

    2003-01-01

    Charging of a macroscopic body levitating in a rf plasma sheath is studied experimentally and theoretically. The nonlinear charge vs size dependence is obtained. The observed nonlinearity is explained on the basis of an approach taking into account different plasma conditions for the levitation positions of different particles. The importance of suprathermal electrons' contribution to the charging process is demonstrated

  2. Charge transport through image charged stabilized states in a single molecule single electron transistor device

    International Nuclear Information System (INIS)

    Hedegard, Per; Bjornholm, Thomas

    2005-01-01

    The present paper gives an elaborate theoretical description of a new molecular charge transport mechanism applying to a single molecule trapped between two macroscopic electrodes in a solid state device. It is shown by a Hubbard type model of the electronic and electrostatic interactions, that the close proximity of metal electrodes may allow electrons to tunnel from the electrode directly into very localized image charge stabilized states on the molecule. Due to this mechanism, an exceptionally large number of redox states may be visited within an energy scale which would normally not allow the molecular HOMO-LUMO gap to be transversed. With a reasonable set of parameters, a good fit to recent experimental values may be obtained. The theoretical model is furthermore used to search for the physical boundaries of this effect, and it is found that a rather narrow geometrical space is available for the new mechanism to work: in the specific case of oligophenylenevinylene molecules recently explored in such devices several atoms in the terminal benzene rings need to be at van der Waal's distance to the electrode in order for the mechanism to work. The model predicts, that chemisorption of the terminal benzene rings too gold electrodes will impede the image charge effect very significantly because the molecule is pushed away from the electrode by the covalent thiol-gold bond

  3. The geology of the gold deposits of Prestea gold belt of Ghana ...

    African Journals Online (AJOL)

    This paper presents the geology of the gold deposits along the Prestea gold belt of Ghana to assist exploration work for new orebodies along the belt. Prestea district is the third largest gold producer in West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes Au during the last century). The gold deposits are ...

  4. Gold Nanoparticle Mediated Phototherapy for Cancer

    International Nuclear Information System (INIS)

    Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z.

    2016-01-01

    Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations

  5. Self-assembled gold coating enhances X-ray imaging of alginate microcapsules

    Science.gov (United States)

    Qie, Fengxiang; Astolfo, Alberto; Wickramaratna, Malsha; Behe, Martin; Evans, Margaret D. M.; Hughes, Timothy C.; Hao, Xiaojuan; Tan, Tianwei

    2015-01-01

    Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified AuNPs (PAuNPs) were coated onto the surface of negatively charged alginate MCs resulting in hybrids which possessed low cytotoxicity and high mechanical stability in vitro. As a result of their high localized Au concentration, the hybrid MCs exhibited a distinctive bright circular ring even with a low X-ray dose and rapid scanning in post-mortem imaging experiments facilitating their positive identification and potentially enabling them to be used for in vivo tracking experiments over multiple time-points.Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified Au

  6. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  7. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  8. Cancer caused by radioactive gold rings

    International Nuclear Information System (INIS)

    Callary, E.M.

    1989-01-01

    Two recent cases of skin cancer caused by radioactive gold rings are described. The gold was contaminated with radon daughters from hollow goldseeds used to hold radon, back in the 1930s or possibly later. Other radioactive gold rings are probably being worn. The Canadian AECB offers free testing

  9. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    Science.gov (United States)

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  10. Mechanistic investigation of the gold-catalyzed aerobic oxidation of aldehydes: added insight from Hammett studies and isotopic labelling experiments

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The gold-catalyzed aerobic oxidation of aldehydes proceeds through development of a partial negative charge and has a significant kinetic isotope effect (k(H)/k(D) = 2.8-2.9), which illustrates that activation of the C-H bond takes place in the rate-determining step.......The gold-catalyzed aerobic oxidation of aldehydes proceeds through development of a partial negative charge and has a significant kinetic isotope effect (k(H)/k(D) = 2.8-2.9), which illustrates that activation of the C-H bond takes place in the rate-determining step....

  11. Electrochemical determination of dopamine in the presence of ascorbic acid based on the gold nanorods/carbon nanotubes composite film

    Energy Technology Data Exchange (ETDEWEB)

    Deng Chunyan, E-mail: dengchunyan81@126.com [Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha, 410083 (China); Chen Jinzhuo; Yang Minghui [Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha, 410083 (China); Nie Zhou [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Si Shihui [Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha, 410083 (China)

    2011-10-01

    Highlights: > The GNR/CNT/GC electrode was fabricated simply. It has higher catalytic activity towards the oxidation of DA and ascorbic acid (AA). The selective determination of DA was carried out with low detection limit (0.8 nM, S/N = 3). The proposed method was feasible to detect the concentration of DA in human blood serum. - Abstract: In this paper, the gold nanorods (GNRs)/multiwalled carbon nanotubes (CNT) composite film-modified glassy carbon (GC) electrode was fabricated simply by the electrostatic interaction between the positively charged GNRs and the negatively charged CNT. And the GNRs/CNT/GC electrode was used for the selective and sensitive determination of dopamine (DA) in the presence of ascorbic acid (AA). It was found that the GNRs/CNT/GC electrode had higher catalytic activity towards the oxidation of DA and ascorbic acid (AA) comparing with the bare GC and CNT/GC electrodes. It may be due to the synergic effect of GNRs and CNT, because the surface area of the GNRs/CNT/GC electrode increased, the edge plan sites presented on the CNT surface can improve the electron transfer between the modified electrode and DA, and the rod-shaped gold may be served as the mediator for the oxidation of dopamine and provided the electrocatalytic ability. Moreover, the voltammetric peaks of AA and DA were separated enough at the GNRs/CNT/GC electrode, which was sufficiently enough for the selective determination of DA. Thus, the selective determination of DA was carried out with low detection limit (0.8 nM, S/N = 3). Also it was obtained that the proposed method was feasible to detect the concentration of DA in human blood serum. Therefore, it can be concluded that the GNRs/CNT modified electrode may be advantageous for the DA determination.

  12. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  13. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  14. Searches for Fractionally Charged Particles: What Should Be Done Next?

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Martin L.; /SLAC

    2009-01-15

    Since the initial measurements of the electron charge a century ago, experimenters have faced the persistent question as to whether elementary particles exist that have charges that are fractional multiples of the electron charge. I concisely review the results of the last 50 years of searching for fractional charge particles with no confirmed positive results. I discuss the question of whether more searching is worthwhile?

  15. Coulombic charge ice

    Science.gov (United States)

    McClarty, P. A.; O'Brien, A.; Pollmann, F.

    2014-05-01

    We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.

  16. Cooperative Charging Effects of Fibers From Electrospinning of Electrically Dissimilar Polymers

    National Research Council Canada - National Science Library

    Schreuder-Gibson, H. L; Gibson, P; Tsai, P; Gupta, P; Wilkes, G

    2005-01-01

    .... During electrospinning of the PS and PAN polymer solutions, the fibers became positively charged when positive voltage was applied to the solution-filled spinning nozzle and became negatively charged...

  17. Observation of quantum interference in molecular charge transport

    DEFF Research Database (Denmark)

    Guedon, Constant M.; Valkenier, Hennie; Markussen, Troels

    2012-01-01

    for such behaviour has been indirect. Here, we report the observation of destructive quantum interference in charge transport through two-terminal molecular junctions at room temperature. We studied five different rigid p-conjugated molecular wires, all of which form self-assembled monolayers on a gold surface......, and find that the degree of interference can be controlled by simple chemical modifications of the molecular wire....

  18. Advances in Charge-Compensation in Secondary Ion Mass Spectrometry (SIMS)

    Science.gov (United States)

    Hervig, R. L.; Chen, J.; Schauer, S.; Stanley, B. D.; Moore, G. M.; Roggensack, K.

    2012-12-01

    In secondary ion mass spectrometry (SIMS), a sample is bombarded by a charged particle beam (the primary ion) and sputtered positive or negative secondary ions are analyzed in a mass spectrometer. When the target is not conducting (like many geological materials), sample charging can result in variable deflection of secondary ions away from the mass spectrometer and a low, unstable, or absent signal. Applying a thin conducting coat (e.g., C, Au) to polished samples is required, and if the primary ion beam is negatively-charged, the build-up of negative charge can be alleviated by secondary electrons draining to the conducting coat at the edge of the crater (if a positive potential is applied to the sample for the collection of positive secondary ions) or accelerated away from the crater (if a negative potential is applied for negative ion study). Unless the sputtered crater in the conducting coat becomes too large, sample charging can be kept at a controllable level, and high-quality trace element analyses and isotope ratios have been obtained using this technique over the past 3+ decades. When a positive primary beam is used, the resulting build-up of positive charge in the sample requires an electron gun to deliver sufficient negative charge to the sputtered crater. While there are many examples of successful analyses using this approach, the purpose of this presentation is to describe a very simple technique for aligning the electron gun on Cameca nf and 1270/80 SIMS instruments. This method allows reproducible analyses of insulating phases with a Cs+ primary beam and detection of negative secondary ions. Normally, the filament voltage on the E-gun is the same as the sample voltage; thus electrons do not strike the sample except when a positive charge has built up (e.g., in the analysis crater!). In this method, we decrease the sample voltage by 3 or more kV, so that the impact energy of the electrons is sufficient to induce a cathodoluminescent (CL) image on an

  19. Electromigration in gold and silver nanostructures; Elektromigration in Gold und Silber Nanostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmecke, Burkhard

    2008-01-15

    Electromigration is the current induced mass transport in metallic wires. It is the main reason for electrical breakdown in integrated circuits and has been studied for more than 50 years. In this thesis, the electromigration behavior in polycrystalline gold as well as in self-organized single crystalline silver wires are studied. To study the electromigration behavior in detail, in-situ investigations of the wires are performed in a scanning electron microscope, for which a new test rig was successfully installed. During electromigration, the development of voids on the cathode and hillocks on the anode side of the wire are observed. This behavior is studied in detail in this thesis. Electrical breakdown in the gold wires takes place due to the presence of slit-like voids perpendicular to the current direction. The void area grows linearly during the course of the experiments, and the electrical breakdown takes place when the total void area reaches a value of 2 % to 4 % of the total wire area. The influence of single voids on the electrical resistance during high current stressing is determined. The dependence of the electromigration behavior on the width and height as well as on the crystallinity and temperature of the gold wires is studied in detail. For high resolution imaging of the wires during the experiments, a special layout with arbitrary kinks is used. The dependence of electromigration effects on current density and on the influence of the measurement setup itself are also discussed in this thesis. When reversing the current direction, a reversible electromigration behavior is observed. Also, the lifetime of the wires grows considerably. According to the resistance data, a remarkable stabilization of the polycrystalline wires is observed during this experiments. Furthermore, it is possible to define an alternative sheet length according to the position of voids and hillocks in the wires. This leads also to the determination of the critical product for

  20. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  1. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    Science.gov (United States)

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  2. Electron transport in gold colloidal nanoparticle-based strain gauges

    Science.gov (United States)

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-01

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.

  3. Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Marquez, Miguel A., E-mail: miguel.angel@icmse.csic.es; Guerrero, Estefania; Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Lucena, Raquel; Conesa, Jose C. [Instituto de Catalisis y Petroleoquimica (CSIC) (Spain)

    2010-05-15

    Magnetometry results have shown that gold NPs ({approx}2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

  4. Galvanic Cells: Anodes, Cathodes, Signs and Charges

    Science.gov (United States)

    Goodwin, Alan

    2011-01-01

    Electrochemistry is a difficult subject for students at school and beyond and even for their teachers. This article explores the difficult "truth" that, when a current flows from a galvanic cell, positive ions within the cell electrolyte move towards the electrode labelled positive. This seems to contravene the basic rule that like charges repel…

  5. Kinetic Assembly of Near-IR Active Gold Nanoclusters using Weakly Adsorbing Polymers to Control Size

    Science.gov (United States)

    Tam, Jasmine M.; Murthy, Avinash K.; Ingram, Davis R.; Nguyen, Robin; Sokolov, Konstantin V.; Johnston, Keith P.

    2013-01-01

    Clusters of metal nanoparticles with an overall size less than 100 nm and high metal loadings for strong optical functionality, are of interest in various fields including microelectronics, sensors, optoelectronics and biomedical imaging and therapeutics. Herein we assemble ~5 nm gold particles into clusters with controlled size, as small as 30 nm and up to 100 nm, which contain only small amounts of polymeric stabilizers. The assembly is kinetically controlled with weakly adsorbing polymers, PLA(2K)-b-PEG(10K)-b-PLA(2K) or PEG (MW = 3350), by manipulating electrostatic, van der Waals (VDW), steric, and depletion forces. The cluster size and optical properties are tuned as a function of particle volume fractions and polymer/gold ratios to modulate the interparticle interactions. The close spacing between the constituent gold nanoparticles and high gold loadings (80–85% w/w gold) produce a strong absorbance cross section of ~9×10−15 m2 in the NIR at 700 nm. This morphology results from VDW and depletion attractive interactions that exclude the weakly adsorbed polymeric stabilizer from the cluster interior. The generality of this kinetic assembly platform is demonstrated for gold nanoparticles with a range of surface charges from highly negative to neutral, with the two different polymers. PMID:20361735

  6. Colorimetric detection of manganese(II) ions using gold/dopa nanoparticles.

    Science.gov (United States)

    Narayanan, Kannan Badri; Park, Hyun Ho

    2014-10-15

    We report here a one-pot, greener, eco-friendly strategy for the synthesis of gold nanoparticles using L-dopa. The as-prepared dopa-functionalized gold nanoparticles (AuNPs/dopa) can detect low concentrations of manganese(II) metal ions in aqueous solution. The binding forces between dopa and Mn(2+) ions cause dopa-functionalized gold nanoparticles to come closer together, decreasing the interparticle distance and aggregating it with a change in color of colloidal solution from red to purplish-blue. Dynamic light scattering (DLS) analysis showed a decreased surface charge on the surface of gold nanoparticles when exposed to Mn(2+) ions, which caused cross-linking aggregation. Transmission electron microscopic (TEM) images also revealed the aggregation of gold nanoparticles with the addition of Mn(2+) ions. The extinction ratio of absorbance at 700-550nm (A700/A550) was linear against the concentration of [Mn(2+)] ions. Thus, the optical absorption spectra of gold colloidal solution before and after the addition of Mn(2+) ions reveal the concentration of Mn(2+) ions in solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A novel method for the synthesis of monodisperse gold-coated silica nanoparticles

    International Nuclear Information System (INIS)

    English, Michael D.; Waclawik, Eric R.

    2012-01-01

    Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN) 2 ] + ) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN) 2 ] + complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au 0 ) proceeding by an inner sphere mechanism. The residual [Au(MeCN) 2 ] + complex was allowed to react with water, disproportionating into Au 0 and Au(III), respectively, with the Au 0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au 0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.

  8. Identification of second harmonic optical effects from vaccine coated gold microparticles

    International Nuclear Information System (INIS)

    Jumah, N A; Ameer-Beg, S M; White, N S; Prasad, K V R; Bellhouse, B J

    2004-01-01

    This study investigates the optical effects observed from uncoated and protein vaccine coated gold microparticles while imaging with two-photon excitation in the Mie scattering regime. When observed with time correlated single photon counting fluorescence lifetime microscopy, the emission from the gold microparticles appeared as an intense instrument-limited temporal response. The intensity of the emission showed a second-order dependence on the laser power and frequency doubling of the emitted light was observed for fundamental light between 890 and 970 nm. The optical effect was attributed to two-photon induced second harmonic generation. The vaccine coated gold microparticles had a much weaker second harmonic signal than the uncoated gold microparticles. Chemical analysis of the surface of the gold microparticles revealed that the vaccine coating decreases the surface charge thereby diminishing the observed second harmonic signal. These optical properties can be exploited to identify both the location of the protein vaccine coating as well as the gold microparticles in vitro and potentially to investigate the vaccine delivery kinetics in vivo

  9. Jet Vertex Charge Reconstruction

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    A newly developed algorithm called the jet vertex charge tagger, aimed at identifying the sign of the charge of jets containing $b$-hadrons, referred to as $b$-jets, is presented. In addition to the well established track-based jet charge determination, this algorithm introduces the so-called \\emph{jet vertex charge} reconstruction, which exploits the charge information associated to the displaced vertices within the jet. Furthermore, the charge of a soft muon contained in the jet is taken into account when available. All available information is combined into a multivariate discriminator. The algorithm has been developed on jets matched to generator level $b$-hadrons provided by $t\\bar{t}$ events simulated at $\\sqrt{s}$=13~TeV using the full ATLAS detector simulation and reconstruction.

  10. Gold and not so real gold in Medieval treatises

    Directory of Open Access Journals (Sweden)

    Srebrenka Bogovic-Zeskoski

    2015-01-01

    Full Text Available The aim of this study is to evidence diverse materials and processes used by artisans (and alchemists required to synthesize a visually viable replacement for gold. The emphasis of the research is upon the production of mosaic gold or porporina, a pigment that has survived into modern times, which was used as ink and as paint. Base metals, mostly tin, but also alloys were used both into foils coated with glazes and varnishes and as pigment. The research focuses upon recipes documented in treatises dating from Antiquity to the late Medieval period (ca. 1500 and an attempt is made to answer two questions. In the first place, why was there a need for a surrogate? Secondly, why are there so few tangible examples detected on surviving artifacts? In conclusion, an argument is offered pointing out that, although much can be learned by scientific examination of artifacts, textual analysis is equally important and necessary to unravel mysteries of ancient technologies

  11. Measurement of charge of heavy ions in emulsion using a CCD camera

    CERN Document Server

    Kudzia, D; Dabrowska, A; Deines-Jones, P; Holynski, R; Olszewski, A; Nilsen, B S; Sen-Gupta, K; Szarska, M; Trzupek, A; Waddington, C J; Wefel, J P; Wilczynska, B; Wilczynski, H; Wolter, W; Wosiek, B; Wozniak, K

    1999-01-01

    A system has been developed for semi-automated determination of the charges of heavy ions recorded in nuclear emulsions. The profiles of various heavy ion tracks in emulsion, both accelerator beam ions and fragments of heavy projectiles, were obtained with a CCD camera mounted on a microscope. The dependence of track profiles on illumination, emulsion grain size and density, background in emulsion, and track geometry was analyzed. Charges of the fragments of heavy projectiles were estimated independently by the delta ray counting method. A calibration of both width and height of track profiles against ion charges was made with ions of known charges ranging from helium to gold nuclei. (author)

  12. Charge Islands Through Tunneling

    Science.gov (United States)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  13. Nanotoxicity of gold and gold-cobalt nanoalloy.

    Science.gov (United States)

    Girgis, E; Khalil, W K B; Emam, A N; Mohamed, M B; Rao, K V

    2012-05-21

    Nanotoxicology test of gold nanoparticles (Au NPs) and gold-cobalt (Au-Co) nanoalloy is an important step in their safety evaluation for biomedical applications. The Au and Au-Co NPs were prepared by reducing the metal ions using sodium borohydride (NaBH(4)) in the presence of polyvinyl pyrrolidone (PVP) as a capping material. The average size and shape of the nanoparticles (NPs) were characterized using high resolution transmission electron microscopy (HRTEM). Cobalt presence in the nanoalloy was confirmed by energy dispersive X-ray spectroscopy (EDX) analysis, and the magnetic properties of these particles were determined using a vibrating sample magnetometer (VSM). The Gold and gold-cobalt NPs of average size 15 ± 1.5 nm were administered orally to mice with a dose of 80, 160, and 320 mg/kg per body weight (bw) using gavages. Samples were collected after 7 and 14 days of the treatment. The results indicated that the Au-Co NPs were able to induce significant alteration in the tumor-initiating genes associated with an increase of micronuclei (MNs) formation and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG) as well as a reduction in the glutathione peroxidase activity. This action of Au-Co NPs was observed using 160 and 320 mg/kg bw at both time intervals. However, Au NPs had much lower effects than Au-Co NPs on alteration in the tumor-initiating genes, frequency of MNs, and generation of 8-OHdG as well as glutathione peroxidase activity except with the highest dose of Au NPs. This study suggests that the potential to cause in vivo genetic and antioxidant enzyme alterations due to the treatment by Au-Co nanoalloy may be attributed to the increase in oxidative stress in mice.

  14. Significance of surface functionalization of Gold Nanorods for reduced effect on IgG stability and minimization of cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Alex, Sruthi Ann; Rajiv, Sundaramoorthy [Centre for Nanobiotechnology, VIT University, Vellore (India); Chakravarty, Sujay [UGC-DAE CSR, Kalpakkam, Node, Kokilamedu (India); Chandrasekaran, N. [Centre for Nanobiotechnology, VIT University, Vellore (India); Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com [Centre for Nanobiotechnology, VIT University, Vellore (India)

    2017-02-01

    Gold nanorods (AuNRs) used for biomedical applications could be encountered by biomolecules in the bloodstream, of which IgG is the most abundant antibody. With a view to mitigate their side effect on encountered proteins, the effect of Au concentration (5–40 μM) and functionalization (CTAB-positive;PSS-negative; PEG-neutral) of AuNRs was investigated on the stability of a model protein, IgG (1 μM). Electron microscopic images and particle size analyses indicated least aggregation behavior for PEG-AuNRs, which can be correlated to their neutral charge (from zeta potential analyses) or stearic hindrance of PEG chains. Variations in tryptophan domain were probed by UV–visible absorption and fluorescence quenching studies. Synchronous fluorescence study helped to provide information regarding variations in the hydrophobic region of IgG. The denaturation studies also indicated the stability of AuNR–IgG complex formation. These studies showed that positively charged IgG (pI: 7.8 ± 1.0) was mostly affected by negatively charged PSS-AuNRs and least affected by PEG-AuNRs. This was verified by secondary structural investigations performed using CD and FTIR spectroscopy. For cytotoxicity studies on human lymphocytes, CTAB-AuNRs are known to show higher toxicity compared to PSS-AuNRs and PEG-AuNRs (least). Though PSS-functionalized AuNRs were shown to affect cells to a lesser degree based on the negative charge of cell membrane, they could hamper with positively charged biomolecules in the bloodstream before they reach the target, which must also be considered for choosing the right AuNR functionalization. Thus, this work indicates the effect of different AuNR functionalization on protein and cellular toxicity and stresses the necessity to use neutral particles to mitigate their side effect for theranostic applications. - Highlights: • Comprehensive evaluation of AuNR functionalization on protein and cellular toxicity. • Minimizes structural changes in IgG as a

  15. Significance of surface functionalization of Gold Nanorods for reduced effect on IgG stability and minimization of cytotoxicity

    International Nuclear Information System (INIS)

    Alex, Sruthi Ann; Rajiv, Sundaramoorthy; Chakravarty, Sujay; Chandrasekaran, N.; Mukherjee, Amitava

    2017-01-01

    Gold nanorods (AuNRs) used for biomedical applications could be encountered by biomolecules in the bloodstream, of which IgG is the most abundant antibody. With a view to mitigate their side effect on encountered proteins, the effect of Au concentration (5–40 μM) and functionalization (CTAB-positive;PSS-negative; PEG-neutral) of AuNRs was investigated on the stability of a model protein, IgG (1 μM). Electron microscopic images and particle size analyses indicated least aggregation behavior for PEG-AuNRs, which can be correlated to their neutral charge (from zeta potential analyses) or stearic hindrance of PEG chains. Variations in tryptophan domain were probed by UV–visible absorption and fluorescence quenching studies. Synchronous fluorescence study helped to provide information regarding variations in the hydrophobic region of IgG. The denaturation studies also indicated the stability of AuNR–IgG complex formation. These studies showed that positively charged IgG (pI: 7.8 ± 1.0) was mostly affected by negatively charged PSS-AuNRs and least affected by PEG-AuNRs. This was verified by secondary structural investigations performed using CD and FTIR spectroscopy. For cytotoxicity studies on human lymphocytes, CTAB-AuNRs are known to show higher toxicity compared to PSS-AuNRs and PEG-AuNRs (least). Though PSS-functionalized AuNRs were shown to affect cells to a lesser degree based on the negative charge of cell membrane, they could hamper with positively charged biomolecules in the bloodstream before they reach the target, which must also be considered for choosing the right AuNR functionalization. Thus, this work indicates the effect of different AuNR functionalization on protein and cellular toxicity and stresses the necessity to use neutral particles to mitigate their side effect for theranostic applications. - Highlights: • Comprehensive evaluation of AuNR functionalization on protein and cellular toxicity. • Minimizes structural changes in IgG as a

  16. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry

    International Nuclear Information System (INIS)

    Koelmel, Jeremy; Leland, Thomas; Wang, Huanhua; Amarasiriwardena, Dulasiri; Xing, Baoshan

    2013-01-01

    The tissue level uptake and spatial distribution of gold nanoparticles (AuNPs) in rice (Oryza sativa L.) roots and shoots under hydroponic conditions was investigated using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Rice plants were hydroponically exposed to positively, neutrally, and negatively charged AuNPs [AuNP1(+), AuNP2(0), AuNP3(−)] with a core diameter of 2 nm. Plants were exposed to AuNPs having 1.6 mg Au/L for 5 days or 0.14 mg Au/L for 3 months to elucidate how the surface charges of the nanoparticles affects their uptake into living plant tissues. The results demonstrate that terminal functional groups greatly affected the AuNP uptake into plant tissues. Au concentration determined by LA-ICP-MS in 5 day treated rice roots followed this order: AuNP1(+) > AuNP2(0) > AuNP3(−) but this order was reversed for rice shoots, indicating preferential translocation of AuNP3(−). Bioimages revealed distributions of mesophyll and vascular AuNP dependent on organ or AuNP concentration. Highlights: ► LA-ICP-MS technique was effectively used to quantify engineered AuNP in rice plant. ► Uptake and translocation of AuNPs are evident in rice roots and shoots. ► Organ level distribution of AuNPs is affected by their surface charges. ► Bioimaging of AuNP distribution in rice tissues by LA-ICP-MS was demonstrated. -- The tissue level uptake and spatial distribution of engineered gold nanoparticles (AuNP) by rice plants was demonstrated by LA-ICP-MS bioimaging

  17. Contractor Software Charges

    National Research Council Canada - National Science Library

    Granetto, Paul

    1994-01-01

    .... Examples of computer software costs that contractors charge through indirect rates are material management systems, security systems, labor accounting systems, and computer-aided design and manufacturing...

  18. AGS silicon gold collisions measured in the E-810 TPC

    International Nuclear Information System (INIS)

    Love, W.A.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Corcoran, M.D.; Kruk, J.W.; Miettinen, H.E.; Mutchler, G.S.; Nessi, M.; Nessi-Tedaldi, F.; Roberts, J.B.; Chan, C.S.; Kramer, M.A.; Hallman, T.J.; Madansky, L.; Lindenbaum, S.J.

    1990-01-01

    The tracking detector of AGS Experiment 810 is a three-piece Time Projection Chamber (TPC) intended to measure all charged tracks in the forward hemisphere of the nucleon-nucleon center of mass system, i.e. forward of an angle of about 20 degrees in the lab. Each module of the TPC contains twelve rows of short anode wires which give 3-D space points on each track, but no dE/dx information useable for particle identification. The TPC was operated in a beam of silicon ions at the end of June 1989 and this talk reports the results of analysis of the data taken with a thin gold target in that run. The authors have gathered a similar amount of data from thin copper and silicon targets, the analysis of which is in a less advanced state. The results of the investigation of the neutral strange particle decays appear in a separate contribution by Al Saulys. This paper presents the current state of the analysis of the charged tracks from the silicon gold collisions

  19. Fabrication of Periodic Gold Nanocup Arrays Using Colloidal Lithography

    Energy Technology Data Exchange (ETDEWEB)

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Alvine, Kyle J.

    2017-01-01

    Within recent years, the field of plasmonics has exploded as researchers have demonstrated exciting applications related to chemical and optical sensing in combination with new nanofabrication techniques. A plasmon is a quantum of charge density oscillation that lends nanoscale metals such as gold and silver unique optical properties. In particular, gold and silver nanoparticles exhibit localized surface plasmon resonances—collective charge density oscillations on the surface of the nanoparticle—in the visible spectrum. Here, we focus on the fabrication of periodic arrays of anisotropic plasmonic nanostructures. These half-shell (or nanocup) structures can exhibit additional unique light-bending and polarization dependent optical properties that simple isotropic nanostructures cannot. Researchers are interested in the fabrication of periodic arrays of nanocups for a wide variety of applications such as low-cost optical devices, surface-enhanced Raman scattering, and tamper indication. We present a scalable technique based on colloidal lithography in which it is possible to easily fabricate large periodic arrays of nanocups using spin-coating and self-assembled commercially available polymeric nanospheres. Electron microscopy and optical spectroscopy from the visible to near-IR was performed to confirm successful nanocup fabrication. We conclude with a demonstration of the transfer of nanocups to a flexible, conformal adhesive film.

  20. Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer

    Science.gov (United States)

    Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.

    2018-03-01

    Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.

  1. Hybridization thermodynamics of DNA bound to gold nanoparticles

    International Nuclear Information System (INIS)

    Lang, Brian

    2010-01-01

    Isothermal Titration Calorimetry (ITC) was used to study the thermodynamics of hybridization on DNA-functionalized colloidal gold nanoparticles. When compared to the thermodynamics of hybridization of DNA that is free in solution, the differences in the values of the Gibbs free energy of reaction, Δ r G o , the enthalpy, Δ r H o , and entropy, Δ r S o , were small. The change in Δ r G o between the free and bound states was always positive but with statistical significance outside the 95% confidence interval, implying the free DNA is slightly more stable than when in the bound state. Additionally, ITC was also able to reveal information about the binding stoichiometry of the hybridization reactions on the DNA-functionalized gold nanoparticles, and indicates that there is a significant fraction of the DNA on gold nanoparticle surface that is unavailable for DNA hybridization. Furthermore, the fraction of available DNA is dependent on the spacer group on the DNA that is used to span the gold surface from that to the probe DNA.

  2. Optimized Method for Generating and Acquiring GPS Gold Codes

    Directory of Open Access Journals (Sweden)

    Khaled Rouabah

    2015-01-01

    Full Text Available We propose a simpler and faster Gold codes generator, which can be efficiently initialized to any desired code, with a minimum delay. Its principle consists of generating only one sequence (code number 1 from which we can produce all the other different signal codes. This is realized by simply shifting this sequence by different delays that are judiciously determined by using the bicorrelation function characteristics. This is in contrast to the classical Linear Feedback Shift Register (LFSR based Gold codes generator that requires, in addition to the shift process, a significant number of logic XOR gates and a phase selector to change the code. The presence of all these logic XOR gates in classical LFSR based Gold codes generator provokes the consumption of an additional time in the generation and acquisition processes. In addition to its simplicity and its rapidity, the proposed architecture, due to the total absence of XOR gates, has fewer resources than the conventional Gold generator and can thus be produced at lower cost. The Digital Signal Processing (DSP implementations have shown that the proposed architecture presents a solution for acquiring Global Positioning System (GPS satellites signals optimally and in a parallel way.

  3. Surface enhanced infrared spectroscopy using interacting gold nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Neubrech, Frank; Weber, Daniel; Pucci, Annemarie [Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Shen, Hong [Universite Troyes, Troyes (France); Lamy de la Chapelle, Marc [Universite Paris 13, Bobigny (France)

    2009-07-01

    We performed surface enhanced infrared spectroscopy (SEIRS) of molecules adsorbed on gold nanowires using synchrotron light of the ANKA IR-beamline at the Forschungszentrum Karlsruhe (Germany). Arrays of gold nanowires with interparticle spacings down to 30nm were prepared by electron beam lithography. The interparticle distance was reduced further by wet-chemically increasing the size of the gold nanowires. The growth of the wires was proofed using IR spectroscopy as well as scanning electron microscopy. After this preparation step, appropriate arrays of nanowires with an interparticle distance down to a few nanometers were selected to demonstrate the surface enhanced infrared spectroscopy of one monolayer octadecanthiol (ODT). As know from SEIRS studies using single gold nanowires, the spectral position of the antenna-like resonance in relation to the absorption bands of ODT (2850cm-1 and 2919cm-1) is crucial for both, the lineshape of the molecular vibration and the signal enhancement. In contrast to single nanowires studies, a further increase of the enhanced signals is expected due to the interaction of the electromagnetic fields of the close-by nanowires.

  4. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    Science.gov (United States)

    He, Yi; Peng, Rufang

    2014-11-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (˜25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.

  5. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    International Nuclear Information System (INIS)

    He, Yi; Peng, Rufang

    2014-01-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl 4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (∼25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng. (paper)

  6. Charge Screening in a Charged Condensate

    International Nuclear Information System (INIS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2009-01-01

    We consider a highly dense system of helium-4 nuclei and electrons in which the helium-4 nuclei have condensed. We present the condensation mechanism in the framework of low energy effective field theory and discuss the screening of electric charge in the condensate.

  7. Surface Charging and Points of Zero Charge

    CERN Document Server

    Kosmulski, Marek

    2009-01-01

    Presents Points of Zero Charge data on well-defined specimen of materials sorted by trademark, manufacturer, and location. This text emphasizes the comparison between particular results obtained for different portions of the same or very similar material and synthesizes the information published in research reports over the past few decades

  8. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  9. Reverse Transfection Using Gold Nanoparticles

    Science.gov (United States)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  10. CMS Industries awarded gold, crystal

    CERN Multimedia

    2006-01-01

    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  11. Nanobubble trouble on gold surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Kuhle, A.; Garnaes, J.

    2003-01-01

    When analyzing surfaces related to biosensors with in situ atomic force microscopy (AFM), the existence of nanobubbles called for our attention. The bubbles seem to form spontaneously when gold surfaces are immersed in clean water and are probably a general phenomenon at water-solid interfaces....... Besides from giving rise to undesired effects in, for example, biosensors, nanobubbles can also cause artifacts in AFM imaging. We have observed nanobubbles on unmodified gold surfaces, immersed in clean water, using standard silicon AFM probes. Nanobubbles can be made to disappear from contact mode AFM...... images and then to reappear by changing the scanning force. By combining contact mode AFM imaging and local force measurements, the interaction between the nanobubbles and the probe can be analyzed and give information about the characteristics of nanobubbles. A model of the forces between the AFM probe...

  12. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...... in part being performed in response to a first information associated with a charging message received by the first communication unit...

  13. Radiation by moving charges

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2017-04-01

    It is generally accepted that in order to describe the dynamics of relativistic particles in the laboratory (lab) frame it is sufficient to take into account the relativistic dependence of the particle momenta on the velocity. This solution of the dynamics problem in the lab frame makes no reference to Lorentz transformations. For this reason they are not discussed in particle tracking calculations in accelerator and plasma physics. It is generally believed that the electrodynamics problem can be treated within the same ''single inertial frame'' description without reference to Lorentz transformations. In particular, in order to evaluate radiation fields arising from charged particles in motion we need to know their velocities and positions as a function of the lab frame time t. The relativistic motion of a particle in the lab frame is described by Newton's second law ''corrected'' for the relativistic dependence of momentum on velocity. It is assumed in all standard derivations that one can perform identification of the trajectories in the source part of the usual Maxwell's equations with the trajectories vector x(t) measured (or calculated by using the corrected Newton's second law) in the lab frame. This way of coupling fields and particles is considered since more than a century as the relativistically correct procedure.We argue that this procedure needs to be changed, and we demonstrate the following, completely counterintuitive statement: the results of conventional theory of radiation by relativistically moving charges are not consistent with the principle of relativity. In order to find the trajectory of a particle in the lab frame consistent with the usual Maxwell's equations, one needs to solve the dynamic equation inmanifestly covariant form by using the coordinate-independent proper time τ to parameterize the particle world-line in space-time. We show that there is a difference between ''true'' particle trajectory vector x(t) calculated or measured in

  14. Gold, currencies and market efficiency

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Vošvrda, Miloslav

    2016-01-01

    Roč. 449, č. 1 (2016), s. 27-34 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Efficient market hypothesis, * Gold * Currencies, * Fractal dimension * Entropy * Long-Term memory Subject RIV: AH - Economics Impact factor: 2.243, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0455876.pdf

  15. Ground Optical Lightning Detector (GOLD)

    Science.gov (United States)

    Jackson, John, Jr.; Simmons, David

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  16. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  17. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  18. Gold Nanocages for Biomedical Applications**

    OpenAIRE

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where ...

  19. Jabiluka gold-uranium project

    International Nuclear Information System (INIS)

    1988-01-01

    The Jabiluka gold-uranium deposit, 230km east of Darwin in the Alligator Rivers Region of the Northern Territory, was discovered by Pancontinental Mining Limited in 1971. Jabiluka, with reserves in excess of 200,000 tonnes of contained U 3 O 8 in two deposits 500 metres apart, is the world's largest high grade uranium deposit and also contains nearly 12 tonnes of gold. It is proposed that only the larger deposit, Jabiluka II will be mined - by underground extraction methods, and that 275,000 tonnes of ore per year will be mined and processed to produce 1,500 tonnes of U 3 O 8 and up to 30,000 oz of gold. The revenue from the uranium sales is estimated to be of the order of A$100 million per year at A$30/lb. By the end of 1982 all necessary mining and environmental approvals had been obtained and significant marketing progress made. With the Australian Labor Party winning Commonwealth Government in the 1983 election, Pancontinental's permission to seek sales contracts was withdrawn and development of the Jabiluka deposit ceased. Jabiluka remains undeveloped - awaiting a change in Australian Government policy on uranium. figs., maps

  20. Analysis of gold and silver concentration on gold mining tailings by neutron activation analysis

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Salimov, M.I.; Sadykova, Z.O.

    2014-01-01

    Full text: Instrumental neutron-activation analysis without radiochemical separation is one of most applicable and often used methods to analyze the concentration of gold, silver and other rare and noble metals in gold ores. This method is not suitable for analyzing low concentration of gold and silver in gold mining tailings due to rather high concentration of some elements. Samples are dissolved by boiling in a mixture of concentrated hydrochloric and nitric acids to extract gold and silver into the solution. Chemical yield of gold and silver after dissolution of the sample and further chromatographic separation is between 92 and 95 percent respectively