WorldWideScience

Sample records for positive lightning return

  1. A Comparative Study on the Positive Lightning Return Stroke Electric Fields in Different Meteorological Conditions

    Directory of Open Access Journals (Sweden)

    Chin-Leong Wooi

    2015-01-01

    Full Text Available Positive cloud-ground lightning is considerably more complex and less studied compared to the negative lightning. This paper aims to measure and characterize the significant parameters of positive return strokes electric field, namely, the zero-to-peak rise time, 10–90% rise time, slow front duration, fast transition rise time (10–90%, zero-crossing time, and opposite polarity overshoot relative to peak. To the best of the authors’ knowledge, this is the first time such detailed characteristics of positive lightning in Malaysia are thoroughly analyzed. A total of 41 positive lightning flashes containing 48 return strokes were analyzed. The average multiplicity is 1.2 strokes per flash. The majority of positive lightning was initiated from the primary positive charge rather than as a byproduct of in-cloud discharges. The cumulative probability distribution of rise time parameters, opposite polarity overshoot relative to peak, and slow front amplitude relative to peak are presented. A comparison between studies in four countries representing tropic, subtropic, and temperate regions was also carried out. Measured parameters in Florida, Sweden, and Japan are generally lower than those in Malaysia. Positive lightning occurrences in tropical regions should be further studied and analyzed to improve our current understanding on positive return strokes.

  2. Do lightning positive leaders really "step"?

    Science.gov (United States)

    Petersen, D.

    2015-12-01

    It has been known for some time that positive leaders exhibit impulsive charge motion and optical emissions as they extend. However, laboratory and field observations have not produced any evidence of a process analogous to the space leader mechanism of negative leader extension. Instead, observations have suggested that the positive leader tip undergoes a continuous to intermittent series of corona streamer bursts, each burst resulting in a small forward extension of the positive leader channel. Traditionally, it has been held that lightning positive leaders extend in a continuous or quasi-continuous fashion. Lately, however, many have become concerned that this position is incongruous with observations of impulsive activity during lightning positive leader extension. It is increasingly suggested that this impulsive activity is evidence that positive leaders also undergo "stepping". There are two issues that must be addressed. The first issue concerns whether or not the physical processes underlying impulsive extension in negative and positive leaders are distinct. We argue that these processes are in fact physically distinct, and offer new high-speed video evidence to support this position. The second issue regards the proper use of the term "step" as an identifier for the impulsive forward extension of a leader. Traditional use of this term has been applied only to negative leaders, due primarily to their stronger impulsive charge motions and photographic evidence of clearly discontinuous forward progression of the luminous channel. Recently, due to the increasing understanding of the distinct "space leader" process of negative leader extension, the term "step" has increasingly come to be associated with the space leader process itself. Should this emerging association, "step" = space leader attachment, be canonized? If not, then it seems reasonable to use the term "step" to describe impulsive positive leader extension. If, however, we do wish to associate the

  3. Lightning Return Stroke Current Analysis Using Electromagnetic Models and the 3D-FDTD Method

    Directory of Open Access Journals (Sweden)

    Kaddour Arzag

    2017-03-01

    Full Text Available The three dimensions finite difference time domain method (3D-FDTD is employed to calculate lightning return stoke current distributions in a vertical lightning channel. The latter is excited at its bottom by a lumped current source above a flat perfectly conducting ground. In this study four lightning return stroke electromagnetic models are used. The calculating approach, which is based on Taflove formulation of the 3D-FDTD method combined to the UPML boundary conditions, is implemented on Matlab environment. For validation needs, the obtained lightning return stroke space and time distributions are compared with others taken from specialized literature.

  4. A numerical study on bow shocks around the lightning return stroke channel

    International Nuclear Information System (INIS)

    Chen, Qiang; Chen, Bin; Yi, Yun; Chen, P. F.; Mao, Yunfei; Xiong, Run

    2015-01-01

    Bow shock structures are important to various hydrodynamics and magnetohydrodynamics (MHD) phenomena in geophysics and astrophysics. The formation and propagation of bow shocks around the lightning return stroke channel are investigated based on the self-similar motion theory and simulated with a two-dimensional Eulerian finite volume resistive radiation MHD code. In this framework, as verification of theoretical models, the evolving structures of many quantities, such as the plasma density, temperature, pressure, shock velocity, and magnetic field, can be obtained, which present all the characteristics of bow shocks in the lightning return stroke processes. The evolution characteristics and the configuration of the curved return stroke channels, e.g., the non-ideal effects and the scaling laws, are discussed in detail. The results may have applications for some observed features of the return stroke channels and other phenomena in the lightning discharge plasmas

  5. Dynamics of a lightning corona sheath—A constant field approach using the generalized traveling current source return stroke model

    Science.gov (United States)

    Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Radosavljevic, Radovan; Osmokrovic, Predrag

    2012-11-01

    A generalized lightning traveling current source return stroke model has been used to examine the characteristics of the lightning channel corona sheath surrounding a thin channel core. A model of the lightning channel consisting of a charged corona sheath and a narrow, highly conducting central core that conducts the main current flow is assumed. Strong electric field, with a predominant radial direction, has been created during the return stroke between the channel core and the outer channel sheath containing the negative charge. The return stroke process is modeled with the positive charge coming from the channel core discharging the negative leader charge in the corona sheath. The corona sheath model that predicts the charge motion in the sheath is used to derive the expressions of the sheath radius vs. time during the return stroke. According to the corona sheath model proposed earlier by Maslowski and Rakov (2006) and Maslowski et al. (2009), it consists of three zones, zone 1 (surrounding channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (outer zone representing the virgin air without charges). We adopted the assumption of a constant electric field inside zone 1 of the corona sheath observed in the experimental research of corona discharges in a coaxial geometry by Cooray (2000). This assumption seems to be more realistic than the assumption of a uniform corona space charge density used previously in the study of Maslowski and Rakov (2006), Marjanovic and Cvetic (2009), and Tausanovic et al. (2010). Applying the Gauss' law on the infinitesimally small cylindrical section of the channel the expressions for time-dependence of the radii of zones 1 and 2 during the return stroke are derived. The calculations have shown that the overall channel dynamics concerning electrical discharge is roughly 50% slower and the maximum radius of zone 1 is about 33% smaller compared to the corresponding values calculated in the

  6. Locating cloud-to-ground lightning return strokes by a neural network algorithm

    International Nuclear Information System (INIS)

    2001-01-01

    A neuro-based approach is proposed for locating cloud-to-ground lightning strokes. Due to insufficient experimental data, we have use the results of an electromagnetic simulator for training the developed artificial neural network. The simulator utilizes the well-known transmission line and is capable of predicting the electromagnetic field due to a return stroke channel for various parameters associated with the shape of the channel base-current. The training process has been successfully done using the Levenberg-Marquard technique. The simulation results demonstrate that the return stroke channel locations can be predicted with an absolute error not greater than 1 km for return stroke channels located within 80 km of a lightning detection station

  7. Peak Source Power Associated with Positive Narrow Bipolar Lightning Pulses

    Science.gov (United States)

    Bandara, S. A.; Marshall, T. C.; Karunarathne, S.; Karunarathne, N. D.; Siedlecki, R. D., II; Stolzenburg, M.

    2017-12-01

    During the summer of 2016, we deployed a lightning sensor array in and around Oxford Mississippi, USA. The array system comprised seven lightning sensing stations in a network approximately covering an area of 30 km × 30 km. Each station is equipped with four sensors: Fast antenna (10 ms decay time), Slow antenna (1.0 s decay time)), field derivative sensor (dE/dt) and Log-RF antenna (bandwidth 187-192 MHz). We have observed 319 Positive NBPs and herein we report on comparisons of the NBP properties measured from the Fast antenna data with the Log-RF antenna data. These properties include 10-90% rise time, full width at half maximum, zero cross time, and range-normalized amplitude at 100 km. NBPs were categorized according to the fine structure of the electric field wave shapes into Types A-D, as in Karunarathne et al. [2015]. The source powers of NBPs in each category were determined using single station Log-RF data. Furthermore, we also categorized the NBPs in three other groups: initial event of an IC flash, isolated, and not-isolated (according to their spatiotemporal relationship with other lightning activity). We compared the source powers within each category. Karunarathne, S., T. C. Marshall, M. Stolzenburg, and N. Karunarathna (2015), Observations of positive narrow bipolar pulses, J. Geophys. Res. Atmos., 120, doi:10.1002/2015JD023150.

  8. Lightning

    Science.gov (United States)

    Pampe, William R.

    1970-01-01

    Presents basic physical theory for movement of electric charges in clouds, earth, and air during production of lightning and thunder. Amount of electrical energy produced and heating effects during typical thunderstorms is described. Generalized safety practices are given. (JM)

  9. Return Stroke Current Reflections in Rocket-Triggered Lightning

    Science.gov (United States)

    Caicedo, J.; Uman, M. A.; Jordan, D.; Biagi, C. J.; Hare, B.

    2015-12-01

    In the six years from 2009 to 2014, there have been eight triggered flashes at the ICLRT, from a total of 125, in which a total of ten return stroke channel-base currents exhibited a dip 3.0 to 16.6 μs after the initial current peak. Close range electric field measurements show a related dip following the initial electric field peak, and electric field derivative measurements show an associated bipolar pulse, confirming that this phenomenon is not an instrumentation effect in the current measurement. For six of the eight flashes, high-speed video frames show what appears to be suspended sections of unexploded triggering wire at heights of about 150 to 300 m that are illuminated when the upward current wave reaches them. The suspended wire can act as an impedance discontinuity, perhaps as it explodes, and cause a downward reflection of some portion of the upward-propagating current wave. This reflected wave travels down the channel and causes the dip in the measured channel-base current when it reaches ground and reflects upward. The modified transmission line model with exponential decay (MTLE) is used to model the close electric field and electric field derivatives of the postulated initial and reflected current waves, starting with the measured channel base current, and the results are compared favorably with measurements made at distances ranging from 92 to 444 m. From the measured time between current impulse initiation and the time the current reflection reaches the channel base and the current dip initiates, along with the reflection height from the video records, we find the average return stroke current speed for each of the ten strokes to be from 0.28 to 1.9×108 ms-1, with an error of ±0.01×108 ms-1 due to a ±0.1 μs uncertainty in the measurement. This represents the first direct measurement of return stroke current speed, all previous return stroke speed measurements being derived from the luminosity of the process.

  10. The evolution of discharge current and channel radius in cloud-to-ground lightning return stroke process

    Science.gov (United States)

    Fan, Tingting; Yuan, Ping; Wang, Xuejuan; Cen, Jianyong; Chang, Xuan; Zhao, Yanyan

    2017-09-01

    The spectra of two negative cloud-to-ground lightning discharge processes with multi-return strokes are obtained by a slit-less high-speed spectrograph, which the temporal resolution is 110 μs. Combined with the synchronous electrical observation data and theoretical calculation, the physical characteristics during return strokes process are analysed. A positive correlation between discharge current and intensity of ionic lines in the spectra is verified, and based on this feature, the current evolution characteristics during four return strokes are investigated. The results show that the time from peak current to the half-peak value estimated by multi point-fitting is about 101 μs-139 μs. The Joule heat in per unit length of four return strokes channel is in the order of 105J/m-106 J/m. The radius of arc discharge channel is positively related to the discharge current, and the more intense the current is, the greater the radius of channel is. Furthermore, the evolution for radius of arc core channel in the process of return stroke is consistent with the change trend of discharge current after the peak value. Compared with the decay of the current, the temperature decreases more slowly.

  11. Lightning Step Leader and Return Stroke Spectra at 100,000 fps

    Science.gov (United States)

    Harley, J.; McHarg, M.; Stenbaek-Nielsen, H. C.; Haaland, R. K.; Sonnenfeld, R.; Edens, H. E.; Cummer, S.; Lapierre, J. L.; Maddocks, S.

    2017-12-01

    A fundamental understanding of lightning can be inferred from the spectral emissions resulting from the leader and return stroke channels. We examine events recorded at 00:58:07 on 19 July 2015 and 06:44:24 on 23 July 2017, both at Langmuir Laboratory. Analysis of both events is supplemented by data from the Lightning Mapping Array at Langmuir. The 00:58:07 event spectra was recorded using a 100 line per mm grating in front of a Phantom V2010 camera with an 85mm (9o FOV) Nikon lens recording at 100,000 frames per second. Coarse resolution spectra (approximately 5 nm resolution) are produced from approximately 400 nm to 800 nm for each frame. We analyze several nitrogen and oxygen lines to understand step leader temperature behavior between cloud and ground. The 06:44:24 event spectra was recorded using a 300 line per mm grating (approximately 1.5 nm resolution) in front of a Phantom V2010 camera with an 50mm (32o FOV) Nikon lens also recording at 100,000 frames per second. Two ionized atomic nitrogen lines at 502 nm and 569 nm appear upon attachment and disappear as the return stroke travels from ground to cloud in approximately 5 frames. We analyze these lines to understand initial return stroke temperature and species behavior.

  12. The start of lightning: Evidence of bidirectional lightning initiation.

    Science.gov (United States)

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R

    2015-10-16

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.

  13. Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions

    Science.gov (United States)

    Qin, Jianqi; Celestin, Sebastien; Pasko, Victor P.

    2013-05-01

    Carrot sprites, exhibiting both upward and downward propagating streamers, and columniform sprites, characterized by predominantly vertical downward streamers, represent two distinct morphological classes of lightning-driven transient luminous events in the upper atmosphere. It is found that positive cloud-to-ground lightning discharges (+CGs) associated with large charge moment changes (QhQ) tend to produce carrot sprites with the presence of a mesospheric region where the electric field exceeds the value 0.8Ek and persists for >˜2 ms, whereas those associated with small QhQ are only able to produce columniform sprites. Columniform sprites may also appear in the periphery of a sprite halo produced by +CGs associated with large QhQ. For a sufficiently large QhQ, the time dynamics of the QhQ determines the specific shape of the carrot sprites. In the case when the sufficiently large QhQ is produced mainly by an impulsive return stroke, strong electric field is produced at high altitudes and manifests as a bright halo, and the corresponding conductivity enhancement lowers/enhances the probability of streamer initiation inside/below the sprite halo. A more impulsive return stroke leads to a more significant conductivity enhancement (i.e., a brighter halo). This conductivity enhancement also leads to fast decay and termination of the upper diffuse region of carrot sprites because it effectively screens out the electric field at high altitudes. On the contrary, if the sufficiently large QhQ is produced by a weak return stroke (i.e., a dim halo) accompanied by intense continuing current, the lightning-induced electric field at high altitudes persists at a level that is comparable to Ek, and therefore an extensive upper diffuse region can develop. Furthermore, we demonstrate that `negative sprites' (produced by -CGs) should be necessarily carrot sprites and most likely accompanied by a detectable halo, since the initiation of upward positive streamers is always easier

  14. Mathematical Formulation of the Remote Electric and Magnetic Emissions of the Lightning Dart Leader and Return Stroke

    Science.gov (United States)

    Thiemann, Edward M. B.

    Lightning detection and geolocation networks have found widespread use by the utility, air traffic control and forestry industries as a means of locating strikes and predicting imminent recurrence. Accurate lightning geolocation requires detecting VLF radio emissions at multiple sites using a distributed sensor network with typical baselines exceeding 150 km, along with precision time of arrival estimation to triangulate the origin of a strike. The trend has been towards increasing network accuracy without increasing sensor density by incorporating precision GPS synchronized clocks and faster front-end signal processing. Because lightning radio waveforms evolve as they propagate over a finitely conducting earth, and that measurements for a given strike may have disparate propagation path lengths, accurate models are required to determine waveform fiducials for precise strike location. The transition between the leader phase and return stroke phase may offer such a fiducial and warrants quantitative modeling to improve strike location accuracy. The VLF spectrum of the ubiquitous downward negative lightning strike is able to be modeled by the transfer of several Coulombs of negative charge from cloud to ground in a two-step process. The lightning stepped leader ionizes a plasma channel downward from the cloud at a velocity of approximately 0.05c, leaving a column of charge in its path. Upon connection with a streamer, the subsequent return stroke initiates at or near ground level and travels upward at an average but variable velocity of 0.3c. The return stroke neutralizes any negative charge along its path. Subsequent dart leader and return strokes often travel smoothly down the heated channel left by a preceding stroke, lacking the halting motion of the preceding initial stepped leader and initial return stroke. Existing lightning models often neglect the leader current and rely on approximations when solving for the return stroke. In this thesis, I present an

  15. Triggered lightning return stroke luminosity to 1 km in two optical bands

    Science.gov (United States)

    Carvalho, F. L.; Uman, M. A.; Jordan, D. M.; Wilkes, R.; Kotovsky, D. A.; Hare, B.

    2017-12-01

    Measured luminosity waveforms are presented and analyzed as a function of time and channel height using two types of avalanche photodiodes (APDs) for 19 triggered-lightning return strokes during summer 2016. APD type I had an optical bandwidth from 200 nm to 1,000 nm, with peak response at 600 nm (green light), and APD type II had an optical bandwidth from 400 nm to 1,000 nm with a peak response at 800 nm (red light). Ten channel heights ranging from 0 to 1 km (in 100 m increments) were observed by both types of APDs, 20 total, and measured the luminosity in vertical channel slices of approximately 3 m. For APD type I, the return stroke luminosity waveforms generally decay faster following its singular initial peak (IP) than the waveforms recorded by APD type II. APD type II waveforms often exhibit a second maxima (SM) following the IP. Although the wave shapes recorded by each APD type diverge after the IP, the risetime of the initial luminosity wave front preceding the IP for both types of APDs agrees well. The divergence in the luminosity wave shapes following the IP indicates that APD type II is capable of recording spectral lines that are excited or enhanced after the IP more effectively than APD type I. In addition, the SM/IP ratio increases as a function of channel height, indicating that the spectral range better captured by APD type II is more predominant at the top of the channel than at the bottom. Finally, because APD type II responds better to longer wavelengths than APD type I, and because the SM occurs a few microseconds after the IP (at the channel-bottom), we conjecture that the SM following the IP is a consequence of spectral lines excited during the cooling of the channel, following the initial high-temperature/pressure stage. Our data suggests that the initial optical radiation during the return stroke is dominated by ionized atomic species (e.g. four NII lines between 450 and 600 nm, better captured by APD type I) radiated at higher

  16. The Deep Physics Hidden within the Field Expressions of the Radiation Fields of Lightning Return Strokes

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-01-01

    Full Text Available Based on the electromagnetic fields generated by a current pulse propagating from one point in space to another, a scenario that is frequently used to simulate return strokes in lightning flashes, it is shown that there is a deep physical connection between the electromagnetic energy dissipated by the system, the time over which this energy is dissipated and the charge associated with the current. For a given current pulse, the product of the energy dissipated and the time over which this energy is dissipated, defined as action in this paper, depends on the length of the channel, or the path, through which the current pulse is propagating. As the length of the channel varies, the action plotted against the length of the channel exhibits a maximum value. The location of the maximum value depends on the ratio of the length of the channel to the characteristic length of the current pulse. The latter is defined as the product of the duration of the current pulse and the speed of propagation of the current pulse. The magnitude of this maximum depends on the charge associated with the current pulse. The results show that when the charge associated with the current pulse approaches the electronic charge, the value of this maximum reaches a value close to h/8π where h is the Plank constant. From this result, one can deduce that the time-energy uncertainty principle is the reason for the fact that the smallest charge that can be detected from the electromagnetic radiation is equal to the electronic charge. Since any system that generates electromagnetic radiation can be represented by a current pulse propagating from one point in space to another, the result is deemed valid for electromagnetic radiation fields in general.

  17. Study on the streamer inception characteristics under positive lightning impulse voltage

    Directory of Open Access Journals (Sweden)

    Zezhong Wang

    2017-11-01

    Full Text Available The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  18. Study on the streamer inception characteristics under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2017-11-01

    The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  19. A study on the influence of corona on currents and electromagnetic fields predicted by a nonlinear lightning return-stroke model

    Science.gov (United States)

    De Conti, Alberto; Silveira, Fernando H.; Visacro, Silvério

    2014-05-01

    This paper investigates the influence of corona on currents and electromagnetic fields predicted by a return-stroke model that represents the lightning channel as a nonuniform transmission line with time-varying (nonlinear) resistance. The corona model used in this paper allows the calculation of corona currents as a function of the radial electric field in the vicinity of the channel. A parametric study is presented to investigate the influence of corona parameters, such as the breakdown electric field and the critical electric field for the stable propagation of streamers, on predicted currents and electromagnetic fields. The results show that, regardless of the assumed corona parameters, the incorporation of corona into the nonuniform and nonlinear transmission line model under investigation modifies the model predictions so that they consistently reproduce most of the typical features of experimentally observed lightning electromagnetic fields and return-stroke speed profiles. In particular, it is shown that the proposed model leads to close vertical electric fields presenting waveforms, amplitudes, and decay with distance in good agreement with dart leader electric field changes measured in triggered lightning experiments. A comparison with popular engineering return-stroke models further confirms the model's ability to predict consistent electric field waveforms in the close vicinity of the channel. Some differences observed in the field amplitudes calculated with the different models can be related to the fact that current distortion, while present in the proposed model, is ultimately neglected in the considered engineering return-stroke models.

  20. On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes

    Science.gov (United States)

    Krider, E. P.

    1992-01-01

    The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.

  1. A solid state lightning propagation speed sensor

    Science.gov (United States)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    A device to measure the propagation speeds of cloud-to-ground lightning has been developed. The lightning propagation speed (LPS) device consists of eight solid state silicon photodetectors mounted behind precision horizontal slits in the focal plane of a 50-mm lens on a 35-mm camera. Although the LPS device produces results similar to those obtained from a streaking camera, the LPS device has the advantages of smaller size, lower cost, mobile use, and easier data collection and analysis. The maximum accuracy for the LPS is 0.2 microsec, compared with about 0.8 microsecs for the streaking camera. It is found that the return stroke propagation speed for triggered lightning is different than that for natural lightning if measurements are taken over channel segments less than 500 m. It is suggested that there are no significant differences between the propagation speeds of positive and negative flashes. Also, differences between natural and triggered dart leaders are discussed.

  2. Planning for positive clinical & financial returns with telemonitoring.

    Science.gov (United States)

    Wright, Kristy

    2003-10-01

    Telemonitoring is a burgeoning market in the home care industry. Making the decision to invest in telemonitoring technology can be difficult in the best situations. The financial investment is significant, the risks can be high, and the need to achieve a positive return is critical to future success. In spite of the risks, this relatively new technology in home care holds the promise for the redefinition of the industry.

  3. Study of electric field distorted by space charges under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  4. Assessment of Lightning Transients on a De-Iced Rotor Blade with Predictive Tools and Coaxial Return Measurements

    Science.gov (United States)

    Guillet, S.; Gosmain, A.; Ducoux, W.; Ponçon, M.; Fontaine, G.; Desseix, P.; Perraud, P.

    2012-05-01

    The increasing use of composite materials in aircrafts primary structures has led to different problematics in the field of safety of flight in lightning conditions. The consequences of this technological mutation, which occurs in a parallel context of extension of electrified critical functions, are addressed by aircraft manufacturers through the enhancement of their available assessment means of lightning transient. On the one hand, simulation tools, provided an accurate description of aircraft design, are today valuable assessment tools, in both predictive and operative terms. On the other hand, in-house test means allow confirmation and consolidation of design office hardening solutions. The combined use of predictive simulation tools and in- house test means offers an efficient and reliable support for all aircraft developments in their various life-time stages. The present paper provides PREFACE research project results that illustrate the above introduced strategy on the de-icing system of the NH90 composite main rotor blade.

  5. The start of lightning: Evidence of bidirectional lightning initiation

    OpenAIRE

    van der Velde, Oscar; Williams, Earle R.; Montanya, Joan

    2015-01-01

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leader...

  6. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence

    International Nuclear Information System (INIS)

    Uman, M.A.; Rakov, V.A.; Elisme, J.O.; Jordan, D.M.; Biagi, C.J.; Hill, J.D.

    2008-01-01

    The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for first return strokes, for subsequent return strokes, and for continuing currents; and we give sets of constants for these expressions so that they yield approximately the median and extreme negative lightning parameters presented in this report. Expressions for the median negative lightning waveforms are plotted. Finally, we provide information on direct-strike lightning damage to metals such as stainless steel, which could be used as components of storage containers for nuclear waste materials; and we describe UF's new experimental research program to add to the sparse data base on the properties of positive lightning. Our literature survey, referred to above, is included in four Appendices. The following four sections (II, III, IV, and V) of this final report deal with related aspects of the research: Section II. Recommended Direct-Strike Median and Extreme Parameters; Section III. Time-Domain Waveforms for First Strokes, Subsequent Strokes, and Continuing Currents; Section IV. Damage to Metal Surfaces by Lightning Currents; and Section V. Measurement of the Characteristics of Positive Lightning. Results of the literature search used to derive the material in Section II and Section IV are found in the Appendices: Appendix 1. Return Stroke Current, Appendix 2. Continuing Current, Appendix 3. Positive Lightning, and Appendix 4. Lightning Damage to Metal Surfaces

  7. Return to play in elite rugby union: application of global positioning system technology in return-to-running programs.

    Science.gov (United States)

    Reid, Laura C; Cowman, Jason R; Green, Brian S; Coughlan, Garrett F

    2013-05-01

    Global positioning systems (GPS) are widely used in sport settings to evaluate the physical demands on players in training and competition. The use of these systems in the design and implementation of rehabilitation and return-to-running programs has not yet been elucidated. To demonstrate the application of GPS technology in the management of return to play in elite-club Rugby Union. Case series. Professional Rugby Union club team. 8 elite Rugby Union players (age 27.86 ± 4.78 y, height 1.85 ± 0.08 m, weight 99.14 ± 9.96 kg). Players wore GPS devices for the entire duration of a club game. Variables of locomotion speed and distance were measured. Differences in physical demands between playing positions were observed for all variables. An analysis of the position-specific physical demands measured by GPS provides key information regarding the level and volume of loads sustained by a player in a game environment. Using this information, sports-medicine practitioners can develop rehabilitation and return-to-running protocols specific to the player position to optimize safe return to play.

  8. Thunderstorm ground enhancements (TGEs) abruptly terminated by negative cloud-to-ground lightnings

    International Nuclear Information System (INIS)

    Chilingarian, A.; Hovsepyan, G.; Khanikyanc, G.; Pokhsraryan, D.; Soghomonyan, S.

    2016-01-01

    The relationship of lightnings and particle fluxes in the thunderclouds is not fully understood to date. Using the particle beams (the so-called Thunderstorm Ground Enhancements – TGEs) generated in the lower part of clouds by the strong electric fields as a probe, we investigate the characteristics of the related atmospheric discharges. The well-known effect of the TGE dynamics is the abrupt termination of the particle flux. We demonstrate that among 12 atmospheric discharges that abruptly terminated TGE all are the negative cloud-to-ground lightnings. The flux termination and lightning occurred at one and the same second. With new precise electronics on millisecond time scales we can see that particle flux decline occurred simultaneously with abrupt increase of electrostatic field after the return stroke of the lightning. Therefore, the declining of particle flux is connected with rearranging of charge centers in the cloud involving removal of the Lower Positive Charged Region (LPCR). (author)

  9. Location accuracy evaluation of lightning location systems using natural lightning flashes recorded by a network of high-speed cameras

    Science.gov (United States)

    Alves, J.; Saraiva, A. C. V.; Campos, L. Z. D. S.; Pinto, O., Jr.; Antunes, L.

    2014-12-01

    This work presents a method for the evaluation of location accuracy of all Lightning Location System (LLS) in operation in southeastern Brazil, using natural cloud-to-ground (CG) lightning flashes. This can be done through a multiple high-speed cameras network (RAMMER network) installed in the Paraiba Valley region - SP - Brazil. The RAMMER network (Automated Multi-camera Network for Monitoring and Study of Lightning) is composed by four high-speed cameras operating at 2,500 frames per second. Three stationary black-and-white (B&W) cameras were situated in the cities of São José dos Campos and Caçapava. A fourth color camera was mobile (installed in a car), but operated in a fixed location during the observation period, within the city of São José dos Campos. The average distance among cameras was 13 kilometers. Each RAMMER sensor position was determined so that the network can observe the same lightning flash from different angles and all recorded videos were GPS (Global Position System) time stamped, allowing comparisons of events between cameras and the LLS. The RAMMER sensor is basically composed by a computer, a Phantom high-speed camera version 9.1 and a GPS unit. The lightning cases analyzed in the present work were observed by at least two cameras, their position was visually triangulated and the results compared with BrasilDAT network, during the summer seasons of 2011/2012 and 2012/2013. The visual triangulation method is presented in details. The calibration procedure showed an accuracy of 9 meters between the accurate GPS position of the object triangulated and the result from the visual triangulation method. Lightning return stroke positions, estimated with the visual triangulation method, were compared with LLS locations. Differences between solutions were not greater than 1.8 km.

  10. Experimental and analytical investigation on metal damage suffered from simulated lightning currents

    Science.gov (United States)

    Yakun, LIU; Zhengcai, FU; Quanzhen, LIU; Baoquan, LIU; Anirban, GUHA

    2017-12-01

    The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 kA, 8 kA, 400 A, and 100 kA, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235B, the first return stroke component results in the largest damage area with damage depth 0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.

  11. Identification of lightning vulnerability points on complex grounded structures

    OpenAIRE

    Becerra Garcia, Marley; Cooray, Vernon; Hartono, Z.A

    2007-01-01

    The identification of the most vulnerable points on a given structure to be struck by lightning is an important issue on the design of areliable lightning protection system. Traditionally, these lightning strike points are identified using the rolling sphere method, through anempirical correlation with the prospective peak return stroke current. However, field observations in Kuala Lumpur and Singapore haveshown that the points where lightning flashes strike buildings also depend on the heigh...

  12. Lightning Injuries

    Science.gov (United States)

    ... metal vehicle (for example, a car, van, or truck) with the windows closed. Sheltering in a small ... A person struck by lightning does not retain electricity, so there is no danger in providing first ...

  13. Lightning strikes

    International Nuclear Information System (INIS)

    Dance, B.

    1982-01-01

    If a nuclear weapon were struck by a powerful lightning flash, what would happen Scientists have assembled a simulator to produce exceptionally powerful discharges to try to find the answer to this question by practical test. The Sandia facility enables the extremely powerful lightning discharges which occur only once in every hundred lightning strokes to be duplicated. A bolt is composed of a series of strokes between two clouds or between one cloud and the earth. The simulator consists of four circuits, an inductor, a resistor and a special crowbar-switch developed at Sandia. The crowbar is for accuracy in the simulation of a lightning stroke. The test data is conveyed to computers for analysis by means of fibre-optic links. The first series of tests involve the warhead for the Air-Launched Cruise Missile

  14. Lightning prediction using radiosonde data

    Energy Technology Data Exchange (ETDEWEB)

    Weng, L.Y.; Bin Omar, J.; Siah, Y.K.; Bin Zainal Abidin, I.; Ahmad, S.K. [Univ. Tenaga, Darul Ehsan (Malaysia). College of Engineering

    2008-07-01

    Lightning is a natural phenomenon in tropical regions. Malaysia experiences very high cloud-to-ground lightning density, posing both health and economic concerns to individuals and industries. In the commercial sector, power lines, telecommunication towers and buildings are most frequently hit by lightning. In the event that a power line is hit and the protection system fails, industries which rely on that power line would cease operations temporarily, resulting in significant monetary loss. Current technology is unable to prevent lightning occurrences. However, the ability to predict lightning would significantly reduce damages from direct and indirect lightning strikes. For that reason, this study focused on developing a method to predict lightning with radiosonde data using only a simple back propagation neural network model written in C code. The study was performed at the Kuala Lumpur International Airport (KLIA). In this model, the parameters related to wind were disregarded. Preliminary results indicate that this method shows some positive results in predicting lighting. However, a larger dataset is needed in order to obtain more accurate predictions. It was concluded that future work should include wind parameters to fully capture all properties for lightning formation, subsequently its prediction. 8 refs., 5 figs.

  15. Lightning Safety Tips and Resources

    Science.gov (United States)

    ... Services Careers Contact Us Glossary Safety National Program Lightning Safety Tips and Resources Weather.gov > Safety > Lightning Safety Tips and Resources Lightning Resources Lightning strikes ...

  16. Characteristics of Lightning Within Electrified Snowfall Events Using Lightning Mapping Arrays

    Science.gov (United States)

    Schultz, Christopher J.; Lang, Timothy J.; Bruning, Eric C.; Calhoun, Kristin M.; Harkema, Sebastian; Curtis, Nathan

    2018-02-01

    This study examined 34 lightning flashes within four separate thundersnow events derived from lightning mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each lightning flash, as well as the correspondence between the LMA observations and lightning data taken from national lightning networks like the National Lightning Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the data set. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km2, with a maximum flash extent of 2,300 km2, a minimum of 3 km2, and a median of 128 km2. An average of 2.29 NLDN flashes were recorded per LMA-derived lightning flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN-identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six lightning flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses lightning's interaction with the human-built environment and provides an example of lightning within heavy snowfall observed by Geostationary Operational Environmental Satellite-16's Geostationary Lightning Mapper.

  17. The real performance of radioactive lightning arrester

    International Nuclear Information System (INIS)

    Leite, D.M.

    1985-01-01

    The study of the performance of radioactive lightning arrester comparing to the performance of conventional one are presented. Measurements of currents between lightning arrester and an energyzed plate with wind simulation were done for radioactive and conventional lightning arresters, separately. The attraction range of radioactive and conventional lightning arresters using atmospheric pulses produced by a generator of 3MV were verified, separately and simultaneously. The influence of ionization produced by radioactive lightning arrester on critical disruptive tension of a spark plate, testing two lightning arresters for differents nominal attraction distances with applications of atmospheric pulses (positive and negative polarity) and tensions of 60 Hz was verified. The radiation emitted by a radioactive lightning had used in a building was retired and handled without special carefullness by a personnel without worthy of credence to evaluate the hazard in handling radioactive lightning arrester was measured. Critical disruptive tensions of radioactive and conventional lightning arrester using a suspensed electrode and external pulse generator of 6MV was measured. The effect of attraction of a radioactive and conventional lightning arresters disposed symmetrically regarding the same suspensed electrode was verified simultaneously. Seven cases on faults of radioactive lightning arrester in external areas are present. (M.C.K.) [pt

  18. The 3-year disease management effect: understanding the positive return on investment.

    Science.gov (United States)

    Nyman, John A; Jeffery, Molly Moore; Abraham, Jean M; Jutkowitz, Eric; Dowd, Bryan E

    2013-11-01

    Conventional wisdom suggests that health promotion programs yield a positive return on investment (ROI) in year 3. In the case of the University of Minnesota's program, a positive ROI was achieved in the third year, but it was due entirely to the effectiveness of the disease management (DM) program. The objective of this study is to investigate why. Differences-in-differences regression equations were estimated to determine the effect of DM participation on spending (overall and service specific), hospitalizations, and avoidable hospitalizations. Disease management participation reduced expenditures overall, and especially in the third year for employees, and reduced hospitalizations and avoidable hospitalizations. The positive ROI at Minnesota was due to increased effectiveness of DM in the third year (mostly due to fewer hospitalizations) but also to the simple durability of the average DM effect.

  19. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-05-16

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  20. Bipolar cloud-to-ground lightning flash observations

    Science.gov (United States)

    Saba, Marcelo M. F.; Schumann, Carina; Warner, Tom A.; Helsdon, John H.; Schulz, Wolfgang; Orville, Richard E.

    2013-10-01

    lightning is usually defined as a lightning flash where the current waveform exhibits a polarity reversal. There are very few reported cases of cloud-to-ground (CG) bipolar flashes using only one channel in the literature. Reports on this type of bipolar flashes are not common due to the fact that in order to confirm that currents of both polarities follow the same channel to the ground, one necessarily needs video records. This study presents five clear observations of single-channel bipolar CG flashes. High-speed video and electric field measurement observations are used and analyzed. Based on the video images obtained and based on previous observations of positive CG flashes with high-speed cameras, we suggest that positive leader branches which do not participate in the initial return stroke of a positive cloud-to-ground flash later generate recoil leaders whose negative ends, upon reaching the branch point, traverse the return stroke channel path to the ground resulting in a subsequent return stroke of opposite polarity.

  1. Statistical analysis of lightning electric field measured under Malaysian condition

    Science.gov (United States)

    Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain

    2014-02-01

    Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.

  2. Study of the transport parameters of cloud lightning plasmas

    International Nuclear Information System (INIS)

    Chang, Z. S.; Yuan, P.; Zhao, N.

    2010-01-01

    Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar sudden change behavior in tortuous positions and the branch of the cloud lightning channel.

  3. Optical progression characteristics of an interesting natural downward bipolar lightning flash

    Science.gov (United States)

    Chen, Luwen; Lu, Weitao; Zhang, Yijun; Wang, Daohong

    2015-01-01

    high-speed cameras, Lightning Attachment Process Observation Systems, and fast and slow electrical antennas, we documented a downward bipolar lightning flash that contained one first positive stroke with a peak current of 142 kA and five subsequent negative strokes hitting on a 90 m tall structure on 29 July 2010 in Guangzhou City, China. All the six strokes propagated along the same viewed channel established by the first positive return stroke. The leader which preceded the positive return stroke propagated downward without any branches at a two-dimensional (2-D) speed of 2.5 × 106 m/s. An upward connecting leader with a length of about 80 m was observed in response to the downward positive leader. The 10-90% risetimes of the return strokes' optical pulses ranged from 2.2 µs to 3.2 µs, while the widths from the 10% wavefront to the 50% wave tail ranged from 56.5 µs to 83.1 µs, and the half peak widths ranged from 53.4 µs to 81.6 µs. All the return strokes exhibited similar speeds, ranging from 1.0 × 108 m/s to 1.3 × 108 m/s. Each of the return strokes was followed by a continuing current stage (CC). The first positive stroke CC lasted more than 150 ms, much larger than all the subsequent negative stroke CC, ranging from 13 ms to 70 ms.

  4. Abiotic production of nitrous oxide by lightning. Implications for a false positive identification of life on Earth-Like Planets around quiescent M Dwarfs

    Science.gov (United States)

    Navarro, Karina F.; Navarro-Gonzalez, Rafael; McKay, Christopher P.

    Nitrous oxide (N _{2}O) is uniformly mixed in the troposphere with a concentration of about 310 ppb but disappears in the stratosphere (Prinn et al., 1990); N _{2}O is mostly emitted at a rate of 1x10 (13) g yr (-1) as a byproduct of microbial activity in soils and in the ocean by two processes: a) denitrification (reduction of nitrate and nitrite), and b) nitrification (oxidation of ammonia) (Maag and Vinther, 1996). The abiotic emission of N _{2}O in the contemporaneous Earth is small, mostly arising from lightning activity (2x10 (9) g yr (-1) , Hill et al., 1984) and by reduction of nitrite by Fe(II)-minerals in soils in Antarctica (Samarkin et al., 2010). Since N _{2}O has absorption bands in the mid-IR (7.8, 8.5, and 17 mumm) that makes it detectable by remote sensing (Topfer et al., 1997; Des Marais et al., 2002), it has been suggested as a potential biosignature in the search for life in extrasolar planets (Churchill and Kasting, 2000). However, the minimum required concentration for positive identification is 10,000 ppb with missions like Terrestrial Planet Finder and Darwin (Churchill and Kasting, 2000). Therefore, it is not a suitable biomarker for extrasolar Earth-like planets orbiting stars similar to the Sun. Because N _{2}O is protected in the troposphere from UV photolysis by the stratospheric ozone layer, its concentration would decrease with decreasing oxygen (O _{2}) concentrations, if the biological source strength remains constant (Kasting and Donahue, 1980). For a primitive Earth-like (Hadean) atmosphere dominated by CO _{2}, and no free O _{2}, the expected N _{2}O concentration would be about 3 ppb with the current microbial N _{2}O flux (Churchill and Kasting, 2000). The resulting N _{2}O spectral signature of this atmosphere would be undetectable unless the N _{2}O microbial flux would be 10 (4) greater than its present value (Churchill and Kasting, 2000). Since this flux is unlikely, it is impossible to use it as a biomarker in anoxic CO

  5. Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array

    Science.gov (United States)

    López, Jesús A.; Pineda, Nicolau; Montanyà, Joan; Velde, Oscar van der; Fabró, Ferran; Romero, David

    2017-11-01

    3D mapping system like the LMA - Lightning Mapping Array - are a leap forward in lightning observation. LMA measurements has lead to an improvement on the analysis of the fine structure of lightning, allowing to characterize the duration and maximum extension of the cloud fraction of a lightning flash. During several years of operation, the first LMA deployed in Europe has been providing a large amount of data which now allows a statistical approach to compute the full duration and horizontal extension of the in-cloud phase of a lightning flash. The "Ebro Lightning Mapping Array" (ELMA) is used in the present study. Summer and winter lighting were analyzed for seasonal periods (Dec-Feb and Jun-Aug). A simple method based on an ellipse fitting technique (EFT) has been used to characterize the spatio-temporal dimensions from a set of about 29,000 lightning flashes including both summer and winter events. Results show an average lightning flash duration of 440 ms (450 ms in winter) and a horizontal maximum length of 15.0 km (18.4 km in winter). The uncertainties for summer lightning lengths were about ± 1.2 km and ± 0.7 km for the mean and median values respectively. In case of winter lightning, the level of uncertainty reaches up to 1 km and 0.7 km of mean and median value. The results of the successful correlation of CG discharges with the EFT method, represent 6.9% and 35.5% of the total LMA flashes detected in summer and winter respectively. Additionally, the median value of lightning lengths calculated through this correlative method was approximately 17 km for both seasons. On the other hand, the highest median ratios of lightning length to CG discharges in both summer and winter were reported for positive CG discharges.

  6. Lightning Physics and Effects

    Science.gov (United States)

    Orville, Richard E.

    2004-03-01

    Lightning Physics and Effects is not a lightning book; it is a lightning encyclopedia. Rarely in the history of science has one contribution covered a subject with such depth and thoroughness as to set the enduring standard for years, perhaps even decades, to come. This contribution covers all aspects of lightning, including lightning physics, lightning protection, and the interaction of lightning with a variety of objects and systems as well as the environment. The style of writing is well within the ability of the technical non-expert and anyone interested in lightning and its effects. Potential readers will include physicists; engineers working in the power industry, communications, computer, and aviation industries; atmospheric scientists; geophysicists; meteorologists; atmospheric chemists; foresters; ecologists; physicians working in the area of electrical trauma; and, lastly, architects. This comprehensive reference volume contains over 300 illustrations, 70 tables with quantitative information, and over 6000 reference and bibliography entries.

  7. Storm on lightning conductors

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    Radioactive lightning conductors using radium or americium 241 sources are compared to Faraday cage and lightning rod. Americium source preparation is shortly described. Efficiency of the different systems is still controversed [fr

  8. Lightning Bugs

    Indian Academy of Sciences (India)

    has been exploited in space and medical research, insect pest management, and is .... product emits light when the excited state returns to the ground. Luciferase. + ... eggs about over crowding and competition for food sources. Applications of ...

  9. Lightning safety of animals.

    Science.gov (United States)

    Gomes, Chandima

    2012-11-01

    This paper addresses a concurrent multidisciplinary problem: animal safety against lightning hazards. In regions where lightning is prevalent, either seasonally or throughout the year, a considerable number of wild, captive and tame animals are injured due to lightning generated effects. The paper discusses all possible injury mechanisms, focusing mainly on animals with commercial value. A large number of cases from several countries have been analyzed. Economically and practically viable engineering solutions are proposed to address the issues related to the lightning threats discussed.

  10. The lightning flash

    CERN Document Server

    Cooray, Vernon

    2014-01-01

    With contributions from today's leading lightning engineers and researchers, this updated 2nd edition of Vernon Cooray's classic text, The Lightning Flash provides the reader with an essential introduction to lightning and its impact on electrical and electronic equipment. Providing the reader with a thorough background into almost every aspect of lightning and its impact on electrical and electronic equipment, this new edition is updated throughout and features eight new chapters that bring the science up to date.

  11. Harmful effects of lightning surge discharge on communications terminal equipments

    International Nuclear Information System (INIS)

    Liang, Sisi; Xu, Xiaoying; Tao, Zhigang; Dai, Yanling

    2013-01-01

    The interference problem of lightning surges on electronic and telecommunication products were examined, and a series of experiments were conducted to analyze the failure situations to find out the mechanisms of failures caused by the lightning surge. In addition, the ways in which lightning surges damaged equipment were deduced. It was found that failure positions were scattered and appeared in groups, and most of them were ground discharge. Internet access transformer had high withstand-voltage under the lightning pulse, and the lightning surge seldom passed through the internet access transformer. The lightning current can release to the ground via the computer network adapter of the terminal user. The study will help to improve the performance of lightning surge protection circuit and protection level.

  12. Irregularities of ionospheric VTEC during lightning activity over Antarctic Peninsula

    International Nuclear Information System (INIS)

    Suparta, W; Wan Mohd Nor, W N A

    2017-01-01

    This paper investigates the irregularities of vertical total electron content (VTEC) during lightning activity and geomagnetic quiet days over Antarctic Peninsula in year 2014. During the lightning event, the ionosphere may be disturbed which may cause disruption in the radio signal. Thus, it is important to understand the influence of lightning on VTEC in the study of upper-lower interaction. The lightning data is obtained from World Wide Lightning Location Network (WWLLN) and the VTEC data has analyzed from Global Positioning System (GPS) for O’Higgins (OHI3), Palmer (PALV), and Rothera (ROTH). The results demonstrate the VTEC variation of ∼0.2 TECU during low lightning activity which could be caused by energy dissipation through lightning discharges from troposphere into the thermosphere. (paper)

  13. Thunderstorm and Lightning Studies using the FORTE Optical Lightning System (FORTE/OLS)

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.; Franz, R.; Green, J.; Guillen, J.L.; Jacobson, A.R.; Kirkland, M.; Knox, S.; Spalding, R.; Suszcynsky, D.M.

    1999-02-01

    Preliminary observations of simultaneous RF and optical emissions from lightning as seen by the FORTE spacecraft are presented. RF/optical pairs of waveforms are routinely collected both as individual lightning events and as sequences of events associated with cloud-to-ground (CG) and intra-cloud (IC) flashes. CG pulses can be distinguished from IC pulses based on the properties of the RF and optical waveforms, but mostly based on the associated RF spectrograms. The RF spectrograms are very similar to previous ground-based VHF observations of lightning and show signatures associated with return strokes, stepped and dart leaders, and attachment processes,. RF emissions are observed to precede the arrival of optical emissions at the satellite by a mean value of 280 microseconds. The dual phenomenology nature of these observations are discussed in terms of their ability to contribute to a satellite-based lightning monitoring mission.

  14. Thunderstorm and Lightning Studies using the FORTE Optical Lightning System (FORTE/OLS)

    International Nuclear Information System (INIS)

    Argo, P.; Franz, R.; Green, J.; Guillen, J.L.; Jacobson, A.R.; Kirkland, M.; Knox, S.; Spalding, R.; Suszcynsky, D.M.

    1999-01-01

    Preliminary observations of simultaneous RF and optical emissions from lightning as seen by the FORTE spacecraft are presented. RF/optical pairs of waveforms are routinely collected both as individual lightning events and as sequences of events associated with cloud-to-ground (CG) and intra-cloud (IC) flashes. CG pulses can be distinguished from IC pulses based on the properties of the RF and optical waveforms, but mostly based on the associated RF spectrograms. The RF spectrograms are very similar to previous ground-based VHF observations of lightning and show signatures associated with return strokes, stepped and dart leaders, and attachment processes,. RF emissions are observed to precede the arrival of optical emissions at the satellite by a mean value of 280 microseconds. The dual phenomenology nature of these observations are discussed in terms of their ability to contribute to a satellite-based lightning monitoring mission

  15. A simple lightning assimilation technique for improving ...

    Science.gov (United States)

    Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly averaged bias of 6 h accumulated rainfall is reduced from 0.54 to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF applications. The

  16. Lightning activity during the 1999 Superior derecho

    Science.gov (United States)

    Price, Colin G.; Murphy, Brian P.

    2002-12-01

    On 4 July 1999, a severe convective windstorm, known as a derecho, caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators of severe weather.

  17. Infrasound from lightning measured in Ivory Coast

    Science.gov (United States)

    Farges, T.; Millet, C.; Matoza, R. S.

    2012-04-01

    . Moreover, numerous infrasound events which have the infrasound from lightning signature could not be correlated when thunderstorms were close to the station. Statistical analyses of all correlated infrasound events show an exponential decrease of the infrasound amplitude with the distance of one order of magnitude per 50 km. These analyses show also that the relative position of lightning is important: the detection limit is higher when lightning occur at the East of the station than when they occur at the West. The dominant wind (the Easterlies) could be responsible of this dissymmetry. It also exists a high variability of detection efficiency with the seasons (better efficiency in fall than in spring). Finally, these statistics show clearly a structure inside the shadow zone (from 70 to 200 km away from the station). These results will be compared with intensive numerical simulations. The simulations are separated into two parts: the simulation of the near-field blast wave generated by a lightning and the simulation of the non-linear propagation of the shock front through a realistic atmosphere. By comparing our numerical results to recorded data over a full 1-year period, we aim to show that dominant features of statistics at the IMS station may be explained by the meteorological variability.

  18. Studies on an Electromagnetic Transient Model of Offshore Wind Turbines and Lightning Transient Overvoltage Considering Lightning Channel Wave Impedance

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-12-01

    Full Text Available In recent years, with the rapid development of offshore wind turbines (WTs, the problem of lightning strikes has become more and more prominent. In order to reduce the failure rate caused by the transient overvoltage of lightning struck offshore WTs, the influencing factors and the response rules of transient overvoltage are analyzed. In this paper, a new integrated electromagnetic transient model of offshore WTs is established by using the numerical calculation method of the electromagnetic field first. Then, based on the lightning model and considering the impedance of the lightning channel, the transient overvoltage of lightning is analyzed. Last, the electromagnetic transient model of offshore WTs is simulated and analyzed by using the alternative transients program electro-magnetic transient program (ATP-EMTP software. The influence factors of lightning transient overvoltage are studied. The main influencing factors include the sea depth, the blade length, the tower height, the lightning flow parameters, the lightning strike point, and the blade rotation position. The simulation results show that the influencing factors mentioned above have different effects on the lightning transient overvoltage. The results of the study have some guiding significance for the design of the lightning protection of the engine room.

  19. Performance Study of Earth Networks Total Lightning Network using Rocket-Triggered Lightning Data in 2014

    Science.gov (United States)

    Heckman, S.

    2015-12-01

    Modern lightning locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in lightning research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total Lightning Network (ENTLN) is studied using rocket-triggered lightning data acquired atthe International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground lightning.Earth Networks has developed a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.

  20. A Unified Model of Cloud-to-Ground Lightning Stroke

    Science.gov (United States)

    Nag, A.; Rakov, V. A.

    2014-12-01

    The first stroke in a cloud-to-ground lightning discharge is thought to follow (or be initiated by) the preliminary breakdown process which often produces a train of relatively large microsecond-scale electric field pulses. This process is poorly understood and rarely modeled. Each lightning stroke is composed of a downward leader process and an upward return-stroke process, which are usually modeled separately. We present a unified engineering model for computing the electric field produced by a sequence of preliminary breakdown, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively-charged channel extends downward in a stepped fashion through the relatively-high-field region between the main negative and lower positive charge centers and then through the relatively-low-field region below the lower positive charge center. A relatively-high-field region is also assumed to exist near ground. The preliminary breakdown pulse train is assumed to be generated when the negatively-charged channel interacts with the lower positive charge region. At each step, an equivalent current source is activated at the lower extremity of the channel, resulting in a step current wave that propagates upward along the channel. The leader deposits net negative charge onto the channel. Once the stepped leader attaches to ground (upward connecting leader is presently neglected), an upward-propagating return stroke is initiated, which neutralizes the charge deposited by the leader along the channel. We examine the effect of various model parameters, such as step length and current propagation speed, on model-predicted electric fields. We also compare the computed fields with pertinent measurements available in the literature.

  1. Characteristics of VLF/LF Sferics from Elve-producing Lightning Discharges

    Science.gov (United States)

    Blaes, P.; Zoghzoghy, F. G.; Marshall, R. A.

    2013-12-01

    Lightning return strokes radiate an electromagnetic pulse (EMP) which interacts with the D-region ionosphere; the largest EMPs produce new ionization, heating, and optical emissions known as elves. Elves are at least six times more common than sprites and other transient luminous events. Though the probability that a lightning return stroke will produce an elve is correlated with the return stroke peak current, many large peak current strokes do not produce visible elves. Apart from the lightning peak current, elve production may depend on the return stroke speed, lightning altitude, and ionospheric conditions. In this work we investigate the detailed structure of lightning that gives rise to elves by analyzing the characteristics of VLF/LF lightning sferics in conjunction with optical elve observations. Lightning sferics were observed using an array of six VLF/LF receivers (1 MHz sample-rate) in Oklahoma, and elves were observed using two high-speed photometers pointed over the Oklahoma region: one located at Langmuir Laboratory, NM and the other at McDonald Observatory, TX. Hundreds of elves with coincident LF sferics were observed during the summer months of 2013. We present data comparing the characteristics of elve-producing and non-elve producing lightning as measured by LF sferics. In addition, we compare these sferic and elve observations with FDTD simulations to determine key properties of elve-producing lightning.

  2. The Sandia transportable triggered lightning instrumentation facility

    Science.gov (United States)

    Schnetzer, George H.; Fisher, Richard J.

    1991-01-01

    Development of the Sandia Transportable Triggered Lightning Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of a munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a lightning response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered lightning test site. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck of by aircraft, and its instrumentation for measuring incident lightning channel currents and the responses of the systems under test. Measurements of return-stroke current peaks obtained with the SATTLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within approximately 7 percent. Continuing currents were measured with a resolution of approximately 2.5 A. This field trial demonstrated the practicality of using a transportable triggered lightning facility for specialized test applications.

  3. No MERS-CoV but positive influenza viruses in returning Hajj pilgrims, China, 2013–2015

    Directory of Open Access Journals (Sweden)

    Xuezheng Ma

    2017-11-01

    Full Text Available Abstract Background There is global health concern that the mass movement of pilgrims to and from Mecca annually could contribute to the international spread of Middle East Respiratory Syndrome Coronavirus (MERS-CoV. In China, about 11,000 Muslim pilgrims participate in the Hajj gathering in Mecca annually. This is the first report of MERS-CoV and respiratory virus molecular screening of returning pilgrims at points of entry in China from 2013 to 2015. Methods and results A total of 847 returning Hajj pilgrims participated in this study. The test results indicated that of the travelers, 34 tested positive for influenza A virus, 14 for influenza B virus, 4 for metapneumo virus, 2 for respiratory syncytial virus, and 3 for human coronavirus. There was a significant difference in the rates of positive and negative influenza virus tests between Hajj pilgrims with symptoms and those without. The detection rates of influenza virus were not significantly different among the three years studied, at 5.3, 6.0 and 6.3% for 2013, 2014 and 2015, respectively. Discussion and conclusion The MERS-CoV and respiratory viruses detection results at points of entry in China from 2013 to 2015 indicated that there were no MERS-CoV infection but a 5.7% positive influenza viruses in returning Chinese pilgrims.

  4. LOFAR Lightning Imaging: Mapping Lightning With Nanosecond Precision

    Science.gov (United States)

    Hare, B. M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J. R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T. N. G.; ter Veen, S.; Winchen, T.

    2018-03-01

    Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (˜3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.

  5. Lightning injury: a review.

    Science.gov (United States)

    Ritenour, Amber E; Morton, Melinda J; McManus, John G; Barillo, David J; Cancio, Leopoldo C

    2008-08-01

    Lightning is an uncommon but potentially devastating cause of injury in patients presenting to burn centers. These injuries feature unusual symptoms, high mortality, and significant long-term morbidity. This paper will review the epidemiology, physics, clinical presentation, management principles, and prevention of lightning injuries.

  6. The physics of lightning

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Joseph R., E-mail: jdwyer@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Uman, Martin A. [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2014-01-30

    Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field.

  7. Lightning Often Strikes Twice

    Science.gov (United States)

    2005-01-01

    Contrary to popular misconception, lightning often strikes the same place twice. Certain conditions are just ripe for a bolt of electricity to come zapping down; and a lightning strike is powerful enough to do a lot of damage wherever it hits. NASA created the Accurate Location of Lightning Strikes technology to determine the ground strike point of lightning and prevent electrical damage in the immediate vicinity of the Space Shuttle launch pads at Kennedy Space Center. The area surrounding the launch pads is enmeshed in a network of electrical wires and components, and electronic equipment is highly susceptible to lightning strike damage. The accurate knowledge of the striking point is important so that crews can determine which equipment or system needs to be retested following a strike. Accurate to within a few yards, this technology can locate a lightning strike in the perimeter of the launch pad. As an added bonus, the engineers, then knowing where the lightning struck, can adjust the variables that may be attracting the lightning, to create a zone that will be less susceptible to future strikes.

  8. Neutron generation in lightning bolts

    International Nuclear Information System (INIS)

    Shah, G.N.; Razdan, H.; Bhat, C.L.; Ali, Q.M.

    1985-01-01

    To ascertain neutron generation in lightning bolts, the authors have searched for neutrons from individual lightning strokes, for a time-interval comparable with the duration of the lightning stroke. 10 7 -10 10 neutrons per stroke were found, thus providing the first experimental evidence that neutrons are generated in lightning discharges. (U.K.)

  9. Catching lightning for alternative energy

    Energy Technology Data Exchange (ETDEWEB)

    Helman, D.S. [California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840 (United States)

    2011-05-15

    The article reviews the current literature related to lightning and makes a case for using lightning as an alternative source of energy. Objections to using lightning as an alternative source of energy are listed. Current literature is reviewed and articles are suggested as useful for building a tower, or using rockets or lasers to target a strike, or for quantifying a lightning strike. (author)

  10. Statistical Evolution of the Lightning Flash

    Science.gov (United States)

    Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.

    2012-12-01

    Natural lightning is one of the most fascinating and powerful electrical processes on Earth. To date, the physics behind this natural phenomenon are not fully understood, due primarily to the difficulty of obtaining measurements inside thunderstorms and to the wide range of timescales involved (from nanoseconds to seconds). Our aim is to use accurate lightning geo-location data from the National Lightning Detection Network (NLDN) to study statistical patterns in lightning, taking advantage of the fact that millions of lightning flashes occur around the globe every day. We present two sets of results, one involving the patterns of flashes in a storm, and a second involving the patterns of strokes in a flash. These patterns can provide a surrogate measure of the timescales and the spatial extents of the underlying physical processes. First, we study the timescales of charge buildup inside thunderstorms. We find that, following a lightning flash, the probability of another neighboring flash decreases and takes tens of seconds to recover. We find that this suppression effect is a function of flash type, stroke peak current, cloud-to-ground (CG) stroke multiplicity, and other lightning and geographical parameters. We find that the probabilities of subsequent flashes are more suppressed following oceanic lightning, or following flashes with higher peak currents and/or higher multiplicities (for CG flashes). Second, we use NLDN data to study the evolution of the strokes within a CG flash. A CG flash typically includes multiple return strokes, which can occur in the same channel or in multiple channels within a few kilometers. We cluster NLDN stroke data into flashes and produce the probability density function of subsequent strokes as a function of distance and time-delays relative to the previous stroke. Using this technique, we investigate processes which occur during the CG lightning flash with nanosecond to millisecond timescales. For instance, our results suggest

  11. On the field-to-current conversion factors for large bipolar lightning discharge events in winter thunderstorms in Japan

    Science.gov (United States)

    Chen, Long; Zhang, Qilin; Hou, Wenhao; Tao, Yulang

    2015-07-01

    In this paper we have simulated the far-field waveform characteristic of large bipolar events (LBEs) occurred in winter thunderstorms in Japan and compared the field-to-current conversion factors (FCCFs) of LBEs with that of the lightning cloud-to-ground (CG) return stroke (RS) in summer thunderstorm. As for the physical process of LBEs, Wu et al. (2014) considered that LBEs may be very similar to the typical lightning RS (RS-like process) or caused by an initial continuous current pulse (ICC-like process) in upward lightning flashes. We assume that the lightning channel length of LBEs ranges from 500 m to 1000 m, and the height of tall object struck by LBEs is from 100 m to 300 m. By using the bouncing wave model, we found that only when the injected current waveform of LBEs is characterized with a symmetric Gaussian pulse, the simulated far-field waveform of LBEs both for RS-like process and ICC-like process is similar to that observed by Wu et al. (2014). For striking tall objects with heights from 100 m and 300 m, the FCCFs of LBEs are positively correlated with its channel length and derivatives of injected current waveform, and the FCCF for RS-like process is about similar to that for ICC-like process. However, the FCCFs of LBEs are very different from lightning RS in summer thunderstorm; that is to say, the FCCFs developed for the well-known lightning RS in summer thunderstorm are not suitable for LBEs.

  12. Lightning in aeronautics

    International Nuclear Information System (INIS)

    Lago, F

    2014-01-01

    It is generally accepted that a civilian aircraft is struck, on average, once or twice per year. This number tends to indicate that a lightning strike risk is far from being marginal and so requires that aircraft manufacturers have to demonstrate that their aircraft is protected against lightning. The first generation of aircrafts, which were manufactured mainly in aluminium alloy and had electromechanical and pneumatic controls, had a natural immunity to the effects of lightning. Nowadays, aircraft structures are made primarily with composite materials and flight controls are mostly electronic. This aspect of the ''more composite and more electric'' aircraft demands to aircraft manufacturers to pay a particular attention to the lightning protection and to its certification by testing and/or analysis. It is therefore essential to take this risk into account when designing the aircraft. Nevertheless, it is currently impossible to reproduce the entire lightning phenomenon in testing laboratories and the best way to analyse the lightning protection is to reproduce its effects. In this context, a number of standards and guides are produced by standards committees to help laboratories and aircraft manufacturers to perform realistic tests. Although the environment of a laboratory is quite different from those of a storm cloud, the rules of aircraft design, the know-how of aircraft manufacturers, the existence of international work leading to a better understanding of the lightning phenomenon and standards more precise, permit, today, to consider the risk as properly controlled

  13. The Requirement of a Positive Definite Covariance Matrix of Security Returns for Mean-Variance Portfolio Analysis: A Pedagogic Illustration

    Directory of Open Access Journals (Sweden)

    Clarence C. Y. Kwan

    2010-07-01

    Full Text Available This study considers, from a pedagogic perspective, a crucial requirement for the covariance matrix of security returns in mean-variance portfolio analysis. Although the requirement that the covariance matrix be positive definite is fundamental in modern finance, it has not received any attention in standard investment textbooks. Being unaware of the requirement could cause confusion for students over some strange portfolio results that are based on seemingly reasonable input parameters. This study considers the requirement both informally and analytically. Electronic spreadsheet tools for constrained optimization and basic matrix operations are utilized to illustrate the various concepts involved.

  14. VHF lightning mapping observations of a triggered lightning flash

    Science.gov (United States)

    Edens, H. E.; Eack, K. B.; Eastvedt, E. M.; Trueblood, J. J.; Winn, W. P.; Krehbiel, P. R.; Aulich, G. D.; Hunyady, S. J.; Murray, W. C.; Rison, W.; Behnke, S. A.; Thomas, R. J.

    2012-10-01

    On 3 August 2010 an extensive lightning flash was triggered over Langmuir Laboratory in New Mexico. The upward positive leader propagated into the storm's midlevel negative charge region, extending over a horizontal area of 13 × 13 km and 7.5 km altitude. The storm had a normal-polarity tripolar charge structure with upper positive charge over midlevel negative charge. Lightning Mapping Array (LMA) observations were used to estimate positive leader velocities along various branches, which were in the range of 1-3 × 104 m s-1, slower than in other studies. The upward positive leader initiated at 3.4 km altitude, but was mapped only above 4.0 km altitude after the onset of retrograde negative breakdown, indicating a change in leader propagation and VHF emissions. The observations suggest that both positive and negative breakdown produce VHF emissions that can be located by time-of-arrival systems, and that not all VHF emissions occurring along positive leader channels are associated with retrograde negative breakdown.

  15. Simulating lightning tests to radar system

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2010-01-01

    The risk of destruction due to lightning makes simulating the effects of lightning strikes a necessity. We modeled a radar enclosure and simulated the effect of a lightning strike. The results have been validated using full threat lightning current tests.

  16. Lightning and severe thunderstorms in event management.

    Science.gov (United States)

    Walsh, Katie M

    2012-01-01

    There are a few national position stands/guidelines that address environmental conditions in athletics, yet they do not govern all outdoor sports. Extreme heat and cold, lightning, and severe wind can all be fatal, yet the majority of outdoor sports have no published guidelines addressing these conditions in relation to activity. Available research on extreme heat and cold conditions in athletics provides prevention strategies, to include acclimatization. Lightning and severe wind are two environmental conditions to which humans cannot accommodate, and they both can be deadly. There are strong positions on extreme heat/cold and lightning safety in athletics, but none affiliated with severe winds. Medical personnel involved in planning large outdoor sporting events must know of the presence of nationally published weather-related documents and apply them to their event. In addition, research needs to be expanded in the realm of establishing guidelines for safety to participants and spectators in severe wind conditions.

  17. Research on Line Patrol Strategy of 110kV Transmission Line after Lightning Strike

    Directory of Open Access Journals (Sweden)

    Li Mingjun

    2016-01-01

    Full Text Available Lightning faults occupy in the majority of instantaneous fault and reclosing can usually be successful, so power supply can be restored without immediate patrol in many cases. Firstly, this paper introduces the lightning fault positioning and identifying method. Then test electrical performance of insulators after lightning strike from 110kV lines. Data shows that lightning strike has little effect on the electric performance of insulator. Finally, illustrating disposal process of the 110 kV transmission line after lightning fault, certifying that the power supply reliability be ensured without line patrol.

  18. Situational Lightning Climatologies

    Science.gov (United States)

    Bauman, William; Crawford, Winifred

    2010-01-01

    Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. It was believed there were two flow systems, but it has been discovered that actually there are seven distinct flow regimes. The Applied Meteorology Unit (AMU) has recalculated the lightning climatologies for the Shuttle Landing Facility (SLF), and the eight airfields in the National Weather Service in Melbourne (NWS MLB) County Warning Area (CWA) using individual lightning strike data to improve the accuracy of the climatologies. The software determines the location of each CG lightning strike with 5-, 10-, 20-, and 30-nmi (.9.3-, 18.5-, 37-, 55.6-km) radii from each airfield. Each CG lightning strike is binned at 1-, 3-, and 6-hour intervals at each specified radius. The software merges the CG lightning strike time intervals and distance with each wind flow regime and creates probability statistics for each time interval, radii, and flow regime, and stratifies them by month and warm season. The AMU also updated the graphical user interface (GUI) with the new data.

  19. Assessments of Total Lightning Data Utility in Weather Forecasting

    Science.gov (United States)

    Buechler, Dennis E.; Goodman, Steve; LaCasse, Katherine; Blakeslee, Richard; Darden, Chris

    2005-01-01

    National Weather Service forecasters in Huntsville, Alabama have had access to total lightning data from the North Alabama Lightning Mapping Array (LMA) since 2003. Forecasters can monitor real-time total lightning observations on their AWIPS (Advanced Weather Interactive Processing System (AWIPS) workstations. The lightning data is used to supplement other observations such as radar and satellite data. The lightning data is updated every 2 min, providing more timely evidence of storm growth or decay than is available from 5 min radar scans. Total lightning observations have been used to positively impact warning decisions in a number of instances. A number of approaches are being pursued to assess the usefulness of total lightning measurements to the operational forecasting community in the warning decision process. These approaches, which include both qualitative and quantitative assessment methods, will be discussed. submitted to the American Meteorological Society (AMS) Conference on Meteorological Applications of Lightning Data to be held in San Diego, CA January 9-13,2005. This will be a presentation and an extended abstract will be published on a CD available from the AMS.

  20. Automated Studies of Continuing Current in Lightning Flashes

    Science.gov (United States)

    Martinez-Claros, Jose

    Continuing current (CC) is a continuous luminosity in the lightning channel that lasts longer than 10 ms following a lightning return stroke to ground. Lightning flashes following CC are associated with direct damage to power lines and are thought to be responsible for causing lightning-induced forest fires. The development of an algorithm that automates continuing current detection by combining NLDN (National Lightning Detection Network) and LEFA (Langmuir Electric Field Array) datasets for CG flashes will be discussed. The algorithm was applied to thousands of cloud-to-ground (CG) flashes within 40 km of Langmuir Lab, New Mexico measured during the 2013 monsoon season. It counts the number of flashes in a single minute of data and the number of return strokes of an individual lightning flash; records the time and location of each return stroke; performs peak analysis on E-field data, and uses the slope of interstroke interval (ISI) E-field data fits to recognize whether continuing current (CC) exists within the interval. Following CC detection, duration and magnitude are measured. The longest observed C in 5588 flashes was 631 ms. The performance of the algorithm (vs. human judgement) was checked on 100 flashes. At best, the reported algorithm is "correct" 80% of the time, where correct means that multiple stations agree with each other and with a human on both the presence and duration of CC. Of the 100 flashes that were validated against human judgement, 62% were hybrid. Automated analysis detects the first but misses the second return stroke in many cases where the second return stroke is followed by long CC. This problem is also present in human interpretation of field change records.

  1. LOFAR lightning imaging : mapping lightning with nanosecond precision

    NARCIS (Netherlands)

    Hare, B.M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J.R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T.N.G.; ter Veen, S.; Winchen, T.

    2018-01-01

    Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of

  2. Laboratory demonstration of ball lightning

    International Nuclear Information System (INIS)

    Egorov, Anton I; Stepanov, Sergei I; Shabanov, Gennadii D

    2004-01-01

    A common laboratory facility for creating glowing flying plasmoids akin to a natural ball lightning, allowing a number of experiments to be performed to investigate the main properties of ball lightning, is described. (methodological notes)

  3. Emergency Preparedness and Response - Lightning

    Science.gov (United States)

    ... for Pet Owners Frequently Asked Questions Additional Information Lightning Language: English Español (Spanish) Recommend on Facebook Tweet ... you know what to do when you see lightning or when you hear thunder as a warning. ...

  4. An uncertain future for lightning

    Science.gov (United States)

    Murray, Lee T.

    2018-02-01

    The most commonly used method for representing lightning in global atmospheric models generally predicts lightning increases in a warmer world. A new scheme finds the opposite result, directly challenging the predictive skill of an old stalwart.

  5. A simple lightning assimilation technique for improving retrospective WRF simulations.

    Science.gov (United States)

    Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-F...

  6. Characteristics of downward leaders in a cloud-to-ground lightning strike on a lightning rod

    Science.gov (United States)

    Wang, Caixia; Sun, Zhuling; Jiang, Rubin; Tian, Yangmeng; Qie, Xiushu

    2018-05-01

    A natural downward negative cloud-to-ground (CG) lightning was observed at a close distance of 370 m by using electric field change measurements and a high-speed camera at 5400 frames per second (fps). Two subsequent leader-return strokes of the lightning hit a lightning rod installed on the top of a seven-story building in Beijing city, while the grounding point for the stepped leader-first return stroke was 12 m away, on the roof of the building. The 2-D average speed of the downward stepped leader (L1) before the first return stroke (R1) was approximately 5.1 × 104 m/s during its propagation over the 306 m above the building, and those before the subsequent strokes (R2 and R3) ranged from 1.1 × 106 m/s to 2.2 × 106 m/s. An attempted leader (AL) occurred 201 ms after R1 and 10 ms before R2 reached approximately 99 m above the roof and failed to connect to the ground. The 2-D average speed of the AL was approximately 7.4 × 104 m/s. The luminosity at tip of the leader was brighter than the channel behind it. The leader inducing the R2 with an alteration of terminating point was a dart-stepped leader (DSL), which propagated through the channel of AL and continued to develop downward with new branches at about 17 m above the roof. The 2-D speed of the DSL at the bottom 99 m was 6.6 × 105 m/s. The average time interval between the stepped pulses of the DSL was approximately 10 μs, smaller than that of L1 with value of about 17 μs. The average step lengths of the DSL were approximately 6.6 m. The study shows that the stepped leader-first return stroke of lightning will not always hit the tip of a tall metal rod due to the significant branching property of the leader. However, under certain conditions, the subsequent return strokes may alter the grounding point to the tip of a tall metal rod. For the lightning rod, the protection against subsequent return strokes may be better than that against the first return stroke.

  7. Charge analysis on lightning discharges to the ground in Chinese inland plateau (close to Tibet

    Directory of Open Access Journals (Sweden)

    X. Qie

    2000-10-01

    Full Text Available Since the summer of 1996, scientists from China and Japan have conducted a joint observation of natural cloud-to-ground lightning discharges in the Zhongchuan area that is located close to Qinghai-Xizang (Tibet Plateau, China. It has been found that the long-duration of intracloud discharge processes, just before the first return stroke, lasted more than 120 ms for 85% of cloud-to-ground flashes in this area, with a mean duration of 189.7 ms and a maximum of 300 ms. We present the results of charge sources neutralized by four ground flashes and two intracloud discharge processes, just before the first return stroke, by using the data from a 5-site slow antenna network synchronized by GPS with 1 µs time resolution. The result shows that the altitudes of the neutralized negative charge for three negative ground flashes were between 2.7 to 5.4 km above the ground, while that of neutralized positive charges for one positive ground flash and one continuing current process were at about 2.0 km above the ground. The comparison with radar echo showed that the negative discharges initiated in the region greater than 20 dBZ or near the edge of the region with intense echoes greater than 40 dBZ, while positive discharge initiated in the weak echo region.Key words: Meterology and atmospheric dynamics (atmospheric electricity; convective processes; lightning  

  8. Faraday Cage Protects Against Lightning

    Science.gov (United States)

    Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.

    1992-01-01

    Faraday cage protects electronic and electronically actuated equipment from lightning. Follows standard lightning-protection principles. Whether lightning strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.

  9. Exploring Lightning Jump Characteristics

    Science.gov (United States)

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.

    2014-01-01

    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  10. Lightning incidents in Mongolia

    Directory of Open Access Journals (Sweden)

    Myagmar Doljinsuren

    2015-11-01

    Full Text Available This is one of the first studies that has been conducted in Mongolia on the distribution of lightning incidents. The study covers a 10-year period from 2004 to 2013. The country records a human death rate of 15.4 deaths per 10 million people per year, which is much higher than that of many countries with similar isokeraunic level. The reason may be the low-grown vegetation observed in most rural areas of Mongolia, a surface topography, typical to steppe climate. We suggest modifications to Gomes–Kadir equation for such countries, as it predicts a much lower annual death rate for Mongolia. The lightning incidents spread over the period from May to August with the peak of the number of incidents occurring in July. The worst lightning affected region in the country is the central part. Compared with impacts of other convective disasters such as squalls, thunderstorms and hail, lightning stands as the second highest in the number of incidents, human deaths and animal deaths. Economic losses due to lightning is only about 1% of the total losses due to the four extreme weather phenomena. However, unless precautionary measures are not promoted among the public, this figure of losses may significantly increase with time as the country is undergoing rapid industrialization at present.

  11. The influence of the breakdown electric field in the configuration of lightning corona sheath on charge distribution in the channel

    Science.gov (United States)

    Ignjatovic, Milan; Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Djuric, Radivoje

    2014-11-01

    A model of corona sheath that surrounds the thin core of the lightning channel has been investigated by using a generalized traveling current source return stroke model. The lightning channel is modeled by a charged corona sheath that stretches around a highly conductive central core through which the main current flows. The channel core with the negatively charged outer channel sheath forms a strong electric field, with an overall radial orientation. The return stroke process is modeled as the negative leader charge in the corona sheath being discharged by the positive charge coming from the channel core. Expressions that describe how the corona sheath radius evolves during the return stroke are obtained from the corona sheath model, which predicts charge motion within the sheath. The corona sheath model, set forth by Maslowski and Rakov (2006), Tausanovic et al. (2010), Marjanovic and Cvetic (2009), Cvetic et al. (2011) and Cvetic et al. (2012), divides the sheath onto three zones: zone 1 (surrounding the channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (the outer zone, representing uncharged virgin air). In the present study, we have assumed a constant electric field inside zone 1, as suggested by experimental research of corona discharges in coaxial geometry conducted by Cooray (2000). The present investigation builds upon previous studies by Tausanovic et al. (2010) and Cvetic et al. (2012) in several ways. The value of the breakdown electric field has been varied for probing its effect on channel charge distribution prior and during the return stroke. With the aim of investigating initial space charge distribution along the channel, total electric field at the outer surface of the channel corona sheath, just before the return stroke, is calculated and compared for various return stroke models. A self-consistent algorithm is applied to the generalized traveling current source return stroke model, so that the

  12. Lightning on Venus

    Science.gov (United States)

    Scarf, F. L.

    1985-01-01

    On the night side of Venus, the plasma wave instrument on the Pioneer-Venus Orbiter frequently detects strong and impulsive low-frequency noise bursts when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere. The signals have characteristics of lightning whistlers, and an attempt was made to identify the sources by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with additional significant clustering near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  13. Lightning activity on Jupiter

    Science.gov (United States)

    Borucki, W. J.; Bar-Nun, A.; Scarf, F. L.; Look, A. F.; Hunt, G. E.

    1982-01-01

    Photographic observations of the nightside of Jupiter by the Voyager 1 spacecraft show the presence of extensive lightning activity. Detection of whistlers by the plasma wave analyzer confirms the optical observations and implies that many flashes were not recorded by the Voyager camera because the intensity of the flashes was below the threshold sensitivity of the camera. Measurements of the optical energy radiated per flash indicate that the observed flashes had energies similar to that for terrestrial superbolts. The best estimate of the lightning energy dissipation rate of 0.0004 W/sq m was derived from a consideration of the optical and radiofrequency measurements. The ratio of the energy dissipated by lightning compared to the convective energy flux is estimated to be between 0.000027 and 0.00005. The terrestrial value is 0.0001.

  14. Artificial Neural Network applied to lightning flashes

    Science.gov (United States)

    Gin, R. B.; Guedes, D.; Bianchi, R.

    2013-05-01

    The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a

  15. Observations of a bi-directional lightning leader producing an M-component

    Science.gov (United States)

    Kotovsky, D. A.; Uman, M. A.; Wilkes, R.; Carvalho, F. L.; Jordan, D. M.

    2017-12-01

    Lightning discharges to ground often exhibit millisecond-scale surges in the continuing currents following return strokes, called M-components. Relatively little is known regarding the source of M-component charge and the mechanisms by which that charge is transferred to ground. In this work, we seek to directly address these questions by presenting correlated high-speed video and Lightning Mapping Array (LMA) observations of a bi-directional leader that resulted in an M-component occurring in a rocket-and-wire triggered lightning flash. The observed leader initiated in the decayed remnants of a positive leader channel that had traversed virgin air approximately 90 msec prior. Three-dimensional locations and speeds of the photographed bi-directional leader and M-component processes are calculated by mapping video images to the observed LMA channel geometry. Both ends of the bi-directional leader exhibited speeds on the order of 2 x106 m sec-1 over 570 meters of the visible channel. Propagation of the luminosity wave from the in-cloud leader to ground ( 8.8 km channel length) exhibited appreciable dispersion, with rise-times (10-90%) increasing from 330 to 410 μsec and pulse-widths (half-maximum) increasing from 380 to 810 μsec - the M-component current pulse measured at ground-level exhibited a rise-time of 290 μsec and a pulse-width of 770 μsec. Group velocities of the luminosity wave have been calculated as a function of frequency, increasing from 2 x107 to 6 x107 m sec-1 over the dominant signal bandwidth (DC to 2 kHz). Additionally, multiple waves of luminosity are observed within the in-cloud channel, indicating nuanced wave phenomena possibly associated with reflection from the end of the leader channel and attachment with the main lightning channel carrying continuing current to ground.

  16. Lightning Imaging with LOFAR

    Directory of Open Access Journals (Sweden)

    Scholten Olaf

    2017-01-01

    Full Text Available We show that LOFAR can be used as a lightning mapping array with a resolution that is orders of magnitude better than existing arrays. In addition the polarization of the radiation can be used to track the direction of the stepping discharges.

  17. On the Simulation of the Interception of Lightning Dart Leaders

    OpenAIRE

    Long, Mengni; Becerra, Marley; Thottappillil, Rajeev

    2015-01-01

    This paper presents the numerical evaluation of the propagation of positive upward connecting leaders under the influence of lightning dart leaders. The simulation is performed with the self-consistent leader inception and propagation model - SLIM-. An analytical expression is derived for calculating the charge per unit length required to thermalize a new upward leader segment. The simulation is validated with two dart leader attachment events in a lightning triggering experiment reported in ...

  18. Energetic radiation produced during rocket-triggered lightning.

    Science.gov (United States)

    Dwyer, Joseph R; Uman, Martin A; Rassoul, Hamid K; Al-Dayeh, Maher; Caraway, Lee; Jerauld, Jason; Rakov, Vladimir A; Jordan, Douglas M; Rambo, Keith J; Corbin, Vincent; Wright, Brian

    2003-01-31

    Using a NaI(Tl) scintillation detector designed to operate in electrically noisy environments, we observed intense bursts of energetic radiation (> 10 kiloelectron volts) during the dart leader phase of rocket-triggered lightning, just before and possibly at the very start of 31 out of the 37 return strokes measured. The bursts had typical durations of less than 100 microseconds and deposited many tens of megaelectron volts into the detector. These results provide strong evidence that the production of runaway electrons is an important process during lightning.

  19. Chasing Lightning: Sferics, Tweeks and Whistlers

    Science.gov (United States)

    Webb, P. A.; Franzen, K.; Garcia, L.; Schou, P.; Rous, P.

    2008-12-01

    We all know what lightning looks like during a thunderstorm, but the visible flash we see is only part of the story. This is because lightning also generates light with other frequencies that we cannot perceive with our eyes, but which are just as real as visible light. Unlike the visible light from lightning, these other frequencies can carry the lightning's energy hundreds or thousands of miles across the surface of the Earth in the form of special signals called "tweeks" and "sferics". Some of these emissions can even travel tens of thousands of miles out into space before returning to the Earth as "whistlers". The INSPIRE Project, Inc is a non-profit scientific and educational corporation whose beginning mission was to bring the excitement of observing these very low frequency (VLF) natural radio waves emissions from lightning to high school students. Since 1989, INSPIRE has provided specially designed radio receiver kits to over 2,600 participants around the world to make observations of signals in the VLF frequency range. Many of these participants are using the VLF data they collect in very creative projects that include fiction, music and art exhibitions. During the Fall 2008 semester, the first INSPIRE based university-level course was taught at University of Maryland Baltimore County (UMBC) as part of its First-Year Seminar (FYS) series. The FYS classes are limited to 20 first-year students per class and are designed to create an active-learning environment that encourages student participation and discussion that might not otherwise occur in larger first-year classes. This presentation will cover the experiences gained from using the INSPIRE kits as the basis of a university course. This will include the lecture material that covers the basic physics of lightning, thunderstorms and the Earth's atmosphere, as well as the electronics required to understand the basic workings of the VLF kit. It will also cover the students assembly of the kit in an

  20. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-01-01

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence

  1. Positive attitudes and preserved high level of motor performance are important factors for return to work in younger persons after stroke: a national survey.

    Science.gov (United States)

    Lindström, Britta; Röding, Jenny; Sundelin, Gunnevi

    2009-09-01

    Significant numbers of younger persons with stroke should be given the opportunity to return to work. The aim of this study was to investigate factors of importance for return to work among persons after first ever stroke, in the age range 18-55 years. A questionnaire was sent to all persons who had experienced a first ever stroke, 18-55 years of age, registered in the Swedish national quality register for stroke care, Riks-Stroke. Of the 1068 who answered the questionnaire, 855 (539 men and 316 women) were in paid employment before their stroke, and were included in this study. Sixty-five percent returned to work and, of these, an equal proportion were men and women. Significant factors associated with return to work were the perceived importance of work (odds ratio (OR) 5.10), not perceiving themselves as a burden on others (OR 3.33), support from others for return to work (OR 3.66), retaining the ability to run a short distance (OR 2.77), and higher socioeconomic codes (OR 2.12). A negative association was found between those rehabilitated in wards intended for younger persons and return to work (OR 0.37). External support from others, and positive attitudes towards return to work, were factors associated with successful return to work after stroke. Contrary to what was expected, independence in personal activities of daily living and cognitive factors were not associated with return to work to the same extent as persistent higher level of physical functions, such as ability to run a short distance.

  2. Optimizing Precipitation Thresholds for Best Correlation Between Dry Lightning and Wildfires

    Science.gov (United States)

    Vant-Hull, Brian; Thompson, Tollisha; Koshak, William

    2018-03-01

    This work examines how to adjust the definition of "dry lightning" in order to optimize the correlation between dry lightning flash count and the climatology of large (>400 km2) lightning-ignited wildfires over the contiguous United States (CONUS). The National Lightning Detection Network™ and National Centers for Environmental Prediction Stage IV radar-based, gauge-adjusted precipitation data are used to form climatic data sets. For a 13 year analysis period over CONUS, a correlation of 0.88 is found between annual totals of wildfires and dry lightning. This optimal correlation is found by defining dry lightning as follows: on a 0.1° hourly grid, a precipitation threshold of no more than 0.3 mm may accumulate during any hour over a period of 3-4 days preceding the flash. Regional optimized definitions vary. When annual totals are analyzed as done here, no clear advantage is found by weighting positive polarity cloud-to-ground (+CG) lightning differently than -CG lightning. The high variability of dry lightning relative to the precipitation and lightning from which it is derived suggests it would be an independent and useful climate indicator.

  3. A positive return on investment: research funding by the Thoracic Surgery Foundation for Research and Education (TSFRE).

    Science.gov (United States)

    Jones, David R; Mack, Michael J; Patterson, G Alexander; Cohn, Lawrence H

    2011-05-01

    The Thoracic Surgery Foundation for Research and Education (TSFRE) was formed in 1991 with the primary goals of generating new knowledge and nurturing the development of surgeon-scientists. The purpose of this article is to determine how effective the TSFRE has been in achieving these goals. A survey instrument was sent electronically to all former and current TSFRE research award recipients. Major themes included the benefits on TSFRE award recipients with respect to career choices of thoracic surgery, progress toward research independence, and the ability to leverage TSFRE funds to more substantive National Institutes of Health (NIH) awards. Success rates for NIH funding were confirmed using NIH Research Portfolio Online Reporting Tools. The total completed survey response rate was 70% (75/107). The response rates for each group were as follows: resident 74% (28/38), faculty 85% (29/34), Braunwald 50% (9/18), and TSFRE/NIH K-award 65% (11/17). The funding rate for all grants was 14% (90/619). For resident research awardees, 81% (34/42) are cardiothoracic surgeons or are thoracic surgery residents. The conversion rate for existing TSFRE/NIH co-sponsored K-awards to R01 grants is 40% at 5 years compared with a 20% K to R conversion rate for all NIH K-award recipients. K to R conversion rates for junior faculty grant awardees without a prior K-award is 44%, which is much higher than NIH rates for all new investigator R01 awards. The return on investment for TSFRE funding for surgeon-scientists is resoundingly positive with respect to promoting careers in cardiothoracic surgery and to obtaining subsequent NIH funding for thoracic surgeon investigators. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  4. Cloud-to-ground lightning activity in Colombia: A 14-year study using lightning location system data

    Science.gov (United States)

    Herrera, J.; Younes, C.; Porras, L.

    2018-05-01

    This paper presents the analysis of 14 years of cloud-to-ground lightning activity observation in Colombia using lightning location systems (LLS) data. The first Colombian LLS operated from 1997 to 2001. After a few years, this system was upgraded and a new LLS has been operating since 2007. Data obtained from these two systems was analyzed in order to obtain lightning parameters used in designing lightning protection systems. The flash detection efficiency was estimated using average peak current maps and some theoretical results previously published. Lightning flash multiplicity was evaluated using a stroke grouping algorithm resulting in average values of about 1.0 and 1.6 for positive and negative flashes respectively and for both LLS. The time variation of this parameter changes slightly for the years considered in this study. The first stroke peak current for negative and positive flashes shows median values close to 29 kA and 17 kA respectively for both networks showing a great dependence on the flash detection efficiency. The average percentage of negative and positive flashes shows a 74.04% and 25.95% of occurrence respectively. The daily variation shows a peak between 23 and 02 h. The monthly variation of this parameter exhibits a bimodal behavior typical of the regions located near The Equator. The lightning flash density was obtained dividing the study area in 3 × 3 km cells and resulting in maximum average values of 25 and 35 flashes km- 2 year- 1 for each network respectively. A comparison of these results with global lightning activity hotspots was performed showing good correlation. Besides, the lightning flash density variation with altitude shows an inverse relation between these two variables.

  5. Lightning discharges produced by wind turbines

    Science.gov (United States)

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R.

    2014-02-01

    New observations with a 3-D Lightning Mapping Array and high-speed video are presented and discussed. The first set of observations shows that under certain thunderstorm conditions, wind turbine blades can produce electric discharges at regular intervals of 3 s in relation to its rotation, over periods of time that range from a few minutes up to hours. This periodic effect has not been observed in static towers indicating that the effect of rotation is playing a critical role. The repeated discharges can occur tens of kilometers away from electrically active thunderstorm areas and may or may not precede a fully developed upward lightning discharge from the turbine. Similar to rockets used for triggering lightning, the fast movement of the blade tip plays an important role on the initiation of the discharge. The movement of the rotor blades allows the tip to "runaway" from the generated corona charge. The second observation is an uncommon upward/downward flash triggered by a wind turbine. In that flash, a negative upward leader was initiated from a wind turbine without preceding lightning activity. The flash produced a negative cloud-to-ground stroke several kilometers from the initiation point. The third observation corresponds to a high-speed video record showing simultaneous upward positive leaders from a group of wind turbines triggered by a preceding intracloud flash. The fact that multiple leaders develop simultaneously indicates a poor shielding effect among them. All these observations provide some special features on the initiation of lightning by nonstatic and complex tall structures.

  6. Triggered lightning spectroscopy: Part 1. A qualitative analysis

    Science.gov (United States)

    Walker, T. Daniel; Christian, Hugh J.

    2017-08-01

    The first high-speed spectra of triggered lightning have been obtained. During the summers of 2012 and 2013, spectra were recorded at the International Center for Lightning Research and Testing, Camp Blanding, FL. The spectra were recorded with a high-speed camera with a grism mounted in front of it. The triggered lightning channels observed were generally at low altitude in a region that included the copper wire. Spectral emissions were recorded at each phase: the initial stage, dart leader, return stroke, and continuing current. These spectra are separated into two major regions: soft ultraviolet to visible (3800-6200 Å) and visible to near infrared (6200-8700 Å). The emissions during the initial stage reflect those of a copper wire burn in air. The majority of the emissions are neutral copper. After the initial stage comes the first return stroke which contains no detected molecular emissions; however, it does contain neutral, singly, and doubly ionized nitrogen and oxygen, neutral argon, and neutral hydrogen. Occasionally, before a return stroke, the dart leader coming down the channel will be stepped. During these occasions the leader spectra resemble that of the return stroke but are dimmer and shorter lived. After the initial portion of the return stroke, there are often changes in the luminosity of the spectrum which corresponds with fluctuations in the continuing current. During these "reillumination phases" no singly or doubly ionized lines have been observed to reemerge over the detection threshold, only neutral emission features.

  7. Coincident Observation of Lightning using Spaceborne Spectrophotometer and Ground-Level Electromagnetic Sensors

    Science.gov (United States)

    Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong; hide

    2012-01-01

    The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.

  8. Land-ocean contrast on electrical characteristics of lightning discharge derived from satellite optical measurements

    Science.gov (United States)

    Adachi, T.; Said, R.; Cummer, S. A.; Li, J.; Takahashi, Y.; Hsu, R.; Su, H.; Chen, A. B.; Mende, S. B.; Frey, H. U.

    2010-12-01

    Comparative studies on the electrical properties of oceanic and continental lightning are crucial to elucidate air discharge processes occurring under different conditions. Past studies however have primarily focused on continental lightning because of the limited coverage of ground-based instruments. Recent satellite measurements by FORMOSAT-2/ISUAL provided a new way to survey the global characteristics of lightning and transient luminous events regardless of land and ocean. In this study, we analyze ISUAL/spectrophotometer data to clarify the electrical properties of lightning on a global level. Based on the results obtained by Cummer et al. [2006] and Adachi et al. [2009], the OI-777.4nm emission intensity is used to infer lightning electrical parameters. Results show a clear land-ocean contrast on the parameters of lightning discharge: in oceanic lightning, peak luminosity is 60 % higher and the time scale of return stroke is 30 % shorter. These results suggest higher peak current in oceanic lightning, which is consistent with the fact that elves, EMP-driven phenomena, also tend to occur over the ocean [Chen et al., 2008]. Further analysis of lightning events occurring around the Caribbean Sea shows that the transition-line of lightning electrical properties is precisely located along the coastline. We suggest that the differences in these electrical properties may be due to the boundary conditions (conductivity, surface terrain, etc). In this talk, based on the calibration with NLDN and Duke magnetometer data, current moment change and charge moment change will be globally evaluated using a complete set of the ISUAL-observed lightning events.

  9. Monitoring of lightning discharge

    International Nuclear Information System (INIS)

    Grigor'ev, V.A.

    2001-01-01

    The paper presents a brief description of a lightning discharge recording system developed at the NPO 'Monitoring Techniques' under the direction of V.M. Moskolenko (Moscow). The system provides information about dangerous environmental occurrences such as tornados and hurricanes, making the forecast of extreme situations possible, especially in the areas of dangerous industries and objects. The created automatic system can be useful in solving the tasks relating to nuclear test monitoring. (author)

  10. Experimental research on ball lightning

    International Nuclear Information System (INIS)

    Ofuruton, H.; Ohtsuki, Y.H.

    1990-01-01

    Experiments on producing ball lightning were made with discharge in flammable gas and/or aerosol. A long lifetime (2 s) ball lightning was observed in 2.7 % ethane and 100 cm 3 cotton fibers, and in 1.5 % methane and 1.9 % ethane

  11. Runaway breakdown and hydrometeors in lightning initiation.

    Science.gov (United States)

    Gurevich, A V; Karashtin, A N

    2013-05-03

    The particular electric pulse discharges are observed in thunderclouds during the initiation stage of negative cloud-to-ground lightning. The discharges are quite different from conventional streamers or leaders. A detailed analysis reveals that the shape of the pulses is determined by the runaway breakdown of air in the thundercloud electric field initiated by extensive atmospheric showers (RB-EAS). The high amplitude of the pulse electric current is due to the multiple microdischarges at hydrometeors stimulated and synchronized by the low-energy electrons generated in the RB-EAS process. The series of specific pulse discharges leads to charge reset from hydrometeors to the free ions and creates numerous stretched ion clusters, both positive and negative. As a result, a wide region in the thundercloud with a sufficiently high fractal ion conductivity is formed. The charge transport by ions plays a decisive role in the lightning leader preconditioning.

  12. The effects of lightning and high altitude electromagnetic pulse on power distribution lines

    Energy Technology Data Exchange (ETDEWEB)

    Uman, M.A.; Rubinstein, M.; Yacoub, Z. [Florida Univ., Gainesville, FL (United States)

    1995-01-01

    We simultaneously recorded the voltages induced by lightning on both ends of an unenergized 448-meter long unenergized electric power line and the lightning vertical electric and horizontal magnetic fields at ground level near the line. The lightning data studied and presented here were due both to cloud lightning and to very close (about 20 m from the line) artificially initiated lightning. For cloud sources, a frequency-domain computer program called EMPLIN was used to calculate induced line voltages as a function of source elevation, angle of incidence, and wave polarization of the radiated cloud discharge pulses in order to compare with the measurements. For very-close lightning, the measured line voltages could be grouped into two categories, those in which multiple, similarly shaped, evenly spaced pulses were observed, which we call oscillatory, and those dominated by a principal pulse with subsidiary oscillations of much smaller amplitude, which we call impulsive. The amplitude of the induced voltage ranged from tens of kilovolts for oscillatory voltages to hundreds of kilovolts for impulsive voltages. A new technique is derived for the calculation of the electromagnetic fields from nearby lightning to ground above an imperfectly conducting ground. This technique was used in conjunction with an existing time domain coupling theory and lightning return stroke model to calculate voltages at either end of the line. The results show fair agreement with the measured oscillatory voltage waveforms if corona is ignored and improved results when corona effects are modeled. The modeling of the impulsive voltage, for which local flashover probably successful. In an attempt to understand better the sources of the line voltages for very close lightning, measurements of the horizontal and vertical electric fields 30 m from triggered lightning were obtained.

  13. Using Total Lightning Observations to Enhance Lightning Safety

    Science.gov (United States)

    Stano, Geoffrey T.

    2012-01-01

    Lightning is often the underrated threat faced by the public when it comes to dangerous weather phenomena. Typically, larger scale events such as floods, hurricanes, and tornadoes receive the vast majority of attention by both the general population and the media. This comes from the fact that these phenomena are large, longer lasting, can impact a large swath of society at one time, and are dangerous events. The threat of lightning is far more isolated on a case by case basis, although millions of cloud-to-ground lightning strikes hit this United States each year. While attention is given to larger meteorological events, lightning is the second leading cause of weather related deaths in the United States. This information raises the question of what steps can be taken to improve lightning safety. Already, the meteorological community s understanding of lightning has increased over the last 20 years. Lightning safety is now better addressed with the National Weather Service s access to the National Lightning Detection Network data and enhanced wording in their severe weather warnings. Also, local groups and organizations are working to improve public awareness of lightning safety with easy phrases to remember, such as "When Thunder Roars, Go Indoors." The impacts can be seen in the greater array of contingency plans, from airports to sports stadiums, addressing the threat of lightning. Improvements can still be made and newer technologies may offer new tools as we look towards the future. One of these tools is a network of sensors called a lightning mapping array (LMA). Several of these networks exist across the United States. NASA s Short-term Prediction Research and Transition Center (SPoRT), part of the Marshall Spaceflight Center, has access to three of these networks from Huntsville, Alabama, the Kennedy Space Center, and Washington D.C. The SPoRT program s mission is to help transition unique products and observations into the operational forecast environment

  14. An investigation of the generation and properties of laboratory-produced ball lightning

    Science.gov (United States)

    Oreshko, A. G.

    2015-06-01

    The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning - in an external spherical layer that rotates around the axis - there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is `embedded' in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.

  15. Cloud-to-ground lightning flash characteristics from June 1984 through May 1985

    Science.gov (United States)

    Orville, Richard E.; Weisman, Robert A.; Pyle, Richard B.; Henderson, Ronald W.; Orville, Richard E., Jr.

    1987-01-01

    A magnetic direction-finding network for the detection of lightning cloud-to-ground strikes has been installed along the east coast of the United States. Time, location, flash polarity, stroke count, and peak signal amplitude are recorded in real time. The data were recorded from Maine to North Carolina and as far west as Ohio; analyses were restricted to flashes within 300 km of a direction finder. Measurements of peak signal strength have been obtained from 720,284 first return strokes lowering negative charge. The resulting distribution indicates that few negative strokes have peak currents exceeding 100 kA. Measurements have also been obtained of peak signal strength from 17,694 first return strokes lowering positive charge. These strokes have a median peak current of 45 kA, with some peak currents reaching 300-400 kA. The median peak signal strength and the peak current, double from summer to winter for both negative and positive first return strokes. The polarity of ground flashes is observed to be less than 5 percent positive throughout the summer and early fall, then increases to over 50 percent during the winter, and returns to less than 10 percent in early spring. The percent of positive flashes with one stroke is observed to be approximately 90 percent throughout the year. The percent of negative flashes with one stroke is observed to increase from 40 percent in the summer to approximately 80 percent in January, returning to less than 50 percent in the spring.

  16. Charge analysis on lightning discharges to the ground in Chinese inland plateau (close to Tibet

    Directory of Open Access Journals (Sweden)

    X. Qie

    Full Text Available Since the summer of 1996, scientists from China and Japan have conducted a joint observation of natural cloud-to-ground lightning discharges in the Zhongchuan area that is located close to Qinghai-Xizang (Tibet Plateau, China. It has been found that the long-duration of intracloud discharge processes, just before the first return stroke, lasted more than 120 ms for 85% of cloud-to-ground flashes in this area, with a mean duration of 189.7 ms and a maximum of 300 ms. We present the results of charge sources neutralized by four ground flashes and two intracloud discharge processes, just before the first return stroke, by using the data from a 5-site slow antenna network synchronized by GPS with 1 µs time resolution. The result shows that the altitudes of the neutralized negative charge for three negative ground flashes were between 2.7 to 5.4 km above the ground, while that of neutralized positive charges for one positive ground flash and one continuing current process were at about 2.0 km above the ground. The comparison with radar echo showed that the negative discharges initiated in the region greater than 20 dBZ or near the edge of the region with intense echoes greater than 40 dBZ, while positive discharge initiated in the weak echo region.

    Key words: Meterology and atmospheric dynamics (atmospheric electricity; convective processes; lightning

     

  17. Green Lightning Channels From the Chaiten Volcano in Chile Photographed By Carlos Gutierrez May 2-3, 2008

    Science.gov (United States)

    Few, A. A.

    2013-12-01

    The two photographs containing the green lightning channels appeared on the Boston.com web site (The Big Picture, June 4, 2008). These web photographs were of limited resolution (176 Kb) making the interpretation of the green channels difficult. The agent for Gutierrez, Landov LLC, made available the two photographs as high resolution digital photographs (1.4 Mb and 1.5 Mb) that appear on the poster. Upon close examination of the green channels it is possible to exclude negative discharges or their remnants as being the source of the green channels; negative discharges require white-hot ionization processes at the leading tip of the channel. There are several examples of the white negative channels on the photographs. The green channels might be positive streamers. In thunderstorms positive streamers propagate within the negative charged region of the cloud collecting electrons, which are supplied to the connected negative discharge channel, hence they are not observed in thunderstorms. They can be detected and mapped inside the thunderstorm from observations of their electromagnetic radiations. Positive streamers are cooler than negative discharges because electrons are convergent on the leading tip of the positive streamer maintaining its conductivity. For the negative leading tips the electrons are divergent and new electrons must be generated by hot ionization processes. A close examination reveals that the green channels track the edge of the ash cloud, which if a positive streamer would indicate a negative surface charge on the cloud. Most likely the green color results from excited oxygen atoms returning to the ground state and emitting a green photon. This is the process that produces the green aurora, and if this produces green lightning, it places several constraints on the conditions of the channel. The two photographs below are selected clips from the much larger photographs; these show the green lightning channels.

  18. Ball lightning dynamics and stability at moderate ion densities

    International Nuclear Information System (INIS)

    Morrow, R

    2017-01-01

    A general mechanism is presented for the dynamics and structure of ball lightning and for the maintenance of the ball lightning structure for several seconds. Results are obtained using a spherical geometry for air at atmospheric pressure, by solving the continuity equations for electrons, positive ions and negative ions coupled with Poisson’s equation. A lightning strike can generate conditions in the lightning channel with a majority of positive nitrogen ions, and a minority of negative oxygen ions and electrons. The calculations are initiated with electrons included; however, at the moderate ion densities chosen the electrons are rapidly lost to form negative ions, and after 1 µ s their influence on the ion dynamics is negligible. Further development after 1 µ s is followed using a simpler set of equations involving only positive ions and negative ions, but including ion diffusion. The space-charge electric field generated by the majority positive ions drives them from the centre of the distribution and drives the minority negative ions and electrons towards the centre of the distribution. In the central region the positive and negative ion distributions eventually overlap exactly and their space-charge fields cancel resulting in zero electric field, and the plasma ball formed is quite stable for a number of seconds. The formation of such plasma balls is not critically dependent on the initial diameter of the ion distributions, or the initial density of minority negative ions. The ion densities decrease relatively slowly due to mutual neutralization of positive and negative ions. The radiation from this neutralization process involving positive nitrogen ions and negative oxygen ions is not sufficient to account for the reported luminosity of ball lightning and some other source of luminosity is shown to be required; the plasma ball model used could readily incorporate other ions in order to account for the luminosity and range of colours reported for ball

  19. Electromagnetic model of a lightning dart leader in the earth atmosphere

    International Nuclear Information System (INIS)

    Gordeev, A.V.; Losseva, T.V.

    2005-01-01

    The fundamentally new approach to the lightning dart leader structure investigation is suggested, which is connected with the charge separation and the appearance of the Hall potential in the current-channel magnetic field of the lightning dart leader. Generation of the strong radial electric field provides both the relativistic electron drift along the lightning channel and the breakdown in the Earth atmosphere at the front of the propagating filament. The magnetic selfinsulation in the current channel ensures the propagation of the current filament with the relativistic electrons up to the Earth surface. After this stage the reflected magnetic selfinsulation wave realizes the return stroke stage of the lightning that is accompanied by the strong gas heating in the lightning channel. The current data in the lightning dart leader channel (4-11 kA) and the range of the X-ray emission from the lightning channel (30-250 keV), which are obtained in in-situ observations, are in reasonably good agreement with the estimates made in the frame of this model. Profiles of magnetic field Bq, electron concentration ne, electron velocity v ez and radial electric field E r in current channel for the current value 11 kA are presented. (author)

  20. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2012-01-01

    The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of

  1. Long-Range Lightning Products for Short Term Forecasting of Tropical Cyclogenesis

    Science.gov (United States)

    Businger, S.; Pessi, A.; Robinson, T.; Stolz, D.

    2010-12-01

    This paper will describe innovative graphical products derived in real time from long-range lightning data. The products have been designed to aid in short-term forecasting of tropical cyclone development for the Tropical Cyclone Structure Experiment 2010 (TCS10) held over the western Pacific Ocean from 17 August to 17 October 2010 and are available online at http://www.soest.hawaii.edu/cgi-bin/pacnet/tcs10.pl. The long-range lightning data are from Vaisala’s Global Lightning Data 360 (GLD360) network and include time, location, current strength, polarity, and data quality indication. The products currently provided in real time include i. Infrared satellite imagery overlaid with lighting flash locations, with color indication of current strength and polarity (shades of blue for negative to ground and red for positive to ground). ii. A 15x15 degree storm-centered tile of IR imagery overlaid with lightning data as in i). iii. A pseudo reflectivity product showing estimates of radar reflectivity based on lightning rate - rain rate conversion derived from TRMM and PacNet data. iv. A lightning history product that plots each hour of lightning flash locations in a different color for a 12-hour period. v. Graphs of lightning counts within 50 or 300 km radius, respectively, of the storm center vs storm central sea-level pressure. vi. A 2-D graphic showing storm core lightning density along the storm track. The first three products above can be looped to gain a better understanding of the evolution of the lightning and storm structure. Examples of the graphics and their utility will be demonstrated and discussed. Histogram of lightning counts within 50 km of the storm center and graph of storm central pressure as a function of time.

  2. Dual-Polarization Radar Observations of Upward Lightning-Producing Storms

    Science.gov (United States)

    Lueck, R.; Helsdon, J. H.; Warner, T.

    2013-12-01

    The Upward Lightning Triggering Study (UPLIGHTS) seeks to determine how upward lightning, which originates from the tips of tall objects, is triggered by nearby flash activity. As a component of this study we analyze standard and dual-polarization weather radar data. The Correlation Coefficient (CC) in particular can be used to identify and quantify the melting layer associated with storms that produce upward lightning. It has been proposed that positive charge generation due to aggregate shedding at the melting layer results in a positive charge region just above the cloud base. This positive charge region may serve as a positive potential well favorable for negative leader propagation, which initiate upward positive leaders from tall objects. We characterize the horizontal coverage, thickness and height of the melting layer in addition to cloud base heights when upward lightning occurs to determine trends and possible threshold criteria relating to upward lightning production. Furthermore, we characterize storm type and morphology using relevant schemes as well as precipitation type using the Hydrometer Classification Algorithm (HCA) for upward lightning-producing storms. Ice-phase hydrometeors have been shown to be a significant factor in thunderstorm electrification. Only a small fraction of storms produce upward lightning, so null cases will be examined and compared as well.

  3. 2016 T Division Lightning Talks

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Marilyn Leann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Adams, Luke Clyde [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ferre, Gregoire Robing [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Grantcharov, Vesselin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Iaroshenko, Oleksandr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Krishnapriyan, Aditi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Kurtakoti, Prajvala Kishore [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Le Thien, Minh Quan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lim, Jonathan Ng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Low, Thaddeus Song En [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lystrom, Levi Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ma, Xiaoyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Nguyen, Hong T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Pogue, Sabine Silvia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Orandle, Zoe Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Reisner, Andrew Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Revard, Benjamin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Roy, Julien [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Sandor, Csanad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Slavkova, Kalina Polet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Weichman, Kathleen Joy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Wu, Fei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Yang, Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division

    2016-11-29

    These are the slides for all of the 2016 T Division lightning talks. There are 350 pages worth of slides from different presentations, all of which cover different topics within the theoretical division at Los Alamos National Laboratory (LANL).

  4. 2017 T Division Lightning Talks

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Marilyn Leann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Abeywardhana, Jayalath AMM [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Colin Mackenzie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Luke Clyde [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carter, Austin Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ducru, Pablo Philippe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duignan, Thomas John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gifford, Brendan Joel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hills, Benjamin Hale [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hoffman, Kentaro Jack [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Khair, Adnan Ibne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kochanski, Kelly Anne Pribble [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ledwith, Patrick John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leveillee, Joshua Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Sina Genevieve [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ma, Xiaoyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Merians, Hugh Drake [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, Bryan Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nijjar, Parmeet Kaur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oles, Vladyslav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olszewski, Maciej W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Philipbar, Brad Montgomery [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reisner, Andrew Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roberts, David Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rufa, Dominic Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sifain, Andrew E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Justin Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Lauren Taylor Wisbey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Svolos, Lampros [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thibault, Joshua Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ushijima-Mwesigwa, Hayato Montezuma [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Claire Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Witzen, Wyatt Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zentgraf, Sabine Silvia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alred, John Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-06

    All members of the T Division Community, students, staff members, group leaders, division management, and other interested individuals are invited to come and support the following student(s) as they present their Lightning Talks.

  5. Lightning electromagnetic radiation field spectra in the interval from 0.2 to 20 MHz

    Science.gov (United States)

    Willett, J. C.; Bailey, J. C.; Leteinturier, C.; Krider, E. P.

    1990-01-01

    New Fourier transforms of wideband time-domain electric fields (E) produced by lightning (recorded at the Kennedy Space Center during the summers of 1985 and 1987) were recorded in such a way that several different events in each lightning flash could be captured. Average HF spectral amplitudes for first return strokes, stepped-leader steps, and 'characteristic pulses' are given for significantly more events, at closer ranges, and with better spectral resolution than in previous literature reports. The method of recording gives less bias toward the first large event in the flash and thus yields a large sample of a wide variety of lightning processes. As a result, reliable composite spectral amplitudes are obtained for a number of different processes in cloud-to-ground lightning over the frequency interval from 0.2 to 20 MHz.

  6. Cardiac Arrest Secondary to Lightning Strike: Case Report and Review of the Literature.

    Science.gov (United States)

    Rotariu, Elena L; Manole, Mioara D

    2017-08-01

    Lightning strike injuries, although less common than electrical injuries, have a higher morbidity rate because of critical alterations of the circulatory system, respiratory system, and central nervous system. Most lightning-related deaths occur immediately after injury because of arrhythmia or respiratory failure. We describe the case of a pediatric patient who experienced cardiorespiratory arrest secondary to a lightning strike, where the Advanced Cardiac Life Support and Basic Life Support chain of survival was well executed, leading to return of spontaneous circulation and intact neurological survival. We review the pathophysiology of lightning injuries, prognostic factors of favorable outcome after cardiac arrest, including bystander cardiopulmonary resuscitation, shockable rhythm, and automatic external defibrillator use, and the importance of temperature management after cardiac arrest.

  7. A 21st century investigation of the lightning spectrum

    Science.gov (United States)

    Walker, Thomas Daniel

    In the mid 1960s, Martin Uman, Leon Salanave and Richard Orville laid the foundation for lightning spectroscopy. They were among the first to acquire time resolved return stroke spectra and the first to use spectroscopy as a diagnostic technique to characterize physical properties of the lightning channel. Now, almost 50 years later, technology, including CMOS and CCD high speed cameras, volume-phase holographic (VPH) gratings, and triggered lightning, has progressed to the point at which new studies in lightning spectroscopy are needed to verify and extend past measurements. New spectral lines have been discovered in the lightning spectrum as a result of the modern studies, mainly doubly ionized nitrogen lines which had not been observed in the past. The modern technique uses CMOS and CCD cameras with frame rates of up to 1Mfps with exposure down to 0.5mus. The high frame rate paired with camera memory enables a view into the quick high temperature heating period within the first few microseconds of the return stroke, as well as a detailed look at the cooling period which can last for milliseconds. The spectra are recorded digitally and discretely, hence the data can be summed to to view different exposure times revealing long lasting low emission lines during the cooling period as well. Spectral line identification for the natural and triggered lightning are for a range of wavelengths from soft ultraviolet around 3800A to the near infrared at 9500A. The first few microseconds of the lightning return stroke spectrum consists of hydrogen from disassociated water and singly and doubly ionized lines of atomic atmospheric constituents, i.e. argon, nitrogen, and oxygen. Temperatures calculated during this period have been measured above 40000 K. The peak temperature is measured from the first spectrum of the return stroke. After this the channel continuously cools over the lifetime of the return stroke unless there is an increase in the continuing current. Tens of

  8. Simultaneous emissions of X-rays and microwaves from long laboratory sparks and downward lightning leaders

    Science.gov (United States)

    Montanya, J.; Oscar, V. D. V.; Tapia, F. F.

    2017-12-01

    Since the discovery of the Terrestrial Gamma-ray Flashes more than 20 years ago, investigations on high energy emissions from natural lightning and high voltage laboratory sparks gained significant interest. X-ray emissions from lightning as well from high voltage laboratory sparks have in common the role played by negative leaders/streamers. On the other hand, negative leaders are well known to produce much more VHF and microwave radiation than positive leaders. Moreover, in previous works, microwave emissions from lightning leaders have been attributed to Bremsstrahlung process. The object of this work is to investigate if X-rays and RF microwave emissions share the same origin. We present simultaneous measurements of X-rays and microwaves in high voltage sparks and natural lightning. The instrumentation consists on a NaI(Tl) and LaBr3 scintillation detectors and two different receivers. One is fix tuned at 2.4 GHz with a bandwidth of 5.5 MHz. The second can be tuned at any frequency up to 18 GHz with different selectable bandwidths of 10 MHz, 40 MHz and 100 MHz. In the laboratory, results have shown that all the sparks presented microwave radiation before the breakdown of the gap, either X-rays were detected or not. In the cases where X-rays were identified, microwave emissions peaked at the same time (in the microsecond scale). We found that the power amplitudes of the microwave emissions are related to the applied voltage to the gap. In the same configuration, those cases where X-rays were detected microwave emissions presented higher power levels. The results suggest that in some part of the discharge electrons are very fast accelerated allowing, in some cases, to reach enought energy to produce X-rays. In the field, we have found similar results. On 13th of June of 2015 a bipolar cloud-to-ground flash struck 200 m close to the Eagle Nest instrumented tower (Spanish Pyrenees, 2536 m ASL). The flash presented four strokes and, in all of them, microwave

  9. Ground Optical Lightning Detector (GOLD)

    Science.gov (United States)

    Jackson, John, Jr.; Simmons, David

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  10. Industrial accidents triggered by lightning.

    Science.gov (United States)

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Electromagnetic Methods of Lightning Detection

    Science.gov (United States)

    Rakov, V. A.

    2013-11-01

    Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

  12. A general theory for ball lightning structure and light output

    Science.gov (United States)

    Morrow, R.

    2018-03-01

    A general theory for free-floating ball lightning is presented which unifies the phantom plasma ball theory involving the production of very little light, with theories for ball lightning involving light output produced by burning particles from the soil. The mechanism for the formation of plasma balls is shown to be quite general, producing very similar plasma balls independent of initial ion densities over four orders of magnitude. All that is required is an excess of positive ions in the initial ball of ions. The central plasma density after 1 s is shown to be the reciprocal of the ion neutralization coefficient for all cases, both analytically and computationally. Further, the plasma region has zero electric field in all cases. Surrounding the plasma ball is a sphere of positive ions moving away from the centre via their own space-charge field; this space-charge field, which is the same in all cases near the plasma ball, drives negative ions and negative particles towards the plasma centre. The connection with burning particle theories is the proposition that the burning particles are highly-charged which is very likely after a lightning strike. Burning negatively charged particles would be driven into the plasma ball region and trapped while any positively charged particles would be driven away. The plasma ball structure is shown to last more than 10 s and the ‘burnout time’ for a typical coal particle (as an example) has been measured at 5-10 s this is comparable with the lifetimes observed for ball lightning. The light output from a few hundred particles is estimated to be ~1 W, a typical output for ball lightning. Finally, suggestions are made for the generation of ball lightning in the laboratory.

  13. Lightning Impacts on Airports - Challenges of Balancing Safety & Efficiency

    Science.gov (United States)

    Steiner, Matthias; Deierling, Wiebke; Nelson, Eric; Stone, Ken

    2013-04-01

    Thunderstorms and lightning pose a safety risk to personnel working outdoors, such as people maintaining airport grounds (e.g., mowing grass or repairing runway lighting) or servicing aircraft on ramps (handling baggage, food service, refueling, tugging and guiding aircraft from/to gates, etc.). Since lightning strikes can cause serious injuries or death, it is important to provide timely alerts to airport personnel so that they can get to safety when lightning is imminent. This presentation discusses the challenges and uncertainties involved in using lightning information and stakeholder procedures to ensure safety of outdoor personnel while keeping ramp operations as efficient as possible considering thunderstorm impacts. The findings presented are based on extensive observations of airline operators under thunderstorm impacts. These observations reveal a complex picture with substantial uncertainties related to the (1) source of lightning information (e.g., sensor type, network, data processing) used to base ramp closure decisions on, (2) uncertainties involved in the safety procedures employed by various stakeholders across the aviation industry (yielding notably different rules being applied by multiple airlines even at a single airport), and (3) human factors issues related to the use of decision support tools and the implementation of safety procedures. This research is supported by the United States Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA.

  14. Total Lightning Flash Activity Response to Aerosol over China Area

    Directory of Open Access Journals (Sweden)

    Pengguo Zhao

    2017-01-01

    Full Text Available Twelve years of measurements of aerosol optical depth (AOD, cloud fraction, cloud top height, ice cloud optical thickness and lightning flash density from 2001 to 2012 have been analyzed to investigate the effect of aerosols on electrical activity over an area of China. The results show that increasing aerosol loading inspires the convective intensity, and then increases the lightning flash density. The spatial distribution of the correlation between aerosol loading and electrical activity shows a remarkable regional difference over China. The high-correlation regions embody the positive aerosol microphysical effect on the intensity of the electrical activity, while the large-scale processes may play the main role in convection development and producing lightning in low-correlation regions.

  15. Attachment process in rocket-triggered lightning strokes

    Science.gov (United States)

    Wang, D.; Rakov, V. A.; Uman, M. A.; Takagi, N.; Watanabe, T.; Crawford, D. E.; Rambo, K. J.; Schnetzer, G. H.; Fisher, R. J.; Kawasaki, Z.-I.

    1999-01-01

    In order to study the lightning attachment process, we have obtained highly resolved (about 100 ns time resolution and about 3.6 m spatial resolution) optical images, electric field measurements, and channel-base current recordings for two dart leader/return-stroke sequences in two lightning flashes triggered using the rocket-and-wire technique at Camp Blanding, Florida. One of these two sequences exhibited an optically discernible upward-propagating discharge that occurred in response to the approaching downward-moving dart leader and connected to this descending leader. This observation provides the first direct evidence of the occurrence of upward connecting discharges in triggered lightning strokes, these strokes being similar to subsequent strokes in natural lightning. The observed upward connecting discharge had a light intensity one order of magnitude lower than its associated downward dart leader, a length of 7-11 m, and a duration of several hundred nanoseconds. The speed of the upward connecting discharge was estimated to be about 2 × 107 m/s, which is comparable to that of the downward dart leader. In both dart leader/return-stroke sequences studied, the return stroke was inferred to start at the point of junction between the downward dart leader and the upward connecting discharge and to propagate in both upward and downward directions. This latter inference provides indirect evidence of the occurrence of upward connecting discharges in both dart leader/return-stroke sequences even though one of these sequences did not have a discernible optical image of such a discharge. The length of the upward connecting discharges (observed in one case and inferred from the height of the return-stroke starting point in the other case) is greater for the event that is characterized by the larger leader electric field change and the higher return-stroke peak current. For the two dart leader/return-stroke sequences studied, the upward connecting discharge lengths are

  16. GRIP LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lightning Instrument Package (LIP) dataset was collected by the Lightning Instrument Package (LIP), which consists of 6 rotating vane type electric field...

  17. Lightning NOx and Impacts on Air Quality

    Science.gov (United States)

    Murray, Lee T.

    2016-01-01

    Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.

  18. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-09-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  19. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    Science.gov (United States)

    Boccippio, Dennis

    2004-01-01

    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  20. Protection of LV system against lightning

    OpenAIRE

    Yordanova Nedyalkova, Greta

    2010-01-01

    Lightning is a natural hazard and one of the greatest local mysteries. Scientists have not fully understood the mechanism of lightning. It is one of the most beautiful displays in nature and one of the nature's most dangerous phenomenon known to man. Overvoltage due to lightning is a very important problem of LV systems. Some lightning flashes damage buildings and a few kill or injure people and animals, either directly or indirectly, by causing fire and explosions. The need for protect...

  1. Lightning effects on electrical and nuclear equipment

    International Nuclear Information System (INIS)

    Gary, C.

    1986-01-01

    This paper gives the physical bases on which lightning protection of buildings and other erections such as nuclear power stations depend. To this end it first examines the impact phenomena of lightning, the operating systems of lightning conductors and methods of protection using metal mesh. It then describes various secondary effects of lightning, particularly those which occur inside buildings as a result of the potential rise in earthing systems and electromagnetic induction phenomena. 18 refs [fr

  2. Comparison of knee flexion isokinetic deficits between seated and prone positions after ACL reconstruction with hamstrings graft: Implications for rehabilitation and return to sports decisions.

    Science.gov (United States)

    Koutras, Georgios; Bernard, Manfred; Terzidis, Ioannis P; Papadopoulos, Pericles; Georgoulis, Anastasios; Pappas, Evangelos

    2016-07-01

    Hamstrings grafts are commonly used in ACL reconstruction, however, the effect of graft harvesting on knee flexion strength has not been longitudinally evaluated in functional positions. We hypothesized that greater deficits in knee flexion strength exist in the prone compared to the seated position and these deficits remain as rehabilitation progresses. Case series. Forty-two consecutive patients who underwent ACL reconstruction with a hamstrings graft were followed prospectively for 9 months. Isokinetic knee flexion strength at a slow and a fast speed were collected at 3, 4, 6, and 9 months in two different positions: conventional (seated) and functional (0° of hip flexion). Peak torque knee flexion deficits were higher in the prone position compared to the seated position by an average of 6.5% at 60°/s and 9.1% at 180°/s (p<0.001). Measuring knee flexion strength in prone demonstrates higher deficits than in the conventional seated position. Most athletes would not be cleared to return to sports even at 9 months after surgery with this method. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Relating lightning data to fire occurrence data

    Science.gov (United States)

    Frank H. Koch

    2009-01-01

    Lightning disturbance can affect forest health at various scales. Lightning strikes may kill or weaken individual trees. Lightning-damaged trees may in turn function as epicenters of pest outbreaks in forest stands, as is the case with the southern pine beetle and other bark beetles (Rykiel and others 1988).

  4. Wind turbine with lightning protection system

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  5. 49 CFR 176.120 - Lightning protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lightning protection. 176.120 Section 176.120 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Requirements for Class 1 (Explosive) Materials Stowage § 176.120 Lightning protection. A lightning conductor...

  6. 14 CFR 35.38 - Lightning strike.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning strike. 35.38 Section 35.38... STANDARDS: PROPELLERS Tests and Inspections § 35.38 Lightning strike. The applicant must demonstrate, by... lightning strike without causing a major or hazardous propeller effect. The limit to which the propeller has...

  7. Lightning Protection for Composite Aircraft Structures

    Science.gov (United States)

    Olson, G. O.

    1985-01-01

    Lightning protection system consisting of two layers of aluminum foil separated by layer of dielectric material protects graphite/epoxy composite structures on aircraft. Protective layer is secondarily applied lightning protection system, prime advantage of which is nullification of thermal and right angle effect of lightning arc attachment to graphite/epoxy laminate.

  8. LOFAR for lightning-interferometery and mapping

    NARCIS (Netherlands)

    Scholten, Olaf; Buitink, Stijn; trinh, Gia; Bonardi, Antonio; Corstanje, Arthur; Ebert, Ute; Falcke, Heino; Hoerandel, Joerg; Mitra, Pragati; Mulrey, Katherine; Nelles, Anna; Rachen, Joerg; Rossetto, Laura; Rutjes, Casper; Schellart, Pim; Thoudam, Satayendra; ter Veen, Sander; Winchen, Tobias; Hare, Brian

    2017-01-01

    We show that a new observation mode at the Low Frequency Array (LOFAR) for Lightning-Interferometery and Mapping (LIM) allows for lightning observations with a resolution that is at least an order of magnitude better than presently operating Lightning Napping Arrays LMAs. Furthermore the

  9. 14 CFR 420.71 - Lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Lightning protection. 420.71 Section 420.71... protection. (a) Lightning protection. A licensee shall ensure that the public is not exposed to hazards due to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an...

  10. 14 CFR 25.581 - Lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning protection. 25.581 Section 25.581 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a...

  11. Electromagnetic emission from terrestrial lightning in the 0.1-30 MHz frequency range

    Science.gov (United States)

    Karashtin, A. N.; Gurevich, A. V.

    Results of measurements carried out at SURA facility of Radiophisical Research Institute and at Tien-Shan Mountain Scientific Station of Lebedev Physical Institute using specially designed installations for short electromagnetic pulse observation in the frequency range from 0.1 to 30 MHz are presented. Specific attention is paid to initial stage of the lightning discharge. It is shown that lightning can be initiated by extensive atmospheric showers caused by high energy cosmic ray particles. Analysis of emission of few thousand lightning discharges showed that • Short wave radio emission of lightning consists of a series of short pulses with duration from less than 100 nanoseconds to several microseconds separated well longer gaps. • Background noise between lightning discharges is not differ from one observed without thunderstorm activity (at given sensitivity). Usually it is the same between lightning pulses at least at the initial stage. • Each lightning discharge radio emission starts with a number of very short (less than 100 nanoseconds at 0.7 level) bi-polar pulses. Gaps between initial pulses vary from several microseconds to few hundreds of microseconds. No radio emission was observed before the first pulse during at least 500 milliseconds. Both positive and negative polarity of the first pulses occur in approximately equal proportion in different lightning discharges while the polarity was the same in any individual lightning. • First pulse amplitude, width and waveform are consistent with predicted by the theory of combined action of runaway breakdown and extensive atmospheric shower caused by cosmic ray particle of 1016 eV energy. Lightning discharges at other planets can be initiated by cosmic ray particles as well. This work was partly supported by ISTC grant # 2236p. The work of one of the authors (A. N. Karashtin) was also partly supported by INTAS grant # 03-51-5727.

  12. Tropic lightning: myth or menace?

    Science.gov (United States)

    McCarthy, John

    2014-11-01

    Lightning is one of the leading causes of death related to environmental disaster. Of all lightning fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai'i has had zero documented lightning fatalities since weather data tracking was initiated in 1959. There is a common misconception that lightning does not strike the ground in Hawai'i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. Lightning damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on "reverse triage" and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications.

  13. D region disturbances caused by electromagnetic pulses from lightning

    Science.gov (United States)

    Rodriguez, Juan V.; Inan, Umran S.; Bell, Timothy F.

    1992-01-01

    Attention is given to a simple formulation of the propagation and absorption in a magnetized collisional plasma of EM pulses from lightning which describes the effect of discharge orientation and radiated electric field on the structure and magnitude of heating and secondary ionization in the D region. Radiation from most lightning discharges can heat substantially, but only the most intense (not less than 20 V/m) are likely to cause ionization enhancements not less than 10 percent of the ambient in a single ionization cycle. This dependence on the radiated electric field is modified by the discharge radiation pattern: a horizontal cloud discharge tends to cause larger heating and ionizaton maxima while a vertical return stroke causes disturbances of a larger horizontal extent.

  14. Neurorehabilitation of cerebral disorders following lightning and electrical trauma.

    Science.gov (United States)

    Yarnell, Philip R

    2005-01-01

    The most devastating casualties in lightning and electrical trauma patients are the result of lesions of the nervous system, and especially lesions of the brain. The brain injuries can be divided into three categories: global dysfunction; focal brain injuries; and behavioral-cognitive sequelae without gross physical signs. Lightning injuries are usually the result of outdoor sports and leisure activities. Most electrical trauma cases are the result of workplace accidents. Rehabilitation planning should begin early after the incident and often needs to be continued for a long time. The goal of the rehabilitation team is to maximize functional return in patients with deficits related to brain lesions. The neurorehabilitation team includes the neurorehabilitation physician, physical therapists, occupational therapists, psychologists, speech therapists, and case managers.

  15. Attempts to Create Ball Lightning with Triggered Lightning

    Science.gov (United States)

    2009-10-01

    mechanisms by which ball lightning is generated. The most commonly reported observation is of an orange-to- grapefruit -size sphere (the range for the vast...Figure 5 shows a sequence of ten cropped frames extracted from the Phantom video at 48 ms intervals during the ICC process spanning the total 432 ms...strike the ground between 0.75-1.25 s after being emitted from the lightning-struck silicon wafers. A picture showing ten extracted frames at 280 ms

  16. New Physical Mechanism for Lightning

    Science.gov (United States)

    Artekha, Sergey N.; Belyan, Andrey V.

    2018-02-01

    The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm activity is analyzed. It helps to identify a possible physical mechanism of lightning flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in lightning channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and development of the lightning channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.

  17. Lightning and Life on Exoplanets

    Science.gov (United States)

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane

    2016-07-01

    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude

  18. Lightning hazard reduction at wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Kithil, R. [National Lightning Safety Institute, Louisville, CO (United States)

    1997-12-31

    The USA wind farm industry (WFI) largely is centered in low-lightning areas of the State of California. While some evidence of lightning incidents is reported here, the problem is not regarded as serious by most participants. The USA WFI now is moving eastward, into higher areas of lightning activity. The European WFI has had many years experience with lightning problems. One 1995 German study estimated that 80% of wind turbine insurance claims paid for damage compensation were caused by lightning strikes. The European and USA WFI have not adopted site criteria, design fundamentals, or certification techniques aimed at lightning safety. Sufficient evidence about lightning at wind farms is available to confirm that serious potential problems exist.

  19. Total Lightning as an Indicator of Mesocyclone Behavior

    Science.gov (United States)

    Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.

    2014-01-01

    Apparent relationship between total lightning (in-cloud and cloud to ground) and severe weather suggests its operational utility. Goal of fusion of total lightning with proven tools (i.e., radar lightning algorithms. Preliminary work here investigates circulation from Weather Suveilance Radar- 1988 Doppler (WSR-88D) coupled with total lightning data from Lightning Mapping Arrays.

  20. Physical mechanism of initial breakdown pulses and narrow bipolar events in lightning discharges

    Science.gov (United States)

    Silva, Caitano L.; Pasko, Victor P.

    2015-05-01

    To date the true nature of initial breakdown pulses (IBPs) and narrow bipolar events (NBEs) in lightning discharges remains a mystery. Recent experimental evidence has correlated IBPs to the initial development of lightning leaders inside the thundercloud. NBE wideband waveforms resemble classic IBPs in both amplitude and duration. Most NBEs are quite peculiar in the sense that very frequently they occur in isolation from other lightning processes. The remaining fraction, 16% of positive polarity NBEs, according to Wu et al. (2014), happens as the first event in an otherwise regular intracloud lightning discharge. These authors point out that the initiator type of NBEs has no difference with other NBEs that did not start lightning, except for the fact that they occur deeper inside the thunderstorm (i.e., at lower altitudes). In this paper, we propose a new physical mechanism to explain the source of both IBPs and NBEs. We propose that IBPs and NBEs are the electromagnetic transients associated with the sudden (i.e., stepwise) elongation of the initial negative leader extremity in the thunderstorm electric field. To demonstrate our hypothesis a novel computational/numerical model of the bidirectional lightning leader tree is developed, consisting of a generalization of electrostatic and transmission line approximations found in the literature. Finally, we show how the IBP and NBE waveform characteristics directly reflect the properties of the bidirectional lightning leader (such as step length, for example) and amplitude of the thunderstorm electric field.

  1. Striking Distance Determined From High-Speed Videos and Measured Currents in Negative Cloud-to-Ground Lightning

    Science.gov (United States)

    Visacro, Silverio; Guimaraes, Miguel; Murta Vale, Maria Helena

    2017-12-01

    First and subsequent return strokes' striking distances (SDs) were determined for negative cloud-to-ground flashes from high-speed videos exhibiting the development of positive and negative leaders and the pre-return stroke phase of currents measured along a short tower. In order to improve the results, a new criterion was used for the initiation and propagation of the sustained upward connecting leader, consisting of a 4 A continuous current threshold. An advanced approach developed from the combined use of this criterion and a reverse propagation procedure, which considers the calculated propagation speeds of the leaders, was applied and revealed that SDs determined solely from the first video frame showing the upward leader can be significantly underestimated. An original approach was proposed for a rough estimate of first strokes' SD using solely records of current. This approach combines the 4 A criterion and a representative composite three-dimensional propagation speed of 0.34 × 106 m/s for the leaders in the last 300 m propagated distance. SDs determined under this approach showed to be consistent with those of the advanced procedure. This approach was applied to determine the SD of 17 first return strokes of negative flashes measured at MCS, covering a wide peak-current range, from 18 to 153 kA. The estimated SDs exhibit very high dispersion and reveal great differences in relation to the SDs estimated for subsequent return strokes and strokes in triggered lightning.

  2. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T; Brask, M H [DEFU (Denmark); Jensen, F V; Raben, N [SEAS (Denmark); Saxov, J [Nordjyllandsvaerket (Denmark); Nielsen, L [Vestkraft (Denmark); Soerensen, P E [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  3. NO signatures from lightning flashes

    Science.gov (United States)

    Stith, J.; Dye, J.; Ridley, B.; Laroche, P.; Defer, E.; Baumann, K.; Hübler, G.; Zerr, R.; Venticinque, M.

    1999-07-01

    In situ measurements of cloud properties, NO, and other trace gases were made in active thunderstorms by two research aircraft. Concurrent measurements from a three-dimensional (3-D) VHF interferometer and the 2-D National Lightning Detection Network were used to determine lightning frequency and location. The CHILL Doppler radar and the NOAA-WP-3D Orion X band Doppler radar were also used to measure storm characteristics. Two case studies from the (STERAO) Stratosphere-Troposphere Experiments: Radiation, Aerosols, and Ozone project in northeastern Colorado during the summer of 1996 are presented. Narrow spikes (0.11-0.96 km across), containing up to 19 ppbv of NO, were observed in the storms. Most were located in or downwind of electrically active regions where the NO produced by lightning would be expected. However, it was difficult to correlate individual flashes with NO spikes. A simple model of the plume of NO from lightning is used to estimate NO production from the mean mixing ratio measured in these spikes. The estimates range from 2.0×1020 to 1.0×1022 molecules of NO per meter of flash length.

  4. Aircraft Lightning Protection Handbook

    Science.gov (United States)

    1989-09-01

    then, to the flat roofs of large buildings. These, of course, are the return strokesassociated with the Zone lA environment. In a few cases, sevre dam...For CURRENT high voltage applications where MOV materials are en- ELECTRODES closed in porcelain shells and exposed to intense solar heating, leakage...lines = 10’ kilolines (18.8) 0.Flux density: Flux density may be measured in teslas 00 (webers per square meter), gauss (or lines per square centimeter

  5. Lightning Mapping Observations During DC3 in Northern Colorado

    Science.gov (United States)

    Krehbiel, P. R.; Rison, W.; Thomas, R. J.

    2012-12-01

    The Deep Convective Clouds and Chemistry Experiment (DC3) was conducted in three regions covered by Lightning Mapping Arrays (LMAs): Oklahoma and west Texas, northern Alabama, and northern Colorado. In this and a companion presentation, we discuss results obtained from the newly-deployed North Colorado LMA. The CO LMA revealed a surprising variety of lightning-inferred electrical structures, ranging from classic tripolar, normal polarity storms to several variations of anomalously electrified systems. Storms were often characterized by a pronounced lack or deficit of cloud-to-ground discharges (negative or positive), both in relative and absolute terms compared to the large amount of intracloud activity revealed by the LMA. Anomalous electrification was observed in small, localized storms as well as in large, deeply convective and severe storms. Another surprising observation was the frequent occurrence of embedded convection in the downwind anvil/outflow region of large storm systems. Observations of discharges in low flash rate situations over or near the network are sufficiently detailed to enable branching algorithms to estimate total channel lengths for modeling NOx production. However, this will not be possible in large or distant storm systems where the lightning was essentially continuous and structurally complex, or spatially noisy. Rather, a simple empirical metric for characterizing the lightning activity can be developed based on the number of located VHF radiation sources, weighted for example by the peak source power, source altitude, and temporal duration.

  6. Electric systems failures produced by CG lightning in Eastern Amazonia

    Directory of Open Access Journals (Sweden)

    Ana Paula Paes dos Santos

    2014-12-01

    Full Text Available Operational records of power outages of the electric energy distribution systems in eastern Amazonia presented a large number of events attributed to lightning strikes, during the 2006 to 2009 period. The regional electricity concessionary data were compared to actual lightning observations made by SIPAM's LDN system, over two areas where operational sub systems of transmission lines are installed. Statistical relations were drawn between the monthly lightning occurrence density and the number of power outages of the electric systems for both areas studied. The results showed that, although with some delays between these variables peaks, the number of power disruptions has a tendency to follow the behavior of the lightning occurrence densities variations. The numerical correlations were positive and may be useful to the transmission lines maintenance crews at least for the Belém-Castanhal electricity distribution sub system. Evidence was found, that the SST's over certain areas of the Pacific and Atlantic Oceans, influence convection over the area of interest, and may help to prognosticate the periods of intense electric storms, requiring repair readiness for the regional electric systems.

  7. On the Relationship between Observed NLDN Lightning ...

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past decade, considerable uncertainties still exist with the quantification of lightning NOX production and distribution in the troposphere. It is even more challenging for regional chemistry and transport models to accurately parameterize lightning NOX production and distribution in time and space. The Community Multiscale Air Quality Model (CMAQ) parameterizes the lightning NO emissions using local scaling factors adjusted by the convective precipitation rate that is predicted by the upstream meteorological model; the adjustment is based on the observed lightning strikes from the National Lightning Detection Network (NLDN). For this parameterization to be valid, the existence of an a priori reasonable relationship between the observed lightning strikes and the modeled convective precipitation rates is needed. In this study, we will present an analysis leveraged on the observed NLDN lightning strikes and CMAQ model simulations over the continental United States for a time period spanning over a decade. Based on the analysis, new parameterization scheme for lightning NOX will be proposed and the results will be evaluated. The proposed scheme will be beneficial to modeling exercises where the obs

  8. TRMM-Based Lightning Climatology

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2011-01-01

    Gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) have been updated. OTD collected data from May 1995 to March 2000. LIS data (equatorward of about 38 deg) has been added for 1998-2010. Flash counts from each instrument are scaled by the best available estimates of detection efficiency. The long LIS record makes the merged climatology most robust in the tropics and subtropics, while the high latitude data is entirely from OTD. The mean global flash rate from the merged climatology is 46 flashes per second. The peak annual flash rate at 0.5 deg scale is 160 fl/square km/yr in eastern Congo. The peak monthly average flash rate at 2.5 scale is 18 fl/square km/mo, from early April to early May in the Brahmaputra Valley of far eastern India. Lightning decreases in this region during the monsoon season, but increases further north and west. A monthly average peak from early August to early September in northern Pakistan also exceeds any monthly averages from Africa, despite central Africa having the greatest yearly average. Most continental regions away from the equator have an annual cycle with lightning flash rates peaking in late spring or summer. The main exceptions are India and southeast Asia, with springtime peaks in April and May. For landmasses near the equator, flash rates peak near the equinoxes. For many oceanic regions, the peak flash rates occur in autumn. This is particularly noticeable for the Mediterranean and North Atlantic. Landmasses have a strong diurnal cycle of lightning, with flash rates generally peaking between 3-5 pm local solar time. The central United States flash rates peak later, in late evening or early night. Flash rates peak after midnight in northern Argentina. These regions are known for large, intense, long-lived mesoscale convective systems.

  9. NOx from lightning: 1. Global distribution based on lightning physics

    Science.gov (United States)

    Price, Colin; Penner, Joyce; Prather, Michael

    1997-03-01

    This paper begins a study on the role of lightning in maintaining the global distribution of nitrogen oxides (NOx) in the troposphere. It presents the first global and seasonal distributions of lightning-produced NOx (LNOx) based on the observed distribution of electrical storms and the physical properties of lightning strokes. We derive a global rate for cloud-to-ground (CG) flashes of 20-30 flashes/s with a mean energy per flash of 6.7×109 J. Intracloud (IC) flashes are more frequent, 50-70 flashes/s but have 10% of the energy of CG strokes and, consequently, produce significantly less NOx. It appears to us that the majority of previous studies have mistakenly assumed that all lightning flashes produce the same amount of NOx, thus overestimating the NOx production by a factor of 3. On the other hand, we feel these same studies have underestimated the energy released in CG flashes, resulting in two negating assumptions. For CG energies we adopt a production rate of 10×1016 molecules NO/J based on the current literature. Using a method to simulate global lightning frequencies from satellite-observed cloud data, we have calculated the LNOx on various spatial (regional, zonal, meridional, and global) and temporal scales (daily, monthly, seasonal, and interannual). Regionally, the production of LNOx is concentrated over tropical continental regions, predominantly in the summer hemisphere. The annual mean production rate is calculated to be 12.2 Tg N/yr, and we believe it extremely unlikely that this number is less than 5 or more than 20 Tg N/yr. Although most of LNOx, is produced in the lowest 5 km by CG lightning, convective mixing in the thunderstorms is likely to deposit large amounts of NOx, in the upper troposphere where it is important in ozone production. On an annual basis, 64% of the LNOx, is produced in the northern hemisphere, implying that the northern hemisphere should have natural ozone levels as much as 2 times greater than the southern hemisphere

  10. 10. VDE/ABB lightning protection conference. Lectures

    International Nuclear Information System (INIS)

    2013-01-01

    The proceedings of the 10. VDE/ABB lightning protection conference include lectures on the following issues: Status on the standardization and resulting consequences; lightning protection of specific facilities; electrical grounding and potential equalization; lightning research; personal security and protection.

  11. Using Flow Regime Lightning and Sounding Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    Science.gov (United States)

    Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott

    2007-01-01

    Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (httl://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the

  12. Lightning attachment process to common buildings

    Science.gov (United States)

    Saba, M. M. F.; Paiva, A. R.; Schumann, C.; Ferro, M. A. S.; Naccarato, K. P.; Silva, J. C. O.; Siqueira, F. V. C.; Custódio, D. M.

    2017-05-01

    The physical mechanism of lightning attachment to grounded structures is one of the most important issues in lightning physics research, and it is the basis for the design of the lightning protection systems. Most of what is known about the attachment process comes from leader propagation models that are mostly based on laboratory observations of long electrical discharges or from observations of lightning attachment to tall structures. In this paper we use high-speed videos to analyze the attachment process of downward lightning flashes to an ordinary residential building. For the first time, we present characteristics of the attachment process to common structures that are present in almost every city (in this case, two buildings under 60 m in São Paulo City, Brazil). Parameters like striking distance and connecting leaders speed, largely used in lightning attachment models and in lightning protection standards, are revealed in this work.Plain Language SummarySince the time of Benjamin Franklin, no one has ever recorded high-speed video images of a lightning connection to a common building. It is very difficult to do it. Cameras need to be very close to the structure chosen to be observed, and long observation time is required to register one lightning strike to that particular structure. Models and theories used to determine the zone of protection of a lightning rod have been developed, but they all suffer from the lack of field data. The submitted manuscript provides results from high-speed video observations of lightning attachment to low buildings that are commonly found in almost every populated area around the world. The proximity of the camera and the high frame rate allowed us to see interesting details that will improve the understanding of the attachment process and, consequently, the models and theories used by lightning protection standards. This paper also presents spectacular images and videos of lightning flashes connecting lightning rods that

  13. Intersystem return on investment in public mental health: Positive externality of public mental health expenditure for the jail system in the U.S.

    Science.gov (United States)

    Yoon, Jangho; Luck, Jeff

    2016-12-01

    This study examines the extent to which increased public mental health expenditures lead to a reduction in jail populations and computes the associated intersystem return on investment (ROI). We analyze unique panel data on 44 U.S. states and D.C. for years 2001-2009. To isolate the intersystem spillover effect, we exploit variations across states and over time within states in per capita public mental health expenditures and average daily jail inmates. Regression models control for a comprehensive set of determinants of jail incarcerations as well as unobserved determinants specific to state and year. Findings show a positive spillover benefit of increased public mental health spending on the jail system: a 10% increase in per capita public inpatient mental health expenditure on average leads to a 1.5% reduction in jail inmates. We also find that the positive intersystem externality of increased public inpatient mental health expenditure is greater when the level of community mental health spending is lower. Similarly, the intersystem spillover effect of community mental health expenditure is larger when inpatient mental health spending is lower. We compute that overall an extra dollar in public inpatient mental health expenditure by a state would yield an intersystem ROI of a quarter dollar for the jail system. There is significant cross-state variation in the intersystem ROI in both public inpatient and community mental health expenditures, and the ROI overall is greater for inpatient mental health spending than for community mental health spending. Copyright © 2016. Published by Elsevier Ltd.

  14. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    Science.gov (United States)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey; Chronis, Themis

    2015-01-01

    Using satellite-based methods that provide accurate 0-1 hour convective initiation (CI) nowcasts, and rely on proven success coupling satellite and radar fields in the Corridor Integrated Weather System (CIWS; operated and developed at MIT-Lincoln Laboratory), to subsequently monitor for first-flash lightning initiation (LI) and later period lightning trends as storms evolve. Enhance IR-based methods within the GOES-R CI Algorithm (that must meet specific thresholds for a given cumulus cloud before the cloud is considered to have an increased likelihood of producing lightning next 90 min) that forecast LI. Integrate GOES-R CI and LI fields with radar thresholds (e.g., first greater than or equal to 40 dBZ echo at the -10 C altitude) and NWP model data within the WDSS-II system for LI-events from new convective storms. Track ongoing lightning using Lightning Mapping Array (LMA) and pseudo-Geostationary Lightning Mapper (GLM) data to assess per-storm lightning trends (e.g., as tied to lightning jumps) and outline threat regions. Evaluate the ability to produce LI nowcasts through a "lightning threat" product, and obtain feedback from National Weather Service forecasters on its value as a decision support tool.

  15. Lightning transient analysis in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...... waveforms. The aim of the PSCAD simulations is to study the voltages induced by the lightning current in the blade that may cause internal arcing. With this purpose, the phenomenon of current reflections in the lightning down conductor of the blade and the electromagnetic coupling between the down conductor...... and other internal conductive elements of the blade is studied. Finally, several methods to prevent internal arcing are discussed in order to improve the lightning protection of the blade....

  16. A lightning prevention system for nuclear operations

    International Nuclear Information System (INIS)

    Lanzoni, J.A.; Carpenter, R.B.; Tinsley, R.H.

    1994-01-01

    Lightning presents a significant threat to the uninterrupted operation of nuclear power generation facilities. There exists two categories of lightning protection systems-collectors and preventors. Collectors are air terminals, overhead shield wires and other devices designed to collect incoming lightning strikes. Preventors, on the other hand, lower the electrical potential between a thundercloud and ground to a level lower than that required to collect a strike. The Dissipation Array reg-sign Systems prevents lightning strikes from terminating in the protected area, consequently eliminating both the direct hazard and indirect effects of lightning. Over 1,600 Dissipation Array reg-sign Systems are currently in service, with more than 10,500 system-years of operating experience and a historical success rate of over ninety-nine percent. Lightning Eliminators ampersand Consultants has fulfilled 24 contracts for Dissipation Array reg-sign Systems at nuclear power generation facilities

  17. Using Cloud-to-Ground Lightning Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    Science.gov (United States)

    Lambert, Winnie; Sharp, David; Spratt, Scott; Volkmer, Matthew

    2005-01-01

    Each morning, the forecasters at the National Weather Service in Melbourn, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in central Florida, especially during the warm season months of May-September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC (0700 AM EST) each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to increase consistency between forecasters while enabling them to focus on

  18. CAMEX-3 LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-3 Lightning Instrument Package (LIP) dataset contains electrical field measurements of lightning within storms studied during the Convection And Moisture...

  19. High-detail snapshots of rare gigantic jet lightning

    Science.gov (United States)

    Schultz, Colin

    2011-08-01

    In the ionosphere, more than 80 kilometers above Earth's surface, incoming radiation reacts with the thin air to produce highly charged ions, inducing an electric potential between the ionosphere and the surface. This charge difference is dissipated by a slow leak from the ionosphere during calm weather and reinvigorated by a charge built up near the surface during a thunderstorm. In 2001, however, researchers discovered gigantic jets (GJs), powerful lightning that arcs from tropospheric clouds up to the ionosphere, suggesting there may be an alternate path by which charge is redistributed. GJs are transient species, and little is known about how much charge they can carry, how they form, or how common they are. In a step toward answering these questions, Lu et al. report on two GJs that occurred near very high frequency (VHF) lightning detection systems, which track the development of lightning in three spatial dimensions, giving an indication of the generation mechanism. The researchers also measured the charge transfer in the two GJs through remote sensing of magnetic fields. They found that both jets originated from the development of otherwise normal intracloud lightning. The dissipation of the cloud's positively charged upper layer allowed the negative lightning channel to break through and travel up out of the top of the cloud to the ionosphere. The first jet, which occurred off the coast of Florida, leapt up to 80 kilometers, depositing 110 coulombs of negative charge in 370 milliseconds. The second jet, observed in Oklahoma, traveled up to 90 kilometers, raising only 10-20 coulombs in 300 milliseconds. Each new observation of gigantic jets such as these can provide valuable information toward understanding this novel atmospheric behavior. (Geophysical Research Letters, doi:10.1029/2011GL047662, 2011)

  20. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    Science.gov (United States)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  1. OPTICAL TRANSIENT DETECTOR (OTD) LIGHTNING V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Transient Detector (OTD) records optical measurements of global lightning events in the daytime and nighttime. The data includes individual point...

  2. OLS ANALOG DERIVED LIGHTNING V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Global lightning signatures from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) have been analyzed from the filmstrip imagery....

  3. Lightning Strike in Pregnancy With Fetal Injury.

    Science.gov (United States)

    Galster, Kellen; Hodnick, Ryan; Berkeley, Ross P

    2016-06-01

    Injuries from lightning strikes are an infrequent occurrence, and are only rarely noted to involve pregnant victims. Only 13 cases of lightning strike in pregnancy have been previously described in the medical literature, along with 7 additional cases discovered within news media reports. This case report presents a novel case of lightning-associated injury in a patient in the third trimester of pregnancy, resulting in fetal ischemic brain injury and long-term morbidity, and reviews the mechanics of lightning strikes along with common injury patterns of which emergency providers should be aware. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  4. Lightning Applications in Weather and Climate Research

    Science.gov (United States)

    Price, Colin G.

    2013-11-01

    Thunderstorms, and lightning in particular, are a major natural hazard to the public, aviation, power companies, and wildfire managers. Lightning causes great damage and death every year but also tells us about the inner working of storms. Since lightning can be monitored from great distances from the storms themselves, lightning may allow us to provide early warnings for severe weather phenomena such as hail storms, flash floods, tornadoes, and even hurricanes. Lightning itself may impact the climate of the Earth by producing nitrogen oxides (NOx), a precursor of tropospheric ozone, which is a powerful greenhouse gas. Thunderstorms themselves influence the climate system by the redistribution of heat, moisture, and momentum in the atmosphere. What about future changes in lightning and thunderstorm activity? Many studies show that higher surface temperatures produce more lightning, but future changes will depend on what happens to the vertical temperature profile in the troposphere, as well as changes in water balance, and even aerosol loading of the atmosphere. Finally, lightning itself may provide a useful tool for tracking climate change in the future, due to the nonlinear link between lightning, temperature, upper tropospheric water vapor, and cloud cover.

  5. Fifty Years of Lightning Observations from Space

    Science.gov (United States)

    Christian, H. J., Jr.

    2017-12-01

    Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected lightning using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect lightning was the PBE (1977). The use of space to study lightning activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to develop high performance optical lightning sensors. Prior to the use of charged-coupled devices (CCD), most space-based lightning sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the lightning produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first lightning sensors to utilize focal-plane arrays. Together they detected global lightning activity for more than twenty years, providing the first detailed information on the distribution of global lightning and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical lightning emissions. It too used a CCD focal plane to detect and locate lightning. In November 2016, the GLM became the first lightning instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. Lightning sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, lightning activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard lightning, a number of sensors have been placed in orbit to detect transient luminous events and

  6. Preliminary study on the Validation of FY-4A Lightning Mapping Imager

    Science.gov (United States)

    Cao, D.; Lu, F.; Qie, X.; Zhang, X.; Huang, F.; Wang, D.

    2017-12-01

    The FengYun-4 (FY-4) geostationary meteorological satellite is the second generation of China's geostationary meteorological satellite. The FY-4A was launched on December 11th, 2016. It includes a new instrument Lightning Mapping Imager (LMI) for total lightning (cloud and cloud-to-ground flashes) detection. The LMI operates at a wavelength of 777.4nm with 1.9ms integrated time. And it could observe lightning activity continuously day and night with spatial resolution of 7.8 km (sub satellite point) over China region. The product algorithm of LMI consists of false signal filtering and flash clustering analysis. The false signal filtering method is used to identify and remove non-lightning artifacts in optical events. The flash clustering analysis method is used to cluster "event" into "group" and "flash" using specified time and space threshold, and the other non-lightning optical events are filtered further more in the clustering analysis. The ground-based lightning location network (LLN) in China and WWLLN (World Wide Lightning Location Network) were both used to make preliminary validation of LMI. The detection efficiency for cloud-to-ground lightning, spatial and temporal accuracy of LMI were estimated by the comparison of lightning observations from ground-based network and LMI. The day and night biases were also estiamted. Although the LLN and WWLLN mainly observe return strokes in cloud-to-ground flash, the accuracy of LMI still could be estimated for that it was not associated with the flash type mostly. The false alarm efficiency of LMI was estimated using the Geostationary Interferometric Infrared Sounder (GIIRS), another payloads on the FY-4A satellite. The GIIRS could identify the convective cloud region and give more information about the cloud properties. The GIIRS products were used to make a rough evaluation of false alarm efficiency of LMI. The results of this study reveal details of characteristics of LMI instrument. It is also found that the

  7. Lightning Protection and Detection System

    Science.gov (United States)

    Dudley, Kenneth L. (Inventor); Szatkowski, George N. (Inventor); Woodard, Marie (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor); Wang, Chuantong (Inventor); Mielnik, John J. (Inventor); Koppen, Sandra V. (Inventor); Smith, Laura J. (Inventor)

    2017-01-01

    A lightning protection and detection system includes a non-conductive substrate material of an apparatus; a sensor formed of a conductive material and deposited on the non-conductive substrate material of the apparatus. The sensor includes a conductive trace formed in a continuous spiral winding starting at a first end at a center region of the sensor and ending at a second end at an outer corner region of the sensor, the first and second ends being open and unconnected. An electrical measurement system is in communication with the sensor and receives a resonant response from the sensor, to perform detection, in real-time, of lightning strike occurrences and damage therefrom to the sensor and the non-conductive substrate material.

  8. Radioactive lightning rods waste treatment

    International Nuclear Information System (INIS)

    Vicente, Roberto; Dellamano, Jose C.; Hiromoto, Goro

    2008-01-01

    Full text: In this paper, we present alternative processes that could be adopted for the management of radioactive waste that arises from the replacement of lightning rods with attached Americium-241 sources. Lightning protectors, with Americium-241 sources attached to the air terminals, were manufactured in Brazil until 1989, when the regulatory authority overthrew the license for fabrication, commerce, and installation of radioactive lightning rods. It is estimated that, during the license period, about 75,000 such devices were set up in public, commercial and industrial buildings, including houses and schools. However, the policy of CNEN in regard to the replacement of the installed radioactive rods, has been to leave the decision to municipal governments under local building regulations, requiring only that the replaced rods be sent immediately to one of its research institutes to be treated as radioactive waste. As a consequence, the program of replacement proceeds in a low pace and until now only about twenty thousand rods have reached the waste treatment facilities The process of management that was adopted is based primarily on the assumption that the Am-241 sources will be disposed of as radioactive sealed sources, probably in a deep borehole repository. The process can be described broadly by the following steps: a) Receive and put the lightning rods in initial storage; b) Disassemble the rods and pull out the sources; c) Decontaminate and release the metal parts to metal recycling; d) Store the sources in intermediate storage; e) Package the sources in final disposal packages; and f) Send the sources for final disposal. Up to now, the disassembled devices gave rise to about 90,000 sources which are kept in storage while the design of the final disposal package is in progress. (author)

  9. The lightning striking probability for offshore wind turbine blade with salt fog contamination

    Science.gov (United States)

    Li, Qingmin; Ma, Yufei; Guo, Zixin; Ren, Hanwen; Wang, Guozheng; Arif, Waqas; Fang, Zhiyang; Siew, Wah Hoon

    2017-08-01

    The blades of an offshore wind turbine are prone to be adhered with salt fog after long-time exposure in the marine-atmosphere environment, and salt fog reduces the efficiency of the lightning protection system. In order to study the influence of salt fog on lightning striking probability (LSP), the lightning discharge process model for the wind turbine blade is adopted in this paper considering the accumulation mechanism of surface charges around the salt fog area. The distribution of potential and electric field with the development of the downward leader is calculated by COMSOL Multiphysics LiveLink for MATLAB. A quantitative characterization method is established to calculate the LSP base on the average electric field before the return stroke and the LSP distribution of the blade is shown in the form of a graphic view. The simulation results indicate that the receptor and conductor area close to the receptor area are more likely to get struck by lightning, and the LSP increases under the influence of salt fog. The validity of the model is verified by experiments. Furthermore, the receptor can protect the blade from lightning strikes effectively when the lateral distance between the rod electrode and receptor is short. The influence of salt fog on LSP is more obvious if salt fog is close to the receptor or if the scope of salt fog area increases.

  10. Result of observation on winter lightning onto a wireless tower in a mountainous area along the Sea of Japan. Nihonkai engan no sangakuchi musento ni okeru toki kaminari yosoku kekka

    Energy Technology Data Exchange (ETDEWEB)

    Katsuragi, Y; Yamauchi, M; Shimizu, M [The Chubu Electric Power Co. Inc., Nagoya (Japan); Sakurano, H [Ishikawa College of Technology, Ishikawa (Japan)

    1993-11-01

    This paper reports the result of observing winter lightnings for three years using a wireless tower on the summit of Mt. Hotatsu in Ishikawa Prefecture (with an altitude of 637 m and a distance of about 8 km to the western seashore) as an observation site. Battery driven lightning surge memory devices were used to measure lightning current waveforms at different parts of the wireless tower and power distribution poles. An automatic stationary camera was used to photograph lightning paths to the wireless tower and a rain radar. The result of the observation may be summarized as follows: about half of the lightnings is of positive polarity and dual polarity; the lightning current having struck the wireless tower flows back into a power distribution pole through the ground; the ratio of lightning on the wireless tower to that on the power distribution pole is 3 to 1; the ratio of lightning on the lightning arrestor on the tower to that on the building is 3 to 7; half of the lightnings on the rain radar has struck directly the radome; and the back-flow ratio of lightning current onto the arrestor in the case of positive polarity is more than double that in the case of negative polarity. 7 refs., 22 figs., 11 tabs.

  11. Lightning Burns and Electrical Trauma in a Couple Simultaneously Struck by Lightning

    Directory of Open Access Journals (Sweden)

    Stephanie A. Eyerly-Webb

    2017-07-01

    Full Text Available More people are struck and killed by lightning each year in Florida than any other state in the United States. This report discusses a couple that was simultaneously struck by lightning while walking arm-in-arm. Both patients presented with characteristic lightning burns and were admitted for hemodynamic monitoring, serum labs, and observation and were subsequently discharged home. Despite the superficial appearance of lightning burns, serious internal electrical injuries are common. Therefore, lightning strike victims should be admitted and evaluated for cardiac arrhythmias, renal injury, and neurological sequelae.

  12. Climatology of lightning in the Czech Republic

    Science.gov (United States)

    Novák, Petr; Kyznarová, Hana

    2011-06-01

    The Czech Hydrometeorological Institute (CHMI) has utilized lightning data from the Central European Lightning Detection Network (CELDN) since 1999. The CELDN primarily focuses on the detection of cloud-to-ground (CG) lightning but intra-cloud (IC) lightning detection is also available. Lightning detection is used by the CHMI forecasters as an additional source to radar and satellite data for nowcasting of severe storms. Lightning data are also quantitatively used in automatic nowcasting applications. The quality of lightning data can be evaluated using their climatological characteristics. Climatological characteristics are also useful for defining decision thresholds that are valuable for human forecasters as well as for automatic nowcasting applications. The seven-year period from 2002 to 2008, which had relatively even-quality lightning data, was used to calculate the spatial and temporal distributions of lightning. The monthly number of CG strokes varies depending on the season. The highest number of CG strokes occurs during summer, with more than 20 days of at least five detected CG strokes on the Czech Republic territory in June and July. The least number of CG stokes occurs in winter, with less than three days per month having at least five detected CG stokes. The mean diurnal distribution of CG strokes peaks between 1500 and 1600 UTC and reaches a minimum between 0500 and 0800 UTC. The average spatial distribution of CG strokes shows sharp local maxima corresponding with the locations of the TV broadcast towers. The average spatial distribution of CG flash density, calculated on a 20 × 20 km grid, shows the maximum (3.23 flashes km - 2 year - 1 ) in the western part of Czech Republic and the minimum (0.92 flashes km - 2 year - 1 ) in the south-southeast of the Czech Republic. In addition, lightning characteristics related to the identified convective cells, such as distribution of the lightning stroke rates or relation to the radar derived by Vertically

  13. [Lightning strikes and lightning injuries in prehospital emergency medicine. Relevance, results, and practical implications].

    Science.gov (United States)

    Hinkelbein, J; Spelten, O; Wetsch, W A

    2013-01-01

    Up to 32.2% of patients in a burn center suffer from electrical injuries. Of these patients, 2-4% present with lightning injuries. In Germany, approximately 50 people per year are injured by a lightning strike and 3-7 fatally. Typically, people involved in outdoor activities are endangered and affected. A lightning strike usually produces significantly higher energy doses as compared to those in common electrical injuries. Therefore, injury patterns vary significantly. Especially in high voltage injuries and lightning injuries, internal injuries are of special importance. Mortality ranges between 10 and 30% after a lightning strike. Emergency medical treatment is similar to common electrical injuries. Patients with lightning injuries should be transported to a regional or supraregional trauma center. In 15% of all cases multiple people may be injured. Therefore, it is of outstanding importance to create emergency plans and evacuation plans in good time for mass gatherings endangered by possible lightning.

  14. Cell Mergers and Their Impact on Cloud-to-Ground Lightning Over the Houston Area

    Science.gov (United States)

    Gauthier, Michael L.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    A previous hypothesis advanced from observational studies such as METROMEX suggests that the intensity, frequency, and organization of cumulus convection may be impacted by the forcing of enhanced merger activity downstream of urban zones. A resulting corollary is that cities may exert an indirect anthropogenic forcing of parameters related to convection and associated phenomena such as lightning and precipitation. This paper investigates the urban merger hypothesis by examining the role of convective cell mergers on the existence and persistence of the Houston lightning "anomaly", a local maximum in cloud-to-ground (CG) lightning activity documented to exist over and east of Houston. Using eight summer seasons of peak columnar radar reflectivity, CG lightning data and a cell-tracking algorithm, a two-dimensional cell merger climatology is created for portions of eastern Texas and Louisiana. Results from the tracking and analysis of over 3.8 million cells indicate that merger-driven enhancements in convection induce a positive response (O 46%) in ground-flash densities throughout the domain, with areas of enhanced lightning typically being co-located with areas of enhanced merger activity. However, while mergers over the Houston area (relative to elsewhere in the domain) do result in more vigorous convective cells that produce larger CG flash densities, we find that CG lightning contributions due to mergers are distributed similarly throughout the domain. Hence while we demonstrate that cell mergers do greatly impact the production of lightning, the urban cell merger hypothesis does not uniquely explain the presence of a local lightning maximum near and downstream of Houston.

  15. Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps." Herein, we document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 lightning jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) lightning jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the

  16. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.

    2017-12-01

    Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical lightning for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was robotically installed in an Earth-viewing position on the outside of the ISS, providing a great opportunity to not only extend the 17-year TRMM LIS record of tropical lightning measurements but also to expand that coverage to higher latitudes missed by the TRMM mission. Since its activation, LIS has continuously observed the amount, rate, and radiant energy lightning within its field-of-view as it orbits the Earth. A major focus of this mission is to better understand the processes which cause lightning, as well as the connections between lightning and subsequent severe weather events. This understanding is a key to improving weather predictions and saving lives and property here in the United States and around the world. The LIS measurements will also help cross-validate observations from the new Geostationary Lightning Mapper (GLM) operating on NOAA's newest weather satellite GOES-16. An especially unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational forecasting and warning applications over data sparse regions such

  17. Modeling of Lightning Strokes Using Two-Peaked Channel-Base Currents

    Directory of Open Access Journals (Sweden)

    V. Javor

    2012-01-01

    Full Text Available Lightning electromagnetic field is obtained by using “engineering” models of lightning return strokes and new channel-base current functions and the results are presented in this paper. Experimentally measured channel-base currents are approximated not only with functions having two-peaked waveshapes but also with the one-peaked function so as usually used in the literature. These functions are simple to be applied in any “engineering” or electromagnetic model as well. For the three “engineering” models: transmission line model (without the peak current decay, transmission line model with linear decay, and transmission line model with exponential decay with height, the comparison of electric and magnetic field components at different distances from the lightning channel-base is presented in the case of a perfectly conducting ground. Different heights of lightning channels are also considered. These results enable analysis of advantages/shortages of the used return stroke models according to the electromagnetic field features to be achieved, as obtained by measurements.

  18. Comparison Study of Lightning observations from VHF interferometer and Geostationary Lightning Mapper

    Science.gov (United States)

    Kudo, A.; Stock, M.; Ushio, T.

    2017-12-01

    We compared the optical observation from Geostationary Lightning Mapper (GLM) which is mounted on the geostationary meteorological satellite GOES-16 launched last year, and the radio observations from the ground-based VHF broad band interferometer. GLM detects 777.4 nm wavelength infrared optical signals from thunderstorm cells which are illuminated by the heated path during lightning discharge, and was developed mainly for the purpose of increasing the lead time for warning of severe weather and clarifying the discharge mechanism. Its detection has 2 ms frame rate, and 8 km square of space resolution at nadir. The VHF broad band interferometer is able to capture the electromagnetic waves from 20 MHz to 75 MHz and estimate the direction of arrival of the radiation sources using the interferometry technique. This system also has capability of observing the fast discharge process which cannot be captured by other systems, so it is expected to able to make detailed comparison. The recording duration of the system is 1 second. We installed the VHF broad band interferometer which consists of three VHF antenna and one fast antenna at Huntsville, Alabama from April 22nd to May 15th and in this total observation period, 720 triggers of data were observed by the interferometer. For comparison, we adopted the data from April 27th , April 30th. Most April 27th data has GLM "event" detection which is coincident time period. In time-elevation plot comparison, we found GLM detection timing was well coincide with interferometer during K-changes or return strokes and few detection during breakdown process. On the other hand, no GLM detection near the site for all data in April 30th and we are triyng to figure out the reason. We would like to thank University of Alabama Huntsville, New Mexico Institute of Mining and Technology, and RAIRAN Pte. Ltd for the help during the campaign.

  19. Sensors for lightning measurements on aircraft

    NARCIS (Netherlands)

    Stelmashuk, V.; Deursen, van A.P.J.

    2008-01-01

    Lightning strikes a commercial airliner on the average once a year. The European project ldquoIn-flight Lightning Strike Damage Assessment System (ILDAS)rdquo [1] aims to develop and validate a prototype of a system capable to 1) reconstruct the current intensity and wave form, 2) determine of the

  20. Lightning protecting materials used on radar system

    NARCIS (Netherlands)

    Blaj, M.A.; Damstra, Geert C.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2009-01-01

    Because of the extensive use in modern systems of very sensitive electronic components, lightning strikes does not represent only a threat, but something that cannot be neglected anymore and safety hazards caused by direct and indirect lightning to the aircraft or naval industry. Everyday new

  1. A model for lightning in littoral areas

    NARCIS (Netherlands)

    Blaj, M.A.; Leferink, Frank Bernardus Johannes

    2009-01-01

    The littoral or coastal areas are different compared to the maritime or continental areas considering lightning. Only the last years some research about these areas has been carried out. The need for a model, regarding the lightning activity in these areas is much needed. And now, with the changes

  2. Venus Express Contributions to the Study of Planetary Lightning

    Science.gov (United States)

    Russell, C. T.; Hart, R. A.; Zhang, T. L.

    2014-04-01

    Jupiter, and Saturn are expected to generate the electrical potential differences in their clouds sufficient to cause a breakdown in the atmosphere,creating a conducting path for the electric potential to discharge. This high-energy phenomenon creates a hot, high-pressure channel that enables chemical reactions not possible under usual local thermodynamic conditions. Thus it is of some interest to determine if lightning occurs in an atmosphere. While Venus is not usually considered one of the wet planets, lightning has been an object of interest since the Venera landers. It was observed with electromagnetic coils on Venera 11, 12, 13, 14 landers [2]. It was observed with a visible spectrometer on the Venera 9 orbits [1]. It was mapped during solar occultations by the electric antenna on the Pioneer Venus Orbiter [4]. These measurements revealed extensive lightning activity with an electromagnetic energy flux similar to that on Earth. However, the observations were limited in number in the atmosphere and to the nightside from orbit. In order to improve the understanding of Venus lightning, the Venus Express magnetometer was given a 128-Hz sampling rate that could cover much of the ELF frequencies at which lightning could be observed in the weak magnetic fields of the Venus ionosphere [5]. This investigation was immediately successful [3], but mastering the cleaning of the broadband data took several years to accomplish. Furthermore, the high polar latitudes of VEX periapsis were not the ideal locations to conduct the more global survey that was desired. Fortunately, after precessing poleward over the first few years the latitude of periapsis has returned to lower latitudes(Figures 1 and 2) and active electrical storms are now being studied. The charged constituent of the Venus atmosphere need not be water. In fact, we believe it is H2SO4 which polarizes much as water does and which freezes and melts at similar temperatures. If it is H2SO4, we would expect the

  3. Triggered lightning strikes to aircraft and natural intracloud discharges

    Science.gov (United States)

    Mazur, Vladislav

    1989-01-01

    The physical model of Mazur (1989) for triggering lightning strikes by aircraft was used to interpret the initiation of intracloud flashes observed by the French UHF-VHF interferometric system. It is shown that both the intracloud discharges and airplane-triggered lightning strikes were initiated by simultaneous bidirectional development of the negative stepped leader and the positive leader-continous current process. However, the negative stepped leader phase in triggered flashes is of shorter duration (tens of milliseconds), than that in intracloud flashes (usually hundreds of milliseconds). This is considered to be due to the fact that, on the aircraft there is a single initiation process, versus the numerous initiation processes that occur inside the cloud.

  4. Lightning injuries in sports and recreation.

    Science.gov (United States)

    Thomson, Eric M; Howard, Thomas M

    2013-01-01

    The powers of lightning have been worshiped and feared by all known human cultures. While the chance of being struck by lightning is statistically very low, that risk becomes much greater in those who frequently work or play outdoors. Over the past 2 yr, there have been nearly 50 lightning-related deaths reported within the United States, with a majority of them associated with outdoor recreational activities. Recent publications primarily have been case studies, review articles, and a discussion of a sixth method of injury. The challenge in reducing lightning-related injuries in organized sports has been addressed well by both the National Athletic Trainers' Association and the National Collegiate Athletic Association in their guidelines on lightning safety. Challenges remain in educating the general population involved in recreational outdoor activities that do not fall under the guidelines of organized sports.

  5. Progress towards a lightning ignition model for the Northern Rockies

    Science.gov (United States)

    Paul Sopko; Don Latham

    2010-01-01

    We are in the process of constructing a lightning ignition model specific to the Northern Rockies using fire occurrence, lightning strike, ecoregion, and historical weather, NFDRS (National Fire Danger Rating System), lightning efficiency and lightning "possibility" data. Daily grids for each of these categories were reconstructed for the 2003 fire season (...

  6. The Lightning Nitrogen Oxides Model (LNOM): Status and Recent Applications

    Science.gov (United States)

    Koshak, William; Khan, Maudood; Peterson, Harold

    2011-01-01

    Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) are discussed. Recent results from an August 2006 run of the Community Multiscale Air Quality (CMAQ) modeling system that employs LNOM lightning NOx (= NO + NO2) estimates are provided. The LNOM analyzes Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx. The latest LNOM estimates of (a) lightning channel length distributions, (b) lightning 1-m segment altitude distributions, and (c) the vertical profile of NOx are presented. The impact of including LNOM-estimates of lightning NOx on CMAQ output is discussed.

  7. Image navigation and registration for the geostationary lightning mapper (GLM)

    Science.gov (United States)

    van Bezooijen, Roel W. H.; Demroff, Howard; Burton, Gregory; Chu, Donald; Yang, Shu S.

    2016-10-01

    The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite (GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.

  8. Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array

    Science.gov (United States)

    Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo

    2010-01-01

    The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of lightning nitrogen oxides, NOx = NO + NO2. Data from the National Lightning Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the NALMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting lightning NOx source profiles are discussed.

  9. A High-Speed Spectroscopy System for Observing Lightning and Transient Luminous Events

    Science.gov (United States)

    Boggs, L.; Liu, N.; Austin, M.; Aguirre, F.; Tilles, J.; Nag, A.; Lazarus, S. M.; Rassoul, H.

    2017-12-01

    Here we present a high-speed spectroscopy system that can be used to record atmospheric electrical discharges, including lightning and transient luminous events. The system consists of a Phantom V1210 high-speed camera, a Volume Phase Holographic (VPH) grism, an optional optical slit, and lenses. The spectrograph has the capability to record videos at speeds of 200,000 frames per second and has an effective wavelength band of 550-775 nm for the first order spectra. When the slit is used, the system has a spectral resolution of about 0.25 nm per pixel. We have constructed a durable enclosure made of heavy duty aluminum to house the high-speed spectrograph. It has two fans for continuous air flow and a removable tray to mount the spectrograph components. In addition, a Watec video camera (30 frames per second) is attached to the top of the enclosure to provide a scene view. A heavy duty Pelco pan/tilt motor is used to position the enclosure and can be controlled remotely through a Rasperry Pi computer. An observation campaign has been conducted during the summer and fall of 2017 at the Florida Institute of Technology. Several close cloud-to-ground discharges were recorded at 57,000 frames per second. The spectrum of a downward stepped negative leader and a positive cloud-to-ground return stroke will be reported on.

  10. Effect of Continuous Current during Pauses between Successive Strokes on the Decay of the Lightning Channel

    International Nuclear Information System (INIS)

    Aleksandrov, N.L.; Bazelyan, E.M.; Shneider, M. N.

    2000-01-01

    A one-dimensional model is used to study the dynamics of the hydrodynamic parameters of the lightning channel in the return stroke and after the pulse current is damped. The effect of the continuous residual electric current during pauses between the successive strokes on the plasma cooling in the channel is analyzed. It is shown that a continuous electric current, which is several orders of magnitude lower than the peak current in the return stroke, is capable of maintaining the channel conductivity. This effect cannot be explained merely by Joule heating but is largely governed by the fact that the turbulent heat transport is substantially suppressed. In this case, even a continuous current as low as 50-100 A is capable of maintaining the conductivity of the lightning channel at a level at which only M-components can develop in the channel rather than the dart leader of the subsequent stroke

  11. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    Science.gov (United States)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey

    2015-01-01

    Lightning one of the most dangerous weather-related phenomena, especially as many jobs and activities occur outdoors, presenting risk from a lightning strike. Cloud-to-ground (CG) lightning represents a considerable safety threat to people at airfields, marinas, and outdoor facilities-from airfield personnel, to people attending outdoor stadium events, on beaches and golf courses, to mariners, as well as emergency personnel. Holle et al. (2005) show that 90% of lightning deaths occurred outdoors, while 10% occurred indoors despite the perception of safety when inside buildings. Curran et al. (2000) found that nearly half of fatalities due to weather were related to convective weather in the 1992-1994 timeframe, with lightning causing a large component of the fatalities, in addition to tornadoes and flash flooding. Related to the aviation industry, CG lightning represents a considerable hazard to baggage-handlers, aircraft refuelers, food caterers, and emergency personnel, who all become exposed to the risk of being struck within short time periods while convective storm clouds develop. Airport safety protocols require that ramp operations be modified or discontinued when lightning is in the vicinity (typically 16 km), which becomes very costly and disruptive to flight operations. Therefore, much focus has been paid to nowcasting the first-time initiation and extent of lightning, both of CG and of any lightning (e.g, in-cloud, cloud-to-cloud). For this project three lightning nowcasting methodologies will be combined: (1) a GOESbased 0-1 hour lightning initiation (LI) product (Harris et al. 2010; Iskenderian et al. 2012), (2) a High Resolution Rapid Refresh (HRRR) lightning probability and forecasted lightning flash density product, such that a quantitative amount of lightning (QL) can be assigned to a location of expected LI, and (3) an algorithm that relates Pseudo-GLM data (Stano et al. 2012, 2014) to the so-called "lightning jump" (LJ) methodology (Shultz et al

  12. Recent Advancements in Lightning Jump Algorithm Work

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  13. Three years of lightning impulse charge moment change measurements in the United States

    Science.gov (United States)

    Cummer, Steven A.; Lyons, Walter A.; Stanley, Mark A.

    2013-06-01

    We report and analyze 3 years of lightning impulse charge moment change (iCMC) measurements obtained from an automated, real time lightning charge moment change network (CMCN). The CMCN combines U.S. National Lightning Detection Network (NLDN) lightning event geolocations with extremely low frequency (≲1 kHz) data from two stations to provide iCMC measurements across the entire United States. Almost 14 million lightning events were measured in the 3 year period. We present the statistical distributions of iCMC versus polarity and NLDN-measured peak current, including corrections for the detection efficiency of the CMCN versus peak current. We find a broad distribution of iCMC for a given peak current, implying that these parameters are at best only weakly correlated. Curiously, the mean iCMC does not monotonically increase with peak current, and in fact, drops for positive CG strokes above +150 kA. For all positive strokes, there is a boundary near 20 C km that separates seemingly distinct populations of high and low iCMC strokes. We also explore the geographic distribution of high iCMC lightning strokes. High iCMC positive strokes occur predominantly in the northern midwest portion of the U.S., with a secondary peak over the gulf stream region just off the U.S. east coast. High iCMC negative strokes are also clustered in the midwest, although somewhat south of most of the high iCMC positive strokes. This is a region far from the locations of maximum occurrence of high peak current negative strokes. Based on assumed iCMC thresholds for sprite production, we estimate that approximately 35,000 positive polarity and 350 negative polarity sprites occur per year over the U.S. land and near-coastal areas. Among other applications, this network is useful for the nowcasting of sprite-producing storms and storm regions.

  14. Lightning-induced overvoltages in low-voltage systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoeidalen, Hans Kristian

    1997-12-31

    Lightning-induced overvoltages (LIOs) are a main source of failures in low-voltage overhead line systems. This thesis deals mainly with calculations of LIOs aiming to enable the design of a proper voltage protection. Models for calculation of LIOs are adapted from the literature or developed based on measurements. The models used are believed to be fairly accurate for the first few microseconds, which is usually sufficient for predicting the maximum induced voltage in the system. The lightning channel is modelled by the Modified Transmission Line (MTL) model with the Transmission Line (TL) model as a special case. The coupling between the electrical fields from a lightning channel and an overhead line is modelled by Agrawal`s model. The attenuation of electrical fields over a lossy ground is modelled by Norton`s- or the Surface Impedance methods. The validity of all the applied models is analysed. In addition, measurements have been performed in order to develop models of distribution transformers and low-voltage power installation (LVPI) networks. Simple models of typical transformers and LVPIs are developed for calculations when specific data are unavailable. The practical range of values and its influence on the LIOs in a system is investigated. The main frequency range of interest related to LIOs is 10 kHz - 1 MHz in which all the models are accurate. The adapted or developed models are used to calculate LIOs in low-voltage systems. The influence of various key parameters in the system is investigated. Most important are the return stroke amplitude and rise time, the overhead line height and location, the termination of overhead line segments, neutral grounding, and the ground conductivity. 135 refs., 136 figs., 12 tabs.

  15. Lightning-caused fires in Central Spain

    DEFF Research Database (Denmark)

    Nieto Solana, Hector; Aguado, Inmaculada; García, Mariano

    2012-01-01

    Lightning-caused fire occurrence has been modelled for two different Spanish regions, Madrid andAragon, based on meteorological, terrain, and vegetation variables. The model was built on two very contrasting regions, one presenting low number of lightning-caused fires whereas the other presented...... in the model, where an increasing number of thunderstorms leads to a higher probability of occurrence. Validation was assessed through the Receiver Operator Characteristic, showing a good agreement between the modelled probabilities and the reported lightning-caused fires, with an Area Under the Curve around 0...

  16. ENSO Related Inter-Annual Lightning Variability from the Full TRMM LIS Lightning Climatology

    Science.gov (United States)

    Clark, Austin; Cecil, Daniel

    2018-01-01

    The El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS). Lightning data were averaged into mean annual warm, cold, and neutral 'years' for analysis of the different phases and compared to model reanalysis data. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases

  17. The mechanism of lightning attraction and the problem of lightning initiation by lasers

    International Nuclear Information System (INIS)

    Bazelyan, E M; Raizer, Yurii P

    2000-01-01

    Physical processes determining the ability of lightning to change its trajectory by choosing high constructions to strike are discussed. The leader mechanism of lightning propagation is explained. The criterion for a viable ascending (upward) leader to originate from a construction is established. The mechanism of the weak long-distance interaction between the ascending counter leader originating from a grounded construction and the descending (downward) leader from a cloud is analyzed. Current problems concerning lightning protection and lightning triggering by a laser spark are discussed, the latter being of special interest owing to a recent successful experiment along this line. (physics of our days)

  18. Doppler Radar and Lightning Network Observations of a Severe Outbreak of Tropical Cyclone Tornadoes

    Science.gov (United States)

    Mccaul, Eugene W., Jr.; Buechler, Dennis E.; Goodman, Steven J.; Cammarata, Michael

    2004-01-01

    Data from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak, including three tornadoes that reached F3 intensity, within Tropical Storm Beryl s remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 h. spawning tornadoes over a time period spanning approximately 6.5 h. Several other tornadic cells also exhibited great longevity, with cell lifetimes longer than ever previously documented in a landfalling tropical cyclone (TC) tornado event. This event is easily the most intense TC tornado outbreak yet documented with WSR-88Ds. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D. In addition, cloud-to-ground (CG) lightning data are examined in Beryl s remnants. Although the tornadic cells were responsible for most of Beryl's CG lightning, their flash rates were only weak to moderate, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. There is evidence that CG lightning rates decreased during the tornadoes, compared to 30-min periods before the tornadoes. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Contrary to the findings for flash rates, both peak currents and positive flash percentages were larger in Beryl's nontornadic storms than in the tornadic ones.

  19. Multicolor Photometric Observation of Lightning from Space: Comparison with Radio Measurements

    Science.gov (United States)

    Adachi, Toru; Cohen, Morris; Said, Ryan; Blakeslee, Richard J.; Cummer, Steven A.; Li, Jingbo; Lu, Geopeng; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; hide

    2011-01-01

    This study evaluates the effectiveness of spectrophotometric measurements from space in revealing properties of lightning flash. The multicolor optical waveform data obtained by FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightning (ISUAL) were analyzed in relation to National Lightning Detection Network (NLDN), North Alabama Lightning Mapping Array (LMA). As of July 2011, we found six lightning events which were observed by ISUAL and North Alabama LMA. In two of these events, NLDN showed clear positive cloud-to-ground (CG) discharges with peak current of +139.9 kA and +41.6 kA and, around that time, LMA showed continuous intra-cloud (IC) leader activities at 4-6 km altitudes. ISUAL also observed consistent optical waveforms of the IC and CG components and, interestingly, it was found that the blue/red spectral ratio clearly decreased by a factor of 1.5-2.5 at the time of CG discharges. Other four lightning events in which NLDN did not detect any CG discharges were also investigated, but such a feature was not found in any of these cases. These results suggest that the optical color of CG component is more reddish than that of IC component and we explain this as a result of more effective Rayleigh scattering in blue light emissions coming from lower-altitude light source. This finding suggests that spectral measurements could be a new useful technique to characterize ICs and CGs from space. In this talk, we will also present a result from lightning statistical analysis of ISUAL spectrophotometric data and ULF magnetic data.

  20. GRIP LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lightning Instrument Package (LIP) consists of 6 rotating vane type electric field sensors along with a central computer to record and monitor the instruments....

  1. Lightning measurements from the Pioneer Venus Orbiter

    Science.gov (United States)

    Scarf, F. L.; Russell, C. T.

    1983-01-01

    The plasma wave instrument on the Pioneer Venus Orbiter frequently detects strong and impulsive low-frequency signals when the spacecraft traverses the nightside ionosphere near periapsis. These particular noise bursts appear only when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere thus; the signals have all characteristics of lightning whistlers. We have tried to identify lightning sources between the cloud layers and the planet itself by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set, consisting of measurements through Orbit 1185, strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with an additional significant cluster near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  2. Central hyperadrenergic state after lightning strike.

    Science.gov (United States)

    Parsaik, Ajay K; Ahlskog, J Eric; Singer, Wolfgang; Gelfman, Russell; Sheldon, Seth H; Seime, Richard J; Craft, Jennifer M; Staab, Jeffrey P; Kantor, Birgit; Low, Phillip A

    2013-08-01

    To describe and review autonomic complications of lightning strike. Case report and laboratory data including autonomic function tests in a subject who was struck by lightning. A 24-year-old man was struck by lightning. Following that, he developed dysautonomia, with persistent inappropriate sinus tachycardia and autonomic storms, as well as posttraumatic stress disorder (PTSD) and functional neurologic problems. The combination of persistent sinus tachycardia and episodic exacerbations associated with hypertension, diaphoresis, and agitation was highly suggestive of a central hyperadrenergic state with superimposed autonomic storms. Whether the additional PTSD and functional neurologic deficits were due to a direct effect of the lightning strike on the central nervous system or a secondary response is open to speculation.

  3. Lightning protection for wind turbines in Vietnam

    Directory of Open Access Journals (Sweden)

    Thuan Nguyen

    2017-01-01

    Full Text Available Wind energy has become increasingly important in the total electrical energy supply mix in Vietnam over the last few years. Small, kW turbines were installed in isolated areas a decade ago, while wind farms of several MW to few hundred MW are now being connected directly to national grid, with many additional projects in planning or under construction to fulfill an objective of 6% of the total installed capacity by 2030 (approximately 6200 MW of wind energy component. The increase in wind farm generation results in increased damage from lightning. In this paper, the annual frequency of lightning strikes to wind turbines in Vietnam is calculated using electrogeometric model. Reported lightning incidents to three major wind farms in Vietnam are summarized. Possible causes of failure are discussed, and an EMTP simulation for each incident was performed accordingly. The simulations suggest the failure mechanisms as well the potential of improved grounding to reduce lightning induced damage in future windfarms.

  4. How Lightning Works Inside Thunderstorms: A Half-Century of Lightning Studies

    Science.gov (United States)

    Krehbiel, P. R.

    2015-12-01

    Lightning is a fascinating and intriguing natural phenomenon, but the most interesting parts of lightning discharges are inside storms where they are obscured from view by the storm cloud. Although clouds are essentially opaque at optical frequencies, they are fully transparent at radio frequencies (RF). This, coupled with the fact that lightning produces prodigious RF emissions, has allowed us to image and study lightning inside storms using various RF and lower-frequency remote sensing techniques. As in all other scientific disciplines, the technology for conducting the studies has evolved to an incredible extent over the past 50 years. During this time, we have gone from having very little or no knowledge of how lightning operates inside storms, to being able to 'see' its detailed structure and development with an increasing degree of spatial and temporal resolution. In addition to studying the discharge processes themselves, lightning mapping observations provide valuable information on the electrical charge structure of storms, and on the mechanisms by which storms become strongly electrified. In this presentation we briefly review highlights of previous observations, focussing primarily on the long string of remote-sensing studies I have been involved in. We begin with the study of lightning charge centers of cloud-to-ground discharges in central New Mexico in the late 1960s and continue up to the present day with interferometric and 3-dimensional time-of-arrival VHF mapping observations of lightning in normally- and anomalously electrified storms. A particularly important aspect of the investigations has been comparative studies of lightning in different climatological regimes. We conclude with observations being obtained by a high-speed broadband VHF interferometer, which show in unprecedented detail how individual lightning discharges develop inside storms. From combined interferometer and 3-D mapping data, we are beginning to unlock nature's secrets

  5. Synthesis and testing of a conducting polymeric composite material for lightning strike protection applications

    Science.gov (United States)

    Katunin, A.; Krukiewicz, K.; Turczyn, R.; Sul, P.; Łasica, A.; Catalanotti, G.; Bilewicz, M.

    2017-02-01

    Lightning strike protection is one of the important issues in the modern maintenance problems of aircraft. This is due to a fact that the most of exterior elements of modern aircraft is manufactured from polymeric composites which are characterized by isolating electrical properties, and thus cannot carry the giant electrical charge when the lightning strikes. This causes serious damage of an aircraft structure and necessity of repairs and tests before returning a vehicle to operation. In order to overcome this problem, usually metallic meshes are immersed in the polymeric elements. This approach is quite effective, but increases a mass of an aircraft and significantly complicates the manufacturing process. The approach proposed by the authors is based on a mixture of conducting and dielectric polymers. Numerous modeling studies which are based on percolation clustering using kinetic Monte Carlo methods, finite element modeling of electrical and mechanical properties, and preliminary experimental studies, allow achieving an optimal content of conducting particles in a dielectric matrix in order to achieve possibly the best electrical conductivity and mechanical properties, simultaneously. After manufacturing the samples with optimal content of a conducting polymer, mechanical and electrical characterization as well as high-voltage testing was performed. The application of such a material simplifies manufacturing process and ensures unique properties of aircraft structures, which allows for minimizing damage after lightning strike, as well as provide electrical bounding and grounding, interference shielding, etc. The proposed solution can minimize costs of repair, testing and certification of aircraft structures damaged by lightning strikes.

  6. Lightning protection system for a wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  7. Scientific Lightning Detection Network for Kazakhstan

    Science.gov (United States)

    Streltsov, A. V.; Lozbin, A.; Inchin, A.; Shpadi, Y.; Inchin, P.; Shpadi, M.; Ayazbayev, G.; Bykayev, R.; Mailibayeva, L.

    2015-12-01

    In the frame of grant financing of the scientific research in 2015-2017 the project "To Develop Electromagnetic System for lightning location and atmosphere-lithosphere coupling research" was found. The project was start in January, 2015 and should be done during 3 years. The purpose is to create a system of electromagnetic measurements for lightning location and atmosphere-lithosphere coupling research consisting of a network of electric and magnetic sensors and the dedicated complex for data processing and transfer to the end user. The main tasks are to set several points for electromagnetic measurements with 100-200 km distance between them, to develop equipment for these points, to develop the techniques and software for lightning location (Time-of-arrival and Direction Finding (TOA+DF)) and provide a lightning activity research in North Tien-Shan region with respect to seismicity and other natural and manmade activities. Also, it is planned to use lightning data for Global Electric Circuit (GEC) investigation. Currently, there are lightning detection networks in many countries. In Kazakhstan we have only separate units in airports. So, we don't have full lightning information for our region. It is planned, to setup 8-10 measurement points with magnetic and electric filed antennas for VLF range. The final data set should be including each stroke location, time, type (CG+, CG-, CC+ or CC-) and waveform from each station. As the magnetic field lightning antenna the ferrite rod VLF antenna will be used. As the electric field antenna the wide range antenna with specific frequencies filters will be used. For true event detection TOA and DF methods needs detected stroke from minimum 4 stations. In this case we can get location accuracy about 2-3 km and better.

  8. Lightning magnetic field measuring system in Bogota

    OpenAIRE

    Escobar Alvarado, Oscar Fernardo

    2013-01-01

    This thesis presents the configuration and performance of a lightning radiated electromagnetic field measuring system in Bogotá Colombia. The system is composed by both magnetic and electric field measuring systems working as separated sensors. The aim of the thesis is the design and construction of a Magnetic Field Measuring System and the implementation of a whole lightning measuring system in Bogotá. The theoretical background, design process, construction and implementation of the system ...

  9. Data Assimilation of Lightning using 1D+3D/4D WRF Var Assimilation Schemes with Non-Linear Observation Operators

    Science.gov (United States)

    Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.

    2012-12-01

    between inner and outer loops of the incremental 3-D/4-D VAR minimization. The first part of this paper will describe the methodology and performance analysis of the 1D-Var retrieval scheme that adjusts the WRF temperature profiles closer to an observed value as in Mahfouf et al. (2005). The second part will show the positive impact of these 1D-Var pseudo - temperature observations on both model 3D/4D-Var WRF analyses and short-range forecasts for three cases - the Tuscaloosa tornado outbreak (April 27, 2011) with intense but localized lightning, a second severe storm outbreak with more widespread but less intense lightning (June 27, 2011), and a northeaster containing much less lightning.

  10. Lightning Arrestor Connectors Production Readiness

    Energy Technology Data Exchange (ETDEWEB)

    Marten, Steve; Linder, Kim; Emmons, Jim; Gomez, Antonio; Hasam, Dawud; Maurer, Michelle

    2008-10-20

    The Lightning Arrestor Connector (LAC), part “M”, presented opportunities to improve the processes used to fabricate LACs. The A## LACs were the first production LACs produced at the KCP, after the product was transferred from Pinnellas. The new LAC relied on the lessons learned from the A## LACs; however, additional improvements were needed to meet the required budget, yield, and schedule requirements. Improvement projects completed since 2001 include Hermetic Connector Sealing Improvement, Contact Assembly molding Improvement, development of a second vendor for LAC shells, general process improvement, tooling improvement, reduction of the LAC production cycle time, and documention of the LAC granule fabrication process. This report summarizes the accomplishments achieved in improving the LAC Production Readiness.

  11. A model for ball lightning

    International Nuclear Information System (INIS)

    Fryberger, D.

    1994-10-01

    A model for ball lightning (BL) is described. It is based upon the vorton model for elementary particles, which exploits the symmetry between electricity and magnetism. The core, or driving engine, of BL in this model is comprised of a vorton-antivorton plasma. The energy of BL, which derives from nucleon decay catalyzed by this plasma, leads, through various mechanisms, to BL luminosity as well as to other BL features. It is argued that this model could also be a suitable explanation for other luminous phenomena, such as the unidentified atmospheric light phenomena seen at Hessdalen. It is predicted that BL and similar atmospheric luminous phenomena should manifest certain features unique to this model, which would be observable with suitable instrumentation

  12. Rationales for the Lightning Launch Commit Criteria

    Science.gov (United States)

    Willett, John C. (Editor); Merceret, Francis J. (Editor); Krider, E. Philip; O'Brien, T. Paul; Dye, James E.; Walterscheid, Richard L.; Stolzenburg, Maribeth; Cummins, Kenneth; Christian, Hugh J.; Madura, John T.

    2016-01-01

    Since natural and triggered lightning are demonstrated hazards to launch vehicles, payloads, and spacecraft, NASA and the Department of Defense (DoD) follow the Lightning Launch Commit Criteria (LLCC) for launches from Federal Ranges. The LLCC were developed to prevent future instances of a rocket intercepting natural lightning or triggering a lightning flash during launch from a Federal Range. NASA and DoD utilize the Lightning Advisory Panel (LAP) to establish and develop robust rationale from which the criteria originate. The rationale document also contains appendices that provide additional scientific background, including detailed descriptions of the theory and observations behind the rationales. The LLCC in whole or part are used across the globe due to the rigor of the documented criteria and associated rationale. The Federal Aviation Administration (FAA) adopted the LLCC in 2006 for commercial space transportation and the criteria were codified in the FAA's Code of Federal Regulations (CFR) for Safety of an Expendable Launch Vehicle (Appendix G to 14 CFR Part 417, (G417)) and renamed Lightning Flight Commit Criteria in G417.

  13. On the Initiation of Lightning in Thunderclouds

    International Nuclear Information System (INIS)

    Chilingarian, A.; Chilingaryan, S.; Karapetyan, T.; Kozliner, L.; Khanikyants, Y.; Hovsepyan, G.; Pokhsraryan, D.; Soghomonyan, S.

    2017-01-01

    The relationship of lightning and elementary particle fluxes in the thunderclouds is not fully understood to date. Using the particle beams (the so-called Thunderstorm Ground Enhancements - TGE) as a probe we investigate the characteristics of the interrelated atmospheric processes. The well-known effect of the TGE dynamics is the abrupt termination of the particle flux by the lightning flash. With new precise electronics, we can see that particle flux decline occurred simultaneously with the rearranging of the charge centers in the cloud. The analysis of the TGE energy spectra before and after the lightning demonstrates that intense high-energy part of the TGE energy spectra disappeared just after lightning. The decline of particle flux coincides on millisecond time scale with first atmospheric discharges and we can conclude that Relativistic Runaway Electron Avalanches (RREA) in the thundercloud assist initiation of the negative cloud to ground lightning. Thus, RREA can provide enough ionization to play a significant role in the unleashing of the lightning flash. (author)

  14. The Elusive Evidence of Volcanic Lightning.

    Science.gov (United States)

    Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M

    2017-11-14

    Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.

  15. Ball lightning. What nature is trying to tell the plasma research community

    International Nuclear Information System (INIS)

    Roth, J.R.

    1995-01-01

    Ball lightning has been extensively observed in atmospheric air, usually in association with thunderstorms, by untrained observers who were not in a position to make careful observations. These chance sightings have been documented by polling observers, who constitute perhaps 5% of the adult U.S. population. Unfortunately, ball lightning is not accessible to scientific analysis because it cannot be reproduced in the laboratory under controlled conditions. Natural ball lightning has been observed to last longer than 90 s and to have diameters from 1 cm to several meters. The energy density of a few lightning balls has been observed to be as high as 20000 J/cm 3 , well above the limit of chemical energy storage of, for example, TNT at 2000 J/cm 3 . Such observations suggest a plasma-related phenomenon with significant magnetic energy storage. If this is the case, ball lightning should have very interesting implications for fusion research, industrial plasma engineering, and military applications, as well as being of great theoretical and practical interest to the plasma research community. 20 refs., 15 figs., 2 tabs

  16. Global Lightning Response to Forbush Decreases in Short-term

    Science.gov (United States)

    Li, H.; Wu, Q.; Wang, C.

    2017-12-01

    , the results illustrate that there is a statistically significant positive correlation between FD and daily lightning count, and the latter reaches its minimum 2-3 days after the former onset. In addition, this response enhances if we only choose the stronger and the more standard FDs. This work has reached the 95% confidence level of Monte Carlo test.

  17. Lightning NOx Production in CMAQ Part I – Using Hourly NLDN Lightning Strike Data

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  18. Lightning Performance on Overhead Distribution Lines : After Improvement Field Observation

    Directory of Open Access Journals (Sweden)

    Reynaldo Zoro

    2009-11-01

    Full Text Available Two feeders of 20 kV overhead distribution lines which are located in a high lightning density area are chosen to be observed as a field study due to their good lightning performance after improvement of lightning protection system. These two feeders used the new overhead ground wire and new line arrester equipped with lightning counter on the main lines. The significant reduced of lines outages are reported. Study was carried out to observe these improvements by comparing to the other two feeders line which are not improved and not equipped yet with the ground wire and line arrester. These two feeders located in the nearby area. Two cameras were installed to record the trajectory of the lightning strikes on the improved lines. Lightning peak currents are measured using magnetic tape measurement system installed on the grounding lead of lightning arrester. Lightning overvoltage calculations are carried out by using several scenarios based on observation results and historical lightning data derived from lightning detection network. Lightning overvoltages caused by indirect or direct strikes are analyzed to get the lightning performance of the lines. The best scenario was chosen and performance of the lines were improved significantly by installing overhead ground wire and improvement of lightning arrester installation.

  19. ENSO Related Interannual Lightning Variability from the Full TRMM LIS Lightning Climatology

    Science.gov (United States)

    Clark, Austin; Cecil, Daniel J.

    2018-01-01

    It has been shown that the El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production in the tropics and subtropics more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics. Using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) and the Oceanic Nino Index (ONI) for ENSO phase, lightning data were averaged into corresponding mean annual warm, cold, and neutral 'years' for analysis of the different phases. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases. These processes were then studied for inter-annual variance and subsequent correlation to ENSO during the study period to best describe the observed lightning deviations from year to year at each location.

  20. Multiple Lightning Discharges in Wind Turbines Associated with Nearby Cloud-to-Ground Lightning

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Cummins, Kenneth L.; Madsen, Søren Find

    2015-01-01

    This paper presents the analysis of five events where simultaneous lightning currents were registered in different wind turbines of a wind farm with lightning monitoring equipment installed. Measurements from current monitoring devices installed at the wind turbines and observations from auto......-triggering video cameras were correlated with data from the U.S. National Lighting Detection Network. In all five events, the correlation showed that a cloud-to-ground (CG) lightning stroke with high peak current struck the ground within 10 km of the affected turbines at the time of the currents in the wind...... by the nearby CG strokes, involving mechanisms that vary depending on the polarity of the associated CG stroke. The analysis also suggests that the event of upward lightning from wind turbines triggered by nearby lightning activity occurs very often and therefore it should be considered carefully...

  1. Frequency domain analysis of lightning protection using four lightning protection rods

    Directory of Open Access Journals (Sweden)

    Javor Vesna

    2008-01-01

    Full Text Available In this paper the lightning discharge channel is modeled as a vertical monopole antenna excited by a pulse generator at its base. The lightning electromagnetic field of a nearby lightning discharge in the case of lightning protection using four vertical lightning protection rods was determined in the frequency domain. Unknown current distributions were determined by numerical solving of a system of integral equations of two potentials using the Point Matching Method and polynomial approximation of the current distributions. The influence of the real ground, treated as homogeneous loss half-space of known electrical parameters, expressed through a Sommerfeld integral kernel, was modeled using a new Two-image approximation which gives good results in both near and far fields.

  2. Lightning Attachment Estimation to Wind Turbines by Utilizing Lightning Location Systems

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim; Lopez, Javier

    2016-01-01

    three different wind power plant locations are analyzed and the impact of varying data qualities is evaluated regarding the ability to detect upward lightning. This work provides a variety of background information which is relevant to the exposure assessment of wind turbine and includes practical......The goal of a lightning exposure assessment is to identify the number, type and characteristics of lightning discharges to a certain structure. There are various Lightning Location System (LLS) technologies available, each of them are characterized by individual performance characteristics....... In this work, these technologies are reviewed and evaluated in order to obtain an estimation of which technologies are eligible to perform a lightning assessment to wind turbines. The results indicate that ground-based mid-range low frequency (LF) LLS systems are most qualified since they combine a wide...

  3. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  4. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  5. Returning home

    DEFF Research Database (Denmark)

    Agergaard, Jytte; Brøgger, Ditte

    2016-01-01

    flows. By focusing on these educational migrants, this paper explores how they connect to their rural homes. Guided by a critical reading of the migration-development scholarship, the paper examines how migrants and their relatives make sense of educational migrants’ remitting and returning practices......, and by comparing three groups of educational migrants, the migrants’ reasons for staying connected and sending remittances are scrutinized. The paper finds that although educational migrants do not generate extensive economic remittances for local development in Nepal, they stay connected to their rural homes...

  6. The Returns to Entrepreneurship

    DEFF Research Database (Denmark)

    Van Praag, Mirjam; Raknerud, Arvid

    Empirical studies show low pecuniary returns of switching from wage employment to entrepreneurship. We reconsider the pecuniary gains of this switching by employing a two-stage procedure, where the randomness in the timing of inheritance transfers is used as an exclusion restriction to identify...... causal effects. The model is estimated on data covering the whole Norwegian population of individuals matched to the entire population of firms established in the period 2002-2011. The results indicate that the average returns to entrepreneurship are significantly negative for individuals entering...... entrepreneurship through self-employment and modest, but significantly positive, for incorporated startups....

  7. OLS DIGITAL DERIVED LIGHTNING FROM DMSP F10 V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The OLS Digital Derived Lightning from DMSP F10 dataset consists of global lightning signatures from the Defense Meteorological Satellite Program (DMSP) Operational...

  8. Lightning Imaging Sensor (LIS) on TRMM Science Data V4

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lightning Imaging Sensor (LIS) Science Data was collected by the Lightning Imaging Sensor (LIS), which was an instrument on the Tropical Rainfall Measurement...

  9. Multiparameter Investigation of Significant Lightning Producing Storms in Northeastern Colorado

    National Research Council Canada - National Science Library

    Gauthier, Michael

    1999-01-01

    We present a regional, summer season, climatology of cloud to ground (CG) lightning immediately east of the central Rocky mountains from 1996-98 using data from the National Lightning Detection Network (NLDN...

  10. VAISALA US NLDN LIGHTNING FLASH DATA V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The U.S. National Lightning Detection Network is a commercial lightning detection network operated by Vaisala. A network of over 100 antennae are connected to a...

  11. Observations of lightning processes using VHF radio interferometry

    Science.gov (United States)

    Rhodes, C. T.; Shao, X. M.; Krehbiel, P. R.; Thomas, R.

    1991-01-01

    A single station, multiple baseline radio interferometer was used to locate the direction of VHF radiation from lightning discharges with microsec time resolution. Radiation source directions and electric field waveforms were analyzed for various types of breakdown events. These include initial breakdown and K type events of in-cloud activity, and the leaders of initial and subsequent strokes to ground and activity during and following return strokes. Radiation during the initial breakdown of a flash and in the early stages of initial leaders to ground is found to be similar. In both instances, the activity consists of localized bursts of radiation that are intense and slow moving. Motion within a given burst is unresolved by the interferometer. Radiation from in-cloud K type events is essentially the same as that from dart leaders; in both cases it is produced at the leading edge of a fast moving streamer that propagates along a well defined, often extensive path. K type events are sometimes terminated by fast field changes that are similar to the return stroke initiated by dart leaders; such K type events are the in-cloud analog of the dart leader return stroke process.

  12. Corporate Governance and Equity Returns

    OpenAIRE

    Uchida, Shigeru

    2012-01-01

    This paper analyses the relationship between corporate governance and equity returns from the small investors view point. A primary survey has been conducted to gather the data required to examine the link. Preliminary result of the study shows that the four elements of governance: board structure, transparency, fairness and responsibility are positively related with equity returns.

  13. In-flight measurements of energetic radiation from lightning and thunderclouds

    International Nuclear Information System (INIS)

    Kochkin, Pavlo; Van Deursen, Alexander P J; De Boer, Alte; Bardet, Michiel; Boissin, Jean-François

    2015-01-01

    In the certification procedure for new aircraft, manufacturers carry out so-called icing test flights, where the altitude at which the temperature reaches zero degrees Celsius is deliberately sought and crossed in or under thunderstorms. Airbus also used these flights to test ILDAS, a system aimed at determining the severity and attachment points of lightning during flight from high-speed data on the electric and magnetic fields at the aircraft’s surface. We used this unique opportunity to enhance the ILDAS systems with two x-ray detectors coupled to high-speed data recorders in an attempt to determine the x-rays produced by lightning in situ, with synchronous determination of the lightning current distribution and electric field at the aircraft. Such data are of interest in a study of lightning physics. In addition, the data may provide clues to the x-ray dose for personnel and equipment during flights. The icing campaign ran in April 2014; in six flights we collected data from 61 lightning strikes on an Airbus test aircraft. In this communication we briefly describe ILDAS and present selected results on three strikes, two aircraft-initiated and one intercepted. Most of the x-rays have been observed synchronously with initiating negative leader steps, and as bursts immediately preceding the current of the recoil process. Those processes include the return stroke. The bursts last one to four microseconds and attain x-ray energies up to 10 MeV. The intensity and spectral distribution of the x-rays and their association with the current distribution are discussed. ILDAS also continuously records x-rays at low resolution in time and amplitude. (paper)

  14. Characteristics of cloud-to-ground lightning activity over Seoul, South Korea in relation to an urban effect

    Directory of Open Access Journals (Sweden)

    S. K. Kar

    2007-11-01

    Full Text Available Cloud-to-ground (CG lightning flash data collected by the lightning detection network installed at the Korean Meteorological Administration (KMA have been used to study the urban effect on lightning activity over and around Seoul, the largest metropolitan city of South Korea, for the period of 1989–1999. Negative and positive flash density and the percentage of positive flashes have been calculated. Calculation reveals that an enhancement of approximately 60% and 42% are observed, respectively, for negative and positive flash density over and downwind of the city. The percentage decrease of positive flashes occurs over and downwind of Seoul and the amount of decrease is nearly 20% compared to upwind values. The results are in good agreement with those obtained by Steiger et al. (2002 and Westcott (1995. CG lightning activities have also been considered in relation to annual averages of PM10 (particulate matter with an aerodynamic diameter smaller than 10 μm and sulphur dioxide (SO2 concentrations. Interesting results are found, indicating that the higher concentration of SO2 contributes to the enhancement of CG lightning flashes. On the other hand, the contribution from PM10 concentration has not appeared in this study to be as significant as SO2 in the enhancement of CG lightning flashes. Correlation coefficients of 0.33 and 0.64 are found between the change in CG lightning flashes and the PM10 and SO2, respectively, for upwind to downwind areas, suggesting a significant influence of the increased concentration of SO2 on the enhancement of CG flashes.

  15. Nowcasting the lightning activity in Peninsular Malaysia using the GPS PWV during the 2009 inter-monsoons

    Directory of Open Access Journals (Sweden)

    Wayan Suparta

    2014-05-01

    Full Text Available The spatial and temporal radio wave delay of the Global Positioning System (GPS signal can be manipulated to estimate the precipitable water vapor (PWV which favorable for meteorological applications. A rapid change of the water vapor amount was a precondition for the unbalanced atmospheric charges, which noticeably associated with the development of convective cloud as a lightning chamber. According to this fact, GPS derived PWV will be utilized to nowcasting the lightning event for the next couple of hours. The variances of PWV of four-selected station of the Peninsular Malaysia during the past two inter-monsoons events in May and November 2009 were analyzed. To clarify the response, the changes of PWV in hourly Δ (max-min before the lightning event was investigated with minimum value 2 mm and is maintained at least three consecutive hours. There are 177 samples were extracted from this method and 69% of the sample showed the lightning occurrence with an average duration was after the six consecutive hours. The lightning day with 2 mm Δ was also higher than the fair weather of 6.3%. These findings suggest that the GPS data can be proposed further as a guide to nowcast the occurrence of lightning activity.

  16. 14 CFR 27.610 - Lightning and static electricity protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection....610 Lightning and static electricity protection. (a) The rotorcraft must be protected against catastrophic effects from lightning. (b) For metallic components, compliance with paragraph (a) of this section...

  17. 14 CFR 25.1316 - System lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false System lightning protection. 25.1316... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1316 System lightning... systems to perform these functions are not adversely affected when the airplane is exposed to lightning...

  18. 14 CFR 29.610 - Lightning and static electricity protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection... § 29.610 Lightning and static electricity protection. (a) The rotorcraft structure must be protected against catastrophic effects from lightning. (b) For metallic components, compliance with paragraph (a) of...

  19. 14 CFR 23.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...

  20. 30 CFR 56.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 56... Electricity § 56.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  1. 30 CFR 57.12065 - Short circuit and lightning protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 57... MINES Electricity Surface Only § 57.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...

  2. A Performance Evaluation of Lightning-NO Algorithms in CMAQ

    Science.gov (United States)

    In the Community Multiscale Air Quality (CMAQv5.2) model, we have implemented two algorithms for lightning NO production; one algorithm is based on the hourly observed cloud-to-ground lightning strike data from National Lightning Detection Network (NLDN) to replace the previous m...

  3. Three-Dimensional Reconstruction of Cloud-to-Ground Lightning Using High-Speed Video and VHF Broadband Interferometer

    Science.gov (United States)

    Li, Yun; Qiu, Shi; Shi, Lihua; Huang, Zhengyu; Wang, Tao; Duan, Yantao

    2017-12-01

    The time resolved three-dimensional (3-D) spatial reconstruction of lightning channels using high-speed video (HSV) images and VHF broadband interferometer (BITF) data is first presented in this paper. Because VHF and optical radiations in step formation process occur with time separation no more than 1 μs, the observation data of BITF and HSV at two different sites provide the possibility of reconstructing the time resolved 3-D channel of lightning. With the proposed procedures for 3-D reconstruction of leader channels, dart leaders as well as stepped leaders with complex multiple branches can be well reconstructed. The differences between 2-D speeds and 3-D speeds of leader channels are analyzed by comparing the development of leader channels in 2-D and 3-D space. Since return stroke (RS) usually follows the path of previous leader channels, the 3-D speeds of the return strokes are first estimated by combination with the 3-D structure of the preceding leaders and HSV image sequences. For the fourth RS, the ratios of the 3-D to 2-D RS speeds increase with height, and the largest ratio of the 3-D to 2-D return stroke speeds can reach 2.03, which is larger than the result of triggered lightning reported by Idone. Since BITF can detect lightning radiation in a 360° view, correlated BITF and HSV observations increase the 3-D detection probability than dual-station HSV observations, which is helpful to obtain more events and deeper understanding of the lightning process.

  4. Management of radioactive disused lightning rods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de Oliveira; Silva, Fabio, E-mail: pos@cdtn.br, E-mail: silvaf@cdtn.br [Centro de Desenvolvimento da Energia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The manufacture of radioactive lightning rod was allowed from 1970 to 1989. This authorization was based on state-of-the art science of that time that verified that radioactive lightning rods had efficiency superior to the conventional lightning rods, denominated Franklin. However, the experience showed that their efficiency was not superior enough to justify the use of radioactive sources. Consequently, in 1989, the National Commission or Nuclear Energy - CNEN, issued the Resolution 04/89 from 04-19-1989, that forbidden the importation of {sup 241}Am tapes, assembling and commercialization of radioactive lightning-rods. The institutes of CNEN are responsible for receiving these lightning-rods and sending to the users procedures for removing and dispatch to the institutes. Therewith, these devices are kept away from the human being and environment. The Nuclear technology Development Center - CDTN and Institute for Energy and Nuclear Research - IPEN of CNEN, has built laboratories appropriate for dismantling such devices and store the {sup 241}Am tapes safely. Nowadays are being researched methodologies to evaluate the contamination levels of the frame for possible recycling and become better the management of these devices. (author)

  5. Climate Change and Tropical Total Lightning

    Science.gov (United States)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  6. Management of radioactive disused lightning rods

    International Nuclear Information System (INIS)

    Santos, Paulo de Oliveira; Silva, Fabio

    2013-01-01

    The manufacture of radioactive lightning rod was allowed from 1970 to 1989. This authorization was based on state-of-the art science of that time that verified that radioactive lightning rods had efficiency superior to the conventional lightning rods, denominated Franklin. However, the experience showed that their efficiency was not superior enough to justify the use of radioactive sources. Consequently, in 1989, the National Commission or Nuclear Energy - CNEN, issued the Resolution 04/89 from 04-19-1989, that forbidden the importation of 241 Am tapes, assembling and commercialization of radioactive lightning-rods. The institutes of CNEN are responsible for receiving these lightning-rods and sending to the users procedures for removing and dispatch to the institutes. Therewith, these devices are kept away from the human being and environment. The Nuclear technology Development Center - CDTN and Institute for Energy and Nuclear Research - IPEN of CNEN, has built laboratories appropriate for dismantling such devices and store the 241 Am tapes safely. Nowadays are being researched methodologies to evaluate the contamination levels of the frame for possible recycling and become better the management of these devices. (author)

  7. Thermal power and heat energy of cloud-to-ground lightning process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuejuan; Yuan, Ping; Xue, Simin [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Cen, Jianyong [School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004 (China)

    2016-07-15

    A cloud-to-ground lightning flash with nine return strokes has been recorded using a high speed slitless spectrograph and a system composed of a fast antenna and a slow antenna. Based on the spectral data and the synchronous electric field changes that were caused by the lightning, the electrical conductivity, the channel radii, the resistance per unit length, the peak current, the thermal power at the instant of peak current, and the heat energy per unit length during the first 5 μs in the discharge channel have all been calculated. The results indicate that the channel radii have linear relationships with the peak current. The thermal power at the peak current time increases with increasing resistance, but exponential decays with the square of the peak current.

  8. Application of surface electrical discharges to the study of lightning strikes on aircraft

    Science.gov (United States)

    Boulay, J. L.; Larigaldie, S.

    1991-01-01

    Considered here is the characterization of surface discharges which provide a facility complementary to that of artificially triggered lightning. General characteristics of a simplified surface discharge, including current waveforms and the constitution of a surface discharge are outlined, and the application of this approach to the study of aircraft lightning strikes is considered. Representations of leader-streamer and return-stroke phases are discussed, and the application to the two-dimensional discharge phase is covered. It is noted that the fact that the initiation times of surface discharges could be controlled, and the path followed by the discharge channels could be predetermined, indicates that it is possible to produce a highly dedicated high performance instrumentation system.

  9. An Overview of Three-year JEM-GLIMS Nadir Observations of Lightning and TLEs

    Science.gov (United States)

    Sato, M.; Ushio, T.; Morimoto, T.; Adachi, T.; Kikuchi, H.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; Inan, U.; Linscott, I.; Hobara, Y.

    2015-12-01

    JEM-GLIMS nadir observations of lightning and TLEs at the ISS started from November 2012 and successfully ended on August 2015. For three-year observation period, JEM-GLIMS succeeded in detecting over 8,000 lightning events and 670 TLEs. The detected optical emissions of sprites showed clear horizontal displacement with the range of 10-20 km from the peak location of the +CG emissions and from the +CG locations detected by NLDN and WWLLN. Using VITF electric field waveform data, source locations of VHF pulses excited by the parent CG discharges are estimated. It is found that the possible VHF source locations were mostly located within the area of the parent lightning emissions. These facts may imply that the center region of the neutralized charge by CG discharges in the thundercloud located near the return stroke point and that the some seed conditions were established in advance at the sprite location before the occurrence of sprites. The global occurrence distributions and rates of lightning discharges and TLEs are also estimated. The estimated mean global occurrence rate of lightning discharges is ~1.5 events/s, which is smaller number than that derived from MicroLab-1/OTD and TRMM/LIS measurements. This may be originated in the fact that JEM-GLISM detected only intense lightning optical events due to the high threshold level for the event triggering. To the contrary, the estimated mean global occurrence rate of TLEs is ~9.8 events/min, which is two times higher than the ISUAL result. It is likely that JEM-GLIMS could detect dimmer optical emissions of TLEs than ISUAL since the distance between the JEM-GLIMS instruments and TLEs is much closer. At the presentation, we will summarize the results derived from three-year JEM-GLIMS nadir observations. We will discuss possible occurrence conditions of sprites, properties of global occurrence rates of lightning and TLEs, and their LT dependences more in detail.

  10. The Deep Space Gateway Lightning Mapper (DLM) — Monitoring Global Change and Thunderstorm Processes through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.

    2018-02-01

    We propose the Deep Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not observed by current and planned spaceborne lightning mappers.

  11. A unified engineering model of the first stroke in downward negative lightning

    Science.gov (United States)

    Nag, Amitabh; Rakov, Vladimir A.

    2016-03-01

    Each stroke in a negative cloud-to-ground lightning flash is composed of downward leader and upward return stroke processes, which are usually modeled individually. The first stroke leader is stepped and starts with preliminary breakdown (PB) which is often viewed as a separate process. We present the first unified engineering model for computing the electric field produced by a sequence of PB, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively charged channel extends downward in a stepped fashion during both the PB and leader stages. Each step involves a current wave that propagates upward along the newly formed channel section. Once the leader attaches to ground, an upward propagating return stroke neutralizes the charge deposited along the channel. Model-predicted electric fields are in reasonably good agreement with simultaneous measurements at both near (hundreds of meters, electrostatic field component is dominant) and far (tens of kilometers, radiation field component is dominant) distances from the lightning channel. Relations between the features of computed electric field waveforms and model input parameters are examined. It appears that peak currents associated with PB pulses are similar to return stroke peak currents, and the observed variation of electric radiation field peaks produced by leader steps at different heights above ground is influenced by the ground corona space charge.

  12. Electrostatic charge bounds for ball lightning models

    International Nuclear Information System (INIS)

    Stephan, Karl D

    2008-01-01

    Several current theories concerning the nature of ball lightning predict a substantial electrostatic charge in order to account for its observed motion and shape (Turner 1998 Phys. Rep. 293 1; Abrahamson and Dinniss 2000 Nature 403 519). Using charged soap bubbles as a physical model for ball lightning, we show that the magnitude of charge predicted by some of these theories is too high to allow for the types of motion commonly observed in natural ball lightning, which includes horizontal motion above the ground and movement near grounded conductors. Experiments show that at charge levels of only 10-15 nC, 3-cm-diameter soap bubbles tend to be attracted by induced charges to the nearest grounded conductor and rupture. We conclude with a scaling rule that can be used to extrapolate these results to larger objects and surroundings

  13. Augmenting Satellite Precipitation Estimation with Lightning Information

    Energy Technology Data Exchange (ETDEWEB)

    Mahrooghy, Majid [Mississippi State University (MSU); Anantharaj, Valentine G [ORNL; Younan, Nicolas H. [Mississippi State University (MSU); Petersen, Walter A. [NASA Marshall Space Flight Center, Huntsville, AL; Hsu, Kuo-Lin [University of California, Irvine; Behrangi, Ali [Jet Propulsion Laboratory, Pasadena, CA; Aanstoos, James [Mississippi State University (MSU)

    2013-01-01

    We have used lightning information to augment the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network - Cloud Classification System (PERSIANN-CCS). Co-located lightning data are used to segregate cloud patches, segmented from GOES-12 infrared data, into either electrified (EL) or non-electrified (NEL) patches. A set of features is extracted separately for the EL and NEL cloud patches. The features for the EL cloud patches include new features based on the lightning information. The cloud patches are classified and clustered using self-organizing maps (SOM). Then brightness temperature and rain rate (T-R) relationships are derived for the different clusters. Rain rates are estimated for the cloud patches based on their representative T-R relationship. The Equitable Threat Score (ETS) for daily precipitation estimates is improved by almost 12% for the winter season. In the summer, no significant improvements in ETS are noted.

  14. On the formation of ball lightning

    International Nuclear Information System (INIS)

    Silberg, P.A.

    1981-01-01

    A plasma continuum model for the formation of ball lightning is developed based on a substantial number of reports that the ball is often in the discharge column of a previous lightning stroke. The usual method of setting up the plasma equation for a one-component electron plasma is used. An approximate equation for the plasma is derived from the describing equation which is then solved exactly in terms of the Jacobi elliptic functions. The formation of the ball is based on a nonlinearity of the plasma equation which uner certain circumstances permits the field to collapse into a small region. This collapse is interpreted to be ball lightning. The approximate equation derived for the plasma has the same form as a previous equation used to describe the formation of the fireball plasma. (author)

  15. Magnetic field generated by lightning protection system

    Science.gov (United States)

    Geri, A.; Veca, G. M.

    1988-04-01

    A lightning protection system for today's civil buildings must be electromagnetically compatible with the electronic equipment present in the building. This paper highlights a mathematic model which analyzes the electromagnetic effects in the environment in which the lightning protection system is. This model is developed by means of finite elements of an electrical circuit where each element is represented by a double pole circuit according to the trapezoidal algorithm developed using the finite difference method. It is thus possible to analyze the electromagnetic phenomena associated with the transient effects created by the lightning stroke even for a high-intensity current. Referring to an elementary system comprised of an air terminal, a down conductor, and a ground terminal, numerical results are here laid out.

  16. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  17. Spatial variability of correlated color temperature of lightning channels

    Directory of Open Access Journals (Sweden)

    Nobuaki Shimoji

    Full Text Available In this paper, we present the spatial variability of the correlated color temperature of lightning channel shown in a digital still image. In order to analyze the correlated color temperature, we calculated chromaticity coordinates of the lightning channels in the digital still image. From results, the spatial variation of the correlated color temperature of the lightning channel was confirmed. Moreover, the results suggest that the correlated color temperature and peak current of the lightning channels are related to each other. Keywords: Lightning, Color analysis, Correlated color temperature, Chromaticity coordinate, CIE 1931 xy-chromaticity diagram

  18. Upper limit set for level of lightning activity on Titan

    Science.gov (United States)

    Desch, M. D.; Kaiser, M. L.

    1990-01-01

    Because optically thick cloud and haze layers prevent lightning detection at optical wavelength on Titan, a search was conducted for lightning-radiated signals (spherics) at radio wavelengths using the planetary radioastronomy instrument aboard Voyager 1. Given the maximum ionosphere density of about 3000/cu cm, lightning spherics should be detectable above an observing frequency of 500 kHz. Since no evidence for spherics is found, an upper limit to the total energy per flash in Titan lightning of about 10 to the 6th J, or about 1000 times weaker than that of typical terrestrial lightning, is inferred.

  19. Women’s Choice of Positions during Labour: Return to the Past or a Modern Way to Give Birth? A Cohort Study in Italy

    Directory of Open Access Journals (Sweden)

    Salvatore Gizzo

    2014-01-01

    Full Text Available Background. Childbirth medicalization has reduced the parturient’s opportunity to labour and deliver in a spontaneous position, constricting her to assume the recumbent one. The aim of the study was to compare recumbent and alternative positions in terms of labour process, type of delivery, neonatal wellbeing, and intrapartum fetal head rotation. Methods. We conducted an observational cohort study on women at pregnancy term. Primiparous women with physiological pregnancies and single cephalic fetuses were eligible for the study. We considered data about maternal-general characteristics, labour process, type of delivery, and neonatal wellbeing at birth. Patients were divided into two groups: Group-A if they spent more than 50% of labour in a recumbent position and Group-B when in alternative ones. Results. 225 women were recruited (69 in Group-A and 156 in Group-B. We found significant differences between the groups in terms of labour length, Numeric Rating Scale score and analgesia request rate, type of delivery, need of episiotomy, and fetal occiput rotation. No differences were found in terms of neonatal outcomes. Conclusion. Alternative maternal positioning may positively influence labour process reducing maternal pain, operative vaginal delivery, caesarean section, and episiotomy rate. Women should be encouraged to move and deliver in the most comfortable position.

  20. Lightning, whistlers, and hiss - A possible relationship

    International Nuclear Information System (INIS)

    Sonwalkar, V.S.

    1990-01-01

    While it has been established that whistlers originate in terrestrial lightning, the generation mechanism remains unclear and is intractable by means of quasi-linear theory, which does not account for the generation of hiss from the background thermal noise. Observational data are presently discussed which indicate that the wave energy introduced in the magnetosphere by atmospheric lightning discharges may play an important role both in the loss of particles through wave-induced precipitation and in the embrionic generation of hiss. 13 refs

  1. Visual Analysis for Nowcasting of Multidimensional Lightning Data

    Directory of Open Access Journals (Sweden)

    Stefan Peters

    2013-08-01

    Full Text Available Globally, most weather-related damages are caused by thunderstorms. Besides floods, strong wind, and hail, one of the major thunderstorm ground effects is lightning. Therefore, lightning investigations, including detection, cluster identification, tracking, and nowcasting are essential. To enable reliable decisions, current and predicted lightning cluster- and track features as well as analysis results have to be represented in the most appropriate way. Our paper introduces a framework which includes identification, tracking, nowcasting, and in particular visualization and statistical analysis of dynamic lightning data in three-dimensional space. The paper is specifically focused on enabling users to conduct the visual analysis of lightning data for the purpose of identification and interpretation of spatial-temporal patterns embedded in lightning data, and their dynamics. A graphic user interface (GUI is developed, wherein lightning tracks and predicted lightning clusters, including their prediction certainty, can be investigated within a 3D view or within a Space-Time-Cube. In contrast to previous work, our approach provides insight into the dynamics of past and predicted 3D lightning clusters and cluster features over time. We conclude that an interactive visual exploration in combination with a statistical analysis can provide new knowledge within lightning investigations and, thus, support decision-making in weather forecast or lightning damage prevention.

  2. Characteristics of lightning leader propagation and ground attachment

    Science.gov (United States)

    Jiang, Rubin; Qie, Xiushu; Wang, Zhichao; Zhang, Hongbo; Lu, Gaopeng; Sun, Zhuling; Liu, Mingyuan; Li, Xun

    2015-12-01

    The grounding process and the associated leader behavior were analyzed by using high-speed video record and time-correlated electric field change for 37 natural negative cloud-to-ground flashes. Weak luminous grounded channel was recognized below the downward leader tip in the frame preceding the return stroke, which is inferred as upward connecting leader considering the physical process of lightning attachment, though not directly confirmed by sequential frames. For stepped leader-first return strokes, the upward connecting leaders tend to be induced by those downward leader branches with brighter luminosity and lower channel tip above ground, and they may accomplish the attachment with great possibility. The upward connecting leaders for 2 out of 61 leader-subsequent stroke sequences were captured in the frame prior to the return stroke, exhibiting relatively long channel lengths of 340 m and 105 m, respectively. The inducing downward subsequent leaders were of the chaotic type characterized by irregular electric field pulse train with duration of 0.2-0.3 ms. The transient drop of the high potential difference between stepped leader system and ground when the attachment occurred would macroscopically terminate the propagation of those ungrounded branches while would not effectively prevent the development of the existing space stem systems in the low-conductivity streamer zone apart from the leader tip. When the ungrounded branches are of poor connection with the main stroke channel, their further propagation toward ground would be feasible. These two factors may contribute to the occurrence of multiple grounding within the same leader-return stroke sequence.

  3. Stock Returns and Risk: Evidence from Quantile

    Directory of Open Access Journals (Sweden)

    Thomas C. Chiang

    2012-12-01

    Full Text Available This paper employs weighted least squares to examine the risk-return relation by applying high-frequency data from four major stock indexes in the US market and finds some evidence in favor of a positive relation between the mean of the excess returns and expected risk. However, by using quantile regressions, we find that the risk-return relation moves from negative to positive as the returns’ quantile increases. A positive risk-return relation is valid only in the upper quantiles. The evidence also suggests that intraday skewness plays a dominant role in explaining the variations of excess returns.

  4. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    Science.gov (United States)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; hide

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  5. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    Science.gov (United States)

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  6. Utilizing ISS Camera Systems for Scientific Analysis of Lightning Characteristics and comparison with ISS-LIS and GLM

    Science.gov (United States)

    Schultz, C. J.; Lang, T. J.; Leake, S.; Runco, M.; Blakeslee, R. J.

    2017-12-01

    Video and still frame images from cameras aboard the International Space Station (ISS) are used to inspire, educate, and provide a unique vantage point from low-Earth orbit that is second to none; however, these cameras have overlooked capabilities for contributing to scientific analysis of the Earth and near-space environment. The goal of this project is to study how georeferenced video/images from available ISS camera systems can be useful for scientific analysis, using lightning properties as a demonstration. Camera images from the crew cameras and high definition video from the Chiba University Meteor Camera were combined with lightning data from the National Lightning Detection Network (NLDN), ISS-Lightning Imaging Sensor (ISS-LIS), the Geostationary Lightning Mapper (GLM) and lightning mapping arrays. These cameras provide significant spatial resolution advantages ( 10 times or better) over ISS-LIS and GLM, but with lower temporal resolution. Therefore, they can serve as a complementarity analysis tool for studying lightning and thunderstorm processes from space. Lightning sensor data, Visible Infrared Imaging Radiometer Suite (VIIRS) derived city light maps, and other geographic databases were combined with the ISS attitude and position data to reverse geolocate each image or frame. An open-source Python toolkit has been developed to assist with this effort. Next, the locations and sizes of all flashes in each frame or image were computed and compared with flash characteristics from all available lightning datasets. This allowed for characterization of cloud features that are below the 4-km and 8-km resolution of ISS-LIS and GLM which may reduce the light that reaches the ISS-LIS or GLM sensor. In the case of video, consecutive frames were overlaid to determine the rate of change of the light escaping cloud top. Characterization of the rate of change in geometry, more generally the radius, of light escaping cloud top was integrated with the NLDN, ISS-LIS and

  7. Global reactive nitrogen deposition from lightning NOx

    NARCIS (Netherlands)

    Shepon, A.; Gildor, H.; Labrador, L.J.; Butler, T.; Ganzeveld, L.N.; Lawrence, M.G.

    2007-01-01

    We present results of the deposition of nitrogen compounds formed from lightning (LNO x ) using the global chemical transport Model of Atmospheric Transport and Chemistry¿Max Planck Institute for Chemistry version. The model indicates an approximately equal deposition of LNO x in both terrestrial

  8. CNEN resolution phohibits radioactive lightning rods

    International Nuclear Information System (INIS)

    1989-01-01

    After 15 years of irrestricted use in Brazil, the radioactive lightning rods were phohibited by Brazilian CNEN since the publication of a new law (Resolution number 4 of april 19,1989) published on may 9, 1989. All the existing ones will be removed at the time of their programed maintenance. (A.C.A.S.) [pt

  9. Lightning Pin Injection Testing on MOSFETS

    Science.gov (United States)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita

    2009-01-01

    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  10. Control of Radioactive Lightning-Conductor

    International Nuclear Information System (INIS)

    Esposito, E.

    2004-01-01

    The radioactive lightning-conductor production in Brazil was started in 1970 and after a period of 19 years of commercialization of these devices, the National Nuclear Energy Commission (CNEN), based in studies done in Brazil and abroad, proved that the radioactive lightning-conductor performance wasn't superior to the conventional one, so the use of radioactive source is not justified. Thence, the authorization for its production was suspended and the installation of this type of lightning-conductor was forbidden. The radioactive material that results from the dismount of these devices must be immediately sent to CNEN, for treatment and temporary storage. After this prohibition and its publication in several specialized magazines, CNEN was searched for several institutions, factories, churches, etc, interested in obtaining information about the handling and shipment procedures of radioactive lightning-conductors that are inoperative and that must be sent to CNEN's Institutes, in a correct and secure form. From this moment CNEN technicians realize that the owners of radioactive lightning-conductors didn't have any knowledge and training in radiation protection, neither in equipment to monitoring the radiation. The radioactive material from these sources is, in almost all cases, the radioisotope 241Am which has a maximum activity of an order of 5 mCi (1,85 x 10-2 TBq); as the radiation emitted by 241Am is of alpha type, whose range in the air, is just few centimeters and the gamma rays are of low energy, an irradiation offer small risk. However, there is a contamination risk on someone hands, by the contact with the source. Aiming to attend, in an objective way, the users' interests in obtaining some pertinent technical information about the shipping of radioactive lightning-conductor that is inoperative or is being replaced and also to optimize its receipt in CNEN's Institutes, because there still has a great number of these lightning-conductors installed and still

  11. A projected decrease in lightning under climate change

    Science.gov (United States)

    Finney, Declan L.; Doherty, Ruth M.; Wild, Oliver; Stevenson, David S.; MacKenzie, Ian A.; Blyth, Alan M.

    2018-03-01

    Lightning strongly influences atmospheric chemistry1-3, and impacts the frequency of natural wildfires4. Most previous studies project an increase in global lightning with climate change over the coming century1,5-7, but these typically use parameterizations of lightning that neglect cloud ice fluxes, a component generally considered to be fundamental to thunderstorm charging8. As such, the response of lightning to climate change is uncertain. Here, we compare lightning projections for 2100 using two parameterizations: the widely used cloud-top height (CTH) approach9, and a new upward cloud ice flux (IFLUX) approach10 that overcomes previous limitations. In contrast to the previously reported global increase in lightning based on CTH, we find a 15% decrease in total lightning flash rate with IFLUX in 2100 under a strong global warming scenario. Differences are largest in the tropics, where most lightning occurs, with implications for the estimation of future changes in tropospheric ozone and methane, as well as differences in their radiative forcings. These results suggest that lightning schemes more closely related to cloud ice and microphysical processes are needed to robustly estimate future changes in lightning and atmospheric composition.

  12. Acute transient hemiparesis induced by lightning strike.

    Science.gov (United States)

    Rahmani, Seyed Hesam; Faridaalaee, Gholamreza; Jahangard, Samira

    2015-07-01

    According to data from the National Oceanic and Atmospheric Administration,in the years from 1959 to 1994, lightning was responsible for more than 3000 deaths and nearly 10,000 casualties. The most important characteristic features of lightning injuries are multisystem involvement and widely variable severity. Lightning strikes are primarily a neurologic injury that affects all 3 components of the nervous system: central, autonomic,and peripheral. Neurologic complications of lightning strikes vary from transient benign symptoms to permanent disability. Many patients experience a temporary paralysis called keraunoparalysis. Here we reported a 22-year-old mountaineer man with complaining of left sided hemiparesis after being hit by a lightning strike in the mountain 3 hours ago. There was no loss of consciousness at hitting time. On arrival the patient was alert, awake and hemodynamically stable. In neurologic examination cranial nerves were intact, left sided upper and lower extremity muscle force was I/V with a combination of complete sensory loss, and right-sided muscle force and sensory examination were normal. There is not any evidence of significant vascular impairment in the affected extremities. Brain MRI and CT scan and cervical MRI were normal. During 2 days of admission, with intravenous hydration, heparin 5000 unit SC q12hr and physical therapy of the affected limbs, motor and sensory function improved and was normal except mild paresthesia. He was discharged 1 day later for outpatient follow up while vitamin B1 100mg orally was prescribed.Paresthesia improved after 3 days without further sequels.

  13. Prevalent lightning sferics at 600 megahertz near Jupiter's poles

    Science.gov (United States)

    Brown, Shannon; Janssen, Michael; Adumitroaie, Virgil; Atreya, Sushil; Bolton, Scott; Gulkis, Samuel; Ingersoll, Andrew; Levin, Steven; Li, Cheng; Li, Liming; Lunine, Jonathan; Misra, Sidharth; Orton, Glenn; Steffes, Paul; Tabataba-Vakili, Fachreddin; Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William; Hospodarsky, George; Gurnett, Donald; Connerney, John

    2018-06-01

    Lightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures1-6. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning7-9. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies10,11, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range12. Strong ionospheric attenuation or a lightning discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy13,14. Here we report observations of Jovian lightning sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer15 onboard the Juno spacecraft. These detections imply that Jovian lightning discharges are not distinct from terrestrial lightning, as previously thought. In the first eight orbits of Juno, we detected 377 lightning sferics from pole to pole. We found lightning to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of lightning is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet16,17, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles9,16,18. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.

  14. Characteristics of M-component in rocket-triggered lightning and a discussion on its mechanism

    Science.gov (United States)

    Jiang, Rubin; Qie, Xiushu; Yang, Jing; Wang, Caixia; Zhao, Yang

    2013-09-01

    The current and electric field pulses associated with M-component following dart leader-return stroke sequences in negative rocket-triggered lightning flashes were analyzed in detail by using the data from Shandong Artificially Triggering Lightning Experiment, conducted from 2005 to 2010. For 63 M-components with current waveforms superimposed on the relatively steady continuing current, the geometric mean values of the peak current, duration, and charge transfer were 276 A, 1.21 ms, and 101 mC, respectively. The behaviors of the channel base current versus close electric field changes and the observation facts by different authors were carefully examined for investigation on mechanism of the M-component. A modified model based on Rakov's "two-wave" theory is proposed and confirms that the evolution of M-component through the lightning channel involves a downward wave transferring negative charge from the upper to the lower channel and an upward wave draining the charge transported by the downward wave. The upward wave serves to deplete the negative charge by the downward wave at its interface and makes the charge density of the channel beneath the interface layer to be roughly zero. Such modified concept is recognized to be reasonable by the simulated results showing a good agreement between the calculated and the measured E-field waveforms.

  15. Fracture of the femoral component after a lightning strike injury: A case report

    Directory of Open Access Journals (Sweden)

    Xavier Lizano-Díez

    2017-01-01

    Full Text Available A fracture of the stem in a total hip arthroplasty (THA is an uncommon complication. We report a case of femoral stem fracture in a 55-year-old male patient after a lightning strike. A revision was conducted using a Wagner osteotomy and a revision prosthesis. Dall-Milles cerclages were used to close the osteotomy. The postoperative evolution was satisfactory, with an immediate partial weight bearing, consolidation of the osteotomy after three months and return to daily activity without pain.

  16. Weekly Cycle of Lightning: Evidence of Storm Invigoration by Pollution

    Science.gov (United States)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong

    2009-01-01

    We have examined summertime 1998 2009 U.S. lightning data from the National Lightning Detection Network (NLDN) to look for weekly cycles in lightning activity. As was found by Bell et al. (2008) for rain over the southeast U.S., there is a significant weekly cycle in afternoon lightning activity that peaks in the middle of the week there. The weekly cycle appears to be reduced over population centers. Lightning activity peaks on weekends over waters near the SE U.S. The statistical significance of weekly cycles over the western half of the country is generally small. We found no evidence of a weekly cycle of synoptic-scale forcing that might explain these patterns. The lightning behavior is entirely consistent with the explanation suggested by Bell et al. (2008) for the cycles in rainfall and other atmospheric data from the SE U.S., that aerosols can cause storms to intensify in humid, convectively unstable environments.

  17. Observations of the ground-attachment process in natural lightning in the absence of tall strike objects

    Science.gov (United States)

    Tran, M. D.; Rakov, V. A.

    2017-12-01

    Synchronized high-speed (124 or 210 kiloframes per second) video images and wideband electromagnetic field records of the attachment process were obtained for 4 negative strokes in natural lightning at the Lightning Observatory in Gainesville, Florida. The apparent strike objects were trees, whose heights were less than 30 m or so. Upward connecting leaders (UCLs) and multiple upward unconnected leaders were imaged in multiple frames. The majority of these upward positive leaders exhibited a pulsating behavior (brightening/fading cycles). UCLs, whose maximum extent ranged from 11 to 25 m, propagated at speeds ranging from 1.8×105 to 6.0×105 m/s with a mean of 3.4×105 m/s. Within about 100 m of the ground, the ratio of speeds of the downward negative leader and the corresponding UCL was about 3-4 for 2 events and 0.5 for 1 event. The breakthrough phase (BTP), corresponding to leader extensions inside the common streamer zone (CSZ), was imaged for 2 events. The initial length of CSZ was estimated to be about 30-40 m. For 2 events, estimated speeds of positive and negative leaders inside the CSZ were found to be between 2.4×106 and 3.7×106 m/s. For 1 event, opposite polarity leaders were observed to accelerate inside the CSZ. Further, in this same event, a space-leader-like formation, accompanied by significant intensification of UCL and apparently associated with the onset of BTP, was imaged. We speculate that the step-wise extension of the downward leader facilitated corona streamer bursts from both the downward negative and upward positive (UCL) leader tips, resulting in the establishment of CSZ. First speed profiles for colliding positive and negative leaders were obtained. In one event, the negative leader speed increased from 7.2 ×105 in virgin air to 2.5×106 (by a factor of 3.5), and then to 3.2×106 m/s just prior to the fast transition (FT) in the return-stroke field waveform. The positive leader accelerated from 1.8×105 (in virgin air) to 2.5×106

  18. Sprite-producing Convective Storms within the Colorado Lightning Mapping Array

    Science.gov (United States)

    Lyons, W. A.; Cummer, S. A.; Rison, W.; Krehbiel, P. R.; Lang, T. J.; Rutledge, S. A.; Lu, G.; Stanley, M. A.; Ashcraft, T.; Nelson, T. E.

    2012-12-01

    The multi-year, multi-institution effort entitled Physical Origins of Coupling to the Upper Atmosphere from Lightning (PhOCAL), has among its goals to qualitatively understand the meteorology and lightning flash characteristics that produce the unusual and/or very energetic lightning responsible for phenomena such as sprites, halos, elves, blue jets and gigantic jets, collectively known as Transient Luminous Events (TLEs). A key task is to obtain simultaneous video, ideally with a high-speed imager (HSI), of both a TLE and its parent lightning discharge, within the domain of a 3-D Lightning Mapping Array (LMA). While conceptually simple, this task is logistically quite complicated. In 2012, a new 15-station Colorado LMA (COLMA) became operational, covering northeastern Colorado, with the Yucca Ridge Field Station (YRFS) near its western edge. The National Charge Moment Change Network (CMCN), which since 2007 has been documenting sprite-class +CGs (those with impulse change moment changes >100 C km), indicates that a strong gradient of energetic +CGs exists west-to-east through the COLMA, with the most likely region for sprite-producing storms being in the COLMA eastern fringes (western Kansas and Nebraska). Yet, on 8 and 25 June, 2012, intense convective systems formed in the COLMA along and just east of the Front Range, producing severe weather and intense lightning. On the 8th, four sprite parent +CGs were captured at 3000 fps from YRFS with the sprites confirmed by dual (conventional speed) cameras in New Mexico. In a second storm on the 25th, viewing conditions prevented +CG video acquisition, but sprites were logged over the COLMA and detailed reconstructions of the discharges are being made. The parent discharges often began as upward negative leaders propagating into a mid-level positive charge layer at 8-10 km. They often originated within or near the convective core before expanding outward into a stratiform region and involving several hundred square

  19. Investigation of Lightning and EMI Shielding Properties of SWNT Buckypaper Nanocomposites

    National Research Council Canada - National Science Library

    Wang, Ben; Liang, Richard; Zhang, Chuck; Kramer, Leslie; Funchess, Percy

    2005-01-01

    ... EMI and lightning strike protection properties. The EMI shielding and lightning strike attenuation properties of the composites with the surface layer of SWNT buckypaper nanocomposite were preliminarily characterized...

  20. Automated analysis of lightning leader speed, local flash rates and electric charge structure in thunderstorms

    Science.gov (United States)

    Van Der Velde, O. A.; Montanya, J.; López, J. A.

    2017-12-01

    A Lightning Mapping Array (LMA) maps radio pulses emitted by lightning leaders, displaying lightning flash development in the cloud in three dimensions. Since the last 10 years about a dozen of these advanced systems have become operational in the United States and in Europe, often with the purpose of severe weather monitoring or lightning research. We introduce new methods for the analysis of complex three-dimensional lightning data produced by LMAs and illustrate them by cases of a mid-latitude severe weather producing thunderstorm and a tropical thunderstorm in Colombia. The method is based on the characteristics of bidrectional leader development as observed in LMA data (van der Velde and Montanyà, 2013, JGR-Atmospheres), where mapped positive leaders were found to propagate at characteristic speeds around 2 · 104 m s-1, while negative leaders typically propagate at speeds around 105 m s-1. Here, we determine leader speed for every 1.5 x 1.5 x 0.75 km grid box in 3 ms time steps, using two time intervals (e.g., 9 ms and 27 ms) and circles (4.5 km and 2.5 km wide) in which a robust Theil-Sen fitting of the slope is performed for fast and slow leaders. The two are then merged such that important speed characteristics are optimally maintained in negative and positive leaders, and labeled with positive or negative polarity according to the resulting velocity. The method also counts how often leaders from a lightning flash initiate or pass through each grid box. This "local flash rate" may be used in severe thunderstorm or NOx production studies and shall be more meaningful than LMA source density which is biased by the detection efficiency. Additionally, in each grid box the median x, y and z components of the leader propagation vectors of all flashes result in a 3D vector grid which can be compared to vectors in numerical models of leader propagation in response to cloud charge structure. Finally, the charge region altitudes, thickness and rates are summarized

  1. Assessment of lightning impact frequency for process equipment

    International Nuclear Information System (INIS)

    Necci, Amos; Antonioni, Giacomo; Cozzani, Valerio; Krausmann, Elisabeth; Borghetti, Alberto; Nucci, Carlo Alberto

    2014-01-01

    Fires and explosions triggered by lightning strikes are among the most frequent Natech scenarios affecting the chemical and process industry. Although lightning hazard is well known, well accepted quantitative procedures to assess the contribution of accidents caused by lightning to industrial risk are still lacking. In the present study, a quantitative methodology for the assessment of the expected frequency of lightning capture by process equipment is presented. A specific model, based on Monte Carlo simulations, was developed to assess the capture frequency of lightning for equipment with a given geometry. The model allows the assessment of lay-out effects and the reduction of the capture probability due to the presence of other structures or equipment items. The results of the Monte Carlo simulations were also used to develop a simplified cell method allowing a straightforward assessment of the lightning impact probability in a quantitative risk assessment framework. The developed approach allows an in-depth analysis of the hazard due to lightning impact by identifying equipment items with the highest expected frequency of lightning impacts in a given lay-out. The model thus supplies useful data to approach the assessment of the quantitative contribution of lightning-triggered accidents to industrial risk. - Highlights: • A specific approach to storage tank lightning impact frequency calculation was developed. • The approach is suitable for the quantitative assessment of industrial risk due to lightning. • The models developed provide lightning capture frequency based on tank geometry. • Lay-out effects due to nearby structures are also accounted. • Capture frequencies may be as high as 10 −1 events/year for standalone unprotected tanks

  2. When lightning strikes: bolting down the facts & fiction.

    Science.gov (United States)

    Usatch, Ben

    2009-04-01

    MYTH: There's no danger from lightning until the rain starts. FACT: Lightning often precedes the storm by up to 10 miles. A reasonable guideline is the "30-30 rule," by which you count the seconds between the flash and the thunder. If the time span is less than 30 seconds, seek shelter. Additionally, wait a full 30 minutes from last lightning flash to resume outdoor activities.

  3. Terrestrial gamma ray flash production by lightning current pulses

    OpenAIRE

    İnan, Umran Savaş; Carlson, B. E.; Lehtinen, N. G.

    2017-01-01

    Terrestrial gamma ray flashes (TGFs) are brief bursts of gamma rays observed by satellites, typically in coincidence with detectable lightning. We incorporate TGF observations and the key physics behind current TGF production theories with lightning physics to produce constraints on TGF production mechanisms. The combined constraints naturally suggest a mechanism for TGF production by current pulses in lightning leader channels. The mechanism involves local field enhancements due to charge re...

  4. A case study on lightning protection, building resonances considered

    OpenAIRE

    Deursen, van, A.P.J.; Geers - Bargboer, G.

    2011-01-01

    In a recent paper (G. Bargboer and A. P. J. van Deursen, IEEE Trans. Electromagn. Compat., vol. 52, no. 3, pp. 684-90, Aug. 2010) we dealt with current injection measurements to test the lightning protection system of a newly built pharmaceutical plant. In a tentative extrapolation, the measurements were extrapolated to actual lightning. Here, we extend the model and calculate the response of the installation on lightning currents and include resonances in the cable trays and test cables cont...

  5. Combined VLF and VHF lightning observations of Hurricane Rita landfall

    Science.gov (United States)

    Henderson, B. G.; Suszcynsky, D. M.; Wiens, K. C.; Hamlin, T.; Jeffery, C. A.; Orville, R. E.

    2009-12-01

    Hurricane Rita displayed abundant lightning in its northern eyewall as it made landfall at 0740 UTC 24 Sep 2005 near the Texas/Louisiana border. For this work, we combined VHF and VLF lightning data from Hurricane Rita, along with radar observations from Gulf Coast WSR-88D stations, for the purpose of demonstrating the combined utility of these two spectral regions for hurricane lightning monitoring. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. As Rita approached the Gulf coast, the VHF lightning emissions were distinctly periodic with a period of 1.5 to 2 hours, which is consistent with the rotational period of hurricanes. VLF lightning emissions, measured by LASA and NLDN, were present in some of these VHF bursts but not all of them. At landfall, there was a significant increase in lightning emissions, accompanied by a significant convective surge observed in radar. Furthermore, VLF and VHF lightning source heights clearly increase as a function of time. The evolution of the IC/CG ratio is consistent with that seen in thunderstorms, showing a dominance of IC activity during storm development, followed by an increase in CG activity at the storm’s peak. The periodic VHF lightning events are correlated with increases in convective growth (quantified by the volume of radar echo >40 dB) above 7 km altitude. VLF can discriminate between lightning types, and in the LASA data, Rita landfall lightning activity was dominated by Narrow Bi-polar Events (NBEs)—high-energy, high-altitude, compact intra-cloud discharges. The opportunity to locate NBE lightning sources in altitude may be particularly useful in quantifying the vertical extent (strength) of the convective development and in possibly deducing vertical charge distributions.

  6. Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites

    Science.gov (United States)

    Kawakami, Hirohide

    Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch

  7. Lightning Radio Source Retrieval Using Advanced Lightning Direction Finder (ALDF) Networks

    Science.gov (United States)

    Koshak, William J.; Blakeslee, Richard J.; Bailey, J. C.

    1998-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of lightning radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National Lightning Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).

  8. Monitoring of lightning from the April-May 2010 Eyjafjallajoekull volcanic eruption using a very low frequency lightning location network

    International Nuclear Information System (INIS)

    Bennett, A J; Odams, P; Edwards, D; Arason, P.

    2010-01-01

    The April-May 2010 explosive eruption of the Eyjafjallajoekull volcano in Iceland produced a tephra plume extending to an altitude of over 9 km. During many, but not all, of the periods of significant volcanic activity the plume was sufficiently electrified to generate lightning. This lightning was located by the UK Met Office long-range lightning location network (ATDnet), operating in the very low frequency radio spectrum. An approximately linear relationship between hourly lightning count rate and radar-derived plume height was found. A minimum plume height for lightning generation of sufficient strength to be detected by ATDnet was shown to be 5 km above sea level. It is not clear why some plumes exceeding 5 km did not produce lightning detected by ATDnet, although ambient atmospheric conditions may be an important factor.

  9. Monitoring of lightning from the April-May 2010 Eyjafjallajoekull volcanic eruption using a very low frequency lightning location network

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, A J; Odams, P; Edwards, D [Met Office, FitzRoy Road, Exeter EX1 3PB (United Kingdom); Arason, P., E-mail: alec.bennett@metoffice.gov.uk [Icelandic Meteorological Office, Bustaoavegi 9, IS-150 ReykjavIk (Iceland)

    2010-10-15

    The April-May 2010 explosive eruption of the Eyjafjallajoekull volcano in Iceland produced a tephra plume extending to an altitude of over 9 km. During many, but not all, of the periods of significant volcanic activity the plume was sufficiently electrified to generate lightning. This lightning was located by the UK Met Office long-range lightning location network (ATDnet), operating in the very low frequency radio spectrum. An approximately linear relationship between hourly lightning count rate and radar-derived plume height was found. A minimum plume height for lightning generation of sufficient strength to be detected by ATDnet was shown to be 5 km above sea level. It is not clear why some plumes exceeding 5 km did not produce lightning detected by ATDnet, although ambient atmospheric conditions may be an important factor.

  10. A first look at lightning energy determined from GLM

    Science.gov (United States)

    Bitzer, P. M.; Burchfield, J. C.; Brunner, K. N.

    2017-12-01

    The Geostationary Lightning Mapper (GLM) was launched in November 2016 onboard GOES-16 has been undergoing post launch and product post launch testing. While these have typically focused on lightning metrics such as detection efficiency, false alarm rate, and location accuracy, there are other attributes of the lightning discharge that are provided by GLM data. Namely, the optical energy radiated by lightning may provide information useful for lightning physics and the relationship of lightning energy to severe weather development. This work presents initial estimates of the lightning optical energy detected by GLM during this initial testing, with a focus on observations during field campaign during spring 2017 in Huntsville. This region is advantageous for the comparison due to the proliferation of ground-based lightning instrumentation, including a lightning mapping array, interferometer, HAMMA (an array of electric field change meters), high speed video cameras, and several long range VLF networks. In addition, the field campaign included airborne observations of the optical emission and electric field changes. The initial estimates will be compared with previous observations using TRMM-LIS. In addition, a comparison between the operational and scientific GLM data sets will also be discussed.

  11. Cochlear implantation for severe sensorineural hearing loss caused by lightning.

    Science.gov (United States)

    Myung, Nam-Suk; Lee, Il-Woo; Goh, Eui-Kyung; Kong, Soo-Keun

    2012-01-01

    Lightning strike can produce an array of clinical symptoms and injuries. It may damage multiple organs and cause auditory injuries ranging from transient hearing loss and vertigo to complete disruption of the auditory system. Tympanic-membrane rupture is relatively common in patients with lightning injury. The exact pathogenetic mechanisms of auditory lesions in lightning survivors have not been fully elucidated. We report the case of a 45-year-old woman with bilateral profound sensorineural hearing loss caused by a lightning strike, who was successfully rehabilitated after a cochlear implantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. "Thunderstruck": penetrating thoracic injury from lightning strike.

    Science.gov (United States)

    van Waes, Oscar J F; van de Woestijne, Pieter C; Halm, Jens A

    2014-04-01

    Lightning strike victims are rarely presented at an emergency department. Burns are often the primary focus. This case report describes the improvised explosive device like-injury to the thorax due to lightning strike and its treatment, which has not been described prior in (kerauno)medicine. Penetrating injury due to blast from lightning strike is extremely rare. These "shrapnel" injuries should however be ruled out in all patients struck by lightning. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  13. Urban Influences on Convection and Lightning Over Houston

    National Research Council Canada - National Science Library

    Gauthier, Michael L

    2006-01-01

    The research presented in this dissertation addresses a fundamental question regarding urban, ultimately anthropogenic, influences on convection as it relates to lightning production and precipitation structure...

  14. An early record of ball lightning: Oliva (Spain), 1619

    Science.gov (United States)

    Domínguez-Castro, Fernando

    2018-05-01

    In a primary documentary source we found an early record of ball lightning (BL), which was observed in the monastery of Pi (Oliva, southeastern Spain) on 18 October 1619. The ball lightning was observed by at least three people and was described as a rolling burning vessel and a ball of fire. The ball lightning appeared following a lightning flash, showed a mainly horizontal motion, crossed a wall, smudged an image of the Lady of Rebollet (then known as Lady of Pi) and burnt her ruff, and overturned a cross.

  15. Nowcasting of Lightning-Related Accidents in Africa

    Science.gov (United States)

    Ihrlich, Laura; Price, Colin

    2016-04-01

    Tropical Africa is the world capital of thunderstorm activity with the highest density of strikes per square kilometer per year. As a result it is also the continent with perhaps the highest casualties and injuries from direct lightning strikes. This region of the globe also has little lightning protection of rural homes and schools, while many casualties occur during outdoor activities (e.g. farming, fishing, sports, etc.) In this study we investigated two lightning-caused accidents that got wide press coverage: A lightning strike to a Cheetah Center in Namibia which caused a huge fire and great destruction (16 October 2013), and a plane crash in Mali where 116 people died (24 July 2014). Using data from the World Wide Lightning Location Network (WWLLN) we show that the lightning data alone can provide important early warning information that can be used to reduce risks and damages and loss of life from lightning strikes. We have developed a now-casting scheme that allows for early warnings across Africa with a relatively low false alarm rate. To verify the accuracy of our now-cast, we have performed some statistical analysis showing relatively high skill at providing early warnings (lead time of a few hours) based on lightning alone. Furthermore, our analysis can be used in forensic meteorology for determining if such accidents are caused by lightning strikes.

  16. Doppler radar observation of thunderstorm circulation in the 1977 trip program. [triple Doppler radar network for lightning detection and ranging

    Science.gov (United States)

    Lhermitte, R. M.; Conte, D.; Pasqualucci, F.; Lennon, C.; Serafin, R. J.

    1978-01-01

    Storm data obtained on August 1, 1977 are examined in an attempt to interpret the relationship between lightning occurrence and the thunderstorm inner dynamics and precipitation processes. Horizontal maps are presented which indicated the position of radiation sources detected by the Lightning Detection and Ranging (LDAR) network, together with the horizontal motion fields and radar reflectivity data. Detailed inspection of these fields showed that, although radiation sources are found in the vicinity of precipitation cells, they are not located in the heavy precipitation areas, but rather on their rear side in regions where the configuration of the wind fields suggests the presence of updrafts.

  17. Structure of conducting channel of lightning

    International Nuclear Information System (INIS)

    Alanakyan, Yu. R.

    2013-01-01

    The spatial distribution of the plasma density in a lightning channel is studied theoretically. It is shown that the electric-field double layer is formed at the channel boundary. In this case, the electron temperature changes abruptly and ions are accelerated by the electric field of the double layer. The ion momentum flux density is close to the surrounding gas pressure. Cleaning of the channel from heavy particles occurs in particle-exchange processes between the plasma channel and the surrounding air. Hydrogen ions are accumulated inside the expanding channel from the surrounding air, which is enriched by hydrogen-contained molecules. In this case, the plasma channel is unstable and splits to a chain of equidistant bunches of plasma. The hydrogen-enrich bunches burn diffusely after recombination exhibiting the bead lightning behavior

  18. Ionospheric effects of thunderstorms and lightning

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Erin H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-03

    Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm. We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.

  19. Gigantic balloon type artificial lightning generator

    Energy Technology Data Exchange (ETDEWEB)

    Horii; kenji

    1988-09-05

    This paper outlines a hot-air balloon type Van de Graaf 50-MV generator which can generate a 50,000,000 V, 0.2 to 0.3 coulomb artificial lightning comparable to natural lightning discharge and reports the results of investigation on discharging experiments conducted using this apparatus. The subjects covered are as follows: (1) Outline of the hot-air balloon type Van de Graaf 50-MV generator, (2) electric characteristics of the Van de Graaf 50-MV generator, (3) charge transfer with film and balloon charging, (4) the load of the balloon and buoyancy calculation, (5) leakage of charges, (6) study of charging experiments, and (7) evaluation of the apparatus and its method and problems to be solved. (4 figs, 4 tabs, 4 refs)

  20. Photonuclear reactions triggered by lightning discharge.

    Science.gov (United States)

    Enoto, Teruaki; Wada, Yuuki; Furuta, Yoshihiro; Nakazawa, Kazuhiro; Yuasa, Takayuki; Okuda, Kazufumi; Makishima, Kazuo; Sato, Mitsuteru; Sato, Yousuke; Nakano, Toshio; Umemoto, Daigo; Tsuchiya, Harufumi

    2017-11-22

    Lightning and thunderclouds are natural particle accelerators. Avalanches of relativistic runaway electrons, which develop in electric fields within thunderclouds, emit bremsstrahlung γ-rays. These γ-rays have been detected by ground-based observatories, by airborne detectors and as terrestrial γ-ray flashes from space. The energy of the γ-rays is sufficiently high that they can trigger atmospheric photonuclear reactions that produce neutrons and eventually positrons via β + decay of the unstable radioactive isotopes, most notably 13 N, which is generated via 14 N + γ →  13 N + n, where γ denotes a photon and n a neutron. However, this reaction has hitherto not been observed conclusively, despite increasing observational evidence of neutrons and positrons that are presumably derived from such reactions. Here we report ground-based observations of neutron and positron signals after lightning. During a thunderstorm on 6 February 2017 in Japan, a γ-ray flash with a duration of less than one millisecond was detected at our monitoring sites 0.5-1.7 kilometres away from the lightning. The subsequent γ-ray afterglow subsided quickly, with an exponential decay constant of 40-60 milliseconds, and was followed by prolonged line emission at about 0.511 megaelectronvolts, which lasted for a minute. The observed decay timescale and spectral cutoff at about 10 megaelectronvolts of the γ-ray afterglow are well explained by de-excitation γ-rays from nuclei excited by neutron capture. The centre energy of the prolonged line emission corresponds to electron-positron annihilation, providing conclusive evidence of positrons being produced after the lightning.

  1. Lightning Protection for the Orion Space Vehicle

    Science.gov (United States)

    Scully, Robert

    2015-01-01

    The Orion space vehicle is designed to requirements for both direct attachment and indirect effects of lightning. Both sets of requirements are based on a full threat 200kA strike, in accordance with constraints and guidelines contained in SAE ARP documents applicable to both commercial and military aircraft and space vehicles. This paper describes the requirements as levied against the vehicle, as well as the means whereby the design shows full compliance.

  2. An Optical Lightning Simulator in an Electrified Cloud-Resolving Model to Prepare the Future Space Lightning Missions

    Science.gov (United States)

    Bovalo, Christophe; Defer, Eric; Pinty, Jean-Pierre

    2016-04-01

    The future decade will see the launch of several space missions designed to monitor the total lightning activity. Among these missions, the American (Geostationary Lightning Mapper - GLM) and European (Lightning Imager - LI) optical detectors will be onboard geostationary satellites (GOES-R and MTG, respectively). For the first time, the total lightning activity will be monitored over the full Earth disk and at a very high temporal resolution (2 and 1 ms, respectively). Missions like the French Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) and ISS-LIS will bring complementary information in order to better understand the lightning physics and to improve the weather prediction (nowcasting and forecasting). Such missions will generate a huge volume of new and original observations for the scientific community and weather prediction centers that have to be prepared. Moreover, before the launch of these missions, fundamental questions regarding the interpretation of the optical signal property and its relation to cloud optical thickness and lightning discharge processes need to be further investigated. An innovative approach proposed here is to use the synergy existing in the French MesoNH Cloud-Resolving Model (CRM). Indeed, MesoNH is one of the only CRM able to simulate the lifecycle of electrical charges generated within clouds through non-inductive charging process (dependent of the 1-moment microphysical scheme). The lightning flash geometry is based on a fractal law while the electrical field is diagnosed thanks to the Gauss' law. The lightning optical simulator is linked to the electrical scheme as the lightning radiance at 777.4 nm is a function of the lightning current, approximated by the charges neutralized along the lightning path. Another important part is the scattering of this signal by the hydrometeors (mainly ice particles) that is taken into account. Simulations at 1-km resolution are done over the Langmuir Laboratory (New

  3. Impact of lightning strikes on hospital functions.

    Science.gov (United States)

    Mortelmans, Luc J M; Van Springel, Gert L J; Van Boxstael, Sam; Herrijgers, Jan; Hoflacks, Stefaan

    2009-01-01

    Two regional hospitals were struck by lightning during a one-month period. The first hospital, which had 236 beds, suffered a direct strike to the building. This resulted in a direct spread of the power peak and temporary failure of the standard power supply. The principle problems, after restoring standard power supply, were with the fire alarm system and peripheral network connections in the digital radiology systems. No direct impact on the hardware could be found. Restarting the servers resolved all problems. The second hospital, which had 436 beds, had a lightning strike on the premises and mainly experienced problems due to induction. All affected installations had a cable connection from outside in one way or another. The power supplies never were endangered. The main problem was the failure of different communication systems (telephone, radio, intercom, fire alarm system). Also, the electronic entrance control went out. During the days after the lightening strike, multiple software problems became apparent, as well as failures of the network connections controlling the technical support systems. There are very few ways to prepare for induction problems. The use of fiber-optic networks can limit damage. To the knowledge of the authors, these are the first cases of lightning striking hospitals in medical literature.

  4. Aerosol indirect effects on lightning in the generation of induced NOx and tropospheric ozone over an Indian urban metropolis

    Science.gov (United States)

    Saha, Upal; Maitra, Animesh; Talukdar, Shamitaksha; Jana, Soumyajyoti

    Lightning flashes, associated with vigorous convective activity, is one of the most prominent weather phenomena in the tropical atmosphere. High aerosol loading is indirectly associated with the increase in lightning flash rates via the formation of tropospheric ozone during the pre-monsoon and monsoon over the tropics. Tropospheric ozone, an important greenhouse pollutant gas have impact on Earth’s radiation budget and play a key role in changing the atmospheric circulation patterns. Lightning-induced NOx is a primary pollutant found in photochemical smog and an important precursor for the formation of tropospheric ozone. A critical analysis is done to study the indirect effects of high aerosol loading on the formation of tropospheric ozone via lightning flashes and induced NOx formation over an urban metropolitan location Kolkata (22°32'N, 88°20'E), India during the period 2001-2012. The seasonal variation of lightning flash rates (LFR), taken from TRMM-LIS 2.5o x 2.5o gridded dataset, show that the LFR was observed to be intensified in the pre-monsoon (March-May) and high in monsoon (June-September) months over the region. Aerosol Optical Depth (AOD) at 555nm, taken from MISR 0.5o x 0.5o gridded level-3 dataset, plays an indirect effect on the increase in LFR during the pre-monsoon and monsoon months and has positive correlations between them during these periods. This is also justified from the seasonal variation of the increase in LFR due to the increase in AOD over the region during 2001-2012. The calibrated GOME and OMI/AURA satellite data analysis shows that the tropospheric ozone, formed as a result of lightning-induced NOx and due to the increased AOD at 555 nm, also increases during the pre-monsoon and monsoon months. The seasonal variation of lightning-induced tropospheric NOx, taken from SCIAMACHY observations also justified the fact that the pre-monsoon and monsoon LFR solely responsible for the generation of induced NOx over the region. The

  5. FDTD Modeling of LEMP Propagation in the Earth-Ionosphere Waveguide With Emphasis on Realistic Representation of Lightning Source

    Science.gov (United States)

    Tran, Thang H.; Baba, Yoshihiro; Somu, Vijaya B.; Rakov, Vladimir A.

    2017-12-01

    The finite difference time domain (FDTD) method in the 2-D cylindrical coordinate system was used to compute the nearly full-frequency-bandwidth vertical electric field and azimuthal magnetic field waveforms produced on the ground surface by lightning return strokes. The lightning source was represented by the modified transmission-line model with linear current decay with height, which was implemented in the FDTD computations as an appropriate vertical phased-current-source array. The conductivity of atmosphere was assumed to increase exponentially with height, with different conductivity profiles being used for daytime and nighttime conditions. The fields were computed at distances ranging from 50 to 500 km. Sky waves (reflections from the ionosphere) were identified in computed waveforms and used for estimation of apparent ionospheric reflection heights. It was found that our model reproduces reasonably well the daytime electric field waveforms measured at different distances and simulated (using a more sophisticated propagation model) by Qin et al. (2017). Sensitivity of model predictions to changes in the parameters of atmospheric conductivity profile, as well as influences of the lightning source characteristics (current waveshape parameters, return-stroke speed, and channel length) and ground conductivity were examined.

  6. Quantification and identification of lightning damage in tropical forests.

    Science.gov (United States)

    Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo

    2017-07-01

    Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the

  7. Estimates of lightning NOx production from GOME satellite observations

    Directory of Open Access Journals (Sweden)

    K. F. Boersma

    2005-01-01

    Full Text Available Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2. A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parameterizations, one relating convective preciptation (CP scheme to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parameterizations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parameterizations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal

  8. Broadband VHF observations for lightning impulses from a small satellite SOHLA-1 (Maido 1)

    Science.gov (United States)

    Morimoto, T.; Kikuchi, H.; Ushio, T.; Kawasaki, Z.; Hidekazu, H.; Aoki, T.

    2009-12-01

    Lightning Research Group of Osaka University (LRG-OU) has been developing VHF Broadband Digital Interferometer (DITF) to image precise lightning channels and monitor lightning activity widely. The feature of broadband DITF is its ultrawide bandwidth (from 25MHz to 100MHz) and implicit redundancy for estimating VHF source location. LRG-OU considers an application of the broadband DITF to the spaceborne measurement system and joins the SOHLA (Space Oriented Higashi-Osaka Leading Associate) satellite project. The SOHLA satellite project represents a technology transfer program to expand the range of the space development community in Japan. The objective is to get SMEs (Small and Medium sized manufacturing Enterprises) involved in small space projects and new space technologies. Under the cooperative agreement, JAXA (Japan Aerospace Exploration Agency) intends to contribute to socio-economic development by returning its R&D results to society, and SOHLA tries to revitalize the local economy through the commercialization of versatile small satellites. According to the agreement, JAXA provides SOHLA its technical information on small satellites and other technical assistance for the development of the small satellites, SOHLA-1. The prime objective of the SOHLA-1 program is to realize low-cost and short term development of a microsatellite which utilizes the components and bus technologies of JAXA’s MicroLabSat. SOHLA-1 is a spin-stabilized microsatellite of MicroLabSat heritage (about 50 kg). The spin axis is fixed to inertial reference frame. The spin axis (z-axis) lies in the plane containing the solar direction and the normal to the orbital plane. LRG-OU takes responsibility for a science mission of SOHLA-1. To examine the feasibility of the DITF receiving VHF lightning impulses in space, LRG-OU proposes the BMW (Broadband Measurement of Waveform for VHF Lightning Impulses). BMW consists of a single pair of an antenna, a band-pass filter, an amplifier, and an

  9. Using the VAHIRR Radar Algorithm to Investigate Lightning Cessation

    Science.gov (United States)

    Stano, Geoffrey T.; Schultz, Elise V.; Petersen, Walter A.

    2012-01-01

    Accurately determining the threat posed by lightning is a major area for improved operational forecasts. Most efforts have focused on the initiation of lightning within a storm, with far less effort spent investigating lightning cessation. Understanding both components, initiation and cessation, are vital to improving lightning safety. Few organizations actively forecast lightning onset or cessation. One such organization is the 45th Weather Squadron (45WS) for the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45WS has identified that charged anvil clouds remain a major threat of continued lightning and can greatly extend the window of a potential lightning strike. Furthermore, no discernable trend of total lightning activity has been observed consistently for all storms. This highlights the need for more research to find a robust method of knowing when a storm will cease producing lightning. Previous lightning cessation work has primarily focused on forecasting the cessation of cloud-to -ground lightning only. A more recent, statistical study involved total lightning (both cloud-to-ground and intracloud). Each of these previous works has helped the 45WS take steps forward in creating improved and ultimately safer lightning cessation forecasts. Each study has either relied on radar data or recommended increased use of radar data to improve cessation forecasts. The reasoning is that radar data is able to either directly or by proxy infer more about dynamical environment leading to cloud electrification and eventually lightning cessation. The authors of this project are focusing on a two ]step approach to better incorporate radar data and total lightning to improve cessation forecasts. This project will utilize the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm originally developed during the Airborne Field Mill II (ABFM II) research project. During the project, the VAHIRR product showed a trend of increasing

  10. A case study of lightning attachment to flat ground showing multiple unconnected upward leaders

    Science.gov (United States)

    Cummins, Kenneth L.; Krider, E. Philip; Olbinski, Mike; Holle, Ronald L.

    2018-04-01

    On 10 July 2015, a cloud-to-ground (CG) lightning flash that produced two ground terminations was photographed from inside the safety of a truck in southern New Mexico. An analysis of archived NLDN data verified that this was a two-stroke flash, and a close-up view of the first stroke shows that it also initiated at least 12 unconnected, upward leaders (or "streamers") near the ground termination. No unconnected upward leaders were seen near the second ground attachment. After combining an analysis of the photograph with information provided by the NLDN, we infer that the first stroke was of negative (normal) polarity, had modest peak current, and struck about 460 m (± 24%) from the camera. Attachment occurred when an upward-propagating positive leader reached an inferred height of about 21 m above local ground. The second stroke struck ground about 740 m from the camera, and the height of its attachment leader is estimated to be 15 m. The estimated lengths of the unconnected upward leaders in the two-dimensional (2-D) plane of the first stroke range from 2 to 8 m, and all appear to be located within 15 m (2-D) of the main ground termination, with 24% uncertainty. Many of the unconnected upward leaders (inferred to be positive) exhibit multiple upward branches, and most of those branches have upward-directed forks or splits at their ends. This is the first report showing such extensive branching for positive upward leaders in natural lightning strikes to ground. None of the upward leaders can be seen to emanate from the tops of tall, isolated, or pointed objects on the ground, but they likely begin on small plants and rocks, or flat ground. In terms of lightning safety, this photo demonstrates that numerous upward leaders can be produced near a lightning strike point and have the potential to damage or cause injury at more than one specific point on the ground.

  11. Sensors for in-flight lightning detection on aircraft

    NARCIS (Netherlands)

    Stelmashuk, V.; Deursen, van A.P.J.; Webster, M.

    2008-01-01

    Commercial passenger aircraft are on average struck by lightning once a year. The In-flight Lightning Strike Damage Assessment System (ILDAS) project is to develop and validate a prototype of a system capable of in-flight measurement of the current waveform and reconstruction of the path of

  12. Lightning, IT Diffusion and Economic Growth across US States

    DEFF Research Database (Denmark)

    Andersen, Thomas Barnebeck; Bentzen, Jeanet; Dalgaard, Carl-Johan Lars

    Empirically, a higher frequency of lightning strikes is associated with slower growth in labor productivity across the 48 contiguous US states after 1990; before 1990 there is no correlation between growth and lightning. Other climate variables (e.g., temperature, rainfall and tornadoes) do...

  13. Wind Turbine Lightning Protection Project: 1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    McNiff, B.

    2002-05-01

    A lightning protection research and support program was instituted by NREL to help minimize lightning damage to wind turbines in the United States. This paper provides the results of a field test program, an evaluation of protection on selected turbines, and a literature search as well as the dissemination of the accumulated information.

  14. Delayed Post Mortem Predation in Lightning Strike Carcasses ...

    African Journals Online (AJOL)

    Campbell Murn

    An adult giraffe was struck dead by lightning on a game farm outside. Phalaborwa, South Africa in March 2014. Interestingly, delayed post-mortem predation occurred on the carcass, which according to the farm owners was an atypical phenomenon for the region. Delayed post-mortem scavenging on lightning strike ...

  15. Reliable protection of electronics against lightning: some practical applications

    NARCIS (Netherlands)

    Laan, van der P.C.T.; Deursen, van A.P.J.

    1998-01-01

    The classical lightning conductor, which must prevent fire, has to have a sufficiently small resistance. An analogous condition can be formulated for the new challenge: the protection of sensitive electronics against lightning. In this case, the so-called transfer impedance, which gives the

  16. Lightning and 85-GHz MCSs in the Global Tropics

    Science.gov (United States)

    Toracinta, E. Richard; Zipser, E. J.

    1999-01-01

    Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.

  17. Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather

    Directory of Open Access Journals (Sweden)

    Colin Price

    2008-01-01

    Full Text Available Severe and extreme weather is a major natural hazard all over the world, oftenresulting in major natural disasters such as hail storms, tornados, wind storms, flash floods,forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence,etc. can only be observed at close distances, lightning activity in these damaging stormscan be monitored at all spatial scales, from local (using very high frequency [VHF]sensors, to regional (using very low frequency [VLF] sensors, and even global scales(using extremely low frequency [ELF] sensors. Using sensors that detect the radio wavesemitted by each lightning discharge, it is now possible to observe and track continuouslydistant thunderstorms using ground networks of sensors. In addition to the number oflightning discharges, these sensors can also provide information on lightningcharacteristics such as the ratio between intra-cloud and cloud-to-ground lightning, thepolarity of the lightning discharge, peak currents, charge removal, etc. It has been shownthat changes in some of these lightning characteristics during thunderstorms are oftenrelated to changes in the severity of the storms. In this paper different lightning observingsystems are described, and a few examples are provided showing how lightning may beused to monitor storm hazards around the globe, while also providing the possibility ofsupplying short term forecasts, called nowcasting.

  18. 14 CFR 25.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 25.954...

  19. 14 CFR 27.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 27.954...

  20. 14 CFR 29.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 29.954...

  1. Assimilation of Long-Range Lightning Data over the Pacific

    Science.gov (United States)

    2011-09-30

    convective rainfall analyses over the Pacific, and (iii) to improve marine prediction of cyclogenesis of both tropical and extratropical cyclones through...data over the North Pacific Ocean, refine the relationships between lightning and storm hydrometeor characteristics, and assimilate lightning...unresolved storm -scale areas of deep convection over the data-sparse open oceans. Diabatic heating sources, especially latent heat release in deep

  2. Designing concept on lightning protection of overhead power distribution line

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shigeru [Central Research Institute of Electric Power Industry, Kanagawa-ken (Japan)], E-mail: yokoyama@criepi.denken.or.jp

    2007-07-01

    The principle is shown for lightning protection of power distribution lines taking the effects of surge arresters, overhead ground wires and their combined use into consideration. Moreover an outline of a rational design method targeting direct lightning hits, induced over voltages and back flow currents from high structures. (author)

  3. Lightning characteristics of derecho producing mesoscale convective systems

    Science.gov (United States)

    Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.

    2016-06-01

    Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.

  4. Calculation of transient potential rise on the wind turbine struck by lightning.

    Science.gov (United States)

    Xiaoqing, Zhang

    2014-01-01

    A circuit model is proposed in this paper for calculating the transient potential rise on the wind turbine struck by lightning. The model integrates the blade, sliding contact site, and tower and grounding system of the wind turbine into an equivalent circuit. The lightning current path from the attachment point to the ground can be fully described by the equivalent circuit. The transient potential responses are obtained in the different positions on the wind turbine by solving the circuit equations. In order to check the validity of the model, the laboratory measurement is made with a reduced-scale wind turbine. The measured potential waveform is compared with the calculated one and a better agreement is shown between them. The practical applicability of the model is also examined by a numerical example of a 2 MW Chinese-built wind turbine.

  5. The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions

    Science.gov (United States)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A self consistent and fully kinetic simulation of the interaction of lightning radiated electromagnetic (EM) pulses with the nighttime lower ionosphere indicates that optical emissions observable with conventional instruments would be excited. For example, emissions of the 1st and 2nd positive bands of N2 occur at rates reaching 7 x 10(exp 7) and 10(exp 7) cu cm/s respectively at 92 km altitude for a lightning discharge with an electric field E(sub 100) = 20 V/m (normalized to a 100 km distance). The maximum height integrated intensities of these emissions are 4 x 10(exp 7) and 6 x 10(exp 6) R respectively, lasting for approx. 50 micrometers.

  6. Mechanisms and effects of lightning current coupling to structures

    International Nuclear Information System (INIS)

    Foboda, Marek

    1999-01-01

    To evaluate the effects of a lightning discharge on a structure, it is necessary to know the modes of interaction of lightning electromagnetic field pulses to structures. The effects to these interactions are considered by means to the concept to equivalent collection areas. The equations to calculate the distance and equivalent collection areas due to lightning discharges are given in this article. Additionally, the possible modes of a direct lightning strike to the incoming line and the equations to calculate the resultant over voltages are also given. This article ends with the calculation of voltage drops due to direct and nearby lightning strike and induced voltages due to magnetic coupling. Several examples of calculations of the different mentioned cases are given

  7. Regulatory Guidance for Lightning Protection in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kisner, Roger A.; Wilgen, John B.; Ewing, Paul D.; Korsah, Kofi; Antonescu, Christina E.

    2006-01-01

    Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

  8. The Effect of a Corona Discharge on a Lightning Attachment

    International Nuclear Information System (INIS)

    Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.

    2005-01-01

    The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strike to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed

  9. Katrina and Rita were lit up with lightning

    Science.gov (United States)

    Shao, X.-M.; Harlin, J.; Stock, M.; Stanley, M.; Regan, A.; Wiens, K.; Hamlin, T.; Pongratz, M.; Suszcynsky, D.; Light, T.

    Hurricanes generally produce very little lightning activity compared to other noncyclonic storms, and lightning is especially sparse in the eye wall and inner regions within tens of kilometers surrounding the eye [Molinari et al., 1994, 1999]. (The eye wall is the wall of clouds that encircles the eye of the hurricane.) Lightning can sometimes be detected in the outer, spiral rainbands, but the lightning occurrence rate varies significantly from hurricane to hurricane as well as within an individual hurricane's lifetime.Hurricanes Katrina and Rita hit the U.S. Gulf coasts of Louisiana, Mississippi, and Texas, and their distinctions were not just limited to their tremendous intensity and damage caused. They also differed from typical hurricanes in their lightning production rate.

  10. Smart CMOS image sensor for lightning detection and imaging.

    Science.gov (United States)

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  11. Seasonal and Local Characteristics of Lightning Outages of Power Distribution Lines in Hokuriku Area

    Science.gov (United States)

    Sugimoto, Hitoshi; Shimasaki, Katsuhiko

    The proportion of the lightning outages in all outages on Japanese 6.6kV distribution lines is high with approximately 20 percent, and then lightning protections are very important for supply reliability of 6.6kV lines. It is effective for the lightning performance to apply countermeasures in order of the area where a large number of the lightning outages occur. Winter lightning occurs in Hokuriku area, therefore it is also important to understand the seasonal characteristics of the lightning outages. In summer 70 percent of the lightning outages on distribution lines in Hokuriku area were due to sparkover, such as power wire breakings and failures of pole-mounted transformers. However, in winter almost half of lightning-damaged equipments were surge arrester failures. The number of the lightning outages per lightning strokes detected by the lightning location system (LLS) in winter was 4.4 times larger than that in summer. The authors have presumed the occurrence of lightning outages from lightning stroke density, 50% value of lightning current and installation rate of lightning protection equipments and overhead ground wire by multiple regression analysis. The presumed results suggest the local difference in the lightning outages.

  12. 30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning protection for telephone wires and... NONMETAL MINES Electricity § 56.12069 Lightning protection for telephone wires and ungrounded conductors... lightning shall be equipped with suitable lightning arrestors of approved type within 100 feet of the point...

  13. 30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and... exposed to lightning shall be equipped with suitable lightning arrestors of approved type within 100 feet...

  14. Simulation study on the lightning overvoltage invasion control transformer intelligent substation

    Science.gov (United States)

    Xi, Chuyan; Hao, Jie; Zhang, Ying

    2018-04-01

    By simulating lightning on substation line of one intelligent substation, research the influence of different lightning points on lightning invasion wave overvoltage, and the necessity of arrester for the main transformer. The results show, in a certain lightning protection measures, the installation of arrester nearby the main transformer can effectively reduce the overvoltage value of bus and the main transformer [1].

  15. The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning

    Science.gov (United States)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.; hide

    2014-01-01

    for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.

  16. Thundercloud electrodynamics and its influence on high-energy radiation enhancements and lightning initiation

    International Nuclear Information System (INIS)

    Mareev, E.A.; Iudin, D.I.; Rakov, V.A.; Kostinskiy, A.Yu.; Syssoev, V.S.

    2016-01-01

    We analyze multi-scale dynamics of thunderstorm electric structure as related to high-energy radiation enhancements and lightning initiation. First, we review experimental data on the multi-layer charge structure of thunderstorm clouds. A special attention is paid to the lower positive charge region (LPCR) and its possible effects on the development of CG and IC discharges and thunderstorm ground enhancements (TGEs). Based on the graph theory, we have developed a fractal simulation code to examine the occurrence of lightning flashes of different type as a function of the cloud charge structure. We show in particular that presence of relatively intense lower positive charge region prevents the occurrence of negative CG flashes by ”blocking” the progression of descending negative leader from reaching ground. Further, based on our recent observations of electrical discharges in the artificial cloud of charged water droplets, we present the description of a complex hierarchical network of interacting channels at different stages of development (some of which are hot and live for milliseconds), which can possibly be considered as a missing link in the still poorly understood lightning initiation process. (author)

  17. On the Relationship between Observed NLDN Lightning Strikes and Modeled Convective Precipitation Rates Parameterization of Lightning NOx Production in CMAQ

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  18. A lightning climatology of the South-West Indian Ocean

    Directory of Open Access Journals (Sweden)

    C. Bovalo

    2012-08-01

    Full Text Available The World Wide Lightning Location Network (WWLLN data have been used to perform a lightning climatology in the South-West Indian Ocean (SWIO region from 2005 to 2011. Maxima of lightning activity were found in the Maritime Continent and southwest of Sri Lanka (>50 fl km−2 yr−1 but also over Madagascar and above the Great Lakes of East Africa (>10–20 fl km−2 yr−1. Lightning flashes within tropical storms and tropical cyclones represent 50 % to 100 % of the total lightning activity in some oceanic areas of the SWIO (between 10° S and 20° S.

    The SWIO is characterized by a wet season (November to April and a dry season (May to October. As one could expect, lightning activity is more intense during the wet season as the Inter Tropical Convergence Zone (ITCZ is present over all the basin. Flash density is higher over land in November–December–January with values reaching 3–4 fl km−2 yr−1 over Madagascar. During the dry season, lightning activity is quite rare between 10° S and 25° S. The Mascarene anticyclone has more influence on the SWIO resulting in shallower convection. Lightning activity is concentrated over ocean, east of South Africa and Madagascar.

    A statistical analysis has shown that El Niño–Southern Oscillation mainly modulates the lightning activity up to 56.8% in the SWIO. The Indian Ocean Dipole has a significant contribution since ~49% of the variability is explained by this forcing in some regions. The Madden–Julian Oscillation did not show significative impact on the lightning activity in our study.

  19. Using cloud ice flux to parametrise large-scale lightning

    Directory of Open Access Journals (Sweden)

    D. L. Finney

    2014-12-01

    Full Text Available Lightning is an important natural source of nitrogen oxide especially in the middle and upper troposphere. Hence, it is essential to represent lightning in chemistry transport and coupled chemistry–climate models. Using ERA-Interim meteorological reanalysis data we compare the lightning flash density distributions produced using several existing lightning parametrisations, as well as a new parametrisation developed on the basis of upward cloud ice flux at 440 hPa. The use of ice flux forms a link to the non-inductive charging mechanism of thunderstorms. Spatial and temporal distributions of lightning flash density are compared to tropical and subtropical observations for 2007–2011 from the Lightning Imaging Sensor (LIS on the Tropical Rainfall Measuring Mission (TRMM satellite. The well-used lightning flash parametrisation based on cloud-top height has large biases but the derived annual total flash density has a better spatial correlation with the LIS observations than other existing parametrisations. A comparison of flash density simulated by the different schemes shows that the cloud-top height parametrisation has many more instances of moderate flash densities and fewer low and high extremes compared to the other parametrisations. Other studies in the literature have shown that this feature of the cloud-top height parametrisation is in contrast to lightning observations over certain regions. Our new ice flux parametrisation shows a clear improvement over all the existing parametrisations with lower root mean square errors (RMSEs and better spatial correlations with the observations for distributions of annual total, and seasonal and interannual variations. The greatest improvement with the new parametrisation is a more realistic representation of the zonal distribution with a better balance between tropical and subtropical lightning flash estimates. The new parametrisation is appropriate for testing in chemistry transport and chemistry

  20. Lighting Observations During the Mt. Augustine Volcanic Eruptions With the Portable Lightning Mapping Stations

    Science.gov (United States)

    Rison, W.; Krehbiel, P.; Thomas, R.; Edens, H.; Aulich, G.; O'Connor, N.; Kieft, S.; McNutt, S.; Tytgat, G.; Clark, E.

    2006-12-01

    and reflected signals from the water surface. A clear pattern of interference fringes was observed for the strongest lightning event during the explosive phase and has shown that it was an upward-triggered discharge that propagated upward from Augustine's summit and into the downwind plume. The radiation sources were characteristic of negative polarity breakdown into inferred positive charge in the plume. None of the lightning activity from the January~27-28 eruptions was observed visually due to stormy weather conditions.

  1. A proposed experiment on ball lightning model

    International Nuclear Information System (INIS)

    Ignatovich, Vladimir K.; Ignatovich, Filipp V.

    2011-01-01

    Highlights: → We propose to put a glass sphere inside an excited gas. → Then to put a light ray inside the glass in a whispering gallery mode. → If the light is resonant to gas excitation, it will be amplified at every reflection. → In ms time the light in the glass will be amplified, and will melt the glass. → A liquid shell kept integer by electrostriction forces is the ball lightning model. -- Abstract: We propose an experiment for strong light amplification at multiple total reflections from active gaseous media.

  2. Determining Polarities Of Distant Lightning Strokes

    Science.gov (United States)

    Blakeslee, Richard J.; Brook, Marx

    1990-01-01

    Method for determining polarities of lightning strokes more than 400 km away. Two features of signal from each stroke correlated. New method based on fact each stroke observed thus far for which polarity determined unambiguously, initial polarity of tail same as polarity of initial deflection before initial-deflection signal altered by propagation effects. Receiving station equipped with electric-field-change antenna coupled to charge amplifier having time constant of order of 1 to 10 seconds. Output of amplifier fed to signal-processing circuitry, which determines initial polarity of tail.

  3. A Study of Lightning Protection Systems

    Science.gov (United States)

    1981-10-01

    from lightning, we must bear in mind that it does not follow the law of electric currents such as we are familiar with or those we read about as...radius equal to twice its height. Later on Guy Lussac Introduced M. Charles’ single cone--ie, a similar cone having a base with a radius equal to...or nforms with orrect. Th required d preservatio 1901 two mention the ned. Dr. of Science, Guy Lussac curity, but less good the e means

  4. Lightning Physics: A Three Year Program

    Science.gov (United States)

    1983-01-01

    because these aircraft are controlled poeal’ r r o(z’, I- RIC) with low-voltage digital electronics and are in part construct- 4w J(,3 cR "*t • at ed of... millise - limits pretrigger and delayed-trigger mode,. and a variety of sample conds, and hundreds of microseconds, respectively, the time of simple...processes, but we feel it prudent to discontinue use of the Proctor, D. E., A radio study of lightning, Ph.D. thesis , Univ. of designations in order

  5. Stock returns and foreign investment in Brazil

    OpenAIRE

    Reis, Luciana; Meurer, Roberto; Da Silva, Sergio

    2008-01-01

    We examine the relationship between stock returns and foreign investment in Brazil, and find that the inflows of foreign investment boosted the returns from 1995 to 2005. There was a strong contemporaneous correlation, although not Granger-causality. Foreign investment along with the exchange rate, the influence of the world stock markets, and country risk can explain 73 percent of the changes that occurred in the stock returns over the period. We also find that positive feedback trading play...

  6. Predictability of Stock Returns

    Directory of Open Access Journals (Sweden)

    Ahmet Sekreter

    2017-06-01

    Full Text Available Predictability of stock returns has been shown by empirical studies over time. This article collects the most important theories on forecasting stock returns and investigates the factors that affecting behavior of the stocks’ prices and the market as a whole. Estimation of the factors and the way of estimation are the key issues of predictability of stock returns.

  7. International Aerospace and Ground Conference on Lightning and Static Electricity (8th): Lightning Technology Roundup, held at Fort Worth, Texas on 21-23 June 1983.

    Science.gov (United States)

    1983-06-01

    with earth or an proposed by Joseph Louis Gay- Lussac object on it is then: (of gas- law fame) in 1823. He defined the protected volume to be a cylinder Fg...0 ED 30 A4S E a 70 so go IME ow TNM OW0 𔃻- ... 10618 11M. law ~ 10 0Ff lows rREOUMNCY INXI PREQUENMY ig) Figure 2 - LIGHTNING WAVE FORM The "initial...diverei- physical law which makes even mobile fied over the last 48 years. It negative (or positive) cloud charges includes in essence also the

  8. The Evolution and Structure of Extreme Optical Lightning Flashes.

    Science.gov (United States)

    Peterson, Michael; Rudlosky, Scott; Deierling, Wiebke

    2017-12-27

    This study documents the composition, morphology, and motion of extreme optical lightning flashes observed by the Lightning Imaging Sensor (LIS). The furthest separation of LIS events (groups) in any flash is 135 km (89 km), the flash with the largest footprint had an illuminated area of 10,604 km 2 , and the most dendritic flash has 234 visible branches. The longest-duration convective LIS flash lasted 28 s and is overgrouped and not physical. The longest-duration convective-to-stratiform propagating flash lasted 7.4 s, while the longest-duration entirely stratiform flash lasted 4.3 s. The longest series of nearly consecutive groups in time lasted 242 ms. The most radiant recorded LIS group (i.e., "superbolt") is 735 times more radiant than the average group. Factors that impact these optical measures of flash morphology and evolution are discussed. While it is apparent that LIS can record the horizontal development of the lightning channel in some cases, radiative transfer within the cloud limits the flash extent and level of detail measured from orbit. These analyses nonetheless suggest that lightning imagers such as LIS and Geostationary Lightning Mapper can complement ground-based lightning locating systems for studying physical lightning phenomena across large geospatial domains.

  9. Extensive air showers, lightnings and thunderstorm ground enhancements

    International Nuclear Information System (INIS)

    Chilingarian, A.; Hovsepyan, G.; Kozliner, L.

    2016-01-01

    For the lightning research, we monitor the particle fluxes from thunderclouds, the so called Thunderstorm Ground Enhancements (TGEs) initiated by the runaway electrons, and Extensive Air Showers (EASs) originated from high energy protons or fully stripped nuclei that enter the Earth’s atmosphere. Besides, we monitor the near-surface electric field and the atmospheric discharges with the help of a network of electric field mills. The Aragats “electron accelerator” produced plenty of TGE and lightning events in spring 2015. Using 1-sec time series, we investigated the relation of lightnings and particle fluxes. Lightning flashes often terminated the particle flux; during some of TGEs the lightning would terminate the particle flux 3 times after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of TGE or on the decay phase of it; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just on a maximum of its development. We discuss the possibility that a huge EAS facilitates lightning leader to find its path to the ground. (author)

  10. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  11. Sources and components of ball lightning theory

    Science.gov (United States)

    Nikitin, A. I.; Bychkov, V. L.; Nikitina, T. F.; Velichko, A. M.; Abakumov, V. I.

    2018-03-01

    The article describes the cases when ball lightning (BL) exhibited an extremely high specific energy store (up to 1010 J/m3), a presence of uncompensated electric charge (up to 10‑3 C) and an ability to generate high frequency pulses (up to 10 MW). It is shown that the realization of a combination of these properties of BL is possible if to consider it as a heterogeneous system consisting of a unipolarly charged core and a dielectric shell. In the electric field of the core charge, arises a force owing to the polarization of the shell that opposes the Coulomb repulsion force of the charges. BL models constructed according to the indicated principle are described: the electrodynamic model and the chemical-thermal model, which treats BL as a hollow sphere filled with steam. The requirement to take into account the main three properties of BL makes it possible to reduce the number of models of this natural phenomenon. Detailed cases of observations of high-energy lightning are analyzed.

  12. Abnormal Returns and Contrarian Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Dall'Agnol

    2003-12-01

    Full Text Available We test the hypothesis that strategies which are long on portfolios of looser stocks and short on portfolios of winner stocks generate abnormal returns in Brazil. This type of evidence for the US stock market was interpreted by The Bondt and Thaler (1985 as reflecting systematic evaluation mistakes caused by investors overreaction to news related to the firm performance. We found evidence of contrarian strategies profitability for horizons from 3 months to 3 years in a sample of stock returns from BOVESPA and SOMA from 1986 to 2000. The strategies are more profitable for shorter horizons. Therefore, there was no trace of the momentum effect found by Jagadeesh and Titman (1993 for the same horizons with US data. There are remaing unexplained positive returns for contrarian strategies after accounting for risk, size, and liquidity. We also found that the strategy profitability is reduced after the Real Plan, which suggests that the Brazilian stock market became more efficient after inflation stabilization.

  13. Effects of Lightning and Other Meteorological Factors on Fire Activity in the North American Boreal Forest: Implications for Fire Weather Forecasting

    Science.gov (United States)

    Peterson, D.; Wang, J.; Ichoku, C.; Remer, L. A.

    2010-01-01

    The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-kin gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above 5700m and CAPE values are near the maximum

  14. Properties of Lightning Strike Protection Coatings

    Science.gov (United States)

    Gagne, Martin

    Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity

  15. Post-Mortem Projections: Medieval Mystical Resurrection and the Return of Tupac Shakur

    OpenAIRE

    Spencer-Hall, Alicia

    2012-01-01

    Medieval hagiographies abound with tales of post-mortem visits and miracles by saints. The saint was a powerful religious individual both in life and in death, a conduit of divine grace and lightning rod for Christian fervour. With her post-mortem presence, the presumptive boundary between living and dead, spirit and flesh, is rent apart: showing the reality of the hereafter and shattering the fantasies of the mortal world. The phenomenon of a glorified individual returning to a worshipful co...

  16. Post-Mortem Projections: Medieval Mystical Resurrection and the Return of Tupac Shakur

    OpenAIRE

    Spencer-Hall, A.

    2012-01-01

    Medieval hagiographies abound with tales of post-mortem visits and miracles by saints. The saint was a powerful religious individual both in life and in death, a conduit of divine grace and lightning rod for Christian fervour. With her post-mortem presence, the presumptive boundary between living and dead, spirit and flesh, is rent apart: showing the reality of the hereafter and shattering the fantasies of the mortal world. The phenomenon of a glorified individual returning to ...

  17. Lightning protection of flap system for wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Madsen, Søren Find

    of insulating, semi-conductive and conductive materials in their structure. For this reason, the installation of a CRTEF in a blade requires a careful assessment of risks related to lightning strikes. The study of the lightning effects in the CRTEF system comprised the analysis of the discharge attachment......, the current transmission, including the study of the induced electromagnetic fields, and the effects of degradation of the flap material due to the exposure to the lightning high electric fields. The main tools for this analysis were the simulation by the finite elements method and testing in the high voltage...

  18. Remarkable rates of lightning strike mortality in Malawi.

    Science.gov (United States)

    Mulder, Monique Borgerhoff; Msalu, Lameck; Caro, Tim; Salerno, Jonathan

    2012-01-01

    Livingstone's second mission site on the shore of Lake Malawi suffers very high rates of consequential lightning strikes. Comprehensive interviewing of victims and their relatives in seven Traditional Authorities in Nkhata Bay District, Malawi revealed that the annual rate of consequential strikes was 419/million, more than six times higher than that in other developing countries; the rate of deaths from lightning was 84/million/year, 5.4 times greater than the highest ever recorded. These remarkable figures reveal that lightning constitutes a significant stochastic source of mortality with potential life history consequences, but it should not deflect attention away from the more prominent causes of mortality in this rural area.

  19. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    International Nuclear Information System (INIS)

    Peer, J.; Kendl, A.

    2010-01-01

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  20. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Peer, J. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Kendl, A., E-mail: alexander.kendl@uibk.ac.a [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria)

    2010-06-28

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  1. Integration of Lightning- and Human-Caused Wildfire Occurrence Models

    DEFF Research Database (Denmark)

    Vilar, Lara; Nieto Solana, Hector; Martín, M. Pilar

    2010-01-01

    Fire risk indices are useful tools for fire prevention actions by fire managers. A fire ignition is either the result of lightning or human activities. In European Mediterranean countries most forest fires are due to human activities. However, lightning is still an important fire ignition source...... probability models at 1 × 1 km grid cell resolution in two regions of Spain: Madrid, which presents a high fire incidence due to human activities; and Aragón, one of the most affected regions in Spain by lightning-fires. For validation, independent fire ignition points were used to compute the Receiver...

  2. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    Science.gov (United States)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  3. Electrostatic protection of the solar power satellite and rectenna. Part 2: Lightning protection of the rectenna

    Science.gov (United States)

    1980-01-01

    Computer simulations and laboratory tests were used to evaluate the hazard posed by lightning flashes to ground on the Solar Power Satellite rectenna and to make recommendations on a lightning protection system for the rectenna. The distribution of lightning over the lower 48 of the continental United States was determined, as were the interactions of lightning with the rectenna and the modes in which those interactions could damage the rectenna. Lightning protection was both required and feasible. Several systems of lightning protection were considered and evaluated. These included two systems that employed lightning rods of different lengths and placed on top of the rectenna's billboards and a third, distribution companies; it consists of short lightning rods all along the length of each billboard that are connected by a horizontal wire above the billboard. The distributed lightning protection system afforded greater protection than the other systems considered and was easier to integrate into the rectenna's structural design.

  4. Characteristics of Lightning within Electrified Snowfall Events using Total Lightning Measurements

    Science.gov (United States)

    Schultz, C. J.; Bruning, E. C.; Lang, T. J.; Kuhlman, K. M.

    2015-12-01

    Lightning within heavy snowfall indicates the presence of heavy snowfall rates. Most studies within the literature examine this phenomenon using ground based networks that are primarily designed for identifying cloud to ground flashes. Thus, very little study of the three dimensional structure of the lightning flashes within heavy snowfall has been accomplished. Herein, total lightning mapping arrays, interferometers and ground based networks like the National Lightning Detection Network (NLDN) are utilized to document the characteristics of these flashes, including flash size, polarity, flash initiation location and inferred charge structure. A total of six events are examined, resulting in a total of approximately 80 flashes. Both individual case studies and overall population statistics will be used to characterize flashes within this winter environment. Many of these flashes are found to initiate from tall objects like television and radio communication towers, and come to ground in multiple locations along their path, resulting in one LMA derived flash containing multiple NLDN identified flashes. Cloud-to-ground flashes of both polarities are noted within the 80 flash sample. In one case, 3 separate flashes which resulted in ground flashes of both polarities were observed coming out of the same overall charge structure. This structure exhibited a highly sloped nature in the LMA data from east to west, and both +IC and -IC components of flashes were observed by the NLDN in the same region where the flashes initiated. A decrease in flash size is noted with time in at least three of these events due to weaker updraft (compared to their summertime thunderstorm counter parts) and smaller available of supercooled liquid water as inferred through trends in radar observations. These limiting factors are hypothesized to result in slower charging rates, and smaller flash sizes with time. Several flashes also exhibit sloped structures that match reflectivity

  5. Lightning related fatalities in livestock: veterinary expertise and the added value of lightning location data.

    Science.gov (United States)

    Vanneste, E; Weyens, P; Poelman, D R; Chiers, K; Deprez, P; Pardon, B

    2015-01-01

    Although lightning strike is an important cause of sudden death in livestock on pasture and among the main reasons why insurance companies consult an expert veterinarian, scientific information on this subject is limited. The aim of the present study was to provide objective information on the circumstantial evidence and pathological findings in lightning related fatalities (LRF), based on a retrospective analysis of 410 declarations, examined by a single expert veterinarian in Flanders, Belgium, from 1998 to 2012. Predictive logistic models for compatibility with LRF were constructed based on anamnestic, environmental and pathological factors. In addition, the added value of lightning location data (LLD) was evaluated. Pathognomonic singe lesions were present in 84/194 (43%) confirmed reports. Factors which remained significantly associated with LRF in the multivariable model were age, presence of a tree or open water in the near surroundings, tympany and presence of feed in the oral cavity at the time of investigation. This basic model had a sensitivity (Se) of 53.8% and a specificity (Sp) of 88.2%. Relying only on LLD to confirm LRF in livestock resulted in a high Se (91.3%), but a low Sp (41.2%), leading to a high probability that a negative case would be wrongly accepted as an LRF. The best results were obtained when combining the model based on the veterinary expert investigation (circumstantial evidence and pathological findings), together with the detection of cloud-to-ground (CG) lightning at the time and location of death (Se 89.1%; Sp 66.7%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Even a single case of lightning damage is one too many; Jeder Fall ist ein Fall zu viel

    Energy Technology Data Exchange (ETDEWEB)

    Ruediger, Ariane

    2010-07-01

    Lightning and overvoltage protection is an established technology, but there still problems when it comes to details. Faulty installation is one reason for lightning incidents, but there is also the problem of internal lightning protection. (orig.)

  7. Calculating the electron temperature in the lightning channel by continuous spectrum

    Science.gov (United States)

    Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN

    2017-12-01

    Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.

  8. CAMEX-4 ER-2 LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 Lightning Instrument Package (LIP) dataset was collected by the ER-2 LIP, which allows the vector components of the electric field (i.e, Ex, Ey, Ez...

  9. A Probabilistic, Facility-Centric Approach to Lightning Strike Location

    Science.gov (United States)

    Huddleston, Lisa L.; Roeder, William p.; Merceret, Francis J.

    2012-01-01

    A new probabilistic facility-centric approach to lightning strike location has been developed. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collisionith spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.

  10. TCSP ER-2 LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TCSP ER-2 Lightning Instrument Package (LIP) consists of 7 rotating vane type electric field sensors and a two channel conductivity probe along with a central...

  11. Ball lightning as a route to fusion energy

    International Nuclear Information System (INIS)

    Roth, J.R.

    1989-01-01

    The reality of ball lightning is attested to by observations reported in surveys of large populations, which are the subject of several books. These observations indicate that its characteristics may be relevant to fusion energy applications. Ball lightning can have a diameter up to several meters, a lifetime of over 100 seconds, an energy content in excess of 10 megajoules, and an energy density and a kinetic pressure greater than that of a reacting DT plasma. This paper reviews some of the properties of ball lightning which commend it to the attention of the fusion community, and it discusses some potential advantages and applications of ball lightning fusion reactors. 11 refs., 6 figs., 1 tab

  12. The Distribution of Lightning Channel Lengths in Northern Alabama Thunderstorms

    Science.gov (United States)

    Peterson, H. S.; Koshak, W. J.

    2010-01-01

    Lightning is well known to be a major source of tropospheric NOx, and in most cases is the dominant natural source (Huntreiser et al 1998, Jourdain and Hauglustaine 2001). Production of NOx by a segment of a lightning channel is a function of channel segment energy density and channel segment altitude. A first estimate of NOx production by a lightning flash can be found by multiplying production per segment [typically 104 J/m; Hill (1979)] by the total length of the flash s channel. The purpose of this study is to determine average channel length for lightning flashes near NALMA in 2008, and to compare average channel length of ground flashes to the average channel length of cloud flashes.

  13. An experiment on a ball-lightning model

    International Nuclear Information System (INIS)

    Ignatovich, F.V.; Ignatovich, V.K.

    2010-01-01

    We discuss total internal reflection (TIR) from an interface between glass and gainy gaseous media and propose an experiment for strong light amplification related to investigation of a ball-lightning model

  14. Effects of Lightning Injection on Power-MOSFETs

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightning induced damage is one of the major concerns in aircraft health monitoring. Such short-duration high voltages can cause significant damage to electronic...

  15. Electromagnetic computation methods for lightning surge protection studies

    CERN Document Server

    Baba, Yoshihiro

    2016-01-01

    This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell's equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of e...

  16. Chemical Safety Alert: Lightning Hazard to Facilities Handling Flammable Substances

    Science.gov (United States)

    Raises awareness about lightning strikes, which cause more death/injury and damage than all other environmental elements combined, so industry can take proper precautions to protect equipment and storage or process vessels containing flammable materials.

  17. CAMEX-3 LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The ER-2 Lightning Instrument Package (LIP) allows the vector components of the electric field (i.e, Ex,Ey, Ez )to be readily obtained, and thus, greatly improves...

  18. Effects of Lightning Injection on Power-MOSFETs

    Science.gov (United States)

    Celaya, Jose; Saha, Sankalita; Wysocki, Phil; Ely, Jay; Nguyen, Truong; Szatkowski, George; Koppen, Sandra; Mielnik, John; Vaughan, Roger; Goebel, Kai

    2009-01-01

    Lightning induced damage is one of the major concerns in aircraft health monitoring. Such short-duration high voltages can cause significant damage to electronic devices. This paper presents a study on the effects of lightning injection on power metal-oxide semiconductor field effect transistors (MOSFETs). This approach consisted of pin-injecting lightning waveforms into the gate, drain and/or source of MOSFET devices while they were in the OFF-state. Analysis of the characteristic curves of the devices showed that for certain injection modes the devices can accumulate considerable damage rendering them inoperable. Early results demonstrate that a power MOSFET, even in its off-state, can incur considerable damage due to lightning pin injection, leading to significant deviation in its behavior and performance, and to possibly early device failures.

  19. Lightning protection of oil and gas industrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Bouquegneau, Christian [Polytechnical University of Mons (Belgium)

    2007-07-01

    The paper brings some cases and presents the general principles, what the IEC 62305 international standard says, the warning and avoidance and the conclusion about lightning protection of oil and gas industrial plants.

  20. Anti-lightning design of nuclear power plant

    International Nuclear Information System (INIS)

    1992-01-01

    This rule takes for granted the observance of conventional regulations, i.e. the building codes of the federal states, accident prevention regulations, DIN standards and VDE-regulations. It defines additional requirements to be met by external and internal lightning protection. These requirements have to be defined in a way that effects on electrical equipment due to lightning stroke do not entail inadmissible impairment. (orig.) [de

  1. Practical Approach on Lightning and Grounding Protection System

    OpenAIRE

    Shan Jose Varghese

    2015-01-01

    Lightning Protection and Grounding of Electrical and Mechanical equipment’s for the Protection of the Human Beings, Structure of the building and equipment protection, safe working of the Worker at Industry as per my latest practical knowledge in the site environment in extreme climatic condition of low lying areas of the Gulf Region in the challenging projects. All the conductor calculation, Lightning Risk Factor calculations, all the system information regarding the ...

  2. Lightning-Sensor Data Help In Understanding Thunderstorms

    Science.gov (United States)

    Goodman, Steven J.

    1992-01-01

    NASA technical memorandum discusses research on use of data from network of ground-based magnetic direction-finding ground-strike lightning sensors to diagnose and predict occurrence and evolution of thunderstorms. Purposes of study to explore applicability and limitations of extrapolation techniques used to generate forecasts from data; to examine physically-based, nonlinear mathematical models for applicability to lightning-forecast problem; and to determine valid extrapolation ranges of such models for various weather scenarios.

  3. Lightning protection scheme for the CPRF/ZTH system complex

    International Nuclear Information System (INIS)

    Konkel, H.

    1987-01-01

    This paper describes some of the background in the design and the lightning protection and grounding scheme recommended for the CPRF/ZTH system at the Los Alamos Laboratory. Standard power industry practices were applied to minimize the effect on both the system and personnel of a high magnitude, direct lightning discharge in the CPRF/ZTH area. The recommended scheme is in compliance with existing local and national electric and safety codes. 7 refs., 3 figs

  4. Anti-lightning design of nuclear power plant

    International Nuclear Information System (INIS)

    1989-01-01

    This rule takes for granted the observance of conventional regulations, i.e. the building codes of the federal states, accident prevention regulations, DIN standards and VDE-regulations. It defines additional requirements to be met by external and internal lightning protection. These requirements have to be defined in a way that effects on electrical equipment due to lightning stroke do not entail inadmissible impairment. (orig./HP) [de

  5. Lightning Discharges, Cosmic Rays and Climate

    Science.gov (United States)

    Kumar, Sanjay; Siingh, Devendraa; Singh, R. P.; Singh, A. K.; Kamra, A. K.

    2018-03-01

    The entirety of the Earth's climate system is continuously bombarded by cosmic rays and exhibits about 2000 thunderstorms active at any time of the day all over the globe. Any linkage among these vast systems should have global consequences. Numerous studies done in the past deal with partial links between some selected aspects of this grand linkage. Results of these studies vary from weakly to strongly significant and are not yet complete enough to justify the physical mechanism proposed to explain such links. This review is aimed at presenting the current understanding, based on the past studies on the link between cosmic ray, lightning and climate. The deficiencies in some proposed links are pointed out. Impacts of cosmic rays on engineering systems and the possible effects of cosmic rays on human health are also briefly discussed. Also enumerated are some problems for future work which may help in developing the grand linkage among these three vast systems.

  6. Predictable return distributions

    DEFF Research Database (Denmark)

    Pedersen, Thomas Quistgaard

    trace out the entire distribution. A univariate quantile regression model is used to examine stock and bond return distributions individually, while a multivariate model is used to capture their joint distribution. An empirical analysis on US data shows that certain parts of the return distributions......-of-sample analyses show that the relative accuracy of the state variables in predicting future returns varies across the distribution. A portfolio study shows that an investor with power utility can obtain economic gains by applying the empirical return distribution in portfolio decisions instead of imposing...

  7. Situational Lightning Climatologies for Central Florida: Phase IV

    Science.gov (United States)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-,20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  8. Accident scenarios triggered by lightning strike on atmospheric storage tanks

    International Nuclear Information System (INIS)

    Necci, Amos; Argenti, Francesca; Landucci, Gabriele; Cozzani, Valerio

    2014-01-01

    Severe Natech accidents may be triggered by lightning strike affecting storage tanks containing relevant inventories of hazardous materials. The present study focused on the identification of event sequences and accident scenarios following lightning impact on atmospheric tanks. Reference event trees, validated using past accident analysis, are provided to describe the specific accident chains identified, accounting for reference protection and mitigation safety barriers usually adopted in current industrial practice. An overall methodology was outlined to allow the calculation of the expected frequencies of final scenarios following lightning impact on atmospheric storage tanks, taking into account the expected performance of available safety barriers. The methodology was applied to a case study in order to better understand the data that may be obtained and their importance in the framework of quantitative risk assessment (QRA) and of the risk management of industrial facilities with respect to external hazards due to natural events. - Highlights: • Event sequences following lightning impact on atmospheric tanks were identified. • Reference event trees including standard safety barriers were obtained. • Safety barriers applied in industrial practice were assessed to quantify event trees. • Frequencies of final scenarios following lightning impact on tanks were calculated. • Natech scenarios caused by lightning have an important influence on risk profiles

  9. Lightning protection technology for small general aviation composite material aircraft

    Science.gov (United States)

    Plumer, J. A.; Setzer, T. E.; Siddiqi, S.

    1993-01-01

    An on going NASA (Small Business Innovative Research) SBIR Phase II design and development program will produce the first lightning protected, fiberglass, General Aviation aircraft that is available as a kit. The results obtained so far in development testing of typical components of the aircraft kit, such as the wing and fuselage panels indicate that the lightning protection design methodology and materials chosen are capable of protecting such small composite airframes from lightning puncture and structural damage associated with severe threat lightning strikes. The primary objective of the program has been to develop a lightening protection design for full scale test airframe and verify its adequacy with full scale laboratory testing, thus enabling production and sale of owner-built, lightning-protected, Stoddard-Hamilton Aircraft, Inc. Glasair II airplanes. A second objective has been to provide lightning protection design guidelines for the General Aviation industry, and to enable these airplanes to meet lightening protection requirements for certification of small airplanes. This paper describes the protection design approaches and development testing results obtained thus far in the program, together with design methodology which can achieve the design goals listed above. The presentation of this paper will also include results of some of the full scale verification tests, which will have been completed by the time of this conference.

  10. Lightning leader models of terrestrial gamma-ray flashes

    Science.gov (United States)

    Dwyer, J. R.; Liu, N.; Ihaddadene, K. M. A.

    2017-12-01

    Terrestrial gamma-ray flashes (TGFs) are bright sub-millisecond bursts of gamma rays that originate from thunderstorms. Because lightning leaders near the ground have been observed to emit x-rays, presumably due to runaway electron production in the high-field regions near the leader tips, models of TGFs have been developed by several groups that assume a similar production mechanism of runaway electrons from lightning leaders propagating through thunderclouds. However, it remains unclear exactly how and where these runaway electrons are produced, since lightning propagation at thunderstorm altitudes remains poorly understood. In addition, it is not obvious how to connect the observed behavior of the x-ray production from lightning near the ground with the properties of TGFs. For example, it is not clear how to relate the time structure of the x-ray emission near the ground to that of TGFs, since x-rays from stepped leaders near the ground are usually produced in a series of sub-microsecond bursts, but TGFs are usually observed as much longer pulses without clear substructures, at sub-microsecond timescales or otherwise. In this presentation, spacecraft observations of TGFs, ground-based observations of x-rays from lightning and laboratory sparks, and Monte Carlo and PIC simulations of runaway electron and gamma ray production and propagation will be used to constrain the lightning leader models of TGFs.

  11. High-Resolution WRF Forecasts of Lightning Threat

    Science.gov (United States)

    Goodman, S. J.; McCaul, E. W., Jr.; LaCasse, K.

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM)lightning and precipitation observations have confirmed the existence of a robust relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of the Weather Research and Forecast (WRF) model, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Initial experiments using 6-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. The WRF has been initialized on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data. An array of subjective and objective statistical metrics is employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  12. Problem of radioactive lightning rods in the Republic of Croatia

    International Nuclear Information System (INIS)

    Novakovic, M.

    1994-01-01

    It became evident that as in most countries in Europe and other world, the radioactive lightning preventers will be prohibited in Croatia. It has to be done gradually and in phases. About 50% of whole number of radioactive lightning rods is mounted on hotels, and other are on industrial objects. Request for immediate replacement of them can almost fully load the available storage with radioactive waste, and the ex users should spent a significant sums of money to built an alternative lightning protection. One of the options is to use dismounted sources and use them for some other convenient purpose even for renewing the other radioactive lightning rod. In our opinion the best is to prohibit installation of the new lightning rods and existing ones dismount after elapsing the time for replacement of the radioactive attachment. After some years all radioactive lightning rods would be dismounted with smaller financial burden to ex users and community resulting also with less net amounts of radioactive waste

  13. PSpice Model of Lightning Strike to a Steel Reinforced Structure

    International Nuclear Information System (INIS)

    Koone, Neil; Condren, Brian

    2003-01-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and 'build' a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented

  14. Global Lightning Climatology from the Tropical Rainfall Measuring Mission (TRMM), Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2015-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.

  15. An Algorithm for Obtaining the Distribution of 1-Meter Lightning Channel Segment Altitudes for Application in Lightning NOx Production Estimation

    Science.gov (United States)

    Peterson, Harold; Koshak, William J.

    2009-01-01

    An algorithm has been developed to estimate the altitude distribution of one-meter lightning channel segments. The algorithm is required as part of a broader objective that involves improving the lightning NOx emission inventories of both regional air quality and global chemistry/climate models. The algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand; VHF source amplitude thresholding and smoothing were applied to optimize results. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. One-meter channel segment altitude distributions were also obtained for the different seasons.

  16. Assimilation of total lightning data using the three-dimensional variational method at convection-allowing resolution

    Science.gov (United States)

    Zhang, Rong; Zhang, Yijun; Xu, Liangtao; Zheng, Dong; Yao, Wen

    2017-08-01

    A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small-scale information can be incorporated to improve the quality of the initial condition and the subsequent forecasts. In this study, the empirical relationship between flash rate, water vapor mixing ratio, and graupel mixing ratio was used to adjust the model relative humidity, which was then assimilated by using the three-dimensional variational data assimilation system of the Weather Research and Forecasting model in cycling mode at 10-min intervals. To find the appropriate assimilation time-window length that yielded significant improvement in both the initial conditions and subsequent forecasts, four experiments with different assimilation time-window lengths were conducted for a squall line case that occurred on 10 July 2007 in North China. It was found that 60 min was the appropriate assimilation time-window length for this case, and longer assimilation window length was unnecessary since no further improvement was present. Forecasts of 1-h accumulated precipitation during the assimilation period and the subsequent 3-h accumulated precipitation were significantly improved compared with the control experiment without lightning data assimilation. The simulated reflectivity was optimal after 30 min of the forecast, it remained optimal during the following 42 min, and the positive effect from lightning data assimilation began to diminish after 72 min of the forecast. Overall, the improvement from lightning data assimilation can be maintained for about 3 h.

  17. Terrestrial gamma-ray flash production by lightning

    Science.gov (United States)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared

  18. Some features of stepped and dart-stepped leaders near the ground in natural negative cloud-to-ground lightning discharges

    Directory of Open Access Journals (Sweden)

    X. Qie

    2002-06-01

    Full Text Available Characteristics of the electric fields produced by stepped and dart-stepped leaders 200 µs just prior to the return strokes during natural negative cloud-to-ground (CG lightning discharges have been analyzed by using data from a broad-band slow antenna system with 0.08 µs time resolution in southeastern China. It has been found that the electric field changes between the last stepped leader and the first return stroke could be classified in three categories. The first type is characterized by a small pulse superimposed on the abrupt beginning of the return stroke, and accounts for 42% of all the cases. The second type accounts for 33.3% and is characterized by relatively smooth electric field changes between the last leader pulse and the following return stroke. The third type accounts for 24.7%, and is characterized by small pulses between the last recognizable leader pulse and the following return stroke. On the average, the time interval between the successive leader pulses prior to the first return strokes and subsequent return strokes was 15.8 µs and 9.4 µs, respectively. The distribution of time intervals between successive stepped leader pulses is quite similar to Gaussian distribution while that for dart-stepped leader pulses is more similar to a log-normal distribution. Other discharge features, such as the average time interval between the last leader step and the first return stroke peak, the ratio of the last leader pulse peak to that of the return stroke amplitude are also discussed in the paper.Key words. Meteology and atmospheric dynamics (atmospheric electricity; lightning – Radio science (electromagnetic noise and interference

  19. Some features of stepped and dart-stepped leaders near the ground in natural negative cloud-to-ground lightning discharges

    Directory of Open Access Journals (Sweden)

    X. Qie

    Full Text Available Characteristics of the electric fields produced by stepped and dart-stepped leaders 200 µs just prior to the return strokes during natural negative cloud-to-ground (CG lightning discharges have been analyzed by using data from a broad-band slow antenna system with 0.08 µs time resolution in southeastern China. It has been found that the electric field changes between the last stepped leader and the first return stroke could be classified in three categories. The first type is characterized by a small pulse superimposed on the abrupt beginning of the return stroke, and accounts for 42% of all the cases. The second type accounts for 33.3% and is characterized by relatively smooth electric field changes between the last leader pulse and the following return stroke. The third type accounts for 24.7%, and is characterized by small pulses between the last recognizable leader pulse and the following return stroke. On the average, the time interval between the successive leader pulses prior to the first return strokes and subsequent return strokes was 15.8 µs and 9.4 µs, respectively. The distribution of time intervals between successive stepped leader pulses is quite similar to Gaussian distribution while that for dart-stepped leader pulses is more similar to a log-normal distribution. Other discharge features, such as the average time interval between the last leader step and the first return stroke peak, the ratio of the last leader pulse peak to that of the return stroke amplitude are also discussed in the paper.

    Key words. Meteology and atmospheric dynamics (atmospheric electricity; lightning – Radio science (electromagnetic noise and interference

  20. Situational Lightning Climatologies for Central Florida: Phase IV: Central Florida Flow Regime Based Climatologies of Lightning Probabilities

    Science.gov (United States)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-, 20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  1. Classifying Returns as Extreme

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I consider extreme returns for the stock and bond markets of 14 EU countries using two classification schemes: One, the univariate classification scheme from the previous literature that classifies extreme returns for each market separately, and two, a novel multivariate classification scheme tha...

  2. Forecasting Lightning Threat using Cloud-resolving Model Simulations

    Science.gov (United States)

    McCaul, E. W., Jr.; Goodman, S. J.; LaCasse, K. M.; Cecil, D. J.

    2009-01-01

    As numerical forecasts capable of resolving individual convective clouds become more common, it is of interest to see if quantitative forecasts of lightning flash rate density are possible, based on fields computed by the numerical model. Previous observational research has shown robust relationships between observed lightning flash rates and inferred updraft and large precipitation ice fields in the mixed phase regions of storms, and that these relationships might allow simulated fields to serve as proxies for lightning flash rate density. It is shown in this paper that two simple proxy fields do indeed provide reasonable and cost-effective bases for creating time-evolving maps of predicted lightning flash rate density, judging from a series of diverse simulation case study events in North Alabama for which Lightning Mapping Array data provide ground truth. One method is based on the product of upward velocity and the mixing ratio of precipitating ice hydrometeors, modeled as graupel only, in the mixed phase region of storms at the -15\\dgc\\ level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domainwide statistics of the peak values of simulated flash rate proxy fields against domainwide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. A blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Weather Research and Forecast Model simulations of selected North Alabama cases show that this model can distinguish the general character and intensity of most convective events, and that the proposed methods show promise as a means of generating

  3. Aerosol indirect effect on tropospheric ozone via lightning

    Science.gov (United States)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  4. Venus Lightning: What We Have Learned from the Venus Express Fluxgate Magnetometer

    Science.gov (United States)

    Russell, C. T.; Strangeway, R. J.; Wei, H. Y.; Zhang, T. L.

    2010-03-01

    The Venus Express magnetometer sees short (tens of milliseconds) pulses of EM waves in the Venus ionosphere as predicted by the lightning model for the PVO electric pulses. These waves are stronger than similar terrestrial signals produced by lightning.

  5. Modeling the stepping mechanism in negative lightning leaders

    Science.gov (United States)

    Iudin, Dmitry; Syssoev, Artem; Davydenko, Stanislav; Rakov, Vladimir

    2017-04-01

    It is well-known that the negative leaders develop in a step manner using a mechanism of the so-called space leaders in contrary to positive ones, which propagate continuously. Despite this fact has been known for about a hundred years till now no one had developed any plausible model explaining this asymmetry. In this study we suggest a model of the stepped development of the negative lightning leader which for the first time allows carrying out the numerical simulation of its evolution. The model is based on the probability approach and description of temporal evolution of the discharge channels. One of the key features of our model is accounting for the presence of so called space streamers/leaders which play a fundamental role in the formation of negative leader's steps. Their appearance becomes possible due to the accounting of potential influence of the space charge injected into the discharge gap by the streamer corona. The model takes into account an asymmetry of properties of negative and positive streamers which is based on well-known from numerous laboratory measurements fact that positive streamers need about twice weaker electric field to appear and propagate as compared to negative ones. An extinction of the conducting channel as a possible way of its evolution is also taken into account. This allows us to describe the leader channel's sheath formation. To verify the morphology and characteristics of the model discharge, we use the results of the high-speed video observations of natural negative stepped leaders. We can conclude that the key properties of the model and natural negative leaders are very similar.

  6. Lightning safety awareness of visitors in three California national parks.

    Science.gov (United States)

    Weichenthal, Lori; Allen, Jacoby; Davis, Kyle P; Campagne, Danielle; Snowden, Brandy; Hughes, Susan

    2011-09-01

    To assess the level of lightning safety awareness among visitors at 3 national parks in the Sierra Nevada Mountains of California. A 12-question, short answer convenience sample survey was administered to participants 18 years of age and over concerning popular trails and points of interest with known lightning activity. There were 6 identifying questions and 5 knowledge-based questions pertaining to lightning that were scored on a binary value of 0 or 1 for a total of 10 points for the survey instrument. Volunteers in Fresno, California, were used as a control group. Participants were categorized as Sequoia and Kings Canyon National Park (SEKI), frontcountry (FC), or backcountry (BC); Yosemite National Park (YNP) FC or BC; and Fresno. Analysis of variance (ANOVA) was used to test for differences between groups. 467 surveys were included for analysis: 77 in Fresno, 192 in SEKI, and 198 in YNP. National park participants demonstrated greater familiarity with lightning safety than individuals from the metropolitan community (YNP 5.84 and SEKI 5.65 vs Fresno 5.14, P = .0032). There were also differences noted between the BC and FC subgroups (YNP FC 6.07 vs YNP BC 5.62, P = .02; YNP FC 6.07 vs SEKI FC 5.58, P = .02). Overall results showed that participants had certain basic lightning knowledge but lacked familiarity with other key lightning safety recommendations. While there are statistically significant differences in lightning safety awareness between national parks and metropolitan participants, the clinical impact of these findings are debatable. This study provides a starting point for providing educational outreach to visitors in these national parks. Copyright © 2011 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  7. Nearshore regional behavior of lightning interaction with wind turbines

    Directory of Open Access Journals (Sweden)

    Gilbert A. Malinga

    2016-01-01

    Full Text Available The severity of lightning strikes on offshore wind turbines built along coastal and nearshore regions can pose safety concerns that are often overlooked. In this research study the behavior of electrical discharges for wind turbines that might be located in the nearshore regions along the East Coast of China and Sea of Japan were characterized using a physics-based model that accounted for a total of eleven different geometrical and lightning parameters. Utilizing the electrical potential field predicted using this model it was then possible to estimate the frequency of lightning strikes and the distribution of electrical loads utilizing established semi-empirical relationships and available data. The total number of annual lightning strikes on an offshore wind turbine was found to vary with hub elevation, extent of cloud cover, season and geographical location. The annual lightning strike rate on a wind turbine along the nearshore region on the Sea of Japan during the winter season was shown to be moderately larger compared to the lightning strike frequency on a turbine structure on the East Coast of China. Short duration electrical discharges, represented using marginal probability functions, were found to vary with season and geographical location, exhibiting trends consistent with the distribution of the electrical peak current. It was demonstrated that electrical discharges of moderately long duration typically occur in the winter months on the East Coast of China and the summer season along the Sea of Japan. In contrast, severe electrical discharges are typical of summer thunderstorms on the East Coast of China and winter frontal storm systems along the West Coast of Japan. The electrical charge and specific energy dissipated during lightning discharges on an offshore wind turbine was found to vary stochastically, with severe electrical discharges corresponding to large electrical currents of long duration.

  8. Lightning Observations from the International Space Station (ISS) for Science Research and Operational Applications

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    There exist several core science applications of LIS lightning observations, that range from weather and climate to atmospheric chemistry and lightning physics due to strong quantitative connections that can be made between lightning and other geophysical processes of interest. The space-base vantage point, such as provided by ISS LIS, still remains an ideal location to obtain total lightning observations on a global basis.

  9. Experimental observations of strengthening the neutron flux during negative lightning discharges of thunderclouds with tripolar configuration

    Science.gov (United States)

    Toropov, A. A.; Kozlov, V. I.; Mullayarov, V. A.; Starodubtsev, S. A.

    2013-03-01

    We consider neutron bursts (Yakutsk cosmic ray spectrograph,105 m above sea level) and the electric field during lightning discharges. It was found that the neutron bursts are observed in the negative lightning discharg only. We discuss the possibility of generation of neutrons in the lower part (the point of impact into the ground) lightning discharge.

  10. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning arresters; ungrounded and exposed... Electrical Equipment-General § 75.521 Lightning arresters; ungrounded and exposed power conductors and... leads underground shall be equipped with suitable lightning arresters of approved type within 100 feet...

  11. 30 CFR 77.508 - Lightning arresters, ungrounded and exposed power conductors and telephone wires.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning arresters, ungrounded and exposed... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.508 Lightning... conductors and telephone wires shall be equipped with suitable lightning arresters which are adequately...

  12. Lightning vulnerability of nuclear explosive test systems at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.

    1985-01-01

    A task force chartered to evaluate the effects of lightning on nuclear explosives at the Nevada Test Site has made several recommendations intended to provide lightning-invulnerable test device systems. When these recommendations have been implemented, the systems will be tested using full-threat-level simulated lightning

  13. Technique for the comparison of light spectra from natural and laboratory generated lightning current arcs

    International Nuclear Information System (INIS)

    Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.

    2016-01-01

    A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.

  14. Incorporating Lightning Flash Data into the WRF-CMAQ Modeling System: Algorithms and Evaluations

    Science.gov (United States)

    We describe the use of lightning flash data from the National Lightning Detection Network (NLDN) to constrain and improve the performance of coupled meteorology-chemistry models. We recently implemented a scheme in which lightning data is used to control the triggering of conve...

  15. Global lightning and severe storm monitoring from GPS orbit

    Energy Technology Data Exchange (ETDEWEB)

    Suszcynsky, D. M. (David M.); Jacobson, A. R.; Linford, J (Justin); Pongratz, M. B. (Morris B.); Light, T. (Tracy E.); Shao, X. (Xuan-Min)

    2004-01-01

    Over the last few decades, there has been a growing interest to develop and deploy an automated and continuously operating satellite-based global lightning mapper [e.g. Christian et al., 1989; Weber et al., 1998; Suszcynsky et al., 2000]. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. Satellite-based lightning mappers are designed to exploit this relationship by using lightning detection as a proxy for remotely identifying, locating and characterizing strong convective activity on a global basis. Global lightning and convection mapping promises to provide users with (1) an enhanced global severe weather monitoring and early warning capability [e.g. Weber et al., 1998] (2) improved ability to optimize aviation flight paths around convective cells, particularly over oceanic and remote regions that are not sufficiently serviced by existing weather radar [e.g. Weber et al., 1998], and (3) access to regional and global proxy data sets that can be used for scientific studies and as input into meteorological forecast and global climatology models. The physical foundation for satellite-based remote sensing of convection by way of lightning detection is provided by the basic interplay between the electrical and convective states of a thundercloud. It is widely believed that convection is a driving mechanism behind the hydrometeor charging and transport that produces charge separation and lightning discharges within thunderclouds [e.g. see chapter 3 in MacGorman and Rust, 1998]. Although cloud electrification and discharge processes are a complex function of the convective dynamics and microphysics of the cloud, the fundamental relationship between convection and electrification is easy to observe. For example, studies have shown that the strength of the convective process within a thundercell can be loosely parameterized (with large variance) by the intensity of the

  16. Lightning-based propagation of convective rain fields

    Directory of Open Access Journals (Sweden)

    S. Dietrich

    2011-05-01

    Full Text Available This paper describes a new multi-sensor approach for continuously monitoring convective rain cells. It exploits lightning data from surface networks to propagate rain fields estimated from multi-frequency brightness temperature measurements taken by the AMSU/MHS microwave radiometers onboard NOAA/EUMETSAT low Earth orbiting operational satellites. Specifically, the method allows inferring the development (movement, morphology and intensity of convective rain cells from the spatial and temporal distribution of lightning strokes following any observation by a satellite-borne microwave radiometer. Obviously, this is particularly attractive for real-time operational purposes, due to the sporadic nature of the low Earth orbiting satellite measurements and the continuous availability of ground-based lightning measurements – as is the case in most of the Mediterranean region. A preliminary assessment of the lightning-based rainfall propagation algorithm has been successfully made by using two pairs of consecutive AMSU observations, in conjunction with lightning measurements from the ZEUS network, for two convective events. Specifically, we show that the evolving rain fields, which are estimated by applying the algorithm to the satellite-based rainfall estimates for the first AMSU overpass, show an overall agreement with the satellite-based rainfall estimates for the second AMSU overpass.

  17. Time domain simulations of preliminary breakdown pulses in natural lightning.

    Science.gov (United States)

    Carlson, B E; Liang, C; Bitzer, P; Christian, H

    2015-06-16

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations.

  18. Long recovery VLF perturbations associated with lightning discharges

    Science.gov (United States)

    Salut, M. M.; Abdullah, M.; Graf, K. L.; Cohen, M. B.; Cotts, B. R. T.; Kumar, Sushil

    2012-08-01

    Long D-region ionospheric recovery perturbations are a recently discovered and poorly understood subcategory of early VLF events, distinguished by exceptionally long ionospheric recovery times of up to 20 min (compared to more typical ˜1 min recovery times). Characteristics and occurrence rates of long ionospheric recovery events on the NWC transmitter signal recorded at Malaysia are presented. 48 long recovery events were observed. The location of the causative lightning discharge for each event is determined from GLD360 and WWLLN data, and each discharge is categorized as being over land or sea. Results provide strong evidence that long recovery events are attributed predominately to lightning discharges occurring over the sea, despite the fact that lightning activity in the region is more prevalent over land. Of the 48 long recovery events, 42 were attributed to lightning activity over water. Analysis of the causative lightning of long recovery events in comparison to all early VLF events reveals that these long recovery events are detectable for lighting discharges at larger distances from the signal path, indicating a different scattering pattern for long recovery events.

  19. Climate and Lightning: An updated TRMM-LIS Analysis

    Science.gov (United States)

    Petersen, Walter A.; Buechler, D. E.

    2009-01-01

    The TRMM Lightning Imaging Sensor (LIS) has sampled global tropical and sub-tropical lightning flash densities for approximately 11 years. These data were originally processed and results presented by the authors in the 3rd AMS MALD Conference held in 2007 using both pre and post TRMM-boost lightning data. These data were normalized for the orbit boost by scaling the pre-boost data by a fixed constant based on the different swath areas for the pre and post-boost years (post-boost after 2001). Inevitably, one must question this simple approach to accounting for the orbit boost when sampling such a noisy quantity. Hence we are in the process of reprocessing the entire 11-year TRMM LIS dataset to reduce the orbit swath of the post-boost era to that of the pre-boost in order to eliminate sampling bias in the dataset. Study of the diurnal/seasonal/annual sampling suggests that those biases are already minimal and should not contribute to error in examination of annual trends. We will present new analysis of the 11-year annual trends in total lightning flash density for all latitudinal belts and select regions/regimes of the tropics as related to conventional climate signals and precipitation contents in the same period. The results should enable us to address, in some fashion, the sensitivity of the lightning flash density to subtle changes in climate.

  20. Lidar 2009 - All Returns

    Data.gov (United States)

    Kansas Data Access and Support Center — LIDAR-derived binary (.las) files containing classified points of all returns. We have 3 classifications Unclassified, Ground, Low points. The average Ground Sample...

  1. Solid charged-core model of ball lightning

    Science.gov (United States)

    Muldrew, D. B.

    2010-01-01

    In this study, ball lightning (BL) is assumed to have a solid, positively-charged core. According to this underlying assumption, the core is surrounded by a thin electron layer with a charge nearly equal in magnitude to that of the core. A vacuum exists between the core and the electron layer containing an intense electromagnetic (EM) field which is reflected and guided by the electron layer. The microwave EM field applies a ponderomotive force (radiation pressure) to the electrons preventing them from falling into the core. The energetic electrons ionize the air next to the electron layer forming a neutral plasma layer. The electric-field distributions and their associated frequencies in the ball are determined by applying boundary conditions to a differential equation given by Stratton (1941). It is then shown that the electron and plasma layers are sufficiently thick and dense to completely trap and guide the EM field. This model of BL is exceptional in that it can explain all or nearly all of the peculiar characteristics of BL. The ES energy associated with the core charge can be extremely large which can explain the observations that occasionally BL contains enormous energy. The mass of the core prevents the BL from rising like a helium-filled balloon - a problem with most plasma and burning-gas models. The positively charged core keeps the negatively charged electron layer from diffusing away, i.e. it holds the ball together; other models do not have a mechanism to do this. The high electrical charges on the core and in the electron layer explains why some people have been electrocuted by BL. Experiments indicate that BL radiates microwaves upon exploding and this is consistent with the model. The fact that this novel model of BL can explain these and other observations is strong evidence that the model should be taken seriously.

  2. 18th international conference on lightning protection ICLP '85. Conference proceedings. 18. internationale Blitzschutzkonferenz ICLP '85. Conference Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The proceedings contain all conference papers on the following main topics: 1) Research on thunderstorm and lightning (12 papers); 2) striking mechanism (6 papers); 3) lightning down conductors and grounding (10 papers); 4) electromagnetic lightning impulse (LEMP) and induction effects (9 papers); 5) protection of electronic systems and devices (16 papers); 6) life hazard due to lightning (9 papers).

  3. Are fund of hedge fund returns asymmetric?

    OpenAIRE

    Lynch, Margaret; Hutson, Elaine; Stevenson, Max

    2004-01-01

    We examine the return distributions of 332 funds of hedge funds and associated indices. Over half of the sample is significantly skewed according to the skewness statistic, and these are split 50/50 positive and negative. However, we argue that the skewness statistic can lead to erroneous inferences regarding the nature of the return distribution, because the test statistic is based on the normal distribution. Using a series of tests that make minimal assumptions about the shape of the ...

  4. Returns to beauty over the life course

    DEFF Research Database (Denmark)

    Jæger, Mads Meier

    ’ facial attractiveness as well as data on SES, marital, and health outcomes from their mid-20s to their mid-60s. I find that beauty has lasting positive returns for women since more beautiful women have higher SES throughout their working life, have a higher probability of being married at age 25......, and marry high-SES husbands. I find no effects of beauty on health and, in general, no returns to beauty for men....

  5. Industry Returns and the Fisher Effect.

    OpenAIRE

    Boudoukh, Jacob; Richardson, Matthew; Whitelaw, Robert F

    1994-01-01

    The authors investigate the cross-sectional relation between industry-sorted stock returns and expected inflation, and they find that this relation is linked to cyclical movements in industry output. Stock returns of noncyclical industries tend to covary positively with expected inflation, while the reverse holds for cyclical industries. From a theoretical perspective, the authors describe a model that captures both (1) the cross-sectional variation in these relations across industries and (2...

  6. Calculation of Lightning Transient Responses on Wind Turbine Towers

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An efficient method is proposed in this paper for calculating lightning transient responses on wind turbine towers. In the proposed method, the actual tower body is simplified as a multiconductor grid in the shape of cylinder. A set of formulas are given for evaluating the circuit parameters of the branches in the multiconductor grid. On the basis of the circuit parameters, the multiconductor grid is further converted into an equivalent circuit. The circuit equation is built in frequency-domain to take into account the effect of the frequency-dependent characteristic of the resistances and inductances on lightning transients. The lightning transient responses can be obtained by using the discrete Fourier transform with exponential sampling to take the inverse transform of the frequency-domain solution of the circuit equation. A numerical example has been given for examining the applicability of the proposed method.

  7. Nonlinear FDTD Analysis of Lightning-Generated Sferics

    Science.gov (United States)

    Erdman, A.; Moore, R. C.

    2017-12-01

    Lightning strikes are extremely powerful natural events producing wideband electromagnetic waves. The EMP radiation and quasi-electrostatic field changes from powerful lightning discharges are capable of directly heating and ionizing the lower ionosphere. These changes to the electrical parameters of the lower ionosphere in turn modify the way different components of the wideband sferic propagate through and reflect from the lower ionosphere. Here we present the results of a new FDTD model that utilizes a 2D cylindrically symmetric grid with second-order accurate centered-difference differentials to evaluate a large number of chemical reactions pertinent to the D-region in order to update the electron density and conductivity every iteration. Using this model, we are able to evaluate the impact of lightning strikes of varying magnitude and analyze the role of ionospheric self-action in changing in the sferic waveform observed on the ground.

  8. Study on the luminous characteristics of a natural ball lightning

    Science.gov (United States)

    Wang, Hao; Yuan, Ping; Cen, Jianyong; Liu, Guorong

    2018-02-01

    According to the optical images of the whole process of a natural ball lightning recorded by two slit-less spectrographs in the Qinghai plateau of China, the simulated observation experiment on the luminous intensity of the spherical light source was carried out. The luminous intensity and the optical power of the natural ball lightning in the wavelength range of 400-690 nm were estimated based on the experimental data and the Lambert-Beer Law. The results show that the maximum luminous intensity was about 1.24 × 105 cd in the initial stage of the natural ball lightning, and the maximum luminous intensity and the maximum optical power in most time of its life were about 5.9 × 104 cd and 4.2 × 103 W, respectively.

  9. Atmospheric electricity. [lightning protection criteria in spacecraft design

    Science.gov (United States)

    Daniels, G. E.

    1973-01-01

    Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.

  10. Tennessee Valley Total and Cloud-to-Ground Lightning Climatology Comparison

    Science.gov (United States)

    Buechler, Dennis; Blakeslee, R. J.; Hall, J. M.; McCaul, E. W.

    2008-01-01

    The North Alabama Lightning Mapping Array (NALMA) has been in operation since 2001 and consists often VHF receivers deployed across northern Alabama. The NALMA locates sources of impulsive VHF radio signals from total lightning by accurately measuring the time that the signals arrive at the different receiving stations. The sources detected are then clustered into flashes by applying spatially and temporally constraints. This study examines the total lightning climatology of the region derived from NALMA and compares it to the cloud-to-ground (CG) climatology derived from the National Lightning Detection Network (NLDN) The presentation compares the total and CG lightning trends for monthly, daily, and hourly periods.

  11. Concept for backfitting of earth connections and lightning arresters in accordance with KTA 2206

    International Nuclear Information System (INIS)

    Kronauer, P.

    1991-01-01

    Instrumentation and control systems are particularly endangered by overvoltage caused by lightning. Protective aim and scope of the measures to be taken are laid down in the draft regulation KTA 2206 'Design of nuclear power plants against lightning impacts'. In the following a concept is presented which, if implemented, helps to avoid, to a large extent, inadmissible lightning effects on instrumentation and control systems of NPPs, by means of graduated measures of external and internal lightning protection. In the past, this concept was used successfully, in particular with regard to the backfitting of earth connections and lightning arresters of NPPs. (orig./DG) [de

  12. Analytical technical of lightning surges induced on grounding mesh of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ikeda, I.; Tani, M.; Yonezawa, T.

    1990-01-01

    An analytical lightning surge technique is needed to make a qualitative and predictive evaluation of transient voltages induced on local grounding meshes and instrumentation cables by a lightning strike on a lightning rod in a PWR plant. This paper discusses an experiment with lightning surge impulses in a PWR plant which was setup to observe lightning caused transient voltages. Experimental data when compared with EMTP simulation results improved the simulation method. The improved method provides a good estimation of induced voltages on grounding meshes and instrumentation cables

  13. Lightning Damage to Wind Turbine Blades From Wind Farms in the U.S

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Madsen, Søren Find; Nissim, Maya

    2016-01-01

    , laminate structure, and lightning protection systems. The statistics consist of the distribution of lightning damage along the blade and classify the damage by severity. In addition, the frequency of lightning damage to more than one blade of a wind turbine after a thunderstorm is assessed. The results......This paper presents statistical data about lightning damage on wind turbine blades reported at different wind farms in the U.S. The analysis is based on 304 cases of damage due to direct lightning attachment on the blade surface. This study includes a large variety of blades with different lengths...

  14. Production of Ionospheric Perturbations by Cloud-to-Ground Lightning and the Recovery of the Lower Ionosphere

    Science.gov (United States)

    Liu, Ningyu; Dwyer, Joseph; Rassoul, Hamid

    2013-04-01

    The fact that lightning/thunderstorm activities can directly modify the lower ionosphere has long been established by observations of the perturbations of very low frequency (VLF) signals propagating in the earth-ionosphere waveguide. These perturbations are known as early VLF events [Inan et al., 2010, JGR, 115, A00E36, 2010]. More recently discovered transient luminous events caused by the lightning/thunderstorm activities only last ~1-100 ms, but studies of the early VLF events show that the lightning ionospheric effects can persist much longer, >10s min [Cotts and Inan, GRL, 34, L14809, 2007; Haldoupis et al., JGR, 39, L16801, 2012; Salut et al., JGR, 117, A08311, 2012]. It has been suggested that the long recovery is caused by long-lasting conductivity perturbations in the lower ionosphere, which can be created by sprites/sprite halos which in turn are triggered by cloud-to-ground (CG) lightning [Moore et al., JGR, 108, 1363, 2003; Haldoupis et al., 2012]. We recently developed a two-dimensional fluid model with simplified ionospheric chemistry for studying the quasi-electrostatic effects of lightning in the lower ionosphere [Liu, JGR, 117, A03308, 2012]. The model chemistry captures major ion species and reactions in the lower ionosphere. Additional important features of the model include self-consistent background ion density profiles and full description of electron and ion transport. In this talk, we present the simulation results on the dynamics of sprite halos caused by negative CG lightning. The modeling results indicate that electron density around 60 km altitude can be enhanced in a region as wide as 80 km. The enhancement reaches its full extent in ~1 s and recovers in 1-10 s, which are on the same orders as the durations of slow onset and post-onset peaks of some VLF events, respectively. In addition, long-lasting electron and ion density perturbations can occur around 80 km altitude due to negative halos as well as positive halos, which can explain

  15. Activity determination of the Am-241 radioactive lightning rods

    International Nuclear Information System (INIS)

    Dellamano, Jose C.; Minematsu, Denise; Potiens Jr, Ademar J.

    2008-01-01

    Full text: The radioactive lightning rods had been manufactured in Brazil up to 1989, when the Comissao Nacional de Energia Nuclear (CNEN) lifted the license for manufacture, commerce and installation of these devices. Since this date, the radioactive lightning rods have been replaced for conventional protection systems against electric discharges and have been sent to the institutes subordinated to the CNEN, amongst them the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP). The radioactive lightning rods are constituted in its majority for a central metallic rod where the plates are mounted. Am-241 radioactive sources are fixed in these plates. The treatment of these devices is made in a glove box, where mechanically the sources are separate of the plates and connecting rods, placed in a metallic package and stored for posterior characterization, final packaging, intermediate storage and final disposal. In accordance with manufacturers information had been installed in Brazil, approximately 75,000 units with activities varying between 25 and 92 MBq. Preliminary studies were carried out in some of the 16,000 lightning rods received by the Laboratorio de Rejeitos Radioativos (LRR) of the IPEN-CNEN/SP, and demonstrated that the variation of the values of activity is very bigger. The implantation of a methodology for the radioisotope characterization of the Am-241 removed sources of the radioactive lightning rods is important because the isotope inventory is necessary for the certification of the processes considered for packaging and storage, besides being indispensable data for the final disposal. It is convenient mentioning that one is not about the determination of activity of a radioactive source with geometry and defined characteristics, but the implantation of a measure protocol for groups of sources that will be used in the routine tasks of the LRR. The current work presents the methodology developed for the radioisotope characterization of the Am

  16. Optical design of the lightning imager for MTG

    Science.gov (United States)

    Lorenzini, S.; Bardazzi, R.; Di Giampietro, M.; Feresin, F.; Taccola, M.; Cuevas, L. P.

    2017-11-01

    The Lightning Imager for Meteosat Third Generation is an optical payload with on-board data processing for the detection of lightning. The instrument will provide a global monitoring of lightning events over the full Earth disk from geostationary orbit and will operate in day and night conditions. The requirements of the large field of view together with the high detection efficiency with small and weak optical pulses superimposed to a much brighter and highly spatial and temporal variable background (full operation during day and night conditions, seasonal variations and different albedos between clouds oceans and lands) are driving the design of the optical instrument. The main challenge is to distinguish a true lightning from false events generated by random noise (e.g. background shot noise) or sun glints diffusion or signal variations originated by microvibrations. This can be achieved thanks to a `multi-dimensional' filtering, simultaneously working on the spectral, spatial and temporal domains. The spectral filtering is achieved with a very narrowband filter centred on the bright lightning O2 triplet line (777.4 nm +/- 0.17 nm). The spatial filtering is achieved with a ground sampling distance significantly smaller (between 4 and 5 km at sub satellite pointing) than the dimensions of a typical lightning pulse. The temporal filtering is achieved by sampling continuously the Earth disk within a period close to 1 ms. This paper presents the status of the optical design addressing the trade-off between different configurations and detailing the design and the analyses of the current baseline. Emphasis is given to the discussion of the design drivers and the solutions implemented in particular concerning the spectral filtering and the optimisation of the signal to noise ratio.

  17. The North Alabama Lightning Mapping Array (LMA): A Network Overview

    Science.gov (United States)

    Blakeslee, R. J.; Bailey, J.; Buechler, D.; Goodman, S. J.; McCaul, E. W., Jr.; Hall, J.

    2005-01-01

    The North Alabama Lightning Mapping Array (LMA) is s a 3-D VHF regional lightning detection system that provides on-orbit algorithm validation and instrument performance assessments for the NASA Lightning Imaging Sensor, as well as information on storm kinematics and updraft evolution that offers the potential to improve severe storm warning lead time by up t o 50% and decrease te false alarm r a t e ( for non-tornado producing storms). In support of this latter function, the LMA serves as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. The LMA, which became operational i n November 2001, consists of VHF receivers deployed across northern Alabama and a base station located at the National Space Science and Technology Center (NSSTC), which is on t h e campus of the University of Alabama in Huntsville. The LMA system locates the sources of impulsive VHF radio signals s from lightning by accurately measuring the time that the signals aririve at the different receiving stations. Each station's records the magnitude and time of the peak lightning radiation signal in successive 80 ms intervals within a local unused television channel (channel 5, 76-82 MHz in our case ) . Typically hundreds of sources per flash can be reconstructed, which i n t u r n produces accurate 3-dimensional lightning image maps (nominally network topology and the links have an effective data throughput rate ranging from 600 kbits s -1 t o 1.5 %its s -1. This presentation provides an overview of t h e North Alabama network, the data processing (both real-time and post processing) and network statistics.

  18. A self-similar magnetohydrodynamic model for ball lightnings

    International Nuclear Information System (INIS)

    Tsui, K. H.

    2006-01-01

    Ball lightning is modeled by magnetohydrodynamic (MHD) equations in two-dimensional spherical geometry with azimuthal symmetry. Dynamic evolutions in the radial direction are described by the self-similar evolution function y(t). The plasma pressure, mass density, and magnetic fields are solved in terms of the radial label η. This model gives spherical MHD plasmoids with axisymmetric force-free magnetic field, and spherically symmetric plasma pressure and mass density, which self-consistently determine the polytropic index γ. The spatially oscillating nature of the radial and meridional field structures indicate embedded regions of closed field lines. These regions are named secondary plasmoids, whereas the overall self-similar spherical structure is named the primary plasmoid. According to this model, the time evolution function allows the primary plasmoid expand outward in two modes. The corresponding ejection of the embedded secondary plasmoids results in ball lightning offering an answer as how they come into being. The first is an accelerated expanding mode. This mode appears to fit plasmoids ejected from thundercloud tops with acceleration to ionosphere seen in high altitude atmospheric observations of sprites and blue jets. It also appears to account for midair high-speed ball lightning overtaking airplanes, and ground level high-speed energetic ball lightning. The second is a decelerated expanding mode, and it appears to be compatible to slowly moving ball lightning seen near ground level. The inverse of this second mode corresponds to an accelerated inward collapse, which could bring ball lightning to an end sometimes with a cracking sound

  19. Lightning climatology in the Congo Basin: detailed analysis

    Science.gov (United States)

    Soula, Serge; Kigotsi, Jean; Georgis, Jean-François; Barthe, Christelle

    2016-04-01

    The lightning climatology of the Congo Basin including several countries of Central Africa is analyzed in detail for the first time. It is based on World Wide Lightning Location Network (WWLLN) data for the period from 2005 to 2013. A comparison of these data with the Lightning Imaging Sensor (LIS) data for the same period shows the WWLLN detection efficiency (DE) in the region increases from about 1.70 % in the beginning of the period to 5.90 % in 2013, relative to LIS data, but not uniformly over the whole 2750 km × 2750 km area. Both the annual flash density and the number of stormy days show sharp maximum values localized in eastern of Democratic Republic of Congo (DRC) and west of Kivu Lake, regardless of the reference year and the period of the year. These maxima reach 12.86 fl km-2 and 189 days, respectively, in 2013, and correspond with a very active region located at the rear of the Virunga mountain range characterised with summits that can reach 3000 m. The presence of this range plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003) and other authors. Thus, a mean maximum value of about 157 fl km-2 y-1 is found for the annual lightning density. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56 % of the flashes located below the equator in the 10°S - 10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year, in agreement with previous works in other regions of the world.

  20. Returns to Tenure or Seniority?

    DEFF Research Database (Denmark)

    Buhai, Ioan Sebastian; Portela, Miguel; Teulings, Coen

      This study documents two empirical regularities, using data for Denmark and Portugal. First, workers who are hired last, are the first to leave the firm (Last In, First Out; LIFO). Second, workers' wages rise with seniority (= a Worker's tenure relative to the tenure of her colleagues). We seek...... at the moment of separation). The LIFO rule provides a stronger bargaining position for senior workers, leading to a return to seniority in wages. Efficiency in hiring requires the workers' .bargaining power to be in line with their share in the cost of specific investment. Then, the LIFO rule is a way...

  1. Two upward lightning at the Eagle Nest tower

    OpenAIRE

    Montañá Puig, Juan; Van der Velde, Oscar Arnoud; Romero Durán, David; March Nomen, Víctor; Solà de Las Fuentes, Gloria; Pineda Ruegg, Nicolau; Soula, Serge; Hermoso Alameda, Blas

    2012-01-01

    A new instrument composed by a high speed camera, two high energy detectors, a E-field antenna and a VHF antenna were installed at the Eagle Nest tower (northeast of Spain) during summer 2011. With this equipment several lightning flashes to the tower and its vicinity have been observed. This paper presents two examples: the first was an upward negative leader triggered by a close c1oud-to-ground flash and the second was an upward negative flash not associated with previous lightning activity...

  2. Numerical tools for lightning protection of wind turbines

    DEFF Research Database (Denmark)

    Madsen, Søren Find; Mieritz, Casper Falkenstrøm; Candela Garolera, Anna

    2013-01-01

    The present paper presents the different numerical tools used for lightning protection analysis. Initially the risk assessment considering attachment point distribution and location of vulnerable points on the wind turbine will be discussed, where also the term Lightning Protection Coordination...... (LPC) is introduced. When these two tools have been used to place air terminations on blades and defining the necessary insulation levels of interior parts, the voltage and current distribution along the blade structure can be calculated. This will put restrictions on the blade design, and define...

  3. A simulation method for lightning surge response of switching power

    International Nuclear Information System (INIS)

    Wei, Ming; Chen, Xiang

    2013-01-01

    In order to meet the need of protection design for lighting surge, a prediction method of lightning electromagnetic pulse (LEMP) response which is based on system identification is presented. Experiments of switching power's surge injection were conducted, and the input and output data were sampled, de-noised and de-trended. In addition, the model of energy coupling transfer function was obtained by system identification method. Simulation results show that the system identification method can predict the surge response of linear circuit well. The method proposed in the paper provided a convenient and effective technology for simulation of lightning effect.

  4. Weak positive cloud-to-ground flashes in Northeastern Colorado

    Science.gov (United States)

    Lopez, Raul E.; Maier, Michael W.; Garcia-Miguel, Juan A.; Holle, Ronald L.

    1991-01-01

    The frequency distributions of the peak magnetic field associated with the first detected return stroke of positive and negative cloud-to-ground (CG) flashes were studied using lightning data from northeastern Colorado. These data were obtained during 1985 with a medium-to-high gain network of three direction finders (DF's). The median signal strength of positive flashes was almost two times that of the negatives for flashes within 300 km of the DF's, which have an inherent detection-threshold bias that tends to discriminate against weak signals. This bias increases with range, and affects the detection of positive and negative flashes in different ways, because of the differing character of their distributions. Positive flashes appear to have a large percentage of signals clustered around very weak values that are lost to the medium-to-high gain Colorado Detection System very quickly with increasing range. The resulting median for positive signals could thus appear to be much larger than the median for negative signals, which are more clustered around intermediate values. When only flashes very close to the DF's are considered, however, the two distributions have almost identical medians. The large percentage of weak positive signals detected close to the DF's has not been explored previously. They have been suggested to come from intracloud discharges and thus are improperly classified as CG flashes. Evidence in hand, points to their being real positive, albeit weak CG flashes. Whether or not they are real positive ground flashes, it is important to be aware of their presence in data from magnetic DF networks.

  5. Deaths and injuries as a result of lightning strikes to aircraft.

    Science.gov (United States)

    Cherington, M; Mathys, K

    1995-07-01

    Aircraft are at risk of being struck by lightning or triggering lightning as they fly through clouds. Commercial and private airplanes have been struck, with resultant deaths and injuries to passengers and crew. We were interested in learning how large a problem existed to the American public from lightning strikes to airplanes. We analyzed data from the National Transportation Safety Board (NTSB) on lightning-related accidents in the United States from 1963-89. NTSB recorded 40 lightning-related aircraft accidents. There were 10 commercial airplane accidents reported, 4 of which were associated with 260 fatalities and 28 serious injuries. There were 30 private aircraft accidents that accounted for 30 fatalities and 46 serious injuries. While lightning remains a potential risk to aircraft passengers and crew, modern airplanes are better equipped to lessen the dangers of accidents due to lightning.

  6. Optical observations geomagnetically conjugate to sprite-producing lightning discharges

    Directory of Open Access Journals (Sweden)

    R. A. Marshall

    2005-09-01

    Full Text Available Theoretical studies have predicted that large positive cloud-to-ground discharges can trigger a runaway avalanche process of relativistic electrons, forming a geomagnetically trapped electron beam. The beam may undergo pitch angle and energy scattering during its traverse of the Earth's magnetosphere, with a small percentage of electrons remaining in the loss cone and precipitating in the magnetically conjugate atmosphere. In particular, N2 1P and N2+1N optical emissions are expected to be observable. In July and August 2003, an attempt was made to detect these optical emissions, called "conjugate sprites", in correlation with sprite observations in Europe near . Sprite observations were made from the Observatoire du Pic du Midi (OMP in the French Pyrenées, and VLF receivers were installed in Europe to detect causative sferics and ionospheric disturbances associated with sprites. In the Southern Hemisphere conjugate region, the Wide-angle Array for Sprite Photometry (WASP was deployed at the South African Astronomical Observatory (SAAO, near Sutherland, South Africa, to observe optical emissions with a field-of-view magnetically conjugate to the Northern Hemisphere observing region. Observations at OMP revealed over 130 documented sprites, with WASP observations covering the conjugate region successfully for 30 of these events. However, no incidences of optical emissions in the conjugate hemisphere were found. Analysis of the conjugate optical data from SAAO, along with ELF energy measurements from Palmer Station, Antarctica, and charge-moment analysis, show that the lightning events during the course of this experiment likely had insufficient intensity to create a relativistic beam.

    Keywords. Ionosphere (Ionsophere-magnetosphere interactions; Ionospheric disturbances; Instruments and techniques

  7. Optical observations geomagnetically conjugate to sprite-producing lightning discharges

    Directory of Open Access Journals (Sweden)

    R. A. Marshall

    2005-09-01

    Full Text Available Theoretical studies have predicted that large positive cloud-to-ground discharges can trigger a runaway avalanche process of relativistic electrons, forming a geomagnetically trapped electron beam. The beam may undergo pitch angle and energy scattering during its traverse of the Earth's magnetosphere, with a small percentage of electrons remaining in the loss cone and precipitating in the magnetically conjugate atmosphere. In particular, N2 1P and N2+1N optical emissions are expected to be observable. In July and August 2003, an attempt was made to detect these optical emissions, called "conjugate sprites", in correlation with sprite observations in Europe near . Sprite observations were made from the Observatoire du Pic du Midi (OMP in the French Pyrenées, and VLF receivers were installed in Europe to detect causative sferics and ionospheric disturbances associated with sprites. In the Southern Hemisphere conjugate region, the Wide-angle Array for Sprite Photometry (WASP was deployed at the South African Astronomical Observatory (SAAO, near Sutherland, South Africa, to observe optical emissions with a field-of-view magnetically conjugate to the Northern Hemisphere observing region. Observations at OMP revealed over 130 documented sprites, with WASP observations covering the conjugate region successfully for 30 of these events. However, no incidences of optical emissions in the conjugate hemisphere were found. Analysis of the conjugate optical data from SAAO, along with ELF energy measurements from Palmer Station, Antarctica, and charge-moment analysis, show that the lightning events during the course of this experiment likely had insufficient intensity to create a relativistic beam. Keywords. Ionosphere (Ionsophere-magnetosphere interactions; Ionospheric disturbances; Instruments and techniques

  8. Ground-Based Observations of Terrestrial Gamma Ray Flashes Associated with Downward-Directed Lightning Leaders

    Science.gov (United States)

    Belz, J.; Abbasi, R.; Krehbiel, P. R.; LeVon, R.; Remington, J.; Rison, W.; Thomas, R. J.

    2017-12-01

    Terrestrial Gamma Flashes (TGFs) have been observed in satellite-borne gamma ray detectors for several decades, starting with the BATSE instrument on the Compton Gamma-Ray observatory in 1994. TGFs consist of bursts of upwards of 1018 primary gamma rays, with a duration of up to a few milliseconds, originating in the Earth's atmosphere. More recent observations have shown that satellite-observed TGFs are generated in upward-propagating negative leaders of intracloud lightning, suggesting that they may be sensitive to the processes responsible for the initial lightning breakdown. Here, we present the first evidence that TGFs are also produced at the beginning of negative cloud-to-ground flashes, and that they may provide a new window through which ground-based observatories may contribute to understanding the breakdown process. The Telescope Array Surface Detector (TASD) is a 700 square kilometer cosmic ray observatory, an array of 507 3m2 scintillators on a 1.2 km grid. The array is triggered and read out when at least three adjacent detectors observe activity within an 8 μs window. Following the observation of bursts of anomalous TASD triggers, lasting a few hundred microseconds and correlated with local lightning activity, a Lightning Mapping Array (LMA) and slow electric field antenna were installed at the TASD site in order to study the effect. From data obtained between 2014 and 2016, correlated observations were obtained for ten -CG flashes. In 9 out of 10 cases, bursts of up to five anomalous triggers were detected during the first ms of the flash, as negative breakdown was descending into lower positive storm charge. The triggers occurred when the LMA-detected VHF radiation sources were at altitudes between 1.5 to 4.5 km AGL. The tenth flash was initiated by an unusually energetic leader that reached the ground in 2.5 ms and produced increasingly powerful triggers down to about 500 m AGL. While the TASD is not optimized for individual gamma ray detection

  9. The Reference Return Ratio

    DEFF Research Database (Denmark)

    Nicolaisen, Jeppe; Faber Frandsen, Tove

    2008-01-01

    The paper introduces a new journal impact measure called The Reference Return Ratio (3R). Unlike the traditional Journal Impact Factor (JIF), which is based on calculations of publications and citations, the new measure is based on calculations of bibliographic investments (references) and returns...... (citations). A comparative study of the two measures shows a strong relationship between the 3R and the JIF. Yet, the 3R appears to correct for citation habits, citation dynamics, and composition of document types - problems that typically are raised against the JIF. In addition, contrary to traditional...

  10. Return to nucleate boiling

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1985-01-01

    This paper presents a collection of TMIN (temperature of return to nucleate boiling) correlations, evaluates them under several conditions, and compares them with a wide range of data. Purpose is to obtain the best one for use in a water reactor safety computer simulator known as TRAC-B. Return to nucleate boiling can occur in a reactor accident at either high or low pressure and flow rates. Most of the correlations yield unrealistic results under some conditions. A new correlation is proposed which overcomes many of the deficiencies

  11. Understanding the Puzzling Risk-Return Relationship for Housing

    OpenAIRE

    Lu Han

    2013-01-01

    Standard theory predicts a positive relationship between risk and return, yet recent data show that housing returns vary positively with risk in some markets but negatively in others. This paper rationalizes these cross-market differences in the risk-return relationship for housing, and in so doing, explains the puzzling negative relationship. The paper shows that when the current house provides a hedge against the risk associated with the future housing consumption, households are willing to...

  12. Stepped-to-dart Leaders in Cloud-to-ground Lightning

    Science.gov (United States)

    Stolzenburg, M.; Marshall, T. C.; Karunarathne, S.; Karunarathna, N.; Warner, T.; Orville, R. E.

    2013-12-01

    Using time-correlated high-speed video (50,000 frames per second) and fast electric field change (5 MegaSamples per second) data for lightning flashes in East-central Florida, we describe an apparently rare type of subsequent leader: a stepped leader that finds and follows a previously used channel. The observed 'stepped-to-dart leaders' occur in three natural negative ground flashes. Stepped-to-dart leader connection altitudes are 3.3, 1.6 and 0.7 km above ground in the three cases. Prior to the stepped-to-dart connection, the advancing leaders have properties typical of stepped leaders. After the connection, the behavior changes almost immediately (within 40-60 us) to dart or dart-stepped leader, with larger amplitude E-change pulses and faster average propagation speeds. In this presentation, we will also describe the upward luminosity after the connection in the prior return stroke channel and in the stepped leader path, along with properties of the return strokes and other leaders in the three flashes.

  13. The footprints of Saharan air layer and lightning on the formation of tropical depressions over the eastern Atlantic Ocean

    Science.gov (United States)

    Centeno Delgado, Diana C.; Chiao, Sen

    2015-02-01

    The roles of the Saharan Air Layer (SAL) and lightning during genesis of Tropical Depression (TD) 8 (2006) and TD 12 (2010) were investigated in relation to the interaction of the dust outbreaks with each system and their surrounding environment. This study applied data collected from the 2006 NASA African Monsoon Multidisciplinary Analysis and 2010 Genesis and Rapid Intensification Processes projects. Satellite observations from METEOSAT and Moderate Resolution Imaging Spectroradiometer (MODIS)—Aerosol Optical Depth (AOD) were also employed for the study of the dust content. Lightning activity data from the Met Office Arrival Time Difference (ATD) system were used as another parameter to correlate moist convective overturning and a sign of cyclone formation. The AOD and lightning analysis for TD 8 demonstrated the time-lag connection through their positive contribution to TC-genesis. TD 12 developed without strong dust outbreak, but with lower wind shear (2 m s-1) and an organized Mesoscale Convective System (MCS). Overall, the results from the combination of various data analyses in this study support the fact that both systems developed under either strong or weak dust conditions. From these two cases, the location (i.e., the target area) of strong versus weak dust outbreaks, in association with lightning, were essential interactions that impacted TC-genesis. While our dust footprints hypothesis applied under strong dust conditions (i.e., TD 8), other factors (e.g., vertical wind shear, pre-existing vortex and trough location, thermodynamics) need to be evaluated as well. The results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones (i.e., TD 8 and TD 12).

  14. Lightning NOx influence on large-scale NOy and O3 plumes observed over the northern mid-latitudes

    Directory of Open Access Journals (Sweden)

    Alicia Gressent

    2014-11-01

    Full Text Available This paper describes the NOy plumes originating from lightning emissions based on 4 yr (2001–2005 of MOZAIC measurements in the upper troposphere of the northern mid-latitudes, together with ground- and space-based observations of lightning flashes and clouds. This analysis is primarily for the North Atlantic region where the MOZAIC flights are the most frequent and for which the measurements are well representative in space and time. The study investigates the influence of lightning NOx (LNOx emissions on large-scale (300–2000 km plumes (LSPs of NOy. One hundred and twenty seven LSPs (6% of the total MOZAIC NOy dataset have been attributed to LNOx emissions. Most of these LSPs were recorded over North America and the Atlantic mainly in spring and summer during the maximum lightning activity occurrence. The majority of the LSPs (74% is related to warm conveyor belts and extra-tropical cyclones originating from North America and entering the intercontinental transport pathway between North America and Europe, leading to a negative (positive west to east NOy (O3 zonal gradient with −0.4 (+18 ppbv difference during spring and −0.6 (+14 ppbv difference in summer. The NOy zonal gradient can correspond to the mixing of the plume with the background air. On the other hand, the O3 gradient is associated with both mixing of background air and with photochemical production during transport. Such transatlantic LSPs may have a potential impact on the European pollution. The remaining sampled LSPs are related to mesoscale convection over Western Europe and the Mediterranean Sea (18% and to tropical convection (8%.

  15. Sustainable Mars Sample Return

    Science.gov (United States)

    Alston, Christie; Hancock, Sean; Laub, Joshua; Perry, Christopher; Ash, Robert

    2011-01-01

    The proposed Mars sample return mission will be completed using natural Martian resources for the majority of its operations. The system uses the following technologies: In-Situ Propellant Production (ISPP), a methane-oxygen propelled Mars Ascent Vehicle (MAV), a carbon dioxide powered hopper, and a hydrogen fueled balloon system (large balloons and small weather balloons). The ISPP system will produce the hydrogen, methane, and oxygen using a Sabatier reactor. a water electrolysis cell, water extracted from the Martian surface, and carbon dioxide extracted from the Martian atmosphere. Indigenous hydrogen will fuel the balloon systems and locally-derived methane and oxygen will fuel the MAV for the return of a 50 kg sample to Earth. The ISPP system will have a production cycle of 800 days and the estimated overall mission length is 1355 days from Earth departure to return to low Earth orbit. Combining these advanced technologies will enable the proposed sample return mission to be executed with reduced initial launch mass and thus be more cost efficient. The successful completion of this mission will serve as the next step in the advancement of Mars exploration technology.

  16. Return of qualified Sudanese

    OpenAIRE

    Lindsay T McMahon

    2007-01-01

    With the signing of the Comprehensive Peace Agreement in January 2005, the new Government of South Sudan began to call for the return of the millions of South Sudanese IDP s and refugees. The International Organization for Migration (IOM) has developed a programme to help them do so.

  17. Return of qualified Sudanese

    Directory of Open Access Journals (Sweden)

    Lindsay T McMahon

    2007-07-01

    Full Text Available With the signing of the Comprehensive Peace Agreement in January 2005, the new Government of South Sudan began to call for the return of the millions of South Sudanese IDP s and refugees. The International Organization for Migration (IOM has developed a programme to help them do so.

  18. Higher Education Endowments Return

    Science.gov (United States)

    Bahlmann, David; Walda, John D.; Sedlacek, Verne O.

    2012-01-01

    A new study of endowments by the National Association of College and University Business Officers (NACUBO) and the Commonfund Institute has brought good news to college and universities: While endowment returns dropped precipitously in fiscal year 2009 as a result of the financial crisis and accompanying slide in equity markets, they climbed to an…

  19. Return to Play

    Science.gov (United States)

    Mangan, Marianne

    2013-01-01

    Call it physical activity, call it games, or call it play. Whatever its name, it's a place we all need to return to. In the physical education, recreation, and dance professions, we need to redesign programs to address the need for and want of play that is inherent in all of us.

  20. KINERJA KEUANGAN KONVENSIONAL, ECONOMIC VALUE ADDED, DAN RETURN SAHAM

    Directory of Open Access Journals (Sweden)

    Bambang Sudiyatno

    2011-09-01

    Full Text Available Penelitian ini bertujuan untuk menguji pengaruh kinerja keuangan konvensional; Return on Asset (ROA, Return on Equity (ROE, Residual Income (RI, dan kinerja keuangan yang lebih modern; Economic Value Added (EVA terhadap return saham pada perusahaan-perusahaan dalam industry makanan dan minuman yang terdaftar di Bursa Efek Indonesia. Pengambilan sampel dalam penelitian ini menggunakan metode sensus, karena semua perusahaan dalam industry makanan dan minuman digunakan sebagai sampel. Namun dalam proses samplingnya mengunakan metode purposive sampling, yaitu menggunakan sampel dengan criteria-kriteria tertentu. Hasil penelitian menunjukkan bahwa Return on Asset (ROA dan Residual Income (RI berpengaruh positif dan secara statistik signifikan terhadap return saham pada level signifikansi 1%. Sedangkan Return on Equity (ROE berpengaruh negative dan secara statistik signifikan terhadap return saham pada level signifikansi 10%, dan Economic Value Added (ERA berpengaruh positif tetapi tidak signifikan terhadap return saham.This study aims to test the effect of conventional financial performance i.e. Return on Asset (ROA, Return on Equity (ROE, Residual Income (RI, and the more modern financial performance which is Economic Value Added (EVA toward stock returns on companies in the food and beverage industry listed in Indonesia Stock Exchange. Sampling technique in this study uses the census method, all companies in the food and beverage industry are used as a sample. The process of sampling using purposive sampling method. The result shows that Return On Asset (ROA and Residual Income (RI are positive and statistic significant impact on the stock returns at significance level 1%. While the Return on Equity (ROE is negative and statistic significant impact on the stock returns at significance level 10%, Economic Value Added (EVA is positive and statistic not significant impact on the stock returns.

  1. New high-energy phenomena in aircraft triggered lightning

    NARCIS (Netherlands)

    van Deursen, A.P.J.; Kochkin, P.; de Boer, A.; Bardet, M.; Boissin, J.F.

    2016-01-01

    High-energy phenomena associated with lighting have been proposed in the twenties, observed for the first time in the sixties, and further investigated more recently by e.g. rocket triggered lightning. Similarly, x-rays have been detected in meter-long discharges in air at standard atmospheric

  2. Sensors for in-flight lightning detection on aircrafts

    NARCIS (Netherlands)

    Deursen, van A.P.J.; Stelmashuk, V.

    2010-01-01

    In the EU FP6 project ILDAS a prototype In-flight Lightning Damage Assessment System is developed for passenger aircraft and helicopter. The project aims to localize the attachment and the severity of the strokes during flight to assist maintenance. A database of events will be constructed to

  3. Lightning-resistant, low-inductance detonator cables

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Lee, R.S.; Moua, K.

    1994-04-01

    A lightning strike on a flat detonator cable in close proximity to a high explosive (HE) main charge poses a possible detonation hazard if the electrical explosion of the cable launches the dielectric cover coat of the cable at a high enough velocity to shock-initiate the HE. The detonator cable for the W87 system has been demonstrated to be incapable of initiating LX-17 main-charge explosive even for a 99 percentile negative lightning strike (1). The W87 cable is a relatively high inductance cable, unsuitable for use with low-inductance firesets. We have performed tests on a low-inductance cable designed for the W89 program, which show it to be marginal in its ability to withstand a lightning strike without the possibility of initiating a heated LX-17 main charge HE. A new cable design, proposed by R.E. Lee of LLNL has been tested and shown to be capable of withstanding a 99 percentile negative lightning strike without initiating LX-17 heated to 250{degree}C.

  4. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials

    Science.gov (United States)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier

    2014-02-01

    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  5. Estimates of lightning NOx production from GOME satellite observations

    NARCIS (Netherlands)

    Boersma, K.F.; Eskes, H.J.; Meijer, E.W.; Kelder, H.M.

    2005-01-01

    Tropospheric NO2 column retreivals from the Global Ozone Monitoring Expeiment (GOME) satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2). A sharp increase of NO2 is observed at convective cloud tops with increasing

  6. Lightning protection of ships in maritime and costal environment

    NARCIS (Netherlands)

    Blaj, M.A.; Leferink, Frank Bernardus Johannes

    2009-01-01

    An electromagnetic pulse due to a nearby lightning stroke generates a high intensity magnetic field. Thin metal layers as applied in composite structures cannot shield such a magnetic field. Electronic equipment inside such structures will suffer from high-induced voltages and damage and

  7. Arborescent vascular dilatation mimicking Lichtenberg figures from lightning.

    Science.gov (United States)

    Tempark, Therdpong; Iwasaki, Julie; Shwayder, Tor

    2014-01-01

    The clinical presentation of arborizing vascular dilatation can resemble Lichtenberg figures from lightning. Both have a feather-like or ferning pattern. We report an interesting case of pressure-induced vasodilatation (PIV) caused by temporary vascular occlusion from jeans buttons. © 2014 Wiley Periodicals, Inc.

  8. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  9. Behaviour of multiple lightning dischargers under a tropical ...

    African Journals Online (AJOL)

    ... discharger from surrounding dischargers, instead of incre-asing with the average spacing between dischargers. The point of strike of lightning discharge depended on the line of least stress rather than the height clearance from the cloud; which determined the charge structure and dynamics of the cloud particulates.

  10. Lightning Overvoltage on Low-Voltage Distribution System

    Science.gov (United States)

    Michishita, Koji

    The portion of the faults of a medium-voltage line, cause by lightning, tends to increase with often reaching beyond 30%. However, due to the recent progress of the lightning protection design, the number of faults has decreased to 1/3 of that at 30 years ago. As for the low-voltage distribution line, the fault rate has been estimated primarily, although the details of the overvoltages have not been studied yet. For the further development of highly information-oriented society, improvement of reliability of electric power supply to the appliance in a low-voltage customer will be socially expected. Therefore, it is important to establish effective lightning protection design of the low-voltage distribution system, defined to be composed of lines having mutual interaction on the customers' electric circuits, such as a low-voltage distribution line, an antenna line and a telecommunication line. In this report, the author interprets the recent research on the lightning overvoltage on a low-voltage distribution system.

  11. Discrimination of nuclear-explosion and lightning electromagnetic pulse

    International Nuclear Information System (INIS)

    Qi Shufeng; Li Ximei; Han Shaoqing; Niu Chao; Feng Jun; Liu Daizhi

    2012-01-01

    The discrimination of nuclear-explosion and lightning electromagnetic pulses was studied using empirical mode decomposition and the fractal analytical method. The box dimensions of nuclear-explosion and lightning electromagnetic pulses' original signals were calculated, and the box dimensions of the intrinsic mode functions (IMFs) of nuclear-explosion and lightning electromagnetic pulses' original signals after empirical mode decomposition were also obtained. The discrimination of nuclear explosion and lightning was studied using the nearest neighbor classification. The experimental results show that, the discrimination rate of the box dimension based on the first and second IMF after the original signal empirical mode decomposition is higher than that based on the third and forth IMF; the discrimination rate of the box dimension based on the original signal is higher than that based on any IMF; and the discrimination rate based on two-dimensional and three-dimensional characters is higher and more stable than that based on one-dimensional character, besides, the discrimination rate based on three-dimensional character is over 90%. (authors)

  12. Protecting Electronic Equipment in Composite Structures against Lightning

    NARCIS (Netherlands)

    Blaj, M.A.

    2015-01-01

    Damage resulting from an interaction with lightning current in a military naval vessel, especially in a conflict zone and at the time of a conflict, which leads to the incapacitation of vital activities on the ship, is unacceptable. Because many potential conflict zones are in littoral areas, and

  13. A case study on lightning protection, building resonances considered

    NARCIS (Netherlands)

    Deursen, van A.P.J.; Geers - Bargboer, G.

    2011-01-01

    In a recent paper (G. Bargboer and A. P. J. van Deursen, IEEE Trans. Electromagn. Compat., vol. 52, no. 3, pp. 684-90, Aug. 2010) we dealt with current injection measurements to test the lightning protection system of a newly built pharmaceutical plant. In a tentative extrapolation, the measurements

  14. Objective Lightning Probability Forecasts for East-Central Florida Airports

    Science.gov (United States)

    Crawford, Winfred C.

    2013-01-01

    The forecasters at the National Weather Service in Melbourne, FL, (NWS MLB) identified a need to make more accurate lightning forecasts to help alleviate delays due to thunderstorms in the vicinity of several commercial airports in central Florida at which they are responsible for issuing terminal aerodrome forecasts. Such forecasts would also provide safer ground operations around terminals, and would be of value to Center Weather Service Units serving air traffic controllers in Florida. To improve the forecast, the AMU was tasked to develop an objective lightning probability forecast tool for the airports using data from the National Lightning Detection Network (NLDN). The resulting forecast tool is similar to that developed by the AMU to support space launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) for use by the 45th Weather Squadron (45 WS) in previous tasks (Lambert and Wheeler 2005, Lambert 2007). The lightning probability forecasts are valid for the time periods and areas needed by the NWS MLB forecasters in the warm season months, defined in this task as May-September.

  15. Physics of Lightning under Control of Big Scale Experiments

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Josef

    2007-01-01

    Roč. 52, č. 2 (2007), s. 173-186 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : gas discharges * physics of lightning * long air gaps Subject RIV: BL - Plasma and Gas Discharge Physics

  16. The Italian Lightning Detection System of CESI and its applications

    International Nuclear Information System (INIS)

    Iorio, R.

    1998-01-01

    Aim of the paper is to give a description of the CESI lightning detection system SIRF. The system allows the real time localization (latitude, longitude) of the striking point of a cloud-to-ground lightning flash. Electrical parameters of the impulsive currents related to the flash strokes are calculated as well. Based on sensors covering the whole Italian territory, SIRF configuration and of the basic calculation criteria for passing from the sensor raw data to the final flash data is given together with the evaluation of the system expected performance parameters (accuracy, detection efficiently, signal/noise ratio). Main uses of lightning data in several fields are then reported, with special reference to electrical applications. Mention is done about the different modalities adopted for data distribution, according to that either real time or passed time applications have to be carried out. In this latter case (e.g. statistics), a huge amount of data archived within the Lightning Data Base of SIRF is available [it

  17. Unusual lightning electric field waveforms observed in Kathmandu, Nepal, and Uppsala, Sweden

    Science.gov (United States)

    Adhikari, Pitri Bhakta; Sharma, Shriram; Baral, Kedarnath; Rakov, Vladimir A.

    2017-11-01

    Unusual lightning events have been observed in Uppsala, Sweden, and Kathmandu, Nepal, using essentially the same electric field measuring system developed at Uppsala University. They occurred in the storms that also generated ;normal; lightning events. The unusual events recorded in Uppsala occurred on one thunderstorm day. Similar events were observed in Kathmandu on multiple thunderstorm days. The unusual events were analyzed in this study assuming them to be positive ground flashes (+CGs), although we cannot rule out the possibility that some or most of them were actually cloud discharges (ICs). The unusual events were each characterized by a relatively slow, negative (atmospheric electricity sign convention) electric field waveform preceded by a pronounced opposite-polarity pulse whose duration was some tens of microseconds. To the best of our knowledge, such unusual events have not been reported in the literature. The average amplitudes of the opposite-polarity pulses with respect to those of the following main waveform were found to be about 33% in Uppsala (N = 31) and about 38% in Kathmandu (N = 327). The average durations of the main waveform and the preceding opposite-polarity pulse in Uppsala were 8.24 ms and 57.1 μs, respectively, and their counterparts in Kathmandu were 421 μs and 39.7 μs. Electric field waveforms characteristic of negative ground flashes (-CGs) were also observed, and none of them exhibited an opposite-polarity pulse prior to the main waveform. Possible origins of the unusual field waveforms are discussed.

  18. Experimental simulation of lightning, interacting explosions and astrophysical jets with pulsed lasers

    International Nuclear Information System (INIS)

    Villagran-Muniz, M; Sobral, H; Navarro-Gonzalez, R; Velazquez, P F; Raga, A C

    2003-01-01

    Tabletop laboratory experiments have been used to simulate natural lightning, interacting explosions and astrophysical jets. When a high-energy laser pulse is focused in air, a laser-induced plasma (LIP) is produced, that generates a shock wave and an adiabatic expansion of the gas. In our work we have used LIPs in order to simulate lightning, for the study of chemical reactions relevant to atmospheric science. Several diagnostics have been applied to our LIPs, such as deflectometry, shadowgraphy and interferometry, which yield full spatial information of the process (electron density and temperature, the position of the shock wave fronts and the expansion of the hot gas), with a time resolution that ranges from nanoseconds to milliseconds. A new diagnostic alternative was implemented for shadowgraphy, which uses either continuous lasers or conventional light sources. The experimental results have been reproduced by hydrodynamic codes that we have developed. With astrophysical applications in mind, we have simulated and diagnosed the interaction of two explosions, with the aforementioned techniques. For this purpose, two LIPs are synchronized and diagnosed spatially and temporarily. Also, by producing the LIP in a glass sphere with a nozzle that ejects a shock wave and hot gas, we are able to simulate astrophysical jets. With such experiments, astrophysical models developed by us have been validated, showing excellent agreement between experiments and numerical simulations

  19. Regime switches in the risk-return trade-off

    OpenAIRE

    Marcellino, Massimiliano; Ghysels, Eric; Guerin, Pierre

    2014-01-01

    This paper deals with the estimation of the risk-return trade-off. We use a MIDAS model for the conditional variance and allow for possible switches in the risk-return relation through a Markov-switching specification. We find strong evidence for regime changes in the risk-return relation. This finding is robust to a large range of specifications. In the first regime characterized by low ex-post returns and high volatility, the risk-return relation is reversed, whereas the intuitive positive ...

  20. Application of Artificial Thunderstorm Cells for the Investigation of Lightning Initiation Problems between a Thundercloud and the Ground

    Science.gov (United States)

    Temnikov, A. G.; Chernensky, L. L.; Orlov, A. V.; Lysov, N. Y.; Zhuravkova, D. S.; Belova, O. S.; Gerastenok, T. K.

    2017-12-01

    The results of the experimental application of artificial thunderstorm cells of negative and positive polarities for the investigation of the lightning initiation problems between the thundercloud and the ground using model hydrometeor arrays are presented. Possible options of the initiation and development of a discharge between the charged cloud and the ground in the presence of model hydrometeors are established. It is experimentally shown that groups of large hydrometeors of various shapes significantly increase the probability of channel discharge initiation between the artificial thunderstorm cell and the ground, especially in the case of positive polarity of the cloud. The authors assume that large hail arrays in the thundercloud can initiate the preliminary breakdown stage in the lower part of the thundercloud or initiate and stimulate the propagation of positive lightning from its upper part. A significant effect of the shape of model hydrometeors and the way they are grouped on the processes of initiation and stimulation of the channel discharge propagation in the artificial thunderstorm cell of negative or positive polarity-ground gap is experimentally established. It is found that, in the case of negative polarity of a charged cloud, the group of conductive cylindrical hydrometeors connected by a dielectric string more effectively initiates the channel discharge between the artificial thunderstorm cell and the ground. In the case of positive polarity of the artificial thunderstorm cell, the best effect of the channel discharge initiation is achieved for model hydrometeors grouped together by the dielectric tape. The obtained results can be used in the development of the method for the directed artificial lightning initiation between the thundercloud and the ground.