WorldWideScience

Sample records for positive gate bias

  1. Effect of top gate potential on bias-stress for dual gate amorphous indium-gallium-zinc-oxide thin film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Minkyu; Um, Jae Gwang; Park, Min Sang; Chowdhury, Md Delwar Hossain; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 02447 (Korea, Republic of)

    2016-07-15

    We report the abnormal behavior of the threshold voltage (V{sub TH}) shift under positive bias Temperature stress (PBTS) and negative bias temperature stress (NBTS) at top/bottom gate in dual gate amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). It is found that the PBTS at top gate shows negative transfer shift and NBTS shows positive transfer shift for both top and bottom gate sweep. The shift of bottom/top gate sweep is dominated by top gate bias (V{sub TG}), while bottom gate bias (V{sub BG}) is less effect than V{sub TG}. The X-ray photoelectron spectroscopy (XPS) depth profile provides the evidence of In metal diffusion to the top SiO{sub 2}/a-IGZO and also the existence of large amount of In{sup +} under positive top gate bias around top interfaces, thus negative transfer shift is observed. On the other hand, the formation of OH{sup −} at top interfaces under the stress of negative top gate bias shows negative transfer shift. The domination of V{sub TG} both on bottom/top gate sweep after PBTS/NBTS is obviously occurred due to thin active layer.

  2. Anomalous degradation behaviors under illuminated gate bias stress in a-Si:H thin film transistor

    International Nuclear Information System (INIS)

    Tsai, Ming-Yen; Chang, Ting-Chang; Chu, Ann-Kuo; Hsieh, Tien-Yu; Lin, Kun-Yao; Wu, Yi-Chun; Huang, Shih-Feng; Chiang, Cheng-Lung; Chen, Po-Lin; Lai, Tzu-Chieh; Lo, Chang-Cheng; Lien, Alan

    2014-01-01

    This study investigates the impact of gate bias stress with and without light illumination in a-Si:H thin film transistors. It has been observed that the I–V curve shifts toward the positive direction after negative and positive gate bias stress due to interface state creation at the gate dielectric. However, this study found that threshold voltages shift negatively and that the transconductance curve maxima are anomalously degraded under illuminated positive gate bias stress. In addition, threshold voltages shift positively under illuminated negative gate bias stress. These degradation behaviors can be ascribed to charge trapping in the passivation layer dominating degradation instability and are verified by a double gate a-Si:H device. - Highlights: • There is abnormal V T shift induced by illuminated gate bias stress in a-Si:H thin film transistors. • Electron–hole pair is generated via trap-assisted photoexcitation. • Abnormal transconductance hump is induced by the leakage current from back channel. • Charge trapping in the passivation layer is likely due to the fact that a constant voltage has been applied to the top gate

  3. Impacts of gate bias and its variation on gamma-ray irradiation resistance of SiC MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Koichi; Mitomo, Satoshi; Matsuda, Takuma; Yokoseki, Takashi [Saitama University, Sakuraku (Japan); National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki (Japan); Makino, Takahiro; Onoda, Shinobu; Takeyama, Akinori; Ohshima, Takeshi [National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki (Japan); Okubo, Shuichi; Tanaka, Yuki; Kandori, Mikio; Yoshie, Toru [Sanken Electric Co., Ltd., Niiza, Saitama (Japan); Hijikata, Yasuto [Saitama University, Sakuraku (Japan)

    2017-04-15

    Gamma-ray irradiation into vertical type n-channel hexagonal (4H)-silicon carbide (SiC) metal-oxide-semiconductor field effect transistors (MOSFETs) was performed under various gate biases. The threshold voltage for the MOSFETs irradiated with a constant positive gate bias showed a large negative shift, and the shift slightly recovered above 100 kGy. For MOSFETs with non- and a negative constant biases, no significant change in threshold voltage, V{sub th}, was observed up to 400 kGy. By changing the gate bias from positive bias to either negative or non-bias, the V{sub th} significantly recovered from the large negative voltage shift induced by 50 kGy irradiation with positive gate bias after only 10 kGy irradiation with either negative or zero bias. It indicates that the positive charges generated in the gate oxide near the oxide-SiC interface due to irradiation were removed or recombined instantly by the irradiation under zero or negative biases. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Investigation of the gate-bias induced instability for InGaZnO TFTs under dark and light illumination

    International Nuclear Information System (INIS)

    Chen, T.C.; Chang, T.C.; Hsieh, T.Y.; Tsai, C.T.; Chen, S.C.; Lin, C.S.; Jian, F.Y.; Tsai, M.Y.

    2011-01-01

    Mechanism of the instability for indium–gallium–zinc oxide thin film transistors caused by gate-bias stress performed in the dark and light illumination was investigated in this paper. The parallel V t shift with no degradation of subthreshold swing (S.S) and the fine fitting to the stretched-exponential equation indicate that charge trapping model dominates the degradation behavior under positive gate-bias stress. In addition, the significant gate-bias dependence of V t shift demonstrates that electron trapping effect easily occurs under large gate-bias since the average effective energy barrier of electron injection decreases with increasing gate bias. Moreover, the noticeable decrease of threshold voltage (V t ) shift under illuminated positive gate-bias stress and the accelerated recovery rate in the light indicate that the charge detrapping mechanism occurs under light illumination. Finally, the apparent negative V t shift under illuminated negative gate-bias stress was investigated in this paper. The average effectively energy barrier of electron and hole injection were extracted to clarify that the serious V t degradation behavior comparing with positive gate-bias stress was attributed to the lower energy barrier for hole injection.

  5. Influence of white light illumination on the performance of a-IGZO thin film transistor under positive gate-bias stress

    Science.gov (United States)

    Tang, Lan-Feng; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Qian, Hui-Min; Zhou, Dong; Zhang, Rong; Zheng, You-Dou; Huang, Xiao-Ming

    2015-08-01

    The influence of white light illumination on the stability of an amorphous InGaZnO thin film transistor is investigated in this work. Under prolonged positive gate bias stress, the device illuminated by white light exhibits smaller positive threshold voltage shift than the device stressed under dark. There are simultaneous degradations of field-effect mobility for both stressed devices, which follows a similar trend to that of the threshold voltage shift. The reduced threshold voltage shift under illumination is explained by a competition between bias-induced interface carrier trapping effect and photon-induced carrier detrapping effect. It is further found that white light illumination could even excite and release trapped carriers originally exiting at the device interface before positive gate bias stress, so that the threshold voltage could recover to an even lower value than that in an equilibrium state. The effect of photo-excitation of oxygen vacancies within the a-IGZO film is also discussed. Project supported by the State Key Program for Basic Research of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

  6. Impact of back-gate bias on the hysteresis effect in partially depleted SOI MOSFETs

    International Nuclear Information System (INIS)

    Luo Jie-Xin; Chen Jing; Zhou Jian-Hua; Wu Qing-Qing; Chai Zhan; Yu Tao; Wang Xi

    2012-01-01

    The hysteresis effect in the output characteristics, originating from the floating body effect, has been measured in partially depleted (PD) silicon-on-insulator (SOI) MOSFETs at different back-gate biases. I D hysteresis has been developed to clarify the hysteresis characteristics. The fabricated devices show the positive and negative peaks in the I D hysteresis. The experimental results show that the I D hysteresis is sensitive to the back gate bias in 0.13-μm PD SOI MOSFETs and does not vary monotonously with the back-gate bias. Based on the steady-state Shockley-Read-Hall (SRH) recombination theory, we have successfully interpreted the impact of the back-gate bias on the hysteresis effect in PD SOI MOSFETs. (condensed matter: structural, mechanical, and thermal properties)

  7. Bias stress instability of double-gate a-IGZO TFTs on polyimide substrate

    Science.gov (United States)

    Cho, Won-Ju; Ahn, Min-Ju

    2017-09-01

    In this study, flexible double-gate thin-film transistor (TFT)-based amorphous indium-galliumzinc- oxide (a-IGZO) was fabricated on a polyimide substrate. Double-gate operation with connected front and back gates was compared with a single-gate operation. As a result, the double-gate a- IGZO TFT exhibited enhanced electrical characteristics as well as improved long-term reliability. Under positive- and negative-bias temperature stress, the threshold voltage shift of the double-gate operation was much smaller than that of the single-gate operation.

  8. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress

    Energy Technology Data Exchange (ETDEWEB)

    Niang, K. M.; Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk [Electrical Engineering Division, Cambridge University, J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Barquinha, P. M. C.; Martins, R. F. P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal); Cobb, B. [Holst Centre/TNO, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Powell, M. J. [252, Valley Drive, Kendal LA9 7SL (United Kingdom)

    2016-02-29

    Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and analysed using the thermalization energy concept. The peak energy barrier to defect conversion is extracted to be 0.75 eV and the attempt-to-escape frequency is extracted to be 10{sup 7} s{sup −1}. These values are in remarkable agreement with measurements in a-IGZO TFTs under negative gate bias illumination stress (NBIS) reported recently (Flewitt and Powell, J. Appl. Phys. 115, 134501 (2014)). This suggests that the same physical process is responsible for both PBS and NBIS, and supports the oxygen vacancy defect migration model that the authors have previously proposed.

  9. Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress

    Directory of Open Access Journals (Sweden)

    Jong Woo Jin

    2016-08-01

    Full Text Available Oxide semiconductor thin-film transistors can show anomalous behavior under bias stress. Two types of anomalies are discussed in this paper. The first is the shift in threshold voltage (VTH in a direction opposite to the applied bias stress, and highly dependent on gate dielectric material. We attribute this to charge trapping/detrapping and charge migration within the gate dielectric. We emphasize the fundamental difference between trapping/detrapping events occurring at the semiconductor/dielectric interface and those occurring at gate/dielectric interface, and show that charge migration is essential to explain the first anomaly. We model charge migration in terms of the non-instantaneous polarization density. The second type of anomaly is negative VTH shift under high positive bias stress, with logarithmic evolution in time. This can be argued as electron-donating reactions involving H2O molecules or derived species, with a reaction rate exponentially accelerated by positive gate bias and exponentially decreased by the number of reactions already occurred.

  10. Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jong Woo [LPICM, CNRS, Ecole Polytechnique, Université Paris Saclay, 91128, Palaiseau (France); Nathan, Arokia, E-mail: an299@cam.ac.uk [Engineering Department, University of Cambridge, Cambridge, CB3 0FA (United Kingdom); Barquinha, Pedro; Pereira, Luís; Fortunato, Elvira; Martins, Rodrigo [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal); Cobb, Brian [Holst Centre/TNO, Eindhoven, 5656 AE (Netherlands)

    2016-08-15

    Oxide semiconductor thin-film transistors can show anomalous behavior under bias stress. Two types of anomalies are discussed in this paper. The first is the shift in threshold voltage (V{sub TH}) in a direction opposite to the applied bias stress, and highly dependent on gate dielectric material. We attribute this to charge trapping/detrapping and charge migration within the gate dielectric. We emphasize the fundamental difference between trapping/detrapping events occurring at the semiconductor/dielectric interface and those occurring at gate/dielectric interface, and show that charge migration is essential to explain the first anomaly. We model charge migration in terms of the non-instantaneous polarization density. The second type of anomaly is negative V{sub TH} shift under high positive bias stress, with logarithmic evolution in time. This can be argued as electron-donating reactions involving H{sub 2}O molecules or derived species, with a reaction rate exponentially accelerated by positive gate bias and exponentially decreased by the number of reactions already occurred.

  11. A Very Robust AlGaN/GaN HEMT Technology to High Forward Gate Bias and Current

    Directory of Open Access Journals (Sweden)

    Bradley D. Christiansen

    2012-01-01

    Full Text Available Reports to date of GaN HEMTs subjected to forward gate bias stress include varied extents of degradation. We report an extremely robust GaN HEMT technology that survived—contrary to conventional wisdom—high forward gate bias (+6 V and current (>1.8 A/mm for >17.5 hours exhibiting only a slight change in gate diode characteristic, little decrease in maximum drain current, with only a 0.1 V positive threshold voltage shift, and, remarkably, a persisting breakdown voltage exceeding 200 V.

  12. Effect of top gate bias on photocurrent and negative bias illumination stress instability in dual gate amorphous indium-gallium-zinc oxide thin-film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunji; Chowdhury, Md Delwar Hossain; Park, Min Sang; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-12-07

    We have studied the effect of top gate bias (V{sub TG}) on the generation of photocurrent and the decay of photocurrent for back channel etched inverted staggered dual gate structure amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Upon 5 min of exposure of 365 nm wavelength and 0.7 mW/cm{sup 2} intensity light with negative bottom gate bias, the maximum photocurrent increases from 3.29 to 322 pA with increasing the V{sub TG} from −15 to +15 V. By changing V{sub TG} from negative to positive, the Fermi level (E{sub F}) shifts toward conduction band edge (E{sub C}), which substantially controls the conversion of neutral vacancy to charged one (V{sub O} → V{sub O}{sup +}/V{sub O}{sup 2+} + e{sup −}/2e{sup −}), peroxide (O{sub 2}{sup 2−}) formation or conversion of ionized interstitial (O{sub i}{sup 2−}) to neutral interstitial (O{sub i}), thus electron concentration at conduction band. With increasing the exposure time, more carriers are generated, and thus, maximum photocurrent increases until being saturated. After negative bias illumination stress, the transfer curve shows −2.7 V shift at V{sub TG} = −15 V, which gradually decreases to −0.42 V shift at V{sub TG} = +15 V. It clearly reveals that the position of electron quasi-Fermi level controls the formation of donor defects (V{sub O}{sup +}/V{sub O}{sup 2+}/O{sub 2}{sup 2−}/O{sub i}) and/or hole trapping in the a-IGZO /interfaces.

  13. Investigating degradation behavior of InGaZnO thin-film transistors induced by charge-trapping effect under DC and AC gate bias stress

    International Nuclear Information System (INIS)

    Hsieh, Tien-Yu; Chang, Ting-Chang; Chen, Te-Chih; Tsai, Ming-Yen; Chen, Yu-Te

    2013-01-01

    This paper investigates the degradation mechanism of amorphous InGaZnO thin-film transistors under DC and AC gate bias stress. Comparing the degradation behavior at equal accumulated effective stress time, more pronounced threshold voltage shift under AC positive gate bias stress in comparison with DC stress indicates extra electron-trapping phenomenon that occurs in the duration of rising/falling time in pulse. Contrarily, illuminated AC negative gate bias stress exhibits much less threshold voltage shift than DC stress, suggesting that the photo-generated hole does not have sufficient time to drift to the interface of IGZO/gate insulator and causes hole-trapping under AC operation. Since the evolution of threshold voltage fits the stretched-exponential equation well, the different degradation tendencies under DC/AC stress can be attributed to the different electron- and hole-trapping efficiencies, and this is further verified by varying pulse waveform. - Highlights: ► Static and dynamic gate bias stresses are imposed on InGaZnO TFTs. ► Dynamic positive gate bias induces more pronounced threshold voltage shift. ► Static negative-bias illumination stress induces more severe threshold voltage shift. ► Evolution of threshold voltage fits the stretched-exponential equation well

  14. Bias-induced migration of ionized donors in amorphous oxide semiconductor thin-film transistors with full bottom-gate and partial top-gate structures

    Directory of Open Access Journals (Sweden)

    Mallory Mativenga

    2012-09-01

    Full Text Available Bias-induced charge migration in amorphous oxide semiconductor thin-film transistors (TFTs confirmed by overshoots of mobility after bias stressing dual gated TFTs is presented. The overshoots in mobility are reversible and only occur in TFTs with a full bottom-gate (covers the whole channel and partial top-gate (covers only a portion of the channel, indicating a bias-induced uneven distribution of ionized donors: Ionized donors migrate towards the region of the channel that is located underneath the partial top-gate and the decrease in the density of ionized donors in the uncovered portion results in the reversible increase in mobility.

  15. Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Kwang-Won; Cho, Won-Ju, E-mail: chowj@kw.ac.kr [Department of Electronic Materials Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701 (Korea, Republic of)

    2014-11-24

    In this study, we evaluated the effects of microwave irradiation (MWI) post-deposition-annealing (PDA) treatment on the gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) and compared the results with a conventional thermal annealing PDA treatment. The MWI-PDA-treated a-IGZO TFTs exhibited enhanced electrical performance as well as improved long-term stability with increasing microwave power. The positive turn-on voltage shift (ΔV{sub ON}) as a function of stress time with positive bias and varying temperature was precisely modeled on a stretched-exponential equation, suggesting that charge trapping is a dominant mechanism in the instability of MWI-PDA-treated a-IGZO TFTs. The characteristic trapping time and average effective barrier height for electron transport indicate that the MWI-PDA treatment effectively reduces the defects in a-IGZO TFTs, resulting in a superior resistance against gate bias stress.

  16. Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation

    International Nuclear Information System (INIS)

    Jo, Kwang-Won; Cho, Won-Ju

    2014-01-01

    In this study, we evaluated the effects of microwave irradiation (MWI) post-deposition-annealing (PDA) treatment on the gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) and compared the results with a conventional thermal annealing PDA treatment. The MWI-PDA-treated a-IGZO TFTs exhibited enhanced electrical performance as well as improved long-term stability with increasing microwave power. The positive turn-on voltage shift (ΔV ON ) as a function of stress time with positive bias and varying temperature was precisely modeled on a stretched-exponential equation, suggesting that charge trapping is a dominant mechanism in the instability of MWI-PDA-treated a-IGZO TFTs. The characteristic trapping time and average effective barrier height for electron transport indicate that the MWI-PDA treatment effectively reduces the defects in a-IGZO TFTs, resulting in a superior resistance against gate bias stress

  17. Influence of ultra-thin TiN thickness (1.4 nm and 2.4 nm) on positive bias temperature instability (PBTI) of high-k/metal gate nMOSFETs with gate-last process

    International Nuclear Information System (INIS)

    Qi Lu-Wei; Yang Hong; Ren Shang-Qing; Xu Ye-Feng; Luo Wei-Chun; Xu Hao; Wang Yan-Rong; Tang Bo; Wang Wen-Wu; Yan Jiang; Zhu Hui-Long; Zhao Chao; Chen Da-Peng; Ye Tian-Chun

    2015-01-01

    The positive bias temperature instability (PBTI) degradations of high-k/metal gate (HK/MG) nMOSFETs with thin TiN capping layers (1.4 nm and 2.4 nm) are systemically investigated. In this paper, the trap energy distribution in gate stack during PBTI stress is extracted by using ramped recovery stress, and the temperature dependences of PBTI (90 °C, 125 °C, 160 °C) are studied and activation energy (E a ) values (0.13 eV and 0.15 eV) are extracted. Although the equivalent oxide thickness (EOT) values of two TiN thickness values are almost similar (0.85 nm and 0.87 nm), the 2.4-nm TiN one (thicker TiN capping layer) shows better PBTI reliability (13.41% at 0.9 V, 90 °C, 1000 s). This is due to the better interfacial layer/high-k (IL/HK) interface, and HK bulk states exhibited through extracting activation energy and trap energy distribution in the high-k layer. (paper)

  18. Bias-stress characterization of solution-processed organic field-effect transistor based on highly ordered liquid crystals

    Science.gov (United States)

    Kunii, M.; Iino, H.; Hanna, J.

    2017-06-01

    Bias-stress effects in solution-processed, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) field effect transistors (FETs) are studied under negative and positive direct current bias. The bottom gate, bottom contact polycrystalline Ph-BTBT-10 FET with a hybrid gate dielectric of polystyrene and SiO2 shows high field effect mobility as well as a steep subthreshold slope when fabricated with a highly ordered smectic E liquid crystalline (SmE) film as a precursor. Negative gate bias-stress causes negative threshold voltage shift (ΔVth) for Ph-BTBT-10 FET in ambient air, but ΔVth rapidly decreases as the gate bias decreases and approaches to near zero when the gate bias goes down to 9 V in amplitude. In contrast, positive gate bias-stress causes negligible ΔVth even with a relatively high bias voltage. These results conclude that Ph-BTBT-10 FET has excellent bias-stress stability in ambient air in the range of low to moderate operating voltages.

  19. Energy distribution extraction of negative charges responsible for positive bias temperature instability

    International Nuclear Information System (INIS)

    Ren Shang-Qing; Yang Hong; Wang Wen-Wu; Tang Bo; Tang Zhao-Yun; Wang Xiao-Lei; Xu Hao; Luo Wei-Chun; Zhao Chao; Yan Jiang; Chen Da-Peng; Ye Tian-Chun

    2015-01-01

    A new method is proposed to extract the energy distribution of negative charges, which results from electron trapping by traps in the gate stack of nMOSFET during positive bias temperature instability (PBTI) stress based on the recovery measurement. In our case, the extracted energy distribution of negative charges shows an obvious dependence on energy, and the energy level of the largest energy density of negative charges is 0.01 eV above the conduction band of silicon. The charge energy distribution below that energy level shows strong dependence on the stress voltage. (paper)

  20. Investigating degradation behavior of hole-trapping effect under static and dynamic gate-bias stress in a dual gate a-InGaZnO thin film transistor with etch stop layer

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Po-Yung [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Hsieh, Tien-Yu [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Tsai, Ming-Yen; Chen, Bo-Wei; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Chou, Cheng-Hsu; Chang, Jung-Fang [Product Technology Center, Chimei Innolux Corp., Tainan 741, Taiwan (China)

    2016-03-31

    The degree of degradation between the amorphous-indium–gallium–zinc oxide (a-IGZO) thin film transistor (TFT) using the top-gate only or bottom-gate only is compared. Under negative gate bias illumination stress (NBIS), the threshold voltage (V{sub T}) after bottom-gate NBIS monotonically shifts in the negative direction, whereas top-gate NBIS operation exhibits on-state current increases without V{sub T} shift. Such anomalous degradation behavior of NBIS under top-gate operation is due to hole-trapping in the etch stop layer above the central portion of the channel. These phenomena can be ascribed to the screening of the electric field by redundant source/drain electrodes. In addition, the device degradation of dual gate a-IGZO TFT stressed with different top gate pulse waveforms is investigated. It is observed that the degradation is dependent on the frequency of the top gate pulses. The V{sub T} shift increases with decreasing frequency, indicating the hole mobility of IGZO is low. - Highlights: • Static and dynamic gate bias stresses are imposed on dual gate InGaZnO TFTs. • Top-gate NBIS operation exhibits on-state current increases without VT shift. • The degradation behavior of top-gate NBIS is due to hole-trapping in the ESL. • The degradation is dependent on the frequency of the top gate pulses. • The V{sub T} shift increases with decreasing frequency of the top gate pulses.

  1. Investigating degradation behavior of hole-trapping effect under static and dynamic gate-bias stress in a dual gate a-InGaZnO thin film transistor with etch stop layer

    International Nuclear Information System (INIS)

    Liao, Po-Yung; Chang, Ting-Chang; Hsieh, Tien-Yu; Tsai, Ming-Yen; Chen, Bo-Wei; Chu, Ann-Kuo; Chou, Cheng-Hsu; Chang, Jung-Fang

    2016-01-01

    The degree of degradation between the amorphous-indium–gallium–zinc oxide (a-IGZO) thin film transistor (TFT) using the top-gate only or bottom-gate only is compared. Under negative gate bias illumination stress (NBIS), the threshold voltage (V T ) after bottom-gate NBIS monotonically shifts in the negative direction, whereas top-gate NBIS operation exhibits on-state current increases without V T shift. Such anomalous degradation behavior of NBIS under top-gate operation is due to hole-trapping in the etch stop layer above the central portion of the channel. These phenomena can be ascribed to the screening of the electric field by redundant source/drain electrodes. In addition, the device degradation of dual gate a-IGZO TFT stressed with different top gate pulse waveforms is investigated. It is observed that the degradation is dependent on the frequency of the top gate pulses. The V T shift increases with decreasing frequency, indicating the hole mobility of IGZO is low. - Highlights: • Static and dynamic gate bias stresses are imposed on dual gate InGaZnO TFTs. • Top-gate NBIS operation exhibits on-state current increases without VT shift. • The degradation behavior of top-gate NBIS is due to hole-trapping in the ESL. • The degradation is dependent on the frequency of the top gate pulses. • The V T shift increases with decreasing frequency of the top gate pulses.

  2. Practical investigation of the gate bias effect on the reverse recovery behavior of the body diode in power MOSFETs

    DEFF Research Database (Denmark)

    Lindberg-Poulsen, Kristian; Petersen, Lars Press; Ouyang, Ziwei

    2014-01-01

    This work considers an alternative method of reducing the body diode reverse recovery by taking advantage of the MOSFET body effect, and applying a bias voltage to the gate before reverse recovery. A test method is presented, allowing the accurate measurement of voltage and current waveforms during...... reverse recovery at high di=dt. Different bias voltages and dead times are combined, giving a loss map which makes it possible to evaluate the practical efficacy of gate bias on reducing the MOSFET body diode reverse recovery, while comparing it to the well known methods of dead time optimization...

  3. Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress

    NARCIS (Netherlands)

    Jin, J.W.; Nathan, A.; Barquinha, P.; Pereira, L.; Fortunato, E.; Martins, R.; Cobb, B.

    2016-01-01

    Oxide semiconductor thin-film transistors can show anomalous behavior under bias stress. Two types of anomalies are discussed in this paper. The first is the shift in threshold voltage (VTH) in a direction opposite to the applied bias stress, and highly dependent on gate dielectric material. We

  4. Effect of liquid gate bias rising time in pH sensors based on Si nanowire ion sensitive field effect transistors

    Science.gov (United States)

    Jang, Jungkyu; Choi, Sungju; Kim, Jungmok; Park, Tae Jung; Park, Byung-Gook; Kim, Dong Myong; Choi, Sung-Jin; Lee, Seung Min; Kim, Dae Hwan; Mo, Hyun-Sun

    2018-02-01

    In this study, we investigate the effect of rising time (TR) of liquid gate bias (VLG) on transient responses in pH sensors based on Si nanowire ion-sensitive field-effect transistors (ISFETs). As TR becomes shorter and pH values decrease, the ISFET current takes a longer time to saturate to the pH-dependent steady-state value. By correlating VLG with the internal gate-to-source voltage of the ISFET, we found that this effect occurs when the drift/diffusion of mobile ions in analytes in response to VLG is delayed. This gives us useful insight on the design of ISFET-based point-of-care circuits and systems, particularly with respect to determining an appropriate rising time for the liquid gate bias.

  5. The electrical performance and gate bias stability of an amorphous InGaZnO thin-film transistor with HfO2 high-k dielectrics

    Science.gov (United States)

    Wang, Ruo Zheng; Wu, Sheng Li; Li, Xin Yu; Zhang, Jin Tao

    2017-07-01

    In this study, we set out to fabricate an amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with SiNx/HfO2/SiNx (SHS) sandwiched dielectrics. The J-V and C-V of this SHS film were extracted by the Au/p-Si/SHS/Ti structure. At room temperature the a-IGZO with SHS dielectrics showed the following electrical properties: a threshold voltage of 2.9 V, a subthreshold slope of 0.35 V/decade, an on/off current ratio of 3.5 × 107, and a mobility of 12.8 cm2 V-1 s-1. Finally, we tested the influence of gate bias stress on the TFT, and the result showed that the threshold voltage shifted to a positive voltage when applying a positive gate voltage to the TFT.

  6. A study on the degradation mechanism of InGaZnO thin-film transistors under simultaneous gate and drain bias stresses based on the electronic trap characterization

    International Nuclear Information System (INIS)

    Jeong, Chan-Yong; Lee, Daeun; Song, Sang-Hun; Kwon, Hyuck-In; Kim, Jong In; Lee, Jong-Ho

    2014-01-01

    We discuss the device degradation mechanism of amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses based on the electronic trap characterization results. The transfer curve exhibits an apparent negative shift as the stress time increases, and a formation of hump is observed in the transfer curve after stresses. A notable increase of the frequency dispersion is observed after stresses in both gate-to-drain capacitance–voltage (C GD –V G ) and gate-to-source capacitance–voltage (C GS –V G ) curves, which implies that the subgap states are generated by simultaneous gate and drain bias stresses, and the damaged location is not limited to the drain side of TFTs. The larger frequency dispersion is observed in C GD –V G  curves after stresses in a wider channel device, which implies that the heat is an important factor in the generation of the subgap states under simultaneous gate and drain bias stresses in a-IGZO TFTs. Based on the electronic trap characterization results, we conclude that the impact ionization near the drain side of the device is not a dominant mechanism causing the generation of subgap states and device degradation in a-IGZO TFTs under simultaneous gate and drain bias stresses. The generation of oxygen vacancy-related donor-like traps near the conduction band edge is considered as a possible mechanism causing the device degradation under simultaneous gate and drain bias stresses in a-IGZO TFTs. (paper)

  7. Molecular doping for control of gate bias stress in organic thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Moritz P., E-mail: hein@iapp.de; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Zakhidov, Alexander A. [Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany); Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany)

    2014-01-06

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface.

  8. Molecular doping for control of gate bias stress in organic thin film transistors

    International Nuclear Information System (INIS)

    Hein, Moritz P.; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K.; Zakhidov, Alexander A.; Leo, Karl

    2014-01-01

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface

  9. Effect of gate voltage polarity on the ionic liquid gating behavior of NdNiO3/NdGaO3 heterostructures

    Directory of Open Access Journals (Sweden)

    Yongqi Dong

    2017-05-01

    Full Text Available The effect of gate voltage polarity on the behavior of NdNiO3 epitaxial thin films during ionic liquid gating is studied using in situ synchrotron X-ray techniques. We show that while negative biases have no discernible effect on the structure or composition of the films, large positive gate voltages result in the injection of a large concentration of oxygen vacancies (∼3% and pronounced lattice expansion (0.17% in addition to a 1000-fold increase in sheet resistance at room temperature. Despite the creation of large defect densities, the heterostructures exhibit a largely reversible switching behavior when sufficient time is provided for the vacancies to migrate in and out of the thin film surface. The results confirm that electrostatic gating takes place at negative gate voltages for p-type complex oxides while positive voltages favor the electrochemical reduction of Ni3+. Switching between positive and negative gate voltages therefore involves a combination of electronic and ionic doping processes that may be utilized in future electrochemical transistors.

  10. Bias temperature instability in tunnel field-effect transistors

    Science.gov (United States)

    Mizubayashi, Wataru; Mori, Takahiro; Fukuda, Koichi; Ishikawa, Yuki; Morita, Yukinori; Migita, Shinji; Ota, Hiroyuki; Liu, Yongxun; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Matsukawa, Takashi; Masahara, Meishoku; Endo, Kazuhiko

    2017-04-01

    We systematically investigated the bias temperature instability (BTI) of tunnel field-effect transistors (TFETs). The positive BTI and negative BTI mechanisms in TFETs are the same as those in metal-oxide-semiconductor FETs (MOSFETs). In TFETs, although traps are generated in high-k gate dielectrics by the bias stress and/or the interface state is degraded at the interfacial layer/channel interface, the threshold voltage (V th) shift due to BTI degradation is caused by the traps and/or the degradation of the interface state locating the band-to-band tunneling (BTBT) region near the source/gate edge. The BTI lifetime in n- and p-type TFETs is improved by applying a drain bias corresponding to the operation conditions.

  11. Improvements in the reliability of a-InGaZnO thin-film transistors with triple stacked gate insulator in flexible electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Mao [Department of Photonics & Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Department of Photonics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Tai, Ya-Hsiang [Department of Photonics & Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Chen, Kuan-Fu [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chiang, Hsiao-Cheng [Department of Photonics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Liu, Kuan-Hsien [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Lee, Chao-Kuei [Department of Photonics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Lin, Wei-Ting; Cheng, Chun-Cheng; Tu, Chun-Hao; Liu, Chu-Yu [Advanced Technology Research Center, AU Optronics Corp, Hsinchu, Taiwan (China)

    2015-11-30

    This study examined the impact of the low-temperature stacking gate insulator on the gate bias instability of a-InGaZnO thin film transistors in flexible electronics applications. Although the quality of SiN{sub x} at low process/deposition temperature is better than that of SiO{sub x} at similarly low process/deposition temperature, there is still a very large positive threshold voltage (V{sub th}) shift of 9.4 V for devices with a single low-temperature SiN{sub x} gate insulator under positive gate bias stress. However, a suitable oxide–nitride–oxide-stacked gate insulator exhibits a V{sub th} shift of only 0.23 V. This improvement results from the larger band offset and suitable gate insulator thickness that can effectively suppress carrier trapping behavior. - Highlights: • The cause of the bias instability for a low-temperature gate insulator is verified. • A triple-stacked gate insulator was fabricated. • A suitable triple stacked gate insulator shows only 0.23 V threshold voltage shift.

  12. On-chip active gate bias circuit for MMIC amplifier applications with 100% threshold voltage variation compensation

    NARCIS (Netherlands)

    Hek, A.P. de; Busking, E.B.

    2006-01-01

    In this paper the design and performance of an on-chip active gate bias circuit for application in MMIC amplifiers, which gives 100% compensation for threshold variation and at the same time is insensitive to supply voltage variations, is discussed. Design equations have been given. In addition, the

  13. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Choi, Kyung Cheol, E-mail: shkp@kaist.ac.kr, E-mail: kyungcc@kaist.ac.kr [School of Electrical Engineering, KAIST, Daejeon 34141 (Korea, Republic of); Park, Sang-Hee Ko, E-mail: shkp@kaist.ac.kr, E-mail: kyungcc@kaist.ac.kr [Department of Material Science and Engineering, KAIST, Daejeon 34141 (Korea, Republic of)

    2016-05-02

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al{sub 2}O{sub 3}, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔV{sub th}) was 0 V even after a PBS time (t{sub stress}) of 3000 s under a gate voltage (V{sub G}) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔV{sub th} value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔV{sub th} values resulting from PBS quantitatively, the average oxide charge trap density (N{sub T}) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher N{sub T} resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of N{sub T} near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  14. Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Kim, Eungtaek; Kim, Choong-Ki; Lee, Myung Keun; Bang, Tewook; Choi, Yang-Kyu; Choi, Kyung Cheol; Park, Sang-Hee Ko

    2016-01-01

    We investigated the positive-bias stress (PBS) instability of thin film transistors (TFTs) composed of different types of first-gate insulators, which serve as a protection layer of the active surface. Two different deposition methods, i.e., the thermal atomic layer deposition (THALD) and plasma-enhanced ALD (PEALD) of Al_2O_3, were applied for the deposition of the first GI. When THALD was used to deposit the GI, amorphous indium-gallium-zinc oxide (a-IGZO) TFTs showed superior stability characteristics under PBS. For example, the threshold voltage shift (ΔV_t_h) was 0 V even after a PBS time (t_s_t_r_e_s_s) of 3000 s under a gate voltage (V_G) condition of 5 V (with an electrical field of 1.25 MV/cm). On the other hand, when the first GI was deposited by PEALD, the ΔV_t_h value of a-IGZO TFTs was 0.82 V after undergoing an identical amount of PBS. In order to interpret the disparate ΔV_t_h values resulting from PBS quantitatively, the average oxide charge trap density (N_T) in the GI and its spatial distribution were investigated through low-frequency noise characterizations. A higher N_T resulted during in the PEALD type GI than in the THALD case. Specifically, the PEALD process on a-IGZO layer surface led to an increasing trend of N_T near the GI/a-IGZO interface compared to bulk GI owing to oxygen plasma damage on the a-IGZO surface.

  15. Attentional bias for positive emotional stimuli: A meta-analytic investigation.

    Science.gov (United States)

    Pool, Eva; Brosch, Tobias; Delplanque, Sylvain; Sander, David

    2016-01-01

    Despite an initial focus on negative threatening stimuli, researchers have more recently expanded the investigation of attentional biases toward positive rewarding stimuli. The present meta-analysis systematically compared attentional bias for positive compared with neutral visual stimuli across 243 studies (N = 9,120 healthy participants) that used different types of attentional paradigms and positive stimuli. Factors were tested that, as postulated by several attentional models derived from theories of emotion, might modulate this bias. Overall, results showed a significant, albeit modest (Hedges' g = .258), attentional bias for positive as compared with neutral stimuli. Moderator analyses revealed that the magnitude of this attentional bias varied as a function of arousal and that this bias was significantly larger when the emotional stimulus was relevant to specific concerns (e.g., hunger) of the participants compared with other positive stimuli that were less relevant to the participants' concerns. Moreover, the moderator analyses showed that attentional bias for positive stimuli was larger in paradigms that measure early, rather than late, attentional processing, suggesting that attentional bias for positive stimuli occurs rapidly and involuntarily. Implications for theories of emotion and attention are discussed. (c) 2015 APA, all rights reserved).

  16. Bill Gates køber sig til positive historier om udviklingsbistanden

    DEFF Research Database (Denmark)

    Fejerskov, Adam Moe

    2014-01-01

    Flere store og velansete medier får penge af Bill Gates' fond for at at bringe positive historier om udviklingsbistanden. Men det medfører en risiko for at journalistikken bliver ukritisk og overfladisk......Flere store og velansete medier får penge af Bill Gates' fond for at at bringe positive historier om udviklingsbistanden. Men det medfører en risiko for at journalistikken bliver ukritisk og overfladisk...

  17. Analysis of tag-position bias in MPSS technology

    Directory of Open Access Journals (Sweden)

    Rattray Magnus

    2006-04-01

    Full Text Available Abstract Background Massively Parallel Signature Sequencing (MPSS technology was recently developed as a high-throughput technology for measuring the concentration of mRNA transcripts in a sample. It has previously been observed that the position of the signature tag in a transcript (distance from 3' end can affect the measurement, but this effect has not been studied in detail. Results We quantify the effect of tag-position bias in Classic and Signature MPSS technology using published data from Arabidopsis, rice and human. We investigate the relationship between measured concentration and tag-position using nonlinear regression methods. The observed relationship is shown to be broadly consistent across different data sets. We find that there exist different and significant biases in both Classic and Signature MPSS data. For Classic MPSS data, genes with tag-position in the middle-range have highest measured abundance on average while genes with tag-position in the high-range, far from the 3' end, show a significant decrease. For Signature MPSS data, high-range tag-position genes tend to have a flatter relationship between tag-position and measured abundance. Thus, our results confirm that the Signature MPSS method fixes a substantial problem with the Classic MPSS method. For both Classic and Signature MPSS data there is a positive correlation between measured abundance and tag-position for low-range tag-position genes. Compared with the effects of mRNA length and number of exons, tag-position bias seems to be more significant in Arabadopsis. The tag-position bias is reflected both in the measured abundance of genes with a significant tag count and in the proportion of unexpressed genes identified. Conclusion Tag-position bias should be taken into consideration when measuring mRNA transcript abundance using MPSS technology, both in Classic and Signature MPSS methods.

  18. I2 basal stacking fault as a degradation mechanism in reverse gate-biased AlGaN/GaN HEMTs

    Science.gov (United States)

    Lang, A. C.; Hart, J. L.; Wen, J. G.; Miller, D. J.; Meyer, D. J.; Taheri, M. L.

    2016-09-01

    Here, we present the observation of a bias-induced, degradation-enhancing defect process in plasma-assisted molecular beam epitaxy grown reverse gate-biased AlGaN/GaN high electron mobility transistors (HEMTs), which is compatible with the current theoretical framework of HEMT degradation. Specifically, we utilize both conventional transmission electron microscopy and aberration-corrected transmission electron microscopy to analyze microstructural changes in not only high strained regions in degraded AlGaN/GaN HEMTs but also the extended gate-drain access region. We find a complex defect structure containing an I2 basal stacking fault and offer a potential mechanism for device degradation based on this defect structure. This work supports the reality of multiple failure mechanisms during device operation and identifies a defect potentially involved with device degradation.

  19. Positioning of Weight Bias: Moving towards Social Justice.

    Science.gov (United States)

    Nutter, Sarah; Russell-Mayhew, Shelly; Alberga, Angela S; Arthur, Nancy; Kassan, Anusha; Lund, Darren E; Sesma-Vazquez, Monica; Williams, Emily

    2016-01-01

    Weight bias is a form of stigma with detrimental effects on the health and wellness of individuals with large bodies. Researchers from various disciplines have recognized weight bias as an important topic for public health and for professional practice. To date, researchers from various areas have approached weight bias from independent perspectives and from differing theoretical orientations. In this paper, we examined the similarities and differences between three perspectives (i.e., weight-centric, non-weight-centric (health-centric), and health at every size) used to understand weight bias and approach weight bias research with regard to (a) language about people with large bodies, (b) theoretical position, (c) identified consequences of weight bias, and (d) identified influences on weight-based social inequity. We suggest that, despite differences, each perspective acknowledges the negative influences that position weight as being within individual control and the negative consequences of weight bias. We call for recognition and discussion of weight bias as a social justice issue in order to change the discourse and professional practices extended towards individuals with large bodies. We advocate for an emphasis on social justice as a uniting framework for interdisciplinary research on weight bias.

  20. Attentional Bias towards Positive Emotion Predicts Stress Resilience.

    Science.gov (United States)

    Thoern, Hanna A; Grueschow, Marcus; Ehlert, Ulrike; Ruff, Christian C; Kleim, Birgit

    2016-01-01

    There is extensive evidence for an association between an attentional bias towards emotionally negative stimuli and vulnerability to stress-related psychopathology. Less is known about whether selective attention towards emotionally positive stimuli relates to mental health and stress resilience. The current study used a modified Dot Probe task to investigate if individual differences in attentional biases towards either happy or angry emotional stimuli, or an interaction between these biases, are related to self-reported trait stress resilience. In a nonclinical sample (N = 43), we indexed attentional biases as individual differences in reaction time for stimuli preceded by either happy or angry (compared to neutral) face stimuli. Participants with greater attentional bias towards happy faces (but not angry faces) reported higher trait resilience. However, an attentional bias towards angry stimuli moderated this effect: The attentional bias towards happy faces was only predictive for resilience in those individuals who also endorsed an attentional bias towards angry stimuli. An attentional bias towards positive emotional stimuli may thus be a protective factor contributing to stress resilience, specifically in those individuals who also endorse an attentional bias towards negative emotional stimuli. Our findings therefore suggest a novel target for prevention and treatment interventions addressing stress-related psychopathology.

  1. Scanning gate microscopy on graphene: charge inhomogeneity and extrinsic doping

    International Nuclear Information System (INIS)

    Jalilian, Romaneh; Tian Jifa; Chen, Yong P; Jauregui, Luis A; Lopez, Gabriel; Roecker, Caleb; Jovanovic, Igor; Yazdanpanah, Mehdi M; Cohn, Robert W

    2011-01-01

    We have performed scanning gate microscopy (SGM) on graphene field effect transistors (GFET) using a biased metallic nanowire coated with a dielectric layer as a contact mode tip and local top gate. Electrical transport through graphene at various back gate voltages is monitored as a function of tip voltage and tip position. Near the Dirac point, the response of graphene resistance to the tip voltage shows significant variation with tip position, and SGM imaging displays mesoscopic domains of electron-doped and hole-doped regions. Our measurements reveal substantial spatial fluctuation in the carrier density in graphene due to extrinsic local doping from sources such as metal contacts, graphene edges, structural defects and resist residues. Our scanning gate measurements also demonstrate graphene's excellent capability to sense the local electric field and charges.

  2. Tunable pulse-shaping with gated graphene nanoribbons

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra

    2014-01-01

    We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed.......We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed....

  3. Investigation on the electrical characteristics of a pentacene thin-film transistor and its reliability under positive drain bias stress

    International Nuclear Information System (INIS)

    Fan, Ching-Lin; Chiu, Ping-Cheng; Lin, Yu-Zuo; Yang, Tsung-Hsien; Chiang, Chin-Yuan

    2011-01-01

    This study systematically investigates the effects of pentacene deposition rates and channel lengths on the electrical characteristics of pentacene-based organic thin-film transistors (OTFTs), and the performance degradation of OTFTs under the positive drain bias stress. With a slower deposition rate of the pentacene channel layer, the larger grain size is formed, and it improves the performance of pentacene-based OTFTs. As the channel length decreases, the threshold voltage (V TH ) shifts toward the positive direction and the field-effect mobility (µ FE ) decreases, which are due to the drain-induced barrier lowering effect and the lower mobility in the active channel near the region of source/drain electrodes, respectively. In addition, we also propose a mechanism to present the channel length dependence on the field-effect mobility. Results also show that the pentacene-based OTFTs, which are under positive drain bias stress, exhibit greater performance degradation than those under negative drain bias stress. The greater performance degradation, the decreasing I ON and the larger V TH shift are due to the greater trap state density (N trap ) created in the bulk channel by the large lateral electrical field and the carriers injected into the gate insulator by the large vertical electrical field, respectively

  4. Respiratory gating during stereotactic body radiotherapy for lung cancer reduces tumor position variability.

    Science.gov (United States)

    Saito, Tetsuo; Matsuyama, Tomohiko; Toya, Ryo; Fukugawa, Yoshiyuki; Toyofuku, Takamasa; Semba, Akiko; Oya, Natsuo

    2014-01-01

    We evaluated the effects of respiratory gating on treatment accuracy in lung cancer patients undergoing lung stereotactic body radiotherapy by using electronic portal imaging device (EPID) images. Our study population consisted of 30 lung cancer patients treated with stereotactic body radiotherapy (48 Gy/4 fractions/4 to 9 days). Of these, 14 were treated with- (group A) and 16 without gating (group B); typically the patients whose tumors showed three-dimensional respiratory motion ≧5 mm were selected for gating. Tumor respiratory motion was estimated using four-dimensional computed tomography images acquired during treatment simulation. Tumor position variability during all treatment sessions was assessed by measuring the standard deviation (SD) and range of tumor displacement on EPID images. The two groups were compared for tumor respiratory motion and position variability using the Mann-Whitney U test. The median three-dimensional tumor motion during simulation was greater in group A than group B (9 mm, range 3-30 mm vs. 2 mm, range 0-4 mm; psimulation, tumor position variability in the EPID images was low and comparable to patients treated without gating. This demonstrates the benefit of respiratory gating.

  5. Electrical characteristics of GdTiO{sub 3} gate dielectric for amorphous InGaZnO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Her, Jim-Long [Division of Natural Science, Center for General Education, Chang Gung University, Taoyuan 333, Taiwan (China); Pan, Tung-Ming, E-mail: tmpan@mail.cgu.edu.tw [Department of Electronics Engineering, Chang Gung University, Taoyuan 333, Taiwan (China); Liu, Jiang-Hung; Wang, Hong-Jun; Chen, Ching-Hung [Department of Electronics Engineering, Chang Gung University, Taoyuan 333, Taiwan (China); Koyama, Keiichi [Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065 (Japan)

    2014-10-31

    In this article, we studied the structural properties and electrical characteristics of GdTiO{sub 3} gate dielectric for amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistor (TFT) applications. The a-IGZO TFT device featuring the GdTiO{sub 3} gate dielectric exhibited better electrical characteristics, including a small threshold voltage of 0.14 V, a large field-effect mobility of 32.3 cm{sup 2}/V-s, a high I{sub on}/I{sub off} current ratio of 4.2 × 10{sup 8}, and a low subthreshold swing of 213 mV/decade. Furthermore, the electrical instability of GdTiO{sub 3} a-IGZO TFTs was investigated under both positive gate-bias stress (PGBS) and negative gate-bias stress (NGBS) conditions. The electron charge trapping in the gate dielectric dominates the PGBS degradation, while the oxygen vacancies control the NGBS degradation. - Highlights: • Indium–gallium–zinc oxide (a-IGZO) thin-film transistor (TFT) • Structural and electrical properties of the GdTiO{sub 3} film were studied. • a-IGZO TFT featuring GdTi{sub x}O{sub y} dielectric exhibited better electrical characteristics. • TFT instability investigated under positive and negative gate-bias stress conditions.

  6. Plasma-Induced Damage on the Reliability of Hf-Based High-k/Dual Metal-Gates Complementary Metal Oxide Semiconductor Technology

    International Nuclear Information System (INIS)

    Weng, W.T.; Lin, H.C.; Huang, T.Y.; Lee, Y.J.; Lin, H.C.

    2009-01-01

    This study examines the effects of plasma-induced damage (PID) on Hf-based high-k/dual metal-gates transistors processed with advanced complementary metal-oxide-semiconductor (CMOS) technology. In addition to the gate dielectric degradations, this study demonstrates that thinning the gate dielectric reduces the impact of damage on transistor reliability including the positive bias temperature instability (PBTI) of n-channel metal-oxide-semiconductor field-effect transistors (NMOSFETs) and the negative bias temperature instability (NBTI) of p-channel MOSFETs. This study shows that high-k/metal-gate transistors are more robust against PID than conventional SiO 2 /poly-gate transistors with similar physical thickness. Finally this study proposes a model that successfully explains the observed experimental trends in the presence of PID for high-k/metal-gate CMOS technology.

  7. Improved surface-roughness scattering and mobility models for multi-gate FETs with arbitrary cross-section and biasing scheme

    Science.gov (United States)

    Lizzit, D.; Badami, O.; Specogna, R.; Esseni, D.

    2017-06-01

    We present a new model for surface roughness (SR) scattering in n-type multi-gate FETs (MuGFETs) and gate-all-around nanowire FETs with fairly arbitrary cross-sections, its implementation in a complete device simulator, and the validation against experimental electron mobility data. The model describes the SR scattering matrix elements as non-linear transformations of interface fluctuations, which strongly influences the root mean square value of the roughness required to reproduce experimental mobility data. Mobility simulations are performed via the deterministic solution of the Boltzmann transport equation for a 1D-electron gas and including the most relevant scattering mechanisms for electronic transport, such as acoustic, polar, and non-polar optical phonon scattering, Coulomb scattering, and SR scattering. Simulation results show the importance of accounting for arbitrary cross-sections and biasing conditions when compared to experimental data. We also discuss how mobility is affected by the shape of the cross-section as well as by its area in gate-all-around and tri-gate MuGFETs.

  8. Suitability of markerless EPID tracking for tumor position verification in gated radiotherapy

    International Nuclear Information System (INIS)

    Serpa, Marco; Baier, Kurt; Guckenberger, Matthias; Cremers, Florian; Meyer, Juergen

    2014-01-01

    Purpose: To maximize the benefits of respiratory gated radiotherapy (RGRT) of lung tumors real-time verification of the tumor position is required. This work investigates the feasibility of markerless tracking of lung tumors during beam-on time in electronic portal imaging device (EPID) images of the MV therapeutic beam. Methods: EPID movies were acquired at ∼2 fps for seven lung cancer patients with tumor peak-to-peak motion ranges between 7.8 and 17.9 mm (mean: 13.7 mm) undergoing stereotactic body radiotherapy. The external breathing motion of the abdomen was synchronously measured. Both datasets were retrospectively analyzed inPortalTrack, an in-house developed tracking software. The authors define a three-step procedure to run the simulations: (1) gating window definition, (2) gated-beam delivery simulation, and (3) tumor tracking. First, an amplitude threshold level was set on the external signal, defining the onset of beam-on/-off signals. This information was then mapped onto a sequence of EPID images to generate stamps of beam-on/-hold periods throughout the EPID movies in PortalTrack, by obscuring the frames corresponding to beam-off times. Last, tumor motion in the superior-inferior direction was determined on portal images by the tracking algorithm during beam-on time. The residual motion inside the gating window as well as target coverage (TC) and the marginal target displacement (MTD) were used as measures to quantify tumor position variability. Results: Tumor position monitoring and estimation from beam's-eye-view images during RGRT was possible in 67% of the analyzed beams. For a reference gating window of 5 mm, deviations ranging from 2% to 86% (35% on average) were recorded between the reference and measured residual motion. TC (range: 62%–93%; mean: 77%) losses were correlated with false positives incidence rates resulting mostly from intra-/inter-beam baseline drifts, as well as sudden cycle-to-cycle fluctuations in exhale positions. Both

  9. Implementation of Self-Bias Transistor on Voting Logic

    International Nuclear Information System (INIS)

    Harzawardi Hasim; Syirrazie Che Soh

    2014-01-01

    Study in the eld of digital integrated circuit (IC) already become common to the modern industrial. Day by day we have been introduced with new gadget that was developed based on transistor. This paper will study the implementation of self-bias transistor on voting logic. The self-bias transistor will connected both on pull-up network and pull-down network. On previous research, study on comparison of total number of transistors, time propagation delay, and frequency between NAND and NOR gate of voting logic. It's show, with the same number of transistor, NAND gate achieve high frequency and low time propagation delay compare to NOR gate. We extend this analysis by comparing the total number of transistor, time propagation delay, frequency and power dissipation between common NAND gate with self-bias NAND gate. Extensive LTSpice simulations were performed using IBM 90 nm CMOS(Complementary Metal Oxide Semiconductor) process technology. The result show self-bias voting NAND gate consumes 54 % less power dissipation, 43% slow frequency and 43 % high time propagation delay compare to common voting NAND gate. (author)

  10. High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation

    Science.gov (United States)

    Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun

    2018-05-01

    The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.

  11. High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation

    Science.gov (United States)

    Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun

    2018-02-01

    The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.

  12. Bias stress effect and recovery in organic field effect transistors : proton migration mechanism

    NARCIS (Netherlands)

    Sharma, A.; Mathijssen, S.G.J.; Kemerink, M.; Leeuw, de D.M.; Bobbert, P.A.; Bao, Z.; McCulloch, I.

    2010-01-01

    Organic field-effect transistors exhibit operational instabilities when a gate bias is applied. For a constant gate bias the threshold voltage shifts towards the applied gate bias voltage, an effect known as the bias-stress effect. We have performed a detailed experimental and theoretical study of

  13. Ion extraction from positively biased laser-ablation plasma

    International Nuclear Information System (INIS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Horioka, Kazuhiko

    2016-01-01

    Ions were extracted through a grounded grid from a positively biased laser-ablation plasma and the behaviors were investigated. Since the plasma was positively biased against the grounded wall, we could extract the ions without insulated gap. We confirmed formation of a virtual anode when we increased the distance between the grid and the ion collector. Results also indicated that when the ion flux from the ablation plasma exceeded a critical value, the current was strongly suppressed to the space charge limited level due to the formation of virtual anode.

  14. Analysis of Carina Position as Surrogate Marker for Delivering Phase-Gated Radiotherapy

    International Nuclear Information System (INIS)

    Weide, Lineke van der; Soernsen de Koste, John R. van; Lagerwaard, Frank J.; Vincent, Andrew; Triest, Baukelien van; Slotman, Ben J.; Senan, Suresh

    2008-01-01

    Purpose: Respiratory gating can mitigate the effect of tumor mobility in radiotherapy (RT) for lung cancer. Because the tumor is generally not visualized, external surrogates of tumor position are used to trigger respiration-gated RT. We evaluated the suitability of the carina position as a surrogate in respiration-gated RT. Methods and Materials: A total of 30 four-dimensional (4D) computed tomography (CT) scans from 14 patients with lung cancer were retrospectively analyzed. Both uncoached (free breathing) and audio-coached 4D-CT scans were acquired from 9 patients, and 12 uncoached 4D-CT scans were acquired from 5 other patients during a 2-4-week period of stereotactic RT. The repeat scans were co-registered. The carina position was identified on the coronal cut planes in all 4D-CT phases. The correlation between the carina position and the total lung volume for each phase was determined, and the reproducibility of the carina position was studied in the 5 patients with repeat uncoached 4D-CT scans. Results: The mean extent of carina motion in 21 uncoached scans was 5.3 ± 1.6 mm in the craniocaudal (CC), 2.3 ± 1.4 mm in the anteroposterior, and 1.5 ± 0.7 mm in the mediolateral direction. Audio coaching resulted in a twofold increase in carina mobility in all directions. The CC carina position correlated with changes in the total lung volume (R = 0.89 ± 0.14), but the correlation was better for the audio-coached than for the uncoached 4D-CT scans (R = 0.93 ± 0.08 vs. R = 0.85 ± 0.17; paired t test, p = 0.034). Preliminary data from the 5 patients indicated that the CC carina motion correlated better with tumor motion than did the motion of the diaphragm. Conclusions: The CC position of the carina correlated well with the total lung volume, indicating that the carina is a good surrogate for verifying the total lung volume during respiration-gated RT

  15. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Directory of Open Access Journals (Sweden)

    Minkyu Chun

    2015-05-01

    Full Text Available We investigated the effects of top gate voltage (VTG and temperature (in the range of 25 to 70 oC on dual-gate (DG back-channel-etched (BCE amorphous-indium-gallium-zinc-oxide (a-IGZO thin film transistors (TFTs characteristics. The increment of VTG from -20V to +20V, decreases the threshold voltage (VTH from 19.6V to 3.8V and increases the electron density to 8.8 x 1018cm−3. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on VTG. At VTG of 20V, the mobility decreases from 19.1 to 15.4 cm2/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at VTG of - 20V, the mobility increases from 6.4 to 7.5cm2/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  16. Human language reveals a universal positivity bias.

    Science.gov (United States)

    Dodds, Peter Sheridan; Clark, Eric M; Desu, Suma; Frank, Morgan R; Reagan, Andrew J; Williams, Jake Ryland; Mitchell, Lewis; Harris, Kameron Decker; Kloumann, Isabel M; Bagrow, James P; Megerdoomian, Karine; McMahon, Matthew T; Tivnan, Brian F; Danforth, Christopher M

    2015-02-24

    Using human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i) the words of natural human language possess a universal positivity bias, (ii) the estimated emotional content of words is consistent between languages under translation, and (iii) this positivity bias is strongly independent of frequency of word use. Alongside these general regularities, we describe interlanguage variations in the emotional spectrum of languages that allow us to rank corpora. We also show how our word evaluations can be used to construct physical-like instruments for both real-time and offline measurement of the emotional content of large-scale texts.

  17. Bias dependent charge trapping in MOSFETs during 1 and 6 MeV electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.S. [Department of Chemical Engineering, Mie University, 5148507 (Japan); Kulkarni, V.R.; Mathakari, N.L.; Bhoraskar, V.N. [Department of Physics, Univeristy of Pune, Pune 411007 (India); Dhole, S.D. [Department of Physics, Univeristy of Pune, Pune 411007 (India)], E-mail: sanjay@physics.unipune.ernet.in

    2008-06-15

    To study irradiation-induced charge trapping in SiO{sub 2} and around the SiO{sub 2}-Si interface, depletion n-MOSFETs (metal-oxide-semiconductor field effect transistor) were used. The devices were gate biased during 1 and 6 MeV pulsed electron irradiation. The I{sub D}-V{sub DS} (drain current versus drain voltage) and I{sub D}-V{sub GS} (drain current versus gate voltage) characteristics were measured before and after irradiation. The shift in threshold voltage {delta}V{sub T} (difference in threshold voltage V{sub T} before and after irradiation) exhibited trends depending on the applied gate bias during 1 MeV electron irradiation. This behavior can be associated to the contribution of irradiation-induced negative charge {delta}N{sub IT} buildup around the SiO{sub 2}-Si interface to {delta}V{sub T}, which is sensitive to the electron tunneling from the substrates. However, only weak gate bias dependence was observed in 6 MeV electron irradiated devices. Independent of the energy loss and applied bias, the positive oxide trapped charge {delta}N{sub OT} is marginal and can be associated to thin and good quality of SiO{sub 2}. These results are explained using screening of free and acceptor states by the applied bias during irradiation, thereby reducing the total irradiation-induced charges.

  18. Analysis of bias effects on the total ionizing dose response in a 180 nm technology

    International Nuclear Information System (INIS)

    Liu Zhangli; Hu Zhiyuan; Zhang, Zhengxuan; Shao Hua; Chen Ming; Bi Dawei; Ning Bingxu; Zou Shichang

    2011-01-01

    The effects of gamma ray irradiation on the shallow trench isolation (STI) leakage current in a 180 nm technology are investigated. The radiation response is strongly influenced by the bias modes, gate bias during irradiation, substrate bias during irradiation and operating substrate bias after irradiation. We found that the worst case occurs under the ON bias condition for the ON, OFF and PASS bias mode. A positive gate bias during irradiation significantly enhances the STI leakage current, indicating the electric field influence on the charge buildup process during radiation. Also, a negative substrate bias during irradiation enhances the STI leakage current. However a negative operating substrate bias effectively suppresses the STI leakage current, and can be used to eliminate the leakage current produced by the charge trapped in the deep STI oxide. Appropriate substrate bias should be introduced to alleviate the total ionizing dose (TID) response, and lead to acceptable threshold voltage shift and subthreshold hump effect. Depending on the simulation results, we believe that the electric field distribution in the STI oxide is the key parameter influencing bias effects on the radiation response of transistor. - Highlights: → ON bias is the worst bias condition for the ON, PASS and OFF bias modes. → Larger gate bias during irradiation leads to more pronounced characteristic degradation. → TID induced STI leakage can be suppressed by negative operating substrate bias voltage. → Negative substrate bias during irradiation leads to larger increase of off-state leakage. → Electric field in the STI oxide greatly influences the device's radiation effect.

  19. A gating grid driver for time projection chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tangwancharoen, S.; Lynch, W.G.; Barney, J.; Estee, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Shane, R. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Tsang, M.B., E-mail: tsang@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Zhang, Y. [Department of Physics, Tsinghua University, Beijing 100084 (China); Isobe, T.; Kurata-Nishimura, M. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Murakami, T. [Department of Physics, Kyoto University, Kita-shirakawa, Kyoto 606–8502 (Japan); Xiao, Z.G. [Department of Physics, Tsinghua University, Beijing 100084 (China); Zhang, Y.F. [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2017-05-01

    A simple but novel driver system has been developed to operate the wire gating grid of a Time Projection Chamber (TPC). This system connects the wires of the gating grid to its driver via low impedance transmission lines. When the gating grid is open, all wires have the same voltage allowing drift electrons, produced by the ionization of the detector gas molecules, to pass through to the anode wires. When the grid is closed, the wires have alternating higher and lower voltages causing the drift electrons to terminate at the more positive wires. Rapid opening of the gating grid with low pickup noise is achieved by quickly shorting the positive and negative wires to attain the average bias potential with N-type and P-type MOSFET switches. The circuit analysis and simulation software SPICE shows that the driver restores the gating grid voltage to 90% of the opening voltage in less than 0.20 µs, for small values of the termination resistors. When tested in the experimental environment of a time projection chamber larger termination resistors were chosen so that the driver opens the gating grid in 0.35 µs. In each case, opening time is basically characterized by the RC constant given by the resistance of the switches and terminating resistors and the capacitance of the gating grid and its transmission line. By adding a second pair of N-type and P-type MOSFET switches, the gating grid is closed by restoring 99% of the original charges to the wires within 3 µs.

  20. Estimation of satellite position, clock and phase bias corrections

    Science.gov (United States)

    Henkel, Patrick; Psychas, Dimitrios; Günther, Christoph; Hugentobler, Urs

    2018-05-01

    Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm.

  1. Influence of transfer gate design and bias on the radiation hardness of pinned photodiode CMOS image sensors

    International Nuclear Information System (INIS)

    Goiffon, V.; Estribeau, M.; Cervantes, P.; Molina, R.; Magnan, P.; Gaillardin, M.

    2014-01-01

    The effects of Cobalt 60 gamma-ray irradiation on pinned photodiode (PPD) CMOS image sensors (CIS) are investigated by comparing the total ionizing dose (TID) response of several transfer gate (TG) and PPD designs manufactured using a 180 nm CIS process. The TID induced variations of charge transfer efficiency (CTE), pinning voltage, equilibrium full well capacity (EFWC), full well capacity (FWC) and dark current measured on the different pixel designs lead to the conclusion that only three degradation sources are responsible for all the observed radiation effects: the pre-metal dielectric (PMD) positive trapped charge, the TG sidewall spacer positive trapped charge and, with less influence, the TG channel shallow trench isolation (STI) trapped charge. The different FWC evolutions with TID presented here are in very good agreement with a recently proposed analytical model. This work also demonstrates that the peripheral STI is not responsible for the observed degradations and thus that the enclosed layout TG design does not improve the radiation hardness of PPD CIS. The results of this study also lead to the conclusion that the TG OFF voltage bias during irradiation has no influence on the radiation effects. Alternative design and process solutions to improve the radiation hardness of PPD CIS are discussed. (authors)

  2. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Minkyu; Chowdhury, Md Delwar Hossain; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-05-15

    We investigated the effects of top gate voltage (V{sub TG}) and temperature (in the range of 25 to 70 {sup o}C) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of V{sub TG} from -20V to +20V, decreases the threshold voltage (V{sub TH}) from 19.6V to 3.8V and increases the electron density to 8.8 x 10{sup 18}cm{sup −3}. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on V{sub TG}. At V{sub TG} of 20V, the mobility decreases from 19.1 to 15.4 cm{sup 2}/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at V{sub TG} of - 20V, the mobility increases from 6.4 to 7.5cm{sup 2}/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  3. Timing group delay and differential code bias corrections for BeiDou positioning

    Science.gov (United States)

    Guo, Fei; Zhang, Xiaohong; Wang, Jinling

    2015-05-01

    This article first clearly figures out the relationship between parameters of timing group delay (TGD) and differential code bias (DCB) for BDS, and demonstrates the equivalence of TGD and DCB correction models combining theory with practice. The TGD/DCB correction models have been extended to various occasions for BDS positioning, and such models have been evaluated by real triple-frequency datasets. To test the effectiveness of broadcast TGDs in the navigation message and DCBs provided by the Multi-GNSS Experiment (MGEX), both standard point positioning (SPP) and precise point positioning (PPP) tests are carried out for BDS signals with different schemes. Furthermore, the influence of differential code biases on BDS positioning estimates such as coordinates, receiver clock biases, tropospheric delays and carrier phase ambiguities is investigated comprehensively. Comparative analysis show that the unmodeled differential code biases degrade the performance of BDS SPP by a factor of two or more, whereas the estimates of PPP are subject to varying degrees of influences. For SPP, the accuracy of dual-frequency combinations is slightly worse than that of single-frequency, and they are much more sensitive to the differential code biases, particularly for the B2B3 combination. For PPP, the uncorrected differential code biases are mostly absorbed into the receiver clock bias and carrier phase ambiguities and thus resulting in a much longer convergence time. Even though the influence of the differential code biases could be mitigated over time and comparable positioning accuracy could be achieved after convergence, it is suggested to properly handle with the differential code biases since it is vital for PPP convergence and integer ambiguity resolution.

  4. Self-esteem modulates the time course of self-positivity bias in explicit self-evaluation.

    Science.gov (United States)

    Zhang, Hua; Guan, Lili; Qi, Mingming; Yang, Juan

    2013-01-01

    Researchers have suggested that certain individuals may show a self-positivity bias, rating themselves as possessing more positive personality traits than others. Previous evidence has shown that people evaluate self-related information in such a way as to maintain or enhance self-esteem. However, whether self-esteem would modulate the time course of self-positivity bias in explicit self-evaluation has never been explored. In the present study, 21 participants completed the Rosenberg self-esteem scale and then completed a task where they were instructed to indicate to what extent positive/negative traits described themselves. Behavioral data showed that participants endorsed positive traits as higher in self-relevance compared to the negative traits. Further, participants' self-esteem levels were positively correlated with their self-positivity bias. Electrophysiological data revealed smaller N1 amplitude and larger late positive component (LPC) amplitude to stimuli consistent with the self-positivity bias (positive-high self-relevant stimuli) when compared to stimuli that were inconsistent with the self-positivity bias (positive-low self-relevant stimuli). Moreover, only in individuals with low self-esteem, the latency of P2 was more pronounced in processing stimuli that were consistent with the self-positivity bias (negative-low self-relevant stimuli) than to stimuli that were inconsistent with the self-positivity bias (positive-low self-relevant stimuli). Overall, the present study provides additional support for the view that low self-esteem as a personality variable would affect the early attentional processing.

  5. Influence of Respiratory Gating, Image Filtering, and Animal Positioning on High-Resolution Electrocardiography-Gated Murine Cardiac Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2015-01-01

    Full Text Available Cardiac parameters obtained from single-photon emission computed tomographic (SPECT images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were injected with 99m technetium (99mTc-tetrofosmin, and each was scanned in supine and prone positions in a U-SPECT-II scanner with respiratory and electrocardiographic (ECG gating. ECG-gated SPECT images were created without applying respiratory motion correction or with two different respiratory motion correction strategies. The images were filtered with a range of three-dimensional gaussian kernels, after which end-diastolic volumes (EDVs, end-systolic volumes (ESVs, and left ventricular ejection fractions were calculated. No significant differences in the measured cardiac parameters were detected when any strategy to reduce or correct for respiratory motion was applied, whereas big differences (> 5% in EDV and ESV were found with regard to different positioning of animals. A linear relationship (p < .001 was found between the EDV or ESV and the kernel size of the gaussian filter. In short, respiratory gating did not significantly affect the cardiac parameters of mice obtained with ultra-high-resolution SPECT, whereas the position of the animals and the image filters should be the same in a comparative study with multiple scans to avoid systematic differences in measured cardiac parameters.

  6. Performance Feedback Processing Is Positively Biased As Predicted by Attribution Theory.

    Directory of Open Access Journals (Sweden)

    Christoph W Korn

    Full Text Available A considerable literature on attribution theory has shown that healthy individuals exhibit a positivity bias when inferring the causes of evaluative feedback on their performance. They tend to attribute positive feedback internally (e.g., to their own abilities but negative feedback externally (e.g., to environmental factors. However, all empirical demonstrations of this bias suffer from at least one of the three following drawbacks: First, participants directly judge explicit causes for their performance. Second, participants have to imagine events instead of experiencing them. Third, participants assess their performance only after receiving feedback and thus differences in baseline assessments cannot be excluded. It is therefore unclear whether the classically reported positivity bias generalizes to setups without these drawbacks. Here, we aimed at establishing the relevance of attributions for decision-making by showing an attribution-related positivity bias in a decision-making task. We developed a novel task, which allowed us to test how participants changed their evaluations in response to positive and negative feedback about performance. Specifically, we used videos of actors expressing different facial emotional expressions. Participants were first asked to evaluate the actors' credibility in expressing a particular emotion. After this initial rating, participants performed an emotion recognition task and did--or did not--receive feedback on their veridical performance. Finally, participants re-rated the actors' credibility, which provided a measure of how they changed their evaluations after feedback. Attribution theory predicts that participants change their evaluations of the actors' credibility toward the positive after receiving positive performance feedback and toward the negative after negative performance feedback. Our results were in line with this prediction. A control condition without feedback showed that correct or

  7. Performance Feedback Processing Is Positively Biased As Predicted by Attribution Theory.

    Science.gov (United States)

    Korn, Christoph W; Rosenblau, Gabriela; Rodriguez Buritica, Julia M; Heekeren, Hauke R

    2016-01-01

    A considerable literature on attribution theory has shown that healthy individuals exhibit a positivity bias when inferring the causes of evaluative feedback on their performance. They tend to attribute positive feedback internally (e.g., to their own abilities) but negative feedback externally (e.g., to environmental factors). However, all empirical demonstrations of this bias suffer from at least one of the three following drawbacks: First, participants directly judge explicit causes for their performance. Second, participants have to imagine events instead of experiencing them. Third, participants assess their performance only after receiving feedback and thus differences in baseline assessments cannot be excluded. It is therefore unclear whether the classically reported positivity bias generalizes to setups without these drawbacks. Here, we aimed at establishing the relevance of attributions for decision-making by showing an attribution-related positivity bias in a decision-making task. We developed a novel task, which allowed us to test how participants changed their evaluations in response to positive and negative feedback about performance. Specifically, we used videos of actors expressing different facial emotional expressions. Participants were first asked to evaluate the actors' credibility in expressing a particular emotion. After this initial rating, participants performed an emotion recognition task and did--or did not--receive feedback on their veridical performance. Finally, participants re-rated the actors' credibility, which provided a measure of how they changed their evaluations after feedback. Attribution theory predicts that participants change their evaluations of the actors' credibility toward the positive after receiving positive performance feedback and toward the negative after negative performance feedback. Our results were in line with this prediction. A control condition without feedback showed that correct or incorrect performance

  8. A double-gate double-feedback JFET charge-sensitive preamplifier

    International Nuclear Information System (INIS)

    Fazzi, A.

    1996-01-01

    A new charge-sensitive preamplifier (CSP) without a physical resistance in the feedback is presented. The input device has to be a double-gate JFET. In this new preamplifier configuration the feedback capacitor is continuously discharged by means of a second DC current feedback loop closed through the bottom gate of the input JFET. The top gate-channel junction works as usual in reverse bias, the bottom gate-channel is forward biased. A fraction of the current injected by the bottom gate reaches the top gate discharging the feedback capacitor. The n-channel double-gate JFET is considered from the viewpoint of the restoring action as a parasitic p-n-p ''transversal'' bipolar junction transistor. The new preamplifier is also suited for detectors operating at room temperature with leakage current which may vary with time. The DC behaviour and the dynamic behaviour of the circuit is analyzed and new measurements presented. (orig.)

  9. Analytical drain current formulation for gate dielectric engineered dual material gate-gate all around-tunneling field effect transistor

    Science.gov (United States)

    Madan, Jaya; Gupta, R. S.; Chaujar, Rishu

    2015-09-01

    In this work, an analytical drain current model for gate dielectric engineered (hetero dielectric)-dual material gate-gate all around tunnel field effect transistor (HD-DMG-GAA-TFET) has been developed. Parabolic approximation has been used to solve the two-dimensional (2D) Poisson equation with appropriate boundary conditions and continuity equations to evaluate analytical expressions for surface potential, electric field, tunneling barrier width and drain current. Further, the analog performance of the device is studied for three high-k dielectrics (Si3N4, HfO2, and ZrO2), and it has been investigated that the problem of lower ION, can be overcome by using the hetero-gate architecture. Moreover, the impact of scaling the gate oxide thickness and bias variations has also been studied. The HD-DMG-GAA-TFET shows an enhanced ION of the order of 10-4 A. The effectiveness of the proposed model is validated by comparing it with ATLAS device simulations.

  10. The positivity bias in aging: Motivation or degradation?

    Science.gov (United States)

    Kalenzaga, Sandrine; Lamidey, Virginie; Ergis, Anne-Marie; Clarys, David; Piolino, Pascale

    2016-08-01

    The question of an emotional memory enhancement in aging, and of a positivity bias in particular, has been the subject of numerous empirical studies in the last decade. However, the roots of such positive preference are not yet well established. Partisans of a motivation-based perspective contend with those arguing that positivity is related to a cognitive or neural degradation. The aim of this study was to introduce some elements concerning positivity effect in aging. We compared immediate (i.e., immediate recall) versus delayed (i.e., delayed recall and recognition) emotional memory performance in 38 young adults, 39 old adults, 37 very old adults, and 41 Alzheimer's disease patients. Moreover, we manipulated the encoding instruction: Either participants received no particular processing instruction, or they had to process the material in a semantic way. The results indicated that the positivity bias is most likely to occur in individuals whose cognitive functions are preserved, after long retention delay, and in experimental conditions that do not constrain encoding. We concluded by highlighting that although these findings seem to be better in line with the motivation, rather than the degradation, perspective, they do not fully support either theory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Positively Biased Self-Perceptions of Peer Acceptance and Subtypes of Aggression in Children

    Science.gov (United States)

    Lynch, Rebecca J.; Kistner, Janet A.; Stephens, Haley F.; David-Ferdon, Corinne

    2016-01-01

    There is a growing body of research linking children’s positively biased self-perceptions with higher levels of aggression. This study extended this area of research by examining prospective associations of positively biased self-perceptions of peer acceptance with overt and relational aggression. In addition, moderating effects of peer rejection were examined to test the “disputed overestimation hypothesis,” which posits that the link between bias and aggression is limited to children who are rejected by their peers. Using a two-wave longitudinal design, measures of peer-rated and self-perceived peer acceptance and peer-rated overt and relational aggression were obtained for 712 children in 3rd through 5th grades (386 girls and 326 boys). Positively biased perceptions led to increases in relational, but not overt, aggression. This pattern was observed even when the effects of gender, race, peer rejection, and overt aggression on relational aggression were controlled. Contrary to the disputed overestimation hypothesis, the prospective associations between bias and aggression did not vary as a function of children’s peer rejection status, thus supporting the view that positive bias predicts future aggressive behavior, regardless of social status. The results are discussed in terms of the comparability with previous findings and practical implications. PMID:26423823

  12. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

    1988-01-01

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  13. Influence of the gate position on source-to-drain resistance in AlGaN/AlN/GaN heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2017-08-01

    Full Text Available Using a suitable dual-gate structure, the source-to-drain resistance (RSD of AlGaN/AlN/GaN heterostructure field-effect transistor (HFET with varying gate position has been studied at room temperature. The theoretical and experimental results have revealed a dependence of RSD on the gate position. The variation of RSD with the gate position is found to stem from the polarization Coulomb field (PCF scattering. This finding is of great benefit to the optimization of the performance of AlGaN/AlN/GaN HFET. Especially, when the AlGaN/AlN/GaN HFET works as a microwave device, it is beneficial to achieve the impedance matching by designing the appropriate gate position based on PCF scattering.

  14. Improving positive and negative bias illumination stress stability in parylene passivated IGZO transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kiazadeh, Asal [Department of Materials Science, i3N/CENIMAT, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal); Universidade do Algarve, FCT, 8000-139 Faro (Portugal); Gomes, Henrique L. [Universidade do Algarve, FCT, 8000-139 Faro (Portugal); IT-Instituto de Telecomunicações, Av. Rovisco, Pais, 1, 1049-001 Lisboa (Portugal); Barquinha, Pedro; Martins, Jorge; Rovisco, Ana; Pinto, Joana V.; Martins, Rodrigo; Fortunato, Elvira [Department of Materials Science, i3N/CENIMAT, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-08-01

    The impact of a parylene top-coating layer on the illumination and bias stress instabilities of indium-gallium-zinc oxide thin-film transistors (TFTs) is presented and discussed. The parylene coating substantially reduces the threshold voltage shift caused by continuous application of a gate bias and light exposure. The operational stability improves by 75%, and the light induced instability is reduced by 35%. The operational stability is quantified by fitting the threshold voltage shift with a stretched exponential model. Storage time as long as 7 months does not cause any measurable degradation on the electrical performance. It is proposed that parylene plays not only the role of an encapsulation layer but also of a defect passivation on the top semiconductor surface. It is also reported that depletion-mode TFTs are less sensitive to light induced instabilities. This is attributed to a defect neutralization process in the presence of free electrons.

  15. A Positivity Bias in Written and Spoken English and Its Moderation by Personality and Gender.

    Science.gov (United States)

    Augustine, Adam A; Mehl, Matthias R; Larsen, Randy J

    2011-09-01

    The human tendency to use positive words ("adorable") more often than negative words ("dreadful") is called the linguistic positivity bias. We find evidence for this bias in two studies of word use, one based on written corpora and another based on naturalistic speech samples. In addition, we demonstrate that the positivity bias applies to nouns and verbs as well as adjectives. We also show that it is found to the same degree in written as well as spoken English. Moreover, personality traits and gender moderate the effect, such that persons high on extraversion and agreeableness and women display a larger positivity bias in naturalistic speech. Results are discussed in terms of how the linguistic positivity bias may serve as a mechanism for social facilitation. People, in general, and some people more than others, tend to talk about the brighter side of life.

  16. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination

    Energy Technology Data Exchange (ETDEWEB)

    Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk [Electrical Engineering Division, Cambridge University, J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Powell, M. J. [252, Valley Drive, Kendal LA9 7SL (United Kingdom)

    2014-04-07

    It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65–0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10{sup 6}−10{sup 7} s{sup −1}, which suggests a weak localization of carriers in band tail states over a 20–40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage

  17. Influence of the gate edge on the reverse leakage current of AlGaN/GaN HEMTs

    Directory of Open Access Journals (Sweden)

    YongHe Chen

    2015-09-01

    Full Text Available By comparing the Schottky diodes of different area and perimeter, reverse gate leakage current of AlGaN/GaN high mobility transistors (HEMT at gate bias beyond threshold voltage is studied. It is revealed that reverse current consists of area-related and perimeter-related current. An analytical model of electric field calculation is proposed to obtain the average electric field around the gate edge at high revers bias and estimate the effective range of edge leakage current. When the reverse bias increases, the increment of electric field is around the gate edge of a distance of ΔL, and perimeter-related gate edge current keeps increasing. By using the calculated electric field and the temperature-dependent current-voltage measurements, the edge gate leakage current mechanism is found to be Fowler-Nordheim tunneling at gate bias bellows -15V caused by the lateral extended depletion region induced barrier thinning. Effective range of edge current of Schottky diodes is about hundred to several hundred nano-meters, and is different in different shapes of Schottky diodes.

  18. Tunable Mobility in Double-Gated MoTe2 Field-Effect Transistor: Effect of Coulomb Screening and Trap Sites.

    Science.gov (United States)

    Ji, Hyunjin; Joo, Min-Kyu; Yi, Hojoon; Choi, Homin; Gul, Hamza Zad; Ghimire, Mohan Kumar; Lim, Seong Chu

    2017-08-30

    There is a general consensus that the carrier mobility in a field-effect transistor (FET) made of semiconducting transition-metal dichalcogenides (s-TMDs) is severely degraded by the trapping/detrapping and Coulomb scattering of carriers by ionic charges in the gate oxides. Using a double-gated (DG) MoTe 2 FET, we modulated and enhanced the carrier mobility by adjusting the top- and bottom-gate biases. The relevant mechanism for mobility tuning in this device was explored using static DC and low-frequency (LF) noise characterizations. In the investigations, LF-noise analysis revealed that for a strong back-gate bias the Coulomb scattering of carriers by ionized traps in the gate dielectrics is strongly screened by accumulation charges. This significantly reduces the electrostatic scattering of channel carriers by the interface trap sites, resulting in increased mobility. The reduction of the number of effective trap sites also depends on the gate bias, implying that owing to the gate bias, the carriers are shifted inside the channel. Thus, the number of active trap sites decreases as the carriers are repelled from the interface by the gate bias. The gate-controlled Coulomb-scattering parameter and the trap-site density provide new handles for improving the carrier mobility in TMDs, in a fundamentally different way from dielectric screening observed in previous studies.

  19. Characterization of a Common-Gate Amplifier Using Ferroelectric Transistors

    Science.gov (United States)

    Hunt, Mitchell; Sayyah, Rana; MacLeod, Todd C.; Ho, Fat D.

    2011-01-01

    In this paper, the empirical data collected through experiments performed using a FeFET in the common-gate amplifier circuit is presented. The FeFET common-gate amplifier was characterized by varying all parameters in the circuit, such as load resistance, biasing of the transistor, and input voltages. Due to the polarization of the ferroelectric layer, the particular behavior of the FeFET common-gate amplifier presents interesting results. Furthermore, the differences between a FeFET common-gate amplifier and a MOSFET common-gate amplifier are examined.

  20. Analyzing Single-Event Gate Ruptures In Power MOSFET's

    Science.gov (United States)

    Zoutendyk, John A.

    1993-01-01

    Susceptibilities of power metal-oxide/semiconductor field-effect transistors (MOSFET's) to single-event gate ruptures analyzed by exposing devices to beams of energetic bromine ions while applying appropriate bias voltages to source, gate, and drain terminals and measuring current flowing into or out of each terminal.

  1. Microscopic gate-modulation imaging of charge and field distribution in polycrystalline organic transistors

    Science.gov (United States)

    Matsuoka, Satoshi; Tsutsumi, Jun'ya; Kamata, Toshihide; Hasegawa, Tatsuo

    2018-04-01

    In this work, a high-resolution microscopic gate-modulation imaging (μ-GMI) technique is successfully developed to visualize inhomogeneous charge and electric field distributions in operating organic thin-film transistors (TFTs). We conduct highly sensitive and diffraction-limit gate-modulation sensing for acquiring difference images of semiconducting channels between at gate-on and gate-off states that are biased at an alternate frequency of 15 Hz. As a result, we observe unexpectedly inhomogeneous distribution of positive and negative local gate-modulation (GM) signals at a probe photon energy of 1.85 eV in polycrystalline pentacene TFTs. Spectroscopic analyses based on a series of μ-GMI at various photon energies reveal that two distinct effects appear, simultaneously, within the polycrystalline pentacene channel layers: Negative GM signals at 1.85 eV originate from the second-derivative-like GM spectrum which is caused by the effect of charge accumulation, whereas positive GM signals originate from the first-derivative-like GM spectrum caused by the effect of leaked gate fields. Comparisons with polycrystalline morphologies indicate that grain centers are predominated by areas with high leaked gate fields due to the low charge density, whereas grain edges are predominantly high-charge-density areas with a certain spatial extension as associated with the concentrated carrier traps. Consequently, it is reasonably understood that larger grains lead to higher device mobility, but with greater inhomogeneity in charge distribution. These findings provide a clue to understand and improve device characteristics of polycrystalline TFTs.

  2. Proposal of unilateral single-flux-quantum logic gate

    International Nuclear Information System (INIS)

    Mikaye, H.; Fukaya, N.; Okabe, Y.; Sugamo, T.

    1985-01-01

    A new type of single flux quantum logic gate is proposed, which can perform unilateral propagation of signal without using three-phase clock. This gate is designed to be built with bridge-type Josephson junctions. A basic logic gate consists of two one-junction interferometers coupled by superconducting interconnecting lines, and the logical states are represented by zero or one quantized fluxoid in one of one-junction interferometers. The bias current of the unequal magnitude to each of the two one-junction interferometers results in unilateral signal flow. By adjusting design parameters such as the ratio of the critical current of Josephson junctions and the inductances, circuits with the noise immunity of greater than 50% with respect to the bias current have been designed. Three cascaded gates were modeled and simulated on a computer, and the unilateral signal flow was confirmed. The simulation also shows that a switching delay about 2 picoseconds is feasible

  3. Consideration of the accuracy by variation of respiration in real-time position management respiratory gating system

    International Nuclear Information System (INIS)

    Na, Jun Young; Kang, Tae Young; Beak, Geum Mun; Kwon, Gyeong Tae

    2013-01-01

    Respiratory Gated Radiation Therapy (RGRT) has been carried out using RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, varian, USA) in Asan Medical Center. This study was to analyze and evaluate the accuracy of Respiratory Gated Radiation Therapy (RGRT) according to variation of respiration. Making variation of respiration using Motion Phantom:QUASAR Programmable Respiratory Motion Phantom (Moudus Medical Device Inc. CANADA) able to adjust respiration pattern randomly was varying period, amplitude and baseline by analyze 50 patient's respiration of lung and liver cancer. One of the variations of respiration is baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. The other variation of respiration is baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm. Experiments were performed in the same way that is used RPM Respiratory Gating System (phase gating, usually 30-70% gating) in Asan Medical Center. It was all exposed radiation under one of the conditions of baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. Under the other condition of baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm equally radiation was exposed. The variations of baseline shifts didn't accurately reflect on phase gating in RPM Respiratory Gating System. This inexactitude makes serious uncertainty in Respiratory Gated Radiation Therapy. So, Must be stabilized breathing of patient before conducting Respiratory Gated Radiation Therapy. also must be monitored breathing of patient in the middle of treatment. If you observe considerable changes of breathing when conducting Respiratory Gated Radiation Therapy. Stopping treatment immediately and then must be need to recheck treatment site using fluoroscopy. If patient's respiration rechecked using fluoroscopy restabilize, it is possible to restart Respiratory Gated Radiation Therapy

  4. Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors

    International Nuclear Information System (INIS)

    Su, Bo-Yuan; Chu, Sheng-Yuan; Juang, Yung-Der; Liu, Ssu-Yin

    2013-01-01

    Graphical abstract: Mg-doped IGZO TFTs showed improved TFT performance and thermal stability due to fewer oxygen deficiencies and less interface electron trapping. Highlights: •We fabricated Mg-doped IGZO TFTs with improved performance using solution-process. •Mg doping reduced the oxygen deficiencies and less interface electron trapping of a-IGZO films. •Mg dope-TFT showed high mobility of 2.35 cm 2 /V s and an on–off current ratio over 10 6 . •For better device stability (gate-bias and thermal stability) was proved. -- Abstract: The effects of magnesium (Mg) doping (molar ratio Mg/Zn = (0–10 at.%)) on solution-processed amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) grown using the sol–gel method are investigated. TFT devices fabricated with Mg-doped films showed an improved field-effect mobility of 2.35 cm 2 /V s and a subthreshold slope (S) of 0.42 V/dec compared to those of an undoped a-IGZO TFT (0.73 cm 2 /V s and 0.74 V/dec, respectively), and an on–off current ratio of over 10 6 . Moreover, the 5 at.% Mg-doped TFT device showed improved gate bias and thermal stability due to fewer oxygen deficiencies, smaller carrier concentration, and less interface electron trapping in the a-IGZO films

  5. Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Bo-Yuan [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Juang, Yung-Der [Department of Materials Science, National University of Tainan, Tainan 700, Taiwan (China); Liu, Ssu-Yin [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2013-12-15

    Graphical abstract: Mg-doped IGZO TFTs showed improved TFT performance and thermal stability due to fewer oxygen deficiencies and less interface electron trapping. Highlights: •We fabricated Mg-doped IGZO TFTs with improved performance using solution-process. •Mg doping reduced the oxygen deficiencies and less interface electron trapping of a-IGZO films. •Mg dope-TFT showed high mobility of 2.35 cm{sup 2}/V s and an on–off current ratio over 10{sup 6}. •For better device stability (gate-bias and thermal stability) was proved. -- Abstract: The effects of magnesium (Mg) doping (molar ratio Mg/Zn = (0–10 at.%)) on solution-processed amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) grown using the sol–gel method are investigated. TFT devices fabricated with Mg-doped films showed an improved field-effect mobility of 2.35 cm{sup 2}/V s and a subthreshold slope (S) of 0.42 V/dec compared to those of an undoped a-IGZO TFT (0.73 cm{sup 2}/V s and 0.74 V/dec, respectively), and an on–off current ratio of over 10{sup 6}. Moreover, the 5 at.% Mg-doped TFT device showed improved gate bias and thermal stability due to fewer oxygen deficiencies, smaller carrier concentration, and less interface electron trapping in the a-IGZO films.

  6. Do Health Claims and Front-of-Pack Labels Lead to a Positivity Bias in Unhealthy Foods?

    Directory of Open Access Journals (Sweden)

    Zenobia Talati

    2016-12-01

    Full Text Available Health claims and front-of-pack labels (FoPLs may lead consumers to hold more positive attitudes and show a greater willingness to buy food products, regardless of their actual healthiness. A potential negative consequence of this positivity bias is the increased consumption of unhealthy foods. This study investigated whether a positivity bias would occur in unhealthy variations of four products (cookies, corn flakes, pizzas and yoghurts that featured different health claim conditions (no claim, nutrient claim, general level health claim, and higher level health claim and FoPL conditions (no FoPL, the Daily Intake Guide (DIG, Multiple Traffic Lights (MTL, and the Health Star Rating (HSR. Positivity bias was assessed via measures of perceived healthiness, global evaluations (incorporating taste, quality, convenience, etc. and willingness to buy. On the whole, health claims did not produce a positivity bias, while FoPLs did, with the DIG being the most likely to elicit this bias. The HSR most frequently led to lower ratings of unhealthy foods than the DIG and MTL, suggesting that this FoPL has the lowest risk of creating an inaccurate positivity bias in unhealthy foods.

  7. Gated field-emitter cathodes for high-power microwave applications

    International Nuclear Information System (INIS)

    Barasch, E.F.; Demroff, H.P.; Elliott, T.S.; Kasprowicz, T.B.; Lee, B.; Mazumdar, T.; McIntyre, P.M.; Pang, Y.; Smith, D.D.; Trost, H.J.

    1992-01-01

    Gated field-emitter cathodes have been fabricated on silicon wafers. Two fabrication approaches have been employed: a knife-edge array and a porous silicon structure. The knife-edge array consists of a pattern of knife-edges, sharpened to ∼200 A radius, configured with an insulated metal gate structure at a gap of ∼500 A. The porous silicon cathode consists of an insulating porous layer, containing pores of ∼50 A diameter, densely spaced in the native silicon, biased for field emission by a thin gate metallization on the surface. Emission current density of 20 A/cm 2 has been obtained with only 10 V bias. Fabrication processes and test results are presented. (Author) 4 figs., tab., 12 refs

  8. Anomalous positive flatband voltage shifts in metal gate stacks containing rare-earth oxide capping layers

    KAUST Repository

    Caraveo-Frescas, J. A.

    2012-03-09

    It is shown that the well-known negative flatband voltage (VFB) shift, induced by rare-earth oxide capping in metal gate stacks, can be completely reversed in the absence of the silicon overlayer. Using TaN metal gates and Gd2O3-doped dielectric, we measure a ∼350 mV negative shift with the Si overlayer present and a ∼110 mV positive shift with the Si overlayer removed. This effect is correlated to a positive change in the average electrostatic potential at the TaN/dielectric interface which originates from an interfacial dipole. The dipole is created by the replacement of interfacial oxygen atoms in the HfO2 lattice with nitrogen atoms from TaN.

  9. Perspective analysis of tri gate germanium tunneling field-effect transistor with dopant segregation region at source/drain

    Science.gov (United States)

    Liu, Liang-kui; Shi, Cheng; Zhang, Yi-bo; Sun, Lei

    2017-04-01

    A tri gate Ge-based tunneling field-effect transistor (TFET) has been numerically studied with technology computer aided design (TCAD) tools. Dopant segregated Schottky source/drain is applied to the device structure design (DS-TFET). The characteristics of the DS-TFET are compared and analyzed comprehensively. It is found that the performance of n-channel tri gate DS-TFET with a positive bias is insensitive to the dopant concentration and barrier height at n-type drain, and that the dopant concentration and barrier height at a p-type source considerably affect the device performance. The domination of electron current in the entire BTBT current of this device accounts for this phenomenon and the tri-gate DS-TFET is proved to have a higher performance than its dual-gate counterpart.

  10. Heavy-ion-induced, gate-rupture in power MOSFETs

    International Nuclear Information System (INIS)

    Fischer, T.A.

    1987-01-01

    A new, heavy-ion-induced, burnout mechanism has been experimentally observed in power metal-oxide-semiconductor field-effect transistors (MOSFETs). This mechanism occurs when a heavy, charged particle passes through the gate oxide region of n- or p-channel devices having sufficient gate-to-source or gate-to-drain bias. The gate-rupture leads to significant permanent degradation of the device. A proposed failure mechanism is discussed and experimentally verified. In addition, the absolute immunity of p-channel devices to heavy-ion-induced, semiconductor burnout is demonstrated and discussed along with new, non-destructive, burnout testing methods

  11. Linear gate

    International Nuclear Information System (INIS)

    Suwono.

    1978-01-01

    A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)

  12. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-01

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  13. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors.

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-17

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  14. Is there a positive bias in false recognition? Evidence from confabulating amnesia patients.

    Science.gov (United States)

    Alkathiri, Nura H; Morris, Robin G; Kopelman, Michael D

    2015-10-01

    Although there is some evidence for a positive emotional bias in the content of confabulations in brain damaged patients, findings have been inconsistent. The present study used the semantic-associates procedure to induce false recall and false recognition in order to examine whether a positive bias would be found in confabulating amnesic patients, relative to non-confabulating amnesic patients and healthy controls. Lists of positive, negative and neutral words were presented in order to induce false recall or false recognition of non-presented (but semantically associated) words. The latter were termed 'critical intrusions'. Thirteen confabulating amnesic patients, 13 non-confabulating amnesic patients and 13 healthy controls were investigated. Confabulating patients falsely recognised a higher proportion of positive (but unrelated) words, compared with non-confabulating patients and healthy controls. No differences were found for recall memory. Signal detection analysis, however, indicated that the positive bias for false recognition memory might reflect weaker memory in the confabulating amnesic group. This suggested that amnesia patients with weaker memory are more likely to confabulate and the content of these confabulations are more likely to be positive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Low Noise Bias Current/Voltage References Based on Floating-Gate MOS Transistors

    DEFF Research Database (Denmark)

    Igor, Mucha

    1997-01-01

    The exploitation of floating-gate MOS transistors as reference current and voltage sources is investigated. Test structures of common source and common drain floating-gate devices have been implemented in a commercially available 0.8 micron double-poly CMOS process. The measurements performed...

  16. Gate-bias and temperature dependence of charge transport in dinaphtho[2,3-b:2‧,3‧-d]thiophene thin-film transistors with MoO3/Au electrodes

    Science.gov (United States)

    Shaari, Safizan; Naka, Shigeki; Okada, Hiroyuki

    2018-04-01

    We investigated the gate-bias and temperature dependence of the voltage-current (V-I) characteristics of dinaphtho[2,3-b:2‧,3‧-d]thiophene with MoO3/Au electrodes. The insertion of the MoO3 layer significantly improved the device performance. The temperature dependent V-I characteristics were evaluated and could be well fitted by the Schottky thermionic emission model with barrier height under forward- and reverse-biased regimes in the ranges of 33-57 and 49-73 meV, respectively. However, at a gate voltage of 0 V, at which a small activation energy was obtained, we needed to consider another conduction mechanism at the grain boundary. From the obtained results, we concluded that two possible conduction mechanisms governed the charge injection at the metal electrode-organic semiconductor interface: the Schottky thermionic emission model and the conduction model in the organic thin-film layer and grain boundary.

  17. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins

    International Nuclear Information System (INIS)

    Zeimpekis, I; Sun, K; Hu, C; Ditshego, N M J; De Planque, M R R; Chong, H M H; Morgan, H; Ashburn, P; Thomas, O

    2016-01-01

    We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH"−"1 is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH"−"1 measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%. (paper)

  18. The effects of gate oxide thickness on radiation damage in MOS system

    International Nuclear Information System (INIS)

    Zhu Hui; Yan Rongliang; Wang Yu; He Jinming

    1988-01-01

    The dependences of the flatband voltage shift (ΔV FB ) and the threshold voltage shift (ΔV TH ) in MOS system on the oxide thickness (T ox ) and on total irradiated dose (D) of electron-beam and 60 Co γ-ray have been studied. It has been found that ΔV FB ∝ T ox 3 , with +10V of gate bias during irradiation for n-Si substrate MOS capacitors; ΔV TH ∝ T ox 3 D 2/3 , with 'on' gate bias during irradiation for n- and P-channel MOS transistors; ΔV TP ∝ T ox 2 D 2/3 , with 'off' gate bias during irradiation for P-channel MOS transistors. These results are explained by Viswanathan model. According to ∼T ox 3 dependence, the optimization of radiation hardening process for MOS system is also simply discussed

  19. Negative evaluation bias for positive self-referential information in borderline personality disorder.

    Directory of Open Access Journals (Sweden)

    Dorina Winter

    Full Text Available Previous research has suggested that patients meeting criteria for borderline personality disorder (BPD display altered self-related information processing. However, experimental studies on dysfunctional self-referential information processing in BPD are rare. In this study, BPD patients (N = 30 and healthy control participants (N = 30 judged positive, neutral, and negative words in terms of emotional valence. Referential processing was manipulated by a preceding self-referential pronoun, an other-referential pronoun, or no referential context. Subsequently, patients and participants completed a free recall and recognition task. BPD patients judged positive and neutral words as more negative than healthy control participants when the words had self-reference or no reference. In BPD patients, these biases were significantly correlated with self-reported attributional style, particularly for negative events, but unrelated to measures of depressive mood. However, BPD patients did not differ from healthy control participants in a subsequent free recall task and a recognition task. Our findings point to a negative evaluation bias for positive, self-referential information in BPD. This bias did not affect the storage of information in memory, but may be related to self-attributions of negative events in everyday life in BPD.

  20. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  1. Automatic real-time surveillance of eye position and gating for stereotactic radiotherapy of uveal melanoma

    International Nuclear Information System (INIS)

    Petersch, Bernhard; Bogner, Joachim; Dieckmann, Karin; Poetter, Richard; Georg, Dietmar

    2004-01-01

    A new prototype (hardware and software) for monitoring eye movements using a noninvasive technique for gated linac-based stereotactic radiotherapy (SRT) of uveal melanoma was developed. The prototype was tested within the scope of a study for 11 patients. Eye immobilization was achieved by having the patient fixate a light source integrated into the system. The system is used in conjunction with a Head and Neck mask system for immobilization, and uses infrared tracking technology for positioning (both BrainLAB AG Heimstetten/Germany). It was used during CT and MR image acquisition as well as during all of five treatment fractions (6 MeV, 5x12 Gy to 80% isodose) to guarantee identical patient setup and eye rotational state during treatment planning and treatment delivery. Maximum temporal and angular deviations tolerated during treatment delivery can be chosen by the physician, the radiation then being interrupted automatically and instantaneously if those criteria are being exceeded during irradiation. A graphical user interface displays life video images of the treated eye and information about the current and previous rotational deviation of the eye from its reference treatment position. The physician thus has online access to data directly linked to the success of the treatment and possible side effects. Mean angular deviations during CT/MR scans and treatment deliveries ranged from 1.61 deg. to 3.64 deg. (standard deviations 0.87 deg. to 2.09 deg.) which is in accordance with precision requirements for SRT. Typical situations when preset deviation criteria were exceeded are slow drifts (fatigue), sudden large eye movements (irritation), or if patients closed their eyes (fatigue). In these cases radiation was reliably interrupted by the gating system. In our clinical setup the novel system for computer-controlled eye movement gated treatments was well tolerated by all patients. The system yields quantitative real-time information about the eye's rotational state

  2. Dual-gate operation and carrier transport in SiGe p-n junction nanowires

    Science.gov (United States)

    Delker, C. J.; Yoo, J. Y.; Bussmann, E.; Swartzentruber, B. S.; Harris, C. T.

    2017-11-01

    We investigate carrier transport in silicon-germanium nanowires with an axial p-n junction doping profile by fabricating these wires into transistors that feature separate top gates over each doping segment. By independently biasing each gate, carrier concentrations in the n- and p-side of the wire can be modulated. For these devices, which were fabricated with nickel source-drain electrical contacts, holes are the dominant charge carrier, with more favorable hole injection occurring on the p-side contact. Channel current exhibits greater sensitivity to the n-side gate, and in the reverse biased source-drain configuration, current is limited by the nickel/n-side Schottky contact.

  3. Time-course of attentional bias for positive social words in individuals with high and low social anxiety.

    Science.gov (United States)

    Yu, Hongyu; Li, Songwei; Qian, Mingyi; Yang, Peng; Wang, Xiaoling; Lin, Muyu; Yao, Nisha

    2014-07-01

    Although accumulating research demonstrates the association between attentional bias and social anxiety, the bias for positive stimuli has so far not been adequately studied. The aim is to investigate the time-course of attentional bias for positive social words in participants with high and low social anxiety. In a modified dot-probe task, word-pairs of neutral and positive social words were randomly presented for 100, 500, and 1250 milliseconds in a nonclinical sample of students to test their attentional bias. Non-significant interaction of Group × Exposure Duration was found. However, there was a significant main effect of group, with significantly different response latencies between the high social anxiety (HSA) and low social anxiety (LSA) groups in the 100 ms condition, without for 500 or 1250 ms. With respect to attentional bias, the LSA group showed enhanced preferential attention for positive social words to which the HSA group showed avoidance in the 100 ms condition. In the 500 ms condition, preferential attention to positive social words was at trend in the LSA group, relative to the HSA group. Neither group showed attentional bias in the 1250 ms condition. These findings extend recent research about the attention training program and add to the empirical literature suggesting that the initial avoidance of positive stimuli may contribute to maintaining social anxiety.

  4. Liquid–Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing

    KAUST Repository

    Zhang, Yu

    2017-10-17

    Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid–liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the “sensing channel” can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.

  5. Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing.

    Science.gov (United States)

    Zhang, Yu; Li, Jun; Li, Rui; Sbircea, Dan-Tiberiu; Giovannitti, Alexander; Xu, Junling; Xu, Huihua; Zhou, Guodong; Bian, Liming; McCulloch, Iain; Zhao, Ni

    2017-11-08

    Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid-liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the "sensing channel" can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.

  6. Investigation of interface property in Al/SiO2/ n-SiC structure with thin gate oxide by illumination

    Science.gov (United States)

    Chang, P. K.; Hwu, J. G.

    2017-04-01

    The reverse tunneling current of Al/SiO2/ n-SiC structure employing thin gate oxide is introduced to examine the interface property by illumination. The gate current at negative bias decreases under blue LED illumination, yet increases under UV lamp illumination. Light-induced electrons captured by interface states may be emitted after the light sources are off, leading to the recovery of gate currents. Based on transient characteristics of gate current, the extracted trap level is close to the light energy for blue LED, indicating that electron capture induced by lighting may result in the reduction of gate current. Furthermore, bidirectional C- V measurements exhibit a positive voltage shift caused by electron trapping under blue LED illumination, while a negative voltage shift is observed under UV lamp illumination. Distinct trapping and detrapping behaviors can be observed from variations in I- V and C- V curves utilizing different light sources for 4H-SiC MOS capacitors with thin insulators.

  7. Defending or Challenging the Status Quo: Position Effects on Biased Intergroup Perceptions

    Directory of Open Access Journals (Sweden)

    Emma A. Bäck

    2014-05-01

    Full Text Available The default ideological position is status quo maintaining, and challenging the status quo is associated with increased efforts and risks. Nonetheless, some people choose to challenge the status quo. Therefore, to challenge the status quo should imply a strong belief in one’s position as the correct one, and thus efforts may be undertaken to undermine the position of others. Study 1 (N = 311 showed that challengers undermined, by ascribing more externality and less rationality, the position of defenders to a larger extent than defenders did of challengers’ position. Studies 2 (N = 135 and 3 (N = 109 tested if these effects were driven by the implied minority status of the challenging position. Results revealed no effects of experimentally manipulated numerical status, but challengers were again more biased than defenders. Study 3 also revealed that challengers felt more negatively toward their opponents (possibly due to greater social identification with like-minded others, and these negative emotions in turn predicted biased attributions. Results are important as they add to the understanding of how intergroup conflict may arise, providing explanations for why challengers are less tolerant of others’ point of view.

  8. Oscillation of Critical Current by Gate Voltage in Cooper Pair Transistor

    International Nuclear Information System (INIS)

    Kim, N.; Cheong, Y.; Song, W.

    2010-01-01

    We measured the critical current of a Cooper pair transistor consisting of two Josephson junctions and a gate electrode. The Cooper pair transistors were fabricated by using electron-beam lithography and double-angle evaporation technique. The Gate voltage dependence of critical current was measured by observing voltage jumps at various gate voltages while sweeping bias current. The observed oscillation was 2e-periodic, which shows the Cooper pair transistor had low level of quasiparticle poisoning.

  9. Intuitive Choices Lead to Intensified Positive Emotions: An Overlooked Reason for "Intuition Bias"?

    Science.gov (United States)

    Kirkebøen, Geir; Nordbye, Gro H H

    2017-01-01

    People have, for many well-documented reasons, a tendency to overemphasize their intuitions and to follow them, even when they should not. This "intuition bias" leads to several kinds of specific intuitive biases in judgments and decision making. Previous studies have shown that characteristics of the decision process have a tendency to "leak" into the experience of the choice outcome. We explore whether intuitive choices influence the experience of the choice outcomes differently from "non-intuitive," analytic choices. Since intuition is feeling based, we examine in particular if intuitive choices have stronger affective consequences than non-intuitive ones. Participants in two scenario studies ( N = 90; N = 126) rated the feelings of decision makers who experienced a conflict between two options, one intuitively appealing and another that appeared preferable on analytic grounds. Choosing the intuitive alternative was anticipated to lead to somewhat more regret after negative outcomes and, in particular, much more satisfaction with positive outcomes. In two autobiographical studies, one with psychology students ( N = 88) and the other with experienced engineers ( N = 99), participants were asked to provide examples of choice conflicts between an intuitive and a non-intuitive option from their own private or professional lives. Both groups showed a tendency to report stronger emotions, in particular positive, after intuitive choices. One well-established explanation for intuition bias focuses on the nature of people's anticipated negative counterfactual thoughts if their decisions were to turn out badly. The present data indicate that intuitive choices intensify positive emotions, anticipated and real, after successful outcomes much more than negative emotions after failures. Positive outcomes are also more commonly expected than negative ones, when we make choices. We argue that markedly amplified emotions, mediated by stronger personal involvement, in the

  10. Evaluation of irradiation position in respiratory-gated radiotherapy using a phantom system simulating patient respiration

    International Nuclear Information System (INIS)

    Oyama, Masaya; Ueda, Takashi; Kitoh, Satoshi; Tanaka, Takashi; Goka, Tomonori; Ogino, Takashi

    2006-01-01

    Respiratory-gated (RG) radiotherapy is useful for minimizing the irradiated volume of normal tissues resulting from the shifting of internal structures caused by respiratory movement. The present study was conducted to evaluate the treatment field in RG radiotherapy using a phantom system simulating patient respiration. A phantom system consisting of a 3-cm ball-shaped dummy tumor and film placed in a cork lung phantom was used (THK Co., Ltd.). RG radiotherapy was employed in the expiratory phase. The phantom movement distance was set to 2 cm, and the gating signals from a respiratory-gating system (AZ-733V, Anzai Medical) were varied. The settings used for irradiation were an X-ray energy of 6 MV (PRIMUS, Toshiba Medical Systems), treatment field of 5 cm x 7 cm, and X-ray dose of 100 MU. Images were acquired using an electric portal-imaging device (EPID, OPTIVUE 500), and the X-ray dose distribution was measured by the film method. In images acquired using the EPID, the tumor margins became less clear when the gating signals were increased, and the ITVs were determined to be 3.6 cm, 3.7 cm, 4.2 cm, and 5.1 cm at gating rates of 10%, 25%, 50%, and no gate, respectively. With regard to the X-ray dose distribution measured by the film method, the dose profile in the cephalocaudal direction was shifted toward the expiratory phase, and the degree of shift became greater when the gating signals were increased. In addition, the optimal treatment fields in the cephalocaudal direction were determined to be 5.2 cm, 5.2 cm, 5.6 cm, and 7.0 cm at gating rates of 10%, 25%, 50%, and no gating, respectively. Although RG radiotherapy is useful for improving the accuracy of radiotherapy, the characteristics of the RG radiotherapy technique and the radiotherapy system must be clearly understood when this method is to be employed in clinical practice. Image-guided radiotherapy (IGRT) is now assuming a central role in radiotherapy, and properly identifying internal margins is an

  11. A novel optical gating method for laser gated imaging

    Science.gov (United States)

    Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer

    2013-06-01

    For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.

  12. On biases in precise point positioning with multi-constellation and multi-frequency GNSS data

    International Nuclear Information System (INIS)

    El-Mowafy, A; Deo, M; Rizos, C

    2016-01-01

    Various types of biases in Global Navigation Satellite System (GNSS) data preclude integer ambiguity fixing and degrade solution accuracy when not being corrected during precise point positioning (PPP). In this contribution, these biases are first reviewed, including satellite and receiver hardware biases, differential code biases, differential phase biases, initial fractional phase biases, inter-system receiver time biases, and system time scale offset. PPP models that take account of these biases are presented for two cases using ionosphere-free observations. The first case is when using primary signals that are used to generate precise orbits and clock corrections. The second case applies when using additional signals to the primary ones. In both cases, measurements from single and multiple constellations are addressed. It is suggested that the satellite-related code biases be handled as calibrated quantities that are obtained from multi-GNSS experiment products and the fractional phase cycle biases obtained from a network to allow for integer ambiguity fixing. Some receiver-related biases are removed using between-satellite single differencing, whereas other receiver biases such as inter-system biases are lumped with differential code and phase biases and need to be estimated. The testing results show that the treatment of biases significantly improves solution convergence in the float ambiguity PPP mode, and leads to ambiguity-fixed PPP within a few minutes with a small improvement in solution precision. (paper)

  13. Information Content Moderates Positivity and Negativity Biases in Memory

    Science.gov (United States)

    Hess, Thomas M.; Popham, Lauren E.; Dennis, Paul A.; Emery, Lisa

    2014-01-01

    Two experiments examined the impact of encoding conditions and information content in memory for positive, neutral, and negative pictures. We examined the hypotheses that the positivity effect in memory (i.e., a bias in favor of positive or against negative information in later life) would be reduced when (a) pictures were viewed under structured as opposed to unstructured conditions, and (b) contained social as opposed to nonsocial content. Both experiments found that the positivity effect observed with nonsocial stimuli was absent with social stimuli. In addition, little evidence was obtained that encoding conditions affected the strength of the positivity effect. We argue that some types of social stimuli may engage different types of processing than nonsocial stimuli, perhaps encouraging self-referential processing that engages attention and supports memory. This processing may then conflict with the goal-driven, top-down processing that is hypothesized to drive the positivity effect. Thus, our results identify further boundary conditions associated with the positivity effect in memory, arguing that stimulus factors as well as situational goals may affect its occurrence. Further research awaits to determine if this effect is specific to all social stimuli or specific subsets. PMID:23421322

  14. Information content moderates positivity and negativity biases in memory.

    Science.gov (United States)

    Hess, Thomas M; Popham, Lauren E; Dennis, Paul A; Emery, Lisa

    2013-09-01

    Two experiments examined the impact of encoding conditions and information content in memory for positive, neutral, and negative pictures. We examined the hypotheses that the positivity effect in memory (i.e., a bias in favor of positive or against negative information in later life) would be reduced when (a) pictures were viewed under structured as opposed to unstructured conditions, and (b) contained social as opposed to nonsocial content. Both experiments found that the positivity effect observed with nonsocial stimuli was absent with social stimuli. In addition, little evidence was obtained that encoding conditions affected the strength of the positivity effect. We argue that some types of social stimuli may engage different types of processing than nonsocial stimuli, perhaps encouraging self-referential processing that engages attention and supports memory. This processing may then conflict with the goal-driven, top-down processing that is hypothesized to drive the positivity effect. Thus, our results identify further boundary conditions associated with the positivity effect in memory, arguing that stimulus factors as well as situational goals may affect its occurrence. Further research awaits to determine if this effect is specific to all social stimuli or specific subsets.

  15. Twice the negativity bias and half the positivity offset: Evaluative responses to emotional information in depression.

    Science.gov (United States)

    Gollan, Jackie K; Hoxha, Denada; Hunnicutt-Ferguson, Kallio; Norris, Catherine J; Rosebrock, Laina; Sankin, Lindsey; Cacioppo, John

    2016-09-01

    Humans have the dual capacity to assign a slightly pleasant valence to neutral stimuli (the positivity offset) to encourage approach behaviors, as well as to assign a higher negative valence to unpleasant images relative to the positive valence to equally arousing and extreme pleasant images (the negativity bias) to facilitate defensive strategies. We conducted an experimental psychopathology study to examine the extent to which the negativity bias and the positivity offset differ in participants with and without major depression.. Forty-one depressed and thirty-six healthy participants were evaluated using a structured clinical interview for DSM-IV Axis I disorders, questionnaires, and a computerized task designed to measure implicit affective responses to unpleasant, neutral, and pleasant stimuli. The negativity bias was significantly higher and the positivity offset was significantly lower in depressed relative to healthy participants.. Entry criteria enrolling medication-free participants with minimal DSM-IV comorbidity may limit generalizability of the findings. This study advances our understanding of the positive and negative valence systems in depression, highlighting the irregularities in the positive valence system.. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Sliding-gate valve for use with abrasive materials

    Science.gov (United States)

    Ayers, Jr., William J.; Carter, Charles R.; Griffith, Richard A.; Loomis, Richard B.; Notestein, John E.

    1985-01-01

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  17. Group Representations and Intergroup Bias: Positive Affect, Similarity, and Group Size.

    Science.gov (United States)

    Dovidio, John F.; And Others

    1995-01-01

    Examined how social appearance and affective factors can influence social categorization and intergroup bias. Positive affect increased the extent to which subjects formed inclusive group representations, anticipating that the members of two groups would feel like one. Subjects in dissimilarly dressed groups expected the members to feel less like…

  18. Quality assurance for respiratory-gated stereotactic body radiation therapy in lung using real-time position management system

    International Nuclear Information System (INIS)

    Nakaguchi, Yuji; Maruyama, Masato; Araki, Fujio; Kouno, Tomohiro

    2012-01-01

    In this study, we investigated comprehensive quality assurance (QA) for respiratory-gated stereotactic body radiation therapy (SBRT) in the lungs using a real-time position management system (RPM). By using the phantom study, we evaluated dose liberality and reproducibility, and dose distributions for low monitor unite (MU), and also checked the absorbed dose at isocenter and dose profiles for the respiratory-gated exposure using RPM. Furthermore, we evaluated isocenter dose and dose distributions for respiratory-gated SBRT plans in the lungs using RPM. The maximum errors for the dose liberality were 4% for 2 MU, 1% for 4-10 MU, and 0.5% for 15 MU and 20 MU. The dose reproducibility was 2% for 1 MU and within 0.1% for 5 MU or greater. The accuracy for dose distributions was within 2% for 2 MU or greater. The dose error along a central axis for respiratory cycles of 2, 4, and 6 sec was within 1%. As for geometric accuracy, 90% and 50% isodose areas for the respiratory-gated exposure became almost 1 mm and 2 mm larger than without gating, respectively. For clinical lung-SBRT plans, the point dose at isocenter agreed within 2.1% with treatment planning system (TPS). And the pass rates of all plans for TPS were more than 96% in the gamma analysis (3 mm/3%). The geometrical accuracy and the dose accuracy of TPS calculation algorithm are more important for the dose evaluation at penumbra region for respiratory-gated SBRT in lung using RPM. (author)

  19. The influence of gate start position on physical performance and anxiety perception in expert BMX athletes.

    Science.gov (United States)

    Di Rienzo, Franck; Martinent, Guillaume; Levêque, Lucie; MacIntyre, Tadhg; Collet, Christian; Guillot, Aymeric

    2018-02-01

    The critical importance of the start phase in bicycle motocross (BMX) racing is increasingly acknowledged. Past experiments underlined that the internal lane of the starting gate provides a strong positional advantage. However, how lane position affects start performance and cognitive and somatic state anxiety remains unexplored. We examined the start performance and anxiety responses of youth national-level BMX riders in both experimental and ecological contexts. We used contextualization motor imagery routines to evaluate start performance and state anxiety from the internal and external lanes. Cycle ergometer measures revealed a better start performance from the external lane, but we did not record any lane effect on actual gate start times. Both somatic and cognitive anxiety scores were higher before racing from the internal compared to the external lane. Finally, state anxiety (i.e., somatic anxiety, worry and concentration disruptions) negatively predicted the start performance. Present findings provide original insights on psychological factors involved in BMX start performance, and might contribute to fruitful coping interventions and training programmes in sports overlapping the framework of "handicap races" taking the specific form of positional advantages/disadvantages at the start (e.g., ski/snowboard cross, athletics, swimming, motorsports, etc.).

  20. Theory of signal and noise in double-gated nanoscale electronic pH sensors

    Energy Technology Data Exchange (ETDEWEB)

    Go, Jonghyun; Nair, Pradeep R.; Alam, Muhammad A. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2012-08-01

    The maximum sensitivity of classical nanowire (NW)-based pH sensors is defined by the Nernst limit of 59 mV/pH. For typical noise levels in ultra-small single-gated nanowire sensors, the signal-to-noise ratio is often not sufficient to resolve pH changes necessary for a broad range of applications. Recently, a new class of double-gated devices was demonstrated to offer apparent 'super-Nernstian' response (>59 mV/pH) by amplifying the original pH signal through innovative biasing schemes. However, the pH-sensitivity of these nanoscale devices as a function of biasing configurations, number of electrodes, and signal-to-noise ratio (SNR) remains poorly understood. Even the basic question such as 'Do double-gated sensors actually resolve smaller changes in pH compared to conventional single-gated sensors in the presence of various sources of noise?' remains unanswered. In this article, we provide a comprehensive numerical and analytical theory of signal and noise of double-gated pH sensors to conclude that, while the theoretical lower limit of pH-resolution does not improve for double-gated sensors, this new class of sensors does improve the (instrument-limited) pH resolution.

  1. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes

    Science.gov (United States)

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-01

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore’s law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-106. While demonstrated air- and chemical-gating speeds were slow here (˜seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for ‘chemical transistors’, ‘chemical diodes’, and very high-efficiency sensing applications.

  2. Positive bias is a defining characteristic of aging to the same extent as declining performance.

    Science.gov (United States)

    Simón, Teresa; Suengas, Aurora G; Ruiz-Gallego-Largo, Trinidad; Bandrés, Javier

    2013-01-01

    The aim of this study was to analyze whether one of the supposed gains of aging--positive bias--discriminates between young and older participants to the same extent as some of the losses in cognitive performance--recall and source monitoring--that come with age. Two age groups (N = 120)--young (M = 22.08, SD = 3.30) and older (M = 72.78, SD = 6.57)--carried out three tasks with varying levels of difficulty that included recall, recognition, and source monitoring using pictures, faces, and personal descriptors exchanged in a conversation as stimuli. The results of the discriminant analysis performed on 20 dependent variables indicated that six of them were key in discriminating between young and older participants. Younger participants outperformed older participants in recalling pictures, and in recognizing the descriptors exchanged in a conversation, as well as in monitoring their source. Just as important in discriminating between the two groups were the ability to recognize previously seen pictures, the likability rating they produced, and the recognition of faces with positive expressions--all superior in older participants. Thus, variables related to a positive bias--likability ratings and recognition of positive expressions--characterize the differences as a function of age as well as variables related to cognitive performance, such as recall and source monitoring. In addition, the likability ratings evoked by both pictures and faces were also significantly higher in the older participants with better cognitive performance than in those who performed poorly. This effect was not present in younger participants. The results are interpreted within the framework of socioemotional selectivity theory as evidence for a positive bias in old age. The connection between a positive bias and the maintenance of cognitive performance is also discussed.

  3. A novel respiratory motion compensation strategy combining gated beam delivery and mean target position concept - A compromise between small safety margins and long duty cycles

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Kavanagh, Anthony; Webb, Steve; Brada, Michael

    2011-01-01

    Purpose: To evaluate a novel respiratory motion compensation strategy combining gated beam delivery with the mean target position (MTP) concept for pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Four motion compensation strategies were compared for 10 targets with motion amplitudes between 6 mm and 31 mm: the internal target volume concept (plan ITV ); the MTP concept where safety margins were adapted based on 4D dose accumulation (plan MTP ); gated beam delivery without margins for motion compensation (plan gated ); a novel approach combining gating and the MTP concept (plan gated and MTP ). Results: For 5/10 targets with an average motion amplitude of 9 mm, the differences in the mean lung dose (MLD) between plan gated and plan MTP were gated and MTP . Despite significantly shorter duty cycles, plan gated reduced the MLD by gated and MTP . The MLD was increased by 18% in plan MTP compared to that of plan gated and MTP . Conclusions: For pulmonary targets with motion amplitudes >10-15 mm, the combination of gating and the MTP concept allowed small safety margins with simultaneous long duty cycles.

  4. Specific features of the switch-on gate current and different switch-on modes in silicon carbide thyristors

    International Nuclear Information System (INIS)

    Yurkov, S N; Mnatsakanov, T T; Levinshtein, M E; Cheng, L; Palmour, J W

    2014-01-01

    The specific features of the temperature and bias dependences of the switch-on gate current in SiC thyristors are examined analytically for two possible switching mechanisms. The so-called γ-mechanism, which is highly typical of the conventional Si thyristors, is characterized by very weak temperature and bias dependences. By contrast, the so-called α-mechanism, which is very characteristic of SiC thyristors, is highly sensitive to changes in temperature and bias. If the thyristor is switched on by the α-mechanism, the switch-on gate current density decreases very steeply with increasing temperature. As a result, the thyristor can lose its working capacity at elevated temperatures due to the instability against even very weak impacts. With decreasing the bias voltage U a , the gate switch-on current increases very steeply, which can make switching the thyristor on difficult. The unintentional shunting, which is apparently present in high-voltage SiC thyristors, causes the transition from the α- to the γ-mechanism at elevated temperatures and high biases. It can be supposed that introduction of a controllable technological shunting of the emitter–thin base junction allows stabilization of the temperature and bias parameters of SiC thyristors. The analytical results are confirmed by computer simulations performed in wide temperature and bias ranges for a 4H-SiC thyristor of the 18 kV class. (paper)

  5. The emotional content of life stories: Positivity bias and relation to personality

    DEFF Research Database (Denmark)

    Thomsen, Dorthe Kirkegaard; Olesen, Martin Hammershøj; Schnieber, Anette

    2014-01-01

    . Three hundred ten students and 160 middle-aged adults completed a measure of personality traits and identified chapters as well as past and future events in their life story. All life story components were rated on emotion and age. Negative future events were less likely to be a continuation of chapters...... and were more temporally distant than positive future events. Extraversion and Conscientiousness were related to more positive life stories, and Neuroticism was related to more negative life stories. This suggests that the life story is positively biased by minimising the negative future...

  6. A comparative study on top-gated and bottom-gated multilayer MoS2 transistors with gate stacked dielectric of Al2O3/HfO2.

    Science.gov (United States)

    Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia

    2018-06-15

    Top-gated and bottom-gated transistors with multilayer MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on-off current ratio of 10 8 , high field-effect mobility of 10 2 cm 2 V -1 s -1 , and low subthreshold swing of 93 mV dec -1 . Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10 -3 -10 -2 V MV -1 cm -1 after 6 MV cm -1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 is a promising way to fabricate high-performance ML MoS 2 field-effect transistors for practical electron device applications.

  7. Study on the drain bias effect on negative bias temperature instability degradation of an ultra-short p-channel metal-oxide-semiconductor field-effect transistor

    International Nuclear Information System (INIS)

    Yan-Rong, Cao; Xiao-Hua, Ma; Yue, Hao; Shi-Gang, Hu

    2010-01-01

    This paper studies the effect of drain bias on ultra-short p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET) degradation during negative bias temperature (NBT) stress. When a relatively large gate voltage is applied, the degradation magnitude is much more than the drain voltage which is the same as the gate voltage supplied, and the time exponent gets larger than that of the NBT instability (NBTI). With decreasing drain voltage, the degradation magnitude and the time exponent all get smaller. At some values of the drain voltage, the degradation magnitude is even smaller than that of NBTI, and when the drain voltage gets small enough, the exhibition of degradation becomes very similar to the NBTI degradation. When a relatively large drain voltage is applied, with decreasing gate voltage, the degradation magnitude gets smaller. However, the time exponent becomes larger. With the help of electric field simulation, this paper concludes that the degradation magnitude is determined by the vertical electric field of the oxide, the amount of hot holes generated by the strong channel lateral electric field at the gate/drain overlap region, and the time exponent is mainly controlled by localized damage caused by the lateral electric field of the oxide in the gate/drain overlap region where hot carriers are produced. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Attentional Bias for Threat in Older Adults: Moderation of the Positivity Bias by Trait Anxiety and Stimulus Modality

    Science.gov (United States)

    Lee, Lewina O.; Knight, Bob G.

    2009-01-01

    Socioemotional selectivity theory suggests that emotion regulation goals motivate older adults to preferentially allocate attention to positive stimuli and away from negative stimuli. This study examined whether anxiety moderates the effect of the positivity bias on attention for threat. We employed the dot probe task to compare subliminal and supraliminal attention for threat in 103 young and 44 older adults. Regardless of anxiety, older but not younger adults demonstrated a vigilant-avoidant response to angry faces. Anxiety influenced older adults’ attention such that anxious individuals demonstrated a vigilant-avoidant reaction to sad faces, but an avoidant-vigilant reaction to negative words. PMID:19739931

  9. Four-frame gated optical imager with 120-ps resolution

    International Nuclear Information System (INIS)

    Young, P.E.; Hares, J.D.; Kilkenny, J.D.; Phillion, D.W.; Campbell, E.M.

    1988-04-01

    In this paper we describe the operation and applications of a framing camera capable of four separate two-dimensional images with each frame having a 120-ps gate width. Fast gating of a single frame is accomplished by using a wafer image intensifier tube in which the cathode is capacitively coupled to an external electrode placed outside of the photocathode of the tube. This electrode is then pulsed relative to the microchannel plate by a narrow (120 ps), high-voltage pulse. Multiple frames are obtained by using multiple gated tubes which share a single bias supply and pulser with relative gate times selected by the cable lengths between the tubes and the pulser. A beamsplitter system has been constructed which produces a separate image for each tube from a single scene. Applications of the framing camera to inertial confinement fusion experiments are discussed

  10. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  11. Tunnel field-effect transistor with two gated intrinsic regions

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2014-07-01

    Full Text Available In this paper, we propose and validate (using simulations a novel design of silicon tunnel field-effect transistor (TFET, based on a reverse-biased p+-p-n-n+ structure. 2D device simulation results show that our devices have significant improvements of switching performance compared with more conventional devices based on p-i-n structure. With independent gate voltages applied to two gated intrinsic regions, band-to-band tunneling (BTBT could take place at the p-n junction, and no abrupt degenerate doping profile is required. We developed single-side-gate (SSG structure and double-side-gate (DSG structure. SSG devices with HfO2 gate dielectric have a point subthreshold swing of 9.58 mV/decade, while DSG devices with polysilicon gate electrode material and HfO2 gate dielectric have a point subthreshold swing of 16.39 mV/decade. These DSG devices have ON-current of 0.255 μA/μm, while that is lower for SSG devices. Having two nano-scale independent gates will be quite challenging to realize with good uniformity across the wafer and the improved behavior of our TFET makes it a promising steep-slope switch candidate for further investigations.

  12. Capacitance-voltage characteristics of MOS capacitors with Ge nanocrystals embedded in ZrO2 gate material

    International Nuclear Information System (INIS)

    Lee, Hye-Ryoung; Choi, Samjong; Cho, Kyoungah; Kim, Sangsig

    2007-01-01

    Capacitance versus voltage (C-V) curves of Ge-nanocrystals (NCs)-embedded metal-oxide-semiconductor (MOS) capacitors are characterized in this work. Ge NCs were formed in 20-nm thick ZrO 2 gate layers by ion implantation and subsequent annealing procedures. The formation of the Ge NCs in the ZrO 2 gate layers was confirmed by high-resolution transmission electron microscopy and energy dispersive spectroscopy. The C-V curves obtained from a representative MOS capacitor embedded with the Ge NCs exhibit a 3 V memory window as bias voltage varied from 9 to - 9 V and then back to the initial positive voltage, whereas MOS capacitors without Ge NCs show negligible memory windows at the same voltage range. This indicates the presence of charge storages in the Ge NCs. The counterclockwise hysteresis observed from the C-V curves implies that electrons are trapped in Ge NCs presented inside the ZrO 2 gate layer. And our experimental results obtained from capacitance versus time measurements show good retention characteristics of Ge-NCs-embedded MOS capacitors with ZrO 2 gate material for the application of NFGM

  13. Positively Biased Processing of Mother's Emotions Predicts Children's Social and Emotional Functioning.

    Science.gov (United States)

    Donohue, Meghan Rose; Goodman, Sherryl H; Tully, Erin C

    Risk for internalizing problems and social skills deficits likely emerges in early childhood when emotion processing and social competencies are developing. Positively biased processing of social information is typical during early childhood and may be protective against poorer psychosocial outcomes. We tested the hypothesis that young children with relatively less positively biased attention to, interpretations of, and attributions for their mother's emotions would exhibit poorer prosocial skills and more internalizing problems. A sample of 4- to 6-year-old children ( N =82) observed their mothers express happiness, sadness and anger during a simulated emotional phone conversation. Children's attention to their mother when she expressed each emotion was rated from video. Immediately following the phone conversation, children were asked questions about the conversation to assess their interpretations of the intensity of mother's emotions and misattributions of personal responsibility for her emotions. Children's prosocial skills and internalizing problems were assessed using mother-report rating scales. Interpretations of mother's positive emotions as relatively less intense than her negative emotions, misattributions of personal responsibility for her negative emotions, and lack of misattributions of personal responsibility for her positive emotions were associated with poorer prosocial skills. Children who attended relatively less to mother's positive than her negative emotions had higher levels of internalizing problems. These findings suggest that children's attention to, interpretations of, and attributions for their mother's emotions may be important targets of early interventions for preventing prosocial skills deficits and internalizing problems.

  14. Sidewall gated double well quasi-one-dimensional resonant tunneling transistors

    Science.gov (United States)

    Kolagunta, V. R.; Janes, D. B.; Melloch, M. R.; Youtsey, C.

    1997-12-01

    We present gating characteristics of submicron vertical resonant tunneling transistors in double quantum well heterostructures. Current-voltage characteristics at room temperature and 77 K for devices with minimum feature widths of 0.9 and 0.7 μm are presented and discussed. The evolution of the I-V characteristics with increasing negative gate biases is related to the change in the lateral confinement, with a transition from a large area 2D to a quasi-1D. Even gating of multiple wells and lateral confinement effects observable at 77 K make these devices ideally suited for applications in multi-valued logic systems and low-dimensional structures.

  15. Gate-Tunable Spin Exchange Interactions and Inversion of Magnetoresistance in Single Ferromagnetic ZnO Nanowires.

    Science.gov (United States)

    Modepalli, Vijayakumar; Jin, Mi-Jin; Park, Jungmin; Jo, Junhyeon; Kim, Ji-Hyun; Baik, Jeong Min; Seo, Changwon; Kim, Jeongyong; Yoo, Jung-Woo

    2016-04-26

    Electrical control of ferromagnetism in semiconductor nanostructures offers the promise of nonvolatile functionality in future semiconductor spintronics. Here, we demonstrate a dramatic gate-induced change of ferromagnetism in ZnO nanowire (NW) field-effect transistors (FETs). Ferromagnetism in our ZnO NWs arose from oxygen vacancies, which constitute deep levels hosting unpaired electron spins. The magnetic transition temperature of the studied ZnO NWs was estimated to be well above room temperature. The in situ UV confocal photoluminescence (PL) study confirmed oxygen vacancy mediated ferromagnetism in the studied ZnO NW FET devices. Both the estimated carrier concentration and temperature-dependent conductivity reveal the studied ZnO NWs are at the crossover of the metal-insulator transition. In particular, gate-induced modulation of the carrier concentration in the ZnO NW FET significantly alters carrier-mediated exchange interactions, which causes even inversion of magnetoresistance (MR) from negative to positive values. Upon sweeping the gate bias from -40 to +50 V, the MRs estimated at 2 K and 2 T were changed from -11.3% to +4.1%. Detailed analysis on the gate-dependent MR behavior clearly showed enhanced spin splitting energy with increasing carrier concentration. Gate-voltage-dependent PL spectra of an individual NW device confirmed the localization of oxygen vacancy-induced spins, indicating that gate-tunable indirect exchange coupling between localized magnetic moments played an important role in the remarkable change of the MR.

  16. Onset of Spin Polarization in Four-Gate Quantum Point Contacts

    Science.gov (United States)

    Jones, Alex

    A series of simulations which utilize a Non-equilibrium Green's function (NEGF) formalism is suggested which can provide indirect evidence of the fine and non-local electrostatic tuning of the onset of spin polarization in two closely spaced quantum point contacts (QPCs) that experience a phenomenon known as lateral spin-orbit coupling (LSOC). Each of the QPCs that create the device also has its own pair of side gates (SGs) which are in-plane with the device channel. Numerical simulations of the conductance of the two closely spaced QPCs or four-gate QPC are carried out for different biasing conditions applied to two leftmost and rightmost SGs. Conductance plots are then calculated as a function of the variable, Vsweep, which is the common sweep voltage applied to the QPC. When Vsweep is only applied to two of the four side gates, the plots show several conductance anomalies, i.e., below G0 = 2e2/h, characterized by intrinsic bistability, i.e., hysteresis loops due to a difference in the conductance curves for forward and reverse common voltage sweep simulations. The appearance of hysteresis loops is attributed to the co-existence of multistable spin textures in the narrow channel of the four-gate QPC. The shape, location, and number of hysteresis loops are very sensitive to the biasing conditions on the four SGs. The shape and size of the conductance anomalies and hysteresis loops are shown to change when the biasing conditions on the leftmost and rightmost SGs are swapped, a rectifying behavior providing an additional indirect evidence for the onset of spontaneous spin polarization in nanoscale devices made of QPCs. The results of the simulations reveal that the occurrence and fine tuning of conductance anomalies in QPC structures are highly sensitive to the non-local action of closely spaced SGs. It is therefore imperative to take into account this proximity effect in the design of all electrical spin valves making use of middle gates to fine tune the spin

  17. Does a Positive Bias Relate to Social Behavior in Children with ADHD?

    Science.gov (United States)

    Linnea, Kate; Hoza, Betsy; Tomb, Meghan; Kaiser, Nina

    2012-01-01

    This study examines whether positively biased self-perceptions relate to social behaviors in children with attention-deficit/hyperactivity disorder (ADHD) as compared to control children. The social behaviors of children with ADHD (n = 87) were examined relative to control children (CTL; n = 38) during a laboratory-based dyadic social interaction…

  18. Imagining a brighter future: the effect of positive imagery training on mood, prospective mental imagery and emotional bias in older adults.

    Science.gov (United States)

    Murphy, Susannah E; Clare O'Donoghue, M; Drazich, Erin H S; Blackwell, Simon E; Christina Nobre, Anna; Holmes, Emily A

    2015-11-30

    Positive affect and optimism play an important role in healthy ageing and are associated with improved physical and cognitive health outcomes. This study investigated whether it is possible to boost positive affect and associated positive biases in this age group using cognitive training. The effect of computerised imagery-based cognitive bias modification on positive affect, vividness of positive prospective imagery and interpretation biases in older adults was measured. 77 older adults received 4 weeks (12 sessions) of imagery cognitive bias modification or a control condition. They were assessed at baseline, post-training and at a one-month follow-up. Both groups reported decreased negative affect and trait anxiety, and increased optimism across the three assessments. Imagery cognitive bias modification significantly increased the vividness of positive prospective imagery post-training, compared with the control training. Contrary to our hypothesis, there was no difference between the training groups in negative interpretation bias. This is a useful demonstration that it is possible to successfully engage older adults in computer-based cognitive training and to enhance the vividness of positive imagery about the future in this group. Future studies are needed to assess the longer-term consequences of such training and the impact on affect and wellbeing in more vulnerable groups. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Beam determination of quadrupole misalignments and beam position monitor biases in the SLC linac

    International Nuclear Information System (INIS)

    Lavine, T.L.; Seeman, J.T.; Atwood, W.B.; Himel, T.M.; Petersen, A.; Adolphsen, C.E.

    1988-09-01

    Misalignments of magnetic quadrupoles and biases in beam position monitors (BPMs) in the Stanford Linear Collider (SLC) linac can lead to a situation in which the beam is off-center in the disk-loaded waveguide accelerator structure. The off-center beam produces wakefields which can limit SLC performance by causing unacceptably large emittance growth. We present a general method for determining quadrupole misalignments and BPM biases in the SLC linac by using beam trajectory measurements. The method utilizes both electron and positron beams on opposite rf cycles in the same linac lattice to determine simultaneously magnetic quadrupole misalignments and BPM biases. The two-beam trajectory data may be acquired without interrupting SLC colliding beam operations. 2 refs., 5 figs

  20. Intrinsic multistate switching of gold clusters through electrochemical gating

    DEFF Research Database (Denmark)

    Albrecht, Tim; Mertens, S.F.L.; Ulstrup, Jens

    2007-01-01

    The electrochemical behavior of small metal nanoparticles is governed by Coulomb-like charging and equally spaced charge-transfer transitions. Using electrochemical gating at constant bias voltage, we show, for the first time, that individual nanoparticles can be operated as multistate switches i...

  1. A gate enhanced power U-shaped MOSFET integrated with a Schottky rectifier

    International Nuclear Information System (INIS)

    Wang Ying; Jiao Wen-Li; Hu Hai-Fan; Liu Yun-Tao; Cao Fei

    2012-01-01

    An accumulation gate enhanced power U-shaped metal-oxide-semiconductor field-effect-transistor (UMOSFET) integrated with a Schottky rectifier is proposed. In this device, a Schottky rectifier is integrated into each cell of the accumulation gate enhanced power UMOSFET. Specific on-resistances of 7.7 mΩ·mm 2 and 6.5 mΩ·mm 2 for the gate bias voltages of 5 V and 10 V are achieved, respectively, and the breakdown voltage is 61 V. The numerical simulation shows a 25% reduction in the reverse recovery time and about three orders of magnitude reduction in the leakage current as compared with the accumulation gate enhanced power UMOSFET. (condensed matter: structural, mechanical, and thermal properties)

  2. Fault-tolerant computing with biased-noise superconducting qubits: a case study

    International Nuclear Information System (INIS)

    Aliferis, P; Brito, F; DiVincenzo, D P; Steffen, M; Terhal, B M; Preskill, J

    2009-01-01

    We present a universal scheme of pulsed operations suitable for the IBM oscillator-stabilized flux qubit comprising the controlled-σ z (cphase) gate, single-qubit preparations and measurements. Based on numerical simulations, we argue that the error rates for these operations can be as low as about 0.5% and that noise is highly biased, with phase errors being stronger than all other types of errors by a factor of nearly 10 3 . In contrast, the design of a controlled-σ x (cnot) gate for this system with an error rate of less than about 1.2% seems extremely challenging. We propose a special encoding that exploits the noise bias allowing us to implement a logicalcnot gate where phase errors and all other types of errors have nearly balanced rates of about 0.4%. Our results illustrate how the design of an encoding scheme can be adjusted and optimized according to the available physical operations and the particular noise characteristics of experimental devices.

  3. AlN and Al oxy-nitride gate dielectrics for reliable gate stacks on Ge and InGaAs channels

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Li, H.; Robertson, J. [Engineering Department, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2016-05-28

    AlN and Al oxy-nitride dielectric layers are proposed instead of Al{sub 2}O{sub 3} as a component of the gate dielectric stacks on higher mobility channels in metal oxide field effect transistors to improve their positive bias stress instability reliability. It is calculated that the gap states of nitrogen vacancies in AlN lie further away in energy from the semiconductor band gap than those of oxygen vacancies in Al{sub 2}O{sub 3}, and thus AlN might be less susceptible to charge trapping and have a better reliability performance. The unfavourable defect energy level distribution in amorphous Al{sub 2}O{sub 3} is attributed to its larger coordination disorder compared to the more symmetrically bonded AlN. Al oxy-nitride is also predicted to have less tendency for charge trapping.

  4. Protonic/electronic hybrid oxide transistor gated by chitosan and its full-swing low voltage inverter applications

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Jin Yu [Shanxi Province Key Laboratory High Gravity Chemical Engineering, North University of China, Taiyuan 030051 (China); Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn; Xiao, Hui [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Yuan, Zhi Guo, E-mail: ncityzg@163.com [Shanxi Province Key Laboratory High Gravity Chemical Engineering, North University of China, Taiyuan 030051 (China)

    2015-12-21

    Modulation of charge carrier density in condensed materials based on ionic/electronic interaction has attracted much attention. Here, protonic/electronic hybrid indium-zinc-oxide (IZO) transistors gated by chitosan based electrolyte were obtained. The chitosan-based electrolyte illustrates a high proton conductivity and an extremely strong proton gating behavior. The transistor illustrates good electrical performances at a low operating voltage of ∼1.0 V such as on/off ratio of ∼3 × 10{sup 7}, subthreshold swing of ∼65 mV/dec, threshold voltage of ∼0.3 V, and mobility of ∼7 cm{sup 2}/V s. Good positive gate bias stress stabilities are obtained. Furthermore, a low voltage driven resistor-loaded inverter was built by using an IZO transistor in series with a load resistor, exhibiting a linear relationship between the voltage gain and the supplied voltage. The inverter is also used for decreasing noises of input signals. The protonic/electronic hybrid IZO transistors have potential applications in biochemical sensors and portable electronics.

  5. Distributed Idea Screening in Stage–gate Development Processes

    DEFF Research Database (Denmark)

    Onarheim, Balder; Christensen, Bo T.

    2012-01-01

    This paper investigates the gate screening of ideas in engineering design, by examination of the validity of employee voting schemes and biases associated with such voting. After conducting an employee-driven innovation project at a major producer of disposable medical equipment, 99 ideas had...... to be screened for further development. Inspired by the concept of ‘wisdom of the crowd’, all ideas were individually rated by a broad selection of employees, and the ratings were used to investigate two biases in employee voting: visual complexity and endowment effect/ownership of ideas. The visual complexity...

  6. Hetero-gate-dielectric double gate junctionless transistor (HGJLT) with reduced band-to-band tunnelling effects in subthreshold regime

    International Nuclear Information System (INIS)

    Ghosh, Bahniman; Mondal, Partha; Akram, M. W.; Bal, Punyasloka; Salimath, Akshay Kumar

    2014-01-01

    We propose a hetero-gate-dielectric double gate junctionless transistor (HGJLT), taking high-k gate insulator at source side and low-k gate insulator at drain side, which reduces the effects of band-to-band tunnelling (BTBT) in the sub-threshold region. A junctionless transistor (JLT) is turned off by the depletion of carriers in the highly doped thin channel (device layer) which results in a significant band overlap between the valence band of the channel region and the conduction band of the drain region, due to off-state drain bias, that triggers electrons to tunnel from the valence band of the channel region to the conduction band of the drain region leaving behind holes in the channel. These effects of band-to-band tunnelling increase the sub-threshold leakage current, and the accumulation of holes in the channel forms a parasitic bipolar junction transistor (n–p–n BJT for channel JLT) in the lateral direction by the source (emitter), channel (base) and drain (collector) regions in JLT structure in off-state. The proposed HGJLT reduces the subthreshold leakage current and suppresses the parasitic BJT action in off-state by reducing the band-to-band tunnelling probability. (semiconductor devices)

  7. Floating Gate CMOS Dosimeter With Frequency Output

    Science.gov (United States)

    Garcia-Moreno, E.; Isern, E.; Roca, M.; Picos, R.; Font, J.; Cesari, J.; Pineda, A.

    2012-04-01

    This paper presents a gamma radiation dosimeter based on a floating gate sensor. The sensor is coupled with a signal processing circuitry, which furnishes a square wave output signal, the frequency of which depends on the total dose. Like any other floating gate dosimeter, it exhibits zero bias operation and reprogramming capabilities. The dosimeter has been designed in a standard 0.6 m CMOS technology. The whole dosimeter occupies a silicon area of 450 m250 m. The initial sensitivity to a radiation dose is Hz/rad, and to temperature and supply voltage is kHz/°C and 0.067 kHz/mV, respectively. The lowest detectable dose is less than 1 rad.

  8. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    International Nuclear Information System (INIS)

    Roy, Jayanta; Bhattacharyya, Bhaswati

    2013-01-01

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of ±1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time (∼20× for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position (±1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  9. COHERENTLY DEDISPERSED GATED IMAGING OF MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati [National Centre for Radio Astrophysics, Pune 411007 (India)

    2013-03-10

    Motivated by the need for rapid localization of newly discovered faint millisecond pulsars (MSPs), we have developed a coherently dedispersed gating correlator. This gating correlator accounts for the orbital motions of MSPs in binaries while folding the visibilities with a best-fit topocentric rotational model derived from a periodicity search in a simultaneously generated beamformer output. Unique applications of the gating correlator for sensitive interferometric studies of MSPs are illustrated using the Giant Metrewave Radio Telescope (GMRT) interferometric array. We could unambiguously localize five newly discovered Fermi MSPs in the on-off gated image plane with an accuracy of {+-}1''. Immediate knowledge of such a precise position enables the use of sensitive coherent beams of array telescopes for follow-up timing observations which substantially reduces the use of telescope time ({approx}20 Multiplication-Sign for the GMRT). In addition, a precise a priori astrometric position reduces the effect of large covariances in the timing fit (with discovery position, pulsar period derivative, and an unknown binary model), which in-turn accelerates the convergence to the initial timing model. For example, while fitting with the precise a priori position ({+-}1''), the timing model converges in about 100 days, accounting for the effect of covariance between the position and pulsar period derivative. Moreover, such accurate positions allow for rapid identification of pulsar counterparts at other wave bands. We also report a new methodology of in-beam phase calibration using the on-off gated image of the target pulsar, which provides optimal sensitivity of the coherent array removing possible temporal and spacial decoherences.

  10. Positive valence bias and parent-child relationship security moderate the association between early institutional caregiving and internalizing symptoms.

    Science.gov (United States)

    Vantieghem, Michelle R; Gabard-Durnam, Laurel; Goff, Bonnie; Flannery, Jessica; Humphreys, Kathryn L; Telzer, Eva H; Caldera, Christina; Louie, Jennifer Y; Shapiro, Mor; Bolger, Niall; Tottenham, Nim

    2017-05-01

    Institutional caregiving is associated with significant deviations from species-expected caregiving, altering the normative sequence of attachment formation and placing children at risk for long-term emotional difficulties. However, little is known about factors that can promote resilience following early institutional caregiving. In the current study, we investigated how adaptations in affective processing (i.e., positive valence bias) and family-level protective factors (i.e., secure parent-child relationships) moderate risk for internalizing symptoms in previously institutionalized (PI) youth. Children and adolescents with and without a history of institutional care performed a laboratory-based affective processing task and self-reported measures of parent-child relationship security. PI youth were more likely than comparison youth to show positive valence biases when interpreting ambiguous facial expressions. Both positive valence bias and parent-child relationship security moderated the association between institutional care and parent-reported internalizing symptoms, such that greater positive valence bias and more secure parent-child relationships predicted fewer symptoms in PI youth. However, when both factors were tested concurrently, parent-child relationship security more strongly moderated the link between PI status and internalizing symptoms. These findings suggest that both individual-level adaptations in affective processing and family-level factors of secure parent-child relationships may ameliorate risk for internalizing psychopathology following early institutional caregiving.

  11. Insights into operation of planar tri-gate tunnel field effect transistor for dynamic memory application

    Science.gov (United States)

    Navlakha, Nupur; Kranti, Abhinav

    2017-07-01

    Insights into device physics and operation through the control of energy barriers are presented for a planar tri-gate Tunnel Field Effect Transistor (TFET) based dynamic memory. The architecture consists of a double gate (G1) at the source side and a single gate (G2) at the drain end of the silicon film. Dual gates (G1) effectively enhance the tunneling based read mechanism through the enhanced coupling and improved electrostatic control over the channel. The single gate (G2) controls the holes in the potential barrier induced through the proper selection of bias and workfunction. The results indicate that the planar tri-gate achieves optimum performance evaluated in terms of two composite metrics (M1 and M2), namely, product of (i) Sense Margin (SM) and Retention Time (RT) i.e., M1 = SM × RT and (ii) Sense Margin and Current Ratio (CR) i.e., M2 = SM × CR. The regulation of barriers created by the gates (G1 and G2) through the optimal use of device parameters leads to better performance metrics, with significant improvement at scaled lengths as compared to other tunneling based dynamic memory architectures. The investigation shows that lengths of G1, G2 and lateral spacing can be scaled down to 25 nm, 50 nm, and 30 nm, respectively, while achieving reasonable values for (M1, M2). The work demonstrates a systematic approach to showcase the advancement in TFET based Dynamic Random Access Memory (DRAM) through the use of planar tri-gate topology at a lower bias value. The concept, design, and operation of planar tri-gate architecture provide valuable viewpoints for TFET based DRAM.

  12. Electrophysiological Evidence for Elimination of the Positive Bias in Elderly Adults with Depressive Symptoms

    Directory of Open Access Journals (Sweden)

    Huixia Zhou

    2018-03-01

    Full Text Available BackgroundDepressed populations demonstrate a greater tendency to have negative interpretations on ambiguous situations. Cognitive theories concerning depression proposed that such a negative bias plays an important role in developing and maintaining depression. There is now fairly consistent evidence arising from different stimuli and assessment methods that depression is featured by such a bias. The current study aimed to explore the neural signatures associated with the interpretation bias in the elderly with depressive symptoms confronted with different facial expressions using event-related brain potentials (ERPs.MethodsParticipants were 14 community-dwelling older adults with depressive symptoms assessed by the Center for Epidemiologic Studies Depression scale scores. We collected event-related potentials of their brain compared to that of 14 healthy aged-matched adults. The late positive potential (LPP was used to examine cognitive-affective processes associated with judgment of emotional facial expressions between the two groups.ResultsOld adults with depressive symptoms have much smaller amplitude than healthy older adults irrespective of the prime types. When processing the targets, the two groups showed different patterns regarding the LPP. The healthy control group revealed no differences between ambiguous and happy primes, irrespective of whether the targets were sad or happy facial expressions. However, significant differences were found between happy and sad and between ambiguous and sad primes. Such a pattern indicates a positive bias in healthy elderly adults. Regarding the elderly with depressive symptoms, there were no significant differences between ambiguous versus happy, ambiguous versus sad primes, and happy versus sad primes. Concerning reaction times, there was no group difference. Thus, the findings provide some support for cognitive theories of depression.ConclusionThe current study shows that there is an association

  13. Chemical vapor deposited monolayer MoS2 top-gate MOSFET with atomic-layer-deposited ZrO2 as gate dielectric

    Science.gov (United States)

    Hu, Yaoqiao; Jiang, Huaxing; Lau, Kei May; Li, Qiang

    2018-04-01

    For the first time, ZrO2 dielectric deposition on pristine monolayer MoS2 by atomic layer deposition (ALD) is demonstrated and ZrO2/MoS2 top-gate MOSFETs have been fabricated. ALD ZrO2 overcoat, like other high-k oxides such as HfO2 and Al2O3, was shown to enhance the MoS2 channel mobility. As a result, an on/off current ratio of over 107, a subthreshold slope of 276 mV dec-1, and a field-effect electron mobility of 12.1 cm2 V-1 s-1 have been achieved. The maximum drain current of the MOSFET with a top-gate length of 4 μm and a source/drain spacing of 9 μm is measured to be 1.4 μA μm-1 at V DS = 5 V. The gate leakage current is below 10-2 A cm-2 under a gate bias of 10 V. A high dielectric breakdown field of 4.9 MV cm-1 is obtained. Gate hysteresis and frequency-dependent capacitance-voltage measurements were also performed to characterize the ZrO2/MoS2 interface quality, which yielded an interface state density of ˜3 × 1012 cm-2 eV-1.

  14. Dismissing Children's Perceptions of Their Emotional Experience and Parental Care: Preliminary Evidence of Positive Bias

    Science.gov (United States)

    Borelli, Jessica L.; David, Daryn H.; Crowley, Michael J.; Snavely, Jonathan E.; Mayes, Linda C.

    2013-01-01

    The tendency to perceive caregivers in highly positive terms and to perceive the self as strong and problem-free are two facets of the positive bias characteristic of a dismissing attachment classification in adulthood. However, this link has not yet been examined in children. We evaluated the association between dismissing attachment and positive…

  15. Mixture models reveal multiple positional bias types in RNA-Seq data and lead to accurate transcript concentration estimates.

    Directory of Open Access Journals (Sweden)

    Andreas Tuerk

    2017-05-01

    Full Text Available Accuracy of transcript quantification with RNA-Seq is negatively affected by positional fragment bias. This article introduces Mix2 (rd. "mixquare", a transcript quantification method which uses a mixture of probability distributions to model and thereby neutralize the effects of positional fragment bias. The parameters of Mix2 are trained by Expectation Maximization resulting in simultaneous transcript abundance and bias estimates. We compare Mix2 to Cufflinks, RSEM, eXpress and PennSeq; state-of-the-art quantification methods implementing some form of bias correction. On four synthetic biases we show that the accuracy of Mix2 overall exceeds the accuracy of the other methods and that its bias estimates converge to the correct solution. We further evaluate Mix2 on real RNA-Seq data from the Microarray and Sequencing Quality Control (MAQC, SEQC Consortia. On MAQC data, Mix2 achieves improved correlation to qPCR measurements with a relative increase in R2 between 4% and 50%. Mix2 also yields repeatable concentration estimates across technical replicates with a relative increase in R2 between 8% and 47% and reduced standard deviation across the full concentration range. We further observe more accurate detection of differential expression with a relative increase in true positives between 74% and 378% for 5% false positives. In addition, Mix2 reveals 5 dominant biases in MAQC data deviating from the common assumption of a uniform fragment distribution. On SEQC data, Mix2 yields higher consistency between measured and predicted concentration ratios. A relative error of 20% or less is obtained for 51% of transcripts by Mix2, 40% of transcripts by Cufflinks and RSEM and 30% by eXpress. Titration order consistency is correct for 47% of transcripts for Mix2, 41% for Cufflinks and RSEM and 34% for eXpress. We, further, observe improved repeatability across laboratory sites with a relative increase in R2 between 8% and 44% and reduced standard deviation.

  16. Toward spin-based Magneto Logic Gate in Graphene

    Science.gov (United States)

    Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Zutic, Igor; Krivorotov, Ilya; Sham, Lu; Kawakami, Roland

    Graphene has emerged as a leading candidate for spintronic applications due to its long spin diffusion length at room temperature. A universal magnetologic gate (MLG) based on spin transport in graphene has been recently proposed as the building block of a logic circuit which could replace the current CMOS technology. This MLG has five ferromagnetic electrodes contacting a graphene channel and can be considered as two three-terminal XOR logic gates. Here we demonstrate this XOR logic gate operation in such a device. This was achieved by systematically tuning the injection current bias to balance the spin polarization efficiency of the two inputs, and offset voltage in the detection circuit to obtain binary outputs. The output is a current which corresponds to different logic states: zero current is logic `0', and nonzero current is logic `1'. We find improved performance could be achieved by reducing device size and optimizing the contacts.

  17. Volumetric measurement of human red blood cells by MOSFET-based microfluidic gate.

    Science.gov (United States)

    Guo, Jinhong; Ai, Ye; Cheng, Yuanbing; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming

    2015-08-01

    In this paper, we present a MOSFET-based (metal oxide semiconductor field-effect transistor) microfluidic gate to characterize the translocation of red blood cells (RBCs) through a gate. In the microfluidic system, the bias voltage modulated by the particles or biological cells is connected to the gate of MOSFET. The particles or cells can be detected by monitoring the MOSFET drain current instead of DC/AC-gating method across the electronic gate. Polystyrene particles with various standard sizes are utilized to calibrate the proposed device. Furthermore, RBCs from both adults and newborn blood sample are used to characterize the performance of the device in distinguishing the two types of RBCs. As compared to conventional DC/AC current modulation method, the proposed device demonstrates a higher sensitivity and is capable of being a promising platform for bioassay analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nanosecond Time-Resolved Microscopic Gate-Modulation Imaging of Polycrystalline Organic Thin-Film Transistors

    Science.gov (United States)

    Matsuoka, Satoshi; Tsutsumi, Jun'ya; Matsui, Hiroyuki; Kamata, Toshihide; Hasegawa, Tatsuo

    2018-02-01

    We develop a time-resolved microscopic gate-modulation (μ GM ) imaging technique to investigate the temporal evolution of the channel current and accumulated charges in polycrystalline pentacene thin-film transistors (TFTs). A time resolution of as high as 50 ns is achieved by using a fast image-intensifier system that could amplify a series of instantaneous optical microscopic images acquired at various time intervals after the stepped gate bias is switched on. The differential images obtained by subtracting the gate-off image allows us to acquire a series of temporal μ GM images that clearly show the gradual propagation of both channel charges and leaked gate fields within the polycrystalline channel layers. The frontal positions for the propagations of both channel charges and leaked gate fields coincide at all the time intervals, demonstrating that the layered gate dielectric capacitors are successively transversely charged up along the direction of current propagation. The initial μ GM images also indicate that the electric field effect is originally concentrated around a limited area with a width of a few micrometers bordering the channel-electrode interface, and that the field intensity reaches a maximum after 200 ns and then decays. The time required for charge propagation over the whole channel region with a length of 100 μ m is estimated at about 900 ns, which is consistent with the measured field-effect mobility and the temporal-response model for organic TFTs. The effect of grain boundaries can be also visualized by comparison of the μ GM images for the transient and the steady states, which confirms that the potential barriers at the grain boundaries cause the transient shift in the accumulated charges or the transient accumulation of additional charges around the grain boundaries.

  19. Paraffin wax passivation layer improvements in electrical characteristics of bottom gate amorphous indium–gallium–zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Chang, Geng-Wei; Chang, Ting-Chang; Syu, Yong-En; Tsai, Tsung-Ming; Chang, Kuan-Chang; Tu, Chun-Hao; Jian, Fu-Yen; Hung, Ya-Chi; Tai, Ya-Hsiang

    2011-01-01

    In this research, paraffin wax is employed as the passivation layer of the bottom gate amorphous indium–gallium–zinc oxide thin-film transistors (a-IGZO TFTs), and it is formed by sol–gel process in the atmosphere. The high yield and low cost passivation layer of sol–gel process technology has attracted much attention for current flat-panel-display manufacturing. Comparing with passivation-free a-IGZO TFTs, passivated devices exhibit a superior stability against positive gate bias stress in different ambient gas, demonstrating that paraffin wax shows gas-resisting characteristics for a-IGZO TFTs application. Furthermore, light-induced stretch-out phenomenon for paraffin wax passivated device is suppressed. This superior stability of the passivated device was attributed to the reduced total density of states (DOS) including the interfacial and semiconductor bulk trap densities.

  20. Citation bias favoring positive clinical trials of thrombolytics for acute ischemic stroke: a cross-sectional analysis.

    Science.gov (United States)

    Misemer, Benjamin S; Platts-Mills, Timothy F; Jones, Christopher W

    2016-09-28

    Citation bias occurs when positive trials involving a medical intervention receive more citations than neutral or negative trials of similar quality. Several large clinical trials have studied the use of thrombolytic agents for the treatment of acute ischemic stroke with differing results, thereby presenting an opportunity to assess these trials for evidence of citation bias. We compared citation rates among positive, neutral, and negative trials of alteplase (tPA) and other thrombolytic agents for stroke. We used a 2014 Cochrane Review of thrombolytic therapy for the treatment of acute stroke to identify non-pilot, English-language stroke trials published in MEDLINE-indexed journals comparing thrombolytic therapy with control. We classified trials as positive if there was a statistically significant primary outcome difference favoring the intervention, neutral if there was no difference in primary outcome, or negative for a significant primary outcome difference favoring the control group. Trials were also considered negative if safety concerns supported stopping the trial early. Using Scopus, we collected citation counts through 2015 and compared citation rates according to trial outcomes. Eight tPA trials met inclusion criteria: two were positive, four were neutral, and two were negative. The two positive trials received 9080 total citations, the four neutral trials received 4847 citations, and the two negative trials received 1096 citations. The mean annual per-trial citation rates were 333 citations per year for positive trials, 96 citations per year for neutral trials, and 35 citations per year for negative trials. Trials involving other thrombolytic agents were not cited as often, though as with tPA, positive trials were cited more frequently than neutral or negative trials. Positive trials of tPA for ischemic stroke are cited approximately three times as often as neutral trials, and nearly 10 times as often as negative trials, indicating the presence of

  1. Positive valence bias and parent-child relationship security moderate the association between early institutional caregiving and internalizing symptoms

    Science.gov (United States)

    VanTieghem, Michelle R.; Gabard-Durnam, Laurel; Goff, Bonnie; Flannery, Jessica; Humphreys, Kathryn L.; Telzer, Eva H.; Caldera, Christina; Louie, Jennifer Y.; Shapiro, Mor; Bolger, Niall; Tottenham, Nim

    2018-01-01

    Institutional caregiving is associated with significant deviations from species-expected caregiving, altering the normative sequence of attachment formation and placing children at risk for long-term emotional difficulties. However, little is known about factors that can promote resilience following early institutional caregiving. In the current study, we investigated how adaptations in affective processing (i.e. positive valence bias) and family-level protective factors (i.e. secure parent-child relationships) moderate risk for internalizing symptoms in Previously Institutionalized (PI) youth. Children and adolescents with and without a history of institutional care performed a laboratory-based affective processing task and self-reported measures of parent-child relationship security. PI youth were more likely than comparison youth to show positive valence biases when interpreting ambiguous facial expressions. Both positive valence bias and parent-child relationship security moderated the association between institutional care and parent-reported internalizing symptoms, such that greater positive valence bias and more secure parent-child relationships predicted fewer symptoms in PI youth. However, when both factors were tested concurrently, parent-child relationship security more strongly moderated the link between PI status and internalizing symptoms. These findings suggest that both individual-level adaptations in affective processing and family-level factors of secure parent-child relationships may ameliorate risk for internalizing psychopathology following early institutional caregiving. PMID:28401841

  2. Systematic spatial bias in DNA microarray hybridization is caused by probe spot position-dependent variability in lateral diffusion.

    Science.gov (United States)

    Steger, Doris; Berry, David; Haider, Susanne; Horn, Matthias; Wagner, Michael; Stocker, Roman; Loy, Alexander

    2011-01-01

    The hybridization of nucleic acid targets with surface-immobilized probes is a widely used assay for the parallel detection of multiple targets in medical and biological research. Despite its widespread application, DNA microarray technology still suffers from several biases and lack of reproducibility, stemming in part from an incomplete understanding of the processes governing surface hybridization. In particular, non-random spatial variations within individual microarray hybridizations are often observed, but the mechanisms underpinning this positional bias remain incompletely explained. This study identifies and rationalizes a systematic spatial bias in the intensity of surface hybridization, characterized by markedly increased signal intensity of spots located at the boundaries of the spotted areas of the microarray slide. Combining observations from a simplified single-probe block array format with predictions from a mathematical model, the mechanism responsible for this bias is found to be a position-dependent variation in lateral diffusion of target molecules. Numerical simulations reveal a strong influence of microarray well geometry on the spatial bias. Reciprocal adjustment of the size of the microarray hybridization chamber to the area of surface-bound probes is a simple and effective measure to minimize or eliminate the diffusion-based bias, resulting in increased uniformity and accuracy of quantitative DNA microarray hybridization.

  3. Coarse-Grained Online Monitoring of BTI Aging by Reusing Power-Gating Infrastructure

    OpenAIRE

    Tenentes, V.; Rossi, D.; Sheng Yang,; Khursheed, S.; Al-Hashimi, B.M.; Gunn, S.R.

    2017-01-01

    In this paper, we present a novel coarse-grained technique for monitoring online the Bias Temperature Instability (BTI) aging of circuits by exploiting their power gating infrastructure. The proposed technique relies on monitoring the discharge time of the virtual-power-network during stand-by operations, the value of which depends on the threshold voltage of the CMOS devices in the power-gated design (PGD). It does not require any distributed sensors, because the virtual-power network is alr...

  4. Analytical models for the 2DEG concentration and gate leakage current in AlGaN/GaN HEMTs

    Science.gov (United States)

    Ahmed, Nadim; Dutta, Aloke K.

    2017-06-01

    In this paper, we present a completely analytical model for the 2DEG concentration in AlGaN/GaN HEMTs as a function of gate bias, considering the donor-like trap states present at the metal/AlGaN interface to be the primary source of 2DEG carriers. To the best of our knowledge, this is a completely new contribution of this work. The electric field in the AlGaN layer is calculated using this model, which is further used to model the gate leakage current under reverse bias. We have modified the existing TTT (Thermionic Trap-Assisted Tunneling) current model, taking into account the effect of both metal/AlGaN interface traps as well as AlGaN bulk traps. The gate current under forward bias is also modeled using the existing thermionic emission model, approximating it by its Taylor series expansion. To take into account the effect of non-zero drain-source bias (VDS), an empirical fitting parameter is introduced in order to model the channel voltage in terms of VDS. The results of our models have been compared with the experimental data reported in the literature for three different devices, and the match is found to be excellent for both forward and reverse bias as well as for zero and non-zero VDS.

  5. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    DEFF Research Database (Denmark)

    Juhler-Nøttrup, Trine; Korreman, Stine Sofia; Pedersen, Anders N

    2008-01-01

    were contoured on each CT scan to evaluate the variations in volumes and position. The lung tumours and the mediastinal tumours were contoured separately. The positional variations were measured as 3D mobility vectors and correlated to matching of the scans using the two different strategies. RESULTS......-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. CONCLUSIONS: Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were...

  6. Total Ionizing Dose Effects of Si Vertical Diffused MOSFET with SiO2 and Si3N4/SiO2 Gate Dielectrics

    Directory of Open Access Journals (Sweden)

    Jiongjiong Mo

    2017-01-01

    Full Text Available The total ionizing dose irradiation effects are investigated in Si vertical diffused MOSFETs (VDMOSs with different gate dielectrics including single SiO2 layer and double Si3N4/SiO2 layer. Radiation-induced holes trapping is greater for single SiO2 layer than for double Si3N4/SiO2 layer. Dielectric oxidation temperature dependent TID effects are also studied. Holes trapping induced negative threshold voltage shift is smaller for SiO2 at lower oxidation temperature. Gate bias during irradiation leads to different VTH shift for different gate dielectrics. Single SiO2 layer shows the worst negative VTH at VG=0 V, while double Si3N4/SiO2 shows negative VTH shift at VG=-5 V, positive VTH shift at VG=10 V, and negligible VTH shift at VG=0 V.

  7. The electron trap parameter extraction-based investigation of the relationship between charge trapping and activation energy in IGZO TFTs under positive bias temperature stress

    Science.gov (United States)

    Rhee, Jihyun; Choi, Sungju; Kang, Hara; Kim, Jae-Young; Ko, Daehyun; Ahn, Geumho; Jung, Haesun; Choi, Sung-Jin; Myong Kim, Dong; Kim, Dae Hwan

    2018-02-01

    Experimental extraction of the electron trap parameters which are associated with charge trapping into gate insulators under the positive bias temperature stress (PBTS) is proposed and demonstrated for the first time in amorphous indium-gallium-zinc-oxide thin-film transistors. This was done by combining the PBTS/recovery time-evolution of the experimentally decomposed threshold voltage shift (ΔVT) and the technology computer-aided design (TCAD)-based charge trapping simulation. The extracted parameters were the trap density (NOT) = 2.6 × 1018 cm-3, the trap energy level (ΔET) = 0.6 eV, and the capture cross section (σ0) = 3 × 10-19 cm2. Furthermore, based on the established TCAD framework, the relationship between the electron trap parameters and the activation energy (Ea) is comprehensively investigated. It is found that Ea increases with an increase in σ0, whereas Ea is independent of NOT. In addition, as ΔET increases, Ea decreases in the electron trapping-dominant regime (low ΔET) and increases again in the Poole-Frenkel (PF) emission/hopping-dominant regime (high ΔET). Moreover, our results suggest that the cross-over ΔET point originates from the complicated temperature-dependent competition between the capture rate and the emission rate. The PBTS bias dependence of the relationship between Ea and ΔET suggests that the electric field dependence of the PF emission-based electron hopping is stronger than that of the thermionic field emission-based electron trapping.

  8. Cardiac gated ventilation

    International Nuclear Information System (INIS)

    Hanson, C.W. III; Hoffman, E.A.

    1995-01-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart

  9. Effect of annealing temperature on structural and electrical properties of high-κ YbTixOy gate dielectrics for InGaZnO thin film transistors

    International Nuclear Information System (INIS)

    Pan, Tung-Ming; Chen, Fa-Hsyang; Hung, Meng-Ning

    2015-01-01

    This paper describes the effect of annealing temperature on the structural properties and electrical characteristics of high–κ YbTi x O y gate dielectrics for indium–gallium–zinc–oxide (IGZO) thin-film transistors (TFTs). X-ray diffraction, x-ray photoelectron spectroscopy and atomic force microscopy were used to study the structural, chemical and morphological features, respectively, of these dielectric films annealed at 200, 300 and 400 °C. The YbTi x O y IGZO TFT that had been annealed at 400 °C exhibited better electrical characteristics, such as a small threshold voltage of 0.53 V, a large field-effect mobility of 19.1 cm 2 V −1 s −1 , a high I on /I off ratio of 2.8 × 10 7 , and a low subthreshold swing of 176 mV dec. −1 , relative to those of the systems that had been subjected to other annealing conditions. This result suggests that YbTi x O y dielectric possesses a higher dielectric constant as well as lower oxygen vacancies (or defects) in the film. In addition, the instability of YbTi x O y IGZO TFT was studied under positive gate-bias stress and negative gate-bias stress conditions. (paper)

  10. SU-C-204-06: Surface Imaging for the Set-Up of Proton Post-Mastectomy Chestwall Irradiation: Gated Images Vs Non Gated Images

    Energy Technology Data Exchange (ETDEWEB)

    Batin, E; Depauw, N; MacDonald, S; Lu, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy. In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°.

  11. SU-C-204-06: Surface Imaging for the Set-Up of Proton Post-Mastectomy Chestwall Irradiation: Gated Images Vs Non Gated Images

    International Nuclear Information System (INIS)

    Batin, E; Depauw, N; MacDonald, S; Lu, H

    2015-01-01

    Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy. In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°

  12. Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images

    International Nuclear Information System (INIS)

    Ju, Sang Gyu; Hong, Chae Seon; Park, Hee Chul; Ahn, Jong Ho; Shin, Eun Hyuk; Shin, Jung Suk; Kim, Jin Sung; Han, Young Yih; Lim, Do Hoon; Choi, Doo Ho

    2010-01-01

    In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimensional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Medians of inter

  13. Transport and performance of a gate all around InAs nanowire transistor

    International Nuclear Information System (INIS)

    Alam, Khairul

    2009-01-01

    The transport physics and performance metrics of a gate all around an InAs nanowire transistor are studied using a three-dimensional quantum simulation. The transistor action of an InAs nanowire transistor occurs by modulating the transmission coefficient of the device. This action is different from a conventional metal-oxide-semiconductor field effect transistor, where the transistor action occurs by modulating the charge in the channel. The device has 82% tunneling current in the off-state and 81% thermal current in the on-state. The two current components become equal at a gate bias at which an approximate source-channel flat-band condition is achieved. Prior to this gate bias, the tunneling current dominates and the thermal current dominates beyond it. The device has an on/off current ratio of 7.84 × 10 5 and an inverse subthreshold slope of 63 mV dec −1 . The transistor operates in the quantum capacitance limit with a normalized transconductance value of 14.43 mS µm −1 , an intrinsic switching delay of 90.1675 fs, and an intrinsic unity current gain frequency of 6.8697 THz

  14. Top-gate organic depletion and inversion transistors with doped channel and injection contact

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuhai; Kasemann, Daniel, E-mail: daniel.kasemann@iapp.de; Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Strasse 1, 01069 Dresden (Germany)

    2015-03-09

    Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.

  15. Photolithographically Patterned TiO2 Films for Electrolyte-Gated Transistors.

    Science.gov (United States)

    Valitova, Irina; Kumar, Prajwal; Meng, Xiang; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2016-06-15

    Metal oxides constitute a class of materials whose properties cover the entire range from insulators to semiconductors to metals. Most metal oxides are abundant and accessible at moderate cost. Metal oxides are widely investigated as channel materials in transistors, including electrolyte-gated transistors, where the charge carrier density can be modulated by orders of magnitude upon application of relatively low electrical bias (2 V). Electrolyte gating offers the opportunity to envisage new applications in flexible and printed electronics as well as to improve our current understanding of fundamental processes in electronic materials, e.g. insulator/metal transitions. In this work, we employ photolithographically patterned TiO2 films as channels for electrolyte-gated transistors. TiO2 stands out for its biocompatibility and wide use in sensing, electrochromics, photovoltaics and photocatalysis. We fabricated TiO2 electrolyte-gated transistors using an original unconventional parylene-based patterning technique. By using a combination of electrochemical and charge carrier transport measurements we demonstrated that patterning improves the performance of electrolyte-gated TiO2 transistors with respect to their unpatterned counterparts. Patterned electrolyte-gated (EG) TiO2 transistors show threshold voltages of about 0.9 V, ON/OFF ratios as high as 1 × 10(5), and electron mobility above 1 cm(2)/(V s).

  16. An analytical charge-based drain current model for nano-scale In0.52Al0.48As–In0.53Ga0.47 as a separated double-gate HEMT

    International Nuclear Information System (INIS)

    Rathi, Servin; Gupta, Mridula; Gupta, R S; Jogi, Jyotika

    2010-01-01

    In this paper, a two-dimensional electron gas (2DEG) charge-control model for carrier density in the channel is developed for a separated double-gate high-electron-mobility transistor. The model is extended to calculate I d –V g characteristics of the device. The drain current model uses a polynomial dependence of sheet carrier concentration on the position of a quasi-Fermi energy level to predict the modulation of back carrier concentration due to a front gate bias. The characteristics are investigated for various channel thicknesses and delta doping concentrations in order to study the effect of the back gate on the overall device performance. The analytical results so obtained are verified by comparing them with simulated and experimental results. A good agreement between the results is obtained, thus validating the model

  17. The Effect of Oxygen Partial Pressure during Active Layer Deposition on Bias Stability of a-InGaZnO TFTs

    International Nuclear Information System (INIS)

    Huang Xiao-Ming; Zhu Hong-Bo; Wang Yong-Jin; Wu Chen-Fei; Lu Hai; Ren Fang-Fang

    2015-01-01

    The effect of oxygen partial pressure (P_O_2) during the channel layer deposition on bias stability of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated. As P_O_2 increases from 10% to 30%, it is found that the device shows enhanced bias stress stability with significantly reduced threshold voltage drift under positive gate bias stress. Based on the x-ray photoelectron spectroscopy measurement, the concentration of oxygen vacancies (O_V) within the a-IGZO layer is suppressed by increasing P_O_2. Meanwhile, the low-frequency noise analysis indicates that the average trap density near the channel/dielectric interface continuously drops with increasing P_O_2. Therefore, the improved interface quality with increasing P_O_2 during the channel layer deposition can be attributed to the reduction of interface O_V-related defects, which agrees with the enhanced bias stress stability of the a-IGZO TFTs. (paper)

  18. Fluorine-plasma surface treatment for gate forward leakage current reduction in AlGaN/GaN HEMTs

    International Nuclear Information System (INIS)

    Chen Wanjun; Zhang Jing; Zhang Bo; Chen, Kevin Jing

    2013-01-01

    The gate forward leakage current in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated. It is shown that the current which originated from the forward biased Schottky-gate contributed to the gate forward leakage current. Therefore, a fluorine-plasma surface treatment is presented to induce the negative ions into the AlGaN layer which results in a higher metal—semiconductor barrier. Consequently, the gate forward leakage current shrinks. Experimental results confirm that the gate forward leakage current is decreased by one order magnitude lower than that of HEMT device without plasma treatment. In addition, the DC characteristics of the HEMT device with plasma treatment have been studied. (semiconductor devices)

  19. The effect of positive and negative memory bias on anxiety and depression symptoms among adolescents.

    Science.gov (United States)

    Ho, Samuel M Y; Cheng, Joseph; Dai, Darren Wai Tong; Tam, Titian; Hui, Otilia

    2018-02-28

    To examine the interaction effect of anxiety and depression on the intentional forgetting of positive and negative valence words. One hundred fifty-five grade 7 to grade 10 students participated in the study. The item-method directed forgetting paradigm was used to examine the intentional forgetting of positive-valence, negative-valence, and neutral-valence words. Negative-valence words were recognized better than either positive-valence or neutral-valence words. The results revealed an anxiety main effect (p = .01, LLCI = -.09, and ULCI = -.01) and a depression main effect (p = .04, LLCI = .00, and ULCI = .24). The anxiety score was negative, whereas the depression score was positively related to the directed forgetting of negative-valence words. Regression-based moderation analysis revealed a significant anxiety × depression interaction effect on the directed forgetting of positive-valence words (p = .02, LLCI = .00, and ULCI = .01). Greater anxiety was associated with more directed forgetting of positive-valance words only among participants with high depression scores. With negative-valence words, the anxiety × depression interaction effect was not significant (p = .15, LLCI = - .00, and ULCI = .01). Therapeutic strategies to increase positive memory bias may reduce anxiety symptoms only among those with high depression scores. Interventions to reduce negative memory bias may reduce anxiety symptoms irrespective of levels of depression. © 2018 Wiley Periodicals, Inc.

  20. SOCIAL-COMPARISON OF HEALTH RISKS - LOCUS OF CONTROL, THE PERSON-POSITIVITY BIAS, AND UNREALISTIC OPTIMISM

    NARCIS (Netherlands)

    HOORENS, [No Value; BUUNK, BP

    1993-01-01

    People typically attribute lower health risks to themselves than to others, a phenomenon referred to as unrealistic optimism. The present study tested the person positivity bias as a previously unexamined explanation of the phenomenon and analyzed the relationship between unrealistic optimism and

  1. Maximizing the value of gate capacitance in field-effect devices using an organic interface layer

    Science.gov (United States)

    Kwok, H. L.

    2015-12-01

    Past research has confirmed the existence of negative capacitance in organics such as tris (8-Hydroxyquinoline) Aluminum (Alq3). This work explored using such an organic interface layer to enhance the channel voltage in the field-effect transistor (FET) thereby lowering the sub-threshold swing. In particular, if the values of the positive and negative gate capacitances are approximately equal, the composite negative capacitance will increase by orders of magnitude. One concern is the upper frequency limit (∼100 Hz) over which negative capacitance has been observed. Nonetheless, this frequency limit can be raised to kHz when the organic layer is subjected to a DC bias.

  2. The clinical implementation of respiratory-gated intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Keall, Paul; Vedam, Sastry; George, Rohini; Bartee, Chris; Siebers, Jeffrey; Lerma, Fritz; Weiss, Elisabeth; Chung, Theodore

    2006-01-01

    The clinical use of respiratory-gated radiotherapy and the application of intensity-modulated radiotherapy (IMRT) are 2 relatively new innovations to the treatment of lung cancer. Respiratory gating can reduce the deleterious effects of intrafraction motion, and IMRT can concurrently increase tumor dose homogeneity and reduce dose to critical structures including the lungs, spinal cord, esophagus, and heart. The aim of this work is to describe the clinical implementation of respiratory-gated IMRT for the treatment of non-small cell lung cancer. Documented clinical procedures were developed to include a tumor motion study, gated CT imaging, IMRT treatment planning, and gated IMRT delivery. Treatment planning procedures for respiratory-gated IMRT including beam arrangements and dose-volume constraints were developed. Quality assurance procedures were designed to quantify both the dosimetric and positional accuracy of respiratory-gated IMRT, including film dosimetry dose measurements and Monte Carlo dose calculations for verification and validation of individual patient treatments. Respiratory-gated IMRT is accepted by both treatment staff and patients. The dosimetric and positional quality assurance test results indicate that respiratory-gated IMRT can be delivered accurately. If carefully implemented, respiratory-gated IMRT is a practical alternative to conventional thoracic radiotherapy. For mobile tumors, respiratory-gated radiotherapy is used as the standard of care at our institution. Due to the increased workload, the choice of IMRT is taken on a case-by-case basis, with approximately half of the non-small cell lung cancer patients receiving respiratory-gated IMRT. We are currently evaluating whether superior tumor coverage and limited normal tissue dosing will lead to improvements in local control and survival in non-small cell lung cancer

  3. Positively Biased Processing of Mother’s Emotions Predicts Children’s Social and Emotional Functioning

    Science.gov (United States)

    Donohue, Meghan Rose; Goodman, Sherryl H.; Tully, Erin C.

    2016-01-01

    Risk for internalizing problems and social skills deficits likely emerges in early childhood when emotion processing and social competencies are developing. Positively biased processing of social information is typical during early childhood and may be protective against poorer psychosocial outcomes. We tested the hypothesis that young children with relatively less positively biased attention to, interpretations of, and attributions for their mother’s emotions would exhibit poorer prosocial skills and more internalizing problems. A sample of 4- to 6-year-old children (N=82) observed their mothers express happiness, sadness and anger during a simulated emotional phone conversation. Children’s attention to their mother when she expressed each emotion was rated from video. Immediately following the phone conversation, children were asked questions about the conversation to assess their interpretations of the intensity of mother’s emotions and misattributions of personal responsibility for her emotions. Children’s prosocial skills and internalizing problems were assessed using mother-report rating scales. Interpretations of mother’s positive emotions as relatively less intense than her negative emotions, misattributions of personal responsibility for her negative emotions, and lack of misattributions of personal responsibility for her positive emotions were associated with poorer prosocial skills. Children who attended relatively less to mother’s positive than her negative emotions had higher levels of internalizing problems. These findings suggest that children’s attention to, interpretations of, and attributions for their mother’s emotions may be important targets of early interventions for preventing prosocial skills deficits and internalizing problems. PMID:28348456

  4. Current linearity and operation stability in Al2O3-gate AlGaN/GaN MOS high electron mobility transistors

    Science.gov (United States)

    Nishiguchi, Kenya; Kaneki, Syota; Ozaki, Shiro; Hashizume, Tamotsu

    2017-10-01

    To investigate current linearity and operation stability of metal-oxide-semiconductor (MOS) AlGaN/GaN high electron mobility transistors (HEMTs), we have fabricated and characterized the Al2O3-gate MOS-HEMTs without and with a bias annealing in air at 300 °C. Compared with the as-fabricated (unannealed) MOS HEMTs, the bias-annealed devices showed improved linearity of I D-V G curves even in the forward bias regime, resulting in increased maximum drain current. Lower subthreshold slope was also observed after bias annealing. From the precise capacitance-voltage analysis on a MOS diode fabricated on the AlGaN/GaN heterostructure, it was found that the bias annealing effectively reduced the state density at the Al2O3/AlGaN interface. This led to efficient modulation of the AlGaN surface potential close to the conduction band edge, resulting in good gate control of two-dimensional electron gas density even at forward bias. In addition, the bias-annealed MOS HEMT showed small threshold voltage shift after applying forward bias stress and stable operation even at high temperatures.

  5. Burnout and gate rupture of power MOS transistors with fission fragments of 252Cf

    International Nuclear Information System (INIS)

    Tang Benqi; Wang Yanping; Geng Bin; Chen Xiaohua; He Chaohui; Yang Hailiang

    2000-01-01

    A study to determine the single event burnout (SEB) and single event gate rupture (SEGR) sensitivities of power MOSFET devices is carried out by exposure to fission fragments from 252 Cf source. The test method, test results, a description of observed burnout current waveforms and a discussion of a possible failure mechanism are presented. The test results include the observed dependence upon applied drain or gate to source bias and effect of external capacitors and limited resistors

  6. An evaluation of gating window size, delivery method, and composite field dosimetry of respiratory-gated IMRT

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D.; Agazaryan, Nzhde; Solberg, Timothy D.

    2002-01-01

    A respiratory gating system has been developed based on a commercial patient positioning system. The purpose of this study is to investigate the ability of the gating system to reproduce normal, nongated IMRT operation and to quantify the errors produced by delivering a nongated IMRT treatment onto a moving target. A moving phantom capable of simultaneous two-dimensional motion was built, and an analytical liver motion function was used to drive the phantom. Studies were performed to assess the effect of gating window size and choice of delivery method (segmented and dynamic multileaf collimation). Additionally, two multiple field IMRT cases were delivered to quantify the error in gated and nongated IMRT with motion. Dosimetric error between nonmoving and moving deliveries is related to gating window size. By reducing the window size, the error can be reduced. Delivery error can be reduced for both dynamic and segmented delivery with gating. For the implementation of dynamic IMRT delivery in this study, dynamic delivery was found to generate larger delivery errors than segmented delivery in most cases studied. For multiple field IMRT delivery, the largest errors were generated in regions where high field modulation was present parallel to the axis of motion. Gating was found to reduce these large errors to clinically acceptable levels

  7. Thermodynamic coupling between activation and inactivation gating in potassium channels revealed by free energy molecular dynamics simulations.

    Science.gov (United States)

    Pan, Albert C; Cuello, Luis G; Perozo, Eduardo; Roux, Benoît

    2011-12-01

    The amount of ionic current flowing through K(+) channels is determined by the interplay between two separate time-dependent processes: activation and inactivation gating. Activation is concerned with the stimulus-dependent opening of the main intracellular gate, whereas inactivation is a spontaneous conformational transition of the selectivity filter toward a nonconductive state occurring on a variety of timescales. A recent analysis of multiple x-ray structures of open and partially open KcsA channels revealed the mechanism by which movements of the inner activation gate, formed by the inner helices from the four subunits of the pore domain, bias the conformational changes at the selectivity filter toward a nonconductive inactivated state. This analysis highlighted the important role of Phe103, a residue located along the inner helix, near the hinge position associated with the opening of the intracellular gate. In the present study, we use free energy perturbation molecular dynamics simulations (FEP/MD) to quantitatively elucidate the thermodynamic basis for the coupling between the intracellular gate and the selectivity filter. The results of the FEP/MD calculations are in good agreement with experiments, and further analysis of the repulsive, van der Waals dispersive, and electrostatic free energy contributions reveals that the energetic basis underlying the absence of inactivation in the F103A mutation in KcsA is the absence of the unfavorable steric interaction occurring with the large Ile100 side chain in a neighboring subunit when the intracellular gate is open and the selectivity filter is in a conductive conformation. Macroscopic current analysis shows that the I100A mutant indeed relieves inactivation in KcsA, but to a lesser extent than the F103A mutant.

  8. Evaluation of ECG-gated [(11)C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency.

    Science.gov (United States)

    Hansson, Nils Henrik; Tolbod, Lars; Harms, Johannes; Wiggers, Henrik; Kim, Won Yong; Hansen, Esben; Zaremba, Tomas; Frøkiær, Jørgen; Jakobsen, Steen; Sørensen, Jens

    2016-08-01

    Noninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [(11)C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [(11)C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [(11)C]acetate PET. Thirty-five subjects with aortic valve stenosis underwent ECG-gated [(11)C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE. LV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P PET (P PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P PET-based MEE bias was strongly associated with LV wall thickness. Although analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [(11)C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.

  9. Gating based on internal/external signals with dynamic correlation updates

    International Nuclear Information System (INIS)

    Wu Huanmei; Zhao Qingya; Berbeco, Ross I; Nishioka, Seiko; Shirato, Hiroki; Jiang, Steve B

    2008-01-01

    Precise localization of mobile tumor positions in real time is critical to the success of gated radiotherapy. Tumor positions are usually derived from either internal or external surrogates. Fluoroscopic gating based on internal surrogates, such as implanted fiducial markers, is accurate however requiring a large amount of imaging dose. Gating based on external surrogates, such as patient abdominal surface motion, is non-invasive however less accurate due to the uncertainty in the correlation between tumor location and external surrogates. To address these complications, we propose to investigate an approach based on hybrid gating with dynamic internal/external correlation updates. In this approach, the external signal is acquired at high frequency (such as 30 Hz) while the internal signal is sparsely acquired (such as 0.5 Hz or less). The internal signal is used to validate and update the internal/external correlation during treatment. Tumor positions are derived from the external signal based on the newly updated correlation. Two dynamic correlation updating algorithms are introduced. One is based on the motion amplitude and the other is based on the motion phase. Nine patients with synchronized internal/external motion signals are simulated retrospectively to evaluate the effectiveness of hybrid gating. The influences of different clinical conditions on hybrid gating, such as the size of gating windows, the optimal timing for internal signal acquisition and the acquisition frequency are investigated. The results demonstrate that dynamically updating the internal/external correlation in or around the gating window will reduce false positive with relatively diminished treatment efficiency. This improvement will benefit patients with mobile tumors, especially greater for early stage lung cancers, for which the tumors are less attached or freely floating in the lung.

  10. Gating based on internal/external signals with dynamic correlation updates

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huanmei [Purdue School of Engineering and Technology, Indiana University School of Informatics, IUPUI, Indianapolis, IN (United States); Zhao Qingya [School of Health Sciences, Purdue University, West Lafayette, IN (United States); Berbeco, Ross I [Department of Radiation Oncology, Dana-Farber/Brigham and Womens Cancer Center and Harvard Medical School, Boston, MA (United States); Nishioka, Seiko [NTT East-Japan Sapporo Hospital, Sapporo (Japan); Shirato, Hiroki [Hokkaido University Graduate School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, School of Medicine, University of California, San Diego, CA (United States)], E-mail: hw9@iupui.edu, E-mail: sbjiang@ucsd.edu

    2008-12-21

    Precise localization of mobile tumor positions in real time is critical to the success of gated radiotherapy. Tumor positions are usually derived from either internal or external surrogates. Fluoroscopic gating based on internal surrogates, such as implanted fiducial markers, is accurate however requiring a large amount of imaging dose. Gating based on external surrogates, such as patient abdominal surface motion, is non-invasive however less accurate due to the uncertainty in the correlation between tumor location and external surrogates. To address these complications, we propose to investigate an approach based on hybrid gating with dynamic internal/external correlation updates. In this approach, the external signal is acquired at high frequency (such as 30 Hz) while the internal signal is sparsely acquired (such as 0.5 Hz or less). The internal signal is used to validate and update the internal/external correlation during treatment. Tumor positions are derived from the external signal based on the newly updated correlation. Two dynamic correlation updating algorithms are introduced. One is based on the motion amplitude and the other is based on the motion phase. Nine patients with synchronized internal/external motion signals are simulated retrospectively to evaluate the effectiveness of hybrid gating. The influences of different clinical conditions on hybrid gating, such as the size of gating windows, the optimal timing for internal signal acquisition and the acquisition frequency are investigated. The results demonstrate that dynamically updating the internal/external correlation in or around the gating window will reduce false positive with relatively diminished treatment efficiency. This improvement will benefit patients with mobile tumors, especially greater for early stage lung cancers, for which the tumors are less attached or freely floating in the lung.

  11. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Juhler-Noettrup, Trine; Korreman, Stine S.; Pedersen, Anders N.; Persson, Gitte F.; Aarup, Lasse R.; Nystroem, Haakan; Olsen, Mikael; Tarnavski, Nikolai; Specht, Lena (Dept. of Radiation Oncology, The Finsen Centre, Copenhagen (Denmark))

    2008-08-15

    Introduction. With the purpose of implementing gated radiotherapy for lung cancer patients, this study investigated the interfraction variations in tumour size and internal displacement over entire treatment courses. To explore the potential of image guided radiotherapy (IGRT) the variations were measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. Materials and methods. During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours were contoured on each CT scan to evaluate the variations in volumes and position. The lung tumours and the mediastinal tumours were contoured separately. The positional variations were measured as 3D mobility vectors and correlated to matching of the scans using the two different strategies. Results. The tumour size was significantly reduced from the first to the last CT scan. For the lung tumours the reduction was 19%, p=0.03, and for the mediastinal tumours the reduction was 34%, p=0.0007. The mean 3D mobility vector and the SD for the lung tumours was 0.51cm (+-0.21) for matching using bony landmarks and 0.85cm (+-0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55cm (+-0.19) and 0.72cm (+-0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. Conclusions. Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were dependent on the set-up strategy. Set-up using IGRT was superior to set-up using skin tattoos.

  12. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    International Nuclear Information System (INIS)

    Juhler-Noettrup, Trine; Korreman, Stine S.; Pedersen, Anders N.; Persson, Gi tte F.; Aarup, Lasse R.; Nystroem, Haakan; Olsen, Mikael; Tarnavski, Nikolai; Sp echt, Lena

    2008-01-01

    Introduction. With the purpose of implementing gated radiotherapy for lung cancer patients, this study investigated the interfraction variations in tumour size and internal displacement over entire treatment courses. To explore the potential of image guided radiotherapy (IGRT) the variations were measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. Materials and methods. During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours were contoured on each CT scan to evaluate the variations in volumes and position. The lung tumours and the mediastinal tumours were contoured separately. The positional variations were measured as 3D mobility vectors and correlated to matching of the scans using the two different strategies. Results. The tumour size was significantly reduced from the first to the last CT scan. For the lung tumours the reduction was 19%, p=0.03, and for the mediastinal tumours the reduction was 34%, p=0.0007. The mean 3D mobility vector and the SD for the lung tumours was 0.51cm (±0.21) for matching using bony landmarks and 0.85cm (±0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55cm (±0.19) and 0.72cm (±0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. Conclusions. Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were dependent on the set-up strategy. Set-up using IGRT was superior to set-up using skin tattoos

  13. Trapping in GaN-based metal-insulator-semiconductor transistors: Role of high drain bias and hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Meneghini, M., E-mail: matteo.meneghini@dei.unipd.it; Bisi, D.; Meneghesso, G.; Zanoni, E. [Department of Information Engineering, University of Padova, via Gradenigo 6/B, 35131 Padova (Italy); Marcon, D.; Stoffels, S.; Van Hove, M.; Wu, T.-L.; Decoutere, S. [IMEC, Kapeldreef 75, 3001 Heverlee (Belgium)

    2014-04-07

    This paper describes an extensive analysis of the role of off-state and semi-on state bias in inducing the trapping in GaN-based power High Electron Mobility Transistors. The study is based on combined pulsed characterization and on-resistance transient measurements. We demonstrate that—by changing the quiescent bias point from the off-state to the semi-on state—it is possible to separately analyze two relevant trapping mechanisms: (i) the trapping of electrons in the gate-drain access region, activated by the exposure to high drain bias in the off-state; (ii) the trapping of hot-electrons within the AlGaN barrier or the gate insulator, which occurs when the devices are operated in the semi-on state. The dependence of these two mechanisms on the bias conditions and on temperature, and the properties (activation energy and cross section) of the related traps are described in the text.

  14. Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Boogers, Mark J.; Chen, Ji; Garcia, Ernest V.; Bommel, Rutger J. van; Borleffs, C.J.W.; Schalij, Martin J.; Wall, Ernst E. van der; Bax, Jeroen J.; Dibbets-Schneider, Petra; Hiel, Bernies van der; Younis, Imad Al

    2011-01-01

    The aim of the current study was to evaluate the relationship between the site of latest mechanical activation as assessed with gated myocardial perfusion SPECT (GMPS), left ventricular (LV) lead position and response to cardiac resynchronization therapy (CRT). The patient population consisted of consecutive patients with advanced heart failure in whom CRT was currently indicated. Before implantation, 2-D echocardiography and GMPS were performed. The echocardiography was performed to assess LV end-systolic volume (LVESV), LV end-diastolic volume (LVEDV) and LV ejection fraction (LVEF). The site of latest mechanical activation was assessed by phase analysis of GMPS studies and related to LV lead position on fluoroscopy. Echocardiography was repeated after 6 months of CRT. CRT response was defined as a decrease of ≥15% in LVESV. Enrolled in the study were 90 patients (72% men, 67±10 years) with advanced heart failure. In 52 patients (58%), the LV lead was positioned at the site of latest mechanical activation (concordant), and in 38 patients (42%) the LV lead was positioned outside the site of latest mechanical activation (discordant). CRT response was significantly more often documented in patients with a concordant LV lead position than in patients with a discordant LV lead position (79% vs. 26%, p<0.01). After 6 months, patients with a concordant LV lead position showed significant improvement in LVEF, LVESV and LVEDV (p<0.05), whereas patients with a discordant LV lead position showed no significant improvement in these variables. Patients with a concordant LV lead position showed significant improvement in LV volumes and LV systolic function, whereas patients with a discordant LV lead position showed no significant improvements. (orig.)

  15. Analysis of Radiosonde Daily Bias by Comparing Precipitable Water Vapor Obtained from Global Positioning System and Radiosonde

    Directory of Open Access Journals (Sweden)

    Chang-Geun Park

    2010-12-01

    Full Text Available In this study, we compared the precipitable water vapor (PWV data derived from the radiosonde observation data at Sokcho Observatory and the PWV data at Sokcho Global Positioning System (GPS Observatory provided by Korea Astronomy and Space Science Institute, from 0000 UTC, June 1, 2007 to 1200 UTC, May 31, 2009, and analyzed the radiosonde bias between the day and the night. In the scatter diagram of the daytime and nighttime radiosonde PWV data and the GPS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study. In addition, for all the rainfall events, the tendency that the wet bias of the radiosonde PWV increased as the GPS PWV decreased and the dry bias of the radiosonde PWV increased as the GPS PWV increased was significantly less distinctive in nighttime than in daytime. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the second year, regardless of nighttime or daytime rainfall, and the non-rainfall root mean square error (RMSE was similar to that of the previous studies, while the rainfall RMSE was larger to a certain extent.

  16. Improvements in the bias illumination stability of amorphous InGaZnO thin-film transistors by using thermal treatments

    International Nuclear Information System (INIS)

    Kim, Woo-Byung; Ryu, Sang Ouk; Lee, Dong-Keun

    2014-01-01

    The a-IGZO deposited by using the rf sputtering method features a conductive or an insulator characteristic based on amount of oxygen. We demonstrated that a post-treatment affects the resistance patterns of particular-sized InGaZnO(IGZO) thin films in a-IGZO thin-film transistors (TFTs). Post-annealing shifted the driving voltage of a-IGZO TFT to positive or negative values, depending on the annealing temperatures. Post-annealing may introduce oxygen vacancies or desorbed oxygen in the IGZO thin film. The changed driving voltage of IGZO TFTs coincides with the shift of the resistance pattern of IGZO. The fabricated a-IGZO TFTs exhibited a field effect mobility of 6.2 cm 2 /Vs, an excellent subthreshold gate swing of 0.32 V/decade, and a high I on/off ratio of > 10 9 . Under positive bias illumination stress (PBIS) and negative bias illumination stress (NBIS), after 3,600 seconds, the device threshold voltage shifted about 0.2 V and 0.3 V, respectively.

  17. 3D modeling of dual-gate FinFET.

    Science.gov (United States)

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-13

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  18. A 1T Dynamic Random Access Memory Cell Based on Gated Thyristor with Surrounding Gate Structure for High Scalability.

    Science.gov (United States)

    Kim, Hyungjin; Kim, Sihyun; Kim, Hyun-Min; Lee, Kitae; Kim, Sangwan; Pak, Byung-Gook

    2018-09-01

    In this study, we investigate a one-transistor (1T) dynamic random access memory (DRAM) cell based on a gated-thyristor device utilizing voltage-driven bistability to enable high-speed operations. The structural feature of the surrounding gate using a sidewall provides high scalability with regard to constructing an array architecture of the proposed devices. In addition, the operation mechanism, I-V characteristics, DRAM operations, and bias dependence are analyzed using a commercial device simulator. Unlike conventional 1T DRAM cells utilizing the floating body effect, excess carriers which are required to be stored to make two different states are not generated but injected from the n+ cathode region, giving the device high-speed operation capabilities. The findings here indicate that the proposed DRAM cell offers distinct advantages in terms of scalability and high-speed operations.

  19. Controlled phase gate for solid-state charge-qubit architectures

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Oi, D.K.L.; Greentree, Andrew D.

    2005-01-01

    We describe a mechanism for realizing a controlled phase gate for solid-state charge qubits. By augmenting the positionally defined qubit with an auxiliary state, and changing the charge distribution in the three-dot system, we are able to effectively switch the Coulombic interaction, effecting an entangling gate. We consider two architectures, and numerically investigate their robustness to gate noise

  20. Positive and negative gain exceeding unity magnitude in silicon quantum well metal-oxide-semiconductor transistors

    Science.gov (United States)

    Hu, Gangyi; Wijesinghe, Udumbara; Naquin, Clint; Maggio, Ken; Edwards, H. L.; Lee, Mark

    2017-10-01

    Intrinsic gain (AV) measurements on Si quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors show that these devices can have |AV| > 1 in quantum transport negative transconductance (NTC) operation at room temperature. QW NMOS devices were fabricated using an industrial 45 nm technology node process incorporating ion implanted potential barriers to define a lateral QW in the conduction channel under the gate. While NTC at room temperature arising from transport through gate-controlled QW bound states has been previously established, it was unknown whether the quantum NTC mechanism could support gain magnitude exceeding unity. Bias conditions were found giving both positive and negative AV with |AV| > 1 at room temperature. This result means that QW NMOS devices could be useful in amplifier and oscillator applications.

  1. Emotional bias of sleep-dependent processing shifts from negative to positive with aging.

    Science.gov (United States)

    Jones, Bethany J; Schultz, Kurt S; Adams, Sydney; Baran, Bengi; Spencer, Rebecca M C

    2016-09-01

    Age-related memory decline has been proposed to result partially from impairments in memory consolidation over sleep. However, such decline may reflect a shift toward selective processing of positive information with age rather than impaired sleep-related mechanisms. In the present study, young and older adults viewed negative and neutral pictures or positive and neutral pictures and underwent a recognition test after sleep or wake. Subjective emotional reactivity and affect were also measured. Compared with waking, sleep preserved valence ratings and memory for positive but not negative pictures in older adults and negative but not positive pictures in young adults. In older adults, memory for positive pictures was associated with slow wave sleep. Furthermore, slow wave sleep predicted positive affect in older adults but was inversely related to positive affect in young adults. These relationships were strongest for older adults with high memory for positive pictures and young adults with high memory for negative pictures. Collectively, these results indicate preserved but selective sleep-dependent memory processing with healthy aging that may be biased to enhance emotional well-being. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Local gate control in carbon nanotube quantum devices

    Science.gov (United States)

    Biercuk, Michael Jordan

    This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single

  3. Image-guided adaptive gating of lung cancer radiotherapy: a computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, Michalis; Rottmann, Joerg; Park, Sang-June; Berbeco, Ross I [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Nishioka, Seiko [Department of Radiology, NTT Hospital, Sapporo (Japan); Shirato, Hiroki, E-mail: maristophanous@lroc.harvard.ed [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan)

    2010-08-07

    The purpose of this study is to investigate the effect that image-guided adaptation of the gating window during treatment could have on the residual tumor motion, by simulating different gated radiotherapy techniques. There are three separate components of this simulation: (1) the 'Hokkaido Data', which are previously measured 3D data of lung tumor motion tracks and the corresponding 1D respiratory signals obtained during the entire ungated radiotherapy treatments of eight patients, (2) the respiratory gating protocol at our institution and the imaging performed under that protocol and (3) the actual simulation in which the Hokkaido Data are used to select tumor position information that could have been collected based on the imaging performed under our gating protocol. We simulated treatments with a fixed gating window and a gating window that is updated during treatment. The patient data were divided into different fractions, each with continuous acquisitions longer than 2 min. In accordance to the imaging performed under our gating protocol, we assume that we have tumor position information for the first 15 s of treatment, obtained from kV fluoroscopy, and for the rest of the fractions the tumor position is only available during the beam-on time from MV imaging. The gating window was set according to the information obtained from the first 15 s such that the residual motion was less than 3 mm. For the fixed gating window technique the gate remained the same for the entire treatment, while for the adaptive technique the range of the tumor motion during beam-on time was measured and used to adapt the gating window to keep the residual motion below 3 mm. The algorithm used to adapt the gating window is described. The residual tumor motion inside the gating window was reduced on average by 24% for the patients with regular breathing patterns and the difference was statistically significant (p-value = 0.01). The magnitude of the residual tumor motion

  4. Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor.

    Science.gov (United States)

    Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri

    2013-10-04

    Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.

  5. Charge Saturation and Intrinsic Doping in Electrolyte-Gated Organic Semiconductors.

    Science.gov (United States)

    Atallah, Timothy L; Gustafsson, Martin V; Schmidt, Elliot; Frisbie, C Daniel; Zhu, X-Y

    2015-12-03

    Electrolyte gating enables low voltage operation of organic thin film transistors, but little is known about the nature of the electrolyte/organic interface. Here we apply charge-modulation Fourier transform infrared spectroscopy, in conjunction with electrical measurements, on a model electrolyte gated organic semiconductor interface: single crystal rubrene/ion-gel. We provide spectroscopic signature for free-hole like carriers in the organic semiconductor and unambiguously show the presence of a high density of intrinsic doping of the free holes upon formation of the rubrene/ion-gel interface, without gate bias (Vg = 0 V). We explain this intrinsic doping as resulting from a thermodynamic driving force for the stabilization of free holes in the organic semiconductor by anions in the ion-gel. Spectroscopy also reveals the saturation of free-hole like carrier density at the rubrene/ion-gel interface at Vg < -0.5 V, which is commensurate with the negative transconductance seen in transistor measurements.

  6. Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes.

    Science.gov (United States)

    Hwang, Wang-Taek; Min, Misook; Jeong, Hyunhak; Kim, Dongku; Jang, Jingon; Yoo, Daekyung; Jang, Yeonsik; Kim, Jun-Woo; Yoon, Jiyoung; Chung, Seungjun; Yi, Gyu-Chul; Lee, Hyoyoung; Wang, Gunuk; Lee, Takhee

    2016-11-25

    We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.

  7. Gating the holes in the Swiss cheese (part I): Expanding professor Reason's model for patient safety.

    Science.gov (United States)

    Seshia, Shashi S; Bryan Young, G; Makhinson, Michael; Smith, Preston A; Stobart, Kent; Croskerry, Pat

    2018-02-01

    Although patient safety has improved steadily, harm remains a substantial global challenge. Additionally, safety needs to be ensured not only in hospitals but also across the continuum of care. Better understanding of the complex cognitive factors influencing health care-related decisions and organizational cultures could lead to more rational approaches, and thereby to further improvement. A model integrating the concepts underlying Reason's Swiss cheese theory and the cognitive-affective biases plus cascade could advance the understanding of cognitive-affective processes that underlie decisions and organizational cultures across the continuum of care. Thematic analysis, qualitative information from several sources being used to support argumentation. Complex covert cognitive phenomena underlie decisions influencing health care. In the integrated model, the Swiss cheese slices represent dynamic cognitive-affective (mental) gates: Reason's successive layers of defence. Like firewalls and antivirus programs, cognitive-affective gates normally allow the passage of rational decisions but block or counter unsounds ones. Gates can be breached (ie, holes created) at one or more levels of organizations, teams, and individuals, by (1) any element of cognitive-affective biases plus (conflicts of interest and cognitive biases being the best studied) and (2) other potential error-provoking factors. Conversely, flawed decisions can be blocked and consequences minimized; for example, by addressing cognitive biases plus and error-provoking factors, and being constantly mindful. Informed shared decision making is a neglected but critical layer of defence (cognitive-affective gate). The integrated model can be custom tailored to specific situations, and the underlying principles applied to all methods for improving safety. The model may also provide a framework for developing and evaluating strategies to optimize organizational cultures and decisions. The concept is abstract, the

  8. Gating the holes in the Swiss cheese (part I): Expanding professor Reason's model for patient safety

    Science.gov (United States)

    Bryan Young, G.; Makhinson, Michael; Smith, Preston A.; Stobart, Kent; Croskerry, Pat

    2017-01-01

    Abstract Introduction Although patient safety has improved steadily, harm remains a substantial global challenge. Additionally, safety needs to be ensured not only in hospitals but also across the continuum of care. Better understanding of the complex cognitive factors influencing health care–related decisions and organizational cultures could lead to more rational approaches, and thereby to further improvement. Hypothesis A model integrating the concepts underlying Reason's Swiss cheese theory and the cognitive‐affective biases plus cascade could advance the understanding of cognitive‐affective processes that underlie decisions and organizational cultures across the continuum of care. Methods Thematic analysis, qualitative information from several sources being used to support argumentation. Discussion Complex covert cognitive phenomena underlie decisions influencing health care. In the integrated model, the Swiss cheese slices represent dynamic cognitive‐affective (mental) gates: Reason's successive layers of defence. Like firewalls and antivirus programs, cognitive‐affective gates normally allow the passage of rational decisions but block or counter unsounds ones. Gates can be breached (ie, holes created) at one or more levels of organizations, teams, and individuals, by (1) any element of cognitive‐affective biases plus (conflicts of interest and cognitive biases being the best studied) and (2) other potential error‐provoking factors. Conversely, flawed decisions can be blocked and consequences minimized; for example, by addressing cognitive biases plus and error‐provoking factors, and being constantly mindful. Informed shared decision making is a neglected but critical layer of defence (cognitive‐affective gate). The integrated model can be custom tailored to specific situations, and the underlying principles applied to all methods for improving safety. The model may also provide a framework for developing and evaluating strategies to

  9. Resonant Tunneling in Gated Vertical One- dimensional Structures

    Science.gov (United States)

    Kolagunta, V. R.; Janes, D. B.; Melloch, M. R.; Webb, K. J.

    1997-03-01

    Vertical sub-micron transistors incorporating resonant tunneling multiple quantum well heterostructures are interesting in applications for both multi-valued logic devices and the study of quantization effects in vertical quasi- one-, zero- dimensional structures. Earlier we have demonstrated room temperature pinch-off of the resonant peak in sub-micron vertical resonant tunneling transistors structures using a self-aligned sidewall gating technique ( V.R. Kolagunta et. al., Applied Physics Lett., 69), 374(1996). In this paper we present the study of gating effects in vertical multiple quantum well resonant tunneling transistors. Multiple well quasi-1-D sidewall gated transistors with mesa dimensions of L_x=0.5-0.9μm and L_y=10-40μm were fabricated. The quantum heterostructure in these devices consists of two non-symmetric (180 ÅÅi-GaAs wells separated from each other and from the top and bottom n^+ GaAs/contacts region using Al_0.3Ga_0.7As tunneling barriers. Room temperature pinch-off of the multiple resonant peaks similar to that reported in the case of single well devices is observed in these devices^1. Current-voltage characteristics at liquid nitrogen temperatures show splitting of the resonant peaks into sub-bands with increasing negative gate bias indicative of quasi- 1-D confinement. Room-temperature and low-temperature current-voltage measurements shall be presented and discussed.

  10. Cardiac-gated parametric images from 82 Rb PET from dynamic frames and direct 4D reconstruction.

    Science.gov (United States)

    Germino, Mary; Carson, Richard E

    2018-02-01

    Cardiac perfusion PET data can be reconstructed as a dynamic sequence and kinetic modeling performed to quantify myocardial blood flow, or reconstructed as static gated images to quantify function. Parametric images from dynamic PET are conventionally not gated, to allow use of all events with lower noise. An alternative method for dynamic PET is to incorporate the kinetic model into the reconstruction algorithm itself, bypassing the generation of a time series of emission images and directly producing parametric images. So-called "direct reconstruction" can produce parametric images with lower noise than the conventional method because the noise distribution is more easily modeled in projection space than in image space. In this work, we develop direct reconstruction of cardiac-gated parametric images for 82 Rb PET with an extension of the Parametric Motion compensation OSEM List mode Algorithm for Resolution-recovery reconstruction for the one tissue model (PMOLAR-1T). PMOLAR-1T was extended to accommodate model terms to account for spillover from the left and right ventricles into the myocardium. The algorithm was evaluated on a 4D simulated 82 Rb dataset, including a perfusion defect, as well as a human 82 Rb list mode acquisition. The simulated list mode was subsampled into replicates, each with counts comparable to one gate of a gated acquisition. Parametric images were produced by the indirect (separate reconstructions and modeling) and direct methods for each of eight low-count and eight normal-count replicates of the simulated data, and each of eight cardiac gates for the human data. For the direct method, two initialization schemes were tested: uniform initialization, and initialization with the filtered iteration 1 result of the indirect method. For the human dataset, event-by-event respiratory motion compensation was included. The indirect and direct methods were compared for the simulated dataset in terms of bias and coefficient of variation as a

  11. Leakage and field emission in side-gate graphene field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Di Bartolomeo, A., E-mail: dibant@sa.infn.it; Iemmo, L.; Romeo, F.; Cucolo, A. M. [Physics Department “E.R. Caianiello,” University of Salerno, via G. Paolo II, 84084 Fisciano (Italy); CNR-SPIN Salerno, via G. Paolo II, 84084 Fisciano (Italy); Giubileo, F. [CNR-SPIN Salerno, via G. Paolo II, 84084 Fisciano (Italy); Russo, S.; Unal, S. [Physics Department, University of Exeter, Stocker Road 6, Exeter, Devon EX4 4QL (United Kingdom); Passacantando, M.; Grossi, V. [Department of Physical and Chemical Sciences, University of L' Aquila, Via Vetoio, 67100 Coppito, L' Aquila (Italy)

    2016-07-11

    We fabricate planar graphene field-effect transistors with self-aligned side-gate at 100 nm from the 500 nm wide graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1 V with conductance modulation of 35% and transconductance up to 0.5 mS/mm at 10 mV drain bias. We measure the planar leakage along the SiO{sub 2}/vacuum gate dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We unveil the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through SiO{sub 2} up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant at higher voltages. We report a field-emission current density as high as 1 μA/μm between graphene flakes. These findings are important for the miniaturization of atomically thin devices.

  12. Performance of organic field effect transistors with high-k gate oxide after application of consecutive bias stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunwoo; Choi, Changhwan; Lee, Kilbock [Department of Materials Science and Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Cho, Joong Hwee [Department of Embedded Systems Engineering,University of Incheon, Incheon 406-722 (Korea, Republic of); Ko, Ki-Young [Korea Institute of Patent Information, Seoul, 146-8 (Korea, Republic of); Ahn, Jinho, E-mail: jhahn@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2012-10-30

    We report the effect of consecutive electrical stress on the performance of organic field effect transistors (OFETs). Sputtered aluminum oxide (Al{sub 2}O{sub 3}) and hafnium oxide (HfO{sub 2}) were used as gate oxide layers. After the electrical stress, the threshold voltage, which strongly depends on bulk defects, was remarkably shifted to the negative direction, while the other performance characteristics of OFETs such as on-current, transconductance and mobility, which are sensitive to interface defects, were slightly decreased. This result implies that the defects in the bulk layer are significantly affected compared to the defects in the interface layer. Thus, it is important to control the defects in the pentacene bulk layer in order to maintain the good reliabilities of pentacene devices. Those defects in HfO{sub 2} gate oxide devices were larger compared to those in Al{sub 2}O{sub 3} gate oxide devices.

  13. Artificial modulation of the gating behavior of a K+ channel in a KvAP-DNA chimera.

    Directory of Open Access Journals (Sweden)

    Andrew Wang

    Full Text Available We present experiments where the gating behavior of a voltage-gated ion channel is modulated by artificial ligand binding. We construct a channel-DNA chimera with the KvAP potassium channel reconstituted in an artificial membrane. The channel is functional and the single channel ion conductivity unperturbed by the presence of the DNA. However, the channel opening probability vs. bias voltage, i.e., the gating, can be shifted considerably by the electrostatic force between the charges on the DNA and the voltage sensing domain of the protein. Different hybridization states of the chimera DNA thus lead to different response curves of the channel.

  14. Verbal makes it positive, spatial makes it negative: working memory biases judgments, attention, and moods.

    Science.gov (United States)

    Storbeck, Justin; Watson, Philip

    2014-12-01

    Prior research has suggested that emotion and working memory domains are integrated, such that positive affect enhances verbal working memory, whereas negative affect enhances spatial working memory (Gray, 2004; Storbeck, 2012). Simon (1967) postulated that one feature of emotion and cognition integration would be reciprocal connectedness (i.e., emotion influences cognition and cognition influences emotion). We explored whether affective judgments and attention to affective qualities are biased by the activation of verbal and spatial working memory mind-sets. For all experiments, participants completed a 2-back verbal or spatial working memory task followed by an endorsement task (Experiments 1 & 2), word-pair selection task (Exp. 3), or attentional dot-probe task (Exp. 4). Participants who had an activated verbal, compared with spatial, working memory mind-set were more likely to endorse pictures (Exp. 1) and words (Exp. 2) as being more positive and to select the more positive word pair out of a set of word pairs that went 'together best' (Exp. 3). Additionally, people who completed the verbal working memory task took longer to disengage from positive stimuli, whereas those who completed the spatial working memory task took longer to disengage from negative stimuli (Exp. 4). Interestingly, across the 4 experiments, we observed higher levels of self-reported negative affect for people who completed the spatial working memory task, which was consistent with their endorsement and attentional bias toward negative stimuli. Therefore, emotion and working memory may have a reciprocal connectedness allowing for bidirectional influence.

  15. Modeling Random Telegraph Noise Under Switched Bias Conditions Using Cyclostationary RTS Noise

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Vandamme, L.K.J.; Nauta, Bram

    In this paper, we present measurements and simulation of random telegraph signal (RTS) noise in n-channel MOSFETs under periodic large signal gate-source excitation (switched bias conditions). This is particularly relevant to analog CMOS circuit design where large signal swings occur and where LF

  16. Current-voltage characteristics of quantum-point contacts in the closed-channel regime: Transforming the bias voltage into an energy scale

    DEFF Research Database (Denmark)

    Gloos, K.; Utko, P.; Aagesen, M.

    2006-01-01

    We investigate the I(V) characteristics (current versus bias voltage) of side-gated quantum-point contacts, defined in GaAs/AlxGa1-xAs heterostructures. These point contacts are operated in the closed-channel regime, that is, at fixed gate voltages below zero-bias pinch-off for conductance. Our....... Such a built-in energy-voltage calibration allows us to distinguish between the different contributions to the electron transport across the pinched-off contact due to thermal activation or quantum tunneling. The first involves the height of the barrier, and the latter also its length. In the model that we...

  17. Bias Induced Strain in AlGaN/GaN Heterojunction Field Effect Transistors and its Implications

    National Research Council Canada - National Science Library

    Anwar, A. F; Webster, Richard T; Smith, Kurt V

    2006-01-01

    We report gate bias dependence of the charge due to piezoelectric polarization obtained by using a fully coupled formulation based upon the piezoelectric constitutive equations for stress and electric displacement...

  18. 100-nm gate lithography for double-gate transistors

    Science.gov (United States)

    Krasnoperova, Azalia A.; Zhang, Ying; Babich, Inna V.; Treichler, John; Yoon, Jung H.; Guarini, Kathryn; Solomon, Paul M.

    2001-09-01

    The double gate field effect transistor (FET) is an exploratory device that promises certain performance advantages compared to traditional CMOS FETs. It can be scaled down further than the traditional devices because of the greater electrostatic control by the gates on the channel (about twice as short a channel length for the same gate oxide thickness), has steeper sub-threshold slope and about double the current for the same width. This paper presents lithographic results for double gate FET's developed at IBM's T. J. Watson Research Center. The device is built on bonded wafers with top and bottom gates self-aligned to each other. The channel is sandwiched between the top and bottom polysilicon gates and the gate length is defined using DUV lithography. An alternating phase shift mask was used to pattern gates with critical dimensions of 75 nm, 100 nm and 125 nm in photoresist. 50 nm gates in photoresist have also been patterned by 20% over-exposure of nominal 100 nm lines. No trim mask was needed because of a specific way the device was laid out. UV110 photoresist from Shipley on AR-3 antireflective layer were used. Process windows, developed and etched patterns are presented.

  19. Extension of a data-driven gating technique to 3D, whole body PET studies

    International Nuclear Information System (INIS)

    Schleyer, Paul J; O'Doherty, Michael J; Marsden, Paul K

    2011-01-01

    Respiratory gating can be used to separate a PET acquisition into a series of near motion-free bins. This is typically done using additional gating hardware; however, software-based methods can derive the respiratory signal from the acquired data itself. The aim of this work was to extend a data-driven respiratory gating method to acquire gated, 3D, whole body PET images of clinical patients. The existing method, previously demonstrated with 2D, single bed-position data, uses a spectral analysis to find regions in raw PET data which are subject to respiratory motion. The change in counts over time within these regions is then used to estimate the respiratory signal of the patient. In this work, the gating method was adapted to only accept lines of response from a reduced set of axial angles, and the respiratory frequency derived from the lung bed position was used to help identify the respiratory frequency in all other bed positions. As the respiratory signal does not identify the direction of motion, a registration-based technique was developed to align the direction for all bed positions. Data from 11 clinical FDG PET patients were acquired, and an optical respiratory monitor was used to provide a hardware-based signal for comparison. All data were gated using both the data-driven and hardware methods, and reconstructed. The centre of mass of manually defined regions on gated images was calculated, and the overall displacement was defined as the change in the centre of mass between the first and last gates. The mean displacement was 10.3 mm for the data-driven gated images and 9.1 mm for the hardware gated images. No significant difference was found between the two gating methods when comparing the displacement values. The adapted data-driven gating method was demonstrated to successfully produce respiratory gated, 3D, whole body, clinical PET acquisitions.

  20. Memory effect in silicon time-gated single-photon avalanche diodes

    International Nuclear Information System (INIS)

    Dalla Mora, A.; Contini, D.; Di Sieno, L.; Tosi, A.; Boso, G.; Villa, F.; Pifferi, A.

    2015-01-01

    We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons

  1. Memory effect in silicon time-gated single-photon avalanche diodes

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Mora, A.; Contini, D., E-mail: davide.contini@polimi.it; Di Sieno, L. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Tosi, A.; Boso, G.; Villa, F. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Pifferi, A. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); CNR, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2015-03-21

    We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons.

  2. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured

  3. Atomic scale investigations of the gate controlled tunneling effect in graphyne nanoribbon

    International Nuclear Information System (INIS)

    Yang, Wen; Wang, Lu-Hao; Geng, Yang; Sun, Qing-Qing; Zhou, Peng; Ding, Shi-Jing; Wei Zhang, David

    2013-01-01

    Configuration and transport properties of zigzag graphyne nanoribbon (n = 2) are investigated by means of the first-principles calculations and non-equilibrium Green's function in this work. We demonstrated the controllability of the graphyne's conductivity by gate bias, and the tunneling behavior induced by gate and drain voltages was investigated systemically. The characteristics of I d -V d , I d -V g , as well as the evolutions of current with electron temperature elevation were explored. The device exhibits a tunneling ratio around 10 3 , and the state art of tunneling operations of the tunneling field effect transistor in this split-new material was achieved

  4. Effects of DC gate and drain bias stresses on the degradation of excimer laser crystallized polysilicon thin film transistors

    International Nuclear Information System (INIS)

    Kouvatsos, D N; Michalas, L; Voutsas, A T; Papaioannou, G J

    2005-01-01

    The effects of gate and drain bias stresses on thin film transistors fabricated in polysilicon films crystallized using the advanced sequential lateral solidification excimer laser annealing (SLS ELA) process, which yields very elongated polysilicon grains and allows the fabrication of TFTs without grain boundary barriers to current flow, are investigated as a function of the active layer thickness and of the TFT orientation relative to the grains. The application of hot carrier stress, with a condition of V GS = V DS /2, was determined to induce threshold voltage, subthreshold swing and transconductance degradation for TFTs in thicker polysilicon films and the associated stress-induced increase in the active layer trap density was evaluated. However, this device degradation was drastically reduced for TFTs fabricated in ultra-thin films. Furthermore, the application of the same stress condition to TFTs oriented vertically to the elongated grains resulted in similar threshold voltage shift but in substantially decreased subthreshold swing and transconductance degradation. The immunity of ultra-thin active layer devices to degradation under hot carrier stress clearly suggests the implementation of ultra thin SLS ELA polysilicon films for the fabrication of TFTs exhibiting not only high performance but, especially, the high reliability needed for integrated systems on panel

  5. Complementary Self-Biased Logics Based on Single-Electron Transistor (SET)/CMOS Hybrid Process

    Science.gov (United States)

    Song, Ki-Whan; Lee, Yong Kyu; Sim, Jae Sung; Kim, Kyung Rok; Lee, Jong Duk; Park, Byung-Gook; You, Young Sub; Park, Joo-On; Jin, You Seung; Kim, Young-Wug

    2005-04-01

    We propose a complementary self-biasing method which enables the single-electron transistor (SET)/complementary metal-oxide semiconductor (CMOS) hybrid multi-valued logics (MVLs) to operate well at high temperatures, where the peak-to-valley current ratio (PVCR) of the Coulomb oscillation markedly decreases. The new architecture is implemented with a few transistors by utilizing the phase control capability of the sidewall depletion gates in dual-gate single-electron transistors (DGSETs). The suggested scheme is evaluated by a SPICE simulation with an analytical DGSET model. Furthermore, we have developed a new process technology for the SET/CMOS hybrid systems. We have confirmed that both of the fabricated devices, namely, SET and CMOS transistors, exhibit the ideal characteristics for the complementary self-biasing scheme: the SET shows clear Coulomb oscillations with a 100 mV period and the CMOS transistors show a high voltage gain.

  6. Automatic and controlled attentional orienting in the elderly: A dual-process view of the positivity effect.

    Science.gov (United States)

    Gronchi, G; Righi, S; Pierguidi, L; Giovannelli, F; Murasecco, I; Viggiano, M P

    2018-04-01

    The positivity effect in the elderly consists of an attentional preference for positive information as well as avoidance of negative information. Extant theories predict either that the positivity effect depends on controlled attentional processes (socio-emotional selectivity theory), or on an automatic gating selection mechanism (dynamic integration theory). This study examined the role of automatic and controlled attention in the positivity effect. Two dot-probe tasks (with the duration of the stimuli lasting 100 ms and 500 ms, respectively) were employed to compare the attentional bias of 35 elderly people to that of 35 young adults. The stimuli used were expressive faces displaying neutral, disgusted, fearful, and happy expressions. In comparison to young people, the elderly allocated more attention to happy faces at 100 ms and they tended to avoid fearful faces at 500 ms. The findings are not predicted by either theory taken alone, but support the hypothesis that the positivity effect in the elderly is driven by two different processes: an automatic attention bias toward positive stimuli, and a controlled mechanism that diverts attention away from negative stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Bias Stability Enhancement in Thin-Film Transistor with a Solution-Processed ZrO2 Dielectric as Gate Insulator

    Directory of Open Access Journals (Sweden)

    Shangxiong Zhou

    2018-05-01

    Full Text Available In this paper, a high-k metal-oxide film (ZrO2 was successfully prepared by a solution-phase method, and whose physical properties were measured by X-ray diffraction (XRD, X-ray reflectivity (XRR and atomic force microscopy (AFM. Furthermore, indium–gallium–zinc oxide thin-film transistors (IGZO-TFTs with high-k ZrO2 dielectric layers were demonstrated, and the electrical performance and bias stability were investigated in detail. By spin-coating 0.3 M precursor six times, a dense ZrO2 film, with smoother surface and fewer defects, was fabricated. The TFT devices with optimal ZrO2 dielectric exhibit a saturation mobility up to 12.7 cm2 V−1 s−1, and an on/off ratio as high as 7.6 × 105. The offset of the threshold voltage was less than 0.6 V under positive and negative bias stress for 3600 s.

  8. Gating-ML: XML-based gating descriptions in flow cytometry.

    Science.gov (United States)

    Spidlen, Josef; Leif, Robert C; Moore, Wayne; Roederer, Mario; Brinkman, Ryan R

    2008-12-01

    The lack of software interoperability with respect to gating due to lack of a standardized mechanism for data exchange has traditionally been a bottleneck, preventing reproducibility of flow cytometry (FCM) data analysis and the usage of multiple analytical tools. To facilitate interoperability among FCM data analysis tools, members of the International Society for the Advancement of Cytometry (ISAC) Data Standards Task Force (DSTF) have developed an XML-based mechanism to formally describe gates (Gating-ML). Gating-ML, an open specification for encoding gating, data transformations and compensation, has been adopted by the ISAC DSTF as a Candidate Recommendation. Gating-ML can facilitate exchange of gating descriptions the same way that FCS facilitated for exchange of raw FCM data. Its adoption will open new collaborative opportunities as well as possibilities for advanced analyses and methods development. The ISAC DSTF is satisfied that the standard addresses the requirements for a gating exchange standard.

  9. Improvements in the bias illumination stability of amorphous InGaZnO thin-film transistors by using thermal treatments

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Byung; Ryu, Sang Ouk [Dankook University, Cheonan (Korea, Republic of); Lee, Dong-Keun [Korea Advanced Nano Fab Center, Suwon (Korea, Republic of)

    2014-07-15

    The a-IGZO deposited by using the rf sputtering method features a conductive or an insulator characteristic based on amount of oxygen. We demonstrated that a post-treatment affects the resistance patterns of particular-sized InGaZnO(IGZO) thin films in a-IGZO thin-film transistors (TFTs). Post-annealing shifted the driving voltage of a-IGZO TFT to positive or negative values, depending on the annealing temperatures. Post-annealing may introduce oxygen vacancies or desorbed oxygen in the IGZO thin film. The changed driving voltage of IGZO TFTs coincides with the shift of the resistance pattern of IGZO. The fabricated a-IGZO TFTs exhibited a field effect mobility of 6.2 cm{sup 2}/Vs, an excellent subthreshold gate swing of 0.32 V/decade, and a high I{sub on/off} ratio of > 10{sup 9}. Under positive bias illumination stress (PBIS) and negative bias illumination stress (NBIS), after 3,600 seconds, the device threshold voltage shifted about 0.2 V and 0.3 V, respectively.

  10. Self-Heating Effects In Polysilicon Source Gated Transistors

    Science.gov (United States)

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  11. Time response of fast-gated microchannel plates used as x-ray detectors

    International Nuclear Information System (INIS)

    Turner, R.E.; Bell, P.; Hanks, R.; Kilkenny, J.D.; Landen, N.; Power, G.; Wiedwald, J.; Meier, M.

    1990-01-01

    We report measurements of the time response of fast-gated, micro- channel plate (MCP) detectors, using a <10 ps pulsewidth ultra-violet laser and an electronic sampling system to measure time resolutions to better than 25 ps. The results show that framing times of less than 100 ps are attainable with high gain. The data is compared to a Monte Carlo calculation, which shows good agreement. We also measured the relative sensitivity as a function of DC bias, and saturation effects for large signal inputs. In part B, we briefly describe an electrical ''time-of-flight'' technique, which we have used to measure the response time of a fast-gated microchannel plate (MCP). Thinner MCP's than previously used have been tested, and, as expected, show fast gating times and smaller electron multiplication. A preliminary design for an x-ray pinhole camera, using a thin MCP, is presented. 7 refs., 6 figs

  12. Universal model of bias-stress-induced instability in inkjet-printed carbon nanotube networks field-effect transistors

    Science.gov (United States)

    Jung, Haesun; Choi, Sungju; Jang, Jun Tae; Yoon, Jinsu; Lee, Juhee; Lee, Yongwoo; Rhee, Jihyun; Ahn, Geumho; Yu, Hye Ri; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan

    2018-02-01

    We propose a universal model for bias-stress (BS)-induced instability in the inkjet-printed carbon nanotube (CNT) networks used in field-effect transistors (FETs). By combining two experimental methods, i.e., a comparison between air and vacuum BS tests and interface trap extraction, BS instability is explained regardless of either the BS polarity or ambient condition, using a single platform constituted by four key factors: OH- adsorption/desorption followed by a change in carrier concentration, electron concentration in CNT channel corroborated with H2O/O2 molecules in ambient, charge trapping/detrapping, and interface trap generation. Under negative BS (NBS), the negative threshold voltage shift (ΔVT) is dominated by OH- desorption, which is followed by hole trapping in the interface and/or gate insulator. Under positive BS (PBS), the positive ΔVT is dominated by OH- adsorption, which is followed by electron trapping in the interface and/or gate insulator. This instability is compensated by interface trap extraction; PBS instability is slightly more complicated than NBS instability. Furthermore, our model is verified using device simulation, which gives insights on how much each mechanism contributes to BS instability. Our result is potentially useful for the design of highly stable CNT-based flexible circuits in the Internet of Things wearable healthcare era.

  13. Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging

    International Nuclear Information System (INIS)

    Ford, E.C.; Mageras, G.S.; Yorke, E.; Rosenzweig, K.E.; Wagman, R.; Ling, C.C.

    2002-01-01

    Purpose: To evaluate the effectiveness of a commercial system in reducing respiration-induced treatment uncertainty by gating the radiation delivery. Methods and Materials: The gating system considered here measures respiration from the position of a reflective marker on the patient's chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device. Results: The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8±1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6±1.7 mm. With no gating, this intrafraction excursion became 6.9±2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0±3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was

  14. Fear appeals motivate acceptance of recommendations: evidence for a positive bias in the processing of persuasive messages

    NARCIS (Netherlands)

    Das, E.; de Wit, J.B.F.; Stroebe, W.

    2003-01-01

    Three experiments are reported that tested the hypothesis that the use of fear appeals in health persuasion may lead to positively biased systematic processing of a subsequent action recommendation aimed at reducing the health threat and, consequently, to more persuasion, regardless of the quality

  15. Effect of the gate scaling on the analogue performance of s-Si CMOS devices

    International Nuclear Information System (INIS)

    Fobelets, K; Calvo-Gallego, J; Velázquez-Pérez, J E

    2011-01-01

    In this contribution, we present a detailed study of the analogue performance of deep submicron strained n-channel Si/SiGe (s-Si) MOSFETs. The study was carried out using a 2D device simulator based on the hydrodynamic model and the impedance field method to self-consistently obtain the current noise at the device's terminals. The analysis focused on the possible benefits of the gate scaling on the ac and noise performance of the transistor for low-power applications while keeping constant the oxide thickness equal to 2 nm to guarantee negligible level of the gate tunnel current. For a drain to source bias of 50 mV, it was found that a pure scaling of the transistor's gate length under 32 nm is detrimental for subthreshold operation in terms of the subthreshold slope (S) and transconductance (g m ) but would lead to reasonably low values of the minimum noise figure (NF min ). For the sake of comparison, SOI MOSFETs with the same layout and operating under the same conditions were simulated. The SOI MOSFETs showed better immunity against the gate scaling in terms of S than the s-Si MOSFETs, but lower values of g m and a higher value of NF min at the same level of the drain current. Finally, the devices have been studied in the saturation region for a drain to source bias of 1 V. In this region, it was found that the dependence of the current level SOI or s-Si MOSFET may outperform its counterparts

  16. Gating treatment delivery QA based on a surrogate motion analysis

    International Nuclear Information System (INIS)

    Chojnowski, J.; Simpson, E.

    2011-01-01

    Full text: To develop a methodology to estimate intrafractional target position error during a phase-based gated treatment. Westmead Cancer Care Centre is using respiratory correlated phase-based gated beam delivery in the treatment of lung cancer. The gating technique is managed by the Varian Real-time Position Management (RPM) system, version 1.7.5. A 6-dot block is placed on the abdomen of the patient and acts as a surrogate for the target motion. During a treatment session, the motion of the surrogate can be recorded by RPM application. Analysis of the surrogate motion file by in-house developed software allows the intrafractional error of the treatment session to be computed. To validate the computed error, a simple test that involves the introduction of deliberate errors is performed. Errors of up to 1.1 cm are introduced to a metal marker placed on a surrogate using the Varian Breathing Phantom. The moving marker was scanned in prospective mode using a GE Lightspeed 16 CT scanner. Using the CT images, a difference of the marker position with and without introduced errors is compared to the calculated errors based on the surrogate motion. The average and standard deviation of a difference between calculated target position errors and measured introduced artificial errors of the marker position is 0.02 cm and 0.07 cm respectively. Conclusion The calculated target positional error based on surrogate motion analysis provides a quantitative measure of intrafractional target positional errors during treatment. Routine QA for gated treatment using surrogate motion analysis is relatively quick and simple.

  17. GEOS-C altimeter attitude bias error correction. [gate-tracking radar

    Science.gov (United States)

    Marini, J. W.

    1974-01-01

    A pulse-limited split-gate-tracking radar altimeter was flown on Skylab and will be used aboard GEOS-C. If such an altimeter were to employ a hypothetical isotropic antenna, the altimeter output would be independent of spacecraft orientation. To reduce power requirements the gain of the altimeter antenna proposed is increased to the point where its beamwidth is only a few degrees. The gain of the antenna consequently varies somewhat over the pulse-limited illuminated region of the ocean below the altimeter, and the altimeter output varies with antenna orientation. The error introduced into the altimeter data is modeled empirically, but close agreements with the expected errors was not realized. The attitude error effects expected with the GEOS-C altimeter are modelled using a form suggested by an analytical derivation. The treatment is restricted to the case of a relatively smooth sea, where the height of the ocean waves are small relative to the spatial length (pulse duration times speed of light) of the transmitted pulse.

  18. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn; Chi, Li-Feng, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn; Wang, Sui-Dong, E-mail: wangsd@suda.edu.cn, E-mail: chilf@suda.edu.cn, E-mail: bdong@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-03-23

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  19. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    International Nuclear Information System (INIS)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong

    2015-01-01

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process

  20. Physical implication of transition voltage in organic nano-floating-gate nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shun; Gao, Xu, E-mail: wangsd@suda.edu.cn, E-mail: gaoxu@suda.edu.cn; Zhong, Ya-Nan; Zhang, Zhong-Da; Xu, Jian-Long; Wang, Sui-Dong, E-mail: wangsd@suda.edu.cn, E-mail: gaoxu@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123 (China)

    2016-07-11

    High-performance pentacene-based organic field-effect transistor nonvolatile memories, using polystyrene as a tunneling dielectric and Au nanoparticles as a nano-floating-gate, show parallelogram-like transfer characteristics with a featured transition point. The transition voltage at the transition point corresponds to a threshold electric field in the tunneling dielectric, over which stored electrons in the nano-floating-gate will start to leak out. The transition voltage can be modulated depending on the bias configuration and device structure. For p-type active layers, optimized transition voltage should be on the negative side of but close to the reading voltage, which can simultaneously achieve a high ON/OFF ratio and good memory retention.

  1. Correlation of interface states/border traps and threshold voltage shift on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tian-Li, E-mail: Tian-Li.Wu@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, Leuven (Belgium); Marcon, Denis; De Jaeger, Brice; Lin, H. C.; Franco, Jacopo; Stoffels, Steve; Van Hove, Marleen; Decoutere, Stefaan [imec, Kapeldreef 75, 3001 Leuven (Belgium); Bakeroot, Benoit [imec, Kapeldreef 75, 3001 Leuven (Belgium); Centre for Microsystems Technology, Ghent University, 9052 Gent (Belgium); Roelofs, Robin [ASM, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-08-31

    In this paper, three electrical techniques (frequency dependent conductance analysis, AC transconductance (AC-g{sub m}), and positive gate bias stress) were used to evaluate three different gate dielectrics (Plasma-Enhanced Atomic Layer Deposition Si{sub 3}N{sub 4}, Rapid Thermal Chemical Vapor Deposition Si{sub 3}N{sub 4}, and Atomic Layer Deposition (ALD) Al{sub 2}O{sub 3}) for AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. From these measurements, the interface state density (D{sub it}), the amount of border traps, and the threshold voltage (V{sub TH}) shift during a positive gate bias stress can be obtained. The results show that the V{sub TH} shift during a positive gate bias stress is highly correlated to not only interface states but also border traps in the dielectric. A physical model is proposed describing that electrons can be trapped by both interface states and border traps. Therefore, in order to minimize the V{sub TH} shift during a positive gate bias stress, the gate dielectric needs to have a lower interface state density and less border traps. However, the results also show that the commonly used frequency dependent conductance analysis technique to extract D{sub it} needs to be cautiously used since the resulting value might be influenced by the border traps and, vice versa, i.e., the g{sub m} dispersion commonly attributed to border traps might be influenced by interface states.

  2. Intermodulation Linearity in High-k/Metal Gate 28 nm RF CMOS Transistors

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2015-09-01

    Full Text Available This paper presents experimental characterization, simulation, and Volterra series based analysis of intermodulation linearity on a high-k/metal gate 28 nm RF CMOS technology. A figure-of-merit is proposed to account for both VGS and VDS nonlinearity, and extracted from frequency dependence of measured IIP3. Implications to biasing current and voltage optimization for linearity are discussed.

  3. Dual-gated volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Fahimian, Benjamin; Wu, Junqing; Wu, Huanmei; Geneser, Sarah; Xing, Lei

    2014-01-01

    Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging radiation therapy modality for treatment of tumors affected by respiratory motion. However, gating significantly prolongs the treatment time, as delivery is only activated during a single respiratory phase. To enhance the efficiency of gated VMAT delivery, a novel dual-gated VMAT (DG-VMAT) technique, in which delivery is executed at both exhale and inhale phases in a given arc rotation, is developed and experimentally evaluated. Arc delivery at two phases is realized by sequentially interleaving control points consisting of MUs, MLC sequences, and angles of VMAT plans generated at the exhale and inhale phases. Dual-gated delivery is initiated when a respiration gating signal enters the exhale window; when the exhale delivery concludes, the beam turns off and the gantry rolls back to the starting position for the inhale window. The process is then repeated until both inhale and exhale arcs are fully delivered. DG-VMAT plan delivery accuracy was assessed using a pinpoint chamber and diode array phantom undergoing programmed motion. DG-VMAT delivery was experimentally implemented through custom XML scripting in Varian’s TrueBeam™ STx Developer Mode. Relative to single gated delivery at exhale, the treatment time was improved by 95.5% for a sinusoidal breathing pattern. The pinpoint chamber dose measurement agreed with the calculated dose within 0.7%. For the DG-VMAT delivery, 97.5% of the diode array measurements passed the 3%/3 mm gamma criterion. The feasibility of DG-VMAT delivery scheme has been experimentally demonstrated for the first time. By leveraging the stability and natural pauses that occur at end-inspiration and end-exhalation, DG-VMAT provides a practical method for enhancing gated delivery efficiency by up to a factor of two

  4. A high performance gate drive for large gate turn off thyristors

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, C.P.

    1993-01-01

    Past approaches to gate turn-off (GTO) gating are application oriented, inefficient and dissipate power even when inactive. They allow the gate to avalanch, and do not reduce GTO turn-on and turn-off losses. A new approach is proposed which will allow modular construction and adaptability to large GTOs in the 50 amp to 2000 amp range. The proposed gate driver can be used in large voltage source and current source inverters and other power converters. The approach consists of a power metal-oxide-silicon field effect transistor (MOSFET) technology gating unit, with associated logic and supervisory circuits and an isolated flyback converter as the dc power source for the gating unit. The gate driver formed by the gating unit and the flyback converter is designed for 4000 V isolation. Control and supervisory signals are exchanged between the gate driver and the remote control system via fiber optics. The gating unit has programmable front-porch current amplitude and pulse-width, programmable closed-loop controlled back-porch current, and a turn-off switch capable of supplying negative gate current at demand as a function of peak controllable forward anode current. The GTO turn-on, turn-off and gate avalanch losses are reduced to a minimum. The gate driver itself has minimum operating losses. Analysis, design and practical realization are reported. 19 refs., 54 figs., 1 tab.

  5. Experimental study of single event burnout and single event gate rupture in power MOSFETs and IGBT

    International Nuclear Information System (INIS)

    Tang Benqi; Wang Yanping; Geng Bin

    2001-01-01

    An experimental study was carried out to determine the single event burnout and single event gate rupture sensitivities in power MOSFETs and IGBT which were exposed to heavy ions from 252 Cf source. The test method, test results, a description of observed burnout current waveforms and a discussion of a possible failure mechanism were presented. Current measurements have been performed with a specially designed circuit. The test results include the observed dependence upon applied drain or gate to source bias and versus with external capacitors and limited resistors

  6. Construction of a fuzzy and all Boolean logic gates based on DNA

    DEFF Research Database (Denmark)

    M. Zadegan, Reza; Jepsen, Mette D E; Hildebrandt, Lasse

    2015-01-01

    to the operation of the six Boolean logic gates AND, NAND, OR, NOR, XOR, and XNOR. The logic gate complex is shown to work also when implemented in a three-dimensional DNA origami box structure, where it controlled the position of the lid in a closed or open position. Implementation of multiple microRNA sensitive...... DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics....

  7. Photovoltaic Bias Generator

    Science.gov (United States)

    2018-02-01

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an... Interior view of the photovoltaic bias generator showing wrapped-wire side of circuit board...3 Fig. 4 Interior view of the photovoltaic bias generator showing component side of circuit board

  8. Domain wall engineering through exchange bias

    International Nuclear Information System (INIS)

    Albisetti, E.; Petti, D.

    2016-01-01

    The control of the structure and position of magnetic domain walls is at the basis of the development of different magnetic devices and architectures. Several nanofabrication techniques have been proposed to geometrically confine and shape domain wall structures; however, a fine tuning of the position and micromagnetic configuration is hardly achieved, especially in continuous films. This work shows that, by controlling the unidirectional anisotropy of a continuous ferromagnetic film through exchange bias, domain walls whose spin arrangement is generally not favored by dipolar and exchange interactions can be created. Micromagnetic simulations reveal that the domain wall width, position and profile can be tuned by establishing an abrupt change in the direction and magnitude of the exchange bias field set in the system. - Highlights: • Micromagnetic simulations study domain walls in exchange biased thin films. • Novel domain wall configurations can be stabilized via exchange bias. • Domain walls nucleate at the boundary of regions with different exchange bias. • Domain wall width and spin profile are controlled by tuning the exchange bias.

  9. Modifications of Fowler-Nordheim injection characteristics in γ irradiated MOS devices

    International Nuclear Information System (INIS)

    Scarpa, A.; Paccagnella, A.; Montera, F.; Candelori, A.; Ghidini, G.; Fuochi, P.G.

    1998-01-01

    In this work the authors have investigated how gamma irradiation affects the tunneling conduction mechanism of a 20 nm thick oxide in MOS capacitors. The radiation induced positive charge is rapidly compensated by the injected electrons, and does not impact the gate current under positive injection after the first current-voltage measurement. Only a transient stress induced leakage current at low gate bias is observed. Instead, a radiation induced negative charge has been observed near the polysilicon gate, which enhances the gate voltage needed for Fowler-Nordheim conduction at negative gate bias. No time decay of this charge has been observed. Such charges slightly modify the trapping kinetics of negative charge during subsequent electrical stresses performed at constant current condition

  10. Evidence for oxygen vacancy manipulation in La1/3Sr2/3FeO3− thin films via voltage controlled solid-state ionic gating

    Directory of Open Access Journals (Sweden)

    A. L. Krick

    2017-04-01

    Full Text Available Reversible changes of the structural and electronic transport properties of La1/3Sr2/3FeO3-δ/Gd-doped CeO2 heterostructures arising from the manipulation of δ are presented. Thermally induced oxygen loss leads to a c-axis lattice expansion and an increase in resistivity in a La1/3Sr2/3FeO3-δ film capped with Gd-doped CeO2. In a three-terminal device where a gate bias is applied across the Gd-doped CeO2 layer to alter the La1/3Sr2/3FeO3-δ oxygen stoichiometry, the ferrite channel is shown to undergo a change in resistance of an order of magnitude using gate voltages of less than 1 V applied at 500 K. The changes in resistance remain upon cooling to room temperature, in the absence of a gate bias, suggesting solid state ionic gating of perovskite oxides as a promising platform for applications in non-volatile, multistate devices.

  11. Internet-based attention bias modification for social anxiety: a randomised controlled comparison of training towards negative and training towards positive cues.

    Science.gov (United States)

    Boettcher, Johanna; Leek, Linda; Matson, Lisa; Holmes, Emily A; Browning, Michael; MacLeod, Colin; Andersson, Gerhard; Carlbring, Per

    2013-01-01

    Biases in attention processes are thought to play a crucial role in the aetiology and maintenance of Social Anxiety Disorder (SAD). The goal of the present study was to examine the efficacy of a programme intended to train attention towards positive cues and a programme intended to train attention towards negative cues. In a randomised, controlled, double-blind design, the impact of these two training conditions on both selective attention and social anxiety were compared to that of a control training condition. A modified dot probe task was used, and delivered via the internet. A total of 129 individuals, diagnosed with SAD, were randomly assigned to one of these three conditions and took part in a 14-day programme with daily training/control sessions. Participants in all three groups did not on average display an attentional bias prior to the training. Critically, results on change in attention bias implied that significantly differential change in selective attention to threat was not detected in the three conditions. However, symptoms of social anxiety reduced significantly from pre- to follow-up-assessment in all three conditions (dwithin  = 0.63-1.24), with the procedure intended to train attention towards threat cues producing, relative to the control condition, a significantly greater reduction of social fears. There were no significant differences in social anxiety outcome between the training condition intended to induce attentional bias towards positive cues and the control condition. To our knowledge, this is the first RCT where a condition intended to induce attention bias to negative cues yielded greater emotional benefits than a control condition. Intriguingly, changes in symptoms are unlikely to be by the mechanism of change in attention processes since there was no change detected in bias per se. Implications of this finding for future research on attention bias modification in social anxiety are discussed. ClinicalTrials.gov NCT01463137.

  12. Towards MRI-guided linear accelerator control: gating on an MRI accelerator.

    Science.gov (United States)

    Crijns, S P M; Kok, J G M; Lagendijk, J J W; Raaymakers, B W

    2011-08-07

    To boost the possibilities of image guidance in radiotherapy by providing images with superior soft-tissue contrast during treatment, we pursue diagnostic quality MRI functionality integrated with a linear accelerator. Large respiration-induced semi-periodic target excursions hamper treatment of cancer of the abdominal organs. Methods to compensate in real time for such motion are gating and tracking. These strategies are most effective in cases where anatomic motion can be visualized directly, which supports the use of an integrated MRI accelerator. We establish here an infrastructure needed to realize gated radiation delivery based on MR feedback and demonstrate its potential as a first step towards more advanced image guidance techniques. The position of a phantom subjected to one-dimensional periodic translation is tracked with the MR scanner. Real-time communication with the MR scanner and control of the radiation beam are established. Based on the time-resolved position of the phantom, gated radiation delivery to the phantom is realized. Dose distributions for dynamic delivery conditions with varying gating windows are recorded on gafchromic film. The similarity between dynamically and statically obtained dose profiles gradually increases as the gating window is decreased. With gating windows of 5 mm, we obtain sharp dose profiles. We validate our gating implementation by comparing measured dose profiles to theoretical profiles calculated using the knowledge of the imposed motion pattern. Excellent correspondence is observed. At the same time, we show that real-time on-line reconstruction of the accumulated dose can be performed using time-resolved target position information. This facilitates plan adaptation not only on a fraction-to-fraction scale but also during one fraction, which is especially valuable in highly accelerated treatment strategies. With the currently established framework and upcoming improvements to our prototype-integrated MRI accelerator

  13. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures

    International Nuclear Information System (INIS)

    Chakraborty, Gargi; Sarkar, C K; Lu, X B; Dai, J Y

    2008-01-01

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter

  14. Dynamic gating window for compensation of baseline shift in respiratory-gated radiation therapy

    International Nuclear Information System (INIS)

    Pepin, Eric W.; Wu Huanmei; Shirato, Hiroki

    2011-01-01

    Purpose: To analyze and evaluate the necessity and use of dynamic gating techniques for compensation of baseline shift during respiratory-gated radiation therapy of lung tumors. Methods: Motion tracking data from 30 lung tumors over 592 treatment fractions were analyzed for baseline shift. The finite state model (FSM) was used to identify the end-of-exhale (EOE) breathing phase throughout each treatment fraction. Using duty cycle as an evaluation metric, several methods of end-of-exhale dynamic gating were compared: An a posteriori ideal gating window, a predictive trend-line-based gating window, and a predictive weighted point-based gating window. These methods were evaluated for each of several gating window types: Superior/inferior (SI) gating, anterior/posterior beam, lateral beam, and 3D gating. Results: In the absence of dynamic gating techniques, SI gating gave a 39.6% duty cycle. The ideal SI gating window yielded a 41.5% duty cycle. The weight-based method of dynamic SI gating yielded a duty cycle of 36.2%. The trend-line-based method yielded a duty cycle of 34.0%. Conclusions: Dynamic gating was not broadly beneficial due to a breakdown of the FSM's ability to identify the EOE phase. When the EOE phase was well defined, dynamic gating showed an improvement over static-window gating.

  15. Hysteresis behaviour of low-voltage organic field-effect transistors employing high dielectric constant polymer gate dielectrics

    International Nuclear Information System (INIS)

    Kim, Se Hyun; Yun, Won Min; Kwon, Oh-Kwan; Hong, Kipyo; Yang, Chanwoo; Park, Chan Eon; Choi, Woon-Seop

    2010-01-01

    Here, we report on the fabrication of low-voltage-operating pentacene-based organic field-effect transistors (OFETs) that utilize crosslinked cyanoethylated poly(vinyl alcohol) (CR-V) gate dielectrics. The crosslinked CR-V-based OFET could be operated successfully at low voltages (below 4 V), but abnormal behaviour during device operation, such as uncertainty in the field-effect mobility (μ) and hysteresis, was induced by the slow polarization of moieties embedded in the gate dielectric (e.g. polar functionalities, ionic impurities, water and solvent molecules). In an effort to improve the stability of OFET operation, we measured the dependence of μ and hysteresis on dielectric thickness, CR-V crosslinking conditions and sweep rate of the gate bias. The influence of the CR-V surface properties on μ, hysteresis, and the structural and morphological features of the pentacene layer grown on the gate dielectric was characterized and compared with the properties of pentacene grown on a polystyrene surface.

  16. AlGaN/GaN MISHEMTs with AlN gate dielectric grown by thermal ALD technique.

    Science.gov (United States)

    Liu, Xiao-Yong; Zhao, Sheng-Xun; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Zhang, Chun-Min; Lu, Hong-Liang; Wang, Peng-Fei; Zhang, David Wei

    2015-01-01

    Recently, AlN plasma-enhanced atomic layer deposition (ALD) passivation technique had been proposed and investigated for suppressing the dynamic on-resistance degradation behavior of high-electron-mobility transistors (HEMTs). In this paper, a novel gate dielectric and passivation technique for GaN-on-Si AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MISHEMTs) is presented. This technique features the AlN thin film grown by thermal ALD at 400°C without plasma enhancement. A 10.6-nm AlN thin film was grown upon the surface of the HEMT serving as the gate dielectric under the gate electrode and as the passivation layer in the access region at the same time. The MISHEMTs with thermal ALD AlN exhibit enhanced on/off ratio, reduced channel sheet resistance, reduction of gate leakage by three orders of magnitude at a bias of 4 V, reduced threshold voltage hysteresis of 60 mV, and suppressed current collapse degradation.

  17. ZIF-8 gate tuning via terminal group modification: a computational study

    KAUST Repository

    Zheng, Bin

    2016-06-24

    Tuning the pore structure of zeolitic imidazolate frameworks (ZIFs) enables unique control of their material properties. In this work, we used computational methods to examine the gate structure of ZIF-8 tuned by substitution terminal groups. The substitution position and electron affinity of the added groups were shown to be key factors in gate size. Electrostatic interactions are responsible for the variation in gate opening. These results suggest that the post-modification of terminal group in ZIFs can be used to finely tune the pore gate, opening up new strategies in the design of ZIFs with desired properties.

  18. Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors.

    Science.gov (United States)

    Kometer, Michael; Schmidt, André; Bachmann, Rosilla; Studerus, Erich; Seifritz, Erich; Vollenweider, Franz X

    2012-12-01

    Serotonin (5-HT) 1A and 2A receptors have been associated with dysfunctional emotional processing biases in mood disorders. These receptors further predominantly mediate the subjective and behavioral effects of psilocybin and might be important for its recently suggested antidepressive effects. However, the effect of psilocybin on emotional processing biases and the specific contribution of 5-HT2A receptors across different emotional domains is unknown. In a randomized, double-blind study, 17 healthy human subjects received on 4 separate days placebo, psilocybin (215 μg/kg), the preferential 5-HT2A antagonist ketanserin (50 mg), or psilocybin plus ketanserin. Mood states were assessed by self-report ratings, and behavioral and event-related potential measurements were used to quantify facial emotional recognition and goal-directed behavior toward emotional cues. Psilocybin enhanced positive mood and attenuated recognition of negative facial expression. Furthermore, psilocybin increased goal-directed behavior toward positive compared with negative cues, facilitated positive but inhibited negative sequential emotional effects, and valence-dependently attenuated the P300 component. Ketanserin alone had no effects but blocked the psilocybin-induced mood enhancement and decreased recognition of negative facial expression. This study shows that psilocybin shifts the emotional bias across various psychological domains and that activation of 5-HT2A receptors is central in mood regulation and emotional face recognition in healthy subjects. These findings may not only have implications for the pathophysiology of dysfunctional emotional biases but may also provide a framework to delineate the mechanisms underlying psylocybin's putative antidepressant effects. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Health risk perception, optimistic bias, and personal satisfaction.

    Science.gov (United States)

    Bränström, Richard; Brandberg, Yvonne

    2010-01-01

    To examine change in risk perception and optimistic bias concerning behavior-linked health threats and environmental health threats between adolescence and young adulthood and how these factors related to personal satisfaction. In 1996 and 2002, 1624 adolescents responded to a mailed questionnaire. Adolescents showed strong positive optimistic bias concerning behaviorlinked risks, and this optimistic bias increased with age. Increase in optimistic bias over time predicted increase in personal satisfaction. The capacity to process and perceive potential threats in a positive manner might be a valuable human ability positively influencing personal satisfaction and well-being.

  20. Double attention bias for positive and negative emotional faces in clinical depression: evidence from an eye-tracking study.

    Science.gov (United States)

    Duque, Almudena; Vázquez, Carmelo

    2015-03-01

    According to cognitive models, attentional biases in depression play key roles in the onset and subsequent maintenance of the disorder. The present study examines the processing of emotional facial expressions (happy, angry, and sad) in depressed and non-depressed adults. Sixteen unmedicated patients with Major Depressive Disorder (MDD) and 34 never-depressed controls (ND) completed an eye-tracking task to assess different components of visual attention (orienting attention and maintenance of attention) in the processing of emotional faces. Compared to ND, participants with MDD showed a negative attentional bias in attentional maintenance indices (i.e. first fixation duration and total fixation time) for sad faces. This attentional bias was positively associated with the severity of depressive symptoms. Furthermore, the MDD group spent a marginally less amount of time viewing happy faces compared with the ND group. No differences were found between the groups with respect to angry faces and orienting attention indices. The current study is limited by its cross-sectional design. These results support the notion that attentional biases in depression are specific to depression-related information and that they operate in later stages in the deployment of attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Accuracy and Consistency of Respiratory Gating in Abdominal Cancer Patients

    International Nuclear Information System (INIS)

    Ge, Jiajia; Santanam, Lakshmi; Yang, Deshan; Parikh, Parag J.

    2013-01-01

    Purpose: To evaluate respiratory gating accuracy and intrafractional consistency for abdominal cancer patients treated with respiratory gated treatment on a regular linear accelerator system. Methods and Materials: Twelve abdominal patients implanted with fiducials were treated with amplitude-based respiratory-gated radiation therapy. On the basis of daily orthogonal fluoroscopy, the operator readjusted the couch position and gating window such that the fiducial was within a setup margin (fiducial-planning target volume [f-PTV]) when RPM indicated “beam-ON.” Fifty-five pre- and post-treatment fluoroscopic movie pairs with synchronized respiratory gating signal were recorded. Fiducial motion traces were extracted from the fluoroscopic movies using a template matching algorithm and correlated with f-PTV by registering the digitally reconstructed radiographs with the fluoroscopic movies. Treatment was determined to be “accurate” if 50% of the fiducial area stayed within f-PTV while beam-ON. For movie pairs that lost gating accuracy, a MATLAB program was used to assess whether the gating window was optimized, the external-internal correlation (EIC) changed, or the patient moved between movies. A series of safety margins from 0.5 mm to 3 mm was added to f-PTV for reassessing gating accuracy. Results: A decrease in gating accuracy was observed in 44% of movie pairs from daily fluoroscopic movies of 12 abdominal patients. Three main causes for inaccurate gating were identified as change of global EIC over time (∼43%), suboptimal gating setup (∼37%), and imperfect EIC within movie (∼13%). Conclusions: Inconsistent respiratory gating accuracy may occur within 1 treatment session even with a daily adjusted gating window. To improve or maintain gating accuracy during treatment, we suggest using at least a 2.5-mm safety margin to account for gating and setup uncertainties

  2. On the stability of silicon field effect capacitors with phosphate buffered saline electrolytic gate and self assembled monolayer gate insulator

    International Nuclear Information System (INIS)

    Hemed, Nofar Mintz; Inberg, Alexandra; Shacham-Diamand, Yosi

    2013-01-01

    We herein report on the stability of Electrolyte/Insulator/Semiconductor (EIS) devices with Self-Assembled Monolayer (SAM) gate insulator layers, i.e. Electrolyte/SAM/Semiconductor (ESS) devices. ESS devices can be functionalized creating highly specific sensors that can be integrated on standard silicon platform. However, biosensors by their nature are in contact with biological solutions that contain ions and molecules that may affect the device characteristics and cause electrical instability. In this paper we present a list of potential hazards to ESS devices and a study of the device stability under common testing conditions analyzing possible causes for the instabilities. ESS capacitors under open circuit conditions (i.e. open circuit bias of ∼0.6 V vs. Ag/AgCl reference electrode) were periodically characterized. We measured the complex impedance of the capacitors versus bias and extracted the effective capacitance vs. voltage (C–V) curves using two methods. We observed a parallel shift of the C–V curves toward negative bias; showing an effective accumulation of positive charge. The quantitative analysis of the drift vs. time was found to depend on the effective capacitance evaluation method. This effect is discussed and a best-known method is proposed. The devices surface composition was tested before and after the stress experiment by X-ray Photoelectron Spectroscopy (XPS) and sodium accumulation was observed. To further explore the flat-band voltage drift effect and to challenge the assumption that alkali ions are involved in the drift we conceived a novel alkali-free phosphate buffer saline (AF-PBS) where the sodium and potassium ions are replaced by ammonium ion and tested the capacitor under similar conditions to standard PBS. We found that the drift of the AF-PBS solution was much less at the first hour but was similar to that of the conventional PBS for longer stress times; hence, AF-PBS does not solve the long-term instability problem

  3. Label Free Detection of Biomolecules Using Charge-Plasma-Based Gate Underlap Dielectric Modulated Junctionless TFET

    Science.gov (United States)

    Wadhwa, Girish; Raj, Balwinder

    2018-05-01

    Nanoscale devices are emerging as a platform for detecting biomolecules. Various issues were observed during the fabrication process such as random dopant fluctuation and thermal budget. To reduce these issues charge-plasma-based concept is introduced. This paper proposes the implementation of charge-plasma-based gate underlap dielectric modulated junctionless tunnel field effect transistor (DM-JLTFET) for the revelation of biomolecule immobilized in the open cavity gate channel region. In this p+ source and n+ drain regions are introduced by employing different work function over the intrinsic silicon. Also dual material gate architecture is implemented to reduce short channel effect without abandoning any other device characteristic. The sensitivity of biosensor is studied for both the neutral and charge-neutral biomolecules. The effect of device parameters such as channel thickness, cavity length and cavity thickness on drain current have been analyzed through simulations. This paper investigates the performance of charge-plasma-based gate underlap DM-JLTFET for biomolecule sensing applications while varying dielectric constant, charge density at different biasing conditions.

  4. Dopant induced single electron tunneling within the sub-bands of single silicon NW tri-gate junctionless n-MOSFET

    Science.gov (United States)

    Uddin, Wasi; Georgiev, Yordan M.; Maity, Sarmistha; Das, Samaresh

    2017-09-01

    We report 1D electron transport of silicon junctionless tri-gate n-type transistor at 4.2 K. The step like curve observed in the current voltage characteristic suggests 1D transport. Besides the current steps for 1D transport, we found multiple spikes within individual steps, which we relate to inter-band single electron tunneling, mediated by the charged dopants available in the channel region. Clear Coulomb diamonds were observed in the stability diagram of the device. It is shown that a uniformly doped silicon nanowire can provide us the window for the single electron tunnelling. Back-gate versus front-gate color plot, where current is in a color scale, shows a crossover of the increased conduction region. This is a clear indication of the dopant-dopant interaction. It has been shown that back-gate biasing can be used to tune the coupling strength between the dopants.

  5. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  6. Is Positive Bias in Children with Attention-Deficit/Hyperactivity Disorder a Function of Low Competence or Disorder Status?

    Science.gov (United States)

    Watabe, Yuko; Owens, Julie S.; Serrano, Verenea; Evans, Steven W.

    2018-01-01

    Previous literature suggests that children with attention-deficit/hyperactivity disorder (ADHD) exhibit a positive bias (PB), defined as an over-estimation of one's own ability as compared with actual ability. However, it is possible that the larger discrepancy (i.e., PB) in children with ADHD is accounted for by lower competence levels rather…

  7. Diminished auditory sensory gating during active auditory verbal hallucinations.

    Science.gov (United States)

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Internet-Based Attention Bias Modification for Social Anxiety: A Randomised Controlled Comparison of Training towards Negative and Training Towards Positive Cues

    Science.gov (United States)

    Boettcher, Johanna; Leek, Linda; Matson, Lisa; Holmes, Emily A.; Browning, Michael; MacLeod, Colin; Andersson, Gerhard; Carlbring, Per

    2013-01-01

    Biases in attention processes are thought to play a crucial role in the aetiology and maintenance of Social Anxiety Disorder (SAD). The goal of the present study was to examine the efficacy of a programme intended to train attention towards positive cues and a programme intended to train attention towards negative cues. In a randomised, controlled, double-blind design, the impact of these two training conditions on both selective attention and social anxiety were compared to that of a control training condition. A modified dot probe task was used, and delivered via the internet. A total of 129 individuals, diagnosed with SAD, were randomly assigned to one of these three conditions and took part in a 14-day programme with daily training/control sessions. Participants in all three groups did not on average display an attentional bias prior to the training. Critically, results on change in attention bias implied that significantly differential change in selective attention to threat was not detected in the three conditions. However, symptoms of social anxiety reduced significantly from pre- to follow-up-assessment in all three conditions (dwithin  = 0.63–1.24), with the procedure intended to train attention towards threat cues producing, relative to the control condition, a significantly greater reduction of social fears. There were no significant differences in social anxiety outcome between the training condition intended to induce attentional bias towards positive cues and the control condition. To our knowledge, this is the first RCT where a condition intended to induce attention bias to negative cues yielded greater emotional benefits than a control condition. Intriguingly, changes in symptoms are unlikely to be by the mechanism of change in attention processes since there was no change detected in bias per se. Implications of this finding for future research on attention bias modification in social anxiety are discussed. Trial Registration Clinical

  9. Internet-based attention bias modification for social anxiety: a randomised controlled comparison of training towards negative and training towards positive cues.

    Directory of Open Access Journals (Sweden)

    Johanna Boettcher

    Full Text Available Biases in attention processes are thought to play a crucial role in the aetiology and maintenance of Social Anxiety Disorder (SAD. The goal of the present study was to examine the efficacy of a programme intended to train attention towards positive cues and a programme intended to train attention towards negative cues. In a randomised, controlled, double-blind design, the impact of these two training conditions on both selective attention and social anxiety were compared to that of a control training condition. A modified dot probe task was used, and delivered via the internet. A total of 129 individuals, diagnosed with SAD, were randomly assigned to one of these three conditions and took part in a 14-day programme with daily training/control sessions. Participants in all three groups did not on average display an attentional bias prior to the training. Critically, results on change in attention bias implied that significantly differential change in selective attention to threat was not detected in the three conditions. However, symptoms of social anxiety reduced significantly from pre- to follow-up-assessment in all three conditions (dwithin  = 0.63-1.24, with the procedure intended to train attention towards threat cues producing, relative to the control condition, a significantly greater reduction of social fears. There were no significant differences in social anxiety outcome between the training condition intended to induce attentional bias towards positive cues and the control condition. To our knowledge, this is the first RCT where a condition intended to induce attention bias to negative cues yielded greater emotional benefits than a control condition. Intriguingly, changes in symptoms are unlikely to be by the mechanism of change in attention processes since there was no change detected in bias per se. Implications of this finding for future research on attention bias modification in social anxiety are discussed

  10. Laser-assisted electron emission from gated field-emitters

    CERN Document Server

    Ishizuka, H; Yokoo, K; Mimura, H; Shimawaki, H; Hosono, A

    2002-01-01

    Enhancement of electron emission by illumination of gated field-emitters was studied using a 100 mW cw YAG laser at a wavelength of 532 nm, intensities up to 10 sup 7 W/m sup 2 and mechanically chopped with a rise time of 4 mu s. When shining an array of 640 silicon emitters, the emission current responded quickly to on-off of the laser. The increase of the emission current was proportional to the basic emission current at low gate voltages, but it was saturated at approx 3 mu A as the basic current approached 100 mu A with the increase of gate voltage. The emission increase was proportional to the square root of laser power at low gate voltages and to the laser power at elevated gate voltages. For 1- and 3-tip silicon emitters, the rise and fall of the current due to on-off of the laser showed a significant time lag. The magnitude of emission increase was independent of the position of laser spot on the emitter base and reached 2 mu A at a basic current of 5 mu A without showing signs of saturation. The mech...

  11. Electrical and proximity-magnetic effects induced quantum Goos–Hänchen shift on the surface of topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Kuai, Jian [School of Physics and Electronics, Yancheng Teachers College, Yancheng, 224002 Jiangsu (China); Da, H.X., E-mail: haixia8779@163.com [Electrical and Computer Engineering Department, National University of Singapore, 4 Engineering Drive 3, 117576 (Singapore)

    2014-03-15

    We use scattering matrix method to theoretically demonstrate that the quantum Goos–Hänchen shift of the surface on three-dimensional topological insulator coated by ferromagnetic strips is sensitive to the magnitude of ferromagnetic magnetization. The dependence of quantum Goos–Hänchen shift on magnetization and gate bias is investigated by performing station phase approach. It is found that quantum Goos–Hänchen shift is positive and large under the magnetic barrier but may be positive as well as negative values under the gate bias. Furthermore, the position of quantum Goos–Hänchen peak can also be modulated by the combination of gate bias and proximity magnetic effects. Our results indicate that topological insulators are another candidates to support quantum Goos–Hänchen shift. - Highlights: • Quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators is first investigated. • The magnetization affects quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators. • Quantum Goos–Hänchen shift of the surface on three-dimensional topological insulators can be manipulated by the gate voltages.

  12. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    International Nuclear Information System (INIS)

    Che, Yongli; Zhang, Yating; Song, Xiaoxian; Cao, Mingxuan; Zhang, Guizhong; Yao, Jianquan; Cao, Xiaolong; Dai, Haitao; Yang, Junbo

    2016-01-01

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔV th  ∼ 15 V) and a long retention time (>10 5  s). The magnitude of ΔV th depended on both P/E voltages and the bias voltage (V DS ): ΔV th was a cubic function to V P/E and linearly depended on V DS . Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.

  13. Noise performance in AlGaN/GaN HEMTs under high drain bias

    International Nuclear Information System (INIS)

    Pang Lei; Pu Yan; Lin Xinyu; Wang Liang; Liu Jian

    2009-01-01

    The advent of fully integrated GaN PA-LNA circuits makes it meaningful to investigate the noise performance under high drain bias. However, noise performance of AlGaN/GaN HEMTs under high bias has not received worldwide attention in theoretical studies due to its complicated mechanisms. The noise value is moderately higher and its rate of increase is fast with increasing high voltage. In this paper, several possible mechanisms are proposed to be responsible for it. Impact ionization under high electric field incurs great fluctuation of carrier density, which increases the drain diffusion noise. Besides, higher gate leakage current related shot noise and a more severe self-heating effect are also contributors to the noise increase at high bias. Analysis from macroscopic and microscopic perspectives can help us to design new device structures to improve noise performance of AlGaN/GaN HEMTs under high bias. (semiconductor devices)

  14. Top-gated chemical vapor deposition grown graphene transistors with current saturation.

    Science.gov (United States)

    Bai, Jingwei; Liao, Lei; Zhou, Hailong; Cheng, Rui; Liu, Lixin; Huang, Yu; Duan, Xiangfeng

    2011-06-08

    Graphene transistors are of considerable interest for radio frequency (rf) applications. In general, transistors with large transconductance and drain current saturation are desirable for rf performance, which is however nontrivial to achieve in graphene transistors. Here we report high-performance top-gated graphene transistors based on chemical vapor deposition (CVD) grown graphene with large transconductance and drain current saturation. The graphene transistors were fabricated with evaporated high dielectric constant material (HfO(2)) as the top-gate dielectrics. Length scaling studies of the transistors with channel length from 5.6 μm to 100 nm show that complete current saturation can be achieved in 5.6 μm devices and the saturation characteristics degrade as the channel length shrinks down to the 100-300 nm regime. The drain current saturation was primarily attributed to drain bias induced shift of the Dirac points. With the selective deposition of HfO(2) gate dielectrics, we have further demonstrated a simple scheme to realize a 300 nm channel length graphene transistors with self-aligned source-drain electrodes to achieve the highest transconductance of 250 μS/μm reported in CVD graphene to date.

  15. High performance organic field-effect transistors with ultra-thin HfO2 gate insulator deposited directly onto the organic semiconductor

    International Nuclear Information System (INIS)

    Ono, S.; Häusermann, R.; Chiba, D.; Shimamura, K.; Ono, T.; Batlogg, B.

    2014-01-01

    We have produced stable organic field-effect transistors (OFETs) with an ultra-thin HfO 2 gate insulator deposited directly on top of rubrene single crystals by atomic layer deposition (ALD). We find that ALD is a gentle deposition process to grow thin films without damaging rubrene single crystals, as results these devices have a negligibly small threshold voltage and are very stable against gate-bias-stress, and the mobility exceeds 1 cm 2 /V s. Moreover, the devices show very little degradation even when kept in air for more than 2 months. These results demonstrate thin HfO 2 layers deposited by ALD to be well suited as high capacitance gate dielectrics in OFETs operating at small gate voltage. In addition, the dielectric layer acts as an effective passivation layer to protect the organic semiconductor

  16. Is the Positive Bias an ADHD Phenomenon? Reexamining the Positive Bias and its Correlates in a Heterogeneous Sample of Children.

    Science.gov (United States)

    Bourchtein, Elizaveta; Owens, Julie S; Dawson, Anne E; Evans, Steven W; Langberg, Joshua M; Flory, Kate; Lorch, Elizabeth P

    2017-11-25

    The goals of this study were to (a) evaluate the presence of the positive bias (PB) in elementary-school-aged children with and without ADHD when PB is defined at the individual level through latent profile analysis and (b) examine the extent to which several correlates (i.e., social functioning, aggression, depression, and anxiety) are associated with the PB. Participants were 233 youth (30% female; 8 to 10 years of age), 51% of whom met criteria for ADHD. During an individual evaluation, children and parents completed a battery of questionnaires to assess child competence, depression, anxiety, and aggression. Children also participated in a novel group session with same-sex unfamiliar peers (half of the group was comprised of children with ADHD) to engage in group problem-solving tasks and free play activities. After the group session, peers and staff completed ratings of each child's behavior (e.g., likeability, rule following). The best fitting LPA model for parent and self-ratings of competence revealed four profiles: High Competence/Self-Aware; Variable Competence/Self-Aware; Low Competence/Self-Aware; and Low Competence/PB, in which the PB was present across domains. Only 10% of youth showed a PB and youth with ADHD were no more likely to display the PB than their non-ADHD peers with similar levels of low competence. Lastly, the Low Competence/Self-Aware profile demonstrated higher levels of anxiety and depression than the Low Competence/PB profile; the profiles did not differ on aggression or peer or staff ratings of social/behavioral functioning. Implications for understanding the PB in children with and without ADHD are discussed.

  17. Analytical modeling and simulation of subthreshold behavior in nanoscale dual material gate AlGaN/GaN HEMT

    Science.gov (United States)

    Kumar, Sona P.; Agrawal, Anju; Chaujar, Rishu; Gupta, Mridula; Gupta, R. S.

    2008-07-01

    A two-dimensional (2-D) analytical model for a Dual Material Gate (DMG) AlGaN/GaN High Electron Mobility Transistor (HEMT) has been developed to demonstrate the unique attributes of this device structure in suppressing short channel effects (SCEs). The model accurately predicts the channel potential, electric field variation along the channel, and sub-threshold drain current, taking into account the effect of lengths of the two gate metals, their work functions, barrier layer thicknesses, and applied drain biases. It is seen that the SCEs and hot carrier effects in DMG AlGaN/GaN HEMT are suppressed due to the work function difference of the two metal gates, thereby screening the drain potential variations by the gate near the drain. Besides, a more uniform electric field along the channel leads to improved carrier transport efficiency. The accuracy of the results obtained from our analytical model has been verified using ATLAS device simulations.

  18. Patient training in respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    Kini, Vijay R.; Vedam, Subrahmanya S.; Keall, Paul J.; Patil, Sumukh; Chen, Clayton; Mohan, Radhe

    2003-01-01

    Respiratory gating is used to counter the effects of organ motion during radiotherapy for chest tumors. The effects of variations in patient breathing patterns during a single treatment and from day to day are unknown. We evaluated the feasibility of using patient training tools and their effect on the breathing cycle regularity and reproducibility during respiratory-gated radiotherapy. To monitor respiratory patterns, we used a component of a commercially available respiratory-gated radiotherapy system (Real Time Position Management (RPM) System, Varian Oncology Systems, Palo Alto, CA 94304). This passive marker video tracking system consists of reflective markers placed on the patient's chest or abdomen, which are detected by a wall-mounted video camera. Software installed on a PC interfaced to this camera detects the marker motion digitally and records it. The marker position as a function of time serves as the motion signal that may be used to trigger imaging or treatment. The training tools used were audio prompting and visual feedback, with free breathing as a control. The audio prompting method used instructions to 'breathe in' or 'breathe out' at periodic intervals deduced from patients' own breathing patterns. In the visual feedback method, patients were shown a real-time trace of their abdominal wall motion due to breathing. Using this, they were asked to maintain a constant amplitude of motion. Motion traces of the abdominal wall were recorded for each patient for various maneuvers. Free breathing showed a variable amplitude and frequency. Audio prompting resulted in a reproducible frequency; however, the variability and the magnitude of amplitude increased. Visual feedback gave a better control over the amplitude but showed minor variations in frequency. We concluded that training improves the reproducibility of amplitude and frequency of patient breathing cycles. This may increase the accuracy of respiratory-gated radiation therapy

  19. New gate opening hours

    CERN Multimedia

    GS Department

    2009-01-01

    Please note the new opening hours of the gates as well as the intersites tunnel from the 19 May 2009: GATE A 7h - 19h GATE B 24h/24 GATE C 7h - 9h\t17h - 19h GATE D 8h - 12h\t13h - 16h GATE E 7h - 9h\t17h - 19h Prévessin 24h/24 The intersites tunnel will be opened from 7h30 to 18h non stop. GS-SEM Group Infrastructure and General Services Department

  20. Revisited study of fluorine implantation impact on negative bias temperature instability for input/output device of automotive micro controller unit

    Science.gov (United States)

    Yoshida, Tetsuya; Maekawa, Keiichi; Tsuda, Shibun; Shimizu, Tatsuo; Ogasawara, Makoto; Aono, Hideki; Yamaguchi, Yasuo

    2018-04-01

    We investigate the effect of fluorine implanted in the polycrystalline silicon (poly-Si) gate and source/drain (S/D) region on negative bias temperature instability (NBTI) improvement. It is found that there is a trade-off implantation energy dependence of NBTI between fluorine in the poly-Si gate and that in the S/D region. Fluorine implanted in the poly-Si gate contributes to NBTI improvement under low energy implantation. On the other hand, NBTI is improved by fluorine implanted in the S/D region under high energy. We propose that the two-step implantation process with high and low energy is the optimum condition for NBTI improvement.

  1. Total dose effects on the shallow-trench isolation leakage current characteristics in a 0.35microm SiGe BiCMOS technology

    International Nuclear Information System (INIS)

    Niu, G.; Mathew, S.J.; Banerjee, G.; Cressler, J.D.; Clark, S.D.; Palmer, M.J.; Subbanna, S.

    1999-01-01

    The effects of gamma irradiation on the Shallow-Trench Isolation (STI) leakage currents in a SiGe BiCMOS technology are investigated for the first time, and shown to be strongly dependent on the irradiation gate bias and operating substrate bias. A positive irradiation gate bias significantly enhances the STI leakage, suggesting a strong field assisted nature of the charge buildup process in the STI. Numerical simulations also suggest the existence of fixed positive charges deep in the bulk along the STI/Si interface. A negative substrate bias, however, effectively suppresses the STI leakage, and can be used to eliminate the leakage produced by the charges deep in the bulk under irradiation

  2. Study of surface-modified PVP gate dielectric in organic thin film transistors with the nano-particle silver ink source/drain electrode.

    Science.gov (United States)

    Yun, Ho-Jin; Ham, Yong-Hyun; Shin, Hong-Sik; Jeong, Kwang-Seok; Park, Jeong-Gyu; Choi, Deuk-Sung; Lee, Ga-Won

    2011-07-01

    We have fabricated the flexible pentacene based organic thin film transistors (OTFTs) with formulated poly[4-vinylphenol] (PVP) gate dielectrics treated by CF4/O2 plasma on poly[ethersulfones] (PES) substrate. The solution of gate dielectrics is made by adding methylated poly[melamine-co-formaldehyde] (MMF) to PVP. The PVP gate dielectric layer was cross linked at 90 degrees under UV ozone exposure. Source/drain electrodes are formed by micro contact printing (MCP) method using nano particle silver ink for the purposes of low cost and high throughput. The optimized OTFT shows the device performance with field effect mobility of the 0.88 cm2/V s, subthreshold slope of 2.2 V/decade, and on/off current ratios of 1.8 x 10(-6) at -40 V gate bias. We found that hydrophobic PVP gate dielectric surface can influence on the initial film morphologies of pentacene making dense, which is more important for high performance OTFTs than large grain size. Moreover, hydrophobic gate dielelctric surface reduces voids and -OH groups that interrupt the carrier transport in OTFTs.

  3. ISAC's Gating-ML 2.0 data exchange standard for gating description.

    Science.gov (United States)

    Spidlen, Josef; Moore, Wayne; Brinkman, Ryan R

    2015-07-01

    The lack of software interoperability with respect to gating has traditionally been a bottleneck preventing the use of multiple analytical tools and reproducibility of flow cytometry data analysis by independent parties. To address this issue, ISAC developed Gating-ML, a computer file format to encode and interchange gates. Gating-ML 1.5 was adopted and published as an ISAC Candidate Recommendation in 2008. Feedback during the probationary period from implementors, including major commercial software companies, instrument vendors, and the wider community, has led to a streamlined Gating-ML 2.0. Gating-ML has been significantly simplified and therefore easier to support by software tools. To aid developers, free, open source reference implementations, compliance tests, and detailed examples are provided to stimulate further commercial adoption. ISAC has approved Gating-ML as a standard ready for deployment in the public domain and encourages its support within the community as it is at a mature stage of development having undergone extensive review and testing, under both theoretical and practical conditions. © 2015 International Society for Advancement of Cytometry.

  4. Determination of prospective displacement-based gate threshold for respiratory-gated radiation delivery from retrospective phase-based gate threshold selected at 4D CT simulation

    International Nuclear Information System (INIS)

    Vedam, S.; Archambault, L.; Starkschall, G.; Mohan, R.; Beddar, S.

    2007-01-01

    Four-dimensional (4D) computed tomography (CT) imaging has found increasing importance in the localization of tumor and surrounding normal structures throughout the respiratory cycle. Based on such tumor motion information, it is possible to identify the appropriate phase interval for respiratory gated treatment planning and delivery. Such a gating phase interval is determined retrospectively based on tumor motion from internal tumor displacement. However, respiratory-gated treatment is delivered prospectively based on motion determined predominantly from an external monitor. Therefore, the simulation gate threshold determined from the retrospective phase interval selected for gating at 4D CT simulation may not correspond to the delivery gate threshold that is determined from the prospective external monitor displacement at treatment delivery. The purpose of the present work is to establish a relationship between the thresholds for respiratory gating determined at CT simulation and treatment delivery, respectively. One hundred fifty external respiratory motion traces, from 90 patients, with and without audio-visual biofeedback, are analyzed. Two respiratory phase intervals, 40%-60% and 30%-70%, are chosen for respiratory gating from the 4D CT-derived tumor motion trajectory. From residual tumor displacements within each such gating phase interval, a simulation gate threshold is defined based on (a) the average and (b) the maximum respiratory displacement within the phase interval. The duty cycle for prospective gated delivery is estimated from the proportion of external monitor displacement data points within both the selected phase interval and the simulation gate threshold. The delivery gate threshold is then determined iteratively to match the above determined duty cycle. The magnitude of the difference between such gate thresholds determined at simulation and treatment delivery is quantified in each case. Phantom motion tests yielded coincidence of simulation

  5. Negativity bias and task motivation: testing the effectiveness of positively versus negatively framed incentives.

    Science.gov (United States)

    Goldsmith, Kelly; Dhar, Ravi

    2013-12-01

    People are frequently challenged by goals that demand effort and persistence. As a consequence, philosophers, psychologists, economists, and others have studied the factors that enhance task motivation. Using a sample of undergraduate students and a sample of working adults, we demonstrate that the manner in which an incentive is framed has implications for individuals' task motivation. In both samples we find that individuals are less motivated when an incentive is framed as a means to accrue a gain (positive framing) as compared with when the same incentive is framed as a means to avoid a loss (negative framing). Further, we provide evidence for the role of the negativity bias in this effect, and highlight specific populations for whom positive framing may be least motivating. Interestingly, we find that people's intuitions about when they will be more motivated show the opposite pattern, with people predicting that positively framed incentives will be more motivating than negatively framed incentives. We identify a lay belief in the positive correlation between enjoyment and task motivation as one possible factor contributing to the disparity between predicted and actual motivation as a result of the framing of the incentive. We conclude with a discussion of the managerial implications for these findings. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  6. Evaluation of respiratory pattern during respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    Dobashi, Suguru; Mori, Shinichiro

    2014-01-01

    The respiratory cycle is not strictly regular, and generally varies in amplitude and period from one cycle to the next. We evaluated the characteristics of respiratory patterns acquired during respiratory gating treatment in more than 300 patients. A total 331 patients treated with respiratory-gated carbon-ion beam therapy were selected from a group of patients with thoracic and abdominal conditions. Respiratory data were acquired for a total of 3,171 fractions using an external respiratory sensing monitor and evaluated for respiratory cycle, duty cycle, magnitude of baseline drift, and intrafractional/interfractional peak inhalation/exhalation positional variation. Results for the treated anatomical sites and patient positioning were compared. Mean ± SD respiratory cycle averaged over all patients was 4.1 ± 1.3 s. Mean ± SD duty cycle averaged over all patients was 36.5 ± 7.3 %. Two types of baseline drift were seen, the first decremental and the second incremental. For respiratory peak variation, the mean intrafractional variation in peak-inhalation position relative to the amplitude in the first respiratory cycle (15.5 ± 9.3 %) was significantly larger than that in exhalation (7.5 ± 4.6 %). Interfractional variations in inhalation (17.2 ± 18.5 %) were also significantly greater than those in exhalation (9.4 ± 10.0 %). Statistically significant differences were observed between patients in the supine position and those in the prone position in mean respiratory cycle, duty cycle, and intra-/interfractional variations. We quantified the characteristics of the respiratory curve based on a large number of respiratory data obtained during treatment. These results might be useful in improving the accuracy of respiratory-gated treatment.

  7. Better than I thought: positive evaluation bias in hypomania.

    Directory of Open Access Journals (Sweden)

    Liam Mason

    Full Text Available Mania is characterised by increased impulsivity and risk-taking, and psychological accounts argue that these features may be due to hypersensitivity to reward. The neurobiological mechanisms remain poorly understood. Here we examine reinforcement learning and sensitivity to both reward and punishment outcomes in hypomania-prone individuals not receiving pharmacotherapy.We recorded EEG from 45 healthy individuals split into three groups by low, intermediate and high self-reported hypomanic traits. Participants played a computerised card game in which they learned the reward contingencies of three cues. Neural responses to monetary gain and loss were measured using the feedback-related negativity (FRN, a component implicated in motivational outcome evaluation and reinforcement learning.As predicted, rewards elicited a smaller FRN in the hypomania-prone group relative to the low hypomania group, indicative of greater reward responsiveness. The hypomania-prone group also showed smaller FRN to losses, indicating diminished response to negative feedback.Our findings indicate that proneness to hypomania is associated with both reward hypersensitivity and discounting of punishment. This positive evaluation bias may be driven by aberrant reinforcement learning signals, which fail to update future expectations. This provides a possible neural mechanism explaining risk-taking and impaired reinforcement learning in BD. Further research will be needed to explore the potential value of the FRN as a biological vulnerability marker for mania and pathological risk-taking.

  8. Functional assessment of the right ventricle with gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Abbati, D.; Carolan, M.

    2002-01-01

    Full text: Evaluation of right ventricular function can provide valuable information in a variety of cardiac and non-cardiac conditions. Functional assessment of the right ventricle is difficult owing to its anatomy and geometry. We describe a method of assessing right ventricular function using gated myocardial perfusion SPECT. In 20 patients right and left ventricular ejection fractions (RVEF, LVEF) were determined using gated blood pool (GBPS) and gated myocardial perfusion SPECT (GSPECT). To avoid contamination with right atrial activity the two frame method was adopted for gated blood pool data when measuring RVEF. In 9 patients with normal right ventricles, an index of wall thickening for the right ventricle was derived from the peak systolic and diastolic counts in the free wall. There was good linear correlation between the two methods adopted for calculation of LVEF and RVEF. Bland - Airman analysis demonstrated good agreement between the two methods with no specific bias. The mean LVEF was 47.9 +/-12% (GBPS) and 47.3 +/- 12.4 (GSPECT). The mean RVEF was 43.2 +/- 9.6% (GBPS) and 44.2 +/- 8.5% (GSPECT). In both cases the values were significantly different. The mean wall motion index was 35%. There was no correlation between the wall thickness index and ejection fraction however the index was greater in patients with normal right ventricle than in those with reduced RVER Gated SPECT offers an alternative to GBPS for the functional assessment of the right ventricle. Utilising GSPECT will allow the simultaneous assessment of both the right and left ventricles. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  9. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer.

    Science.gov (United States)

    Bastida Castillo, Alejandro; Gómez Carmona, Carlos D; De la Cruz Sánchez, Ernesto; Pino Ortega, José

    2018-05-01

    There is interest in the accuracy and inter-unit reliability of position-tracking systems to monitor players. Research into this technology, although relatively recent, has grown exponentially in the last years, and it is difficult to find professional team sport that does not use Global Positioning System (GPS) technology at least. The aim of this study is to know the accuracy of both GPS-based and Ultra Wide Band (UWB)-based systems on a soccer field and their inter- and intra-unit reliability. A secondary aim is to compare them for practical applications in sport science. Following institutional ethical approval and familiarization, 10 healthy and well-trained former soccer players (20 ± 1.6 years, 1.76 ± 0.08 cm, and 69.5 ± 9.8 kg) performed three course tests: (i) linear course, (ii) circular course, and (iii) a zig-zag course, all using UWB and GPS technologies. The average speed and distance covered were compared with timing gates and the real distance as references. The UWB technology showed better accuracy (bias: 0.57-5.85%), test-retest reliability (%TEM: 1.19), and inter-unit reliability (bias: 0.18) in determining distance covered than the GPS technology (bias: 0.69-6.05%; %TEM: 1.47; bias: 0.25) overall. Also, UWB showed better results (bias: 0.09; ICC: 0.979; bias: 0.01) for mean velocity measurement than GPS (bias: 0.18; ICC: 0.951; bias: 0.03).

  10. On the Borders of Harmful and Helpful Beauty Biases

    OpenAIRE

    Maria Agthe; Maria Strobel; Matthias Spörrle; Michaela Pfundmair; Jon K. Maner

    2016-01-01

    Research with European Caucasian samples demonstrates that attractiveness-based biases in social evaluation depend on the constellation of the sex of the evaluator and the sex of the target: Whereas people generally show positive biases toward attractive opposite-sex persons, they show less positive or even negative biases toward attractive same-sex persons. By examining these biases both within and between different ethnicities, the current studies provide new evidence for both the generaliz...

  11. Comparison of respiratory surrogates for gated lung radiotherapy without internal fiducials

    International Nuclear Information System (INIS)

    Korreman, S.; Mostafavi, H.; Le, Q.T.; Boyer, A.

    2006-01-01

    An investigation was carried out to compare the ability of two respiratory surrogates to mimic actual lung tumor motion during audio coaching. The investigation employed video clips acquired after patients had had fiducial markers implanted in lung tumors to be used for image-guided stereoscopic radiotherapy. The positions of the markers in the clips were measured within the video frames and used as the standard for tumor volume motion. An external marker was tracked optically during the fluoroscopic acquisitions. An image correlation technique was developed to compute a gating signal from the fluoroscopic images. The correlation gating trace was similar to the optical gating trace in the phase regions of the respiratory cycle used for gating. A cross correlation analysis and comparison of the external optical marker gating with internal fluoroscopic gating was performed. The fluoroscopic image correlation surrogate was found to be superior to the external optical surrogate in the AP-views in four out of six cases. In one of the remaining two cases, the two surrogates performed comparably, while in the last case, the external fiducial trace performed best. It was concluded that fluoroscopic gating based on correlation of native image features in the fluoroscopic images will be adequate for respiratory gating

  12. Comparison of respiratory surrogates for gated lung radiotherapy without internal fiducials

    Energy Technology Data Exchange (ETDEWEB)

    Korreman, S. [Rigshospitalet, Copenhagen (Denmark). Dept. of Radiation Oncology; Mostafavi, H. [Varian Medical Systems, Mountain View, CA (United States). Gintzon Technology Center; Le, Q.T.; Boyer, A. [Stanford Univ. School of Medicine, CA (United States). Dept. of Radiation Oncology

    2006-09-15

    An investigation was carried out to compare the ability of two respiratory surrogates to mimic actual lung tumor motion during audio coaching. The investigation employed video clips acquired after patients had had fiducial markers implanted in lung tumors to be used for image-guided stereoscopic radiotherapy. The positions of the markers in the clips were measured within the video frames and used as the standard for tumor volume motion. An external marker was tracked optically during the fluoroscopic acquisitions. An image correlation technique was developed to compute a gating signal from the fluoroscopic images. The correlation gating trace was similar to the optical gating trace in the phase regions of the respiratory cycle used for gating. A cross correlation analysis and comparison of the external optical marker gating with internal fluoroscopic gating was performed. The fluoroscopic image correlation surrogate was found to be superior to the external optical surrogate in the AP-views in four out of six cases. In one of the remaining two cases, the two surrogates performed comparably, while in the last case, the external fiducial trace performed best. It was concluded that fluoroscopic gating based on correlation of native image features in the fluoroscopic images will be adequate for respiratory gating.

  13. Comprehensive study of gate-terminated and source-terminated field-plate 0.13 µm NMOS transistors

    International Nuclear Information System (INIS)

    Chiu, Hsien-Chin; Lin, Shao-Wei; Cheng, Chia-Shih; Wei, Chien-Cheng

    2008-01-01

    This study systematically investigated microwave noise, power and linearity characteristics of field-plate (FP) 0.13 µm CMOS transistors in which the field-plate metal is connected to the gate terminal and the source terminal. The gate-terminated FP NMOS (FP-G NMOS) provided the best noise figure (NF) at 6 GHz compared with standard devices and the source-terminated FP device (FP-S NMOS) as the lowest gate resistance (R g ) was obtained by this structure. By adopting the field-plate metal in NMOS, both FP-S and FP-G devices achieved higher current density at high gate bias voltages. Moreover, these two devices also had higher efficiency under high drain-to-source voltages at the high input power swing. The third-order inter-modulation product (IM3) is −39.4 dBm for FP-S NMOS at P in of −20 dBm; the corresponding values for FP-G and standard devices are −34.9 dBm and −37.3 dBm, respectively. Experimental results indicate that the FP-G architecture is suitable for low noise applications and FP-S is suitable for high power and high linearity operation

  14. Leveraging position bias to improve peer recommendation.

    Directory of Open Access Journals (Sweden)

    Kristina Lerman

    Full Text Available With the advent of social media and peer production, the amount of new online content has grown dramatically. To identify interesting items in the vast stream of new content, providers must rely on peer recommendation to aggregate opinions of their many users. Due to human cognitive biases, the presentation order strongly affects how people allocate attention to the available content. Moreover, we can manipulate attention through the presentation order of items to change the way peer recommendation works. We experimentally evaluate this effect using Amazon Mechanical Turk. We find that different policies for ordering content can steer user attention so as to improve the outcomes of peer recommendation.

  15. Double-gate junctionless transistor model including short-channel effects

    International Nuclear Information System (INIS)

    Paz, B C; Pavanello, M A; Ávila-Herrera, F; Cerdeira, A

    2015-01-01

    This work presents a physically based model for double-gate junctionless transistors (JLTs), continuous in all operation regimes. To describe short-channel transistors, short-channel effects (SCEs), such as increase of the channel potential due to drain bias, carrier velocity saturation and mobility degradation due to vertical and longitudinal electric fields, are included in a previous model developed for long-channel double-gate JLTs. To validate the model, an analysis is made by using three-dimensional numerical simulations performed in a Sentaurus Device Simulator from Synopsys. Different doping concentrations, channel widths and channel lengths are considered in this work. Besides that, the series resistance influence is numerically included and validated for a wide range of source and drain extensions. In order to check if the SCEs are appropriately described, besides drain current, transconductance and output conductance characteristics, the following parameters are analyzed to demonstrate the good agreement between model and simulation and the SCEs occurrence in this technology: threshold voltage (V TH ), subthreshold slope (S) and drain induced barrier lowering. (paper)

  16. Do release-site biases reflect response to the Earth's magnetic field during position determination by homing pigeons?

    Science.gov (United States)

    Mora, Cordula V; Walker, Michael M

    2009-09-22

    How homing pigeons (Columba livia) return to their loft from distant, unfamiliar sites has long been a mystery. At many release sites, untreated birds consistently vanish from view in a direction different from the home direction, a phenomenon called the release-site bias. These deviations in flight direction have been implicated in the position determination (or map) step of navigation because they may reflect local distortions in information about location that the birds obtain from the geophysical environment at the release site. Here, we performed a post hoc analysis of the relationship between vanishing bearings and local variations in magnetic intensity using previously published datasets for pigeons homing to lofts in Germany. Vanishing bearings of both experienced and naïve birds were strongly associated with magnetic intensity variations at release sites, with 90 per cent of bearings lying within +/-29 degrees of the magnetic intensity slope or contour direction. Our results (i) demonstrate that pigeons respond in an orderly manner to the local structure of the magnetic field at release sites, (ii) provide a mechanism for the occurrence of release-site biases and (iii) suggest that pigeons may derive spatial information from the magnetic field at the release site that could be used to estimate their current position relative to their loft.

  17. MO-FG-BRA-03: A Novel Method for Characterizing Gating Response Time in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, R; McCabe, B; Belcher, A; Jenson, P [The University of Chicago, Chicago, IL (United States); Smith, B [University Illinois at Chicago, Orland Park, IL (United States); Aydogan, B [The University of Chicago, Chicago, IL (United States); University Illinois at Chicago, Orland Park, IL (United States)

    2016-06-15

    Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Current film based methods to assess gating response have poor temporal resolution and are highly qualitative. We describe a novel method to precisely measure gating lag times at high temporal resolutions and use it to characterize the temporal response of several gating systems. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz (0.4 millisecond (ms) sampling interval) with an analogue-to-digital converter (ADC). The techniques was used on three commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted using a polynomial fit method. Results: A Varian RPM system with a monoscopic IR camera was measured to have mean beam ON and OFF lag times of 98.2 ms and 89.6 ms, respectively. A Varian RPM system with a stereoscopic IR camera was measured to have mean beam ON and OFF lag times of 86.0 ms and 44.0 ms, respectively. A Calypso magnetic fiducial tracking system was measured to have mean beam ON and OFF lag times of 209.0 ms and 60.0 ms, respectively. Conclusions: A novel method allowed for quantitative determination of gating timing accuracy for several clinically used gating systems. All gating systems met the 100 ms TG-142 criteria for mean beam OFF times. For beam ON response, the Calypso system exceeded the recommended response time.

  18. Editorial Bias in Crowd-Sourced Political Information.

    Directory of Open Access Journals (Sweden)

    Joshua L Kalla

    Full Text Available The Internet has dramatically expanded citizens' access to and ability to engage with political information. On many websites, any user can contribute and edit "crowd-sourced" information about important political figures. One of the most prominent examples of crowd-sourced information on the Internet is Wikipedia, a free and open encyclopedia created and edited entirely by users, and one of the world's most accessed websites. While previous studies of crowd-sourced information platforms have found them to be accurate, few have considered biases in what kinds of information are included. We report the results of four randomized field experiments that sought to explore what biases exist in the political articles of this collaborative website. By randomly assigning factually true but either positive or negative and cited or uncited information to the Wikipedia pages of U.S. senators, we uncover substantial evidence of an editorial bias toward positivity on Wikipedia: Negative facts are 36% more likely to be removed by Wikipedia editors than positive facts within 12 hours and 29% more likely within 3 days. Although citations substantially increase an edit's survival time, the editorial bias toward positivity is not eliminated by inclusion of a citation. We replicate this study on the Wikipedia pages of deceased as well as recently retired but living senators and find no evidence of an editorial bias in either. Our results demonstrate that crowd-sourced information is subject to an editorial bias that favors the politically active.

  19. Editorial Bias in Crowd-Sourced Political Information.

    Science.gov (United States)

    Kalla, Joshua L; Aronow, Peter M

    2015-01-01

    The Internet has dramatically expanded citizens' access to and ability to engage with political information. On many websites, any user can contribute and edit "crowd-sourced" information about important political figures. One of the most prominent examples of crowd-sourced information on the Internet is Wikipedia, a free and open encyclopedia created and edited entirely by users, and one of the world's most accessed websites. While previous studies of crowd-sourced information platforms have found them to be accurate, few have considered biases in what kinds of information are included. We report the results of four randomized field experiments that sought to explore what biases exist in the political articles of this collaborative website. By randomly assigning factually true but either positive or negative and cited or uncited information to the Wikipedia pages of U.S. senators, we uncover substantial evidence of an editorial bias toward positivity on Wikipedia: Negative facts are 36% more likely to be removed by Wikipedia editors than positive facts within 12 hours and 29% more likely within 3 days. Although citations substantially increase an edit's survival time, the editorial bias toward positivity is not eliminated by inclusion of a citation. We replicate this study on the Wikipedia pages of deceased as well as recently retired but living senators and find no evidence of an editorial bias in either. Our results demonstrate that crowd-sourced information is subject to an editorial bias that favors the politically active.

  20. Gate current for p+-poly PMOS devices under gate injection conditions

    NARCIS (Netherlands)

    Hof, A.J.; Holleman, J.; Woerlee, P.H.

    2001-01-01

    In current CMOS processing both n+-poly and p+-poly gates are used. The I-V –relationship and reliability of n+-poly devices are widely studied and well understood. Gate currents and reliability for p+-poly PMOS devices under gate injection conditions are not well understood. In this paper, the

  1. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    Science.gov (United States)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  2. Effects of standard and explicit cognitive bias modification and computer-administered cognitive-behaviour therapy on cognitive biases and social anxiety.

    Science.gov (United States)

    Mobini, Sirous; Mackintosh, Bundy; Illingworth, Jo; Gega, Lina; Langdon, Peter; Hoppitt, Laura

    2014-06-01

    This study examines the effects of a single session of Cognitive Bias Modification to induce positive Interpretative bias (CBM-I) using standard or explicit instructions and an analogue of computer-administered CBT (c-CBT) program on modifying cognitive biases and social anxiety. A sample of 76 volunteers with social anxiety attended a research site. At both pre- and post-test, participants completed two computer-administered tests of interpretative and attentional biases and a self-report measure of social anxiety. Participants in the training conditions completed a single session of either standard or explicit CBM-I positive training and a c-CBT program. Participants in the Control (no training) condition completed a CBM-I neutral task matched the active CBM-I intervention in format and duration but did not encourage positive disambiguation of socially ambiguous or threatening scenarios. Participants in both CBM-I programs (either standard or explicit instructions) and the c-CBT condition exhibited more positive interpretations of ambiguous social scenarios at post-test and one-week follow-up as compared to the Control condition. Moreover, the results showed that CBM-I and c-CBT, to some extent, changed negative attention biases in a positive direction. Furthermore, the results showed that both CBM-I training conditions and c-CBT reduced social anxiety symptoms at one-week follow-up. This study used a single session of CBM-I training, however multi-sessions intervention might result in more endurable positive CBM-I changes. A computerised single session of CBM-I and an analogue of c-CBT program reduced negative interpretative biases and social anxiety. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Multiple Independent Gate FETs: How Many Gates Do We Need?

    OpenAIRE

    Amarù, Luca; Hills, Gage; Gaillardon, Pierre-Emmanuel; Mitra, Subhasish; De Micheli, Giovanni

    2015-01-01

    Multiple Independent Gate Field Effect Transistors (MIGFETs) are expected to push FET technology further into the semiconductor roadmap. In a MIGFET, supplementary gates either provide (i) enhanced conduction properties or (ii) more intelligent switching functions. In general, each additional gate also introduces a side implementation cost. To enable more efficient digital systems, MIGFETs must leverage their expressive power to realize complex logic circuits with few physical resources. Rese...

  4. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars [Solid State Physics, Nanometer Structure Consortium, Lund University, Box 118, S-221 00 Lund (Sweden)

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  5. Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.

    Science.gov (United States)

    Bae, Jong-Ho; Lee, Jong-Ho

    2016-05-01

    A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.

  6. Analysis of reproducibility of respiration-triggered gated radiotherapy for lung tumors

    International Nuclear Information System (INIS)

    Spoelstra, Femke O.B.; Soernsen de Koste, John R. van; Cuijpers, Johan P.; Lagerwaard, Frank J.; Slotman, Ben J.; Senan, Suresh

    2008-01-01

    Purpose: Respiration-gated radiotherapy (RGRT) can decrease the toxicity of chemo-radiotherapy (CT-RT) by allowing use of smaller treatment fields. RGRT requires a predictable relationship between tumor position and external surrogate, which must be verified during treatment. Time-integrated electronic portal imaging (TI-EPI) identifies mean intra-fractional positions of moving structures, and was used to study reproducibility of anatomy during RGRT for lung tumors. Materials and methods: TI-EPIs were acquired using an amorphous silicon-based electronic portal imaging system (EPID, aS500) in continuous image acquisition mode in 11 patients treated with audio-coached RGRT at end-inspiration. The Varian Real-time Position Management (RPM) system was used for 4DCT imaging and RGRT delivery. All TI-EPI portals were co-registered to corresponding digitally reconstructed radiographs (DRR) of the planning 4DCT using the spinal column. Displacements in tumor position or that of an adjacent bronchus during RGRT was measured relative to the reference structure on the DRR. Results: Vertebra-matched portals revealed systematic (Σ) and random (σ) errors of 1.8 and 1.3 mm in medial-lateral direction and 1.7 and 1.7 mm in cranial-caudal direction, indicating a reproducible tumor/bronchus position during the RPM-triggered gates. Conclusions: RGRT delivery at end-inspiration can achieve reproducible internal anatomy in 'gated' fields delivered with audio-coaching

  7. Estimating Production Potentials: Expert Bias in Applied Decision Making

    International Nuclear Information System (INIS)

    Matthews, L.J.; Burggraf, L.K.; Reece, W.J.

    1998-01-01

    A study was conducted to evaluate how workers predict manufacturing production potentials given positively and negatively framed information. Findings indicate the existence of a bias toward positive information and suggest that this bias may be reduced with experience but is never the less maintained. Experts err in the same way non experts do in differentially processing negative and positive information. Additionally, both experts and non experts tend to overestimate production potentials in a positive direction. The authors propose that these biases should be addressed with further research including cross domain analyses and consideration in training, workplace design, and human performance modeling

  8. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    Energy Technology Data Exchange (ETDEWEB)

    Che, Yongli; Zhang, Yating, E-mail: yating@tju.edu.cn; Song, Xiaoxian; Cao, Mingxuan; Zhang, Guizhong; Yao, Jianquan [Institute of Laser and Opto-Electronics, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); Cao, Xiaolong [Institute of Laser and Opto-Electronics, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Dai, Haitao [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Yang, Junbo [Center of Material Science, National University of Defense Technology, Changsha 410073 (China)

    2016-07-04

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔV{sub th} ∼ 15 V) and a long retention time (>10{sup 5 }s). The magnitude of ΔV{sub th} depended on both P/E voltages and the bias voltage (V{sub DS}): ΔV{sub th} was a cubic function to V{sub P/E} and linearly depended on V{sub DS}. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.

  9. Top-gate pentacene-based organic field-effect transistor with amorphous rubrene gate insulator

    Science.gov (United States)

    Hiroki, Mizuha; Maeda, Yasutaka; Ohmi, Shun-ichiro

    2018-02-01

    The scaling of organic field-effect transistors (OFETs) is necessary for high-density integration and for this, OFETs with a top-gate configuration are required. There have been several reports of damageless lithography processes for organic semiconductor or insulator layers. However, it is still difficult to fabricate scaled OFETs with a top-gate configuration. In this study, the lift-off process and the device characteristics of the OFETs with a top-gate configuration utilizing an amorphous (α) rubrene gate insulator were investigated. We have confirmed that α-rubrene shows an insulating property, and its extracted linear mobility was 2.5 × 10-2 cm2/(V·s). The gate length and width were 10 and 60 µm, respectively. From these results, the OFET with a top-gate configuration utilizing an α-rubrene gate insulator is promising for the high-density integration of scaled OFETs.

  10. State memory in solution gated epitaxial graphene

    Science.gov (United States)

    Butko, A. V.; Butko, V. Y.; Lebedev, S. P.; Lebedev, A. A.; Davydov, V. Y.; Smirnov, A. N.; Eliseyev, I. A.; Dunaevskiy, M. S.; Kumzerov, Y. A.

    2018-06-01

    We studied electrical transport in transistors fabricated on a surface of high quality epitaxial graphene with density of defects as low as 5·1010 cm-2 and observed quasistatic hysteresis with a time constant in a scale of hours. This constant is in a few orders of magnitude greater than the constant previously reported in CVD graphene. The hysteresis observed here can be described as a shift of ∼+2V of the Dirac point measured during a gate voltage increase from the position of the Dirac point measured during a gate voltage decrease. This hysteresis can be characterized as a nonvolatile quasistatic state memory effect in which the state of the gated graphene is determined by its initial state prior to entering the hysteretic region. Due to this effect the difference in resistance of the gated graphene measured in the hysteretic region at the same applied voltages can be as high as 70%. The observed effect can be explained by assuming that charge carriers in graphene and oppositely charged molecular ions from the solution form quasistable interfacial complexes at the graphene interface. These complexes likely preserve the initial state by preventing charge carriers in graphene from discharging in the hysteretic region.

  11. Mobility overestimation due to gated contacts in organic field-effect transistors

    Science.gov (United States)

    Bittle, Emily G.; Basham, James I.; Jackson, Thomas N.; Jurchescu, Oana D.; Gundlach, David J.

    2016-01-01

    Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current–voltage characteristics and interpreted by using the classical metal oxide–semiconductor field-effect transistor model. However, in recent reports of devices with ultra-high mobility (>40 cm2 V−1 s−1), the device characteristics deviate from this idealized model and show an abrupt turn-on in the drain current when measured as a function of gate voltage. In order to investigate this phenomenon, here we report on single crystal rubrene transistors intentionally fabricated to exhibit an abrupt turn-on. We disentangle the channel properties from the contact resistance by using impedance spectroscopy and show that the current in such devices is governed by a gate bias dependence of the contact resistance. As a result, extracted mobility values from d.c. current–voltage characterization are overestimated by one order of magnitude or more. PMID:26961271

  12. Cylindrical gate all around Schottky barrier MOSFET with insulated shallow extensions at source/drain for removal of ambipolarity: a novel approach

    Science.gov (United States)

    Kumar, Manoj; Pratap, Yogesh; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2017-12-01

    In this paper TCAD-based simulation of a novel insulated shallow extension (ISE) cylindrical gate all around (CGAA) Schottky barrier (SB) MOSFET has been reported, to eliminate the suicidal ambipolar behavior (bias-dependent OFF state leakage current) of conventional SB-CGAA MOSFET by blocking the metal-induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions. This novel structure offers low barrier height at the source and offers high ON-state current. The I ON/I OFF of ISE-CGAA-SB-MOSFET increases by 1177 times and offers steeper subthreshold slope (~60 mV/decade). However a little reduction in peak cut off frequency is observed and to further improve the cut-off frequency dual metal gate architecture has been employed and a comparative assessment of single metal gate, dual metal gate, single metal gate with ISE, and dual metal gate with ISE has been presented. The improved performance of Schottky barrier CGAA MOSFET by the incorporation of ISE makes it an attractive candidate for CMOS digital circuit design. The numerical simulation is performed using the ATLAS-3D device simulator.

  13. Cognitive Bias in Systems Verification

    Science.gov (United States)

    Larson, Steve

    2012-01-01

    Working definition of cognitive bias: Patterns by which information is sought and interpreted that can lead to systematic errors in decisions. Cognitive bias is used in diverse fields: Economics, Politics, Intelligence, Marketing, to name a few. Attempts to ground cognitive science in physical characteristics of the cognitive apparatus exceed our knowledge. Studies based on correlations; strict cause and effect is difficult to pinpoint. Effects cited in the paper and discussed here have been replicated many times over, and appear sound. Many biases have been described, but it is still unclear whether they are all distinct. There may only be a handful of fundamental biases, which manifest in various ways. Bias can effect system verification in many ways . Overconfidence -> Questionable decisions to deploy. Availability -> Inability to conceive critical tests. Representativeness -> Overinterpretation of results. Positive Test Strategies -> Confirmation bias. Debiasing at individual level very difficult. The potential effect of bias on the verification process can be managed, but not eliminated. Worth considering at key points in the process.

  14. Fear appeals motivate acceptance of recommendations: evidence for a positive bias in the processing of persuasive messages

    OpenAIRE

    Das, E.; de Wit, J.B.F.; Stroebe, W.

    2003-01-01

    Three experiments are reported that tested the hypothesis that the use of fear appeals in health persuasion may lead to positively biased systematic processing of a subsequent action recommendation aimed at reducing the health threat and, consequently, to more persuasion, regardless of the quality of the arguments in the recommendation. The levels of participants' vulnerability to as well as the seventy of a health risk were varied independently, followed by a manipulation of the quality of t...

  15. Pressure locking and thermal binding of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, E.M.

    1996-12-01

    Pressure locking and thermal binding represent potential common mode failure mechanisms that can cause safety-related power-operated gate valves to fail in the closed position, thus rendering redundant safety-related systems incapable of performing their safety functions. Supplement 6 to Generic Letter 89-10, {open_quotes}Safety-Related Motor-Operated Gate Valve Testing and Surveillance,{close_quotes} provided an acceptable approach to addressing pressure locking and thermal binding of gate valves. More recently, the NRC has issued Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves,{close_quotes} to request that licensees take certain actions to ensure that safety-related power-operated gate valves that are susceptible to pressure locking or thermal binding are capable of performing their safety functions within the current licensing bases. Over the past two years, several plants in Region I determined that valves in certain systems were potentially susceptible to pressure locking and thermal binding, and have taken various corrective actions. The NRC Region I Systems Engineering Branch has been actively involved in the inspection of licensee actions in response to the pressure locking and thermal binding issue. Region I continues to maintain an active involvement in this area, including participation with the Office of Nuclear Reactor Regulation in reviewing licensee responses to Generic Letter 95-07.

  16. Do horses with poor welfare show `pessimistic' cognitive biases?

    Science.gov (United States)

    Henry, S.; Fureix, C.; Rowberry, R.; Bateson, M.; Hausberger, M.

    2017-02-01

    This field study tested the hypothesis that domestic horses living under putatively challenging-to-welfare conditions (for example involving social, spatial, feeding constraints) would present signs of poor welfare and co-occurring pessimistic judgement biases. Our subjects were 34 horses who had been housed for over 3 years in either restricted riding school situations ( e.g. kept in single boxes, with limited roughage, ridden by inexperienced riders; N = 25) or under more naturalistic conditions ( e.g. access to free-range, kept in stable social groups, leisure riding; N = 9). The horses' welfare was assessed by recording health-related, behavioural and postural indicators. Additionally, after learning a location task to discriminate a bucket containing either edible food (`positive' location) or unpalatable food (`negative' location), the horses were presented with a bucket located near the positive position, near the negative position and halfway between the positive and negative positions to assess their judgement biases. The riding school horses displayed the highest levels of behavioural and health-related problems and a pessimistic judgment bias, whereas the horses living under more naturalistic conditions displayed indications of good welfare and an optimistic bias. Moreover, pessimistic bias data strongly correlated with poor welfare data. This suggests that a lowered mood impacts a non-human species' perception of its environment and highlights cognitive biases as an appropriate tool to assess the impact of chronic living conditions on horse welfare.

  17. Do horses with poor welfare show 'pessimistic' cognitive biases?

    Science.gov (United States)

    Henry, S; Fureix, C; Rowberry, R; Bateson, M; Hausberger, M

    2017-02-01

    This field study tested the hypothesis that domestic horses living under putatively challenging-to-welfare conditions (for example involving social, spatial, feeding constraints) would present signs of poor welfare and co-occurring pessimistic judgement biases. Our subjects were 34 horses who had been housed for over 3 years in either restricted riding school situations (e.g. kept in single boxes, with limited roughage, ridden by inexperienced riders; N = 25) or under more naturalistic conditions (e.g. access to free-range, kept in stable social groups, leisure riding; N = 9). The horses' welfare was assessed by recording health-related, behavioural and postural indicators. Additionally, after learning a location task to discriminate a bucket containing either edible food ('positive' location) or unpalatable food ('negative' location), the horses were presented with a bucket located near the positive position, near the negative position and halfway between the positive and negative positions to assess their judgement biases. The riding school horses displayed the highest levels of behavioural and health-related problems and a pessimistic judgment bias, whereas the horses living under more naturalistic conditions displayed indications of good welfare and an optimistic bias. Moreover, pessimistic bias data strongly correlated with poor welfare data. This suggests that a lowered mood impacts a non-human species' perception of its environment and highlights cognitive biases as an appropriate tool to assess the impact of chronic living conditions on horse welfare.

  18. Respiratory gating in positron emission tomography: A quantitative comparison of different gating schemes

    International Nuclear Information System (INIS)

    Dawood, Mohammad; Buether, Florian; Lang, Norbert; Schober, Otmar; Schaefers, Klaus P

    2007-01-01

    Respiratory gating is used for reducing the effects of breathing motion in a wide range of applications from radiotherapy treatment to diagnostical imaging. Different methods are feasible for respiratory gating. In this study seven gating methods were developed and tested on positron emission tomography (PET) listmode data. The results of seven patient studies were compared quantitatively with respect to motion and noise. (1) Equal and (2) variable time-based gating methods use only the time information of the breathing cycle to define respiratory gates. (3) Equal and (4) variable amplitude-based gating approaches utilize the amplitude of the respiratory signal. (5) Cycle-based amplitude gating is a combination of time and amplitude-based techniques. A baseline correction was applied to methods (3) and (4) resulting in two new approaches: Baseline corrected (6) equal and (7) variable amplitude-based gating. Listmode PET data from seven patients were acquired together with a respiratory signal. Images were reconstructed applying the seven gating methods. Two parameters were used to quantify the results: Motion was measured as the displacement of the heart due to respiration and noise was defined as the standard deviation of pixel intensities in a background region. The amplitude-based approaches (3) and (4) were superior to the time-based methods (1) and (2). The improvement in capturing the motion was more than 30% (up to 130%) in all subjects. The variable time (2) and amplitude (4) methods had a more uniform noise distribution among all respiratory gates compared to equal time (1) and amplitude (3) methods. Baseline correction did not improve the results. Out of seven different respiratory gating approaches, the variable amplitude method (4) captures the respiratory motion best while keeping a constant noise level among all respiratory phases

  19. Ensemble clustering in visual working memory biases location memories and reduces the Weber noise of relative positions.

    Science.gov (United States)

    Lew, Timothy F; Vul, Edward

    2015-01-01

    People seem to compute the ensemble statistics of objects and use this information to support the recall of individual objects in visual working memory. However, there are many different ways that hierarchical structure might be encoded. We examined the format of structured memories by asking subjects to recall the locations of objects arranged in different spatial clustering structures. Consistent with previous investigations of structured visual memory, subjects recalled objects biased toward the center of their clusters. Subjects also recalled locations more accurately when they were arranged in fewer clusters containing more objects, suggesting that subjects used the clustering structure of objects to aid recall. Furthermore, subjects had more difficulty recalling larger relative distances, consistent with subjects encoding the positions of objects relative to clusters and recalling them with magnitude-proportional (Weber) noise. Our results suggest that clustering improved the fidelity of recall by biasing the recall of locations toward cluster centers to compensate for uncertainty and by reducing the magnitude of encoded relative distances.

  20. Optical three-step binary-logic-gate-based MSD arithmetic

    Science.gov (United States)

    Fyath, R. S.; Alsaffar, A. A. W.; Alam, M. S.

    2003-11-01

    A three-step modified signed-digit (MSD) adder is proposed which can be optically implmented using binary logic gates. The proposed scheme depends on encoding each MSD digits into a pair of binary digits using a two-state and multi-position based encoding scheme. The design algorithm depends on constructing the addition truth table of binary-coded MSD numbers and then using Karnaugh map to achieve output minimization. The functions associated with the optical binary logic gates are achieved by simply programming the decoding masks of an optical shadow-casting logic system.

  1. A gate drive circuit for gate-turn-off (GTO) devices in series stack

    International Nuclear Information System (INIS)

    Despe, O.

    1999-01-01

    A gate-turn-off (GTO) switch is under development at the Advanced Photon Source as a replacement for a thyratron switch in high power pulsed application. The high voltage in the application requires multiple GTOs connected in series. One component that is critical to the success of GTO operation is the gate drive circuit. The gate drive circuit has to provide fast high-current pulses to the GTO gate for fast turn-on and turn-off. It also has to be able to operate while floating at high voltage. This paper describes a gate drive circuit that meets these requirements

  2. Mismatch Negativity and P50 Sensory Gating in Abstinent Former Cannabis Users

    Directory of Open Access Journals (Sweden)

    Samantha J. Broyd

    2016-01-01

    Full Text Available Prolonged heavy exposure to cannabis is associated with impaired cognition and brain functional and structural alterations. We recently reported attenuated mismatch negativity (MMN and altered P50 sensory gating in chronic cannabis users. This study investigated the extent of brain functional recovery (indexed by MMN and P50 in chronic users after cessation of use. Eighteen ex-users (median 13.5 years prior regular use; median 3.5 years abstinence and 18 nonusers completed (1 a multifeature oddball task with duration, frequency, and intensity deviants and (2 a P50 paired-click paradigm. Trend level smaller duration MMN amplitude and larger P50 ratios (indicative of poorer sensory gating were observed in ex-users compared to controls. Poorer P50 gating correlated with prior duration of cannabis use. Duration of abstinence was positively correlated with duration MMN amplitude, even after controlling for age and duration of cannabis use. Impaired sensory gating and attenuated MMN amplitude tended to persist in ex-users after prolonged cessation of use, suggesting a lack of full recovery. An association with prolonged duration of prior cannabis use may indicate persistent cannabis-related alterations to P50 sensory gating. Greater reductions in MMN amplitude with increasing abstinence (positive correlation may be related to either self-medication or an accelerated aging process.

  3. Low-power DRAM-compatible Replacement Gate High-k/Metal Gate Stacks

    Science.gov (United States)

    Ritzenthaler, R.; Schram, T.; Bury, E.; Spessot, A.; Caillat, C.; Srividya, V.; Sebaai, F.; Mitard, J.; Ragnarsson, L.-Å.; Groeseneken, G.; Horiguchi, N.; Fazan, P.; Thean, A.

    2013-06-01

    In this work, the possibility of integration of High-k/Metal Gate (HKMG), Replacement Metal Gate (RMG) gate stacks for low power DRAM compatible transistors is studied. First, it is shown that RMG gate stacks used for Logic applications need to be seriously reconsidered, because of the additional anneal(s) needed in a DRAM process. New solutions are therefore developed. A PMOS stack HfO2/TiN with TiN deposited in three times combined with Work Function metal oxidations is demonstrated, featuring a very good Work Function of 4.95 eV. On the other hand, the NMOS side is shown to be a thornier problem to solve: a new solution based on the use of oxidized Ta as a diffusion barrier is proposed, and a HfO2/TiN/TaOX/TiAl/TiN/TiN gate stack featuring an aggressive Work Function of 4.35 eV (allowing a Work Function separation of 600 mV between NMOS and PMOS) is demonstrated. This work paves the way toward the integration of gate-last options for DRAM periphery transistors.

  4. Attention bias to emotional information in children as a function of maternal emotional disorders and maternal attention biases.

    Science.gov (United States)

    Waters, Allison M; Forrest, Kylee; Peters, Rosie-Mae; Bradley, Brendan P; Mogg, Karin

    2015-03-01

    Children of parents with emotional disorders have an increased risk for developing anxiety and depressive disorders. Yet the mechanisms that contribute to this increased risk are poorly understood. The present study aimed to examine attention biases in children as a function of maternal lifetime emotional disorders and maternal attention biases. There were 134 participants, including 38 high-risk children, and their mothers who had lifetime emotional disorders; and 29 low-risk children, and their mothers without lifetime emotional disorders. Mothers and children completed a visual probe task with emotional face pairs presented for 500 ms. Attention bias in children did not significantly differ solely as a function of whether or not their mothers had lifetime emotional disorders. However, attention bias in high-risk children was significantly related to their mothers' attention bias. Specifically, children of mothers with lifetime emotional disorders showed a greater negative attention bias if their mothers had a greater tendency to direct attention away from positive information. This study was cross-sectional in nature, and therefore unable to assess long-term predictive effects. Also, just one exposure duration of 500 ms was utilised. Attention bias for negative information is greater in offspring of mothers who have lifetime emotional disorders and a reduced positive bias, which could be a risk marker for the development of emotional disorders in children.

  5. Respiratory gating of cardiac PET data in list-mode acquisition

    International Nuclear Information System (INIS)

    Livieratos, Lefteris; Rajappan, Kim; Camici, Paolo G.; Stegger, Lars; Schafers, Klaus; Bailey, Dale L.

    2006-01-01

    Respiratory motion has been identified as a source of artefacts in most medical imaging modalities. This paper reports on respiratory gating as a means to eliminate motion-related inaccuracies in PET imaging. Respiratory gating was implemented in list mode with physiological signal recorded every millisecond together with the PET data. Respiration was monitored with an inductive respiration monitor using an elasticised belt around the patient's chest. Simultaneous ECG gating can be maintained independently by encoding ECG trigger signal into the list-mode data. Respiratory gating is performed in an off-line workstation with gating parameters defined retrospectively. The technique was applied on a preliminary set of patient data with C 15 O. Motion was visually observed in the cine displays of the sagittal and coronal views of the reconstructed respiratory gated images. Significant changes in the cranial-caudal position of the heart could be observed. The centroid of the cardiac blood pool showed an excursion of 4.5-16.5 mm (mean 8.5±4.8 mm) in the cranial-caudal direction, with more limited excursion of 1.1-7.0 mm (mean 2.5±2.2 mm) in the horizontal direction and 1.3-3.7 mm (mean 2.4±0.9 mm) in the vertical direction. These preliminary data show that the extent of motion involved in respiration is comparable to myocardial wall thickness, and respiratory gating may be considered in order to reduce this effect in the reconstructed images. (orig.)

  6. Respiratory gating of cardiac PET data in list-mode acquisition.

    Science.gov (United States)

    Livieratos, Lefteris; Rajappan, Kim; Stegger, Lars; Schafers, Klaus; Bailey, Dale L; Camici, Paolo G

    2006-05-01

    Respiratory motion has been identified as a source of artefacts in most medical imaging modalities. This paper reports on respiratory gating as a means to eliminate motion-related inaccuracies in PET imaging. Respiratory gating was implemented in list mode with physiological signal recorded every millisecond together with the PET data. Respiration was monitored with an inductive respiration monitor using an elasticised belt around the patient's chest. Simultaneous ECG gating can be maintained independently by encoding ECG trigger signal into the list-mode data. Respiratory gating is performed in an off-line workstation with gating parameters defined retrospectively. The technique was applied on a preliminary set of patient data with C(15)O. Motion was visually observed in the cine displays of the sagittal and coronal views of the reconstructed respiratory gated images. Significant changes in the cranial-caudal position of the heart could be observed. The centroid of the cardiac blood pool showed an excursion of 4.5-16.5 mm (mean 8.5+/-4.8 mm) in the cranial-caudal direction, with more limited excursion of 1.1-7.0 mm (mean 2.5+/-2.2 mm) in the horizontal direction and 1.3-3.7 mm (mean 2.4+/-0.9 mm) in the vertical direction. These preliminary data show that the extent of motion involved in respiration is comparable to myocardial wall thickness, and respiratory gating may be considered in order to reduce this effect in the reconstructed images.

  7. DC Characteristics of AlGaN/GaN HEMTs Using a Dual-Gate Structure.

    Science.gov (United States)

    Hong, Sejun; Rana, Abu ul Hassan Sarwar; Heo, Jun-Woo; Kim, Hyun-Seok

    2015-10-01

    Multiple techniques such as fluoride-based plasma treatment, a p-GaN or p-AlGaN gate contact, and a recessed gate structure have been employed to modulate the threshold voltage of AlGaN/GaN-based high-electron-mobility transistors (HEMTs). In this study, we present dual-gate AlGaN/GaN HEMTs grown on a Si substrate, which effectively shift the threshold voltage in the positive direction. Experimental data show that the threshold voltage is shifted from -4.2 V in a conventional single-gate HEMT to -2.8 V in dual-gate HEMTs. It is evident that a second gate helps improve the threshold voltage by reducing the two-dimensional electron gas density in the channel. Furthermore, the maximum drain current, maximum transconductance, and breakdown voltage values of a single-gate device are not significantly different from those of a dual-gate device. For the fabricated single- and dual-gate devices, the values of the maximum drain current are 430 mA/mm and 428 mA/mm, respectively, whereas the values of the maximum transconductance are 83 mS/mm and 75 mS/mm, respectively.

  8. Gated Treatment Delivery Verification With On-Line Megavoltage Fluoroscopy

    International Nuclear Information System (INIS)

    Tai An; Christensen, James D.; Gore, Elizabeth; Khamene, Ali; Boettger, Thomas; Li, X. Allen

    2010-01-01

    Purpose: To develop and clinically demonstrate the use of on-line real-time megavoltage (MV) fluoroscopy for gated treatment delivery verification. Methods and Materials: Megavoltage fluoroscopy (MVF) image sequences were acquired using a flat panel equipped for MV cone-beam CT in synchrony with the respiratory signal obtained from the Anzai gating device. The MVF images can be obtained immediately before or during gated treatment delivery. A prototype software tool (named RTReg4D) was developed to register MVF images with phase-sequenced digitally reconstructed radiograph images generated from the treatment planning system based on four-dimensional CT. The image registration can be used to reposition the patient before or during treatment delivery. To demonstrate the reliability and clinical usefulness, the system was first tested using a thoracic phantom and then prospectively in actual patient treatments under an institutional review board-approved protocol. Results: The quality of the MVF images for lung tumors is adequate for image registration with phase-sequenced digitally reconstructed radiographs. The MVF was found to be useful for monitoring inter- and intrafractional variations of tumor positions. With the planning target volume contour displayed on the MVF images, the system can verify whether the moving target stays within the planning target volume margin during gated delivery. Conclusions: The use of MVF images was found to be clinically effective in detecting discrepancies in tumor location before and during respiration-gated treatment delivery. The tools and process developed can be useful for gated treatment delivery verification.

  9. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  10. Voltage-gated sodium channels in taste bud cells.

    Science.gov (United States)

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  11. Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions

    International Nuclear Information System (INIS)

    Li, C; Mishchenko, A; Li, Z; Pobelov, I; Wandlowski, Th; Li, X Q; Wuerthner, F; Bagrets, A; Evers, F

    2008-01-01

    We report a scanning tunneling microscopy (STM) experiment in an electrochemical environment which studies a prototype molecular switch. The target molecules were perylene tetracarboxylic acid bisimides modified with pyridine (P-PBI) and methylthiol (T-PBI) linker groups and with bulky tert-butyl-phenoxy substituents in the bay area. At a fixed bias voltage, we can control the transport current through a symmetric molecular wire Au|P-PBI(T-PBI)|Au by variation of the electrochemical 'gate' potential. The current increases by up to two orders of magnitude. The conductances of the P-PBI junctions are typically a factor 3 larger than those of T-PBI. A theoretical analysis explains this effect as a consequence of shifting the lowest unoccupied perylene level (LUMO) in or out of the bias window when tuning the electrochemical gate potential VG. The difference in on/off ratios reflects the variation of hybridization of the LUMO with the electrode states with the anchor groups. I T -E S(T) curves of asymmetric molecular junctions formed between a bare Au STM tip and a T-PBI (P-PBI) modified Au(111) electrode in an aqueous electrolyte exhibit a pronounced maximum in the tunneling current at -0.740, which is close to the formal potential of the surface-confined molecules. The experimental data were explained by a sequential two-step electron transfer process

  12. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio.

    Science.gov (United States)

    Qiu, Chenguang; Zhang, Zhiyong; Zhong, Donglai; Si, Jia; Yang, Yingjun; Peng, Lian-Mao

    2015-01-27

    Field-effect transistors (FETs) based on moderate or large diameter carbon nanotubes (CNTs) usually suffer from ambipolar behavior, large off-state current and small current on/off ratio, which are highly undesirable for digital electronics. To overcome these problems, a feedback-gate (FBG) FET structure is designed and tested. This FBG FET differs from normal top-gate FET by an extra feedback-gate, which is connected directly to the drain electrode of the FET. It is demonstrated that a FBG FET based on a semiconducting CNT with a diameter of 1.5 nm may exhibit low off-state current of about 1 × 10(-13) A, high current on/off ratio of larger than 1 × 10(8), negligible drain-induced off-state leakage current, and good subthreshold swing of 75 mV/DEC even at large source-drain bias and room temperature. The FBG structure is promising for CNT FETs to meet the standard for low-static-power logic electronics applications, and could also be utilized for building FETs using other small band gap semiconductors to suppress leakage current.

  13. Finger-gate manipulated quantum transport in Dirac materials

    International Nuclear Information System (INIS)

    Kleftogiannis, Ioannis; Cheng, Shun-Jen; Tang, Chi-Shung

    2015-01-01

    We investigate the quantum transport properties of multichannel nanoribbons made of materials described by the Dirac equation, under an in-plane magnetic field. In the low energy regime, positive and negative finger-gate potentials allow the electrons to make intra-subband transitions via hole-like or electron-like quasibound states (QBS), respectively, resulting in dips in the conductance. In the high energy regime, double dip structures in the conductance are found, attributed to spin-flip or spin-nonflip inter-subband transitions through the QBSs. Inverting the finger-gate polarity offers the possibility to manipulate the spin polarized electronic transport to achieve a controlled spin-switch. (paper)

  14. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    Science.gov (United States)

    Deen, David A.; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J.

    2016-08-01

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics ft/fmax of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with ft/fmax of 48/60 GHz.

  15. Motion management within two respiratory-gating windows: feasibility study of dual quasi-breath-hold technique in gated medical procedures

    International Nuclear Information System (INIS)

    Kim, Taeho; Kim, Siyong; Youn, Kaylin K; Park, Yang-Kyun; Keall, Paul; Lee, Rena

    2014-01-01

    A dual quasi-breath-hold (DQBH) technique is proposed for respiratory motion management (a hybrid technique combining breathing-guidance with breath-hold task in the middle). The aim of this study is to test a hypothesis that the DQBH biofeedback system improves both the capability of motion management and delivery efficiency. Fifteen healthy human subjects were recruited for two respiratory motion measurements (free breathing and DQBH biofeedback breathing for 15 min). In this study, the DQBH biofeedback system utilized the abdominal position obtained using an real-time position management (RPM) system (Varian Medical Systems, Palo Alto, USA) to audio-visually guide a human subject for 4 s breath-hold at EOI and 90% EOE (EOE 90% ) to improve delivery efficiency. We investigated the residual respiratory motion and the delivery efficiency (duty-cycle) of abdominal displacement within the gating window. The improvement of the abdominal motion reproducibility was evaluated in terms of cycle-to-cycle displacement variability, respiratory period and baseline drift. The DQBH biofeedback system improved the abdominal motion management capability compared to that with free breathing. With a phase based gating (mean ± std: 55  ±  5%), the averaged root mean square error (RMSE) of the abdominal displacement in the dual-gating windows decreased from 2.26 mm of free breathing to 1.16 mm of DQBH biofeedback (p-value = 0.007). The averaged RMSE of abdominal displacement over the entire respiratory cycles reduced from 2.23 mm of free breathing to 1.39 mm of DQBH biofeedback breathing in the dual-gating windows (p-value = 0.028). The averaged baseline drift dropped from 0.9 mm min −1 with free breathing to 0.09 mm min −1 with DQBH biofeedback (p-value = 0.048). The averaged duty-cycle with an 1 mm width of displacement bound increased from 15% of free breathing to 26% of DQBH biofeedback (p-value = 0.003). The study demonstrated that the DQBH

  16. Effects of interpretation training on hostile attribution bias and reactivity to interpersonal insult.

    Science.gov (United States)

    Hawkins, Kirsten A; Cougle, Jesse R

    2013-09-01

    Research suggests that individuals high in anger have a bias for attributing hostile intentions to ambiguous situations. The current study tested whether this interpretation bias can be altered to influence anger reactivity to an interpersonal insult using a single-session cognitive bias modification program. One hundred thirty-five undergraduate students were randomized to receive positive training, negative training, or a control condition. Anger reactivity to insult was then assessed. Positive training led to significantly greater increases in positive interpretation bias relative to the negative group, though these increases were only marginally greater than the control group. Negative training led to increased negative interpretation bias relative to other groups. During the insult, participants in the positive condition reported less anger than those in the control condition. Observers rated participants in the positive condition as less irritated than those in the negative condition and more amused than the other two conditions. Though mediation of effects via bias modification was not demonstrated, among the positive condition posttraining interpretation bias was correlated with self-reported anger, suggesting that positive training reduced anger reactivity by influencing interpretation biases. Findings suggest that positive interpretation training may be a promising treatment for reducing anger. However, the current study was conducted with a non-treatment-seeking student sample; further research with a treatment-seeking sample with problematic anger is necessary. Copyright © 2013. Published by Elsevier Ltd.

  17. Biased lineup instructions and face identification from video images.

    Science.gov (United States)

    Thompson, W Burt; Johnson, Jaime

    2008-01-01

    Previous eyewitness memory research has shown that biased lineup instructions reduce identification accuracy, primarily by increasing false-positive identifications in target-absent lineups. Because some attempts at identification do not rely on a witness's memory of the perpetrator but instead involve matching photos to images on surveillance video, the authors investigated the effects of biased instructions on identification accuracy in a matching task. In Experiment 1, biased instructions did not affect the overall accuracy of participants who used video images as an identification aid, but nearly all correct decisions occurred with target-present photo spreads. Both biased and unbiased instructions resulted in high false-positive rates. In Experiment 2, which focused on video-photo matching accuracy with target-absent photo spreads, unbiased instructions led to more correct responses (i.e., fewer false positives). These findings suggest that investigators should not relax precautions against biased instructions when people attempt to match photos to an unfamiliar person recorded on video.

  18. Bias-free spin-wave phase shifter for magnonic logic

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Steven; Tyberkevych, Vasyl; Slavin, Andrei [Department of Physics, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan, 48309–4401 (United States); Lisenkov, Ivan, E-mail: ivan.lisenkov@phystech.edu [Department of Physics, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan, 48309–4401 (United States); Kotelnikov Institute of Radio-engineering and Electronics of RAS, 11–7 Mokhovaya st., Moscow, 125009 (Russian Federation); Nikitov, Sergei [Kotelnikov Institute of Radio-engineering and Electronics of RAS, 11–7 Mokhovaya st., Moscow, 125009 (Russian Federation); Moscow Institute of Physics and Technology, 9 Instituskij per., Dolgoprudny, 141700, Moscow Region (Russian Federation); Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012 (Russian Federation)

    2016-06-15

    A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall “waveguide” in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM) ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.

  19. Analysis of reverse gate leakage mechanism of AlGaN/GaN HEMTs with N2 plasma surface treatment

    Science.gov (United States)

    Liu, Hui; Zhang, Zongjing; Luo, Weijun

    2018-06-01

    The mechanism of reverse gate leakage current of AlGaN/GaN HEMTs with two different surface treatment methods are studied by using C-V, temperature dependent I-V and theoretical analysis. At the lower reverse bias region (VR >- 3.5 V), the dominant leakage current mechanism of the device with N2 plasma surface treatment is the Poole-Frenkel emission current (PF), and Trap-Assisted Tunneling current (TAT) is the principal leakage current of the device which treated by HCl:H2O solution. At the higher reverse bias region (VR current of the device with N2 plasma surface treatment is one order of magnitude smaller than the device which treated by HCl:H2O solution. This is due to the recovery of Ga-N bond in N2 plasma surface treatment together with the reduction of the shallow traps in post-gate annealing (PGA) process. The measured results agree well with the theoretical calculations and demonstrate N2 plasma surface treatment can reduce the reverse leakage current of the AlGaN/GaN HEMTs.

  20. Mood-congruent attention and memory bias in dysphoria: Exploring the coherence among information-processing biases.

    Science.gov (United States)

    Koster, Ernst H W; De Raedt, Rudi; Leyman, Lemke; De Lissnyder, Evi

    2010-03-01

    Recent studies indicate that depression is characterized by mood-congruent attention bias at later stages of information-processing. Moreover, depression has been associated with enhanced recall of negative information. The present study tested the coherence between attention and memory bias in dysphoria. Stable dysphoric (n = 41) and non-dysphoric (n = 41) undergraduates first performed a spatial cueing task that included negative, positive, and neutral words. Words were presented for 250 ms under conditions that allowed or prevented elaborate processing. Memory for the words presented in the cueing task was tested using incidental free recall. Dysphoric individuals exhibited an attention bias for negative words in the condition that allowed elaborate processing, with the attention bias for negative words predicting free recall of negative words. Results demonstrate the coherence of attention and memory bias in dysphoric individuals and provide suggestions on the influence of attention bias on further processing of negative material. 2009 Elsevier Ltd. All rights reserved.

  1. Cognitive bias measurement and social anxiety disorder: Correlating self-report data and attentional bias

    Directory of Open Access Journals (Sweden)

    Alexander Miloff

    2015-09-01

    Full Text Available Social anxiety disorder (SAD and attentional bias are theoretically connected in cognitive behavioral therapeutic models. In fact, there is an emerging field focusing on modifying attentional bias as a stand-alone treatment. However, it is unclear to what degree these attentional biases are present before commencing treatment. The purpose of this study was to measure pre-treatment attentional bias in 153 participants diagnosed with SAD using a home-based Internet version of the dot-probe paradigm. Results showed no significant correlation for attentional bias (towards or away from negative words or faces and the self-rated version of the Liebowitz Social Anxiety Scale (LSAS-SR. However, two positive correlations were found for the secondary measures Generalized Anxiety Disorder 7 (GAD-7 and Patient Health Questionnaire 9 (PHQ-9. These indicated that those with elevated levels of anxiety and depression had a higher bias towards negative faces in neutral–negative and positive–negative valence combinations, respectively. The unreliability of the dot-probe paradigm and home-based Internet delivery are discussed to explain the lack of correlations between LSAS-SR and attentional bias. Changes to the dot-probe task are suggested that could improve reliability.

  2. Negative differential transconductance in electrolyte-gated ruthenate

    International Nuclear Information System (INIS)

    Hassan, Muhammad Umair; Dhoot, Anoop Singh; Wimbush, Stuart C.

    2015-01-01

    We report on a study of electric field-induced doping of the highly conductive ruthenate SrRuO 3 using an ionic liquid as the gate dielectric in a field-effect transistor configuration. Two distinct carrier transport regimes are identified for increasing positive gate voltage in thin (10 nm) films grown heteroepitaxially on SrTiO 3 substrates. For V g  = 2 V and lower, the sample shows an increased conductivity of up to 13%, as might be expected for electron doping of a metal. At higher V g  = 2.5 V, we observe a large decrease in electrical conductivity of >20% (at 4.2 K) due to the prevalence of strongly blocked conduction pathways

  3. Negative differential transconductance in electrolyte-gated ruthenate

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Muhammad Umair [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Center for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Park Road, Shehzad Town 44000, Islamabad (Pakistan); Dhoot, Anoop Singh, E-mail: asd24@cam.ac.uk [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Wimbush, Stuart C. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand)

    2015-01-19

    We report on a study of electric field-induced doping of the highly conductive ruthenate SrRuO{sub 3} using an ionic liquid as the gate dielectric in a field-effect transistor configuration. Two distinct carrier transport regimes are identified for increasing positive gate voltage in thin (10 nm) films grown heteroepitaxially on SrTiO{sub 3} substrates. For V{sub g} = 2 V and lower, the sample shows an increased conductivity of up to 13%, as might be expected for electron doping of a metal. At higher V{sub g} = 2.5 V, we observe a large decrease in electrical conductivity of >20% (at 4.2 K) due to the prevalence of strongly blocked conduction pathways.

  4. Clinical relevance of positive voltage-gated potassium channel (VGKC)-complex antibodies: experience from a tertiary referral centre.

    Science.gov (United States)

    Paterson, Ross W; Zandi, Michael S; Armstrong, Richard; Vincent, Angela; Schott, Jonathan M

    2014-06-01

    Voltage-gated potassium channel (VGKC)-complex antibodies can be associated with a range of immunotherapy-responsive clinical presentations including limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. However, there are patients with positive levels in whom the significance is uncertain. To evaluate the clinical significance associated with positive (>100 pM) VGKC-complex antibodies. Over a 4-year period, 1053 samples were sent for testing of which 55 were positive. The clinical presentations, final diagnoses and responses to immunotherapies, when given, were assessed retrospectively and the likelihood of autoimmunity was categorised as definite, possible, unlikely or undetermined (modified from Zuliani et al 2012). Only 4 of the 32 patients with low-positive (100-400 pM) levels were considered definitely autoimmune, 3 with peripheral nerve hyperexcitability and 1 with a thymoma; 3 were given immunotherapies. Of the remaining 28 with low-positive levels, 13 (3 of whom had tumours) were considered possibly autoimmune, and 15 were unlikely or undetermined; 1 was given immunotherapy unsuccessfully. Of the 23 patients with high-positive (>400 pM) levels, 12 were given immunotherapies, 11 of whom showed a good response. 11 were considered definitely autoimmune, 10 with limbic encephalitis (antibody specificity: 5 LGI1, 1 contactin2, 2 negative, 2 untested) and 1 with a tumour. In the remaining 12, autoimmunity was considered possible (n=9; most had not received immunotherapies), or unlikely (n=3). As antibody testing becomes more widely available, and many samples are referred from patients with less clear-cut diagnoses, it is important to assess the utility of the results. VGKC-complex antibodies in the range of 100-400 pM (0.1-0.4 nM) were considered clinically relevant in rare conditions with peripheral nerve hyperexcitability and appeared to associate with tumours (12.5%). By contrast high-positive (>400 pM; >0.4 nM) levels were considered definitely

  5. Measurement of time delay for a prospectively gated CT simulator.

    Science.gov (United States)

    Goharian, M; Khan, R F H

    2010-04-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery

  6. Reevaluating the worst-case radiation response of MOS transistors

    Science.gov (United States)

    Fleetwood, D. M.

    Predicting worst-case response of a semiconductor device to ionizing radiation is a formidable challenge. As processes change and MOS gate insulators become thinner in advanced VLSI and VHSIC technologies, failure mechanisms must be constantly re-examined. Results are presented of a recent study in which more than 100 MOS transistors were monitored for up to 300 days after Co-60 exposure. Based on these results, a reevaluation of worst-case n-channel transistor response (most positive threshold voltage shift) in low-dose-rate and postirradiation environments is required in many cases. It is shown for Sandia hardened n-channel transistors with a 32 nm gate oxide, that switching from zero-volt bias, held during the entire radiation period, to positive bias during anneal clearly leads to a more positive threshold voltage shift (and thus the slowest circuit response) after Co-60 exposure than the standard case of maintaining positive bias during irradiation and anneal. It is concluded that irradiating these kinds of transistors with zero-volt bias, and annealing with positive bias, leads to worst-case postirradiation response. For commercial devices (with few interface states at doses of interest), on the other hand, device response only improves postirradiation, and worst-case response (in terms of device leakage) is for devices irradiated under positive bias and annealed with zero-volts bias.

  7. Expert Oracle GoldenGate

    CERN Document Server

    Prusinski, Ben; Chung, Richard

    2011-01-01

    Expert Oracle GoldenGate is a hands-on guide to creating and managing complex data replication environments using the latest in database replication technology from Oracle. GoldenGate is the future in replication technology from Oracle, and aims to be best-of-breed. GoldenGate supports homogeneous replication between Oracle databases. It supports heterogeneous replication involving other brands such as Microsoft SQL Server and IBM DB2 Universal Server. GoldenGate is high-speed, bidirectional, highly-parallelized, and makes only a light impact on the performance of databases involved in replica

  8. Identification of the gate regions in the primary structure of the secretin pIV.

    Science.gov (United States)

    Spagnuolo, Julian; Opalka, Natacha; Wen, Wesley X; Gagic, Dragana; Chabaud, Elodie; Bellini, Pierdomenico; Bennett, Matthew D; Norris, Gillian E; Darst, Seth A; Russel, Marjorie; Rakonjac, Jasna

    2010-04-01

    Secretins are a family of large bacterial outer membrane channels that serve as exit ports for folded proteins, filamentous phage and surface structures. Despite the large size of their substrates, secretins do not compromise the barrier function of the outer membrane, implying a gating mechanism. The region in the primary structure that forms the putative gate has not previously been determined for any secretin. To identify residues involved in gating the pIV secretin of filamentous bacteriophage f1, we used random mutagenesis of the gene followed by positive selection for mutants with compromised barrier function ('leaky' mutants). We identified mutations in 34 residues, 30 of which were clustered into two regions located in the centre of the conserved C-terminal secretin family domain: GATE1 (that spanned 39 residues) and GATE2 (that spanned 14 residues). An internal deletion constructed in the GATE2 region resulted in a severely leaky phenotype. Three of the four remaining mutations are located in the region that encodes the N-terminal, periplasmic portion of pIV and could be involved in triggering gate opening. Two missense mutations in the 24-residue region that separates GATE1 and GATE2 were also constructed. These mutant proteins were unstable, defective in multimerization and non-functional.

  9. Biases in casino betting

    Directory of Open Access Journals (Sweden)

    James Sundali

    2006-07-01

    Full Text Available We examine two departures of individual perceptions of randomness from probability theory: the hot hand and the gambler's fallacy, and their respective opposites. This paper's first contribution is to use data from the field (individuals playing roulette in a casino to demonstrate the existence and impact of these biases that have been previously documented in the lab. Decisions in the field are consistent with biased beliefs, although we observe significant individual heterogeneity in the population. A second contribution is to separately identify these biases within a given individual, then to examine their within-person correlation. We find a positive and significant correlation across individuals between hot hand and gambler's fallacy biases, suggesting a common (root cause of the two related errors. We speculate as to the source of this correlation (locus of control, and suggest future research which could test this speculation.

  10. A Positive Emotional Bias in Confabulatory False Beliefs about Place

    Science.gov (United States)

    Turnbull, Oliver H.; Berry, Helen; Evans, Cathryn E.Y.

    2004-01-01

    Some neurological patients with medial frontal lesions exhibit striking confabulations. Most accounts of the cause of confabulations are cognitive, though the literature has produced anecdotal suggestions that confabulations may not be emotionally neutral, having a ("wish-fulfillment") bias that shapes the patient's perception of reality in a more…

  11. Large-scale galaxy bias

    Science.gov (United States)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  12. Ironic effects of racial bias during interracial interactions.

    Science.gov (United States)

    Shelton, J Nicole; Richeson, Jennifer A; Salvatore, Jessica; Trawalter, Sophie

    2005-05-01

    Previous research has suggested that Blacks like White interaction partners who make an effort to appear unbiased more than those who do not. We tested the hypothesis that, ironically, Blacks perceive White interaction partners who are more racially biased more positively than less biased White partners, primarily because the former group must make more of an effort to control racial bias than the latter. White participants in this study completed the Implicit Association Test (IAT) as a measure of racial bias and then discussed race relations with either a White or a Black partner. Whites' IAT scores predicted how positively they were perceived by Black (but not White) interaction partners, and this relationship was mediated by Blacks' perceptions of how engaged the White participants were during the interaction. We discuss implications of the finding that Blacks may, ironically, prefer to interact with highly racially biased Whites, at least in short interactions.

  13. Residual motion of lung tumors in end-of-inhale respiratory gated radiotherapy based on external surrogates

    International Nuclear Information System (INIS)

    Berbeco, Ross I.; Nishioka, Seiko; Shirato, Hiroki; Jiang, Steve B.

    2006-01-01

    It has been noted that some lung tumors exhibit large periodic motion due to respiration. To limit the amount of dose to healthy lung tissues, many clinics have begun gating radiotherapy treatment using externally placed surrogates. It has been observed by several institutions that the end-of-exhale (EOE) tumor position is more reproducible than other phases of the breathing cycle, so the gating window is often set there. From a treatment planning perspective, end-of-inhale (EOI) phase might be preferred for gating because the expanded lungs will further decrease the healthy tissue within the treatment field. We simulate gated treatment at the EOI phase, using a set of recently measured internal/external anatomy patient data. This paper attempts to answer three questions: (1) How much is the tumor residual motion when we use an external surrogate gating window at EOI? (2) How could we reduce the residual motion in the EOI gating window? (3) Is there a preference for amplitude- versus phase-based gating at EOI? We found that under free breathing conditions the residual motion of the tumors is much larger for EOI phase than for EOE phase. The mean values of residual motion at EOI were found to be 2.2 and 2.7 mm for amplitude- and phase-based gating, respectively, and, at EOE, 1.0 and 1.2 mm for amplitude- and phase-based gating, respectively. However, we note that the residual motion in the EOI gating window is correlated well with the reproducibility of the external surface position in the EOI phase. Using the results of a published breath-coaching study, we deduce that the residual motion of a lung tumor at EOI would approach that at EOE, with the same duty cycle (30%), under breath-coaching conditions. Additionally, we found that under these same conditions, phase-based gating approaches the same residual motion as amplitude-based gating, going from a 28% difference to 11%, for the patient with the largest difference between the two gating modalities. We conclude

  14. Role of respiratory-gated PET/CT for pancreatic tumors: A preliminary result

    International Nuclear Information System (INIS)

    Kasuya, Takeo; Tateishi, Ukihide; Suzuki, Kazufumi; Daisaki, Hiromitsu; Nishiyama, Yuji; Hata, Masaharu; Inoue, Tomio

    2013-01-01

    Purpose: The aim of this study is to ascertain role of respiratory-gated PET/CT for accurate diagnosis of pancreatic tumors. Materials and methods: Prior to clinical study, the phantom study was performed to evaluate the impact of respiratory motion on lesion quantification. Twenty-two patients (mean age 65 years) with pancreatic tumors were enrolled. Pathological diagnoses by surgical specimens consisted of pancreatic cancer (n = 15) and benign intraductal papillary mucinous neoplasm (IPMN, n = 7). Whole-body scan of non-respiratory-gated PET/CT was performed at first, and subsequent respiratory-gated PET/CT for one bed position was performed. All PET/CT studies were performed prior to surgery. The SUV max obtained by non-respiratory-gated PET/CT and respiratory-gated PET/CT, and percent difference in SUVmax (%SUVmax) were compared. Results: The profile curve of 5 respiratory bin image was most similar to that of static image. The third bin of 5 respiratory bin image showed highest FWHM (24.0 mm) and FWTM (32.7 mm). The mean SUVmax of pancreatic cancer was similar to that of benign IPMN on non-respiratory-gated PET/CT (p = 0.05), whereas significant difference was found between two groups on respiratory-gated PET/CT (p = 0.016). The mean %SUV of pancreatic cancer was greater than that of benign IPMN (p < 0.0001). Identification of the primary tumor in pancreatic head (n = 13, 59%) was improved by using respiratory-gated PET/CT because of minimal affection of physiological accumulation in duodenum. Conclusion: Respiratory-gated PET/CT is a feasible technique for evaluation of pancreatic tumors and allows more accurate identification of pancreatic tumors compared with non-respiratory-gated PET/CT

  15. Alstom Francis Turbine Ring Gates: from Retrofitting to Commissioning

    Science.gov (United States)

    A, Nguyen P.; G, Labrecque; M-O, Thibault; M, Bergeron; A, Steinhilber; D, Havard

    2014-03-01

    The Ring Gate synchronisation system developed by Alstom is new and patented. It uses hydraulic cylinders connected in pairs by a serial connection. The new hydraulic synchronisation system, when compared to the previous mechanical synchronisation system, has several advantages. It is a compact design; it reduces the number of mechanical components as well as maintenance costs. The new system maintains the Ring Gates robustness. The new approach is an evolution from mechanical to hydraulic synchronization assisted by electronic control. The new synchronization system eliminates several mechanical components that used to add wear and friction and which are usually difficult to adjust during maintenance. Tension chains and sprockets and associated controls are eliminated. Through the position sensors, the redundancy of the ring gate synchronization system makes it predictable and reliable. The electronic control compensates for any variation in operation, for example a leak in the hydraulic system. An emergency closing is possible without the electronic control system due to the stiffness of hydraulic serial connection in the hydraulic cylinder pairs. The Ring Gate can work safely against uneven loads and frictions. The development will be reviewed and its application discussed through commissioning results.

  16. Alstom Francis Turbine Ring Gates: from Retrofitting to Commissioning

    International Nuclear Information System (INIS)

    Nguyen P A; Labrecque G; Thibault M-O; Bergeron M; Steinhilber A; Havard D

    2014-01-01

    The Ring Gate synchronisation system developed by Alstom is new and patented. It uses hydraulic cylinders connected in pairs by a serial connection. The new hydraulic synchronisation system, when compared to the previous mechanical synchronisation system, has several advantages. It is a compact design; it reduces the number of mechanical components as well as maintenance costs. The new system maintains the Ring Gates robustness. The new approach is an evolution from mechanical to hydraulic synchronization assisted by electronic control. The new synchronization system eliminates several mechanical components that used to add wear and friction and which are usually difficult to adjust during maintenance. Tension chains and sprockets and associated controls are eliminated. Through the position sensors, the redundancy of the ring gate synchronization system makes it predictable and reliable. The electronic control compensates for any variation in operation, for example a leak in the hydraulic system. An emergency closing is possible without the electronic control system due to the stiffness of hydraulic serial connection in the hydraulic cylinder pairs. The Ring Gate can work safely against uneven loads and frictions. The development will be reviewed and its application discussed through commissioning results

  17. First polarization-engineered compressively strained AlInGaN barrier enhancement-mode MISHFET

    International Nuclear Information System (INIS)

    Hahn, Herwig; Reuters, Ben; Wille, Ada; Ketteniss, Nico; Kalisch, Holger; Vescan, Andrei; Benkhelifa, Fouad; Ambacher, Oliver

    2012-01-01

    One current focus of research is the realization of GaN-based enhancement-mode devices. A novel approach for the realization of enhancement-mode behaviour is the utilization of polarization matching between the barrier and the GaN buffer. Yet, the utilization of a quaternary barrier combining polarization engineering together with a large conduction band offset has not been demonstrated so far. Here, epitaxially grown, compressively strained AlInGaN is applied as a nearly polarization-matched barrier layer on GaN resulting in enhancement-mode operation. The insulated-gate devices are fabricated gate-first with Al 2 O 3 as gate dielectric. Passivated metal insulator semiconductor heterostructure field effect transistors yielded threshold voltages (V th ) of up to +1 V. The devices withstand negative and positive gate-biased stress and a positive V th is maintained even after long-time negative bias stress. (paper)

  18. Affective health bias in older adults: Considering positive and negative affect in a general health context.

    Science.gov (United States)

    Whitehead, Brenda R; Bergeman, C S

    2016-09-01

    Because subjective health reports are a primary source of health information in a number of medical and research-based contexts, much research has been devoted to establishing the extent to which these self-reports of health correspond to health information from more objective sources. One of the key factors considered in this area is trait affect, with most studies emphasizing the impact of negative affect (negative emotions) over positive affect (positive emotions), and focusing on high-arousal affect (e.g., anger, excitement) over moderate- or low-arousal affect (e.g., relaxed, depressed). The present study examines the impact of both Positive and Negative Affect (PA/NA)-measured by items of both high and low arousal-on the correspondence between objective health information and subjective health reports. Another limitation of existing literature in the area is the focus on samples suffering from a particular diagnosis or on specific symptom reports; here, these effects are investigated in a sample of community-dwelling older adults representing a broader spectrum of health. 153 older adults (Mage = 71.2) took surveys assessing Perceived Health and Affect and underwent an objective physical health assessment. Structural equation modeling was used to investigate the extent to which the relationship between Objective Health and Perceived Health was moderated by PA or NA, which would indicate the presence of affective health bias. Results reveal a significant moderation effect for NA, but not for PA; PA appeared to serve a more mediational function, indicating that NA and PA operate on health perceptions in distinct ways. These findings provide evidence that in our high-functioning, community-dwelling sample of older adults, a) affective health bias is present within a general health context, and not only within specific symptom or diagnostic categories; and b) that both PA and NA play important roles in the process. Copyright © 2016 Elsevier Ltd. All rights

  19. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer

    International Nuclear Information System (INIS)

    Nakayama, Hiroyasu; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Saitoh, Eiji; Ye, Jianting; Iwasa, Yoshihiro

    2012-01-01

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with 27 (-25) MV cm -1 of electric field by applying only 1.7 V of positive (negative) gate voltage. The experimental results indicate that the ionic-liquid-gated EDLT technique can be used for controlling the surface electronic states on metallic systems. (author)

  20. Top-gate hybrid complementary inverters using pentacene and amorphous InGaZnO thin-film transistors with high operational stability

    Directory of Open Access Journals (Sweden)

    J. B. Kim

    2012-03-01

    Full Text Available We report on the operational stability of low-voltage hybrid organic-inorganic complementary inverters with a top-gate bottom source-drain geometry. The inverters are comprised of p-channel pentacene and n-channel amorphous InGaZnO thin-film transistors (TFTs with bi-layer gate dielectrics formed from an amorphous layer of a fluoropolymer (CYTOP and a high-k layer of Al2O3. The p- and n- channel TFTs show saturation mobility values of 0.1 ± 0.01 and 5.0 ± 0.5 cm2/Vs, respectively. The individual transistors show high electrical stability with less than 6% drain-to-source current variations after 1 h direct current (DC bias stress. Complementary inverters yield hysteresis-free voltage transfer characteristics for forward and reverse input biases with static DC gain values larger than 45 V/V at 8 V before and after being subjected to different conditions of electrical stress. Small and reversible variations of the switching threshold voltage of the inverters during these stress tests are compatible with the observed stability of the individual TFTs.

  1. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jan, S; Becheva, E [DSV/I2BM/SHFJ, Commissariat a l' Energie Atomique, Orsay (France); Benoit, D; Rehfeld, N; Stute, S; Buvat, I [IMNC-UMR 8165 CNRS-Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Carlier, T [INSERM U892-Cancer Research Center, University of Nantes, Nantes (France); Cassol, F; Morel, C [Centre de physique des particules de Marseille, CNRS-IN2P3 and Universite de la Mediterranee, Aix-Marseille II, 163, avenue de Luminy, 13288 Marseille Cedex 09 (France); Descourt, P; Visvikis, D [INSERM, U650, Laboratoire du Traitement de l' Information Medicale (LaTIM), CHU Morvan, Brest (France); Frisson, T; Grevillot, L; Guigues, L; Sarrut, D; Zahra, N [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U630, INSA-Lyon, Universite Lyon 1, Centre Leon Berard (France); Maigne, L; Perrot, Y [Laboratoire de Physique Corpusculaire, 24 Avenue des Landais, 63177 Aubiere Cedex (France); Schaart, D R [Delft University of Technology, Radiation Detection and Medical Imaging, Mekelweg 15, 2629 JB Delft (Netherlands); Pietrzyk, U, E-mail: buvat@imnc.in2p3.fr [Reseach Center Juelich, Institute of Neurosciences and Medicine and Department of Physics, University of Wuppertal (Germany)

    2011-02-21

    GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used to assist PET and SPECT research. A recent extension of this platform, released by the OpenGATE collaboration as GATE V6, now also enables modelling of x-ray computed tomography and radiation therapy experiments. This paper presents an overview of the main additions and improvements implemented in GATE since the publication of the initial GATE paper (Jan et al 2004 Phys. Med. Biol. 49 4543-61). This includes new models available in GATE to simulate optical and hadronic processes, novelties in modelling tracer, organ or detector motion, new options for speeding up GATE simulations, examples illustrating the use of GATE V6 in radiotherapy applications and CT simulations, and preliminary results regarding the validation of GATE V6 for radiation therapy applications. Upon completion of extensive validation studies, GATE is expected to become a valuable tool for simulations involving both radiotherapy and imaging.

  2. The role of cognitive biases in short-term psychodynamic psychotherapy.

    Science.gov (United States)

    Kramer, Ueli; Ortega, Diana; Ambresin, Gilles; Despland, Jean-Nicolas; de Roten, Yves

    2018-06-01

    The concept of biased thinking - or cognitive biases - is relevant to psychotherapy research and clinical conceptualization, beyond cognitive theories. The present naturalistic study aimed to examine the changes in biased thinking over the course of a short-term dynamic psychotherapy (STDP) and to discover potential links between these changes and symptomatic improvement. This study focuses on 32 self-referred patients consulting for Adjustment Disorder according to DSM-IV-TR. The therapists were experienced psychodynamically oriented psychiatrists and psychotherapists. Coding of cognitive biases (using the Cognitive Errors Rating Scale; CERS) was made by external raters based on transcripts of interviews of psychotherapy; the reliability of these ratings on a randomly chosen 24% of all sessions was established. Based on the Symptom Check List SCL-90-R given before and after, the Reliable Change Index (RCI) was used. The assessment of cognitive errors was done at three time points: early (session 4-7), mid-treatment (session 12-17), and close to the end (after session 20) of the treatment. The results showed that the total frequency of cognitive biases was stable over time (p = .20), which was true both for positive and for negative cognitive biases. In exploring the three main subscales of the CERS, we found a decrease in selective abstraction (p = .02) and an increase in personalization (p = .05). A significant link between RCI scores (outcome) and frequency of positive cognitive biases was found, suggesting that biases towards the positive might have a protective function in psychotherapy. Therapists may be attentive to changes in biased thinking across short-term dynamic psychotherapy for adjustment disorder. Therapists may foster the emergence of positive cognitive biases at mid-treatment for adjustment disorder. © 2017 The British Psychological Society.

  3. Validation of a gating technique for radiotherapy treatment of injuries affected by respiratory motion; Validacion de una atecnica de gating para el tratamiento con radioterapia externa de lesiones afectadas por el movimiento respiratorio

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Ortega, J.; Castro Tejero, P.

    2011-07-01

    The use of gating techniques for the treatment of lesions that are involved respiratory motion may bring an increase in the dose administered. tumors and decreased the dose to adjacent healthy organs. In the study presented shows the steps taken to validate the respiratory gating technique using the RPM system (Real-time Position Management) from Varian. (Author)

  4. Single OR molecule and OR atomic circuit logic gates interconnected on a Si(100)H surface

    International Nuclear Information System (INIS)

    Ample, F; Joachim, C; Duchemin, I; Hliwa, M

    2011-01-01

    Electron transport calculations were carried out for three terminal OR logic gates constructed either with a single molecule or with a surface dangling bond circuit interconnected on a Si(100)H surface. The corresponding multi-electrode multi-channel scattering matrix (where the central three terminal junction OR gate is the scattering center) was calculated, taking into account the electronic structure of the supporting Si(100)H surface, the metallic interconnection nano-pads, the surface atomic wires and the molecule. Well interconnected, an optimized OR molecule can only run at a maximum of 10 nA output current intensity for a 0.5 V bias voltage. For the same voltage and with no molecule in the circuit, the output current of an OR surface atomic scale circuit can reach 4 μA.

  5. Effects of Cognitive Bias Modification Training via Smartphones

    OpenAIRE

    Ranming Yang; Ranming Yang; Lixia Cui; Feng Li; Jing Xiao; Qin Zhang; Tian P. S. Oei; Tian P. S. Oei

    2017-01-01

    Background and Objectives: Negative cognitive biases have been linked to anxiety and mood problems. Accumulated data from laboratory studies show that positive and negative interpretation styles with accompanying changes in mood can be induced through cognitive bias modification (CBM) paradigms. Despite the therapeutic potential of positive training effects, few studies have explored training paradigms administered via smartphones. The current study aimed to compare the effectiveness of three...

  6. Novel Quantum Dot Gate FETs and Nonvolatile Memories Using Lattice-Matched II-VI Gate Insulators

    Science.gov (United States)

    Jain, F. C.; Suarez, E.; Gogna, M.; Alamoody, F.; Butkiewicus, D.; Hohner, R.; Liaskas, T.; Karmakar, S.; Chan, P.-Y.; Miller, B.; Chandy, J.; Heller, E.

    2009-08-01

    This paper presents the successful use of ZnS/ZnMgS and other II-VI layers (lattice-matched or pseudomorphic) as high- k gate dielectrics in the fabrication of quantum dot (QD) gate Si field-effect transistors (FETs) and nonvolatile memory structures. Quantum dot gate FETs and nonvolatile memories have been fabricated in two basic configurations: (1) monodispersed cladded Ge nanocrystals (e.g., GeO x -cladded-Ge quantum dots) site-specifically self-assembled over the lattice-matched ZnMgS gate insulator in the channel region, and (2) ZnTe-ZnMgTe quantum dots formed by self-organization, using metalorganic chemical vapor-phase deposition (MOCVD), on ZnS-ZnMgS gate insulator layers grown epitaxially on Si substrates. Self-assembled GeO x -cladded Ge QD gate FETs, exhibiting three-state behavior, are also described. Preliminary results on InGaAs-on-InP FETs, using ZnMgSeTe/ZnSe gate insulator layers, are presented.

  7. Highly-accelerated self-gated free-breathing 3D cardiac cine MRI: validation in assessment of left ventricular function.

    Science.gov (United States)

    Liu, Jing; Feng, Li; Shen, Hsin-Wei; Zhu, Chengcheng; Wang, Yan; Mukai, Kanae; Brooks, Gabriel C; Ordovas, Karen; Saloner, David

    2017-08-01

    This work presents a highly-accelerated, self-gated, free-breathing 3D cardiac cine MRI method for cardiac function assessment. A golden-ratio profile based variable-density, pseudo-random, Cartesian undersampling scheme was implemented for continuous 3D data acquisition. Respiratory self-gating was achieved by deriving motion signal from the acquired MRI data. A multi-coil compressed sensing technique was employed to reconstruct 4D images (3D+time). 3D cardiac cine imaging with self-gating was compared to bellows gating and the clinical standard breath-held 2D cine imaging for evaluation of self-gating accuracy, image quality, and cardiac function in eight volunteers. Reproducibility of 3D imaging was assessed. Self-gated 3D imaging provided an image quality score of 3.4 ± 0.7 vs 4.0 ± 0 with the 2D method (p = 0.06). It determined left ventricular end-systolic volume as 42.4 ± 11.5 mL, end-diastolic volume as 111.1 ± 24.7 mL, and ejection fraction as 62.0 ± 3.1%, which were comparable to the 2D method, with bias ± 1.96 × SD of -0.8 ± 7.5 mL (p = 0.90), 2.6 ± 3.3 mL (p = 0.84) and 1.4 ± 6.4% (p = 0.45), respectively. The proposed 3D cardiac cine imaging method enables reliable respiratory self-gating performance with good reproducibility, and provides comparable image quality and functional measurements to 2D imaging, suggesting that self-gated, free-breathing 3D cardiac cine MRI framework is promising for improved patient comfort and cardiac MRI scan efficiency.

  8. Large-scale galaxy bias

    Science.gov (United States)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  9. MRI-based tumor motion characterization and gating schemes for radiation therapy of pancreatic cancer

    International Nuclear Information System (INIS)

    Heerkens, Hanne D.; Vulpen, Marco van; Berg, Cornelis A.T. van den; Tijssen, Rob H.N.; Crijns, Sjoerd P.M.; Molenaar, Izaak Q.; Santvoort, Hjalmar C. van; Reerink, Onne; Meijer, Gert J.

    2014-01-01

    Background and purpose: To characterize pancreatic tumor motion and to develop a gating scheme for radiotherapy in pancreatic cancer. Materials and methods: Two cine MRIs of 60 s each were performed in fifteen pancreatic cancer patients, one in sagittal direction and one in coronal direction. A Minimum Output Sum of Squared Error (MOSSE) adaptive correlation filter was used to quantify tumor motion in craniocaudal, lateral and anteroposterior directions. To develop a gating scheme, stability of the breathing phases was examined and a gating window assessment was created, incorporating tumor motion, treatment time and motion margins. Results: The largest tumor motion was found in craniocaudal direction, with an average peak-to-peak amplitude of 15 mm (range 6–34 mm). Amplitude of the tumor in the anteroposterior direction was on average 5 mm (range 1–13 mm). The least motion was seen in lateral direction (average 3 mm, range 2–5 mm). The end exhale position was the most stable position in the breathing cycle and tumors spent more time closer to the end exhale position than to the end inhale position. On average, a margin of 25% of the maximum craniocaudal breathing amplitude was needed to achieve full target coverage with a duty cycle of 50%. When reducing the duty cycle to 50%, a margin of 5 mm was sufficient to cover the target in 11 out of 15 patients. Conclusion: Gated delivery for radiotherapy of pancreatic cancer is best performed around the end exhale position as this is the most stable position in the breathing cycle. Considerable margin reduction can be established at moderate duty cycles, yielding acceptable treatment efficiency. However, motion patterns and amplitude do substantially differ between individual patients. Therefore, individual treatment strategies should be considered for radiotherapy in pancreatic cancer

  10. Fundamentals of bias temperature instability in MOS transistors characterization methods, process and materials impact, DC and AC modeling

    CERN Document Server

    2016-01-01

    This book aims to cover different aspects of Bias Temperature Instability (BTI). BTI remains as an important reliability concern for CMOS transistors and circuits. Development of BTI resilient technology relies on utilizing artefact-free stress and measurement methods and suitable physics-based models for accurate determination of degradation at end-of-life, and understanding the gate insulator process impact on BTI. This book discusses different ultra-fast characterization techniques for recovery artefact free BTI measurements. It also covers different direct measurements techniques to access pre-existing and newly generated gate insulator traps responsible for BTI. The book provides a consistent physical framework for NBTI and PBTI respectively for p- and n- channel MOSFETs, consisting of trap generation and trapping. A physics-based compact model is presented to estimate measured BTI degradation in planar Si MOSFETs having differently processed SiON and HKMG gate insulators, in planar SiGe MOSFETs and also...

  11. New opening hours of the gates

    CERN Multimedia

    GS Department

    2009-01-01

    Please note the new opening hours of the gates as well as the intersites tunnel from the 19 May 2009: GATE A 7h - 19h GATE B 24h/24 GATE C 7h - 9h\t17h - 19h GATE D 8h - 12h\t13h - 16h GATE E 7h - 9h\t17h - 19h Prévessin 24h/24 The intersites tunnel will be opened from 7h30 to 18h non stop. GS-SEM Group Infrastructure and General Services Department

  12. Bias against research on gender bias.

    Science.gov (United States)

    Cislak, Aleksandra; Formanowicz, Magdalena; Saguy, Tamar

    2018-01-01

    The bias against women in academia is a documented phenomenon that has had detrimental consequences, not only for women, but also for the quality of science. First, gender bias in academia affects female scientists, resulting in their underrepresentation in academic institutions, particularly in higher ranks. The second type of gender bias in science relates to some findings applying only to male participants, which produces biased knowledge. Here, we identify a third potentially powerful source of gender bias in academia: the bias against research on gender bias. In a bibliometric investigation covering a broad range of social sciences, we analyzed published articles on gender bias and race bias and established that articles on gender bias are funded less often and published in journals with a lower Impact Factor than articles on comparable instances of social discrimination. This result suggests the possibility of an underappreciation of the phenomenon of gender bias and related research within the academic community. Addressing this meta-bias is crucial for the further examination of gender inequality, which severely affects many women across the world.

  13. Characterization of negative bias-illumination-stress stability for transparent top-gate In-Ga-Zn-O thin-film transistors with variations in the incorporated oxygen content

    Science.gov (United States)

    Kim, Kyeong-Ah; Park, Min-Ji; Lee, Won-Ho; Yoon, Sung-Min

    2015-12-01

    We fabricated fully transparent top-gate In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) while varying the oxygen partial pressure (PO2) during IGZO sputtering deposition and characterized the negative-bias-illumination stress (NBIS) stabilities of these devices before and after a post-annealing process. When the PO2 was chosen to be 2% and the device was annealed in oxygen ambient conditions at 200 °C, the field-effect mobility in the saturation region, subthreshold swing, and on/off current ratio were obtained to be approximately 15.3 cm2 V-1 s-1, 0.14 V/dec, and 8.7 × 109, respectively. Conversely, the TFT did not show the transfer characteristics when the PO2 was chosen to be 0% and no annealing process was performed. The shifts in the turn-on voltages (ΔVon) under the NBIS conditions with red, green, and blue lights were investigated for the fabricated IGZO TFTs. The ΔVon followed the stretched-exponential relationship and was found to be closely related to the concentration of oxygen vacancies and oxygen-related defects in the IGZO channel and at the interfaces. The NBIS stabilities were improved by increasing the PO2 and performing the annealing process in oxygen ambient conditions.

  14. Optical XOR gate

    Science.gov (United States)

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  15. Intrinsic respiratory gating in small-animal CT

    International Nuclear Information System (INIS)

    Bartling, Soenke H.; Dinkel, Julien; Kauczor, Hans-Ulrich; Stiller, Wolfram; Semmler, Wolfhard; Grasruck, Michael; Madisch, Ijad; Gupta, Rajiv; Kiessling, Fabian

    2008-01-01

    Gating in small-animal CT imaging can compensate artefacts caused by physiological motion during scanning. However, all published gating approaches for small animals rely on additional hardware to derive the gating signals. In contrast, in this study a novel method of intrinsic respiratory gating of rodents was developed and tested for mice (n=5), rats (n=5) and rabbits (n=2) in a flat-panel cone-beam CT system. In a consensus read image quality was compared with that of non-gated and retrospective extrinsically gated scans performed using a pneumatic cushion. In comparison to non-gated images, image quality improved significantly using intrinsic and extrinsic gating. Delineation of diaphragm and lung structure improved in all animals. Image quality of intrinsically gated CT was judged to be equivalent to extrinsically gated ones. Additionally 4D datasets were calculated using both gating methods. Values for expiratory, inspiratory and tidal lung volumes determined with the two gating methods were comparable and correlated well with values known from the literature. We could show that intrinsic respiratory gating in rodents makes additional gating hardware and preparatory efforts superfluous. This method improves image quality and allows derivation of functional data. Therefore it bears the potential to find wide applications in small-animal CT imaging. (orig.)

  16. Effects of limiter biasing on the ATF torsatron

    International Nuclear Information System (INIS)

    Uckan, T.; Baylor, L.R.; Bell, J.D.; Bigelow, T.S.; England, A.C.; Harris, J.H.; Isler, R.C.; Jernigan, T.C.; Lyon, J.F.; Ma, C.H.; Mioduszewski, P.K.; Murakami, M.; Rasmussen, D.A.; Wilgen, J.B.; Aceto, S.C.; Zielinski, J.J.

    1992-09-01

    Positive limiter biasing on the currentless Advanced Toroidal Facility (ATF) torsatron produces a significant increase in the particle confinement with no improvement in the energy confinement. Experiments have been carried out in 1-T plasmas with ∼400 kill of electron cyclotron heating ECM. Two rail limiters located at the last closed flux surface (LCFS), one at the top and one at the bottom of the device, are biased at positive and negative potentials with respect to the vessel. When the limiters are positively biased at up to 300 V, the density increases sharply to the ECH cutoff value. At the same time, the H α radiation drops, indicating that the particle confinement improves. When the density is kept constant, the H α radiation is further reduced and there is almost no change in the plasma stored energy. Under these conditions, the density profile becomes peaked and the electric field becomes outward-pointing outside the LCFS and more negative inside the LCFS. In contrast, negative biasing yields some reduction of the density and stored energy at constant gas feed, and the plasma potential profile remains the same. Biasing has almost no effect on the intrinsic impurity levels in the plasma

  17. Establishing tumour tracking accuracy in free-breathing respiratory gated SBRT of lung cancer

    International Nuclear Information System (INIS)

    Wen, Chuan-Dong; Wong, C; Ackerly, T; Ruben, J; Millar, J

    2014-01-01

    Free-breathing respiratory gated SBRT of surgically inoperable lung cancer has been clinically commissioned. This study was to establish the tumour tracking accuracy under clinical conditions based on an implanted fiducial marker. A Visicoil TM marker embedded in tissue-equivalent material mounted in a phantom (ET Gating Phantom TM Brainlab) driven by a patient's breathing data was treated with the ExacTrac TM system. This one-dimensional moving marker represented a tumour motion in superior-inferior (S-I) direction measured through 4DCT study of the same patient. Both Gafchromic TM films and the stereoscopic kV images were used for tracking the position of the marker. For tumour motion at magnitudes of 10, 20 and 29 mm and treated with corresponding gate widths of 50%, 33% and 20% of free breathing amplitude, the implanted marker was able to be tracked with a deviation ≤1.53 mm to its planned position.

  18. Measuring implicit attitudes: A positive framing bias flaw in the Implicit Relational Assessment Procedure (IRAP).

    Science.gov (United States)

    O'Shea, Brian; Watson, Derrick G; Brown, Gordon D A

    2016-02-01

    How can implicit attitudes best be measured? The Implicit Relational Assessment Procedure (IRAP), unlike the Implicit Association Test (IAT), claims to measure absolute, not just relative, implicit attitudes. In the IRAP, participants make congruent (Fat Person-Active: false; Fat Person-Unhealthy: true) or incongruent (Fat Person-Active: true; Fat Person-Unhealthy: false) responses in different blocks of trials. IRAP experiments have reported positive or neutral implicit attitudes (e.g., neutral attitudes toward fat people) in cases in which negative attitudes are normally found on explicit or other implicit measures. It was hypothesized that these results might reflect a positive framing bias (PFB) that occurs when participants complete the IRAP. Implicit attitudes toward categories with varying prior associations (nonwords, social systems, flowers and insects, thin and fat people) were measured. Three conditions (standard, positive framing, and negative framing) were used to measure whether framing influenced estimates of implicit attitudes. It was found that IRAP scores were influenced by how the task was framed to the participants, that the framing effect was modulated by the strength of prior stimulus associations, and that a default PFB led to an overestimation of positive implicit attitudes when measured by the IRAP. Overall, the findings question the validity of the IRAP as a tool for the measurement of absolute implicit attitudes. A new tool (Simple Implicit Procedure:SIP) for measuring absolute, not just relative, implicit attitudes is proposed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Lateral current generation in n-AlGaAs/GaAs heterojunction channels by Schottky-barrier gate illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kawazu, Takuya; Noda, Takeshi; Sakuma, Yoshiki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakaki, Hiroyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511 (Japan)

    2015-01-12

    We observe lateral currents induced in an n-AlGaAs/GaAs heterojunction channel of Hall bar geometry, when an asymmetric position of the Schottky metal gate is locally irradiated by a near-infrared laser beam. When the left side of the Schottky gate is illuminated with the laser, the lateral current flows from left to right in the two dimensional electron gas (2DEG) channel. In contrast, the right side illumination leads to the current from right to left. The magnitude of the lateral current is almost linearly dependent on the beam position, the current reaching its maximum for the beam at the edge of the Schottky gate. The experimental findings are well explained by a theory based on the current-continuity equation, where the lateral current in the 2DEG channel is driven by the photocurrent which vertically flows from the 2DEG to the Schottky gate.

  20. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    International Nuclear Information System (INIS)

    Deen, David A.; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J.

    2016-01-01

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics f_t/f_m_a_x of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with f_t/f_m_a_x of 48/60 GHz.

  1. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    Energy Technology Data Exchange (ETDEWEB)

    Deen, David A., E-mail: david.deen@alumni.nd.edu; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J. [Naval Research Laboratory, Electronics Science and Technology Division, Washington, DC 20375 (United States)

    2016-08-08

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics f{sub t}/f{sub max} of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with f{sub t}/f{sub max} of 48/60 GHz.

  2. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex

    DEFF Research Database (Denmark)

    Osorio, Edgar A; Moth-Poulsen, Kasper; van der Zant, Herre S J

    2010-01-01

    -field on the Mn-atom. Adding a single electron thus stabilizes the low-spin configuration and the corresponding sequential tunnelling current is suppressed by spin-blockade. From low-temperature inelastic cotunneling spectroscopy, we infer the magnetic excitation spectrum of the molecule and uncover also...... a strongly gate-dependent singlet-triplet splitting on the low-spin side. The measured bias-spectroscopy is shown to be consistent with an exact diagonalization of the Mn-complex, and an interpretation of the data is given in terms of a simplified effective model....

  3. Signatures of Mechanosensitive Gating.

    Science.gov (United States)

    Morris, Richard G

    2017-01-10

    The question of how mechanically gated membrane channels open and close is notoriously difficult to address, especially if the protein structure is not available. This perspective highlights the relevance of micropipette-aspirated single-particle tracking-used to obtain a channel's diffusion coefficient, D, as a function of applied membrane tension, σ-as an indirect assay for determining functional behavior in mechanosensitive channels. While ensuring that the protein remains integral to the membrane, such methods can be used to identify not only the gating mechanism of a protein, but also associated physical moduli, such as torsional and dilational rigidity, which correspond to the protein's effective shape change. As an example, three distinct D-versus-σ "signatures" are calculated, corresponding to gating by dilation, gating by tilt, and gating by a combination of both dilation and tilt. Both advantages and disadvantages of the approach are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Step-and-shoot prospectively ECG-gated vs. retrospectively ECG-gated with tube current modulation coronary CT angiography using 128-slice MDCT patients with chest pain: diagnostic performance and radiation dose

    International Nuclear Information System (INIS)

    Kim, Jeong Su; Choo, Ki Seok; Jeong, Dong Wook

    2011-01-01

    Background With increasing awareness for radiation exposure, the study of diagnostic accuracy of coronary CT angiography (CCTA) with low radiation dose techniques is mandatory to both radiologist and clinician. Purpose To compare diagnostic performance and effective radiation dose between step-and-shoot prospectively ECG-gated and retrospectively ECG-gated with tube current modulation (TCM) CCTA using 128-slice multidetector computed tomography (MDCT). Material and Methods We retrospectively evaluated 60 patients who underwent CCTA with either of two different low-dose techniques using 128-slice MDCT (23 patients for step-and shoot-prospectively ECG-gated and 37 patients for retrospectively ECG-gated with TCM CCTA) followed by conventional coronary angiography. All coronary arteries and all segments thereof, except anatomical variants or small size (< 1.5 mm) ones, were included in analysis. Results In per-segment analysis, sensitivity, specificity, positive predictive value, and negative predictive value were 91/96%, 95/94%, 75/73%, and 98/99% for step-and-shoot prospectively ECG-gated and retrospectively ECG gated with TCM CCTA, respectively, relative to conventional coronary angiography. Effective radiation dose were 1.75 ± 0.83 mSv, 4.91 ± 1.71 mSv in the step-and-shoot prospectively ECG-gated and retrospectively ECG-gated with TCM CCTA groups, respectively. Conclusion The two low-radiation dose CCTA techniques using 128-slice MDCT yields comparable diagnostic performance for coronary artery disease in symptomatic patients with low heart rates

  5. Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition

    Science.gov (United States)

    Perkins, Charles M.; Triplett, Baylor B.; McIntyre, Paul C.; Saraswat, Krishna C.; Haukka, Suvi; Tuominen, Marko

    2001-04-01

    Structural and electrical properties of gate stack structures containing ZrO2 dielectrics were investigated. The ZrO2 films were deposited by atomic layer chemical vapor deposition (ALCVD) after different substrate preparations. The structure, composition, and interfacial characteristics of these gate stacks were examined using cross-sectional transmission electron microscopy and x-ray photoelectron spectroscopy. The ZrO2 films were polycrystalline with either a cubic or tetragonal crystal structure. An amorphous interfacial layer with a moderate dielectric constant formed between the ZrO2 layer and the substrate during ALCVD growth on chemical oxide-terminated silicon. Gate stacks with a measured equivalent oxide thickness (EOT) of 1.3 nm showed leakage values of 10-5 A/cm2 at a bias of -1 V from flatband, which is significantly less than that seen with SiO2 dielectrics of similar EOT. A hysteresis of 8-10 mV was seen for ±2 V sweeps while a midgap interface state density (Dit) of ˜3×1011 states/cm eV was determined from comparisons of measured and ideal capacitance curves.

  6. Quantum gate decomposition algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Slepoy, Alexander

    2006-07-01

    Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.

  7. Graphene/Pentacene Barristor with Ion-Gel Gate Dielectric: Flexible Ambipolar Transistor with High Mobility and On/Off Ratio.

    Science.gov (United States)

    Oh, Gwangtaek; Kim, Jin-Soo; Jeon, Ji Hoon; Won, EunA; Son, Jong Wan; Lee, Duk Hyun; Kim, Cheol Kyeom; Jang, Jingon; Lee, Takhee; Park, Bae Ho

    2015-07-28

    High-quality channel layer is required for next-generation flexible electronic devices. Graphene is a good candidate due to its high carrier mobility and unique ambipolar transport characteristics but typically shows a low on/off ratio caused by gapless band structure. Popularly investigated organic semiconductors, such as pentacene, suffer from poor carrier mobility. Here, we propose a graphene/pentacene channel layer with high-k ion-gel gate dielectric. The graphene/pentacene device shows both high on/off ratio and carrier mobility as well as excellent mechanical flexibility. Most importantly, it reveals ambipolar behaviors and related negative differential resistance, which are controlled by external bias. Therefore, our graphene/pentacene barristor with ion-gel gate dielectric can offer various flexible device applications with high performances.

  8. Gated single photon emission computer tomography for the detection of silent myocardial ischemia

    International Nuclear Information System (INIS)

    Pena Q, Yamile; Coca P, Marco Antonio; Batista C, Juan Felipe; Fernandez-Britto, Jose; Quesada P, Rodobaldo; Pena C; Andria

    2009-01-01

    Background: Asymptomatic patients with severe coronary atherosclerosis may have a normal resting electrocardiogram and stress test. Aim: To assess the yield of Gated Single Photon Emission Computer Tomography (SPECT) for the screening of silent myocardial ischemia in type 2 diabetic patients. Material and methods: Electrocardiogram, stress test and gated-SPECT were performed on 102 type 2 diabetic patients aged 60 ± 8 years without cardiovascular symptoms. All subjects were also subjected to a coronary angiography, whose results were used as gold standard. Results: Gated-SPECT showed myocardial ischemia on 26.5% of studied patients. The sensibility, specificity, accuracy, positive predictive value and negative predictive value were 92.3%, 96%, 95%, 88.8%, 97.3%, respectively. In four and six patients ischemia was detected on resting electrocardiogram and stress test, respectively. Eighty percent of patients with doubtful resting electrocardiogram results and 70% with a doubtful stress test had a silent myocardial ischemia detected by gated-SPECT. There was a good agreement between the results of gated-SPECT and coronary angiography (k =0.873). Conclusions: Gated-SPECT was an useful tool for the screening of silent myocardial ischemia

  9. Effect of indium low doping in ZnO based TFTs on electrical parameters and bias stress stability

    Energy Technology Data Exchange (ETDEWEB)

    Cheremisin, Alexander B., E-mail: acher612@gmail.com; Kuznetsov, Sergey N.; Stefanovich, Genrikh B. [Physico-Technical Department, Petrozavodsk State University, Petrozavodsk 185910 (Russian Federation)

    2015-11-15

    Some applications of thin film transistors (TFTs) need the bottom-gate architecture and unpassivated channel backside. We propose a simple routine to fabricate indium doped ZnO-based TFT with satisfactory characteristics and acceptable stability against a bias stress in ambient room air. To this end, a channel layer of 15 nm in thickness was deposited on cold substrate by DC reactive magnetron co-sputtering of metal Zn-In target. It is demonstrated that the increase of In concentration in ZnO matrix up to 5% leads to negative threshold voltage (V{sub T}) shift and an increase of field effect mobility (μ) and a decrease of subthreshold swing (SS). When dopant concentration reaches the upper level of 5% the best TFT parameters are achieved such as V{sub T} = 3.6 V, μ = 15.2 cm{sup 2}/V s, SS = 0.5 V/dec. The TFTs operate in enhancement mode exhibiting high turn on/turn off current ratio more than 10{sup 6}. It is shown that the oxidative post-fabrication annealing at 250{sup o}C in pure oxygen and next ageing in dry air for several hours provide highly stable operational characteristics under negative and positive bias stresses despite open channel backside. A possible cause of this effect is discussed.

  10. 1400 V 4H-SiC power MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, A.K.; Casady, J.B.; Rowland, L.B.; Valek, W.F.; Brandt, C.D. [Northrop Grumman Sci. and Technol. Center, Pittsburgh, PA (United States)

    1998-08-01

    Silicon carbide (4H-SiC), power U-metal-oxide-semiconductor field-effect transistors (UMOSFETs) were fabricated and characterized from room temperature to 200 C. The devices had a 12 {mu}m thick lightly doped n-type drift layer, and a nominal channel length of 4 {mu}m. When tested under Fluorinert{sup TM} at room temperature, blocking voltages ranged from 1.3 kV to 1.4 kV. Effective channel mobility ranged from 1.5 cm{sup 2}/V.s at room temperature with a gate bias of 32 V (oxide field {proportional_to} 3.5 MV/cm) up to 7 cm{sup 2}/V.s at 100 C with an applied gate bias of 26 V (oxide field {proportional_to} 2.9 MV/cm). Specific on-resistance (R{sub on,sp}) was calculated to be as low as 74 m{Omega}.cm{sup 2} at 100 C under the same gate bias. Fowler-Nordheim measurements with positive gate bias on actual UMOS devices indicated thermionic field injection at elevated temperatures. (orig.) 8 refs.

  11. Effects of electrolyte gating on photoluminescence spectra of large-area WSe2monolayer films

    KAUST Repository

    Matsuki, Keiichiro; Pu, Jiang; Kozawa, Daichi; Matsuda, Kazunari; Li, Lain-Jong; Takenobu, Taishi

    2016-01-01

    We fabricated electric double-layer transistors comprising large-area WSe2 monolayers and investigated the effects of electrolyte gating on their photoluminescence (PL) spectra. Using the efficient gating effects of electric double layers, we succeeded in the application of a large electric field (>107Vcm%1) and the accumulation of high carrier density (>1013cm%2). As a result, we observed PL spectra based on both positively and negatively charged excitons and their gate-voltage-dependent redshifts, suggesting the effects of both an electric field and charge accumulation. © 2016 The Japan Society of Applied Physics.

  12. Effects of electrolyte gating on photoluminescence spectra of large-area WSe2monolayer films

    KAUST Repository

    Matsuki, Keiichiro

    2016-05-24

    We fabricated electric double-layer transistors comprising large-area WSe2 monolayers and investigated the effects of electrolyte gating on their photoluminescence (PL) spectra. Using the efficient gating effects of electric double layers, we succeeded in the application of a large electric field (>107Vcm%1) and the accumulation of high carrier density (>1013cm%2). As a result, we observed PL spectra based on both positively and negatively charged excitons and their gate-voltage-dependent redshifts, suggesting the effects of both an electric field and charge accumulation. © 2016 The Japan Society of Applied Physics.

  13. Social influence bias: a randomized experiment.

    Science.gov (United States)

    Muchnik, Lev; Aral, Sinan; Taylor, Sean J

    2013-08-09

    Our society is increasingly relying on the digitized, aggregated opinions of others to make decisions. We therefore designed and analyzed a large-scale randomized experiment on a social news aggregation Web site to investigate whether knowledge of such aggregates distorts decision-making. Prior ratings created significant bias in individual rating behavior, and positive and negative social influences created asymmetric herding effects. Whereas negative social influence inspired users to correct manipulated ratings, positive social influence increased the likelihood of positive ratings by 32% and created accumulating positive herding that increased final ratings by 25% on average. This positive herding was topic-dependent and affected by whether individuals were viewing the opinions of friends or enemies. A mixture of changing opinion and greater turnout under both manipulations together with a natural tendency to up-vote on the site combined to create the herding effects. Such findings will help interpret collective judgment accurately and avoid social influence bias in collective intelligence in the future.

  14. Angle-independent measure of motion for image-based gating in 3D coronary angiography

    International Nuclear Information System (INIS)

    Lehmann, Glen C.; Holdsworth, David W.; Drangova, Maria

    2006-01-01

    The role of three-dimensional (3D) image guidance for interventional procedures and minimally invasive surgeries is increasing for the treatment of vascular disease. Currently, most interventional procedures are guided by two-dimensional x-ray angiography, but computed rotational angiography has the potential to provide 3D geometric information about the coronary arteries. The creation of 3D angiographic images of the coronary arteries requires synchronization of data acquisition with respect to the cardiac cycle, in order to minimize motion artifacts. This can be achieved by inferring the extent of motion from a patient's electrocardiogram (ECG) signal. However, a direct measurement of motion (from the 2D angiograms) has the potential to improve the 3D angiographic images by ensuring that only projections acquired during periods of minimal motion are included in the reconstruction. This paper presents an image-based metric for measuring the extent of motion in 2D x-ray angiographic images. Adaptive histogram equalization was applied to projection images to increase the sharpness of coronary arteries and the superior-inferior component of the weighted centroid (SIC) was measured. The SIC constitutes an image-based metric that can be used to track vessel motion, independent of apparent motion induced by the rotational acquisition. To evaluate the technique, six consecutive patients scheduled for routine coronary angiography procedures were studied. We compared the end of the SIC rest period (ρ) to R-waves (R) detected in the patient's ECG and found a mean difference of 14±80 ms. Two simultaneous angular positions were acquired and ρ was detected for each position. There was no statistically significant difference (P=0.79) between ρ in the two simultaneously acquired angular positions. Thus we have shown the SIC to be independent of view angle, which is critical for rotational angiography. A preliminary image-based gating strategy that employed the SIC was

  15. Self-gated fat-suppressed cardiac cine MRI.

    Science.gov (United States)

    Ingle, R Reeve; Santos, Juan M; Overall, William R; McConnell, Michael V; Hu, Bob S; Nishimura, Dwight G

    2015-05-01

    To develop a self-gated alternating repetition time balanced steady-state free precession (ATR-SSFP) pulse sequence for fat-suppressed cardiac cine imaging. Cardiac gating is computed retrospectively using acquired magnetic resonance self-gating data, enabling cine imaging without the need for electrocardiogram (ECG) gating. Modification of the slice-select rephasing gradients of an ATR-SSFP sequence enables the acquisition of a one-dimensional self-gating readout during the unused short repetition time (TR). Self-gating readouts are acquired during every TR of segmented, breath-held cardiac scans. A template-matching algorithm is designed to compute cardiac trigger points from the self-gating signals, and these trigger points are used for retrospective cine reconstruction. The proposed approach is compared with ECG-gated ATR-SSFP and balanced steady-state free precession in 10 volunteers and five patients. The difference of ECG and self-gating trigger times has a variability of 13 ± 11 ms (mean ± SD). Qualitative reviewer scoring and ranking indicate no statistically significant differences (P > 0.05) between self-gated and ECG-gated ATR-SSFP images. Quantitative blood-myocardial border sharpness is not significantly different among self-gated ATR-SSFP ( 0.61±0.15 mm -1), ECG-gated ATR-SSFP ( 0.61±0.15 mm -1), or conventional ECG-gated balanced steady-state free precession cine MRI ( 0.59±0.15 mm -1). The proposed self-gated ATR-SSFP sequence enables fat-suppressed cardiac cine imaging at 1.5 T without the need for ECG gating and without decreasing the imaging efficiency of ATR-SSFP. © 2014 Wiley Periodicals, Inc.

  16. Measurement of time delay for a prospectively gated CT simulator

    Directory of Open Access Journals (Sweden)

    Goharian M

    2010-01-01

    Full Text Available For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient′s breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore™ (Philips Medical Systems, Madison, WI scanner attached to a Varian Real-Time Position Management™ (RPM system (Varian Medical Systems, Palo Alto, CA was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL ′X-Ray ON′ status signal from the CT scanner in a text file. The TTL ′X-Ray ON′ indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 ± 40 ms. The delay requires corrections both at image acquisition and while setting gates for

  17. Measurement of time delay for a prospectively gated CT simulator

    International Nuclear Information System (INIS)

    Goharian, M.; Khan, R.F.H.

    2010-01-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 ± 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery

  18. Evaluation of the geometric accuracy of surrogate-based gated VMAT using intrafraction kilovoltage x-ray images

    International Nuclear Information System (INIS)

    Li Ruijiang; Mok, Edward; Han, Bin; Koong, Albert; Xing Lei

    2012-01-01

    Purpose: To evaluate the geometric accuracy of beam targeting in external surrogate-based gated volumetric modulated arc therapy (VMAT) using kilovoltage (kV) x-ray images acquired during dose delivery. Methods: Gated VMAT treatments were delivered using a Varian TrueBeam STx Linac for both physical phantoms and patients. Multiple gold fiducial markers were implanted near the target. The reference position was created for each implanted marker, representing its correct position at the gating threshold. The gating signal was generated from the RPM system. During the treatment, kV images were acquired immediately before MV beam-on at every breathing cycle, using the on-board imaging system. All implanted markers were detected and their 3D positions were estimated using in-house developed software. The positioning error of a marker is defined as the distance of the marker from its reference position for each frame of the images. The overall error of the system is defined as the average over all markers. For the phantom study, both sinusoidal motion (1D and 3D) and real human respiratory motion was simulated for the target and surrogate. In the baseline case, the two motions were synchronized for the first treatment fraction. To assess the effects of surrogate-target correlation on the geometric accuracy, a phase shift of 5% and 10% between the two motions was introduced. For the patient study, intrafraction kV images of five stereotactic body radiotherapy (SBRT) patients were acquired for one or two fractions. Results: For the phantom study, a high geometric accuracy was achieved in the baseline case (average error: 0.8 mm in the superior-inferior or SI direction). However, the treatment delivery is prone to geometric errors if changes in the target-surrogate relation occur during the treatment: the average error was increased to 2.3 and 4.7 mm for the phase shift of 5% and 10%, respectively. Results obtained with real human respiratory curves show a similar trend

  19. Carbon doping induced giant low bias negative differential resistance in boron nitride nanoribbon

    International Nuclear Information System (INIS)

    Liu, N.; Liu, J.B.; Gao, G.Y.; Yao, K.L.

    2014-01-01

    By applying nonequilibrium Green's function combined with density functional theory, we investigated the electronic transport properties of carbon-doped armchair boron nitride nanoribbons. Obvious negative differential resistance (NDR) behavior with giant peak-to-valley ratio up to the order of 10 4 –10 6 is found by tuning the doping position and concentration. Especially, with the reduction of doping concentration, NDR peak position can enter into mV bias range and even can be expected lower than mV bias. The negative differential resistance behavior is explained by the evolution of the transmission spectra and band structures with applied bias. - Highlights: • Negative differential resistance (NDR) behavior with giant peak-to-valley ratio is found. • Doping concentration changes the NDR peak position significantly. • NDR peak position can enter into mV bias range and even lower than mV bias. • The results are explained by the bias-dependent transmission spectra and band structures

  20. Near interface traps in SiO{sub 2}/4H-SiC metal-oxide-semiconductor field effect transistors monitored by temperature dependent gate current transient measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fiorenza, Patrick; La Magna, Antonino; Vivona, Marilena; Roccaforte, Fabrizio [Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, Zona Industriale 95121 Catania (Italy)

    2016-07-04

    This letter reports on the impact of gate oxide trapping states on the conduction mechanisms in SiO{sub 2}/4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs). The phenomena were studied by gate current transient measurements, performed on n-channel MOSFETs operated in “gate-controlled-diode” configuration. The measurements revealed an anomalous non-steady conduction under negative bias (V{sub G} > |20 V|) through the SiO{sub 2}/4H-SiC interface. The phenomenon was explained by the coexistence of a electron variable range hopping and a hole Fowler-Nordheim (FN) tunnelling. A semi-empirical modified FN model with a time-depended electric field is used to estimate the near interface traps in the gate oxide (N{sub trap} ∼ 2 × 10{sup 11} cm{sup −2}).

  1. Low band-to-band tunnelling and gate tunnelling current in novel nanoscale double-gate architecture: simulations and investigation

    International Nuclear Information System (INIS)

    Datta, Deepanjan; Ganguly, Samiran; Dasgupta, S

    2007-01-01

    Large band-to-band tunnelling (BTBT) and gate leakage current can limit scalability of nanoscale devices. In this paper, we have proposed a novel nanoscale parallel connected heteromaterial double gate (PCHEM-DG) architecture with triple metal gate which significantly suppress BTBT leakage, making it efficient for low power design in the sub-10 nm regime. We have also proposed a triple gate device with p + poly-n + poly-p + poly gate which has substantially low gate leakage over symmetric DG MOSFET. Simulations are performed using a 2D Poisson-Schroedinger simulator and verified with a 2D device simulator ATLAS. We conclude that, due to intrinsic body doping, negligible gate leakage, suppressed BTBT over symmetric DG devices, metal gate (MG) PCHEM-DG MOSFET is efficient for low power circuit design in the nanometre regime

  2. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique

    International Nuclear Information System (INIS)

    Tsai, I.C.; Lee, Tain; Chen, Min-Chi; Fu, Yun-Ching; Jan, Sheng-Lin; Wang, Chung-Chi; Chang, Yen

    2007-01-01

    Multidetector CT (MDCT) seems to be a promising tool for detection of neonatal coronary arteries, but whether the ECG-gated or non-ECG-gated technique should be used has not been established. To compare the detection rate and image quality of neonatal coronary arteries on MDCT using ECG-gated and non-ECG-gated techniques. Twelve neonates with complex congenital heart disease were included. The CT scan was acquired using an ECG-gated technique, and the most quiescent phase of the RR interval was selected to represent the ECG-gated images. The raw data were then reconstructed without the ECG signal to obtain non-ECG-gated images. The detection rate and image quality of nine coronary artery segments in the two sets of images were then compared. A two-tailed paired t test was used with P values <0.05 considered as statistically significant. In all coronary segments the ECG-gated technique had a better detection rate and produced images of better quality. The difference between the two techniques ranged from 25% in the left main coronary artery to 100% in the distal right coronary artery. For neonates referred for MDCT, if evaluation of coronary artery anatomy is important for the clinical management or surgical planning, the ECG-gated technique should be used because it can reliably detect the coronary arteries. (orig.)

  3. On the Borders of Harmful and Helpful Beauty Biases

    Directory of Open Access Journals (Sweden)

    Maria Agthe

    2016-06-01

    Full Text Available Research with European Caucasian samples demonstrates that attractiveness-based biases in social evaluation depend on the constellation of the sex of the evaluator and the sex of the target: Whereas people generally show positive biases toward attractive opposite-sex persons, they show less positive or even negative biases toward attractive same-sex persons. By examining these biases both within and between different ethnicities, the current studies provide new evidence for both the generalizability and the specificity of these attractiveness-based social perception biases. Examining within-ethnicity effects, Study 1 is the first to demonstrate that samples from diverse ethnic backgrounds parallel the finding of European Caucasian samples: The advantageous or adverse effects of attractiveness depend on the gender constellation of the evaluator and the evaluated person. Examining between-ethnicity effects, Study 2 found that these attractiveness-based biases emerge almost exclusively toward targets of the evaluator’s own ethnic background; these biases were reduced or eliminated for cross-ethnicity evaluations and interaction intentions. We discuss these findings in light of evolutionary principles and reflect on potential interactions between culture and evolved cognitive mechanisms.

  4. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.

    Science.gov (United States)

    Garcia-Olivares, Jennie; Alekov, Alexi; Boroumand, Mohammad Reza; Begemann, Birgit; Hidalgo, Patricia; Fahlke, Christoph

    2008-11-15

    Eukaryotic ClC channels are dimeric proteins with each subunit forming an individual protopore. Single protopores are gated by a fast gate, whereas the slow gate is assumed to control both protopores through a cooperative movement of the two carboxy-terminal domains. We here study the role of the carboxy-terminal domain in modulating fast and slow gating of human ClC-2 channels, a ubiquitously expressed ClC-type chloride channel involved in transepithelial solute transport and in neuronal chloride homeostasis. Partial truncation of the carboxy-terminus abolishes function of ClC-2 by locking the channel in a closed position. However, unlike other isoforms, its complete removal preserves function of ClC-2. ClC-2 channels without the carboxy-terminus exhibit fast and slow gates that activate and deactivate significantly faster than in WT channels. In contrast to the prevalent view, a single carboxy-terminus suffices for normal slow gating, whereas both domains regulate fast gating of individual protopores. Our findings demonstrate that the carboxy-terminus is not strictly required for slow gating and that the cooperative gating resides in other regions of the channel protein. ClC-2 is expressed in neurons and believed to open at negative potentials and increased internal chloride concentrations after intense synaptic activity. We propose that the function of the ClC-2 carboxy-terminus is to slow down the time course of channel activation in order to stabilize neuronal excitability.

  5. Grey-grey separate spatial soliton pairs in a biased series two-photon centrosymmetric photorefractive crystals circuit

    International Nuclear Information System (INIS)

    Ji, Xuanmang; Wang, Jinlai; Jiang, Qichang; Liu, Jinsong

    2012-01-01

    Grey-grey separate spatial soliton pairs are predicted in a biased series circuit consisting of two centrosymmetric photorefractive (PR) crystals with the two-photon PR effect. The numerical results show that two grey solitons in a soliton pair can affect each other by the light-induced current. The effects of the intensity of solitary waves and gating lights on the normalized profiles and the dynamical evolutions of solitons are discussed.

  6. Low dislocation density InAlN/AlN/GaN heterostructures grown on GaN substrates and the effects on gate leakage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro; Tomabechi, Shuichi; Nakamura, Norikazu [Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197 (Japan)

    2016-04-11

    This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, and a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.

  7. Analogue frontend amplifiers for bio-potential measurements manufactured with a-IGZO TFTs on flexible substrate

    NARCIS (Netherlands)

    Garripoli, C.; van der Steen, J.L.; Torricelli, F.; Ghittorelli, M.; Gelinck, G.H.; Van Roermund, A.H.M.; Cantatore, E.

    2017-01-01

    Three novel differential amplifier topologies using double gate a-IGZO TFTs on flexible substrate are presented in this paper. The designs exploit positive feedback and a load with self-biased top gate to achieve the highest static gain in single stage a-IGZO amplifiers reported to date. After

  8. Biased divertor performance under auxiliary heating conditions on the TdeV tokamak

    International Nuclear Information System (INIS)

    Decoste, R.; Lachambre, J.L.; Demers, Y.

    1994-01-01

    Plasma biasing has been shown on TdeV in the ohmic regime to be very promising for divertor applications. Negative biasing, with shortened SOL density gradients, improves the divertor performance, whereas positive biasing, with longer gradients, does not do much for the divertor. The next objectives were to extrapolate those results to auxiliary heated plasmas and optimize/simplify the biasing geometry for future upgrades. New results are now available with an improved divertor geometry and auxiliary heating/current drive provided by a new lower hybrid (LH) system. The new geometry, optimized for positive biasing with predictably acceptable negative biasing performances, allows for a fair comparison between the two polarities. (author) 4 refs., 5 figs

  9. Low band-to-band tunnelling and gate tunnelling current in novel nanoscale double-gate architecture: simulations and investigation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Deepanjan [Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ganguly, Samiran [Department of Electronics Engineering, Indian School of Mines, Dhanbad-826004 (India); Dasgupta, S [Department of Electronics and Computer Engineering, Indian Institute of Technology, Roorkee-247667 (India)

    2007-05-30

    Large band-to-band tunnelling (BTBT) and gate leakage current can limit scalability of nanoscale devices. In this paper, we have proposed a novel nanoscale parallel connected heteromaterial double gate (PCHEM-DG) architecture with triple metal gate which significantly suppress BTBT leakage, making it efficient for low power design in the sub-10 nm regime. We have also proposed a triple gate device with p{sup +} poly-n{sup +} poly-p{sup +} poly gate which has substantially low gate leakage over symmetric DG MOSFET. Simulations are performed using a 2D Poisson-Schroedinger simulator and verified with a 2D device simulator ATLAS. We conclude that, due to intrinsic body doping, negligible gate leakage, suppressed BTBT over symmetric DG devices, metal gate (MG) PCHEM-DG MOSFET is efficient for low power circuit design in the nanometre regime.

  10. Factors affecting accuracy of ventricular volume and ejection fraction measured by gated Tl-201 myocardial perfusion single photon emission computed tomography

    International Nuclear Information System (INIS)

    Pai, Moon Sun; Yang, You Jung; Im, Ki Chun; Hong, Il Ki; Yun, Sung Cheol; Kang, Duk Hyun; Song, Jae Kwan; Moon, Dae Hyuk

    2005-01-01

    Systemic errors in the gated single photon emission computed tomography (SPECT) measurement of left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) may occur. We evaluated whether patient-related factors affected the accuracy of EDV, ESV, and EF measured by electrocardiogram-gated Tl-201 SPECT. A total of 518 patients without perfusion defects on Tl-201 SPECT or coronary artery disease were studied. EDV, ESV, and EF were measured from echocardiography and adenosine stress/redistribution gated Tl-201 SPECT using commercially available software packages (QGS and 4D-MSPECT). We identified factors affecting the accuracy of gated SPECT via multiple linear regression analysis of the differences between echocardiography and gated SPECT. Gated SPECT analyzed with QGS underestimated EDV and ESV, and overestimated EF, but 4D-MSPECT overestimated all those values (p<0.001). Independent variables that increased the difference in EDV between echocardiography and gated SPECT were decreasing LV end-diastolic wall thickness, decreasing body surface area, female sex and increasing EDV (p< 0.001). Those for ESV were decreasing LV end-systolic wall thickness, female sex, and decreasing ESV (p<0.001). Increasing end-systolic wall thickness, male sex and decreasing age were independent determinants associated with an increased difference in EF (p< 0.001). Adenosine stress SPECT showed significantly higher EDV and ESV values and a lower EF than did redistribution SPECT (p< 0.001). In determination of EF, QGS demonstrated a smaller bias than did 4D-MSPECT. However, in men with LV hypertrophy, 4D-MSPECT was superior to QGS. Systemic error by gated Tl-201 SPECT is determined by individual patient-characteristics

  11. Photon-gated spin transistor

    OpenAIRE

    Li, Fan; Song, Cheng; Cui, Bin; Peng, Jingjing; Gu, Youdi; Wang, Guangyue; Pan, Feng

    2017-01-01

    Spin-polarized field-effect transistor (spin-FET), where a dielectric layer is generally employed for the electrical gating as the traditional FET, stands out as a seminal spintronic device under the miniaturization trend of electronics. It would be fundamentally transformative if optical gating was used for spin-FET. We report a new type of spin-polarized field-effect transistor (spin-FET) with optical gating, which is fabricated by partial exposure of the (La,Sr)MnO3 channel to light-emitti...

  12. External radioactive markers for PET data-driven respiratory gating in positron emission tomography.

    Science.gov (United States)

    Büther, Florian; Ernst, Iris; Hamill, James; Eich, Hans T; Schober, Otmar; Schäfers, Michael; Schäfers, Klaus P

    2013-04-01

    Respiratory gating is an established approach to overcoming respiration-induced image artefacts in PET. Of special interest in this respect are raw PET data-driven gating methods which do not require additional hardware to acquire respiratory signals during the scan. However, these methods rely heavily on the quality of the acquired PET data (statistical properties, data contrast, etc.). We therefore combined external radioactive markers with data-driven respiratory gating in PET/CT. The feasibility and accuracy of this approach was studied for [(18)F]FDG PET/CT imaging in patients with malignant liver and lung lesions. PET data from 30 patients with abdominal or thoracic [(18)F]FDG-positive lesions (primary tumours or metastases) were included in this prospective study. The patients underwent a 10-min list-mode PET scan with a single bed position following a standard clinical whole-body [(18)F]FDG PET/CT scan. During this scan, one to three radioactive point sources (either (22)Na or (18)F, 50-100 kBq) in a dedicated holder were attached the patient's abdomen. The list mode data acquired were retrospectively analysed for respiratory signals using established data-driven gating approaches and additionally by tracking the motion of the point sources in sinogram space. Gated reconstructions were examined qualitatively, in terms of the amount of respiratory displacement and in respect of changes in local image intensity in the gated images. The presence of the external markers did not affect whole-body PET/CT image quality. Tracking of the markers led to characteristic respiratory curves in all patients. Applying these curves for gated reconstructions resulted in images in which motion was well resolved. Quantitatively, the performance of the external marker-based approach was similar to that of the best intrinsic data-driven methods. Overall, the gain in measured tumour uptake from the nongated to the gated images indicating successful removal of respiratory motion

  13. On photonic controlled phase gates

    International Nuclear Information System (INIS)

    Kieling, K; Eisert, J; O'Brien, J L

    2010-01-01

    As primitives for entanglement generation, controlled phase gates have a central role in quantum computing. Especially in ideas realizing instances of quantum computation in linear optical gate arrays, a closer look can be rewarding. In such architectures, all effective nonlinearities are induced by measurements. Hence the probability of success is a crucial parameter of such quantum gates. In this paper, we discuss this question for controlled phase gates that implement an arbitrary phase with one and two control qubits. Within the class of post-selected gates in dual-rail encoding with vacuum ancillas, we identify the optimal success probabilities. We construct networks that allow for implementation using current experimental capabilities in detail. The methods employed here appear specifically useful with the advent of integrated linear optical circuits, providing stable interferometers on monolithic structures.

  14. Reversible logic gates on Physarum Polycephalum

    International Nuclear Information System (INIS)

    Schumann, Andrew

    2015-01-01

    In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum

  15. Mechanism for and method of biasing magnetic sensor

    Science.gov (United States)

    Kautz, David R.

    2007-12-04

    A magnetic sensor package having a biasing mechanism involving a coil-generated, resistor-controlled magnetic field for providing a desired biasing effect. In a preferred illustrated embodiment, the package broadly comprises a substrate; a magnetic sensor element; a biasing mechanism, including a coil and a first resistance element; an amplification mechanism; a filter capacitor element; and an encapsulant. The sensor is positioned within the coil. A current applied to the coil produces a biasing magnetic field. The biasing magnetic field is controlled by selecting a resistance value for the first resistance element which achieves the desired biasing effect. The first resistance element preferably includes a plurality of selectable resistors, the selection of one or more of which sets the resistance value.

  16. Respiratory gating based on internal electromagnetic motion monitoring during stereotactic liver radiation therapy: First results.

    Science.gov (United States)

    Poulsen, Per Rugaard; Worm, Esben Schjødt; Hansen, Rune; Larsen, Lars Peter; Grau, Cai; Høyer, Morten

    2015-01-01

    Intrafraction motion may compromise the target dose in stereotactic body radiation therapy (SBRT) of tumors in the liver. Respiratory gating can improve the treatment delivery, but gating based on an external surrogate signal may be inaccurate. This is the first paper reporting on respiratory gating based on internal electromagnetic monitoring during liver SBRT. Two patients with solitary liver metastases were treated with respiratory-gated SBRT guided by three implanted electromagnetic transponders. The treatment was delivered in end-exhale with beam-on when the centroid of the three transponders deviated less than 3 mm [left-right (LR) and anterior-posterior (AP) directions] and 4mm [cranio-caudal (CC)] from the planned position. For each treatment fraction, log files were used to determine the transponder motion during beam-on in the actual gated treatments and in simulated treatments without gating. The motion was used to reconstruct the dose to the clinical target volume (CTV) with and without gating. The reduction in D95 (minimum dose to 95% of the CTV) relative to the plan was calculated for both treatment courses. With gating the maximum course mean (standard deviation) geometrical error in any direction was 1.2 mm (1.8 mm). Without gating the course mean error would mainly increase for Patient 1 [to -2.8 mm (1.6 mm) (LR), 7.1 mm (5.8 mm) (CC), -2.6 mm (2.8mm) (AP)] due to a large systematic cranial baseline drift at each fraction. The errors without gating increased only slightly for Patient 2. The reduction in CTV D95 was 0.5% (gating) and 12.1% (non-gating) for Patient 1 and 0.3% (gating) and 1.7% (non-gating) for Patient 2. The mean duty cycle was 55%. Respiratory gating based on internal electromagnetic motion monitoring was performed for two liver SBRT patients. The gating added robustness to the dose delivery and ensured a high CTV dose even in the presence of large intrafraction motion.

  17. IR Camera Validation of IGBT Junction Temperature Measurement via Peak Gate Current

    DEFF Research Database (Denmark)

    Baker, Nick; Dupont, Laurent; Munk-Nielsen, Stig

    2017-01-01

    partial bond-wire lift-off. Results are also compared with a traditional electrical temperature measurement method: the voltage drop under low current (VCE(low)). In all cases, the IGPeak method is found to provide a temperature slightly overestimating the temperature of the gate pad. Consequently, both...... the gate pad position and chip temperature distribution influence whether the measurement is representative of the mean junction temperature. These results remain consistent after chips are degraded through bondwire lift-off. In a paralleled IGBT configuration with non-negligible temperature disequilibrium...

  18. Stanford, Duke, Rice,... and Gates?

    Science.gov (United States)

    Carey, Kevin

    2009-01-01

    This article presents an open letter to Bill Gates. In his letter, the author suggests that Bill Gates should build a brand-new university, a great 21st-century institution of higher learning. This university will be unlike anything the world has ever seen. He asks Bill Gates not to stop helping existing colleges create the higher-education system…

  19. High-frequency self-aligned graphene transistors with transferred gate stacks

    Science.gov (United States)

    Cheng, Rui; Bai, Jingwei; Liao, Lei; Zhou, Hailong; Chen, Yu; Liu, Lixin; Lin, Yung-Chen; Jiang, Shan; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra–high-frequency circuits. PMID:22753503

  20. Emissive limiter bias experiment for improved confinement of tokamaks

    International Nuclear Information System (INIS)

    Choe, W.; Ono, M.; Darrow, D.S.; Pribyl, P.A.; Liberati, J.R.; Taylor, R.J.

    1992-01-01

    Experiments have been performed in Ohmic discharges of the UCLA CCT tokamak with a LaB 6 biased limiter, capable of emitting energetic electrons as a technique to improve confinement in tokamaks. To study the effects of emitted electrons, the limiter position, bias voltage, and plasma position were varied. The results have shown that the plasma positioning with respect to the emissive limiter plays an important role in obtaining H-mode plasmas. The emissive cathode must be located close to the last closed flux surface in order to charge up the plasma. As the cathode is moved closer to the wall, the positioning of the plasma becomes more critical since the plasma can easily detach from the cathode and reattach to the wall, resulting in the termination of H-mode. The emissive capability appears to be important for operating at lower bias voltage and reducing impurity levels in the plasma. With a heated cathode, transition to H-mode was observed for V bias ≤ 50 V and I inj ≥ 30 A. At a lower cathode heater current, a higher bias voltage is required for the transition. Moreover, with a lower cathode heater current, the time delay for inducing H-mode becomes longer, which can be attributed to the required time for the self-heating of the cathode to reach the emissive temperature. From this result, we conclude that the capacity for emission can significantly improve the performance of limiter biasing for inducing H-mode transition. With L-mode plasmas, the injection current flowing out of the cathode was generally higher than 100 A

  1. Affective bias as a rational response to the statistics of rewards and punishments.

    Science.gov (United States)

    Pulcu, Erdem; Browning, Michael

    2017-10-04

    Affective bias, the tendency to differentially prioritise the processing of negative relative to positive events, is commonly observed in clinical and non-clinical populations. However, why such biases develop is not known. Using a computational framework, we investigated whether affective biases may reflect individuals' estimates of the information content of negative relative to positive events. During a reinforcement learning task, the information content of positive and negative outcomes was manipulated independently by varying the volatility of their occurrence. Human participants altered the learning rates used for the outcomes selectively, preferentially learning from the most informative. This behaviour was associated with activity of the central norepinephrine system, estimated using pupilometry, for loss outcomes. Humans maintain independent estimates of the information content of distinct positive and negative outcomes which may bias their processing of affective events. Normalising affective biases using computationally inspired interventions may represent a novel approach to treatment development.

  2. Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages

    International Nuclear Information System (INIS)

    Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.

    2010-01-01

    In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.

  3. Benchmarking gate-based quantum computers

    Science.gov (United States)

    Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans

    2017-11-01

    With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.

  4. Lax decision criteria lead to negativity bias: evidence from the emotional stroop task.

    Science.gov (United States)

    Liu, Guofang; Xin, Ziqiang; Lin, Chongde

    2014-06-01

    Negativity bias means that negative information is usually given more emphasis than comparable positive information. Under signal detection theory, recent research found that people more frequently and incorrectly identify negative task-related words as having been presented originally than positive words, even when they were not presented. That is, people have lax decision criteria for negative words. However, the response biases for task-unrelated negative words and for emotionally important words are still unclear. This study investigated response bias for these two kinds of words. Study 1 examined the response bias for task-unrelated negative words using an emotional Stroop task. Proportions of correct recognition to negative and positive words were assessed by non-parametric signal detection analysis. Participants have lower (i.e., more lax) decision criteria for task-unrelated negative words than for positive words. Study 2 supported and expanded this result by investigating participants' response bias for highly emotional words. Participants have lower decision criteria for highly emotional words than for less emotional words. Finally, possible evolutionary sources of the response bias were discussed.

  5. Mechanisms for plasma etching of HfO{sub 2} gate stacks with Si selectivity and photoresist trimming

    Energy Technology Data Exchange (ETDEWEB)

    Shoeb, Juline; Kushner, Mark J. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

    2009-11-15

    To minimize leakage currents resulting from the thinning of the insulator in the gate stack of field effect transistors, high-dielectric constant (high-k) metal oxides, and HfO{sub 2} in particular, are being implemented as a replacement for SiO{sub 2}. To speed the rate of processing, it is desirable to etch the gate stack (e.g., metal gate, antireflection layers, and dielectric) in a single process while having selectivity to the underlying Si. Plasma etching using Ar/BCl{sub 3}/Cl{sub 2} mixtures effectively etches HfO{sub 2} while having good selectivity to Si. In this article, results from integrated reactor and feature scale modeling of gate-stack etching in Ar/BCl{sub 3}/Cl{sub 2} plasmas, preceded by photoresist trimming in Ar/O{sub 2} plasmas, are discussed. It was found that BCl{sub n} species react with HfO{sub 2}, which under ion impact, form volatile etch products such as B{sub m}OCl{sub n} and HfCl{sub n}. Selectivity to Si is achieved by creating Si-B bonding as a precursor to the deposition of a BCl{sub n} polymer which slows the etch rate relative to HfO{sub 2}. The low ion energies required to achieve this selectivity then challenge one to obtain highly anisotropic profiles in the metal gate portion of the stack. Validation was performed with data from literature. The effect of bias voltage and key reactant probabilities on etch rate, selectivity, and profile are discussed.

  6. Fear appeals motivate acceptance of action recommendations: evidence for a positive bias in the processing of persuasive messages.

    Science.gov (United States)

    Das, Enny H H J; de Wit, John B F; Stroebe, Wolfgang

    2003-05-01

    Three experiments are reported that tested the hypothesis that the use of fear appeals in health persuasion may lead to positively biased systematic processing of a subsequent action recommendation aimed at reducing the health threat and, consequently, to more persuasion, regardless of the quality of the arguments in the recommendation. The levels of participants' vulnerability to as well as the severity of a health risk were varied independently, followed by a manipulation of the quality of the arguments in the subsequent action recommendation. The dependent variables included measures of persuasion (attitude, intention, and action), negative affect, and cognitive responses. The results show that participants who felt vulnerable to the health threat were more persuaded, experienced more negative emotions, and had more favorable cognitive responses. Both negative emotions concerning one's vulnerability and positive thoughts concerning the recommendation mediated the effects of vulnerability on persuasion.

  7. Transmission of Cognitive Bias and Fear From Parents to Children: An Experimental Study.

    Science.gov (United States)

    Remmerswaal, Danielle; Muris, Peter; Huijding, Jorg

    2016-01-01

    This study explored the role of parents in the development of a cognitive bias and subsequent fear levels in children. In Experiment 1, nonclinical children ages 8-13 (N = 122) underwent a training during which they worked together with their mothers on an information search task. Mothers received instructions to induce either a positive or negative information search bias in their children. Experiment 2 investigated to what extent mothers own cognitive bias predicted children's information search bias. Mothers of 49 nonclinical children ages 9-12 received no explicit training instructions before working together with their child on an information search task. Experiment 1 demonstrated that mothers had a significant impact on children's cognitive bias and fear. More precisely, children who had received a negative parental training displayed an increase in negative information search bias and fear, whereas children who had received a positive parental training showed an increase in positive information search bias and a decrease in fear. In Experiment 2, it was found that children's information search biases after working together with their mothers were predicted by their mothers' initial cognitive bias scores. These findings can be taken as support for the intergenerational transmission of cognitive biases from mothers to children.

  8. Effects of trap-assisted tunneling on gate-induced drain leakage in silicon-germanium channel p-type FET for scaled supply voltages

    Science.gov (United States)

    Tiwari, Vishal A.; Divakaruni, Rama; Hook, Terence B.; Nair, Deleep R.

    2016-04-01

    Silicon-germanium is considered as an alternative channel material to silicon p-type FET (pFET) for the development of energy efficient high performance transistors for 28 nm and beyond in a high-k metal gate technology because of its lower threshold voltage and higher mobility. However, gate-induced drain leakage (GIDL) is a concern for high threshold voltage device design because of tunneling at reduced bandgap. In this work, the trap-assisted tunneling and band-to-band tunneling (BTBT) effects on GIDL is analyzed and modeled for SiGe pFETs. Experimental results and Monte Carlo simulation results reveal that the pre-halo germanium pre-amorphization implant used to contain the short channel effects contribute to GIDL at the drain sidewall in addition to GIDL due to BTBT in SiGe devices. The results are validated by comparing the experimental observations with the numerical simulation and a set of calibrated models are used to describe the GIDL mechanisms for various drain and gate bias.

  9. Gating function of isoleucine-116 in TM-3 (position III:16/3.40) for the activity state of the CC-chemokine receptor 5 (CCR5)

    DEFF Research Database (Denmark)

    Steen, A; Sparre-Ulrich, A H; Thiele, Stefanie

    2014-01-01

    TM receptors - it is a leucine indicating an altered function. Here, we describe the significance of this position and its possible interaction with TM-3 for CCR5 activity. EXPERIMENTAL APPROACH: The effects of [L203F]-CCR5 in TM-5 (position V:13/5.47), [I116A]-CCR5 in TM-3 (III:16/3.40) and [L203F...... ) with a threefold increase in agonist potency. In silico, [I116A]-CCR5 switched χ1-angle in [L203F]-CCR5. Furthermore, [I116A]-CCR5 was constitutively active to a similar degree as [L203F]-CCR5. Tyr(244) in TM-6 (VI:09/6.44) moved towards TM-5 in silico, consistent with its previously shown function for CCR5...... in the active state, a mechanism proposed previously for the β2 -adrenoceptor. The results provide an understanding of chemokine receptor function and thereby information for the development of biased and non-biased antagonists and inverse agonists....

  10. Gate Engineering in SOI LDMOS for Device Reliability

    Directory of Open Access Journals (Sweden)

    Aanand

    2016-01-01

    Full Text Available A linearly graded doping drift region with step gate structure, used for improvement of reduced surface field (RESURF SOI LDMOS transistor performance has been simulated with 0.35µm technology in this paper. The proposed device has one poly gate and double metal gate arranged in a stepped manner, from channel to drift region. The first gate uses n+ poly (near source where as other two gates of aluminium. The first gate with thin gate oxide has good control over the channel charge. The third gate with thick gate oxide at drift region reduce gate to drain capacitance. The arrangement of second and third gates in a stepped manner in drift region spreads the electric field uniformly. Using two dimensional device simulations, the proposed SOI LDMOS is compared with conventional structure and the extended metal structure. We demonstrate that the proposed device exhibits significant enhancement in linearity, breakdown voltage, on-resistance and HCI. Double metal gate reduces the impact ionization area which helps to improve the Hot Carrier Injection effect..

  11. Cognitive bias in action: evidence for a reciprocal relation between confirmation bias and fear in children.

    Science.gov (United States)

    Remmerswaal, Danielle; Huijding, Jorg; Bouwmeester, Samantha; Brouwer, Marlies; Muris, Peter

    2014-03-01

    Some cognitive models propose that information processing biases and fear are reciprocally related. This idea has never been formally tested. Therefore, this study investigated the existence of a vicious circle by which confirmation bias and fear exacerbate each other. One-hundred-and-seventy-one school children (8-13 years) were first provided with threatening, ambiguous, or positive information about an unknown animal. Then they completed a computerized information search task during which they could collect additional (negative, positive, or neutral) information about the novel animal. Because fear levels were repeatedly assessed during the task, it was possible to examine the reciprocal relationship between confirmation bias and fear. A reciprocal relation of mutual reinforcement was found between confirmation bias and fear over the course of the experiment: increases in fear predicted subsequent increases in the search for negative information, and increases in the search for negative information further enhanced fear on a later point-in-time. In addition, the initial information given about the animals successfully induced diverging fear levels in the children, and determined their first inclination to search for additional information. As this study employed a community sample of primary school children, future research should test whether these results can be generalized to clinically anxious youth. These findings provide first support for the notion that fearful individuals may become trapped in a vicious circle in which fear and a fear-related confirmation bias mutually strengthen each other, thereby maintaining the anxiety pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Bias in patient satisfaction surveys: a threat to measuring healthcare quality.

    Science.gov (United States)

    Dunsch, Felipe; Evans, David K; Macis, Mario; Wang, Qiao

    2018-01-01

    Patient satisfaction surveys are an increasingly common element of efforts to evaluate the quality of healthcare. Many patient satisfaction surveys in low/middle-income countries frame statements positively and invite patients to agree or disagree, so that positive responses may reflect either true satisfaction or bias induced by the positive framing. In an experiment with more than 2200 patients in Nigeria, we distinguish between actual satisfaction and survey biases. Patients randomly assigned to receive negatively framed statements expressed significantly lower levels of satisfaction (87%) than patients receiving the standard positively framed statements (95%-pquality of health services. Providers and policymakers wishing to gauge the quality of care will need to avoid framing that induces bias and to complement patient satisfaction measures with more objective measures of quality.

  13. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    International Nuclear Information System (INIS)

    Liu, Hsi-Wen; Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Chang, Ting-Chang; Chen, Ching-En; Tseng, Tseung-Yuen; Lin, Chien-Yu; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-01-01

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  14. CMOS gate array characterization procedures

    Science.gov (United States)

    Spratt, James P.

    1993-09-01

    Present procedures are inadequate for characterizing the radiation hardness of gate array product lines prior to personalization because the selection of circuits to be used, from among all those available in the manufacturer's circuit library, is usually uncontrolled. (Some circuits are fundamentally more radiation resistant than others.) In such cases, differences in hardness can result between different designs of the same logic function. Hardness also varies because many gate arrays feature large custom-designed megacells (e.g., microprocessors and random access memories-MicroP's and RAM's). As a result, different product lines cannot be compared equally. A characterization strategy is needed, along with standardized test vehicle(s), methodology, and conditions, so that users can make informed judgments on which gate arrays are best suited for their needs. The program described developed preferred procedures for the radiation characterization of gate arrays, including a gate array evaluation test vehicle, featuring a canary circuit, designed to define the speed versus hardness envelope of the gate array. A multiplier was chosen for this role, and a baseline multiplier architecture is suggested that could be incorporated into an existing standard evaluation circuit chip.

  15. GATE: Improving the computational efficiency

    International Nuclear Information System (INIS)

    Staelens, S.; De Beenhouwer, J.; Kruecker, D.; Maigne, L.; Rannou, F.; Ferrer, L.; D'Asseler, Y.; Buvat, I.; Lemahieu, I.

    2006-01-01

    GATE is a software dedicated to Monte Carlo simulations in Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). An important disadvantage of those simulations is the fundamental burden of computation time. This manuscript describes three different techniques in order to improve the efficiency of those simulations. Firstly, the implementation of variance reduction techniques (VRTs), more specifically the incorporation of geometrical importance sampling, is discussed. After this, the newly designed cluster version of the GATE software is described. The experiments have shown that GATE simulations scale very well on a cluster of homogeneous computers. Finally, an elaboration on the deployment of GATE on the Enabling Grids for E-Science in Europe (EGEE) grid will conclude the description of efficiency enhancement efforts. The three aforementioned methods improve the efficiency of GATE to a large extent and make realistic patient-specific overnight Monte Carlo simulations achievable

  16. Dual-gated cardiac PET-clinical feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Teraes, Mika; Kokki, Tommi; Noponen, Tommi; Hoppela, Erika; Sipilae, Hannu T.; Knuuti, Juhani [Turku PET Centre, PO BOX 52, Turku (Finland); Durand-Schaefer, Nicolas [General Electric Medical Systems, Buc (France); Pietilae, Mikko [Turku University Hospital, Department of Internal Medicine, Turku (Finland); Kiss, Jan [Turku University Hospital, Department of Surgery, Turku (Finland)

    2010-03-15

    Both respiratory and cardiac motions reduce image quality in myocardial imaging. For accurate imaging of small structures such as vulnerable coronary plaques, simultaneous cardiac and respiratory gating is warranted. This study tests the feasibility of a recently developed robust method for cardiac-respiratory gating. List-mode data with triggers from respiratory and cardiac cycles are rearranged into dual-gated segments and reconstructed with standard algorithms of a commercial PET/CT scanner. Cardiac gates were defined as three fixed phases and one variable diastolic phase. Chest motion was measured with a respiratory gating device and post-processed to determine gates. Preservation of quantification in dual-gated images was tested with an IEC whole-body phantom. Minipig and human studies were performed to evaluate the feasibility of the method. In minipig studies, a coronary catheter with radioactive tip was guided in coronary artery for in vivo and ex vivo acquisitions. Dual gating in humans with suspected cardiac disorders was performed using 18-F-FDG as a tracer. The method was found feasible for in vivo imaging and the radioactive catheter tip was better resolved in gated images. In human studies, the dual gating was found feasible and easy for clinical routine. Maximal movement of myocardial surface in cranio-caudal direction was over 20 mm. The shape of myocardium was clearly different between the gates and papillary muscles become more visible in diastolic images. The first clinical experiences using robust cardiac-respiratory dual gating are encouraging. Further testing in larger clinical populations using tracers designed especially for plaque imaging is warranted. (orig.)

  17. Dual-gated cardiac PET-clinical feasibility study

    International Nuclear Information System (INIS)

    Teraes, Mika; Kokki, Tommi; Noponen, Tommi; Hoppela, Erika; Sipilae, Hannu T.; Knuuti, Juhani; Durand-Schaefer, Nicolas; Pietilae, Mikko; Kiss, Jan

    2010-01-01

    Both respiratory and cardiac motions reduce image quality in myocardial imaging. For accurate imaging of small structures such as vulnerable coronary plaques, simultaneous cardiac and respiratory gating is warranted. This study tests the feasibility of a recently developed robust method for cardiac-respiratory gating. List-mode data with triggers from respiratory and cardiac cycles are rearranged into dual-gated segments and reconstructed with standard algorithms of a commercial PET/CT scanner. Cardiac gates were defined as three fixed phases and one variable diastolic phase. Chest motion was measured with a respiratory gating device and post-processed to determine gates. Preservation of quantification in dual-gated images was tested with an IEC whole-body phantom. Minipig and human studies were performed to evaluate the feasibility of the method. In minipig studies, a coronary catheter with radioactive tip was guided in coronary artery for in vivo and ex vivo acquisitions. Dual gating in humans with suspected cardiac disorders was performed using 18-F-FDG as a tracer. The method was found feasible for in vivo imaging and the radioactive catheter tip was better resolved in gated images. In human studies, the dual gating was found feasible and easy for clinical routine. Maximal movement of myocardial surface in cranio-caudal direction was over 20 mm. The shape of myocardium was clearly different between the gates and papillary muscles become more visible in diastolic images. The first clinical experiences using robust cardiac-respiratory dual gating are encouraging. Further testing in larger clinical populations using tracers designed especially for plaque imaging is warranted. (orig.)

  18. Demonstration of a Quantum Nondemolition Sum Gate

    DEFF Research Database (Denmark)

    Yoshikawa, J.; Miwa, Y.; Huck, Alexander

    2008-01-01

    The sum gate is the canonical two-mode gate for universal quantum computation based on continuous quantum variables. It represents the natural analogue to a qubit C-NOT gate. In addition, the continuous-variable gate describes a quantum nondemolition (QND) interaction between the quadrature...

  19. Electron-longitudinal-acoustic-phonon scattering in double-quantum-dot based quantum gates

    International Nuclear Information System (INIS)

    Zhao Peiji; Woolard, Dwight L.

    2008-01-01

    We propose a nanostructure design which can significantly suppress longitudinal-acoustic-phonon-electron scattering in double-quantum-dot based quantum gates for quantum computing. The calculated relaxation rates vs. bias voltage exhibit a double-peak feature with a minimum approaching 10 5 s -1 . In this matter, the energy conservation law prohibits scattering contributions from phonons with large momenta; furthermore, increasing the barrier height between the double quantum dots reduces coupling strength between the dots. Hence, the joint action of the energy conservation law and the decoupling greatly reduces the scattering rates. The degrading effects of temperatures can be reduced simply by increasing the height of the barrier between the dots

  20. Simply Imagining Sunshine, Lollipops and Rainbows Will Not Budge the Bias: The Role of Ambiguity in Interpretive Bias Modification.

    Science.gov (United States)

    Clarke, Patrick J F; Nanthakumar, Shenooka; Notebaert, Lies; Holmes, Emily A; Blackwell, Simon E; Macleod, Colin

    2014-01-01

    Imagery-based interpretive bias modification (CBM-I) involves repeatedly imagining scenarios that are initially ambiguous before being resolved as either positive or negative in the last word/s. While the presence of such ambiguity is assumed to be important to achieve change in selective interpretation, it is also possible that the act of repeatedly imagining positive or negative events could produce such change in the absence of ambiguity. The present study sought to examine whether the ambiguity in imagery-based CBM-I is necessary to elicit change in interpretive bias, or, if the emotional content of the imagined scenarios is sufficient to produce such change. An imagery-based CBM-I task was delivered to participants in one of four conditions, where the valence of imagined scenarios were either positive or negative, and the ambiguity of the scenario was either present (until the last word/s) or the ambiguity was absent (emotional valence was evident from the start). Results indicate that only those who received scenarios in which the ambiguity was present acquired an interpretive bias consistent with the emotional valence of the scenarios, suggesting that the act of imagining positive or negative events will only influence patterns of interpretation when the emotional ambiguity is a consistent feature.

  1. Multi-gated field emitters for a micro-column

    International Nuclear Information System (INIS)

    Mimura, Hidenori; Kioke, Akifumi; Aoki, Toru; Neo, Yoichiro; Yoshida, Tomoya; Nagao, Masayoshi

    2011-01-01

    We have developed a multi-gated field emitter (FE) such as a quadruple-gated FE with a three-stacked electrode lens and a quintuple-gated FE with a four-stacked electrode lens. Both the FEs can focus the electron beam. However, the quintuple-gated FE has a stronger electron convergence than the quadruple-gated FE, and a beam crossover is clearly observed for the quintuple-gated FE.

  2. Effects of Cognitive Bias Modification Training via Smartphones

    Directory of Open Access Journals (Sweden)

    Ranming Yang

    2017-08-01

    Full Text Available Background and Objectives: Negative cognitive biases have been linked to anxiety and mood problems. Accumulated data from laboratory studies show that positive and negative interpretation styles with accompanying changes in mood can be induced through cognitive bias modification (CBM paradigms. Despite the therapeutic potential of positive training effects, few studies have explored training paradigms administered via smartphones. The current study aimed to compare the effectiveness of three different types of training programmes (cognitive bias modification-attention, CBM-A; cognitive bias modification-interpretation, CBM-I; attention and interpretation modification, AIM administered via smart-phones by using a control condition (CC.Methods:Seventy-six undergraduate participants with high social anxiety (Liebowitz Social Anxiety Scale, LSAS ≥ 30 were randomly assigned to four groups: CBM-A (n = 20, CBM-I (n = 20, AIM (n = 16, and CC (n = 20.Results: The results showed that the effects of CBM training, CBM-I training, or AIM training vs. CC for attention yielded no significant differences in dot-probe attention bias scores. The CBM-I group showed significantly less threat interpretation and more benign interpretation than the CC group on interpretation bias scores.Conclusions: The present results supported the feasibility of delivering CBM-I via smartphones, but the effectiveness of CBM-A and AIM training via smartphones was limited.

  3. Attention bias modification training under working memory load increases the magnitude of change in attentional bias.

    Science.gov (United States)

    Clarke, Patrick J F; Branson, Sonya; Chen, Nigel T M; Van Bockstaele, Bram; Salemink, Elske; MacLeod, Colin; Notebaert, Lies

    2017-12-01

    Attention bias modification (ABM) procedures have shown promise as a therapeutic intervention, however current ABM procedures have proven inconsistent in their ability to reliably achieve the requisite change in attentional bias needed to produce emotional benefits. This highlights the need to better understand the precise task conditions that facilitate the intended change in attention bias in order to realise the therapeutic potential of ABM procedures. Based on the observation that change in attentional bias occurs largely outside conscious awareness, the aim of the current study was to determine if an ABM procedure delivered under conditions likely to preclude explicit awareness of the experimental contingency, via the addition of a working memory load, would contribute to greater change in attentional bias. Bias change was assessed among 122 participants in response to one of four ABM tasks given by the two experimental factors of ABM training procedure delivered either with or without working memory load, and training direction of either attend-negative or avoid-negative. Findings revealed that avoid-negative ABM procedure under working memory load resulted in significantly greater reductions in attentional bias compared to the equivalent no-load condition. The current findings will require replication with clinical samples to determine the utility of the current task for achieving emotional benefits. These present findings are consistent with the position that the addition of a working memory load may facilitate change in attentional bias in response to an ABM training procedure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Automated patient setup and gating using cone beam computed tomography projections

    DEFF Research Database (Denmark)

    Wan, Hanlin; Bertholet, Jenny; Ge, Jiajia

    2016-01-01

    In radiation therapy, fiducial markers are often implanted near tumors and used for patient positioning and respiratory gating purposes. These markers are then used to manually align the patients by matching the markers in the cone beam computed tomography (CBCT) reconstruction to those...

  5. Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p-n heterojunctions.

    Science.gov (United States)

    Wang, Cong; Yang, Shengxue; Xiong, Wenqi; Xia, Congxin; Cai, Hui; Chen, Bin; Wang, Xiaoting; Zhang, Xinzheng; Wei, Zhongming; Tongay, Sefaattin; Li, Jingbo; Liu, Qian

    2016-10-12

    Vertically stacked van der Waals (vdW) heterojunctions of two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted a great deal of attention due to their fascinating properties. In this work, we report two important gate-tunable phenomena in new artificial vdW p-n heterojunctions created by vertically stacking p-type multilayer ReSe 2 and n-type multilayer WS 2 : (1) well-defined strong gate-tunable diode-like current rectification across the p-n interface is observed, and the tunability of the electronic processes is attributed to the tunneling-assisted interlayer recombination induced by majority carriers across the vdW interface; (2) the distinct ambipolar behavior under gate voltage modulation both at forward and reverse bias voltages is found in the vdW ReSe 2 /WS 2 heterojunction transistors and a corresponding transport model is proposed for the tunable polarity behaviors. The findings may provide some new opportunities for building nanoscale electronic and optoelectronic devices.

  6. Assisted extraction of the energy level spacings and lever arms in direct current bias measurements of one-dimensional quantum wires, using an image recognition routine

    International Nuclear Information System (INIS)

    Lesage, A. A. J.; Smith, L. W.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Smith, C. G.; Al-Taie, H.; Kelly, M. J.; See, P.

    2015-01-01

    A multiplexer technique is used to individually measure an array of 256 split gates on a single GaAs/AlGaAs heterostructure. This results in the generation of large volumes of data, which requires the development of automated data analysis routines. An algorithm is developed to find the spacing between discrete energy levels, which form due to transverse confinement from the split gate. The lever arm, which relates split gate voltage to energy, is also found from the measured data. This reduces the time spent on the analysis. Comparison with estimates obtained visually shows that the algorithm returns reliable results for subband spacing of split gates measured at 1.4 K. The routine is also used to assess direct current bias spectroscopy measurements at lower temperatures (50 mK). This technique is versatile and can be extended to other types of measurements. For example, it is used to extract the magnetic field at which Zeeman-split 1D subbands cross one another

  7. Discrete Wigner formalism for qubits and noncontextuality of Clifford gates on qubit stabilizer states

    Science.gov (United States)

    Kocia, Lucas; Love, Peter

    2017-12-01

    We show that qubit stabilizer states can be represented by non-negative quasiprobability distributions associated with a Wigner-Weyl-Moyal formalism where Clifford gates are positive state-independent maps. This is accomplished by generalizing the Wigner-Weyl-Moyal formalism to three generators instead of two—producing an exterior, or Grassmann, algebra—which results in Clifford group gates for qubits that act as a permutation on the finite Weyl phase space points naturally associated with stabilizer states. As a result, a non-negative probability distribution can be associated with each stabilizer state's three-generator Wigner function, and these distributions evolve deterministically to one another under Clifford gates. This corresponds to a hidden variable theory that is noncontextual and local for qubit Clifford gates while Clifford (Pauli) measurements have a context-dependent representation. Equivalently, we show that qubit Clifford gates can be expressed as propagators within the three-generator Wigner-Weyl-Moyal formalism whose semiclassical expansion is truncated at order ℏ0 with a finite number of terms. The T gate, which extends the Clifford gate set to one capable of universal quantum computation, requires a semiclassical expansion of the propagator to order ℏ1. We compare this approach to previous quasiprobability descriptions of qubits that relied on the two-generator Wigner-Weyl-Moyal formalism and find that the two-generator Weyl symbols of stabilizer states result in a description of evolution under Clifford gates that is state-dependent, in contrast to the three-generator formalism. We have thus extended Wigner non-negative quasiprobability distributions from the odd d -dimensional case to d =2 qubits, which describe the noncontextuality of Clifford gates and contextuality of Pauli measurements on qubit stabilizer states.

  8. Electrode and limiter biasing experiments on the tokamak ISTTOK

    International Nuclear Information System (INIS)

    Silva, C.; Figueiredo, H.; Cabral, J.A.C.; Nedzelsky, I.; Varandas, C.A.F.

    2003-01-01

    In this contribution limiter and electrode biasing experiments are compared, in particular in what concerns their effects on the edge plasma parameters. For electrode AC bias a substantial increase (>50%) in the average plasma density is observed with positive voltage, without significant changes in the edge density, leading to steeper profiles. The ratio n e /Hα also increases significantly (>20%), indicating an improvement in gross particle confinement. The plasma potential profile is strongly modified as both the edge E r and its shear increase significantly. For positive limiter bias an increase in the average plasma density and the radiation losses is observed, resulting in almost no modification, or a slight, in particle confinement. Preliminary results of simultaneous electrode and limiter bias experiments show that the control of the plasma potential profile is very limited, since negative voltages do not modify the plasma parameters significantly. (author)

  9. Biases in GNSS-Data Processing

    Science.gov (United States)

    Schaer, S. C.; Dach, R.; Lutz, S.; Meindl, M.; Beutler, G.

    2010-12-01

    Within the Global Positioning System (GPS) traditionally different types of pseudo-range measurements (P-code, C/A-code) are available on the first frequency that are tracked by the receivers with different technologies. For that reason, P1-C1 and P1-P2 Differential Code Biases (DCB) need to be considered in a GPS data processing with a mix of different receiver types. Since the Block IIR-M series of GPS satellites also provide C/A-code on the second frequency, P2-C2 DCB need to be added to the list of biases for maintenance. Potential quarter-cycle biases between different phase observables (specifically L2P and L2C) are another issue. When combining GNSS (currently GPS and GLONASS), careful consideration of inter-system biases (ISB) is indispensable, in particular when an adequate combination of individual GLONASS clock correction results from different sources (using, e.g., different software packages) is intended. Facing the GPS and GLONASS modernization programs and the upcoming GNSS, like the European Galileo and the Chinese Compass, an increasing number of types of biases is expected. The Center for Orbit Determination in Europe (CODE) is monitoring these GPS and GLONASS related biases for a long time based on RINEX files of the tracking network of the International GNSS Service (IGS) and in the frame of the data processing as one of the global analysis centers of the IGS. Within the presentation we give an overview on the stability of the biases based on the monitoring. Biases derived from different sources are compared. Finally, we give an outlook on the potential handling of such biases with the big variety of signals and systems expected in the future.

  10. Feasibility study of multi-pass respiratory-gated helical tomotherapy of a moving target via binary MLC closure

    Science.gov (United States)

    Kim, Bryan; Chen, Jeff; Kron, Tomas; Battista, Jerry

    2010-11-01

    Gated radiotherapy of lung lesions is particularly complex for helical tomotherapy, due to the simultaneous motions of its three subsystems (gantry, couch and collimator). We propose a new way to implement gating for helical tomotherapy, namely multi-pass respiratory gating. In this method, gating is achieved by delivering only the beam projections that occur within a respiratory gating window, while blocking the rest of the beam projections by fully closing all collimator leaves. Due to the continuous couch motion, the planned beam projections must be delivered over multiple passes of radiation deliveries. After each pass, the patient couch is reset to its starting position, and the treatment recommences at a different phase of tumour motion to 'fill in' the previously blocked beam projections. The gating process may be repeated until the plan dose is delivered (full gating), or halted after a certain number of passes, with the entire remaining dose delivered in a final pass without gating (partial gating). The feasibility of the full gating approach was first tested for sinusoidal target motion, through experimental measurements with film and computer simulation. The optimal gating parameters for full and partial gating methods were then determined for various fractionation schemes through computer simulation, using a patient respiratory waveform. For sinusoidal motion, the PTV dose deviations of -29 to 5% observed without gating were reduced to range from -1 to 3% for a single fraction, with a 4 pass full gating. For a patient waveform, partial gating required fewer passes than full gating for all fractionation schemes. For a single fraction, the maximum allowed residual motion was only 4 mm, requiring large numbers of passes for both full (12) and partial (7 + 1) gating methods. The number of required passes decreased significantly for 3 and 30 fractions, allowing residual motion up to 7 mm. Overall, the multi-pass gating technique was shown to be a promising

  11. Feasibility study of multi-pass respiratory-gated helical tomotherapy of a moving target via binary MLC closure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bryan; Chen, Jeff; Battista, Jerry [London Regional Cancer Program, London Health Sciences Centre, London, ON (Canada); Kron, Tomas, E-mail: bryan.kim@lhsc.on.c [Peter MacCallum Cancer Center, Melbourne (Australia)

    2010-11-21

    Gated radiotherapy of lung lesions is particularly complex for helical tomotherapy, due to the simultaneous motions of its three subsystems (gantry, couch and collimator). We propose a new way to implement gating for helical tomotherapy, namely multi-pass respiratory gating. In this method, gating is achieved by delivering only the beam projections that occur within a respiratory gating window, while blocking the rest of the beam projections by fully closing all collimator leaves. Due to the continuous couch motion, the planned beam projections must be delivered over multiple passes of radiation deliveries. After each pass, the patient couch is reset to its starting position, and the treatment recommences at a different phase of tumour motion to 'fill in' the previously blocked beam projections. The gating process may be repeated until the plan dose is delivered (full gating), or halted after a certain number of passes, with the entire remaining dose delivered in a final pass without gating (partial gating). The feasibility of the full gating approach was first tested for sinusoidal target motion, through experimental measurements with film and computer simulation. The optimal gating parameters for full and partial gating methods were then determined for various fractionation schemes through computer simulation, using a patient respiratory waveform. For sinusoidal motion, the PTV dose deviations of -29 to 5% observed without gating were reduced to range from -1 to 3% for a single fraction, with a 4 pass full gating. For a patient waveform, partial gating required fewer passes than full gating for all fractionation schemes. For a single fraction, the maximum allowed residual motion was only 4 mm, requiring large numbers of passes for both full (12) and partial (7 + 1) gating methods. The number of required passes decreased significantly for 3 and 30 fractions, allowing residual motion up to 7 mm. Overall, the multi-pass gating technique was shown to be a

  12. Biases in affective forecasting and recall in individuals with depression and anxiety symptoms.

    Science.gov (United States)

    Wenze, Susan J; Gunthert, Kathleen C; German, Ramaris E

    2012-07-01

    The authors used experience sampling to investigate biases in affective forecasting and recall in individuals with varying levels of depression and anxiety symptoms. Participants who were higher in depression symptoms demonstrated stronger (more pessimistic) negative mood prediction biases, marginally stronger negative mood recall biases, and weaker (less optimistic) positive mood prediction and recall biases. Participants who were higher in anxiety symptoms demonstrated stronger negative mood prediction biases, but positive mood prediction biases that were on par with those who were lower in anxiety. Anxiety symptoms were not associated with mood recall biases. Neither depression symptoms nor anxiety symptoms were associated with bias in event prediction. Their findings fit well with the tripartite model of depression and anxiety. Results are also consistent with the conceptualization of anxiety as a "forward-looking" disorder, and with theories that emphasize the importance of pessimism and general negative information processing in depressive functioning.

  13. Double optical gating

    Science.gov (United States)

    Gilbertson, Steve

    The observation and control of dynamics in atomic and molecular targets requires the use of laser pulses with duration less than the characteristic timescale of the process which is to be manipulated. For electron dynamics, this time scale is on the order of attoseconds where 1 attosecond = 10 -18 seconds. In order to generate pulses on this time scale, different gating methods have been proposed. The idea is to extract or "gate" a single pulse from an attosecond pulse train and switch off all the other pulses. While previous methods have had some success, they are very difficult to implement and so far very few labs have access to these unique light sources. The purpose of this work is to introduce a new method, called double optical gating (DOG), and to demonstrate its effectiveness at generating high contrast single isolated attosecond pulses from multi-cycle lasers. First, the method is described in detail and is investigated in the spectral domain. The resulting attosecond pulses produced are then temporally characterized through attosecond streaking. A second method of gating, called generalized double optical gating (GDOG), is also introduced. This method allows attosecond pulse generation directly from a carrier-envelope phase un-stabilized laser system for the first time. Next the methods of DOG and GDOG are implemented in attosecond applications like high flux pulses and extreme broadband spectrum generation. Finally, the attosecond pulses themselves are used in experiments. First, an attosecond/femtosecond cross correlation is used for characterization of spatial and temporal properties of femtosecond pulses. Then, an attosecond pump, femtosecond probe experiment is conducted to observe and control electron dynamics in helium for the first time.

  14. Multi detector computed tomography (MDCT) of the aortic root; ECG-gated verses non-ECG-gated examinations

    International Nuclear Information System (INIS)

    Kristiansen, Joanna; Guenther, Anne; Aalokken, Trond Mogens; Andersen, Rune

    2011-01-01

    Purpose: Motion artifacts may degrade a conventional CT examination of the ascending aorta and hinder accurate diagnosis. We quantitatively compared retrospectively electrocardiographic (ECG) -gated multi detector computed tomography (MDCT) with non-ECG-gated MDCT in order to demonstrate whether or not one of the methods should be preferred. Method: The study included seventeen patients with surgically reconstructed aortic root and reimplanted coronary arteries. All patients had undergone both non-gated MDCT and retrospectively ECG-gated MDCT employing a stringently modulated tube current with single phase image reconstruction. The incidence of motion artifacts in the left main coronary artery (LM), proximal right coronary artery (RCA), and aortic root and ascending aorta were rated using a four point scale. The effective dose for each scan was calculated and normalized to a 15 cm scan length. Statistical analysis of motion artifacts and radiation dose was performed using Wilcoxon matched pairs signed rank sum test. Results: A significant reduction in motion artifacts was found in all three vessels in images from the retrospectively ECG-gated scans (LM: P = 0.005, RCA: P = 0.015, aorta: P = 0.003). The mean normalized effective radiation dose was 3.69 mSv (±1.03) for the non-ECG-gated scans and 16.37 mSv (±2.53) for the ECG-gated scans. Conclusion: Retrospective ECG-gating with single phase reconstruction significantly reduces the incidence of motion artifacts in the aortic root and the proximal portion of the coronary arteries but at the expense of a fourfold increase in radiation dose.

  15. Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages

    Science.gov (United States)

    Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.

    2010-09-01

    In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.113601 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.

  16. Are the memories of older adults positively biased?

    Science.gov (United States)

    Fernandes, Myra; Ross, Michael; Wiegand, Melanie; Schryer, Emily

    2008-06-01

    There is disagreement in the literature about whether a "positivity effect" in memory performance exists in older adults. To assess the generalizability of the effect, the authors examined memory for autobiographical, picture, and word information in a group of younger (17-29 years old) and older (60-84 years old) adults. For the autobiographical memory task, the authors asked participants to produce 4 positive, 4 negative, and 4 neutral recent autobiographical memories and to recall these a week later. For the picture and word tasks, participants studied photos or words of different valences (positive, negative, neutral) and later remembered them on a free-recall test. The authors found significant correlations in memory performance, across task material, for recall of both positive and neutral valence autobiographical events, pictures, and words. When the authors examined accurate memories, they failed to find consistent evidence, across the different types of material, of a positivity effect in either age group. However, the false memory findings offer more consistent support for a positivity effect in older adults. During recall of all 3 types of material, older participants recalled more false positive than false negative memories.

  17. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, J; Okuda, T [Toyota memorial hospital, Toyota, Aichi (Japan); Sakaino, S; Yokota, N [Suzukake central hospital, Hamamatsu, Shizuoka (Japan)

    2015-06-15

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determine the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However

  18. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    International Nuclear Information System (INIS)

    Suzuki, J; Okuda, T; Sakaino, S; Yokota, N

    2015-01-01

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determine the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However

  19. Analytical Subthreshold Current and Subthreshold Swing Models for a Fully Depleted (FD) Recessed-Source/Drain (Re-S/D) SOI MOSFET with Back-Gate Control

    Science.gov (United States)

    Saramekala, Gopi Krishna; Tiwari, Pramod Kumar

    2017-08-01

    Two-dimensional (2D) analytical models for the subthreshold current and subthreshold swing of the back-gated fully depleted recessed-source/drain (Re-S/D) silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) are presented. The surface potential is determined by solving the 2D Poisson equation in both channel and buried-oxide (BOX) regions, considering suitable boundary conditions. To derive closed-form expressions for the subthreshold characteristics, the virtual cathode potential expression has been derived in terms of the minimum of the front and back surface potentials. The effect of various device parameters such as gate oxide and Si film thicknesses, thickness of source/drain penetration into BOX, applied back-gate bias voltage, etc. on the subthreshold current and subthreshold swing has been analyzed. The validity of the proposed models is established using the Silvaco ATLAS™ 2D device simulator.

  20. Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor.

    Science.gov (United States)

    Xiao, Xiang; Zhang, Letao; Shao, Yang; Zhou, Xiaoliang; He, Hongyu; Zhang, Shengdong

    2017-12-13

    A room-temperature flexible amorphous indium-gallium-zinc oxide thin film transistor (a-IGZO TFT) technology is developed on plastic substrates, in which both the gate dielectric and passivation layers of the TFTs are formed by an anodic oxidation (anodization) technique. While the gate dielectric Al 2 O 3 is grown with a conventional anodization on an Al:Nd gate electrode, the channel passivation layer Al 2 O 3 is formed using a localized anodization technique. The anodized Al 2 O 3 passivation layer shows a superior passivation effect to that of PECVD SiO 2 . The room-temperature-processed flexible a-IGZO TFT exhibits a field-effect mobility of 7.5 cm 2 /V·s, a subthreshold swing of 0.44 V/dec, an on-off ratio of 3.1 × 10 8 , and an acceptable gate-bias stability with threshold voltage shifts of 2.65 and -1.09 V under positive gate-bias stress and negative gate-bias stress, respectively. Bending and fatigue tests confirm that the flexible a-IGZO TFT also has a good mechanical reliability, with electrical performances remaining consistent up to a strain of 0.76% as well as after 1200 cycles of fatigue testing.

  1. Effects of sertraline, duloxetine, vortioxetine, and idazoxan in the rat affective bias test

    DEFF Research Database (Denmark)

    Refsgaard, Louise Konradsen; Haubro, Kia; Pickering, Darryl S

    2016-01-01

    Rationale Affective biases seemingly play a crucial role for the onset and development of depression. Acute treatment with monoamine-based antidepressants positively influence emotional processing, and an early correction of biases likely results in repeated positive experiences that ultimately...... lead to improved mood. Objectives Using two conventional antidepressants, sertraline and duloxetine, we aimed to forward the characterization of a newly developed affective bias test (ABT) for rats. Further, we examined the effect of vortioxetine, a recently approved antidepressant, and the α2...... adrenoceptor antagonist idazoxan on affective biases....

  2. Double-gated spectral snapshots for biomolecular fluorescence

    International Nuclear Information System (INIS)

    Nakamura, Ryosuke; Hamada, Norio; Ichida, Hideki; Tokunaga, Fumio; Kanematsu, Yasuo

    2007-01-01

    A versatile method to take femtosecond spectral snapshots of fluorescence has been developed based on a double gating technique in the combination of an optical Kerr gate and an image intensifier as an electrically driven gate set in front of a charge-coupled device detector. The application of a conventional optical-Kerr-gate method is limited to molecules with the short fluorescence lifetime up to a few hundred picoseconds, because long-lifetime fluorescence itself behaves as a source of the background signal due to insufficiency of the extinction ratio of polarizers employed for the Kerr gate. By using the image intensifier with the gate time of 200 ps, we have successfully suppressed the background signal and overcome the application limit of optical-Kerr-gate method. The system performance has been demonstrated by measuring time-resolved fluorescence spectra for laser dye solution and the riboflavin solution as a typical sample of biomolecule

  3. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia; Pedersen, Anders N; Nøttrup, Trine Jakobi

    2005-01-01

    BACKGROUND AND PURPOSE: Adjuvant radiotherapy after breast-conserving surgery for breast cancer implies a risk of late cardiac and pulmonary toxicity. This is the first study to evaluate cardiopulmonary dose sparing of breathing adapted radiotherapy (BART) using free breathing gating......, and to compare this respiratory technique with voluntary breath-hold. PATIENTS AND METHODS: 17 patients were CT-scanned during non-coached breathing manoeuvre including free breathing (FB), end-inspiration gating (IG), end-expiration gating (EG), deep inspiration breath-hold (DIBH) and end-expiration breath......-hold (EBH). The Varian Real-time Position Management system (RPM) was used to monitor respiratory movement and to gate the scanner. For each breathing phase, a population based internal margin (IM) was estimated based on average chest wall excursion, and incorporated into an individually optimised three...

  4. SU-E-T-350: Verification of Gating Performance of a New Elekta Gating Solution: Response Kit and Catalyst System

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X; Cao, D; Housley, D; Mehta, V; Shepard, D [Swedish Cancer Institute, Seattle, WA (United States)

    2014-06-01

    Purpose: In this work, we have tested the performance of new respiratory gating solutions for Elekta linacs. These solutions include the Response gating and the C-RAD Catalyst surface mapping system.Verification measurements have been performed for a series of clinical cases. We also examined the beam on latency of the system and its impact on delivery efficiency. Methods: To verify the benefits of tighter gating windows, a Quasar Respiratory Motion Platform was used. Its vertical-motion plate acted as a respiration surrogate and was tracked by the Catalyst system to generate gating signals. A MatriXX ion-chamber array was mounted on its longitudinal-moving platform. Clinical plans are delivered to a stationary and moving Matrix array at 100%, 50% and 30% gating windows and gamma scores were calculated comparing moving delivery results to the stationary result. It is important to note that as one moves to tighter gating windows, the delivery efficiency will be impacted by the linac's beam-on latency. Using a specialized software package, we generated beam-on signals of lengths of 1000ms, 600ms, 450ms, 400ms, 350ms and 300ms. As the gating windows get tighter, one can expect to reach a point where the dose rate will fall to nearly zero, indicating that the gating window is close to beam-on latency. A clinically useful gating window needs to be significantly longer than the latency for the linac. Results: As expected, the use of tighter gating windows improved delivery accuracy. However, a lower limit of the gating window, largely defined by linac beam-on latency, exists at around 300ms. Conclusion: The Response gating kit, combined with the C-RAD Catalyst, provides an effective solution for respiratorygated treatment delivery. Careful patient selection, gating window design, even visual/audio coaching may be necessary to ensure both delivery quality and efficiency. This research project is funded by Elekta.

  5. Prevalence of positive gated myocardial SPECT in diabetic and non-diabetic women and impact of other factors; KIHD perspective

    International Nuclear Information System (INIS)

    Maseeh-uz-Zaman; Fatima, N.; Samad, A.; Rasheed, S.Z.; Ishaq, M.; Rehman, K.; Wali, A.

    2009-01-01

    The objective of the present study was to assess the prevalence of coronary artery disease (CAD) among diabetic (DM) and nondiabetic (NDM) women using Gated SPECT (GSPECT) and to study the impact of other. risk factors like hypertension (HTN), dyslipidemia, family history and menopause. This is a prospective cross-sectional study on a consecutive sample of 287 women referred to Nuclear Cardiology Department of Karachi Institute of Heart Diseases (KIHD) for GSPECT for evaluation of known or suspected CAD (from January 2009 till June 2009). Women with a history of DM diagnosed less than 5 years were excluded. Same day (reststress) GSPECT study was conducted and fixed or reversible perfusion defects were considered positive GSPECT for CAD. GSPECT was positive for CAD in 41/115 (36%, P 0.002) diabetic women and 37/172 (21 %, P 0.005) non-diabetic cohort. In diabetic cohort, GSPECT was positive in 5/9 (56%, P 0.013) women with diabetes only, 17/35 (48%, P 0.02) DM with HTN, 12/15 (80%, P value 0.02) DM with dyslipidemia and 11/43 (26%, P 0.001) DM with >2 risk factors. GSPECT was normal in all 3 diabetic women with positive family history for CAD. In nondiabetic cohort, GSPECT was positive in 9/32 (28%, P value 0.739) women with no risk factor, 5/58 (26%, P 0.866) HTN only, 2/5 (40%, P value 0.655) only dyslipidemic women, 1/12. (8%, P 0.004) with family history only and 4/23 (17%, P value 0.166) non-diabetic with >2 risk factors. Interestingly, 35/93 post-menopausal diabetic (38%, p value 0.017) had positive GSPECT while 33/123 non-diabetic postmenopausal women (27%, p 0.03) had positive perfusion scans. GSPECT was positive in 6/26 (23%, P 0.006) and 4/49 (8%, P 0.05) in diabetic and non-diabetic pre-menopausal women. The prevalence of CAD in our diabetic women is as high as internationally reported and diabetes is a strong risk factor for CAD. Dyslipidemia with diabetes is a major contributor to CAD than HTN and F/H. Diabetes erases the protective effect of estrogen

  6. Prevalence of positive gated myocardial SPECT in diabetic and non-diabetic women and impact of other factors; KIHD perspective

    Energy Technology Data Exchange (ETDEWEB)

    Maseeh-uz-Zaman,; Fatima, N; Samad, A; Rasheed, S Z; Ishaq, M; Rehman, K; Wali, A [Karachi, Inst. of Heart Diseases, Karachi (Pakistan)

    2009-07-15

    The objective of the present study was to assess the prevalence of coronary artery disease (CAD) among diabetic (DM) and nondiabetic (NDM) women using Gated SPECT (GSPECT) and to study the impact of other. risk factors like hypertension (HTN), dyslipidemia, family history and menopause. This is a prospective cross-sectional study on a consecutive sample of 287 women referred to Nuclear Cardiology Department of Karachi Institute of Heart Diseases (KIHD) for GSPECT for evaluation of known or suspected CAD (from January 2009 till June 2009). Women with a history of DM diagnosed less than 5 years were excluded. Same day (reststress) GSPECT study was conducted and fixed or reversible perfusion defects were considered positive GSPECT for CAD. GSPECT was positive for CAD in 41/115 (36%, P 0.002) diabetic women and 37/172 (21 %, P 0.005) non-diabetic cohort. In diabetic cohort, GSPECT was positive in 5/9 (56%, P 0.013) women with diabetes only, 17/35 (48%, P 0.02) DM with HTN, 12/15 (80%, P value 0.02) DM with dyslipidemia and 11/43 (26%, P 0.001) DM with >2 risk factors. GSPECT was normal in all 3 diabetic women with positive family history for CAD. In nondiabetic cohort, GSPECT was positive in 9/32 (28%, P value 0.739) women with no risk factor, 5/58 (26%, P 0.866) HTN only, 2/5 (40%, P value 0.655) only dyslipidemic women, 1/12. (8%, P 0.004) with family history only and 4/23 (17%, P value 0.166) non-diabetic with >2 risk factors. Interestingly, 35/93 post-menopausal diabetic (38%, p value 0.017) had positive GSPECT while 33/123 non-diabetic postmenopausal women (27%, p 0.03) had positive perfusion scans. GSPECT was positive in 6/26 (23%, P 0.006) and 4/49 (8%, P 0.05) in diabetic and non-diabetic pre-menopausal women. The prevalence of CAD in our diabetic women is as high as internationally reported and diabetes is a strong risk factor for CAD. Dyslipidemia with diabetes is a major contributor to CAD than HTN and F/H. Diabetes erases the protective effect of estrogen

  7. Identification of an HV 1 voltage-gated proton channel in insects.

    Science.gov (United States)

    Chaves, Gustavo; Derst, Christian; Franzen, Arne; Mashimo, Yuta; Machida, Ryuichiro; Musset, Boris

    2016-04-01

    The voltage-gated proton channel 1 (HV 1) is an important component of the cellular proton extrusion machinery and is essential for charge compensation during the respiratory burst of phagocytes. HV 1 has been identified in a wide range of eukaryotes throughout the animal kingdom, with the exception of insects. Therefore, it has been proposed that insects do not possess an HV 1 channel. In the present study, we report the existence of an HV 1-type proton channel in insects. We searched insect transcriptome shotgun assembly (TSA) sequence databases and found putative HV 1 orthologues in various polyneopteran insects. To confirm that these putative HV 1 orthologues were functional channels, we studied the HV 1 channel of Nicoletia phytophila (NpHV 1), an insect of the Zygentoma order, in more detail. NpHV 1 comprises 239 amino acids and is 33% identical to the human voltage-gated proton channel 1. Patch clamp measurements in a heterologous expression system showed proton selectivity, as well as pH- and voltage-dependent gating. Interestingly, NpHV 1 shows slightly enhanced pH-dependent gating compared to the human channel. Mutations in the first transmembrane segment at position 66 (Asp66), the presumed selectivity filter, lead to a loss of proton-selective conduction, confirming the importance of this aspartate residue in voltage-gated proton channels. Nucleotide sequence data have been deposited in the GenBank database under accession number KT780722. © 2016 Federation of European Biochemical Societies.

  8. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    Science.gov (United States)

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  9. Audio-visual biofeedback for respiratory-gated radiotherapy: Impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    George, Rohini; Chung, Theodore D.; Vedam, Sastry S.; Ramakrishnan, Viswanathan; Mohan, Radhe; Weiss, Elisabeth; Keall, Paul J.

    2006-01-01

    Purpose: Respiratory gating is a commercially available technology for reducing the deleterious effects of motion during imaging and treatment. The efficacy of gating is dependent on the reproducibility within and between respiratory cycles during imaging and treatment. The aim of this study was to determine whether audio-visual biofeedback can improve respiratory reproducibility by decreasing residual motion and therefore increasing the accuracy of gated radiotherapy. Methods and Materials: A total of 331 respiratory traces were collected from 24 lung cancer patients. The protocol consisted of five breathing training sessions spaced about a week apart. Within each session the patients initially breathed without any instruction (free breathing), with audio instructions and with audio-visual biofeedback. Residual motion was quantified by the standard deviation of the respiratory signal within the gating window. Results: Audio-visual biofeedback significantly reduced residual motion compared with free breathing and audio instruction. Displacement-based gating has lower residual motion than phase-based gating. Little reduction in residual motion was found for duty cycles less than 30%; for duty cycles above 50% there was a sharp increase in residual motion. Conclusions: The efficiency and reproducibility of gating can be improved by: incorporating audio-visual biofeedback, using a 30-50% duty cycle, gating during exhalation, and using displacement-based gating

  10. Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals

    KAUST Repository

    Kozawa, Daichi

    2016-11-16

    Transition metal dichalcogenide monolayers have attracted much attention due to their strong light absorption and excellent electronic properties. These advantages make this type of two-dimensional crystal a promising one for optoelectronic device applications. In the case of photoelectric conversion devices such as photodetectors and photovoltaic cells, p–n junctions are one of the most important devices. Here, we demonstrate photodetection with WSe2 monolayer films. We prepare the electrolyte-gated ambipolar transistors and electrostatic p–n junctions are formed by the electrolyte-gating technique at 270 K. These p-n junctions are cooled down to fix the ion motion (and p-n junctions) and we observed the reasonable photocurrent spectra without the external bias, indicating the formation of p-n junctions. Very interestingly, two-terminal devices exhibit higher photoresponsivity than that of three-terminal ones, suggesting the formation of highly balanced anion and cation layers. The maximum photoresponsivity reaches 5 mA/W in resonance with the first excitonic peak. Our technique provides important evidence for optoelectronics in atomically thin crystals.

  11. Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals

    KAUST Repository

    Kozawa, Daichi; Pu, Jiang; Shimizu, Ryo; Kimura, Shota; Chiu, Ming-Hui; Matsuki, Keiichiro; Wada, Yoshifumi; Sakanoue, Tomo; Iwasa, Yoshihiro; Li, Lain-Jong; Takenobu, Taishi

    2016-01-01

    Transition metal dichalcogenide monolayers have attracted much attention due to their strong light absorption and excellent electronic properties. These advantages make this type of two-dimensional crystal a promising one for optoelectronic device applications. In the case of photoelectric conversion devices such as photodetectors and photovoltaic cells, p–n junctions are one of the most important devices. Here, we demonstrate photodetection with WSe2 monolayer films. We prepare the electrolyte-gated ambipolar transistors and electrostatic p–n junctions are formed by the electrolyte-gating technique at 270 K. These p-n junctions are cooled down to fix the ion motion (and p-n junctions) and we observed the reasonable photocurrent spectra without the external bias, indicating the formation of p-n junctions. Very interestingly, two-terminal devices exhibit higher photoresponsivity than that of three-terminal ones, suggesting the formation of highly balanced anion and cation layers. The maximum photoresponsivity reaches 5 mA/W in resonance with the first excitonic peak. Our technique provides important evidence for optoelectronics in atomically thin crystals.

  12. Affective bias in visual working memory is associated with capacity.

    Science.gov (United States)

    Xie, Weizhen; Li, Huanhuan; Ying, Xiangyu; Zhu, Shiyou; Fu, Rong; Zou, Yingmin; Cui, Yanyan

    2017-11-01

    How does the affective nature of task stimuli modulate working memory (WM)? This study investigates whether WM maintains emotional information in a biased manner to meet the motivational principle of approaching positivity and avoiding negativity by retaining more approach-related positive content over avoidance-related negative content. This bias may exist regardless of individual differences in WM functionality, as indexed by WM capacity (overall bias hypothesis). Alternatively, this bias may be contingent on WM capacity (capacity-based hypothesis), in which a better WM system may be more likely to reveal an adaptive bias. In two experiments, participants performed change localisation tasks with emotional and non-emotional stimuli to estimate the number of items that they could retain for each of those stimuli. Although participants did not seem to remember one type of emotional content (e.g. happy faces) better than the other type of emotional content (e.g. sad faces), there was a significant correlation between WM capacity and affective bias. Specifically, participants with higher WM capacity for non-emotional stimuli (colours or line-drawing symbols) tended to maintain more happy faces over sad faces. These findings demonstrated the presence of a "built-in" affective bias in WM as a function of its systematic limitations, favouring the capacity-based hypothesis.

  13. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    International Nuclear Information System (INIS)

    Eslami, Leila; Esmaeilzadeh, Mahdi

    2014-01-01

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted

  14. Numerical value biases sound localization.

    Science.gov (United States)

    Golob, Edward J; Lewald, Jörg; Getzmann, Stephan; Mock, Jeffrey R

    2017-12-08

    Speech recognition starts with representations of basic acoustic perceptual features and ends by categorizing the sound based on long-term memory for word meaning. However, little is known about whether the reverse pattern of lexical influences on basic perception can occur. We tested for a lexical influence on auditory spatial perception by having subjects make spatial judgments of number stimuli. Four experiments used pointing or left/right 2-alternative forced choice tasks to examine perceptual judgments of sound location as a function of digit magnitude (1-9). The main finding was that for stimuli presented near the median plane there was a linear left-to-right bias for localizing smaller-to-larger numbers. At lateral locations there was a central-eccentric location bias in the pointing task, and either a bias restricted to the smaller numbers (left side) or no significant number bias (right side). Prior number location also biased subsequent number judgments towards the opposite side. Findings support a lexical influence on auditory spatial perception, with a linear mapping near midline and more complex relations at lateral locations. Results may reflect coding of dedicated spatial channels, with two representing lateral positions in each hemispace, and the midline area represented by either their overlap or a separate third channel.

  15. Image quality in non-gated versus gated reconstruction of tongue motion using magnetic resonance imaging: a comparison using automated image processing

    Energy Technology Data Exchange (ETDEWEB)

    Alvey, Christopher; Orphanidou, C.; Coleman, J.; McIntyre, A.; Golding, S.; Kochanski, G. [University of Oxford, Oxford (United Kingdom)

    2008-11-15

    The use of gated or ECG triggered MR is a well-established technique and developments in coil technology have enabled this approach to be applied to areas other than the heart. However, the image quality of gated (ECG or cine) versus non-gated or real-time has not been extensively evaluated in the mouth. We evaluate two image sequences by developing an automatic image processing technique which compares how well the image represents known anatomy. Four subjects practised experimental poly-syllabic sentences prior to MR scanning. Using a 1.5 T MR unit, we acquired comparable gated (using an artificial trigger) and non-gated sagittal images during speech. We then used an image processing algorithm to model the image grey along lines that cross the airway. Each line involved an eight parameter non-linear equation to model of proton densities, edges, and dimensions. Gated and non-gated images show similar spatial resolution, with non-gated images being slightly sharper (10% better resolution, less than 1 pixel). However, the gated sequences generated images of substantially lower inherent noise, and substantially better discrimination between air and tissue. Additionally, the gated sequences demonstrate a very much greater temporal resolution. Overall, image quality is better with gated imaging techniques, especially given their superior temporal resolution. Gated techniques are limited by the repeatability of the motions involved, and we have shown that speech to a metronome can be sufficiently repeatable to allow high-quality gated magnetic resonance imaging images. We suggest that gated sequences may be useful for evaluating other types of repetitive movement involving the joints and limb motions. (orig.)

  16. Image quality in non-gated versus gated reconstruction of tongue motion using magnetic resonance imaging: a comparison using automated image processing

    <