Positive solutions of fractional differential equations with derivative terms
Directory of Open Access Journals (Sweden)
Cuiping Cheng
2012-11-01
Full Text Available In this article, we are concerned with the existence of positive solutions for nonlinear fractional differential equation whose nonlinearity contains the first-order derivative, $$displaylines{ D_{0^+}^{alpha}u(t+f(t,u(t,u'(t=0,quad tin (0,1,; n-1
Directory of Open Access Journals (Sweden)
Qiang Gao
2015-12-01
Full Text Available Aiming at balancing and positioning of a new electro-hydraulic servo system with iso-actuation configuration, an extended state observer–based fractional order proportional–integral–derivative controller is proposed in this study. To meet the lightweight requirements of heavy barrel weapons with large diameters, an electro-hydraulic servo system with a three-chamber hydraulic cylinder is especially designed. In the electro-hydraulic servo system, the balance chamber of the hydraulic cylinder is used to realize active balancing of the unbalanced forces, while the driving chambers consisting of the upper and lower chambers are adopted for barrel positioning and dynamic compensation of external disturbances. Compared with conventional proportional–integral–derivative controllers, the fractional order proportional–integral–derivative possesses another two adjustable parameters by expanding integer order to arbitrary order calculus, resulting in more flexibility and stronger robustness of the control system. To better compensate for strong external disturbances and system nonlinearities, the extended state observer strategy is further introduced to the fractional order proportional–integral–derivative control system. Numerical simulation and bench test indicate that the extended state observer–based fractional order proportional–integral–derivative significantly outperforms proportional–integral–derivative and fractional order proportional–integral–derivative control systems with better control accuracy and higher system robustness, well demonstrating the feasibility and effectiveness of the proposed extended state observer–based fractional order proportional–integral–derivative control strategy.
THE NEW SOLUTION OF TIME FRACTIONAL WAVE EQUATION WITH CONFORMABLE FRACTIONAL DERIVATIVE DEFINITION
Çenesiz, Yücel; Kurt, Ali
2015-01-01
– In this paper, we used new fractional derivative definition, the conformable fractional derivative, for solving two and three dimensional time fractional wave equation. This definition is simple and very effective in the solution procedures of the fractional differential equations that have complicated solutions with classical fractional derivative definitions like Caputo, Riemann-Liouville and etc. The results show that conformable fractional derivative definition is usable and convenient ...
Generalized Fractional Derivative Anisotropic Viscoelastic Characterization
Directory of Open Access Journals (Sweden)
Harry H. Hilton
2012-01-01
Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.
The Klein–Gordon–Zakharov equations with the positive fractional
Indian Academy of Sciences (India)
... and the new special types of KGZ equations with the positive fractional power terms (gKGZE) are presented. ... exact solutions of four special types of the gKGZE are derived, which are the bell-type ... Pramana – Journal of Physics | News.
Fractional variational calculus in terms of Riesz fractional derivatives
International Nuclear Information System (INIS)
Agrawal, O P
2007-01-01
This paper presents extensions of traditional calculus of variations for systems containing Riesz fractional derivatives (RFDs). Specifically, we present generalized Euler-Lagrange equations and the transversality conditions for fractional variational problems (FVPs) defined in terms of RFDs. We consider two problems, a simple FVP and an FVP of Lagrange. Results of the first problem are extended to problems containing multiple fractional derivatives, functions and parameters, and to unspecified boundary conditions. For the second problem, we present Lagrange-type multiplier rules. For both problems, we develop the Euler-Lagrange-type necessary conditions which must be satisfied for the given functional to be extremum. Problems are considered to demonstrate applications of the formulations. Explicitly, we introduce fractional momenta, fractional Hamiltonian, fractional Hamilton equations of motion, fractional field theory and fractional optimal control. The formulations presented and the resulting equations are similar to the formulations for FVPs given in Agrawal (2002 J. Math. Anal. Appl. 272 368, 2006 J. Phys. A: Math. Gen. 39 10375) and to those that appear in the field of classical calculus of variations. These formulations are simple and can be extended to other problems in the field of fractional calculus of variations
State-Space Modelling of Loudspeakers using Fractional Derivatives
DEFF Research Database (Denmark)
King, Alexander Weider; Agerkvist, Finn T.
2015-01-01
This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response of a fractio......This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response...... of a fractional harmonic oscillator, representing the mechanical part of a loudspeaker, showing the effect of the fractional derivative and its relationship to viscoelasticity. Finally, a loudspeaker model with a fractional order viscoelastic suspension and fractional order voice coil is fit to measurement data...
Fractional Hamiltonian analysis of higher order derivatives systems
International Nuclear Information System (INIS)
Baleanu, Dumitru; Muslih, Sami I.; Tas, Kenan
2006-01-01
The fractional Hamiltonian analysis of 1+1 dimensional field theory is investigated and the fractional Ostrogradski's formulation is obtained. The fractional path integral of both simple harmonic oscillator with an acceleration-squares part and a damped oscillator are analyzed. The classical results are obtained when fractional derivatives are replaced with the integer order derivatives
Jin, Jie; Sun, Ke; Liu, Wei; Li, Shiwei; Peng, Xianqiang; Yang, Yan; Han, Lanfang; Du, Ziwen; Wang, Xiangke
2018-05-01
Chemical composition and pollutant sorption of biochar-derived organic matter fractions (BDOMs) are critical for understanding the long-term environmental significance of biochar. Phenanthrene (PHE) sorption by the humic acid-like (HAL) fractions isolated from plant straw- (PLABs) and animal manure-based (ANIBs) biochars, and the residue materials (RES) after HAL extraction was investigated. The HAL fraction comprised approximately 50% of organic carbon (OC) of the original biochars. Results of XPS and 13 C NMR demonstrated that the biochar-derived HAL fractions mainly consisted of aromatic clusters substituted by carboxylic groups. The CO 2 cumulative surface area of BDOMs excluding PLAB-derived RES fractions was obviously lower than that of corresponding biochars. The sorption nonlinearity of PHE by the fresh biochars was significantly stronger than that of the BDOM fractions, implying that the BDOM fractions were more chemically homogeneous. The BDOMs generally exhibited comparable or higher OC-normalized distribution coefficients (K oc ) of PHE than the original biochars. The PHE logK oc values of the fresh biochars correlated negatively with the micropore volumes due to steric hindrance effect. In contrast, a positive relationship between the sorption coefficients (K d ) of BDOMs and the micropore volumes was observed in this study, suggesting that pore filling could dominate PHE sorption by the BDOMs. The positive correlation between the PHE logK oc values of the HAL fractions and the aromatic C contents indicates that PHE sorption by the HAL fractions was regulated by aromatic domains. The findings of this study improve our knowledge of the evolution of biochar properties after application and its potential environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.
Non-Noether symmetries of Hamiltonian systems with conformable fractional derivatives
International Nuclear Information System (INIS)
Wang Lin-Li; Fu Jing-Li
2016-01-01
In this paper, we present the fractional Hamilton’s canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. Firstly, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton’s canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results. (paper)
Directory of Open Access Journals (Sweden)
Ping Zhou
2012-01-01
Full Text Available The unstable equilibrium points of the fractional-order Lorenz chaotic system can be controlled via fractional-order derivative, and chaos synchronization for the fractional-order Lorenz chaotic system can be achieved via fractional-order derivative. The control and synchronization technique, based on stability theory of fractional-order systems, is simple and theoretically rigorous. The numerical simulations demonstrate the validity and feasibility of the proposed method.
Fractional-Order Control of Pneumatic Position Servosystems
Directory of Open Access Journals (Sweden)
Cao Junyi
2011-01-01
Full Text Available A fractional-order control strategy for pneumatic position servosystem is presented in this paper. The idea of the fractional calculus application to control theory was introduced in many works, and its advantages were proved. However, the realization of fractional-order controllers for pneumatic position servosystems has not been investigated. Based on the relationship between the pressure in cylinder and the rate of mass flow into the cylinder, the dynamic model of pneumatic position servo system is established. The fractional-order controller for pneumatic position servo and its implementation in industrial computer is designed. The experiments with fractional-order controller are carried out under various conditions, which include sine position signal with different frequency and amplitude, step position signal, and variety inertial load. The results show the effectiveness of the proposed scheme and verify their fine control performance for pneumatic position servo system.
Generalized fractional Schroedinger equation with space-time fractional derivatives
International Nuclear Information System (INIS)
Wang Shaowei; Xu Mingyu
2007-01-01
In this paper the generalized fractional Schroedinger equation with space and time fractional derivatives is constructed. The equation is solved for free particle and for a square potential well by the method of integral transforms, Fourier transform and Laplace transform, and the solution can be expressed in terms of Mittag-Leffler function. The Green function for free particle is also presented in this paper. Finally, we discuss the relationship between the cases of the generalized fractional Schroedinger equation and the ones in standard quantum
Variational problems with fractional derivatives: Euler-Lagrange equations
International Nuclear Information System (INIS)
Atanackovic, T M; Konjik, S; Pilipovic, S
2008-01-01
We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense
Measuring memory with the order of fractional derivative
Du, Maolin; Wang, Zaihua; Hu, Haiyan
2013-12-01
Fractional derivative has a history as long as that of classical calculus, but it is much less popular than it should be. What is the physical meaning of fractional derivative? This is still an open problem. In modeling various memory phenomena, we observe that a memory process usually consists of two stages. One is short with permanent retention, and the other is governed by a simple model of fractional derivative. With the numerical least square method, we show that the fractional model perfectly fits the test data of memory phenomena in different disciplines, not only in mechanics, but also in biology and psychology. Based on this model, we find that a physical meaning of the fractional order is an index of memory.
Analysis of Drude model using fractional derivatives without singular kernels
Directory of Open Access Journals (Sweden)
Jiménez Leonardo Martínez
2017-11-01
Full Text Available We report study exploring the fractional Drude model in the time domain, using fractional derivatives without singular kernels, Caputo-Fabrizio (CF, and fractional derivatives with a stretched Mittag-Leffler function. It is shown that the velocity and current density of electrons moving through a metal depend on both the time and the fractional order 0 < γ ≤ 1. Due to non-singular fractional kernels, it is possible to consider complete memory effects in the model, which appear neither in the ordinary model, nor in the fractional Drude model with Caputo fractional derivative. A comparison is also made between these two representations of the fractional derivatives, resulting a considered difference when γ < 0.8.
On the Asymptotic Behavior of Positive Solutions of Certain Fractional Differential Equations
Said R. Grace
2015-01-01
This paper deals with the asymptotic behavior of positive solutions of certain forced fractional differential equations of the form DcαCyt=et+ft, xt, c>1, α∈0,1, where yt=atx′t′, c0=y(c)/Γ(1) =yc, and c0 is a real constant. From the obtained results, we derive a technique which can be applied to some related fractional differential equations.
Large deflection of viscoelastic beams using fractional derivative model
International Nuclear Information System (INIS)
Bahranini, Seyed Masoud Sotoodeh; Eghtesad, Mohammad; Ghavanloo, Esmaeal; Farid, Mehrdad
2013-01-01
This paper deals with large deflection of viscoelastic beams using a fractional derivative model. For this purpose, a nonlinear finite element formulation of viscoelastic beams in conjunction with the fractional derivative constitutive equations has been developed. The four-parameter fractional derivative model has been used to describe the constitutive equations. The deflected configuration for a uniform beam with different boundary conditions and loads is presented. The effect of the order of fractional derivative on the large deflection of the cantilever viscoelastic beam, is investigated after 10, 100, and 1000 hours. The main contribution of this paper is finite element implementation for nonlinear analysis of viscoelastic fractional model using the storage of both strain and stress histories. The validity of the present analysis is confirmed by comparing the results with those found in the literature.
Fractional-Order Control of Pneumatic Position Servosystems
Junyi, Cao; Binggang, Cao
2011-01-01
A fractional-order control strategy for pneumatic position servosystem is presented in this paper. The idea of the fractional calculus application to control theory was introduced in many works, and its advantages were proved. However, the realization of fractional-order controllers for pneumatic position servosystems has not been investigated. Based on the relationship between the pressure in cylinder and the rate of mass flow into the cylinder, the dynamic model of pneumatic position servo ...
Directory of Open Access Journals (Sweden)
Qingkai Kong
2012-02-01
Full Text Available In this paper, we study the existence and multiplicity of positive solutions of a class of nonlinear fractional boundary value problems with Dirichlet boundary conditions. By applying the fixed point theory on cones we establish a series of criteria for the existence of one, two, any arbitrary finite number, and an infinite number of positive solutions. A criterion for the nonexistence of positive solutions is also derived. Several examples are given for demonstration.
On some new properties of fractional derivatives with Mittag-Leffler kernel
Baleanu, Dumitru; Fernandez, Arran
2018-06-01
We establish a new formula for the fractional derivative with Mittag-Leffler kernel, in the form of a series of Riemann-Liouville fractional integrals, which brings out more clearly the non-locality of fractional derivatives and is easier to handle for certain computational purposes. We also prove existence and uniqueness results for certain families of linear and nonlinear fractional ODEs defined using this fractional derivative. We consider the possibility of a semigroup property for these derivatives, and establish extensions of the product rule and chain rule, with an application to fractional mechanics.
Fractional derivative and its application in mathematics and physics
International Nuclear Information System (INIS)
Namsrai, K.
2004-12-01
We propose fractional derivatives and to study those mathematical and physical consequences. It is shown that fractional derivatives possess noncommutative and nonassociative properties and within which motion of a particle, differential and integral calculuses are investigated. (author)
On a system of differential equations with fractional derivatives arising in rod theory
International Nuclear Information System (INIS)
Atanackovic, Teodor M; Stankovic, Bogoljub
2004-01-01
We study a system of equations with fractional derivatives, that arises in the analysis of the lateral motion of an elastic column fixed at one end and loaded by a concentrated follower force at the other end. We assume that the column is positioned on a viscoelastic foundation described by a constitutive equation of fractional derivative type. The stability boundary is determined. It is shown that as in the case of an elastic (Winkler) type of foundation the stability boundary remains the same as for the column without a foundation! Thus, with the solution analysed here, the column exhibits the so-called Hermann-Smith paradox
Spatial Rotation of the Fractional Derivative in Two-Dimensional Space
Directory of Open Access Journals (Sweden)
Ehab Malkawi
2015-01-01
Full Text Available The transformations of the partial fractional derivatives under spatial rotation in R2 are derived for the Riemann-Liouville and Caputo definitions. These transformation properties link the observation of physical quantities, expressed through fractional derivatives, with respect to different coordinate systems (observers. It is the hope that such understanding could shed light on the physical interpretation of fractional derivatives. Also it is necessary to be able to construct interaction terms that are invariant with respect to equivalent observers.
International Nuclear Information System (INIS)
He, Ji-Huan; Elagan, S.K.; Li, Z.B.
2012-01-01
The fractional complex transform is suggested to convert a fractional differential equation with Jumarie's modification of Riemann–Liouville derivative into its classical differential partner. Understanding the fractional complex transform and the chain rule for fractional calculus are elucidated geometrically. -- Highlights: ► The chain rule for fractional calculus is invalid, a counter example is given. ► The fractional complex transform is explained geometrically. ► Fractional equations can be converted into differential equations.
Fractional derivatives. An introduction; Derivate frazionarie. Che cosa sono, a cosa servono
Energy Technology Data Exchange (ETDEWEB)
Dattoli, G. [ENEA, Div. Fisica Applicata, Centro Ricerche Frascati, Rome (Italy)
2001-07-01
In this item is presented a brief survey of fractional calculus and of the relevant applications. In the work are discussed different points of view of the operation of fractional derivative and present a unifying definition. The role played by fractional derivatives and integrals within the framework of integral transform is analyzed. [Italian] In questo articolo si traccia un profilo del cosidetto calcolo frazionario e delle relative applicazioni a problemi di matematica pura ed applicata. Si discutono varie definizioni dell'operazione di derivata frazionaria, non tutte coincidenti fra loro, e si mostra come sia possibile proporre una definizione univoca che inglobi tutte le altre. Si analizza infine il ruolo giocato dalle derivate e dagli integrali frazionari e, piu' in generale, quello degli operatori differenziali ad esponente frazionario, nell'ambito della teoria delle rappresentazioni integrali.
Exact solutions to the time-fractional differential equations via local fractional derivatives
Guner, Ozkan; Bekir, Ahmet
2018-01-01
This article utilizes the local fractional derivative and the exp-function method to construct the exact solutions of nonlinear time-fractional differential equations (FDEs). For illustrating the validity of the method, it is applied to the time-fractional Camassa-Holm equation and the time-fractional-generalized fifth-order KdV equation. Moreover, the exact solutions are obtained for the equations which are formed by different parameter values related to the time-fractional-generalized fifth-order KdV equation. This method is an reliable and efficient mathematical tool for solving FDEs and it can be applied to other non-linear FDEs.
Lower and Upper Solutions Method for Positive Solutions of Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
R. Darzi
2013-01-01
Full Text Available We apply the lower and upper solutions method and fixed-point theorems to prove the existence of positive solution to fractional boundary value problem D0+αut+ft,ut=0, 0
A Caputo fractional derivative of a function with respect to another function
Almeida, Ricardo
2017-03-01
In this paper we consider a Caputo type fractional derivative with respect to another function. Some properties, like the semigroup law, a relationship between the fractional derivative and the fractional integral, Taylor's Theorem, Fermat's Theorem, etc., are studied. Also, a numerical method to deal with such operators, consisting in approximating the fractional derivative by a sum that depends on the first-order derivative, is presented. Relying on examples, we show the efficiency and applicability of the method. Finally, an application of the fractional derivative, by considering a Population Growth Model, and showing that we can model more accurately the process using different kernels for the fractional operator is provided.
Fractional diffusion equation with distributed-order material derivative. Stochastic foundations
International Nuclear Information System (INIS)
Magdziarz, M; Teuerle, M
2017-01-01
In this paper, we present the stochastic foundations of fractional dynamics driven by the fractional material derivative of distributed-order type. Before stating our main result, we present the stochastic scenario which underlies the dynamics given by the fractional material derivative. Then we introduce the Lévy walk process of distributed-order type to establish our main result, which is the scaling limit of the considered process. It appears that the probability density function of the scaling limit process fulfills, in a weak sense, the fractional diffusion equation with the material derivative of distributed-order type. (paper)
Generalized time fractional IHCP with Caputo fractional derivatives
International Nuclear Information System (INIS)
Murio, D A; MejIa, C E
2008-01-01
The numerical solution of the generalized time fractional inverse heat conduction problem (GTFIHCP) on a finite slab is investigated in the presence of measured (noisy) data when the time fractional derivative is interpreted in the sense of Caputo. The GTFIHCP involves the simultaneous identification of the heat flux and temperature transient functions at one of the boundaries of the finite slab together with the initial condition of the original direct problem from noisy Cauchy data at a discrete set of points on the opposite (active) boundary. A finite difference space marching scheme with adaptive regularization, using trigonometric mollification techniques and generalized cross validation is introduced. Error estimates for the numerical solution of the mollified problem and numerical examples are provided.
Investigation of the Dirac Equation by Using the Conformable Fractional Derivative
Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.
2018-05-01
In this paper,the Dirac equation is constructed using the conformable fractional derivative so that in its limit for the fractional parameter, the normal version is recovered. Then, the Cornell potential is considered as the interaction of the system. In this case, the wave function and the energy eigenvalue equation are derived with the aim of the bi-confluent Heun functions. use of the conformable fractional derivative is proven to lead to a branching treatment for the energy of the system. Such a treatment is obvious for small values of the fractional parameter, and a united value as the fractional parameter approaches unity.
Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative
Directory of Open Access Journals (Sweden)
José Francisco Gómez Aguilar
2014-01-01
Full Text Available An alternative construction for the space-time fractional diffusion-advection equation for the sedimentation phenomena is presented. The order of the derivative is considered as 0<β, γ≤1 for the space and time domain, respectively. The fractional derivative of Caputo type is considered. In the spatial case we obtain the fractional solution for the underdamped, undamped, and overdamped case. In the temporal case we show that the concentration has amplitude which exhibits an algebraic decay at asymptotically large times and also shows numerical simulations where both derivatives are taken in simultaneous form. In order that the equation preserves the physical units of the system two auxiliary parameters σx and σt are introduced characterizing the existence of fractional space and time components, respectively. A physical relation between these parameters is reported and the solutions in space-time are given in terms of the Mittag-Leffler function depending on the parameters β and γ. The generalization of the fractional diffusion-advection equation in space-time exhibits anomalous behavior.
Fractional derivatives for physicists and engineers background and theory
Uchaikin, Vladimir V
2013-01-01
The first derivative of a particle coordinate means its velocity, the second means its acceleration, but what does a fractional order derivative mean? Where does it come from, how does it work, where does it lead to? The two-volume book written on high didactic level answers these questions. Fractional Derivatives for Physicists and Engineers— The first volume contains a clear introduction into such a modern branch of analysis as the fractional calculus. The second develops a wide panorama of applications of the fractional calculus to various physical problems. This book recovers new perspectives in front of the reader dealing with turbulence and semiconductors, plasma and thermodynamics, mechanics and quantum optics, nanophysics and astrophysics. The book is addressed to students, engineers and physicists, specialists in theory of probability and statistics, in mathematical modeling and numerical simulations, to everybody who doesn't wish to stay apart from the new mathematical methods becoming more and ...
Modeling of heat conduction via fractional derivatives
Fabrizio, Mauro; Giorgi, Claudio; Morro, Angelo
2017-09-01
The modeling of heat conduction is considered by letting the time derivative, in the Cattaneo-Maxwell equation, be replaced by a derivative of fractional order. The purpose of this new approach is to overcome some drawbacks of the Cattaneo-Maxwell equation, for instance possible fluctuations which violate the non-negativity of the absolute temperature. Consistency with thermodynamics is shown to hold for a suitable free energy potential, that is in fact a functional of the summed history of the heat flux, subject to a suitable restriction on the set of admissible histories. Compatibility with wave propagation at a finite speed is investigated in connection with temperature-rate waves. It follows that though, as expected, this is the case for the Cattaneo-Maxwell equation, the model involving the fractional derivative does not allow the propagation at a finite speed. Nevertheless, this new model provides a good description of wave-like profiles in thermal propagation phenomena, whereas Fourier's law does not.
Fractional derivative of the Hurwitz ζ-function and chaotic decay to zero
Directory of Open Access Journals (Sweden)
C. Cattani
2016-01-01
Full Text Available In this paper the fractional order derivative of a Dirichlet series, Hurwitz zeta function and Riemann zeta function is explicitly computed using the Caputo fractional derivative in the Ortigueira sense. It is observed that the obtained results are a natural generalization of the integer order derivative. Some interesting properties of the fractional derivative of the Riemann zeta function are also investigated to show that there is a chaotic decay to zero (in the Gaussian plane and a promising expression as a complex power series.
Directory of Open Access Journals (Sweden)
Jieming Zhang
2013-01-01
Full Text Available We establish some sufficient conditions for the existence and uniqueness of positive solutions to a class of initial value problem for impulsive fractional differential equations involving the Caputo fractional derivative. Our analysis relies on a fixed point theorem for mixed monotone operators. Our result can not only guarantee the existence of a unique positive solution but also be applied to construct an iterative scheme for approximating it. An example is given to illustrate our main result.
Epps, Brenden; Cushman-Roisin, Benoit
2017-11-01
Fluid turbulence is an outstanding unsolved problem in classical physics, despite 120+ years of sustained effort. Given this history, we assert that a new mathematical framework is needed to make a transformative breakthrough. This talk offers one such framework, based upon kinetic theory tied to the statistics of turbulent transport. Starting from the Boltzmann equation and ``Lévy α-stable distributions'', we derive a turbulence model that expresses the turbulent stresses in the form of a fractional derivative, where the fractional order is tied to the transport behavior of the flow. Initial results are presented herein, for the cases of Couette-Poiseuille flow and 2D boundary layers. Among other results, our model is able to reproduce the logarithmic Law of the Wall in shear turbulence.
Directory of Open Access Journals (Sweden)
Amal Khalaf Haydar
2016-01-01
Full Text Available The main aim in this paper is to use all the possible arrangements of objects such that r1 of them are equal to 1 and r2 (the others of them are equal to 2, in order to generalize the definitions of Riemann-Liouville and Caputo fractional derivatives (about order 0<β
International Nuclear Information System (INIS)
Dong Jianping; Xu Mingyu
2008-01-01
The space fractional Schroedinger equation with a finite square potential, periodic potential, and delta-function potential is studied in this paper. We find that the continuity or discontinuity condition of a fractional derivative of the wave functions should be considered to solve the fractional Schroedinger equation in fractional quantum mechanics. More parity states than those given by standard quantum mechanics for the finite square potential well are obtained. The corresponding energy equations are derived and then solved by graphical methods. We show the validity of Bloch's theorem and reveal the energy band structure for the periodic potential. The jump (discontinuity) condition for the fractional derivative of the wave function of the delta-function potential is given. With the help of the jump condition, we study some delta-function potential fields. For the delta-function potential well, an alternate expression of the wave function (the H function form of it was given by Dong and Xu [J. Math. Phys. 48, 072105 (2007)]) is obtained. The problems of a particle penetrating through a delta-function potential barrier and the fractional probability current density of the particle are also discussed. We study the Dirac comb and show the energy band structure at the end of the paper
Stability Tests of Positive Fractional Continuous-time Linear Systems with Delays
Directory of Open Access Journals (Sweden)
Tadeusz Kaczorek
2013-06-01
Full Text Available Necessary and sufficient conditions for the asymptotic stability of positive fractional continuous-time linear systems with many delays are established. It is shown that: 1 the asymptotic stability of the positive fractional system is independent of their delays, 2 the checking of the asymptotic stability of the positive fractional systems with delays can be reduced to checking of the asymptotic stability of positive standard linear systems without delays.
Periodicity and positivity of a class of fractional differential equations.
Ibrahim, Rabha W; Ahmad, M Z; Mohammed, M Jasim
2016-01-01
Fractional differential equations have been discussed in this study. We utilize the Riemann-Liouville fractional calculus to implement it within the generalization of the well known class of differential equations. The Rayleigh differential equation has been generalized of fractional second order. The existence of periodic and positive outcome is established in a new method. The solution is described in a fractional periodic Sobolev space. Positivity of outcomes is considered under certain requirements. We develop and extend some recent works. An example is constructed.
Guaranteed Cost Finite-Time Control of Fractional-Order Positive Switched Systems
Directory of Open Access Journals (Sweden)
Leipo Liu
2017-01-01
Full Text Available The problem of guaranteed cost finite-time control of fractional-order positive switched systems (FOPSS is considered in this paper. Firstly, a new cost function is defined. Then, by constructing linear copositive Lyapunov functions and using the average dwell time (ADT approach, a state feedback controller and a static output feedback controller are constructed, respectively, and sufficient conditions are derived to guarantee that the corresponding closed-loop systems are guaranteed cost finite-time stable (GCFTS. Such conditions can be easily solved by linear programming. Finally, two examples are given to illustrate the effectiveness of the proposed method.
Finite element formulation of viscoelastic sandwich beams using fractional derivative operators
Galucio, A. C.; Deü, J.-F.; Ohayon, R.
This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.
Cuahutenango-Barro, B.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.
2017-12-01
Analytical solutions of the wave equation with bi-fractional-order and frictional memory kernel of Mittag-Leffler type are obtained via Caputo-Fabrizio fractional derivative in the Liouville-Caputo sense. Through the method of separation of variables and Laplace transform method we derive closed-form solutions and establish fundamental solutions. Special cases with homogeneous Dirichlet boundary conditions and nonhomogeneous initial conditions, as well as for the external force are considered. Numerical simulations of the special solutions were done and novel behaviors are obtained.
The representitativeness of patient position during the first treatment fractions
DEFF Research Database (Denmark)
Bertelsen, Anders; Nielsen, Morten; Westberg, Jonas
2009-01-01
BACKGROUND: During external radiotherapy daily or even weekly image verification of the patient position might be problematic due to the resulting workload. Therefore it has been customary to perform image verification only at the first treatment fraction. In this study it is investigated whether...... the patient position uncertainty at the initial three treatment fractions is representative for the uncertainty throughout the treatment course. METHODS: Seventy seven patients were treated using Elekta Synergy accelerators. The patients were immobilized during treatment by use of a customized VacFix bag...... and a mask of AquaPlast. Cone beam CT (CBCT) scans were performed at fractions 1, 2, and 3 and at the 10th and 20th treatment fractions. Displacements in patient position, translational and rotational, have been measured by an image registration of the CBCT and the planning CT scan. The displacements data...
A fractional derivative approach to full creep regions in salt rock
DEFF Research Database (Denmark)
Zhou, H. W.; Wang, C. P.; Mishnaevsky, Leon
2013-01-01
Based on the definition of the constant-viscosity Abel dashpot, a new creep element, referred to as the variable-viscosity Abel dashpot, is proposed to characterize damage growth in salt rock samples during creep tests. Ultrasonic testing is employed to determine a formula of the variable viscosity...... coefficient, indicating that the change of the variable viscosity coefficient with the time meets a negative exponent law. In addition, by replacing the Newtonian dashpot in the classical Nishihara model with the variable-viscosity Abel dashpot, a damage-mechanism-based creep constitutive model is proposed...... on the basis of time-based fractional derivative. The analytic solution for the fractional-derivative creep constitutive model is presented. The parameters of the fractional derivative creep model are determined by the Levenberg–Marquardt method on the basis of the experimental results of creep tests on salt...
Wang, Wei Z; Fang, Xin-Hua; Williams, Shelley J; Stephenson, Linda L; Baynosa, Richard C; Wong, Nancy; Khiabani, Kayvan T; Zamboni, William A
2013-01-01
Adipose-derived stem cells have become the most studied adult stem cells. The authors examined the apoptosis and necrosis rates for adipocyte, stromal vascular fraction, and adipose-derived stem cells in fresh human lipoaspirates. Human lipoaspirate (n = 8) was harvested using a standard liposuction technique. Stromal vascular fraction cells were separated from adipocytes and cultured to obtain purified adipose-derived stem cells. A panel of stem cell markers was used to identify the surface phenotypes of cultured adipose-derived stem cells. Three distinct stem cell subpopulations (CD90/CD45, CD105/CD45, and CD34/CD31) were selected from the stromal vascular fraction. Apoptosis and necrosis were determined by annexin V/propidium iodide assay and analyzed by flow cytometry. The cultured adipose-derived stem cells demonstrated long-term proliferation and differentiation evidenced by cell doubling time and positive staining with oil red O and alkaline phosphatase. Isolated from lipoaspirates, adipocytes exhibited 19.7 ± 3.7 percent apoptosis and 1.1 ± 0.3 percent necrosis; stromal vascular fraction cells revealed 22.0 ± 6.3 percent of apoptosis and 11.2 ± 1.9 percent of necrosis; stromal vascular fraction cells had a higher rate of necrosis than adipocytes (p vascular fraction cells, 51.1 ± 3.7 percent expressed CD90/CD45, 7.5 ± 1.0 percent expressed CD105/CD45, and 26.4 ± 3.8 percent expressed CD34/CD31. CD34/CD31 adipose-derived stem cells had lower rates of apoptosis and necrosis compared with CD105/CD45 adipose-derived stem cells (p necrosis than adipocytes. However, the extent of apoptosis and necrosis was significantly different among adipose-derived stem cell subpopulations.
Energy Technology Data Exchange (ETDEWEB)
Machida, M.; Ono, S. [Idemitsu Kosan Co. Ltd., Tokyo (Japan); Hattori, H. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology
1997-09-01
The improvement in hydrodenitrogenation (HDN) of coal-derived liquids by co-refining with a petroleum fraction results principally from lowering the nitrogen content of the feedstock (coal-derived liquid) by blending with a nitrogen-free petroleum fraction. Effects of different fractions of coal-derived liquids on HDN and hydrodeoxygenation (HDO) were also examined. The HDN improvement by co-refining could be interpreted in terms of Langmuir-Hinshelwood mechanism. 38 refs., 3 figs., 3 tabs.
Yang, YongGe; Xu, Wei; Yang, Guidong
2018-04-01
To the best of authors' knowledge, little work was referred to the study of a noisy vibro-impact oscillator with a fractional derivative. Stochastic bifurcations of a vibro-impact oscillator with two kinds of fractional derivative elements driven by Gaussian white noise excitation are explored in this paper. We can obtain the analytical approximate solutions with the help of non-smooth transformation and stochastic averaging method. The numerical results from Monte Carlo simulation of the original system are regarded as the benchmark to verify the accuracy of the developed method. The results demonstrate that the proposed method has a satisfactory level of accuracy. We also discuss the stochastic bifurcation phenomena induced by the fractional coefficients and fractional derivative orders. The important and interesting result we can conclude in this paper is that the effect of the first fractional derivative order on the system is totally contrary to that of the second fractional derivative order.
International Nuclear Information System (INIS)
Zabadal, J.; Vilhena, M.T.; Segatto, C.F.; Pazos, R.P.Ruben Panta.
2002-01-01
In this work we construct a closed-form solution for the multidimensional transport equation rewritten in integral form which is expressed in terms of a fractional derivative of the angular flux. We determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of the Riemann-Liouville definition of fractional derivative. We report numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Zabadal, J. E-mail: jorge.zabadal@ufrgs.br; Vilhena, M.T. E-mail: vilhena@mat.ufrgs.br; Segatto, C.F. E-mail: cynthia@mat.ufrgs.br; Pazos, R.P.Ruben Panta. E-mail: rpp@mat.pucrgs.br
2002-07-01
In this work we construct a closed-form solution for the multidimensional transport equation rewritten in integral form which is expressed in terms of a fractional derivative of the angular flux. We determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of the Riemann-Liouville definition of fractional derivative. We report numerical simulations.
International Nuclear Information System (INIS)
Jumarie, Guy
2004-01-01
There are presently two different models of fractional Brownian motions available in the literature: the Riemann-Liouville fractional derivative of white noise on the one hand, and the complex-valued Brownian motion of order n defined by using a random walk in the complex plane, on the other hand. The paper provides a comparison between these two approaches, and in addition, takes this opportunity to contribute some complements. These two models are more or less equivalent on the theoretical standpoint for fractional order between 0 and 1/2, but their practical significances are quite different. Otherwise, for order larger than 1/2, the fractional derivative model has no counterpart in the complex plane. These differences are illustrated by an example drawn from mathematical finance. Taylor expansion of fractional order provides the expression of fractional difference in terms of finite difference, and this allows us to improve the derivation of Fokker-Planck equation and Kramers-Moyal expansion, and to get more insight in their relation with stochastic differential equations of fractional order. In the case of multi-fractal systems, the Fokker-Planck equation can be solved by using path integrals, and the fractional dynamic equations of the state moments of the stochastic system can be easily obtained. By combining fractional derivative and complex white noise of order n, one obtains a family of complex-valued fractional Brownian motions which exhibits long-range dependence. The conclusion outlines suggestions for further research, mainly regarding Lorentz transformation of fractional noises
Directory of Open Access Journals (Sweden)
Duan Jun-Sheng
2017-12-01
Full Text Available We conduct a detailed study and comparison for the one-degree-of-freedom steady-state vibrations under harmonic driving with a single fractional-order derivative and a distributed-order derivative. For each of the two vibration systems, we consider the stiffness contribution factor and damping contribution factor of the term of fractional derivatives, the amplitude and the phase difference for the response. The effects of driving frequency on these response quantities are discussed. Also the influences of the order α of the fractional derivative and the parameter γ parameterizing the weight function in the distributed-order derivative are analyzed. Two cases display similar response behaviors, but the stiffness contribution factor and damping contribution factor of the distributed-order derivative are almost monotonic change with the parameter γ, not exactly like the case of single fractional-order derivative for the order α. The case of the distributed-order derivative provides us more options for the weight function and parameters.
Subrecoil laser cooling dynamics: a fractional derivative approach
International Nuclear Information System (INIS)
Uchaikin, Vladimir V; Sibatov, Renat T
2009-01-01
The subrecoil laser cooling process is considered in the framework of a model with two states (trapping and recycling), with instantaneous transitions between them. The key point of the work is the use of a fractional exponential function for waiting time distributions. This allows us to derive a general master equation covering both important cases: those with exponential and power type tails. Their solutions are expressed through fractionally stable distributions. The pdfs of the total trapping time of an atom and the proportion of trapped atoms are found. Analytical relationships show a good agreement with numerical results from Monte Carlo simulation
Exact solutions of a class of fractional Hamiltonian equations involving Caputo derivatives
Energy Technology Data Exchange (ETDEWEB)
Baleanu, Dumitru [Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, Ankara 06530 (Turkey); Trujillo, Juan J [Departamento de Analisis Matematico, University of La Laguna, 38271 La Laguna, Tenerife (Spain)], E-mail: dumitru@cankaya.edu.tr, E-mail: JTrujill@ullmat.es, E-mail: baleanu@venus.nipne.ro
2009-11-15
The fractional Hamiltonian equations corresponding to the Lagrangians of constrained systems within Caputo derivatives are investigated. The fractional phase space is obtained and the exact solutions of some constrained systems are obtained.
Marinangeli, L.; Alijani, F.; HosseinNia, S. Hassan
2018-01-01
In this paper, Active Vibration Control (AVC) of a rectangular carbon fibre composite plate with free edges is presented. The plate is subjected to out-of-plane excitation by a modal vibration exciter and controlled by Macro Fibre Composite (MFC) transducers. Vibration measurements are performed by using a Laser Doppler Vibrometer (LDV) system. A fractional-order Positive Position Feedback (PPF) compensator is proposed, implemented and compared to the standard integer-order PPF. MFC actuator and sensor are positioned on the plate based on maximal modal strain criterion, so as to control the second natural mode of the plate. Both integer and fractional-order PPF allowed for the effective control of the second mode of vibration. However, the newly proposed fractional-order controller is found to be more efficient in achieving the same performance with less actuation voltage. Moreover, it shows promising performance in reducing spillover effect due to uncontrolled modes.
Subharmonic Resonance of Van Der Pol Oscillator with Fractional-Order Derivative
Directory of Open Access Journals (Sweden)
Yongjun Shen
2014-01-01
Full Text Available The subharmonic resonance of van der Pol (VDP oscillator with fractional-order derivative is studied by the averaging method. At first, the first-order approximate solutions are obtained by the averaging method. Then the definitions of equivalent linear damping coefficient (ELDC and equivalent linear stiffness coefficient (ELSC for subharmonic resonance are established, and the effects of the fractional-order parameters on the ELDC, the ELSC, and the dynamical characteristics of system are also analysed. Moreover, the amplitude-frequency equation and phase-frequency equation of steady-state solution for subharmonic resonance are established. The corresponding stability condition is presented based on Lyapunov theory, and the existence condition for subharmonic resonance (ECSR is also obtained. At last, the comparisons of the fractional-order and the traditional integer-order VDP oscillator are fulfilled by the numerical simulation. The effects of the parameters in fractional-order derivative on the steady-state amplitude, the amplitude-frequency curves, and the system stability are also studied.
Directory of Open Access Journals (Sweden)
Imed Bachar
2014-01-01
Full Text Available We are interested in the following fractional boundary value problem: Dαu(t+atuσ=0, t∈(0,∞, limt→0t2-αu(t=0, limt→∞t1-αu(t=0, where 1<α<2, σ∈(-1,1, Dα is the standard Riemann-Liouville fractional derivative, and a is a nonnegative continuous function on (0,∞ satisfying some appropriate assumptions related to Karamata regular variation theory. Using the Schauder fixed point theorem, we prove the existence and the uniqueness of a positive solution. We also give a global behavior of such solution.
An inverse Sturm–Liouville problem with a fractional derivative
Jin, Bangti
2012-05-01
In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical reconstructions of the potential with a Newton method from finite spectral data are presented. Surprisingly, it allows very satisfactory reconstructions for both smooth and discontinuous potentials, provided that the order . α∈. (1,. 2) of fractional derivative is sufficiently away from 2. © 2012 Elsevier Inc.
Ghosh, Uttam; Banerjee, Joydip; Sarkar, Susmita; Das, Shantanu
2018-06-01
Klein-Gordon equation is one of the basic steps towards relativistic quantum mechanics. In this paper, we have formulated fractional Klein-Gordon equation via Jumarie fractional derivative and found two types of solutions. Zero-mass solution satisfies photon criteria and non-zero mass satisfies general theory of relativity. Further, we have developed rest mass condition which leads us to the concept of hidden wave. Classical Klein-Gordon equation fails to explain a chargeless system as well as a single-particle system. Using the fractional Klein-Gordon equation, we can overcome the problem. The fractional Klein-Gordon equation also leads to the smoothness parameter which is the measurement of the bumpiness of space. Here, by using this smoothness parameter, we have defined and interpreted the various cases.
Saad, K. M.
2018-03-01
In this work we extend the standard model for a cubic isothermal auto-catalytic chemical system (CIACS) to a new model of a fractional cubic isothermal auto-catalytic chemical system (FCIACS) based on Caputo (C), Caputo-Fabrizio (CF) and Atangana-Baleanu in the Liouville-Caputo sense (ABC) fractional time derivatives, respectively. We present approximate solutions for these extended models using the q -homotopy analysis transform method ( q -HATM). We solve the FCIACS with the C derivative and compare our results with those obtained using the CF and ABC derivatives. The ranges of convergence of the solutions are found and the optimal values of h , the auxiliary parameter, are derived. Finally, these solutions are compared with numerical solutions of the various models obtained using finite differences and excellent agreement is found.
International Nuclear Information System (INIS)
Scalliet, P.; Schueren, E. van der; Erfmann, R.K.L.; Landuyt, W.
1988-01-01
The authors present a method for the derivation of the time constant of repair from fractionated and protracted irradiations, using formulae based on those derived by Dale (1985) and Liversage (1969) establishing the correlation between the biological effects of low dose rate and acute fractionated irradiation. (UK)
On a business cycle model with fractional derivative under narrow-band random excitation
International Nuclear Information System (INIS)
Lin, Zifei; Li, Jiaorui; Li, Shuang
2016-01-01
This paper analyzes the dynamics of a business cycle model with fractional derivative of order α (0 < α < 1) subject to narrow-band random excitation, in which fractional derivative describes the memory property of the economic variables. Stochastic dynamical system concepts are integrated into the business cycle model for understanding the economic fluctuation. Firstly, the method of multiple scales is applied to derive the model to obtain the approximate analytical solution. Secondly, the effect of economic policy with fractional derivative on the amplitude of the economic fluctuation and the effect on stationary probability density are studied. The results show macroeconomic regulation and control can lower the stable amplitude of economic fluctuation. While in the process of equilibrium state, the amplitude is magnified. Also, the macroeconomic regulation and control improves the stability of the equilibrium state. Thirdly, how externally stochastic perturbation affects the dynamics of the economy system is investigated.
Coronary CT Angiography Derived Fractional Flow Reserve
DEFF Research Database (Denmark)
Nørgaard, Bjarne Linde; Jensen, Jesper Møller; Blanke, Philipp
2017-01-01
Purpose of Review: To summarize the scientific basis of CT derived fractional flow reserve (FFRCT) and present an updated review on the evidence from clinical trials and real-world observational data Recent Findings: In prospective multicenter studies of patients with stable coronary artery disea...... of patients with stable CAD. The optimal FFRCT testing interpretation strategy, as well as the relative cost-efficiency of FFRCT against standard noninvasive functional testing, need further investigation....
Directory of Open Access Journals (Sweden)
Waleed M. Abd-Elhameed
2016-09-01
Full Text Available Herein, two numerical algorithms for solving some linear and nonlinear fractional-order differential equations are presented and analyzed. For this purpose, a novel operational matrix of fractional-order derivatives of Fibonacci polynomials was constructed and employed along with the application of the tau and collocation spectral methods. The convergence and error analysis of the suggested Fibonacci expansion were carefully investigated. Some numerical examples with comparisons are presented to ensure the efficiency, applicability and high accuracy of the proposed algorithms. Two accurate semi-analytic polynomial solutions for linear and nonlinear fractional differential equations are the result.
Directory of Open Access Journals (Sweden)
B. Kuldeep
2015-06-01
Full Text Available Fractional calculus has recently been identified as a very important mathematical tool in the field of signal processing. Digital filters designed by fractional derivatives give more accurate frequency response in the prescribed frequency region. Digital filters are most important part of multi-rate filter bank systems. In this paper, an improved method based on fractional derivative constraints is presented for the design of two-channel quadrature mirror filter (QMF bank. The design problem is formulated as minimization of L2 error of filter bank transfer function in passband, stopband interval and at quadrature frequency, and then Lagrange multiplier method with fractional derivative constraints is applied to solve it. The proposed method is then successfully applied for the design of two-channel QMF bank with higher order filter taps. Performance of the QMF bank design is then examined through study of various parameters such as passband error, stopband error, transition band error, peak reconstruction error (PRE, stopband attenuation (As. It is found that, the good design can be obtained with the change of number and value of fractional derivative constraint coefficients.
Nonlinear analysis and analog simulation of a piezoelectric buckled beam with fractional derivative
Mokem Fokou, I. S.; Buckjohn, C. Nono Dueyou; Siewe Siewe, M.; Tchawoua, C.
2017-08-01
In this article, an analog circuit for implementing fractional-order derivative and a harmonic balance method for a vibration energy harvesting system under pure sinusoidal vibration source is proposed in order to predict the system response. The objective of this paper is to discuss the performance of the system with fractional derivative and nonlinear damping (μb). Bifurcation diagram, phase portrait and power spectral density (PSD) are provided to deeply characterize the dynamics of the system. These results are corroborated by the 0-1 test. The appearance of the chaotic vibrations reduces the instantaneous voltage. The pre-experimental investigation is carried out through appropriate software electronic circuit (Multisim). The corresponding electronic circuit is designed, exhibiting periodic and chaotic behavior, in accord with numerical simulations. The impact of fractional derivative and nonlinear damping is presented with detail on the output voltage and power of the system. The agreement between numerical and analytical results justifies the efficiency of the analytical technique used. In addition, by combining the harmonic excitation with the random force, the stochastic resonance phenomenon occurs and improves the harvested energy. It emerges from these results that the order of fractional derivative μ and nonlinear damping μb play an important role in the response of the system.
Directory of Open Access Journals (Sweden)
Taohua Liu
2017-01-01
Full Text Available Fractional advection-dispersion equations, as generalizations of classical integer-order advection-dispersion equations, are used to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper, we develop an implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. First-order consistency, solvability, unconditional stability, and first-order convergence of the method are proven. Then, we present a fast iterative method for the implicit finite difference scheme, which only requires storage of O(K and computational cost of O(KlogK. Traditionally, the Gaussian elimination method requires storage of O(K2 and computational cost of O(K3. Finally, the accuracy and efficiency of the method are checked with a numerical example.
A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market
Directory of Open Access Journals (Sweden)
Lina Song
2018-01-01
Full Text Available Fractional differential equation has been introduced to the financial theory, which presents new ideas and tools for the theoretical researches and the practical applications. In the work, an approximate semianalytical solution of the time-fractional European option pricing model is derived using the method of combining the enhanced technique of Adomian decomposition method with the finite difference method. And then the result is introduced in China’s financial market. The work makes every effort to test the feasibility of the fractional derivative model in the actual financial market.
Pirnapasov, Sardor; Karimov, Erkinjon
2017-01-01
In the present work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. We investigate a boundary value problem for fractional heat equation involving higher order Caputo-Fabrizio derivatives in time-variable. Using method of separation of variables and integration by parts, we reduce fractional order PDE to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.
Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.
Shah, Kamal; Khan, Rahmat Ali
2016-01-01
In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.
The realization problem for positive and fractional systems
Kaczorek, Tadeusz
2014-01-01
This book addresses the realization problem of positive and fractional continuous-time and discrete-time linear systems. Roughly speaking the essence of the realization problem can be stated as follows: Find the matrices of the state space equations of linear systems for given their transfer matrices. This first book on this topic shows how many well-known classical approaches have been extended to the new classes of positive and fractional linear systems. The modified Gilbert method for multi-input multi-output linear systems, the method for determination of realizations in the controller canonical forms and in observer canonical forms are presented. The realization problem for linear systems described by differential operators, the realization problem in the Weierstrass canonical forms and of the descriptor linear systems for given Markov parameters are addressed. The book also presents a method for the determination of minimal realizations of descriptor linear systems and an extension for cone linear syste...
Macías-Díaz, J. E.
2017-12-01
In this manuscript, we consider an initial-boundary-value problem governed by a (1 + 1)-dimensional hyperbolic partial differential equation with constant damping that generalizes many nonlinear wave equations from mathematical physics. The model considers the presence of a spatial Laplacian of fractional order which is defined in terms of Riesz fractional derivatives, as well as the inclusion of a generic continuously differentiable potential. It is known that the undamped regime has an associated positive energy functional, and we show here that it is preserved throughout time under suitable boundary conditions. To approximate the solutions of this model, we propose a finite-difference discretization based on fractional centered differences. Some discrete quantities are proposed in this work to estimate the energy functional, and we show that the numerical method is capable of conserving the discrete energy under the same boundary conditions for which the continuous model is conservative. Moreover, we establish suitable computational constraints under which the discrete energy of the system is positive. The method is consistent of second order, and is both stable and convergent. The numerical simulations shown here illustrate the most important features of our numerical methodology.
Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao
2016-08-01
The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.
International Nuclear Information System (INIS)
Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao
2016-01-01
The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.
Energy Technology Data Exchange (ETDEWEB)
Yang, Yongge; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Yang, Guidong; Jia, Wantao [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)
2016-08-15
The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.
Cheraghali, A M; Aboofazeli, R
2009-12-01
In Iran all transfusion services are concentrated under authority of one public and centralized transfusion organization which has created the opportunity of using plasma produced in its blood centers for fractionation. In 2008 voluntary and non remunerated Iranian donors donated 1.8 million units of blood. This indicates a 25/1000 donation index. After responding to the needs for fresh plasma and cryoprecipitate each year about 150000 L of recovered plasma are reserved for fractionation. In an attempt to improve both blood safety profile and availability and affordability of plasma derived medicines, Iran's national transfusion service has entered into a contract fractionation agreement for surplus of plasma produced from donated blood by voluntary non remunerated donors. In order to ensure safety of product produced, Iran has chosen to collaborate with international fractionators based in highly regulated countries. The main objective of this study was to evaluate the impact of contract plasma fractionation on the affordability of the plasma derived medicines in Iran. During 2006-2008, Iran's contract fractionation project was able to produce 46%, 18% and 6% of IVIG, Albumin and FVIII consumed in Iran's market, respectively. In contrary to IVIG and Albumin, due to fairly high consumption of FVIII in Iran, the role of fractionation project in meeting the needs to FVIII was not substantial. However, Iran's experience has shown that contract plasma fractionation, through direct and indirect effects on price of plasma derived medicines, could substantially improve availability and affordability of such products in national health care system.
New Approach for the Analysis of Damped Vibrations of Fractional Oscillators
Directory of Open Access Journals (Sweden)
Yuriy A. Rossikhin
2009-01-01
Full Text Available The dynamic behavior of linear and nonlinear mechanical oscillators with constitutive equations involving fractional derivatives defined as a fractional power of the operator of conventional time-derivative is considered. Such a definition of the fractional derivative enables one to analyse approximately vibratory regimes of the oscillator without considering the drift of its position of equilibrium. The assumption of small fractional derivative terms allows one to use the method of multiple time scales whereby a comparative analysis of the solutions obtained for different orders of low-level fractional derivatives and nonlinear elastic terms is possible to be carried out. The interrelationship of the fractional parameter (order of the fractional operator and nonlinearity manifests itself in full measure when orders of the small fractional derivative term and of the cubic nonlinearity entering in the oscillator's constitutive equation coincide.
International Nuclear Information System (INIS)
Yang Yong-Ge; Xu Wei; Sun Ya-Hui; Gu Xu-Dong
2016-01-01
This paper aims to investigate the stochastic response of the van der Pol (VDP) oscillator with two kinds of fractional derivatives under Gaussian white noise excitation. First, the fractional VDP oscillator is replaced by an equivalent VDP oscillator without fractional derivative terms by using the generalized harmonic balance technique. Then, the stochastic averaging method is applied to the equivalent VDP oscillator to obtain the analytical solution. Finally, the analytical solutions are validated by numerical results from the Monte Carlo simulation of the original fractional VDP oscillator. The numerical results not only demonstrate the accuracy of the proposed approach but also show that the fractional order, the fractional coefficient and the intensity of Gaussian white noise play important roles in the responses of the fractional VDP oscillator. An interesting phenomenon we found is that the effects of the fractional order of two kinds of fractional derivative items on the fractional stochastic systems are totally contrary. (paper)
Directory of Open Access Journals (Sweden)
Fuquan Jiang
2013-01-01
Full Text Available We consider the properties of Green’s function for the nonlinear fractional differential equation boundary value problem: D0+αu(t+f(t,u(t+e(t=0,0
International Nuclear Information System (INIS)
Fan Hongyi; Hao Ren; Lu Hailiang
2008-01-01
Based on our previous paper (Commun. Theor. Phys. 39 (2003) 417) we derive the convolution theorem of fractional Fourier transformation in the context of quantum mechanics, which seems a convenient and neat way. Generalization of this method to the complex fractional Fourier transformation case is also possible
General solution of the Bagley-Torvik equation with fractional-order derivative
Wang, Z. H.; Wang, X.
2010-05-01
This paper investigates the general solution of the Bagley-Torvik equation with 1/2-order derivative or 3/2-order derivative. This fractional-order differential equation is changed into a sequential fractional-order differential equation (SFDE) with constant coefficients. Then the general solution of the SFDE is expressed as the linear combination of fundamental solutions that are in terms of α-exponential functions, a kind of functions that play the same role of the classical exponential function. Because the number of fundamental solutions of the SFDE is greater than 2, the general solution of the SFDE depends on more than two free (independent) constants. This paper shows that the general solution of the Bagley-Torvik equation involves actually two free constants only, and it can be determined fully by the initial displacement and initial velocity.
Directory of Open Access Journals (Sweden)
Yang Xiao-Jun
2017-01-01
Full Text Available In this paper, we address a class of the fractional derivatives of constant and variable orders for the first time. Fractional-order relaxation equations of constants and variable orders in the sense of Caputo type are modeled from mathematical view of point. The comparative results of the anomalous relaxation among the various fractional derivatives are also given. They are very efficient in description of the complex phenomenon arising in heat transfer.
Directory of Open Access Journals (Sweden)
Abdon Atangana
2014-01-01
Full Text Available The notion of uncertainty in groundwater hydrology is of great importance as it is known to result in misleading output when neglected or not properly accounted for. In this paper we examine this effect in groundwater flow models. To achieve this, we first introduce the uncertainties functions u as function of time and space. The function u accounts for the lack of knowledge or variability of the geological formations in which flow occur (aquifer in time and space. We next make use of Riemann-Liouville fractional derivatives that were introduced by Kobelev and Romano in 2000 and its approximation to modify the standard version of groundwater flow equation. Some properties of the modified Riemann-Liouville fractional derivative approximation are presented. The classical model for groundwater flow, in the case of density-independent flow in a uniform homogeneous aquifer is reformulated by replacing the classical derivative by the Riemann-Liouville fractional derivatives approximations. The modified equation is solved via the technique of green function and the variational iteration method.
Positive Solutions for Coupled Nonlinear Fractional Differential Equations
Directory of Open Access Journals (Sweden)
Wenning Liu
2014-01-01
Full Text Available We consider the existence of positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary values. Assume the nonlinear term is superlinear in one equation and sublinear in the other equation. By constructing two cones K1, K2 and computing the fixed point index in product cone K1×K2, we obtain that the system has a pair of positive solutions. It is remarkable that it is established on the Cartesian product of two cones, in which the feature of two equations can be opposite.
Directory of Open Access Journals (Sweden)
Ahmet Bekir
2014-09-01
Full Text Available In this paper, the fractional partial differential equations are defined by modified Riemann–Liouville fractional derivative. With the help of fractional derivative and traveling wave transformation, these equations can be converted into the nonlinear nonfractional ordinary differential equations. Then G′G-expansion method is applied to obtain exact solutions of the space-time fractional Burgers equation, the space-time fractional KdV-Burgers equation and the space-time fractional coupled Burgers’ equations. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. These results reveal that the proposed method is very effective and simple in performing a solution to the fractional partial differential equation.
Erkinjon Karimov; Sardor Pirnafasov
2017-01-01
In this work we discuss higher order multi-term partial differential equation (PDE) with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.
Directory of Open Access Journals (Sweden)
Erkinjon Karimov
2017-10-01
Full Text Available In this work we discuss higher order multi-term partial differential equation (PDE with the Caputo-Fabrizio fractional derivative in time. Using method of separation of variables, we reduce fractional order partial differential equation to the integer order. We represent explicit solution of formulated problem in particular case by Fourier series.
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
Pandey, Vikash; Holm, Sverre
2016-09-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
Fractional-order gradient descent learning of BP neural networks with Caputo derivative.
Wang, Jian; Wen, Yanqing; Gou, Yida; Ye, Zhenyun; Chen, Hua
2017-05-01
Fractional calculus has been found to be a promising area of research for information processing and modeling of some physical systems. In this paper, we propose a fractional gradient descent method for the backpropagation (BP) training of neural networks. In particular, the Caputo derivative is employed to evaluate the fractional-order gradient of the error defined as the traditional quadratic energy function. The monotonicity and weak (strong) convergence of the proposed approach are proved in detail. Two simulations have been implemented to illustrate the performance of presented fractional-order BP algorithm on three small datasets and one large dataset. The numerical simulations effectively verify the theoretical observations of this paper as well. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Sperotto, Fabiola Aiub; Segatto, Cynthia Feijo; Zabadal, Jorge
2002-01-01
In this work, we determine the dominant eigenvalue of the one-dimensional neutron transport equation in a slab constructing an integral form for the neutron transport equation which is the expressed in terms of fractional derivative of the angular flux. Equating the fractional derivative of the angular flux to the integrate equation, we determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of Riemann-Liouville definition of fractional derivative. Once known the angular flux the dominant eigenvalue is calculated solving a transcendental equation resulting from the application of the boundary conditions. We report the methodology applied, for comparison with available results in literature. (author)
Energy Technology Data Exchange (ETDEWEB)
Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Chen, Jinghua, E-mail: cjhdzdz@163.com [School of Sciences, Jimei University, Xiamen, Fujian, 361021 (China)
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-07-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
International Nuclear Information System (INIS)
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-01-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series
Abdulhameed, M.; Vieru, D.; Roslan, R.
2017-10-01
This paper investigates the electro-magneto-hydrodynamic flow of the non-Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. The fluid is acted by an arbitrary time-dependent pressure gradient, an external electric field and an external magnetic field. The governing equations are considered as fractional partial differential equations based on the Caputo-Fabrizio time-fractional derivatives without singular kernel. The usefulness of fractional calculus to study fluid flows or heat and mass transfer phenomena was proven. Several experimental measurements led to conclusion that, in such problems, the models described by fractional differential equations are more suitable. The most common time-fractional derivative used in Continuum Mechanics is Caputo derivative. However, two disadvantages appear when this derivative is used. First, the definition kernel is a singular function and, secondly, the analytical expressions of the problem solutions are expressed by generalized functions (Mittag-Leffler, Lorenzo-Hartley, Robotnov, etc.) which, generally, are not adequate to numerical calculations. The new time-fractional derivative Caputo-Fabrizio, without singular kernel, is more suitable to solve various theoretical and practical problems which involve fractional differential equations. Using the Caputo-Fabrizio derivative, calculations are simpler and, the obtained solutions are expressed by elementary functions. Analytical solutions of the biofluid velocity and thermal transport are obtained by means of the Laplace and finite Hankel transforms. The influence of the fractional parameter, Eckert number and Joule heating parameter on the biofluid velocity and thermal transport are numerically analyzed and graphic presented. This fact can be an important in Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid samples of nanovolumes in microfluidic devices used for biological
Extended Riemann-Liouville type fractional derivative operator with applications
Directory of Open Access Journals (Sweden)
Agarwal P.
2017-12-01
Full Text Available The main purpose of this paper is to introduce a class of new extended forms of the beta function, Gauss hypergeometric function and Appell-Lauricella hypergeometric functions by means of the modified Bessel function of the third kind. Some typical generating relations for these extended hypergeometric functions are obtained by defining the extension of the Riemann-Liouville fractional derivative operator. Their connections with elementary functions and Fox’s H-function are also presented.
Analytical Solution for Fractional Derivative Gas-Flow Equation in Porous Media
El-Amin, Mohamed; Radwan, Ahmed G.; Sun, Shuyu
2017-01-01
In this paper, we introduce an analytical solution of the fractional derivative gas transport equation using the power-series technique. We present a new universal transform, namely, generalized Boltzmann change of variable which depends on the fractional order, time and space. This universal transform is employed to transfer the partial differential equation into an ordinary differential equation. Moreover, the convergence of the solution has been investigated and found that solutions are unconditionally converged. Results are introduced and discussed for the universal variable and other physical parameters such as porosity and permeability of the reservoir; time and space.
Analytical Solution for Fractional Derivative Gas-Flow Equation in Porous Media
El-Amin, Mohamed
2017-07-06
In this paper, we introduce an analytical solution of the fractional derivative gas transport equation using the power-series technique. We present a new universal transform, namely, generalized Boltzmann change of variable which depends on the fractional order, time and space. This universal transform is employed to transfer the partial differential equation into an ordinary differential equation. Moreover, the convergence of the solution has been investigated and found that solutions are unconditionally converged. Results are introduced and discussed for the universal variable and other physical parameters such as porosity and permeability of the reservoir; time and space.
Directory of Open Access Journals (Sweden)
Lihong Zhang
2017-11-01
Full Text Available In this article, a family of nonlinear diffusion equations involving multi-term Caputo-Fabrizio time fractional derivative is investigated. Some maximum principles are obtained. We also demonstrate the application of the obtained results by deriving some estimation for solution to reaction-diffusion equations.
Directory of Open Access Journals (Sweden)
Gesiane Ribeiro
2013-12-01
Full Text Available The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.
International Nuclear Information System (INIS)
Shah, Nehad Ali; Khan, Ilyas
2016-01-01
This paper presents a Caputo-Fabrizio fractional derivatives approach to the thermal analysis of a second grade fluid over an infinite oscillating vertical flat plate. Together with an oscillating boundary motion, the heat transfer is caused by the buoyancy force induced by temperature differences between the plate and the fluid. Closed form solutions of the fluid velocity and temperature are obtained by means of the Laplace transform. The solutions of ordinary second grade and Newtonian fluids corresponding to time derivatives of integer and fractional orders are obtained as particular cases of the present solutions. Numerical computations and graphical illustrations are used in order to study the effects of the Caputo-Fabrizio time-fractional parameter α, the material parameter α 2 , and the Prandtl and Grashof numbers on the velocity field. A comparison for time derivative of integer order versus fractional order is shown graphically for both Newtonian and second grade fluids. It is found that fractional fluids (second grade and Newtonian) have highest velocities. This shows that the fractional parameter enhances the fluid flow. (orig.)
Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative
Owolabi, Kolade M.
2018-01-01
In this paper, we model an ecological system consisting of a predator and two preys with the newly derived two-step fractional Adams-Bashforth method via the Atangana-Baleanu derivative in the Caputo sense. We analyze the dynamical system for correct choice of parameter values that are biologically meaningful. The local analysis of the main model is based on the application of qualitative theory for ordinary differential equations. By using the fixed point theorem idea, we establish the existence and uniqueness of the solutions. Convergence results of the new scheme are verified in both space and time. Dynamical wave phenomena of solutions are verified via some numerical results obtained for different values of the fractional index, which have some interesting ecological implications.
Coronary Computed Tomography Angiography Derived Fractional Flow Reserve and Plaque Stress
DEFF Research Database (Denmark)
Nørgaard, Bjarne Linde; Leipsic, Jonathon; Koo, Bon-Kwon
2016-01-01
Fractional flow reserve (FFR) measured during invasive coronary angiography is an independent prognosticator in patients with coronary artery disease and the gold standard for decision making in coronary revascularization. The integration of computational fluid dynamics and quantitative anatomic...... and physiologic modeling now enables simulation of patient-specific hemodynamic parameters including blood velocity, pressure, pressure gradients, and FFR from standard acquired coronary computed tomography (CT) datasets. In this review article, we describe the potential impact on clinical practice...... and the science behind noninvasive coronary computed tomography (CT) angiography derived fractional flow reserve (FFRCT) as well as future applications of this technology in treatment planning and quantifying forces on atherosclerotic plaques....
Energy Technology Data Exchange (ETDEWEB)
Xiao, Yanwen; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Wang, Liang [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)
2016-03-15
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.
Xiao, Yanwen; Xu, Wei; Wang, Liang
2016-03-01
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.
A new visco-elasto-plastic model via time-space fractional derivative
Hei, X.; Chen, W.; Pang, G.; Xiao, R.; Zhang, C.
2018-02-01
To characterize the visco-elasto-plastic behavior of metals and alloys we propose a new constitutive equation based on a time-space fractional derivative. The rheological representative of the model can be analogous to that of the Bingham-Maxwell model, while the dashpot element and sliding friction element are replaced by the corresponding fractional elements. The model is applied to describe the constant strain rate, stress relaxation and creep tests of different metals and alloys. The results suggest that the proposed simple model can describe the main characteristics of the experimental observations. More importantly, the model can also provide more accurate predictions than the classic Bingham-Maxwell model and the Bingham-Norton model.
Directory of Open Access Journals (Sweden)
Yang Xiao-Jun
2016-01-01
Full Text Available In this article we propose a new fractional derivative without singular kernel. We consider the potential application for modeling the steady heat-conduction problem. The analytical solution of the fractional-order heat flow is also obtained by means of the Laplace transform.
Multiple Positive Solutions for Nonlinear Semipositone Fractional Differential Equations
Directory of Open Access Journals (Sweden)
Wen-Xue Zhou
2012-01-01
Full Text Available We present some new multiplicity of positive solutions results for nonlinear semipositone fractional boundary value problem D0+αu(t=p(tf(t,u(t-q(t,0
Abro, Kashif Ali; Memon, Anwar Ahmed; Uqaili, Muhammad Aslam
2018-03-01
This research article is analyzed for the comparative study of RL and RC electrical circuits by employing newly presented Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. The governing ordinary differential equations of RL and RC electrical circuits have been fractionalized in terms of fractional operators in the range of 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1. The analytic solutions of fractional differential equations for RL and RC electrical circuits have been solved by using the Laplace transform with its inversions. General solutions have been investigated for periodic and exponential sources by implementing the Atangana-Baleanu and Caputo-Fabrizio fractional operators separately. The investigated solutions have been expressed in terms of simple elementary functions with convolution product. On the basis of newly fractional derivatives with and without singular kernel, the voltage and current have interesting behavior with several similarities and differences for the periodic and exponential sources.
Directory of Open Access Journals (Sweden)
Ehab Malkawi
2014-01-01
Full Text Available The classical free Lagrangian admitting a constant of motion, in one- and two-dimensional space, is generalized using the Caputo derivative of fractional calculus. The corresponding metric is obtained and the fractional Christoffel symbols, Killing vectors, and Killing-Yano tensors are derived. Some exact solutions of these quantities are reported.
Automatic approach to deriving fuzzy slope positions
Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi
2018-03-01
Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.
A Semianalytical Solution of the Fractional Derivative Model and Its Application in Financial Market
Song, Lina
2018-01-01
Fractional differential equation has been introduced to the financial theory, which presents new ideas and tools for the theoretical researches and the practical applications. In the work, an approximate semianalytical solution of the time-fractional European option pricing model is derived using the method of combining the enhanced technique of Adomian decomposition method with the finite difference method. And then the result is introduced in China’s financial market. The work makes every e...
DEFF Research Database (Denmark)
Zhou, H. W.; Yi, H. Y.; Mishnaevsky, Leon
2017-01-01
A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped......A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog......-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model...... by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors....
Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad
2017-01-01
In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.
Directory of Open Access Journals (Sweden)
M.B. Riaz
2016-12-01
Full Text Available The aim of this article was to analyze the rotational flow of an Oldroyd-B fluid with fractional derivatives, induced by an infinite circular cylinder that applies a constant couple to the fluid. Such kind of problem in the settings of fractional derivatives has not been found in the literature. The solutions are based on an important remark regarding the governing equation for the non-trivial shear stress. The solutions that have been obtained satisfy all imposed initial and boundary conditions and can easily be reduced to the similar solutions corresponding to ordinary Oldroyd-B, fractional/ordinary Maxwell, fractional/ordinary second-grade, and Newtonian fluids performing the same motion. The obtained results are expressed in terms of Newtonian and non-Newtonian contributions. Finally, the influence of fractional parameters on the velocity, shear stress and a comparison between generalized and ordinary fluids is graphically underlined.
A new fractional derivative and its application to explanation of polar bear hairs
Ji-Huan He; Zheng-Biao Li; Qing-li Wang
2016-01-01
A new fractional derivative is defined through the variational iteration method, and its application in explaining the excellent thermal protection of polar bear hairs is elucidated. The fractal porosity of its inner structure makes a polar bear mathematically adapted for living in a harsh Arctic region.
Li, Zhiyuan; Yamamoto, Masahiro
2014-01-01
This article proves the uniqueness for two kinds of inverse problems of identifying fractional orders in diffusion equations with multiple time-fractional derivatives by pointwise observation. By means of eigenfunction expansion and Laplace transform, we reduce the uniqueness for our inverse problems to the uniqueness of expansions of some special function and complete the proof.
Fractional vector calculus for fractional advection dispersion
Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.
2006-07-01
We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.
Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao
2018-04-14
Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.
A new fractional derivative and its application to explanation of polar bear hairs
Directory of Open Access Journals (Sweden)
Ji-Huan He
2016-04-01
Full Text Available A new fractional derivative is defined through the variational iteration method, and its application in explaining the excellent thermal protection of polar bear hairs is elucidated. The fractal porosity of its inner structure makes a polar bear mathematically adapted for living in a harsh Arctic region.
Zhai, Chengbo; Hao, Mengru
2014-01-01
By using Krasnoselskii's fixed point theorem, we study the existence of at least one or two positive solutions to a system of fractional boundary value problems given by -D(0+)(ν1)y1(t) = λ1a1(t)f(y1(t), y2(t)), - D(0+)(ν2)y2(t) = λ2a2(t)g(y1(t), y2(t)), where D(0+)(ν) is the standard Riemann-Liouville fractional derivative, ν1, ν2 ∈ (n - 1, n] for n > 3 and n ∈ N, subject to the boundary conditions y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = 0 = [D(0+ (α)y2(t)] t=1, for 1 ≤ α ≤ n - 2, or y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = ϕ1(y1), [D(0+)(α)y2(t)] t=1 = ϕ2(y2), for 1 ≤ α ≤ n - 2, ϕ1, ϕ2 ∈ C([0,1], R). Our results are new and complement previously known results. As an application, we also give an example to demonstrate our result.
Analysis of the cable equation with non-local and non-singular kernel fractional derivative
Karaagac, Berat
2018-02-01
Recently a new concept of differentiation was introduced in the literature where the kernel was converted from non-local singular to non-local and non-singular. One of the great advantages of this new kernel is its ability to portray fading memory and also well defined memory of the system under investigation. In this paper the cable equation which is used to develop mathematical models of signal decay in submarine or underwater telegraphic cables will be analysed using the Atangana-Baleanu fractional derivative due to the ability of the new fractional derivative to describe non-local fading memory. The existence and uniqueness of the more generalized model is presented in detail via the fixed point theorem. A new numerical scheme is used to solve the new equation. In addition, stability, convergence and numerical simulations are presented.
The fractional oscillator process with two indices
International Nuclear Information System (INIS)
Lim, S C; Teo, L P
2009-01-01
We introduce a new fractional oscillator process which can be obtained as a solution of a stochastic differential equation with two fractional orders. Basic properties such as fractal dimension and short-range dependence of the process are studied by considering the asymptotic properties of its covariance function. By considering the fractional oscillator process as the velocity of a diffusion process, we derive the corresponding diffusion constant, fluctuation-dissipation relation and mean-square displacement. The fractional oscillator process can also be regarded as a one-dimensional fractional Euclidean Klein-Gordon field, which can be obtained by applying the Parisi-Wu stochastic quantization method to a nonlocal Euclidean action. The Casimir energy associated with the fractional field at positive temperature is calculated by using the zeta function regularization technique
Ali Abro, Kashif; Hussain, Mukkarum; Mahmood Baig, Mirza
2017-10-01
The significance of the different shapes of molybdenum disulfide nanoparticles contained in ethylene glycol has recently attracted researchers, because of the numerical or experimental analyses on the shapes of molybdenum disulfide and the lack of fractionalized analytic approaches. This work is dedicated to examining the shape impacts of molybdenum disulfide nanofluids in the mixed convection flow with magnetic field and a porous medium. Ethylene glycol is chosen as the base fluid in which molybdenum disulfide nanoparticles are suspended. Non-spherically shaped molybdenum disulfide nanoparticles, namely, platelet, blade, cylinder and brick, are utilized in this analysis. The modeling of the problem is characterized by employing the modern approach of Atangana-Baleanu fractional derivatives and the governing partial differential equations are solved via Laplace transforms with inversion. Solutions are obtained for temperature distribution and velocity field and expressed in terms of compact form of M-function, Mba(T) . In the end, a figures are drawn to compare the different non-spherically shaped molybdenum disulfide nanoparticles. Furthermore, the Atangana-Baleanu fractional derivatives model has been compared with ordinary derivatives models and discussed graphically by setting various rheological parameters.
Fractional order differentiation by integration: An application to fractional linear systems
Liu, Dayan
2013-02-04
In this article, we propose a robust method to compute the output of a fractional linear system defined through a linear fractional differential equation (FDE) with time-varying coefficients, where the input can be noisy. We firstly introduce an estimator of the fractional derivative of an unknown signal, which is defined by an integral formula obtained by calculating the fractional derivative of a truncated Jacobi polynomial series expansion. We then approximate the FDE by applying to each fractional derivative this formal algebraic integral estimator. Consequently, the fractional derivatives of the solution are applied on the used Jacobi polynomials and then we need to identify the unknown coefficients of the truncated series expansion of the solution. Modulating functions method is used to estimate these coefficients by solving a linear system issued from the approximated FDE and some initial conditions. A numerical result is given to confirm the reliability of the proposed method. © 2013 IFAC.
World Health Organization
2017-10-13
This article presents the World Health Organization's (WHO) recommendations on the use of fractional doses of yellow fever vaccines excerpted from the "Yellow fever vaccine: WHO position on the use of fractional doses - June 2017, Addendum to Vaccines and vaccination against yellow fever WHO: Position Paper - June 2013″, published in the Weekly Epidemiological Record [1,2]. This addendum to the 2013 position paper pertains specifically to use of fractional dose YF (fYF) vaccination (fractional dose yellow fever vaccination refers to administration of a reduced volume of vaccine dose, which has been reconstituted as usual per manufacturer recommendations) in the context of YF vaccine supply shortages beyond the capacity of the global stockpile. The current WHO position on the use of yellow fever (YF) vaccine is set out in the 2013 WHO position paper on vaccines and vaccination against YF and those recommendations are unchanged. Footnotes to this paper provide a number of core references including references to grading tables that assess the quality of the scientific evidence, and to the evidence-to-recommendation table. In accordance with its mandate to provide guidance to Member States on health policy matters, WHO issues a series of regularly updated position papers on vaccines and combinations of vaccines against diseases that have an international public health impact. These papers are concerned primarily with the use of vaccines in large-scale immunization programmes; they summarize essential background information on diseases and vaccines, and conclude with WHO's current position on the use of vaccines in the global context. Recommendations on the use of Yellow Fever vaccines were discussed by SAGE in October 2016; evidence presented at these meetings can be accessed at: www.who.int/immunization/sage/meetings/2016/October/presentations_background_docs/en/. Copyright © 2017. Published by Elsevier Ltd.
International Nuclear Information System (INIS)
Zhang, Xiao; Wei, Chaozhen; Liu, Yingming; Luo, Maokang
2014-01-01
In this paper we use Dirac function to construct a fractional operator called fractional corresponding operator, which is the general form of momentum corresponding operator. Then we give a judging theorem for this operator and with this judging theorem we prove that R–L, G–L, Caputo, Riesz fractional derivative operator and fractional derivative operator based on generalized functions, which are the most popular ones, coincide with the fractional corresponding operator. As a typical application, we use the fractional corresponding operator to construct a new fractional quantization scheme and then derive a uniform fractional Schrödinger equation in form. Additionally, we find that the five forms of fractional Schrödinger equation belong to the particular cases. As another main result of this paper, we use fractional corresponding operator to generalize fractional quantization scheme by using Lévy path integral and use it to derive the corresponding general form of fractional Schrödinger equation, which consequently proves that these two quantization schemes are equivalent. Meanwhile, relations between the theory in fractional quantum mechanics and that in classic quantum mechanics are also discussed. As a physical example, we consider a particle in an infinite potential well. We give its wave functions and energy spectrums in two ways and find that both results are the same
Directory of Open Access Journals (Sweden)
Coşkun Yakar
2010-01-01
Full Text Available The qualitative behavior of a perturbed fractional-order differential equation with Caputo's derivative that differs in initial position and initial time with respect to the unperturbed fractional-order differential equation with Caputo's derivative has been investigated. We compare the classical notion of stability to the notion of initial time difference stability for fractional-order differential equations in Caputo's sense. We present a comparison result which again gives the null solution a central role in the comparison fractional-order differential equation when establishing initial time difference stability of the perturbed fractional-order differential equation with respect to the unperturbed fractional-order differential equation.
Convergence criterion for branched contіnued fractions of the special form with positive elements
Directory of Open Access Journals (Sweden)
D. I. Bodnar
2017-07-01
Full Text Available In this paper the problem of convergence of the important type of a multidimensional generalization of continued fractions, the branched continued fractions with independent variables, is considered. This fractions are an efficient apparatus for the approximation of multivariable functions, which are represented by multiple power series. When variables are fixed these fractions are called the branched continued fractions of the special form. Their structure is much simpler then the structure of general branched continued fractions. It has given a possibility to establish the necessary and sufficient conditions of convergence of branched continued fractions of the special form with the positive elements. The received result is the multidimensional analog of Seidel's criterion for the continued fractions. The condition of convergence of investigated fractions is the divergence of series, whose elements are continued fractions. Therefore, the sufficient condition of the convergence of this fraction which has been formulated by the divergence of series composed of partial denominators of this fraction, is established. Using the established criterion and Stieltjes-Vitali Theorem the parabolic theorems of branched continued fractions of the special form with complex elements convergence, is investigated. The sufficient conditions gave a possibility to make the condition of convergence of the branched continued fractions of the special form, whose elements lie in parabolic domains.
Fractional equivalent Lagrangian densities for a fractional higher-order equation
International Nuclear Information System (INIS)
Fujioka, J
2014-01-01
In this communication we show that the equivalent Lagrangian densities (ELDs) of a fractional higher-order nonlinear Schrödinger equation with stable soliton-like solutions can be related in a hitherto unknown way. This new relationship is described in terms of a new fractional operator that includes both left- and right-sided fractional derivatives. Using this operator it is possible to generate new ELDs that contain different fractional parts, in addition to the already known ELDs, which only differ by a sum of first-order partial derivatives of two arbitrary functions. (fast track communications)
Toufik, Mekkaoui; Atangana, Abdon
2017-10-01
Recently a new concept of fractional differentiation with non-local and non-singular kernel was introduced in order to extend the limitations of the conventional Riemann-Liouville and Caputo fractional derivatives. A new numerical scheme has been developed, in this paper, for the newly established fractional differentiation. We present in general the error analysis. The new numerical scheme was applied to solve linear and non-linear fractional differential equations. We do not need a predictor-corrector to have an efficient algorithm, in this method. The comparison of approximate and exact solutions leaves no doubt believing that, the new numerical scheme is very efficient and converges toward exact solution very rapidly.
Kim, Myong-Ha; Ri, Guk-Chol; O, Hyong-Chol
2013-01-01
This paper provides the existence and representation of solution to an initial value problem for the general multi-term linear fractional differential equation with generalized Riemann-Liouville fractional derivatives and constant coefficients by using operational calculus of Mikusinski's type. We prove that the initial value problem has the solution of if and only if some initial values should be zero.
Directory of Open Access Journals (Sweden)
Min Jia
2012-01-01
Full Text Available We study a model arising from porous media, electromagnetic, and signal processing of wireless communication system -tαx(t=f(t,x(t,x'(t,x”(t,…,x(n-2(t, 0
DEFF Research Database (Denmark)
Møller Jensen, Jesper; Erik Bøtker, Hans; Norling Mathiassen, Ole
2017-01-01
Aims: To assess the use of downstream coronary angiography (ICA) and short-term safety of frontline coronary CT angiography (CTA) with selective CT-derived fractional flow reserve (FFRCT) testing in stable patients with typical angina pectoris. Methods and results: Between 1 January 2016 and 30 J...... of safe cancellation of planned ICAs....
Directory of Open Access Journals (Sweden)
Johnny Henderson
2016-01-01
Full Text Available We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with two parameters, subject to coupled integral boundary conditions.
Abdullah, M.; Butt, Asma Rashid; Raza, Nauman; Alshomrani, Ali Saleh; Alzahrani, A. K.
2018-01-01
The magneto hydrodynamic blood flow in the presence of magnetic particles through a circular cylinder is investigated. To calculate the impact of externally applied uniform magnetic field, the blood is electrically charged. Initially the fluid and circular cylinder is at rest but at time t =0+ , the cylinder starts to oscillate along its axis with velocity fsin (Ωt) . To obtain the mathematical model of blood flow with fractional derivatives Caputo fractional operator is employed. The solutions for the velocities of blood and magnetic particles are procured semi analytically by using Laplace transformation method. The inverse Laplace transform has been calculated numerically by using MATHCAD computer software. The obtained results of velocities are presented in Laplace domain in terms of modified Bessel function I0 (·) . The obtained results satisfied all imposed initial and boundary conditions. The hybrid technique that is employed here less computational effort and time cost as compared to other techniques used in literature. As the limiting cases of our results the solutions of the flow model with ordinary derivatives has been procured. Finally, the impact of Reynolds number Re, fractional parameter α and Hartmann number Ha is analyzed and portrayed through graphs. It is worthy to pointing out that fractional derivatives brings remarkable differences as compared to ordinary derivatives. It also has been observed that velocity of blood and magnetic particles is weaker under the effect of transverse magnetic field.
Toward lattice fractional vector calculus
International Nuclear Information System (INIS)
Tarasov, Vasily E
2014-01-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
Distributed-order fractional diffusions on bounded domains
Meerschaert, Mark M.; Nane, Erkan; Vellaisamy, P.
2011-01-01
In a fractional Cauchy problem, the usual first order time derivative is replaced by a fractional derivative. The fractional derivative models time delays in a diffusion process. The order of the fractional derivative can be distributed over the unit interval, to model a mixture of delay sources. In this paper, we provide explicit strong solutions and stochastic analogues for distributed-order fractional Cauchy problems on bounded domains with Dirichlet boundary conditions. Stochastic solutio...
Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers
Javeed, Shumaila; Saif, Summaya; Waheed, Asif; Baleanu, Dumitru
2018-06-01
The new exact solutions of nonlinear fractional partial differential equations (FPDEs) are established by adopting first integral method (FIM). The Riemann-Liouville (R-L) derivative and the local conformable derivative definitions are used to deal with the fractional order derivatives. The proposed method is applied to get exact solutions for space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation and coupled time-fractional Boussinesq-Burgers equation. The suggested technique is easily applicable and effectual which can be implemented successfully to obtain the solutions for different types of nonlinear FPDEs.
Directory of Open Access Journals (Sweden)
S. Das
2013-12-01
Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.
A fractional spline collocation-Galerkin method for the time-fractional diffusion equation
Directory of Open Access Journals (Sweden)
Pezza L.
2018-03-01
Full Text Available The aim of this paper is to numerically solve a diffusion differential problem having time derivative of fractional order. To this end we propose a collocation-Galerkin method that uses the fractional splines as approximating functions. The main advantage is in that the derivatives of integer and fractional order of the fractional splines can be expressed in a closed form that involves just the generalized finite difference operator. This allows us to construct an accurate and efficient numerical method. Several numerical tests showing the effectiveness of the proposed method are presented.
Li, S; Tang, X; Peng, L; Luo, Y; Dong, R; Liu, J
2015-05-01
To review the literature on the diagnostic accuracy of CT-derived fractional flow reserve (FFRCT) for the evaluation of myocardial ischaemia in patients with suspected or known coronary artery disease, with invasive fractional flow reserve (FFR) as the reference standard. A PubMed, EMBASE, and Cochrane cross-search was performed. The pooled diagnostic accuracy of FFRCT, with FFR as the reference standard, was primarily analysed, and then compared with that of CT angiography (CTA). The thresholds to diagnose ischaemia were FFR ≤0.80 or CTA ≥50% stenosis. Data extraction, synthesis, and statistical analysis were performed by standard meta-analysis methods. Three multicentre studies (NXT Trial, DISCOVER-FLOW study and DeFACTO study) were included, examining 609 patients and 1050 vessels. The pooled sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), negative likelihood ratio (LR-), and diagnostic odds ratio (DOR) for FFRCT were 89% (85-93%), 71% (65-75%), 70% (65-75%), 90% (85-93%), 3.31 (1.79-6.14), 0.16 (0.11-0.23), and 21.21 (9.15-49.15) at the patient-level, and 83% (78-63%), 78% (75-81%), 61% (56-65%), 92% (89-90%), 4.02 (1.84-8.80), 0.22 (0.13-0.35), and 19.15 (5.73-63.93) at the vessel-level. At per-patient analysis, FFRCT has similar sensitivity but improved specificity, PPV, NPV, LR+, LR-, and DOR versus those of CTA. At per-vessel analysis, FFRCT had a slightly lower sensitivity, similar NPV, but improved specificity, PPV, LR+, LR-, and DOR compared with those of CTA. The area under the summary receiver operating characteristic curves for FFRCT was 0.8909 at patient-level and 0.8865 at vessel-level, versus 0.7402 for CTA at patient-level. FFRCT, which was associated with improved diagnostic accuracy versus CTA, is a viable alternative to FFR for detecting coronary ischaemic lesions. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Koca Ilknur
2017-01-01
Full Text Available Recently Hristov using the concept of a relaxation kernel with no singularity developed a new model of elastic heat diffusion equation based on the Caputo-Fabrizio fractional derivative as an extended version of Cattaneo model of heat diffusion equation. In the present article, we solve exactly the Cattaneo-Hristov model and extend it by the concept of a derivative with non-local and non-singular kernel by using the new Atangana-Baleanu derivative. The Cattaneo-Hristov model with the extended derivative is solved analytically with the Laplace transform, and numerically using the Crank-Nicholson scheme.
Fractional gradient and its application to the fractional advection equation
D'Ovidio, M.; Garra, R.
2013-01-01
In this paper we provide a definition of fractional gradient operators, related to directional derivatives. We develop a fractional vector calculus, providing a probabilistic interpretation and mathematical tools to treat multidimensional fractional differential equations. A first application is discussed in relation to the d-dimensional fractional advection-dispersion equation. We also study the connection with multidimensional L\\'evy processes.
International Nuclear Information System (INIS)
Jumarie, Guy
2006-01-01
The (complex-valued) Brownian motion of order n is defined as the limit of a random walk on the complex roots of the unity. Real-valued fractional noises are obtained as fractional derivatives of the Gaussian white noise (or order two). Here one combines these two approaches and one considers the new class of fractional noises obtained as fractional derivative of the complex-valued Brownian motion of order n. The key of the approach is the relation between differential and fractional differential provided by the fractional Taylor's series of analytic function f(z+h)=E α (h α D z α ).f(z), where E α is the Mittag-Leffler function on the one hand, and the generalized Maruyama's notation, on the other hand. Some questions are revisited such as the definition of fractional Brownian motion as integral w.r.t. (dt) α , and the exponential growth equation driven by fractional Brownian motion, to which a new solution is proposed. As a first illustrative example of application, in mathematical finance, one proposes a new approach to the optimal management of a stochastic portfolio of fractional order via the Lagrange variational technique applied to the state moment dynamical equations. In the second example, one deals with non-random Lagrangian mechanics of fractional order. The last example proposes a new approach to fractional stochastic mechanics, and the solution so obtained gives rise to the question as to whether physical systems would not have their own internal random times
Asymptotic integration of some nonlinear differential equations with fractional time derivative
International Nuclear Information System (INIS)
Baleanu, Dumitru; Agarwal, Ravi P; Mustafa, Octavian G; Cosulschi, Mirel
2011-01-01
We establish that, under some simple integral conditions regarding the nonlinearity, the (1 + α)-order fractional differential equation 0 D α t (x') + f(t, x) = 0, t > 0, has a solution x element of C([0,+∞),R) intersection C 1 ((0,+∞),R), with lim t→0 [t 1-α x'(t)] element of R, which can be expanded asymptotically as a + bt α + O(t α-1 ) when t → +∞ for given real numbers a, b. Our arguments are based on fixed point theory. Here, 0 D α t designates the Riemann-Liouville derivative of order α in (0, 1).
Directory of Open Access Journals (Sweden)
Chen Yuming
2011-01-01
Full Text Available Though boundary value problems for fractional differential equations have been extensively studied, most of the studies focus on scalar equations and the fractional order between 1 and 2. On the other hand, delay is natural in practical systems. However, not much has been done for fractional differential equations with delays. Therefore, in this paper, we consider a boundary value problem of a general delayed nonlinear fractional system. With the help of some fixed point theorems and the properties of the Green function, we establish several sets of sufficient conditions on the existence of positive solutions. The obtained results extend and include some existing ones and are illustrated with some examples for their feasibility.
Directory of Open Access Journals (Sweden)
Mehdi Behfar
2011-11-01
Full Text Available Tendon never restores the complete biological and mechanical properties after healing. Bone marrow and recently adipose tissue have been used as the sources of mesenchymal stem cells, which have been proven to enhance tendon healing. Stromal vascular fraction (SVF, derived from adipose tissue by an enzymatic digestion, represents an alternative source of multipotent cells, which undergo differentiation into multiple lineages to be used in regenerative medicine. In the present study, we investigated potentials of this source on tendon healing. Twenty rabbits were divided into control and treatment groups. Five rabbits were used as donors of adipose tissue. The injury model was unilateral complete transection through the middle one third of deep digital flexor tendon. Immediately after suture repair, either fresh stromal vascular fraction from enzymatic digestion of adipose tissue or placebo was intratendinously injected into the suture site in treatments and controls, respectively. Cast immobilization was continued for two weeks after surgery. Animals were sacrificed at the third week and tendons underwent histological, immunohistochemical, and mechanical evaluations. By histology, improved fibrillar organization and remodeling of neotendon were observed in treatment group. Immunohistochemistry revealed an insignificant increase in collagen type III and I expression in treatments over controls. Mechanical testing showed significant increase in maximum load and energy absorption in SVF treated tendons. The present study showed that intratendinous injection of uncultured adipose derived stromal vascular fraction improved structural and mechanical properties of repaired tendon and it could be an effective modality for treating tendon laceration.
Fractional Calculus and Shannon Wavelet
Directory of Open Access Journals (Sweden)
Carlo Cattani
2012-01-01
Full Text Available An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given as wavelet series based on connection coefficients. So that for any 2(ℝ function, reconstructed by Shannon wavelets, we can easily define its fractional derivative. The approximation error is explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by focusing on the many advantages of the wavelet method, in terms of rate of convergence.
Directory of Open Access Journals (Sweden)
Azizollah Babakhani
2010-01-01
Full Text Available We investigate the existence and uniqueness of positive solution for system of nonlinear fractional differential equations in two dimensions with delay. Our analysis relies on a nonlinear alternative of Leray-Schauder type and Krasnoselskii's fixed point theorem in a cone.
Directory of Open Access Journals (Sweden)
Ya-Juan Hao
2013-01-01
Full Text Available The main object of this paper is to investigate the Helmholtz and diffusion equations on the Cantor sets involving local fractional derivative operators. The Cantor-type cylindrical-coordinate method is applied to handle the corresponding local fractional differential equations. Two illustrative examples for the Helmholtz and diffusion equations on the Cantor sets are shown by making use of the Cantorian and Cantor-type cylindrical coordinates.
Fractional vector calculus and fractional Maxwell's equations
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2008-01-01
The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered
Kumar, Sanjay
2018-01-01
In this paper, a new variant to fractional signal processing is proposed known as the Reduced Order Fractional Fourier Transform. Various properties satisfied by its transformation kernel is derived. The properties associated with the proposed Reduced Order Fractional Fourier Transform like shift, modulation, time-frequency shift property are also derived and it is shown mathematically that when the rotation angle of Reduced Order Fractional Fourier Transform approaches 90 degrees, the propos...
Chaos in a fractional-order Roessler system
International Nuclear Information System (INIS)
Zhang Weiwei; Zhou Shangbo; Li Hua; Zhu Hao
2009-01-01
The dynamic behaviors in the fractional-order Roessler equations were numerically studied. Basic properties of the system have been analyzed by means of Lyapunov exponents and bifurcation diagrams. The parameter and the derivative order ranges used were relatively broad. Regular motions (including period-3 motion) and chaotic motions were examined. The chaotic motion identified was validated by the positive Lyapunov exponent.
International Nuclear Information System (INIS)
Josipovic, Mirjana; Fredberg Persson, Gitte; Logadottir, Aashildur; Smulders, Bob; Westmann, Gunnar; Bangsgaard, Jens Peter
2012-01-01
Background. Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate intra- and inter-fractional translational and rotational errors in patient and target positions. Material and methods. Fifteen consecutive SBRT patients were included in the study. Vacuum cushions were used for immobilisation. SBRT plans were based on midventilation phase of four-dimensional (4D)-CT or three-dimensional (3D)-CT from PET/CT. Margins of 5 mm in the transversal plane and 10 mm in the cranio-caudal (CC) direction were applied. SBRT was delivered in three fractions within a week. At each fraction, CBCT was performed before and after the treatment. Setup accuracy comparison between soft tissue matching and bony anatomy matching was evaluated on pretreatment CBCTs. From differences in pre- and post-treatment CBCTs, we evaluated the extent of translational and rotational intra-fractional changes in patient position, tumour position and tumour baseline shift. All image registration was rigid with six degrees of freedom. Results. The median 3D difference between patient position based on bony anatomy matching and soft tissue matching was 3.0 mm (0-8.3 mm). The median 3D intra-fractional change in patient position was 1.4 mm (0-12.2 mm) and 2.2 mm (0-13.2 mm) in tumour position. The median 3D intra-fractional baseline shift was 2.2 mm (0-4.7 mm). With correction of translational errors, the remaining systematic and random errors were approximately 1deg. Conclusion. Soft tissue tumour matching improved precision of treatment delivery in frameless SBRT of lung tumours compared to image guidance using bone matching. The intra-fractional displacement of the target position was affected by both translational and rotational changes in tumour baseline position
Directory of Open Access Journals (Sweden)
Azizollah Babakhani
2006-10-01
Full Text Available In the present paper we discuss the existence of positive solutions in the case of multi-term non-autonomous fractional differential equations with polynomial coefficients; the constant coefficient case has been studied in [2]. We consider the equation $$ Big(D^{alpha_n} -sum_{j = 1}^{n - 1} p_j(xD^{alpha_{n - j}}Bigy = f(x, y. $$ We state various conditions on $f$ and $p_j$'s under which this equation has: positive solutions, a unique solution which is positive, and a unique solution which may not be positive.
On generalized fractional vibration equation
International Nuclear Information System (INIS)
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-01-01
Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.
International Nuclear Information System (INIS)
Lu, Bin
2012-01-01
In this Letter, the fractional derivatives in the sense of modified Riemann–Liouville derivative and the Bäcklund transformation of fractional Riccati equation are employed for constructing the exact solutions of nonlinear fractional partial differential equations. The power of this manageable method is presented by applying it to several examples. This approach can also be applied to other nonlinear fractional differential equations. -- Highlights: ► Backlund transformation of fractional Riccati equation is presented. ► A new method for solving nonlinear fractional differential equations is proposed. ► Three important fractional differential equations are solved successfully. ► Some new exact solutions of the fractional differential equations are obtained.
Ahmed M. A. El-Sayed; Ebtisam O. Bin-Taher
2011-01-01
In this article, we prove the existence of positive nondecreasing solutions for a multi-term fractional-order functional differential equations. We consider Cauchy boundary problems with: nonlocal conditions, two-point boundary conditions, integral conditions, and deviated arguments.
Fractional Complex Transform and exp-Function Methods for Fractional Differential Equations
Directory of Open Access Journals (Sweden)
Ahmet Bekir
2013-01-01
Full Text Available The exp-function method is presented for finding the exact solutions of nonlinear fractional equations. New solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie's modified Riemann-Liouville sense. We apply the exp-function method to both the nonlinear time and space fractional differential equations. As a result, some new exact solutions for them are successfully established.
Fractional hydrodynamic equations for fractal media
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2005-01-01
We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the 'fractional' continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered
On matrix fractional differential equations
Directory of Open Access Journals (Sweden)
Adem Kılıçman
2017-01-01
Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.
Time Study of Harvesting Equipment Using GPS-Derived Positional Data
Tim McDonald
1999-01-01
The objectives in this study were to develop and test a data analysis system for calculating machine productivity from GPS-derived positional information alone. A technique was used where positions were `filtered' initially to locate specific events that were independent of what actually traveled the path, then these events were combined using user-specified rules...
Directory of Open Access Journals (Sweden)
Xiaofeng Zhang
2017-12-01
Full Text Available In this paper, we consider the existence of positive solutions to a singular semipositone boundary value problem of nonlinear fractional differential equations. By applying the fixed point index theorem, some new results for the existence of positive solutions are obtained. In addition, an example is presented to demonstrate the application of our main results.
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2014-01-01
Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.
International Nuclear Information System (INIS)
Zhang Ran-Ran; Xu Wei; Yang Gui-Dong; Han Qun
2015-01-01
In this paper, we consider the response analysis of a Duffing–Rayleigh system with fractional derivative under Gaussian white noise excitation. A stochastic averaging procedure for this system is developed by using the generalized harmonic functions. First, the system state is approximated by a diffusive Markov process. Then, the stationary probability densities are derived from the averaged Itô stochastic differential equation of the system. The accuracy of the analytical results is validated by the results from the Monte Carlo simulation of the original system. Moreover, the effects of different system parameters and noise intensity on the response of the system are also discussed. (paper)
Directory of Open Access Journals (Sweden)
Ahmed M. A. El-Sayed
2011-12-01
Full Text Available In this article, we prove the existence of positive nondecreasing solutions for a multi-term fractional-order functional differential equations. We consider Cauchy boundary problems with: nonlocal conditions, two-point boundary conditions, integral conditions, and deviated arguments.
Directory of Open Access Journals (Sweden)
Gafni Amiram
2005-02-01
Full Text Available Abstract Background Biochemical testing for pheochromocytoma by measurement of fractionated plasma metanephrines is limited by false positive rates of up to 18% in people without known genetic predisposition to the disease. The plasma normetanephrine fraction is responsible for most false positives and plasma normetanephrine increases with age. The objective of this study was to determine if we could improve the specificity of fractionated plasma measurements, by statistically adjusting for age. Methods An age-adjusted metanephrine score was derived using logistic regression from 343 subjects (including 33 people with pheochromocytoma who underwent fractionated plasma metanephrine measurements as part of investigations for suspected pheochromocytoma at Mayo Clinic Rochester (derivation set. The performance of the age-adjusted score was validated in a dataset of 158 subjects (including patients 23 with pheochromocytoma that underwent measurements of fractionated plasma metanephrines at Mayo Clinic the following year (validation dataset. None of the participants in the validation dataset had known genetic predisposition to pheochromocytoma. Results The sensitivity of the age-adjusted metanephrine score was the same as that of traditional interpretation of fractionated plasma metanephrine measurements, yielding a sensitivity of 100% (23/23, 95% confidence interval [CI] 85.7%, 100%. However, the false positive rate with traditional interpretation of fractionated plasma metanephrine measurements was 16.3% (22/135, 95% CI, 11.0%, 23.4% and that of the age-adjusted score was significantly lower at 3.0% (4/135, 95% CI, 1.2%, 7.4% (p Conclusion An adjustment for age in the interpretation of results of fractionated plasma metanephrines may significantly decrease false positives when using this test to exclude sporadic pheochromocytoma. Such improvements in false positive rate may result in savings of expenditures related to confirmatory imaging.
Kumar, Dinesh; Rai, K N
2017-07-01
In this paper, we investigated the thermal behavior in living biological tissues using time fractional dual-phase-lag bioheat transfer (DPLBHT) model subjected to Dirichelt boundary condition in presence of metabolic and electromagnetic heat sources during thermal therapy. We solved this bioheat transfer model using finite element Legendre wavelet Galerkin method (FELWGM) with help of block pulse function in sense of Caputo fractional order derivative. We compared the obtained results from FELWGM and exact method in a specific case, and found a high accuracy. Results are interpreted in the form of standard and anomalous cases for taking different order of time fractional DPLBHT model. The time to achieve hyperthermia position is discussed in both cases as standard and time fractional order derivative. The success of thermal therapy in the treatment of metastatic cancerous cell depends on time fractional order derivative to precise prediction and control of temperature. The effect of variability of parameters such as time fractional derivative, lagging times, blood perfusion coefficient, metabolic heat source and transmitted power on dimensionless temperature distribution in skin tissue is discussed in detail. The physiological parameters has been estimated, corresponding to the value of fractional order derivative for hyperthermia treatment therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Chiu Shen
2005-01-01
Full Text Available A relatively unknown yet powerful technique, the so-called fractional Fourier transform (FrFT, is applied to SAR along-track interferometry (SAR-ATI in order to estimate moving target parameters. By mapping a target's signal onto a fractional Fourier axis, the FrFT permits a constant-velocity target to be focused in the fractional Fourier domain thereby affording orders of magnitude improvement in SCR. Moving target velocity and position parameters are derived and expressed in terms of an optimum fractional angle and a measured fractional Fourier position , allowing a target to be accurately repositioned and its velocity components computed without actually forming an SAR image. The new estimation algorithm is compared with the matched filter bank approach, showing some of the advantages of the FrFT method. The proposed technique is applied to the data acquired by the two-aperture CV580 airborne radar system configured in its along-track mode. Results show that the method is effective in estimating target velocity and position parameters.
Semianalytic Solution of Space-Time Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
A. Elsaid
2016-01-01
Full Text Available We study the space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution of this problem is obtained via the optimal homotopy analysis method (OHAM. Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameters on the solution behavior.
Directory of Open Access Journals (Sweden)
C. Moni
2012-12-01
Full Text Available Physical fractionation is a widely used methodology to study soil organic matter (SOM dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF and particle size-density fractionation (PSDF on mineral soil samples from two European beech forests a decade after application of ^{15}N labelled litter.
Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM.
Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.
Grazzini, Giuliano; Ceccarelli, Anna; Calteri, Deanna; Catalano, Liviana; Calizzani, Gabriele; Cicchetti, Americo
2013-09-01
In Italy, the financial reimbursement for labile blood components exchanged between Regions is regulated by national tariffs defined in 1991 and updated in 1993-2003. Over the last five years, the need for establishing standard costs of healthcare services has arisen critically. In this perspective, the present study is aimed at defining both the costs of production of blood components and the related prices, as well as the prices of plasma-derived medicinal products obtained by national plasma, to be used for interregional financial reimbursement. In order to analyse the costs of production of blood components, 12 out 318 blood establishments were selected in 8 Italian Regions. For each step of the production process, driving costs were identified and production costs were. To define the costs of plasma-derived medicinal products obtained by national plasma, industrial costs currently sustained by National Health Service for contract fractionation were taken into account. The production costs of plasma-derived medicinal products obtained from national plasma showed a huge variability among blood establishments, which was much lower after standardization. The new suggested plasma tariffs were quite similar to those currently in force. Comparing the overall costs theoretically sustained by the National Health Service for plasma-derived medicinal products obtained from national plasma to current commercial costs, demonstrates that the national blood system could gain a 10% cost saving if it were able to produce plasma for fractionation within the standard costs defined in this study. Achieving national self-sufficiency through the production of plasma-derived medicinal products from national plasma, is a strategic goal of the National Health Service which must comply not only with quality, safety and availability requirements but also with the increasingly pressing need for economic sustainability.
A Tutorial Review on Fractal Spacetime and Fractional Calculus
He, Ji-Huan
2014-11-01
This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz's notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie's mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.
On the solutions of fractional reaction-diffusion equations
Directory of Open Access Journals (Sweden)
Jagdev Singh
2013-05-01
Full Text Available In this paper, we obtain the solution of a fractional reaction-diffusion equation associated with the generalized Riemann-Liouville fractional derivative as the time derivative and Riesz-Feller fractional derivative as the space-derivative. The results are derived by the application of the Laplace and Fourier transforms in compact and elegant form in terms of Mittag-Leffler function and H-function. The results obtained here are of general nature and include the results investigated earlier by many authors.
Fractional Stochastic Field Theory
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
The Initial Conditions of Fractional Calculus
International Nuclear Information System (INIS)
Trigeassou, J. C.; Maamri, N.
2011-01-01
During the past fifty years , Fractional Calculus has become an original and renowned mathematical tool for the modelling of diffusion Partial Differential Equations and the design of robust control algorithms. However, in spite of these celebrated results, some theoretical problems have not yet received a satisfying solution. The mastery of initial conditions, either for Fractional Differential Equations (FDEs) or for the Caputo and Riemann-Liouville fractional derivatives, remains an open research domain. The solution of this fundamental problem, also related to the long range memory property, is certainly the necessary prerequisite for a satisfying approach to modelling and control applications. The fractional integrator and its continuously frequency distributed differential model is a valuable tool for the simulation of fractional systems and the solution of initial condition problems. Indeed, the infinite dimensional state vector of fractional integrators allows the direct generalization to fractional calculus of the theoretical results of integer order systems. After a reminder of definitions and properties related to fractional derivatives and systems, this presentation is intended to show, based on the results of two recent publications [1,2], how the fractional integrator provides the solution of the initial condition problem of FDEs and of Caputo and Riemann-Liouville fractional derivatives. Numerical simulation examples illustrate and validate these new theoretical concepts.
Directory of Open Access Journals (Sweden)
Yanning Wang
2016-01-01
Full Text Available Using conformable fractional calculus on time scales, we first introduce fractional Sobolev spaces on time scales, characterize them, and define weak conformable fractional derivatives. Second, we prove the equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, uniform convexity, and compactness of some imbeddings, which can be regarded as a novelty item. Then, as an application, we present a recent approach via variational methods and critical point theory to obtain the existence of solutions for a p-Laplacian conformable fractional differential equation boundary value problem on time scale T: Tα(Tαup-2Tα(u(t=∇F(σ(t,u(σ(t, Δ-a.e. t∈a,bTκ2, u(a-u(b=0, Tα(u(a-Tα(u(b=0, where Tα(u(t denotes the conformable fractional derivative of u of order α at t, σ is the forward jump operator, a,b∈T, 01, and F:[0,T]T×RN→R. By establishing a proper variational setting, we obtain three existence results. Finally, we present two examples to illustrate the feasibility and effectiveness of the existence results.
Fractional RC and LC Electrical Circuits
Directory of Open Access Journals (Sweden)
Gómez-Aguilar José Francisco
2014-04-01
Full Text Available In this paper we propose a fractional differential equation for the electrical RC and LC circuit in terms of the fractional time derivatives of the Caputo type. The order of the derivative being considered is 0 < ɣ ≤1. To keep the dimensionality of the physical parameters R, L, C the new parameter σ is introduced. This parameter characterizes the existence of fractional structures in the system. A relation between the fractional order time derivative ɣ and the new parameter σ is found. The numeric Laplace transform method was used for the simulation of the equations results. The results show that the fractional differential equations generalize the behavior of the charge, voltage and current depending of the values of ɣ. The classical cases are recovered by taking the limit when ɣ = 1. An analysis in the frequency domain of an RC circuit shows the application and use of fractional order differential equations.
Fractional Calculus in Hydrologic Modeling: A Numerical Perspective
Energy Technology Data Exchange (ETDEWEB)
David A. Benson; Mark M. Meerschaert; Jordan Revielle
2012-01-01
Fractional derivatives can be viewed either as a handy extension of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Levy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Levy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus.
International Nuclear Information System (INIS)
Al-Mossawy, Mohammed Idrees; Demiral, Birol; Raja, D M Anwar
2013-01-01
Foam is used in enhanced oil recovery to improve the sweep efficiency by controlling the gas mobility. The surfactant-alternating-gas (SAG) foam process is used as an alternative to the water-alternating-gas (WAG) injection. In the WAG technique, the high mobility and the low density of the gas lead the gas to flow in channels through the high permeability zones of the reservoir and to rise to the top of the reservoir by gravity segregation. As a result, the sweep efficiency decreases and there will be more residual oil in the reservoir. The foam can trap the gas in liquid films and reduces the gas mobility. The fractional-flow method describes the physics of immiscible displacements in porous media. Finding the water fractional flow theoretically or experimentally as a function of the water saturation represents the heart of this method. The relative permeability function is the conventional way to derive the fractional-flow function. This study presents an improved relative permeability model to derive the fractional-flow functions for WAG and SAG foam core-floods. The SAG flow regimes are characterized into weak foam, strong foam without a shock front and strong foam with a shock front. (paper)
Fractional Order Models of Industrial Pneumatic Controllers
Directory of Open Access Journals (Sweden)
Abolhassan Razminia
2014-01-01
Full Text Available This paper addresses a new approach for modeling of versatile controllers in industrial automation and process control systems such as pneumatic controllers. Some fractional order dynamical models are developed for pressure and pneumatic systems with bellows-nozzle-flapper configuration. In the light of fractional calculus, a fractional order derivative-derivative (FrDD controller and integral-derivative (FrID are remodeled. Numerical simulations illustrate the application of the obtained theoretical results in simple examples.
Exact solutions of time-fractional heat conduction equation by the fractional complex transform
Directory of Open Access Journals (Sweden)
Li Zheng-Biao
2012-01-01
Full Text Available The Fractional Complex Transform is extended to solve exactly time-fractional differential equations with the modified Riemann-Liouville derivative. How to incorporate suitable boundary/initial conditions is also discussed.
Directory of Open Access Journals (Sweden)
Chuanzhi Bai
2010-06-01
Full Text Available This paper deals with the existence of positive solutions for a boundary value problem involving a nonlinear functional differential equation of fractional order $\\alpha$ given by $ D^{\\alpha} u(t + f(t, u_t = 0$, $t \\in (0, 1$, $2 < \\alpha \\le 3$, $ u^{\\prime}(0 = 0$, $u^{\\prime}(1 = b u^{\\prime}(\\eta$, $u_0 = \\phi$. Our results are based on the nonlinear alternative of Leray-Schauder type and Krasnosel'skii fixed point theorem.
Directory of Open Access Journals (Sweden)
M.H.T. Alshbool
2017-01-01
Full Text Available An algorithm for approximating solutions to fractional differential equations (FDEs in a modified new Bernstein polynomial basis is introduced. Writing x→xα(0<α<1 in the operational matrices of Bernstein polynomials, the fractional Bernstein polynomials are obtained and then transformed into matrix form. Furthermore, using Caputo fractional derivative, the matrix form of the fractional derivative is constructed for the fractional Bernstein matrices. We convert each term of the problem to the matrix form by means of fractional Bernstein matrices. A basic matrix equation which corresponds to a system of fractional equations is utilized, and a new system of nonlinear algebraic equations is obtained. The method is given with some priori error estimate. By using the residual correction procedure, the absolute error can be estimated. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.
International Nuclear Information System (INIS)
Li, S.; Tang, X.; Peng, L.; Luo, Y.; Dong, R.; Liu, J.
2015-01-01
Aim: To review the literature on the diagnostic accuracy of CT-derived fractional flow reserve (FFR CT ) for the evaluation of myocardial ischaemia in patients with suspected or known coronary artery disease, with invasive fractional flow reserve (FFR) as the reference standard. Materials and methods: A PubMed, EMBASE, and Cochrane cross-search was performed. The pooled diagnostic accuracy of FFR CT , with FFR as the reference standard, was primarily analysed, and then compared with that of CT angiography (CTA). The thresholds to diagnose ischaemia were FFR ≤0.80 or CTA ≥50% stenosis. Data extraction, synthesis, and statistical analysis were performed by standard meta-analysis methods. Results: Three multicentre studies (NXT Trial, DISCOVER-FLOW study and DeFACTO study) were included, examining 609 patients and 1050 vessels. The pooled sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), negative likelihood ratio (LR−), and diagnostic odds ratio (DOR) for FFR CT were 89% (85–93%), 71% (65–75%), 70% (65–75%), 90% (85–93%), 3.31 (1.79–6.14), 0.16 (0.11–0.23), and 21.21 (9.15–49.15) at the patient-level, and 83% (78–63%), 78% (75–81%), 61% (56–65%), 92% (89–90%), 4.02 (1.84–8.80), 0.22 (0.13–0.35), and 19.15 (5.73–63.93) at the vessel-level. At per-patient analysis, FFR CT has similar sensitivity but improved specificity, PPV, NPV, LR+, LR−, and DOR versus those of CTA. At per-vessel analysis, FFR CT had a slightly lower sensitivity, similar NPV, but improved specificity, PPV, LR+, LR−, and DOR compared with those of CTA. The area under the summary receiver operating characteristic curves for FFR CT was 0.8909 at patient-level and 0.8865 at vessel-level, versus 0.7402 for CTA at patient-level. Conclusions: FFR CT , which was associated with improved diagnostic accuracy versus CTA, is a viable alternative to FFR for detecting coronary ischaemic lesions
Integral transform method for solving time fractional systems and fractional heat equation
Directory of Open Access Journals (Sweden)
Arman Aghili
2014-01-01
Full Text Available In the present paper, time fractional partial differential equation is considered, where the fractional derivative is defined in the Caputo sense. Laplace transform method has been applied to obtain an exact solution. The authors solved certain homogeneous and nonhomogeneous time fractional heat equations using integral transform. Transform method is a powerful tool for solving fractional singular Integro - differential equations and PDEs. The result reveals that the transform method is very convenient and effective.
On fractional Fourier transform moments
Alieva, T.; Bastiaans, M.J.
2000-01-01
Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their
Seng, G. T.; Otterson, D. A.
1983-01-01
Two high performance liquid chromatographic (HPLC) methods have been developed for the determination of saturates, olefins and aromatics in petroleum and shale derived mid-distillate fuels. In one method the fuel to be analyzed is reacted with sulfuric acid, to remove a substantial portion of the aromatics, which provides a reacted fuel fraction for use in group type quantitation. The second involves the removal of a substantial portion of the saturates fraction from the HPLC system to permit the determination of olefin concentrations as low as 0.3 volume percent, and to improve the accuracy and precision of olefins determinations. Each method was evaluated using model compound mixtures and real fuel samples.
Pennings, J.M.E.
2002-01-01
The behavior of managers in initiating a derivatives market position brings to the surface an interesting phenomenon: sometimes managers initiate a position in derivatives markets (i.e., futures and options markets) and sometimes they do not, even though the price volatility of the underlying asset
Electronic realization of the fractional-order systems
Directory of Open Access Journals (Sweden)
Františka Dorčáková
2007-10-01
Full Text Available This article is devoted to the electronic (analogue realization of the fractional-order systems – controllers or controlled objects whose we earlier used, identified, and analyzed as a mathematical models only ��� namely a fractional-order differential equation, and solved numerically using a method based on the truncated version of the Grunwald - Letnikov formula for fractional derivative. The electronic realization of the fractional derivative is based on the continued fraction expansion of the rational approximation of the fractional differentiator from which we obtained the values of the resistors and capacitors of the electronic circuit. Along with the mathematical description are presented also simulation and measurement results.
Fractional neutron point kinetics equations for nuclear reactor dynamics
International Nuclear Information System (INIS)
Espinosa-Paredes, Gilberto; Polo-Labarrios, Marco-A.; Espinosa-Martinez, Erick-G.; Valle-Gallegos, Edmundo del
2011-01-01
The fractional point-neutron kinetics model for the dynamic behavior in a nuclear reactor is derived and analyzed in this paper. The fractional model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional order, acting as exponent of the relaxation time, to obtain the best representation of a nuclear reactor dynamics. The physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. The numerical approximation to the solution of the fractional neutron point kinetics model, which can be represented as a multi-term high-order linear fractional differential equation, is calculated by reducing the problem to a system of ordinary and fractional differential equations. The numerical stability of the fractional scheme is investigated in this work. Results for neutron dynamic behavior for both positive and negative reactivity and for different values of fractional order are shown and compared with the classic neutron point kinetic equations. Additionally, a related review with the neutron point kinetics equations is presented, which encompasses papers written in English about this research topic (as well as some books and technical reports) published since 1940 up to 2010.
Directory of Open Access Journals (Sweden)
Wei Li
2014-01-01
Full Text Available Based on a general fractional Riccati equation and with Jumarie’s modified Riemann-Liouville derivative to an extended fractional Riccati expansion method for solving the time fractional Burgers equation and the space-time fractional Cahn-Hilliard equation, the exact solutions expressed by the hyperbolic functions and trigonometric functions are obtained. The obtained results show that the presented method is effective and appropriate for solving nonlinear fractional differential equations.
Fractional-order adaptive fault estimation for a class of nonlinear fractional-order systems
N'Doye, Ibrahima; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order α belongs to 0 < α < 1. A numerical example is given to demonstrate the validity of the proposed approach.
Fractional-order adaptive fault estimation for a class of nonlinear fractional-order systems
N'Doye, Ibrahima
2015-07-01
This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order α belongs to 0 < α < 1. A numerical example is given to demonstrate the validity of the proposed approach.
Calculus of variations involving Caputo-Fabrizio fractional differentiation
Directory of Open Access Journals (Sweden)
Nuno R. O. Bastos
2018-02-01
Full Text Available This paper is devoted to study some variational problems with functionals containing the Caputo-Fabrizio fractional derivative, that is a fractional derivative with a non-singular kernel.
International Nuclear Information System (INIS)
Feng Qing-Hua
2014-01-01
In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann—Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method, we apply this method to solve the space-time fractional Whitham—Broer—Kaup (WBK) equations and the nonlinear fractional Sharma—Tasso—Olever (STO) equation, and as a result, some new exact solutions for them are obtained. (general)
Finite element method for time-space-fractional Schrodinger equation
Directory of Open Access Journals (Sweden)
Xiaogang Zhu
2017-07-01
Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.
New arylsparteine derivatives as positive inotropic drugs.
Boido, Vito; Ercoli, Marcella; Tonelli, Michele; Novelli, Federica; Tasso, Bruno; Sparatore, Fabio; Cichero, Elena; Fossa, Paola; Dorigo, Paola; Froldi, Guglielmina
2017-12-01
Positive inotropic agents are fundamental in the treatment of heart failure; however, their arrhythmogenic liability and the increased myocardial oxygen demand strongly limit their therapeutic utility. Pursuing our study on cardiovascular activities of lupin alkaloid derivatives, several 2-(4-substituted-phenyl)-2-dehydrosparteines and 2-(4-substituted-phenyl)sparteines were prepared and tested for inotropic and chronotropic activities on isolated guinea pig atria. Four compounds (6b, 6e, 7b, and 7f) exhibited significant inotropism that, at the higher concentrations, was followed by negative inotropism or toxicity. Compound 7e (2-(4-tolyl)sparteine) exhibited a steep dose-depending inotropic activity up to the highest concentration tested (300 µM) with an E max of 116.5 ± 3.4% of basal force, proving less potent but much more active in comparison to the highest concentrations tested of digoxin and milrinone having E max of 87.5 ± 3.1% and 52.2 ± 1.1%, respectively. Finally, docking studies suggested that the relevant sparteine derivatives could target the sigma-1 receptor, whose involvement in cardiac activity is well documented.
Directory of Open Access Journals (Sweden)
Pirson Chris
2012-06-01
Full Text Available Abstract Mycobacterial lipids have long been known to modulate the function of a variety of cells of the innate immune system. Here, we report the extraction and characterisation of polar and apolar free lipids from Mycobacterium bovis AF 2122/97 and identify the major lipids present in these fractions. Lipids found included trehalose dimycolate (TDM and trehalose monomycolate (TMM, the apolar phthiocerol dimycocersates (PDIMs, triacyl glycerol (TAG, pentacyl trehalose (PAT, phenolic glycolipid (PGL, and mono-mycolyl glycerol (MMG. Polar lipids identified included glucose monomycolate (GMM, diphosphatidyl glycerol (DPG, phenylethanolamine (PE and a range of mono- and di-acylated phosphatidyl inositol mannosides (PIMs. These lipid fractions are capable of altering the cytokine profile produced by fresh and cultured bovine monocytes as well as monocyte derived dendritic cells. Significant increases in the production of IL-10, IL-12, MIP-1β, TNFα and IL-6 were seen after exposure of antigen presenting cells to the polar lipid fraction. Phenotypic characterisation of the cells was performed by flow cytometry and significant decreases in the expression of MHCII, CD86 and CD1b were found after exposure to the polar lipid fraction. Polar lipids also significantly increased the levels of CD40 expressed by monocytes and cultured monocytes but no effect was seen on the constitutively high expression of CD40 on MDDC or on the levels of CD80 expressed by any of the cells. Finally, the capacity of polar fraction treated cells to stimulate alloreactive lymphocytes was assessed. Significant reduction in proliferative activity was seen after stimulation of PBMC by polar fraction treated cultured monocytes whilst no effect was seen after lipid treatment of MDDC. These data demonstrate that pathogenic mycobacterial polar lipids may significantly hamper the ability of the host APCs to induce an appropriate immune response to an invading pathogen.
On the numerical solution of the neutron fractional diffusion equation
International Nuclear Information System (INIS)
Maleki Moghaddam, Nader; Afarideh, Hossein; Espinosa-Paredes, Gilberto
2014-01-01
Highlights: • The new version of neutron diffusion equation which established on the fractional derivatives is presented. • The Neutron Fractional Diffusion Equation (NFDE) is solved in the finite differences frame. • NFDE is solved using shifted Grünwald-Letnikov definition of fractional operators. • The results show that “K eff ” strongly depends on the order of fractional derivative. - Abstract: In order to core calculation in the nuclear reactors there is a new version of neutron diffusion equation which is established on the fractional partial derivatives, named Neutron Fractional Diffusion Equation (NFDE). In the NFDE model, neutron flux in each zone depends directly on the all previous zones (not only on the nearest neighbors). Under this circumstance, it can be said that the NFDE has the space history. We have developed a one-dimension code, NFDE-1D, which can simulate the reactor core using arbitrary exponent of differential operators. In this work a numerical solution of the NFDE is presented using shifted Grünwald-Letnikov definition of fractional derivative in finite differences frame. The model is validated with some numerical experiments where different orders of fractional derivative are considered (e.g. 0.999, 0.98, 0.96, and 0.94). The results show that the effective multiplication factor (K eff ) depends strongly on the order of fractional derivative
Directory of Open Access Journals (Sweden)
Shilei Liu
2018-04-01
Full Text Available High intensity focused ultrasound (HIFU has been proven to be promising in non-invasive therapies, in which precise prediction of the focused ultrasound field is crucial for its accurate and safe application. Although the Khokhlov–Zabolotskaya–Kuznetsov (KZK equation has been widely used in the calculation of the nonlinear acoustic field of HIFU, some deviations still exist when it comes to dispersive medium. This problem also exists as an obstacle to the Westervelt model and the Spherical Beam Equation. Considering that the KZK equation is the most prevalent model in HIFU applications due to its accurate and simple simulation algorithms, there is an urgent need to improve its performance in dispersive medium. In this work, a modified KZK (mKZK equation derived from a fractional order derivative is proposed to calculate the nonlinear acoustic field in a dispersive medium. By correcting the power index in the attenuation term, this model is capable of providing improved prediction accuracy, especially in the axial position of the focal area. Simulation results using the obtained model were further compared with the experimental results from a gel phantom. Good agreements were found, indicating the applicability of the proposed model. The findings of this work will be helpful in making more accurate treatment plans for HIFU therapies, as well as facilitating the application of ultrasound in acoustic hyperthermia therapy.
Directory of Open Access Journals (Sweden)
Gleyce Alves Machado
2013-05-01
Full Text Available The aim of the present study was to analyse Taenia solium metacestode antigens that were derived from the unbound fraction of jacalin affinity chromatography and subsequent tert-octylphenoxy poly (oxyethylene ethanol Triton X-114 (TX-114 partitioning in the diagnosis of human neurocysticercosis (NCC. Immunoassays were designed to detect T. solium-specific IgG antibodies by ELISA and immunoblot. Serum samples were collected from 132 individuals who were categorised as follows: 40 had NCC, 62 presented Taenia spp or other parasitic diseases and 30 were healthy individuals. The jacalin-unbound (J unbound fraction presented higher sensitivity and specificity rates than the jacalin-bound fraction and only this fraction was subjected to subsequent TX-114 partitioning, resulting in detergent (DJ unbound and aqueous (AJ unbound fractions. The ELISA sensitivity and specificity were 85% and 84.8% for J unbound , 92.5% and 93.5% for DJ unbound and 82.5% and 82.6% for AJ unbound . By immunoblot, the DJ unbound fraction showed 100% sensitivity and specificity and only serum samples from patients with NCC recognised the 50-70 kDa T. solium-specific components. We conclude that the DJ unbound fraction can serve as a useful tool for the differential immunodiagnosis of NCC by immunoblot.
High-order fractional partial differential equation transform for molecular surface construction.
Hu, Langhua; Chen, Duan; Wei, Guo-Wei
2013-01-01
Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model
-Dimensional Fractional Lagrange's Inversion Theorem
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2013-01-01
Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.
Identification of fractional order systems using modulating functions method
Liu, Dayan
2013-06-01
The modulating functions method has been used for the identification of linear and nonlinear systems. In this paper, we generalize this method to the on-line identification of fractional order systems based on the Riemann-Liouville fractional derivatives. First, a new fractional integration by parts formula involving the fractional derivative of a modulating function is given. Then, we apply this formula to a fractional order system, for which the fractional derivatives of the input and the output can be transferred into the ones of the modulating functions. By choosing a set of modulating functions, a linear system of algebraic equations is obtained. Hence, the unknown parameters of a fractional order system can be estimated by solving a linear system. Using this method, we do not need any initial values which are usually unknown and not equal to zero. Also we do not need to estimate the fractional derivatives of noisy output. Moreover, it is shown that the proposed estimators are robust against high frequency sinusoidal noises and the ones due to a class of stochastic processes. Finally, the efficiency and the stability of the proposed method is confirmed by some numerical simulations.
International Nuclear Information System (INIS)
Julien, Maxime; Parinet, Julien; Nun, Pierrick; Bayle, Kevin; Höhener, Patrick; Robins, Richard J.; Remaud, Gérald S.
2015-01-01
Isotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes. We show that isotope ratio monitoring by 13 C NMR (irm- 13 C NMR) spectrometry can be effectively applied to methyl tert-butylether, toluene, ethanol and trichloroethene to obtain this position-specific data for partitioning. It is found that each compound exhibits characteristic position-specific isotope fractionation patterns, and that these are modulated by the type of evaporative process occurring. Such data should help refine models of how remediation is taking place, hence back-tracking to identify pollutant sources. - Highlights: • Position-Specific Isotope Analysis (PSIA) by 13 C NMR spectrometry. • PSIA on isotope fractionation during several vaporization processes. • PSIA for isotope profiling in environment pollutants. • Intramolecular 13 C reveal normal and inverse effects, bulk values being unchanged. - PSIA in pollutants during evaporation processes shows more detailed information for discerning the nature of the process involved than does bulk isotope measurements
On Solution of a Fractional Diffusion Equation by Homotopy Transform Method
International Nuclear Information System (INIS)
Salah, A.; Hassan, S.S.A.
2012-01-01
The homotopy analysis transform method (HATM) is applied in this work in order to find the analytical solution of fractional diffusion equations (FDE). These equations are obtained from standard diffusion equations by replacing a second-order space derivative by a fractional derivative of order α and a first order time derivative by a fractional derivative. Furthermore, some examples are given. Numerical results show that the homotopy analysis transform method is easy to implement and accurate when applied to a fractional diffusion equations.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-01-01
Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.
Directory of Open Access Journals (Sweden)
Sheng-Ping Yan
2014-01-01
Full Text Available We perform a comparison between the local fractional Adomian decomposition and local fractional function decomposition methods applied to the Laplace equation. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.
Energy Technology Data Exchange (ETDEWEB)
Chvetsov, A; Schwartz, J; Mayr, N [University of Washington, Seattle, WA (United States); Yartsev, S [London Health Sciences Centre, London, Ontario (Canada)
2014-06-01
Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume
International Nuclear Information System (INIS)
Chvetsov, A; Schwartz, J; Mayr, N; Yartsev, S
2014-01-01
Purpose: To show that a distribution of cell surviving fractions S 2 in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S 2 and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S 2 for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S 2 reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S 2 can be reconstructed from the tumor volume variation curves measured
Fractional Quantum Field Theory: From Lattice to Continuum
Directory of Open Access Journals (Sweden)
Vasily E. Tarasov
2014-01-01
Full Text Available An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates.
Analytical Approach to Space- and Time-Fractional Burgers Equations
International Nuclear Information System (INIS)
Yıldırım, Ahmet; Mohyud-Din, Syed Tauseef
2010-01-01
A scheme is developed to study numerical solution of the space- and time-fractional Burgers equations under initial conditions by the homotopy analysis method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed
Hansen, Christian T.; Meixner, Anette; Kasemann, Simone A.; Bach, Wolfgang
2017-11-01
Multiple batch experiments (100 °C, 200 °C; 40 MPa) were conducted, using Dickson-type reactors, to investigate Li and B partitioning and isotope fractionation between rock and water during serpentinization. We reacted fresh olivine (5 g; Fo90; [B] = anti-correlated with temperature, we argue for an overall attenuation of the isotopic effect through changes in B speciation in saline solutions (NaB(OH)4(aq) and B(OH)3Cl-) as well as variable B fixation and fractionation for different serpentinization product minerals (brucite, chrysotile). Breakdown of the Li-rich olivine and limited Li incorporation into product mineral phases resulted in an overall lower Li content of the final solid phase assemblage at 200 °C ([Li]final_200 °C = 0.77 μg/g; DS/FLi200 °C = 1.58). First order changes in Li isotopic compositions were defined by mixing of two isotopically distinct sources i.e. the fresh olivine and the fluid rather than by equilibrium isotope fraction. At 200 °C primary olivine is dissolved, releasing its Li budget into the fluid which shifts towards a lower δ7LiF of +38.62‰. Newly formed serpentine minerals (δ7LiS = +30.58‰) incorporate fluid derived Li with a minor preference of the 6Li isotope. At 100 °C Li enrichment of secondary phases exceeded Li release by olivine breakdown ([Li]final_100 °C = 2.10 μg/g; DS/FLi100 °C = 11.3) and it was accompanied by preferential incorporation of heavier 7Li isotope that might be due to incorporation of a 7Li enriched fluid fraction into chrysotile nanotubes.
Non-perturbative analytical solutions of the space- and time-fractional Burgers equations
International Nuclear Information System (INIS)
Momani, Shaher
2006-01-01
Non-perturbative analytical solutions for the generalized Burgers equation with time- and space-fractional derivatives of order α and β, 0 < α, β ≤ 1, are derived using Adomian decomposition method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed
Gauge invariant fractional electromagnetic fields
Lazo, Matheus Jatkoske
2011-09-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas
2014-01-01
The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.
Fractional diffusion models of nonlocal transport
International Nuclear Information System (INIS)
Castillo-Negrete, D. del
2006-01-01
A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ∼L α , of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments
Smarandache Continued Fractions
Ibstedt, H.
2001-01-01
The theory of general continued fractions is developed to the extent required in order to calculate Smarandache continued fractions to a given number of decimal places. Proof is given for the fact that Smarandache general continued fractions built with positive integer Smarandache sequences baving only a finite number of terms equal to 1 is convergent. A few numerical results are given.
An efficient method for solving fractional Sturm-Liouville problems
International Nuclear Information System (INIS)
Al-Mdallal, Qasem M.
2009-01-01
The numerical approximation of the eigenvalues and the eigenfunctions of the fractional Sturm-Liouville problems, in which the second order derivative is replaced by a fractional derivative, is considered. The present results can be implemented on the numerical solution of the fractional diffusion-wave equation. The results show the simplicity and efficiency of the numerical method.
A study of fractional Schrödinger equation composed of Jumarie ...
Indian Academy of Sciences (India)
In this paper we have derived the fractional-order Schrödinger equation composed of Jumarie fractional derivative. The solution of this fractional-order Schrödinger equation is obtained in terms of Mittag–Leffler function with complex arguments, and fractional trigonometric functions. A few important properties of the ...
N U+02BC Doye, Ibrahima
2018-02-13
In this paper, we propose a robust fractional-order proportional-integral U+0028 FOPI U+0029 observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities U+0028 LMIs U+0029 approach by using an indirect Lyapunov method. The proposed U+0028 FOPI U+0029 observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional U+0028 FOP U+0029 observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.
N U+02BC Doye, Ibrahima; Salama, Khaled N.; Laleg-Kirati, Taous-Meriem
2018-01-01
In this paper, we propose a robust fractional-order proportional-integral U+0028 FOPI U+0029 observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities U+0028 LMIs U+0029 approach by using an indirect Lyapunov method. The proposed U+0028 FOPI U+0029 observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional U+0028 FOP U+0029 observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.
Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators
Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei
2018-03-01
Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.
Directory of Open Access Journals (Sweden)
Anitha Karthikeyan
2018-03-01
Full Text Available In this paper we derived the fractional order model of the Permanent Magnet Synchronous Generator (PMSG from its integer model. The PMSG was employing a shaft sensor for the speed sensing and control. But this sensor would increase the hardware complexity as well as the cost of the system. Hence we have developed a Fractional order Nonlinear adaptive control method for speed and current tracking of the PMSG. The objective of an adaptive controller is to first define a virtual control state and force it to become a stabilizing function in accordance with a corresponding error dynamics. In order to study the Lyapunov exponents of the fractional order controller, we proposed a new method which would remove the complexity of finding the sign of the Lyapunov first derivative. The Fractional order control scheme is implemented in LabVIEW for simulation results. The simulation results indicated that the estimated rotor position and speed correspond to their actual values well. Keywords: Chaos suppression, Fractional order systems, Permanent magnet synchronous generator, Speed and current control, Lyapunov stability
Fractional Klein–Kramers dynamics for subdiffusion and Itô formula
International Nuclear Information System (INIS)
Orzeł, Sebastian; Weron, Aleksander
2011-01-01
Subdiffusion in the presence of an external force field has been recently described in phase space by the fractional Klein–Kramers equation. In this paper using a subordination method, we identify a two-dimensional stochastic process (position, velocity) whose probability density function is a solution of the fractional Klein–Kramers equation. The structure of this process agrees with the two-stage scenario underlying the anomalous diffusion mechanism, in which trapping events are superimposed on the Langevin dynamics. Applying an extension of the celebrated Itô formula for subdiffusion we found that the velocity process can be represented explicitly by a corresponding fractional Ornstein–Uhlenbeck process. A basic feature arising in the context of this stochastic representation is the random change of time of the system made by subordination. For the position and velocity processes we present a computer visualization of their sample paths and we derive an explicit expression for the two-point correlation function of the velocity process. The obtained stochastic representation is crucial in constructing an algorithm to simulate sample paths of the anomalous diffusion, which in turn allows us to detect and examine many relevant properties of the system under consideration
Gauge invariant fractional electromagnetic fields
International Nuclear Information System (INIS)
Lazo, Matheus Jatkoske
2011-01-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Chebyshev Finite Difference Method for Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Boundary
2015-09-01
Full Text Available This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivatives are described in the Caputo sense. Numerical results show that this method is of high accuracy and is more convenient and efficient for solving boundary value problems involving fractional ordinary differential equations. AMS Subject Classification: 34A08 Keywords and Phrases: Chebyshev polynomials, Gauss-Lobatto points, fractional differential equation, finite difference 1. Introduction The idea of a derivative which interpolates between the familiar integer order derivatives was introduced many years ago and has gained increasing importance only in recent years due to the development of mathematical models of a certain situations in engineering, materials science, control theory, polymer modelling etc. For example see [20, 22, 25, 26]. Most fractional order differential equations describing real life situations, in general do not have exact analytical solutions. Several numerical and approximate analytical methods for ordinary differential equation Received: December 2014; Accepted: March 2015 57 Journal of Mathematical Extension Vol. 9, No. 3, (2015, 57-71 ISSN: 1735-8299 URL: http://www.ijmex.com Chebyshev Finite Difference Method for Fractional Boundary Value Problems H. Azizi Taft Branch, Islamic Azad University Abstract. This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivative
Radiation from Accelerating Electric Charges: The Third Derivative of Position
Butterworth, Edward
2010-03-01
While some textbooks appear to suggest that acceleration of an electric charge is both a necessary and sufficient cause for the generation of electromagnetic radiation, the question has in fact had an intricate and involved history. In particular, the acceleration of a charge in hyperbolic motion, the behavior of a charge supported against a gravitational force (and its implications for the Equivalence Principle), and a charge accelerated by a workless constraint have been the subject of repeated investigation. The present paper examines specifically the manner in which the third derivative of position enters into the equations of motion, and the implications this has for the emission of radiation. Plass opens his review article with the statement that ``A fundamental property of all charged particles is that electromagnetic energy is radiated whenever they are accelerated'' (Plass 1961; emphasis mine). His treatment of the equations of motion, however, emphasizes the importance of the occurrence of the third derivative of position therein, present in linear motion only when the rate of acceleration is increasing or decreasing. There appears to be general agreement that the presence of a nonzero third derivative indicates that this charge is radiating; but does its absence preclude radiation? This question leads back to the issues of charges accelerated by a uniform gravitational field. We will examine the equations of motion as presented in Fulton & Rohrlich (1960), Plass (1961), Barut (1964), Teitelboim (1970) and Mo & Papas (1971) in the light of more recent literature in an attempt to clarify this question.
Discrete random walk models for space-time fractional diffusion
International Nuclear Information System (INIS)
Gorenflo, Rudolf; Mainardi, Francesco; Moretti, Daniele; Pagnini, Gianni; Paradisi, Paolo
2002-01-01
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order α is part of (0,2] and skewness θ (moduleθ≤{α,2-α}), and the first-order time derivative with a Caputo derivative of order β is part of (0,1]. Such evolution equation implies for the flux a fractional Fick's law which accounts for spatial and temporal non-locality. The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation
Directory of Open Access Journals (Sweden)
K.R. Prasad
2015-11-01
Full Text Available In this paper, we establish the existence of at least three positive solutions for a system of (p,q-Laplacian fractional order two-point boundary value problems by applying five functionals fixed point theorem under suitable conditions on a cone in a Banach space.
International Nuclear Information System (INIS)
Ahmad, N.; Shinwari, Z.K.
2016-01-01
The extracts and its derived fractions from three medicinal plants species Nepeta leavigata, Nepeta kurramensis and Rhynchosia reniformis were tested for insecticidal activities and preliminary phytochemical evaluation with the intention of standardization and proper manage of bioactive principles in such heterogonous botanicals and to encourage drug finding work with plants. The crude extracts and fractions from Nepeta plants showed moderate to strong insecticidal activity. Among the fractions from Nepeta kurramensis the n-butanol fraction showed strongest insecticidal activity with 89% mortality rate against Tribolium castaneum followed by methanol extract with 88% mortality ratio and in case of Nepeta leavigata the potential activity was showed by methanol extracts with 93% mortality rate against the tested insect. Surprisingly none of the extract / fractions obtained from Rhynchosia reniformis plant exhibited any insecticidal activity. The phytochemicals screening results revealed that both species of Nepeta showed similar phytochemicals profile. The group of chemicals terpenes, flavonoids and glycosides were observed in all the extracts/fractions of Nepeta plants. While phenolic compounds, acidic compounds and alkaloids were found in methanolic extracts, chloroform fraction and ethyl acetate fraction. The Rhynchosia reniformis was observed to be a good source of phenolic compounds, flavonoids, terpenes, alkaloids and fats. (author)
Directory of Open Access Journals (Sweden)
Zachau Anne C
2012-09-01
Full Text Available Abstract Introduction Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder characterized by degeneration of motoneuron cells in anterior spinal horns. There is a need for early and accurate diagnosis with this condition. In this case report we used two complementary methods: scanning electron microscopy and fluorescence-activated cell sorting. This is the first report to our knowledge of microparticles in the cerebrospinal fluid of a patient with amyotrophic lateral sclerosis. Case presentation An 80-year-old Swedish man of Caucasian ethnicity presented to our facility with symptoms of amyotrophic lateral sclerosis starting a year before his first hospital examination, such as muscle weakness and twitching in his right hand progressing to arms, body and leg muscles. Electromyography showed classical neurophysiological findings of amyotrophic lateral sclerosis. Routine blood sample results were normal. A lumbar puncture was performed as a routine investigation and his cerebrospinal fluid was normal with regard to cell count and protein levels, and there were no signs of inflammation. However, scanning electron microscopy and fluorescence-activated cell sorting showed pronounced abnormalities compared to healthy controls. Flow cytometry analysis of two fractions of cerebrospinal fluid from our patient with amyotrophic lateral sclerosis was used to measure the specific binding of antibodies to CD42a, CD144 and CD45, and of phosphatidylserine to lactadherin. Our patient displayed over 100 times more phosphatidylserine-positive microparticles and over 400 times more cell-derived microparticles of leukocyte origin in his cerebrospinal fluid compared to healthy control subjects. The first cerebrospinal fluid fraction contained about 50% more microparticles than the second fraction. The scanning electron microscopy filters used with cerebrospinal fluid from our patient were filled with compact aggregates of spherical particles of
On the singular perturbations for fractional differential equation.
Atangana, Abdon
2014-01-01
The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.
On the fractional calculus of Besicovitch function
International Nuclear Information System (INIS)
Liang Yongshun
2009-01-01
Relationship between fractional calculus and fractal functions has been explored. Based on prior investigations dealing with certain fractal functions, fractal dimensions including Hausdorff dimension, Box dimension, K-dimension and Packing dimension is shown to be a linear function of order of fractional calculus. Both Riemann-Liouville fractional calculus and Weyl-Marchaud fractional derivative of Besicovitch function have been discussed.
Donor-derived HLA antibody production in patients undergoing SCT from HLA antibody-positive donors.
Taniguchi, K; Yoshihara, S; Maruya, E; Ikegame, K; Kaida, K; Hayashi, K; Kato, R; Inoue, T; Fujioka, T; Tamaki, H; Okada, M; Onuma, T; Fujii, N; Kusunoki, Y; Soma, T; Saji, H; Ogawa, H
2012-10-01
Pre-existing donor-specific HLA antibodies in patients undergoing HLA-mismatched SCT have increasingly been recognized as a risk factor for primary graft failure. However, the clinical implications of the presence of HLA antibodies in donors remain unknown. We prospectively examined 123 related donors for the presence of HLA antibodies by using a Luminex-based single antigen assay. Of these, 1/57 (1.8%) male, 6/27 (22%) parous female and 0/39 (0%) nonparous female donors were HLA antibody-positive. Then, we determined the presence of HLA antibodies in seven patients who received SCT from antibody-positive donors. Of these, four became HLA antibody-positive after SCT. The specificities of the antibodies that emerged in the patients closely resembled those of the antibodies found in the donors, indicating their production by donor-derived plasma cells. Moreover, the kinetics of the HLA antibody levels were similar in all four patients: levels started increasing within 1 week after SCT and peaked at days 10-21, followed by a gradual decrease. These results suggest that donor-derived HLA antibody production frequently occurs in patients undergoing SCT from antibody-positive donors. Further studies are warranted for clarifying the clinical significance of donor-derived HLA antibodies, including the role of these antibodies in post transplant platelet transfusion refractoriness.
Tan, Xiao Wei; Zheng, Qishi; Shi, Luming; Gao, Fei; Allen, John Carson; Coenen, Adriaan; Baumann, Stefan; Schoepf, U Joseph; Kassab, Ghassan S; Lim, Soo Teik; Wong, Aaron Sung Lung; Tan, Jack Wei Chieh; Yeo, Khung Keong; Chin, Chee Tang; Ho, Kay Woon; Tan, Swee Yaw; Chua, Terrance Siang Jin; Chan, Edwin Shih Yen; Tan, Ru San; Zhong, Liang
2017-06-01
To evaluate the combined diagnostic accuracy of coronary computed tomography angiography (CCTA) and computed tomography derived fractional flow reserve (FFRct) in patients with suspected or known coronary artery disease (CAD). PubMed, The Cochrane library, Embase and OpenGray were searched to identify studies comparing diagnostic accuracy of CCTA and FFRct. Diagnostic test measurements of FFRct were either extracted directly from the published papers or calculated from provided information. Bivariate models were conducted to synthesize the diagnostic performance of combined CCTA and FFRct at both "per-vessel" and "per-patient" levels. 7 articles were included for analysis. The combined diagnostic outcomes from "both positive" strategy, i.e. a subject was considered as "positive" only when both CCTA and FFRct were "positive", demonstrated relative high specificity (per-vessel: 0.91; per-patient: 0.81), high positive likelihood ratio (LR+, per-vessel: 7.93; per-patient: 4.26), high negative likelihood ratio (LR-, per-vessel: 0.30; per patient: 0.24) and high accuracy (per-vessel: 0.91; per-patient: 0.81) while "either positive" strategy, i.e. a subject was considered as "positive" when either CCTA or FFRct was "positive", demonstrated relative high sensitivity (per-vessel: 0.97; per-patient: 0.98), low LR+ (per-vessel: 1.50; per-patient: 1.17), low LR- (per-vessel: 0.07; per-patient: 0.09) and low accuracy (per-vessel: 0.57; per-patient: 0.54). "Both positive" strategy showed better diagnostic performance to rule in patients with non-significant stenosis compared to "either positive" strategy, as it efficiently reduces the proportion of testing false positive subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Eric Pei Ping Pang
2018-01-01
Full Text Available Background and purpose: During radiotherapy, prostate motion changes over time. Quantifying and accounting for this motion is essential. This study aimed to assess intra-fraction prostate motion and derive duration-dependent planning margins for two treatment techniques. Material and methods: A four-dimension (4D transperineal ultrasound Clarity® system was used to track prostate motion. We analysed 1913 fractions from 60 patients undergoing volumetric-modulated arc therapy (VMAT to the prostate. The mean VMAT treatment duration was 3.4 min. Extended monitoring was conducted weekly to simulate motion during intensity-modulated radiation therapy (IMRT treatment (an additional seven minutes. A motion-time trend analysis was conducted and the mean intra-fraction motion between VMAT and IMRT treatments compared. Duration-dependent margins were calculated and anisotropic margins for VMAT and IMRT treatments were derived. Results: There were statistically significant differences in the mean intra-fraction motion between VMAT and the simulated IMRT duration in the inferior (0.1 mm versus 0.3 mm and posterior (−0.2 versus −0.4 mm directions respectively (p ≪ 0.01. An intra-fraction motion trend inferiorly and posteriorly was observed. The recommended minimum anisotropic margins are 1.7 mm/2.7 mm (superior/inferior; 0.8 mm (left/right, 1.7 mm/2.9 mm (anterior/posterior for VMAT treatments and 2.9 mm/4.3 mm (superior/inferior, 1.5 mm (left/right, 2.8 mm/4.8 mm (anterior/posterior for IMRT treatments. Smaller anisotropic margins were required for VMAT compared to IMRT (differences ranging from 1.2 to 1.6 mm superiorly/inferiorly, 0.7 mm laterally and 1.1–1.9 mm anteriorly/posteriorly. Conclusions: VMAT treatment is preferred over IMRT as prostate motion increases with time. Larger margins should be employed in the inferior and posterior directions for both treatment durations. Duration-dependent margins should
Gauge invariant fractional electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)
2011-09-26
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
International Nuclear Information System (INIS)
Liu Yaozong; Yu Dianlong; Zhao Honggang; Wen Jihong; Wen Xisen
2008-01-01
Wave propagation in two-dimensional phononic crystals (PCs) with viscoelasticity is investigated using a finite-difference-time-domain (FDTD) method. The viscoelasticity is evaluated using the Kelvin-Voigt model with fractional derivatives (FDs) so that both the dispersion and dissipation are considered. Numerical approximation of FDs is integrated into the FDTD scheme to simulate wave propagation in such PCs. All the constituent materials are treated as isotropic and homogeneous. The gaps are substantially displaced and widened and the attenuation is noticeably enhanced due to the dispersion and dissipation of host material and the complicated multiple scattering between scatterers. These results indicate that the viscoelasticity of the damping host has significant influence on wave propagation in PCs and should be considered
Boundary value problemfor multidimensional fractional advection-dispersion equation
Directory of Open Access Journals (Sweden)
Khasambiev Mokhammad Vakhaevich
2015-05-01
Full Text Available In recent time there is a very great interest in the study of differential equations of fractional order, in which the unknown function is under the symbol of fractional derivative. It is due to the development of the theory of fractional integro-differential theory and application of it in different fields.The fractional integrals and derivatives of fractional integro-differential equations are widely used in modern investigations of theoretical physics, mechanics, and applied mathematics. The fractional calculus is a very powerful tool for describing physical systems, which have a memory and are non-local. Many processes in complex systems have nonlocality and long-time memory. Fractional integral operators and fractional differential operators allow describing some of these properties. The use of the fractional calculus will be helpful for obtaining the dynamical models, in which integro-differential operators describe power long-time memory by time and coordinates, and three-dimensional nonlocality for complex medium and processes.Differential equations of fractional order appear when we use fractal conception in physics of the condensed medium. The transfer, described by the operator with fractional derivatives at a long distance from the sources, leads to other behavior of relatively small concentrations as compared with classic diffusion. This fact redefines the existing ideas about safety, based on the ideas on exponential velocity of damping. Fractional calculus in the fractal theory and the systems with memory have the same importance as the classic analysis in mechanics of continuous medium.In recent years, the application of fractional derivatives for describing and studying the physical processes of stochastic transfer is very popular too. Many problems of filtration of liquids in fractal (high porous medium lead to the need to study boundary value problems for partial differential equations in fractional order.In this paper the
International Nuclear Information System (INIS)
El-Nabulsi, Ahmad Rami
2009-01-01
Multidimensional fractional actionlike variational problem with time-dependent dynamical fractional exponents is constructed. Fractional Euler-Lagrange equations are derived and discussed in some details. The results obtained are used to explore some novel aspects of fractional quantum field theory where many interesting consequences are revealed, in particular the complexification of quantum field theory, in particular Dirac operators and the novel notion of 'mass without mass'.
Hosseinabadi, Abdolali Neamaty; Nategh, Mehdi
2014-01-01
This work, dealt with the classical mean value theorem and took advantage of it in the fractional calculus. The concept of a fractional critical point is introduced. Some sufficient conditions for the existence of a critical point is studied and an illustrative example rele- vant to the concept of the time dilation effect is given. The present paper also includes, some connections between convexity (and monotonicity) with fractional derivative in the Riemann-Liouville sense.
Ferroelectric Fractional-Order Capacitors
Agambayev, Agamyrat; Patole, Shashikant P.; Farhat, Mohamed; Elwakil, Ahmed; Bagci, Hakan; Salama, Khaled N.
2017-01-01
Poly(vinylidene fluoride)-based polymers and their blends are used to fabricate electrostatic fractional-order capacitors. This simple but effective method allows us to precisely tune the constant phase angle of the resulting fractional-order capacitor by changing the blend composition. Additionally, we have derived an empirical relation between the ratio of the blend constituents and the constant phase angle to facilitate the design of a fractional order capacitor with a desired constant phase angle. The structural composition of the fabricated blends is investigated using Fourier transform infrared spectroscopy and X-ray diffraction techniques.
Ferroelectric Fractional-Order Capacitors
Agambayev, Agamyrat
2017-07-25
Poly(vinylidene fluoride)-based polymers and their blends are used to fabricate electrostatic fractional-order capacitors. This simple but effective method allows us to precisely tune the constant phase angle of the resulting fractional-order capacitor by changing the blend composition. Additionally, we have derived an empirical relation between the ratio of the blend constituents and the constant phase angle to facilitate the design of a fractional order capacitor with a desired constant phase angle. The structural composition of the fabricated blends is investigated using Fourier transform infrared spectroscopy and X-ray diffraction techniques.
Directory of Open Access Journals (Sweden)
Xiangbing Zhou
2012-01-01
Full Text Available We generalize a fixed point theorem in partially ordered complete metric spaces in the study of A. Amini-Harandi and H. Emami (2010. We also give an application on the existence and uniqueness of the positive solution of a multipoint boundary value problem with fractional derivatives.
Multivariate fractional Poisson processes and compound sums
Beghin, Luisa; Macci, Claudio
2015-01-01
In this paper we present multivariate space-time fractional Poisson processes by considering common random time-changes of a (finite-dimensional) vector of independent classical (non-fractional) Poisson processes. In some cases we also consider compound processes. We obtain some equations in terms of some suitable fractional derivatives and fractional difference operators, which provides the extension of known equations for the univariate processes.
Khorshid, Faten
2015-01-10
Aim of the work: Animal urine, including that of camels, has long been used for the therapeutic management of human ailments. In this study, we sought to characterize the cytotoxic properties of newly derived purified fractions from previously described camel urine extract (PMF) on various cancer cell lines. Methodology: Two new size dissimilar fractions of PMF (large and small) were obtained by fractionalizing PMF using 3kD and 50kD membrane filters. A SRB cytotoxicity assay of the PMF fractions was performed on cancer cell lines (A549, HCT116, HepG2, MCF-7, U251 and Hela) as well as normal cell lines (human fibroblast cell line and Vero). Results: This study showed that the newly derived and more purified fraction of PMF (new PMF) possesses effective and selective anti-cancer properties against several types of cancer cell lines. Conclusion: This study, as well as previous ones, suggests that camel urine extracts (old and new PMF) may provide newer therapeutic alternatives to clinically manage cancer patients. However, further studies are needed to verify these positive preliminary results.
Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments
Al-Alwan, Asem Ibrahim Alwan; Guo, Xingang; Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem
2017-01-01
This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.
Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments
Al-Alwan, Asem Ibrahim Alwan
2017-10-24
This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.
Fractional vector calculus and fluid mechanics
Lazopoulos, Konstantinos A.; Lazopoulos, Anastasios K.
2017-04-01
Basic fluid mechanics equations are studied and revised under the prism of fractional continuum mechanics (FCM), a very promising research field that satisfies both experimental and theoretical demands. The geometry of the fractional differential has been clarified corrected and the geometry of the fractional tangent spaces of a manifold has been studied in Lazopoulos and Lazopoulos (Lazopoulos KA, Lazopoulos AK. Progr. Fract. Differ. Appl. 2016, 2, 85-104), providing the bases of the missing fractional differential geometry. Therefore, a lot can be contributed to fractional hydrodynamics: the basic fractional fluid equations (Navier Stokes, Euler and Bernoulli) are derived and fractional Darcy's flow in porous media is studied.
How Weird Are Weird Fractions?
Stuffelbeam, Ryan
2013-01-01
A positive rational is a weird fraction if its value is unchanged by an illegitimate, digit-based reduction. In this article, we prove that each weird fraction is uniquely weird and initiate a discussion of the prevalence of weird fractions.
Chaos Suppression in Fractional order Permanent Magnet Synchronous Generator in Wind Turbine Systems
Rajagopal, Karthikeyan; Karthikeyan, Anitha; Duraisamy, Prakash
2017-06-01
In this paper we investigate the control of three-dimensional non-autonomous fractional-order uncertain model of a permanent magnet synchronous generator (PMSG) via a adaptive control technique. We derive a dimensionless fractional order model of the PMSM from the integer order presented in the literatures. Various dynamic properties of the fractional order model like eigen values, Lyapunov exponents, bifurcation and bicoherence are investigated. The system chaotic behavior for various orders of fractional calculus are presented. An adaptive controller is derived to suppress the chaotic oscillations of the fractional order model. As the direct Lyapunov stability analysis of the robust controller is difficult for a fractional order first derivative, we have derived a new lemma to analyze the stability of the system. Numerical simulations of the proposed chaos suppression methodology are given to prove the analytical results derived through which we show that for the derived adaptive controller and the parameter update law, the origin of the system for any bounded initial conditions is asymptotically stable.
Fractional Heat Conduction Models and Thermal Diffusivity Determination
Directory of Open Access Journals (Sweden)
Monika Žecová
2015-01-01
Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.
Tesche, Christian; Vliegenthart, Rozemarijn; Duguay, Taylor M; De Cecco, Carlo N; Albrecht, Moritz H; De Santis, Domenico; Langenbach, Marcel C; Varga-Szemes, Akos; Jacobs, Brian E; Jochheim, David; Baquet, Moritz; Bayer, Richard R; Litwin, Sheldon E; Hoffmann, Ellen; Steinberg, Daniel H; Schoepf, U Joseph
2017-12-15
This study investigated the performance of coronary computed tomography angiography (cCTA) with cCTA-derived fractional flow reserve (CT-FFR) compared with invasive coronary angiography (ICA) with fractional flow reserve (FFR) for therapeutic decision making in patients with suspected coronary artery disease (CAD). Seventy-four patients (62 ± 11 years, 62% men) with at least 1 coronary stenosis of ≥50% on clinically indicated dual-source cCTA, who had subsequently undergone ICA with FFR measurement, were retrospectively evaluated. CT-FFR values were computed using an on-site machine-learning algorithm to assess the functional significance of CAD. The therapeutic strategy (optimal medical therapy alone vs revascularization) and the appropriate revascularization procedure (percutaneous coronary intervention vs coronary artery bypass grafting) were selected using cCTA-CT-FFR. Thirty-six patients (49%) had a functionally significant CAD based on ICA-FFR. cCTA-CT-FFR correctly identified a functionally significant CAD and the need of revascularization in 35 of 36 patients (97%). When revascularization was deemed indicated, the same revascularization procedure (32 percutaneous coronary interventions and 3 coronary artery bypass grafting) was chosen in 35 of 35 patients (100%). Overall, identical management strategies were selected in 73 of the 74 patients (99%). cCTA-CT-FFR shows excellent performance to identify patients with and without the need for revascularization and to select the appropriate revascularization strategy. cCTA-CT-FFR as a noninvasive "one-stop shop" has the potential to change diagnostic workflows and to directly inform therapeutic decision making in patients with suspected CAD. Copyright © 2017 Elsevier Inc. All rights reserved.
Robust fractional order differentiators using generalized modulating functions method
Liu, Dayan
2015-02-01
This paper aims at designing a fractional order differentiator for a class of signals satisfying a linear differential equation with unknown parameters. A generalized modulating functions method is proposed first to estimate the unknown parameters, then to derive accurate integral formulae for the left-sided Riemann-Liouville fractional derivatives of the studied signal. Unlike the improper integral in the definition of the left-sided Riemann-Liouville fractional derivative, the integrals in the proposed formulae can be proper and be considered as a low-pass filter by choosing appropriate modulating functions. Hence, digital fractional order differentiators applicable for on-line applications are deduced using a numerical integration method in discrete noisy case. Moreover, some error analysis are given for noise error contributions due to a class of stochastic processes. Finally, numerical examples are given to show the accuracy and robustness of the proposed fractional order differentiators.
Robust fractional order differentiators using generalized modulating functions method
Liu, Dayan; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper aims at designing a fractional order differentiator for a class of signals satisfying a linear differential equation with unknown parameters. A generalized modulating functions method is proposed first to estimate the unknown parameters, then to derive accurate integral formulae for the left-sided Riemann-Liouville fractional derivatives of the studied signal. Unlike the improper integral in the definition of the left-sided Riemann-Liouville fractional derivative, the integrals in the proposed formulae can be proper and be considered as a low-pass filter by choosing appropriate modulating functions. Hence, digital fractional order differentiators applicable for on-line applications are deduced using a numerical integration method in discrete noisy case. Moreover, some error analysis are given for noise error contributions due to a class of stochastic processes. Finally, numerical examples are given to show the accuracy and robustness of the proposed fractional order differentiators.
On the Singular Perturbations for Fractional Differential Equation
Directory of Open Access Journals (Sweden)
Abdon Atangana
2014-01-01
Full Text Available The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.
Fermion fractionization and index theorem
International Nuclear Information System (INIS)
Hirayama, Minoru; Torii, Tatsuo
1982-01-01
The relation between the fermion fractionization and the Callias-Bott-Seeley index theorem for the Dirac operator in the open space of odd dimension is clarified. Only the case of one spatial dimension is discussed in detail. Sum rules for the expectation values of various quantities in fermion-fractionized configurations are derived. (author)
Particle Simulation of Fractional Diffusion Equations
Allouch, Samer
2017-07-12
This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green\\'s function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.
Particle Simulation of Fractional Diffusion Equations
Allouch, Samer; Lucchesi, Marco; Maî tre, O. P. Le; Mustapha, K. A.; Knio, Omar
2017-01-01
This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green's function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.
Dabiri, Arman; Butcher, Eric A.; Nazari, Morad
2017-02-01
Compliant impacts can be modeled using linear viscoelastic constitutive models. While such impact models for realistic viscoelastic materials using integer order derivatives of force and displacement usually require a large number of parameters, compliant impact models obtained using fractional calculus, however, can be advantageous since such models use fewer parameters and successfully capture the hereditary property. In this paper, we introduce the fractional Chebyshev collocation (FCC) method as an approximation tool for numerical simulation of several linear fractional viscoelastic compliant impact models in which the overall coefficient of restitution for the impact is studied as a function of the fractional model parameters for the first time. Other relevant impact characteristics such as hysteresis curves, impact force gradient, penetration and separation depths are also studied.
Antioxidant Potential of the Extracts, Fractions and Oils Derived from Oilseeds
Directory of Open Access Journals (Sweden)
Shagufta Ishtiaque
2013-10-01
Full Text Available The polyphenolic extracts and oils were obtained from ajwain, mustard, fenugreek and poppy seeds. The extracts were partitioned into acidic and neutral polyphenolic fractions and following estimation of total phenolics in the crude extract, acidic and neutral fractions and oil, all were analyzed for their DPPH (2,2-diphenyl-1-picrylhydrazyl scavenging potential, ferric reducing ability and chelating power. The highest amount of polyphenols was found in ajwain (8330 ± 107, then in mustard seeds (2844 ± 56.00 and in fenugreek (1130 ± 29.00, and least in poppy seeds (937 ± 18.52. The higher amounts of polyphenols were estimated in neutral fraction compared to acidic (p fenugreek and least by poppy seed extracts (p < 0.05. The reducing power and the chelating effect of the oilseeds followed the same order as DPPH, but higher % chelation was shown by neutral than acidic fraction (p < 0.05. Though low in polyphenols, the oil fractions were as strong antioxidants as the acidic one. Though oilseeds are used in very small quantity in food, they are potential sources of natural antioxidants and may replace synthetic ones.
Fractional Fick's law: the direct way
International Nuclear Information System (INIS)
Neel, M C; Abdennadher, A; Joelson, M
2007-01-01
Levy flights, which are Markovian continuous time random walks possibly accounting for extreme events, serve frequently as small-scale models for the spreading of matter in heterogeneous media. Among them, Brownian motion is a particular case where Fick's law holds: for a cloud of walkers, the flux is proportional to the gradient of the probability density of finding a particle at some place. Levy flights resemble Brownian motion, except that jump lengths are distributed according to an α-stable Levy law, possibly showing heavy tails and skewness. For α between 1 and 2, a fractional form of Fick's law is known to hold in infinite media: that the flux is proportional to a combination of fractional derivatives or the order of α - 1 of the density of walkers was obtained as a consequence of a fractional dispersion equation. We present a direct and natural proof of this result, based upon a novel definition of usual fractional derivatives, involving a convolution and a limiting process. Taking account of the thus obtained fractional Fick's law yields fractional dispersion equation for smooth densities. The method adapts to domains, limited by boundaries possibly implying non-trivial modifications to this equation
A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics
Lei, Dong; Liang, Yingjie; Xiao, Rui
2018-01-01
We develop a fractional model to describe the thermomechanical behavior of amorphous thermoplastics. The fractional model is composed of two parallel fractional Maxwell elements. The first fractional Maxwell model is used to describe the glass transition, while the second component is aimed at describing the viscous flow. We further derive the analytical solutions for the stress relaxation modulus and complex modulus through Laplace transform. We then demonstrate the model is able to describe the master curves of the stress relaxation modulus, storage modulus and loss modulus, which all show two distinct transition regions. The obtained parameters show that the modulus of the two fractional Maxwell elements differs in 2-3 orders of magnitude, while the relaxation time differs in 7-9 orders of magnitude. Finally, we apply the model to describe the stress response of constant strain rate tests. The model, together with the parameters obtained from fitting the master curve of stress relaxation modulus, can accurately predict the temperature and strain rate dependent stress response.
International Nuclear Information System (INIS)
Ojima, Koichi; Uezumi, Akiyoshi; Miyoshi, Hiroyuki; Masuda, Satoru; Morita, Yohei; Fukase, Akiko; Hattori, Akihito; Nakauchi, Hiromitsu; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi
2004-01-01
Recent studies have shown that bone marrow (BM) cells, including the BM side population (BM-SP) cells that enrich hematopoietic stem cells (HSCs), are incorporated into skeletal muscle during regeneration, but it is not clear how and what kinds of BM cells contribute to muscle fiber regeneration. We found that a large number of SP cells migrated from BM to muscles following injury in BM-transplanted mice. These BM-derived SP cells in regenerating muscles expressed different surface markers from those of HSCs and could not reconstitute the mouse blood system. BM-derived SP/Mac-1 low cells increased in number in regenerating muscles following injury. Importantly, our co-culture studies with activated satellite cells revealed that this fraction carried significant potential for myogenic differentiation. By contrast, mature inflammatory (Mac-1 high ) cells showed negligible myogenic activities. Further, these BM-derived SP/Mac-1 low cells gave rise to mononucleate myocytes, indicating that their myogenesis was not caused by stochastic fusion with host myogenic cells, although they required cell-to-cell contact with myogenic cells for muscle differentiation. Taken together, our data suggest that neither HSCs nor mature inflammatory cells, but Mac-1 low early myeloid cells in the BM-derived SP fraction, play an important role in regenerating skeletal muscles
Integrable coupling system of fractional soliton equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-10-05
In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.
Fractional-order integral and derivative controller for temperature ...
Indian Academy of Sciences (India)
ideal transfer function as a reference model, for a temperature profile tracking. ... tant, and in process industry (Tsai & Lu 1998), the most common control task is to ..... be solved for fractional order α using numerical classical approach in MATLAB. ..... discrepancy between simulation and experimental results may be due to ...
A fractional calculus approach to investigate the alpha decay processes
International Nuclear Information System (INIS)
Calik, A.E.; Ertik, H.; Oder, B.; Sirin, H.
2013-01-01
In this study, the nuclear decay equation is taken under consideration by making use of fractional calculus. In this context, the first-order time derivative is changed to a Caputo fractional derivative hence, the resulting equation is the time fractional nuclear decay equation. The solution of this equation is obtained in terms of Mittag–Leffler function which plays an important role to study the non-Markovian feature of physical processes. As an application of this time fractional formalism, alpha decay half-life values have been calculated for Pb, Po, Rn, Ra, Th and U isotopes. Consequently, the theoretical half-life values have been obtained in consistent with the experimental data. The dependence of the order of fractional derivative μ being a measure of fractality of time, on the nuclear structure has been established. In the investigations carried out, we have arrived to the conclusion that for the μ values which are closed to one, where time becomes homogenous and continuous, the shell closure effects are predominant and that the fractional derivative order μ (i.e., fractality of time) and nuclear structure are closely related to each other. (author)
Tests of equal effect per fraction in microcolony assays of survival after fractionated irradiations
International Nuclear Information System (INIS)
Taylor, J.M.G.
1985-01-01
H.D Thames, Jr. and H.R. Withers propose a test of an equal effect per fraction in microcolony assays after fractionated radiation, in which the total effect is measured by counting microcolonies derived from surviving cells in a tissue. The factors considered to influence the cytocidal effect per fraction are incomplete repair, repopulation, and synchrony. The statistics used in the method are criticized and conditions are given under which the test should not be used. An alternative method of testing for an equal effect per fraction is proposed. The pros and cons of each test are discussed and compared using some mouse jejunal crypt cell survival data
Advances in robust fractional control
Padula, Fabrizio
2015-01-01
This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially-oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, becau...
Fractional Differential Equation
Directory of Open Access Journals (Sweden)
Moustafa El-Shahed
2007-01-01
where 2<α<3 is a real number and D0+α is the standard Riemann-Liouville fractional derivative. Our analysis relies on Krasnoselskiis fixed point theorem of cone preserving operators. An example is also given to illustrate the main results.
Distributed order reaction-diffusion systems associated with Caputo derivatives
Saxena, R. K.; Mathai, A. M.; Haubold, H. J.
2014-08-01
This paper deals with the investigation of the solution of an unified fractional reaction-diffusion equation of distributed order associated with the Caputo derivatives as the time-derivative and Riesz-Feller fractional derivative as the space-derivative. The solution is derived by the application of the joint Laplace and Fourier transforms in compact and closed form in terms of the H-function. The results derived are of general nature and include the results investigated earlier by other authors, notably by Mainardi et al. ["The fundamental solution of the space-time fractional diffusion equation," Fractional Calculus Appl. Anal. 4, 153-202 (2001); Mainardi et al. "Fox H-functions in fractional diffusion," J. Comput. Appl. Math. 178, 321-331 (2005)] for the fundamental solution of the space-time fractional equation, including Haubold et al. ["Solutions of reaction-diffusion equations in terms of the H-function," Bull. Astron. Soc. India 35, 681-689 (2007)] and Saxena et al. ["Fractional reaction-diffusion equations," Astrophys. Space Sci. 305, 289-296 (2006a)] for fractional reaction-diffusion equations. The advantage of using the Riesz-Feller derivative lies in the fact that the solution of the fractional reaction-diffusion equation, containing this derivative, includes the fundamental solution for space-time fractional diffusion, which itself is a generalization of fractional diffusion, space-time fraction diffusion, and time-fractional diffusion, see Schneider and Wyss ["Fractional diffusion and wave equations," J. Math. Phys. 30, 134-144 (1989)]. These specialized types of diffusion can be interpreted as spatial probability density functions evolving in time and are expressible in terms of the H-function in compact forms. The convergence conditions for the double series occurring in the solutions are investigated. It is interesting to observe that the double series comes out to be a special case of the Srivastava-Daoust hypergeometric function of two variables
Fractional Josephson vortices: oscillating macroscopic spins
Energy Technology Data Exchange (ETDEWEB)
Gaber, T.; Buckenmaier, K.; Koelle, D.; Kleiner, R.; Goldobin, E. [Universitaet Tuebingen, Physikalisches Institut - Experimentalphysik II, Tuebingen (Germany)
2007-11-15
Fractional Josephson vortices carry a magnetic flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. We consider a fractional vortex which spontaneously appears at a phase discontinuity. Its properties are very different from the properties of the usual integer fluxon. In particular, a fractional vortex is pinned and may have one of two possible polarities - just like a usual spin 1/2 particle. The fractional vortex may also oscillate around its equilibrium position with an eigenfrequency which is expected to be within the Josephson plasma gap. Using microwave spectroscopy, we investigate the dependence of the eigenfrequency of a fractional Josephson vortex on its magnetic flux {phi} and on the bias current. The experimental results are in good agreement with theoretical predictions. Positive result of this experiment is a cornerstone for further investigation of more complex fractional vortex systems such as fractional vortex molecules and tunable bandgap materials. (orig.)
On some fractional order hardy inequalities
Directory of Open Access Journals (Sweden)
Kufner Alois
1997-01-01
Full Text Available Weighted inequalities for fractional derivatives ( fractional order Hardy-type inequalities have recently been proved in [4] and [1]. In this paper, new inequalities of this type are proved and applied. In particular, the general mixed norm case and a general twodimensional weight are considered. Moreover, an Orlicz norm version and a multidimensional fractional order Hardy inequality are proved. The connections to related results are pointed out.
Generalized Multiparameters Fractional Variational Calculus
Directory of Open Access Journals (Sweden)
Om Prakash Agrawal
2012-01-01
Full Text Available This paper builds upon our recent paper on generalized fractional variational calculus (FVC. Here, we briefly review some of the fractional derivatives (FDs that we considered in the past to develop FVC. We first introduce new one parameter generalized fractional derivatives (GFDs which depend on two functions, and show that many of the one-parameter FDs considered in the past are special cases of the proposed GFDs. We develop several parts of FVC in terms of one parameter GFDs. We point out how many other parts could be developed using the properties of the one-parameter GFDs. Subsequently, we introduce two new two- and three-parameter GFDs. We introduce some of their properties, and discuss how they can be used to develop FVC. In addition, we indicate how these formulations could be used in various fields, and how the generalizations presented here can be further extended.
Mobin, Lubna; Saeed, Syed Asad; Ali, Rashida; Saeed, Syed Ghufran; Ahmed, Rahil
2017-09-26
Crude seed coat extracts from Abrus precatorius and Caesalpinia crista were purified into four different fractions namely phenolic acids, flavonols, flavanols and anthocyanin which were then examined for their polyphenol contents and antimicrobial potentials. The fractions derived from seed coat of A. precatorius were found more potent with high phenolic and flavonoid contents as compared to C. crista fractions. The significant antibacterial activity was observed against all strain tested by the fractions of both samples apart from anthocyanin fraction. It was interesting to note that the phenolic acid fractions of both samples was found more active against gram-negative bacteria, while gram-positive bacteria were found to be more sensitive towards flavonol fractions. The phenolic acid and flavonol fractions being potent antibacterial were selected to demonstrate the antifungal capacity of two samples. Among them, phenolic acid fraction of both samples was found active towards all the fungal strain.
A New Grünwald-Letnikov Derivative Derived from a Second-Order Scheme
Directory of Open Access Journals (Sweden)
B. A. Jacobs
2015-01-01
Full Text Available A novel derivation of a second-order accurate Grünwald-Letnikov-type approximation to the fractional derivative of a function is presented. This scheme is shown to be second-order accurate under certain modifications to account for poor accuracy in approximating the asymptotic behavior near the lower limit of differentiation. Some example functions are chosen and numerical results are presented to illustrate the efficacy of this new method over some other popular choices for discretizing fractional derivatives.
Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias
2015-12-01
Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Fukang Yin
2013-01-01
Full Text Available A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs. The basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions (2D-FLFs. The operational matrices of integration and derivative for 2D-FLFs are first derived. Then, by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.
Fractional order differentiation by integration with Jacobi polynomials
Liu, Dayan
2012-12-01
The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.
Fractional order differentiation by integration with Jacobi polynomials
Liu, Dayan; Gibaru, O.; Perruquetti, Wilfrid; Laleg-Kirati, Taous-Meriem
2012-01-01
The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.
On solutions of nonlinear time-space fractional Swift–Hohenberg equation: A comparative study
Directory of Open Access Journals (Sweden)
Najeeb Alam Khan
2014-03-01
Full Text Available In this paper, a comparison for the solutions of nonlinear Swift–Hohenberg equation with time-space fractional derivatives has been analyzed. The two most promising techniques, fractional variational iteration method (FVIM and the homotopy analysis method have been chosen for the comparison. The two different definitions of fractional calculus are considered to solve time-fractional derivative separately for the considered approaches. Also, the space fractional derivative is described in the Reisz sense. Analytical and numerical solutions for various combinations of the parameters are obtained. Numerical comparisons have been made for different values of parameters and depicted.
Exact solutions of fractional Schroedinger-like equation with a nonlocal term
International Nuclear Information System (INIS)
Jiang Xiaoyun; Xu Mingyu; Qi Haitao
2011-01-01
We study the time-space fractional Schroedinger equation with a nonlocal potential. By the method of Fourier transform and Laplace transform, the Green function, and hence the wave function, is expressed in terms of H-functions. Graphical analysis demonstrates that the influence of both the space-fractal parameter α and the nonlocal parameter ν on the fractional quantum system is strong. Indeed, the nonlocal potential may act similar to a fractional spatial derivative as well as fractional time derivative.
Stable multi-domain spectral penalty methods for fractional partial differential equations
Xu, Qinwu; Hesthaven, Jan S.
2014-01-01
We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.
On the Conformable Fractional Quantum Mechanics
Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.
2018-05-01
In this paper, a conformable fractional quantum mechanic has been introduced using three postulates. Then in such a formalism, Schr¨odinger equation, probability density, probability flux and continuity equation have been derived. As an application of considered formalism, a fractional-radial harmonic oscillator has been considered. After obtaining its wave function and energy spectrum, effects of the conformable fractional parameter on some quantities have been investigated and plotted for different excited states.
Novel route to 5-position vinyl derivatives of thiolactomycin: Olefination vs. deformylation
Kim, Pilho; Barry, Clifton E.; Dowd*, Cynthia S.
2006-01-01
Vinyl and diene derivatives of thiolactomycin have been prepared via Horner-Wadsworth-Emmons olefination from protected 5-formyl-3,5-dimethylthiotetronic acid. Several 4-position protecting groups and a variety of phosphonates were evaluated, with MOM protection and β-ketophosphonates yielding the highest ratio of desired product to deformylated product. PMID:16699591
An inverse Sturm–Liouville problem with a fractional derivative
Jin, Bangti; Rundell, William
2012-01-01
In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical
International Nuclear Information System (INIS)
Eab, C. H.; Lim, S. C.; Teo, L. P.
2007-01-01
This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed
On Generalized Fractional Differentiator Signals
Directory of Open Access Journals (Sweden)
Hamid A. Jalab
2013-01-01
Full Text Available By employing the generalized fractional differential operator, we introduce a system of fractional order derivative for a uniformly sampled polynomial signal. The calculation of the bring in signal depends on the additive combination of the weighted bring-in of N cascaded digital differentiators. The weights are imposed in a closed formula containing the Stirling numbers of the first kind. The approach taken in this work is to consider that signal function in terms of Newton series. The convergence of the system to a fractional time differentiator is discussed.
International Nuclear Information System (INIS)
Helm, H.
1984-01-01
An inverted, first-order perturbation approach is used to derive potential energy curves for diatomic molecules from experimental line positions of molecular bands. The concept adopted here is based on the inverted perturbation analysis (IPA) proposed by Kozman and Hinze, but uses radial eigenfunctions of the trial potential energy curves as basis sets for the perturbation correction. Using molecular linepositions rather than molecular energy levels we circumvent the necessity of defining molecular constants for the molecule prior to the derivation of the potential energy curves. (Author)
Energy Technology Data Exchange (ETDEWEB)
Lou, Chuangneng [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Liu, Xiaodong, E-mail: ycx@ustc.edu.cn [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Nie, Yaguang [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Emslie, Steven D. [Department of Biology and Marine Biology, University of North Carolina Wilmington, 601S. College Road, Wilmington, NC 28403 (United States)
2015-12-15
To evaluate mobility of toxic elements and their potential ecological risk caused by seabird biovectors, the fractionation distributions of arsenic (As), mercury (Hg) and cadmium (Cd) were investigated in three ornithogenic sediment profiles from the Ross Sea region, East Antarctica. The results show residual As holds a dominant position, and Hg mainly derives from residual, organic matter-bound and humic acid-bound fractions, indicating weak mobility of As and Hg. However, exchangeable Cd occupies a considerable proportion in studied samples, suggesting Cd has strong mobility. The preliminary evaluation of Sediment Quality Guidelines (SGQs) shows adverse biological effects may occur occasionally for As and Cd, and rarely for Hg. Using Risk Assessment Code (RAC), the ecological risk is assessed at moderate, low and very high for As, Hg and Cd pollution, respectively. Organic matter derived from guano is the main factor controlling the mobility of Hg and Cd through adsorption and complexation. - Highlights: • Residual As holds a dominant position in ornithogenic sediments. • Hg mainly derives from residual, organic matter-bound and humic acid-bound fractions. • Exchangeable Cd occupies a considerable proportion in ornithogenic sediments. • TOC is the main factor controlling the mobility of Hg and Cd in studied sediments.
Fractional Fokker-Planck equation and oscillatory behavior of cumulant moments
International Nuclear Information System (INIS)
Suzuki, N.; Biyajima, M.
2002-01-01
The Fokker-Planck equation is considered, which is connected to the birth and death process with immigration by the Poisson transform. The fractional derivative in time variable is introduced into the Fokker-Planck equation in order to investigate an origin of oscillatory behavior of cumulant moments. From its solution (the probability density function), the generating function (GF) for the corresponding probability distribution is derived. We consider the case when the GF reduces to that of the negative binomial distribution (NBD), if the fractional derivative is replaced to the ordinary one. The H j moment derived from the GF of the NBD decreases monotonically as the rank j increases. However, the H j moment derived in our approach oscillates, which is contrasted with the case of the NBD. Calculated H j moments are compared with those of charged multiplicities observed in pp-bar, e + e - , and e + p collisions. A phenomenological meaning of introducing the fractional derivative in time variable is discussed
On the solution of fractional evolution equations
International Nuclear Information System (INIS)
Kilbas, Anatoly A; Pierantozzi, Teresa; Trujillo, Juan J; Vazquez, Luis
2004-01-01
This paper is devoted to the solution of the bi-fractional differential equation ( C D α t u)(t, x) = λ( L D β x u)(t, x) (t>0, -∞ 0 and λ ≠ 0, with the initial conditions lim x→±∞ u(t,x) = 0 u(0+,x)=g(x). Here ( C D α t u)(t, x) is the partial derivative coinciding with the Caputo fractional derivative for 0 L D β x u)(t, x)) is the Liouville partial fractional derivative ( L D β t u)(t, x)) of order β > 0. The Laplace and Fourier transforms are applied to solve the above problem in closed form. The fundamental solution of these problems is established and its moments are calculated. The special case α = 1/2 and β = 1 is presented, and its application is given to obtain the Dirac-type decomposition for the ordinary diffusion equation
The fractional dynamics of quantum systems
Lu, Longzhao; Yu, Xiangyang
2018-05-01
The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.
On Fractional Order Hybrid Differential Equations
Directory of Open Access Journals (Sweden)
Mohamed A. E. Herzallah
2014-01-01
Full Text Available We develop the theory of fractional hybrid differential equations with linear and nonlinear perturbations involving the Caputo fractional derivative of order 0<α<1. Using some fixed point theorems we prove the existence of mild solutions for two types of hybrid equations. Examples are given to illustrate the obtained results.
Eigenfunction expansion for fractional Brownian motions
International Nuclear Information System (INIS)
Maccone, C.
1981-01-01
The fractional Brownian motions, a class of nonstationary stochastic processes defined as the Riemann-Liouville fractional integral/derivative of the Brownian motion, are studied. It is shown that these processes can be regarded as the output of a suitable linear system of which the input is the white noise. Their autocorrelation is then derived with a study of their standard-deviation curves. Their power spectra are found by resorting to the nonstationary spectral theory. And finally their eigenfunction expansion (Karhunen-Loeve expansion) is obtained: the eigenfunctions are proved to be suitable Bessel functions and the eigenvalues zeros of the Bessel functions. (author)
Fractional Poincaré inequalities for general measures
Mouhot, Clé ment; Russ, Emmanuel; Sire, Yannick
2011-01-01
on the fractional derivative in terms of a weight growing at infinity. The proof goes through the introduction of the generator of the Ornstein-Uhlenbeck semigroup and some careful estimates of its powers. To our knowledge this is the first proof of fractional
Directory of Open Access Journals (Sweden)
Des Field
Full Text Available Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G, with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria.
Field, Des; Begley, Maire; O’Connor, Paula M.; Daly, Karen M.; Hugenholtz, Floor; Cotter, Paul D.; Hill, Colin; Ross, R. Paul
2012-01-01
Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria. PMID:23056510
Lyapunov Functions to Caputo Fractional Neural Networks with Time-Varying Delays
Directory of Open Access Journals (Sweden)
Ravi Agarwal
2018-05-01
Full Text Available One of the main properties of solutions of nonlinear Caputo fractional neural networks is stability and often the direct Lyapunov method is used to study stability properties (usually these Lyapunov functions do not depend on the time variable. In connection with the Lyapunov fractional method we present a brief overview of the most popular fractional order derivatives of Lyapunov functions among Caputo fractional delay differential equations. These derivatives are applied to various types of neural networks with variable coefficients and time-varying delays. We show that quadratic Lyapunov functions and their Caputo fractional derivatives are not applicable in some cases when one studies stability properties. Some sufficient conditions for stability of equilibrium of nonlinear Caputo fractional neural networks with time dependent transmission delays, time varying self-regulating parameters of all units and time varying functions of the connection between two neurons in the network are obtained. The cases of time varying Lipschitz coefficients as well as nonLipschitz activation functions are studied. We illustrate our theory on particular nonlinear Caputo fractional neural networks.
Lie symmetry analysis and soliton solutions of time-fractional K(m, n ...
Indian Academy of Sciences (India)
2016-12-03
Dec 3, 2016 ... Abstract. In this note, method of Lie symmetries is applied to investigate symmetry properties of time- fractional K (m, n) equation with the Riemann–Liouville derivatives. Reduction of time-fractional K (m, n) equation is done by virtue of the Erdélyi–Kober fractional derivative which depends on a parameter α.
Fractional-Order Variational Calculus with Generalized Boundary Conditions
Directory of Open Access Journals (Sweden)
Baleanu Dumitru
2011-01-01
Full Text Available This paper presents the necessary and sufficient optimality conditions for fractional variational problems involving the right and the left fractional integrals and fractional derivatives defined in the sense of Riemman-Liouville with a Lagrangian depending on the free end-points. To illustrate our approach, two examples are discussed in detail.
Zhang, Hongmei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F.
2017-03-01
Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques—ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material’s fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r. Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η -{{E}A} relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties. The experimental work was carried out at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Methodological development, including numerical simulation and all data analysis, were carried out at the school of Life Science and Technology, Xi’an JiaoTong University, 710049, China.
New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.
Ingo, Carson; Magin, Richard L; Parrish, Todd B
2014-11-01
Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag-Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.
New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis
Directory of Open Access Journals (Sweden)
Carson Ingo
2014-11-01
Full Text Available Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag–Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.
On the solution of fractional evolution equations
Energy Technology Data Exchange (ETDEWEB)
Kilbas, Anatoly A [Department of Mathematics and Mechanics, Belarusian State University, 220050 Minsk (Belarus); Pierantozzi, Teresa [Departamento de Matematica Aplicada, Facultad de Informatica, Universidad Complutense, E-28040 Madrid (Spain); Trujillo, Juan J [Departamento de Analisis Matematico, Universidad de la Laguna, 38271 La Laguna-Tenerife (Spain); Vazquez, Luis [Departamento de Matematica Aplicada, Facultad de Informatica, Universidad Complutense, E-28040 Madrid (Spain)
2004-03-05
This paper is devoted to the solution of the bi-fractional differential equation ({sup C}D{sup {alpha}}{sub t}u)(t, x) = {lambda}({sup L}D{sup {beta}}{sub x}u)(t, x) (t>0, -{infinity}
Hadamard-type fractional differential equations, inclusions and inequalities
Ahmad, Bashir; Ntouyas, Sotiris K; Tariboon, Jessada
2017-01-01
This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.
Directory of Open Access Journals (Sweden)
Iman Ghasemi
2017-05-01
Full Text Available In this paper, iterative learning control (ILC is combined with an optimal fractional order derivative (BBO-Da-type ILC and optimal fractional and proportional-derivative (BBO-PDa-type ILC. In the update law of Arimoto's derivative iterative learning control, a first order derivative of tracking error signal is used. In the proposed method, fractional order derivative of the error signal is stated in term of 'sa' where to update iterative learning control law. Two types of fractional order iterative learning control namely PDa-type ILC and Da-type ILC are gained for different value of a. In order to improve the performance of closed-loop control system, coefficients of both and learning law i.e. proportional , derivative and are optimized using Biogeography-Based optimization algorithm (BBO. Outcome of the simulation results are compared with those of the conventional fractional order iterative learning control to verify effectiveness of BBO-Da-type ILC and BBO-PDa-type ILC
Mathematical modelling of the mass-spring-damper system - A fractional calculus approach
Directory of Open Access Journals (Sweden)
Jesus Bernal Alvarado
2012-08-01
Full Text Available In this paper the fractional differential equation for the mass-spring-damper system in terms of the fractional time derivatives of the Caputo type is considered. In order to be consistent with the physical equation, a new parameter is introduced. This parameter characterizes the existence of fractional components in the system. A relation between the fractional order time derivative and the new parameter is found. Different particular cases are analyzed
Weiss, C. J.; Beskardes, G. D.; Everett, M. E.
2016-12-01
In this presentation we review the observational evidence for anomalous electromagnetic diffusion in near-surface geophysical exploration and how such evidence is consistent with a detailed, spatially-correlated geologic medium. To date, the inference of multi-scale geologic correlation is drawn from two independent methods of data analysis. The first of which is analogous to seismic move-out, where the arrival time of an electromagnetic pulse is plotted as a function of transmitter/receiver separation. The "anomalous" diffusion is evident by the fractional-order power law behavior of these arrival times, with an exponent value between unity (pure diffusion) and 2 (lossless wave propagation). The second line of evidence comes from spectral analysis of small-scale fluctuations in electromagnetic profile data which cannot be explained in terms of instrument, user or random error. Rather, the power-law behavior of the spectral content of these signals (i.e., power versus wavenumber) and their increments reveals them to lie in a class of signals with correlations over multiple length scales, a class of signals known formally as fractional Brownian motion. Numerical results over simulated geology with correlated electrical texture - representative of, for example, fractures, sedimentary bedding or metamorphic lineation - are consistent with the (albeit limited, but growing) observational data, suggesting a possible mechanism and modeling approach for a more realistic geology. Furthermore, we show how similar simulated results can arise from a modeling approach where geologic texture is economically captured by a modified diffusion equation containing exotic, but manageable, fractional derivatives. These derivatives arise physically from the generalized convolutional form for the electromagnetic constitutive laws and thus have merit beyond mere mathematical convenience. In short, we are zeroing in on the anomalous, fractional diffusion limit from two converging
Mustapha, K.
2017-06-03
Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.
Mustapha, K.; Furati, K.; Knio, Omar; Maitre, O. Le
2017-01-01
Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.
Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage
Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S.; Noda, Suguru; Lee, Seung Woo
2016-02-01
Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering
Reflection Negative Kernels and Fractional Brownian Motion
Directory of Open Access Journals (Sweden)
Palle E. T. Jorgensen
2018-06-01
Full Text Available In this article we study the connection of fractional Brownian motion, representation theory and reflection positivity in quantum physics. We introduce and study reflection positivity for affine isometric actions of a Lie group on a Hilbert space E and show in particular that fractional Brownian motion for Hurst index 0 < H ≤ 1 / 2 is reflection positive and leads via reflection positivity to an infinite dimensional Hilbert space if 0 < H < 1 / 2 . We also study projective invariance of fractional Brownian motion and relate this to the complementary series representations of GL 2 ( R . We relate this to a measure preserving action on a Gaussian L 2 -Hilbert space L 2 ( E .
Discrete fractional solutions of a Legendre equation
Yılmazer, Resat
2018-01-01
One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.
Fractional Order Differentiation by Integration and Error Analysis in Noisy Environment
Liu, Dayan
2015-03-31
The integer order differentiation by integration method based on the Jacobi orthogonal polynomials for noisy signals was originally introduced by Mboup, Join and Fliess. We propose to extend this method from the integer order to the fractional order to estimate the fractional order derivatives of noisy signals. Firstly, two fractional order differentiators are deduced from the Jacobi orthogonal polynomial filter, using the Riemann-Liouville and the Caputo fractional order derivative definitions respectively. Exact and simple formulae for these differentiators are given by integral expressions. Hence, they can be used for both continuous-time and discrete-time models in on-line or off-line applications. Secondly, some error bounds are provided for the corresponding estimation errors. These bounds allow to study the design parameters\\' influence. The noise error contribution due to a large class of stochastic processes is studied in discrete case. The latter shows that the differentiator based on the Caputo fractional order derivative can cope with a class of noises, whose mean value and variance functions are polynomial time-varying. Thanks to the design parameters analysis, the proposed fractional order differentiators are significantly improved by admitting a time-delay. Thirdly, in order to reduce the calculation time for on-line applications, a recursive algorithm is proposed. Finally, the proposed differentiator based on the Riemann-Liouville fractional order derivative is used to estimate the state of a fractional order system and numerical simulations illustrate the accuracy and the robustness with respect to corrupting noises.
Fractional differential equation with the fuzzy initial condition
Directory of Open Access Journals (Sweden)
Sadia Arshad
2011-02-01
Full Text Available In this paper we study the existence and uniqueness of the solution for a class of fractional differential equation with fuzzy initial value. The fractional derivatives are considered in the Riemann-Liouville sense.
Kovalenko, V M; Byshovets', T F; Hubs'kyĭ, Iu I; Levyts'kyĭ, Ie L; Shaiakhmetova, H M; Marchenko, O M; Voloshyna, O S; Saĭfetdinova, H A; Okhrimenko, V O; Donchenko, H V
2000-01-01
Embikhin causes activation of LPO processes in endoplasmic reticulum and in nuclear chromatine fractions of rat liver cells. The latter is accompanied by the impairment of repressive and active nuclear chromatine fractions structure. Derivate of vitamin E in these conditions renders correcting action on parameters of lipid peroxidation in the investigated subcellular structures, testifying its positive influence on the cell heredity apparatus state. The normalizing action of tocopherol derivative on cytochromes P450 and b5 levels is shown.
Directory of Open Access Journals (Sweden)
Dumitru Baleanu
2014-01-01
Full Text Available We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.
Memory regeneration phenomenon in dielectrics: the fractional derivative approach
International Nuclear Information System (INIS)
Uchaikin, V; Sibatov, R; Uchaikin, D
2009-01-01
Classical theory predicts that a capacitor's charging current obeys the first-order differential equation and hence follows the exponential Debye law. However, there are many experimental results confirming the inverse-power Curie-von Schweidler law of the charging current. The principal difference between the Curie-von Schweidler law and the Debye law is the presence of memory: the process depends not only on initial conditions but also on the whole prehistory. We constructed and investigated the capacitor model that extends the fractional Westerlund model by accounting for the resistance of the capacitor. To follow the transition to classical Debye theory, we investigated the solution of the fractional equation for the order α close to 1. The calculations show that the solution obeys the exponential law up to some point of time independently of the prehistory and then changes its behavior to the inverse power law depending on the prehistory. Comparison with experimental data confirmed the existence of this effect. We named it the regenerated memory effect.
Exp-function method for solving fractional partial differential equations.
Zheng, Bin
2013-01-01
We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.
Similarity Solutions for Multiterm Time-Fractional Diffusion Equation
Elsaid, A.; Abdel Latif, M. S.; Maneea, M.
2016-01-01
Similarity method is employed to solve multiterm time-fractional diffusion equation. The orders of the fractional derivatives belong to the interval (0,1] and are defined in the Caputo sense. We illustrate how the problem is reduced from a multiterm two-variable fractional partial differential equation to a multiterm ordinary fractional differential equation. Power series solution is obtained for the resulting ordinary problem and the convergence of the series solution is discussed. Based on ...
On the formulation and numerical simulation of distributed-order fractional optimal control problems
Zaky, M. A.; Machado, J. A. Tenreiro
2017-11-01
In a fractional optimal control problem, the integer order derivative is replaced by a fractional order derivative. The fractional derivative embeds implicitly the time delays in an optimal control process. The order of the fractional derivative can be distributed over the unit interval, to capture delays of distinct sources. The purpose of this paper is twofold. Firstly, we derive the generalized necessary conditions for optimal control problems with dynamics described by ordinary distributed-order fractional differential equations (DFDEs). Secondly, we propose an efficient numerical scheme for solving an unconstrained convex distributed optimal control problem governed by the DFDE. We convert the problem under consideration into an optimal control problem governed by a system of DFDEs, using the pseudo-spectral method and the Jacobi-Gauss-Lobatto (J-G-L) integration formula. Next, we present the numerical solutions for a class of optimal control problems of systems governed by DFDEs. The convergence of the proposed method is graphically analyzed showing that the proposed scheme is a good tool for the simulation of distributed control problems governed by DFDEs.
Generalized variational formulations for extended exponentially fractional integral
Directory of Open Access Journals (Sweden)
Zuo-Jun Wang
2016-01-01
Full Text Available Recently, the fractional variational principles as well as their applications yield a special attention. For a fractional variational problem based on different types of fractional integral and derivatives operators, corresponding fractional Lagrangian and Hamiltonian formulation and relevant Euler–Lagrange type equations are already presented by scholars. The formulations of fractional variational principles still can be developed more. We make an attempt to generalize the formulations for fractional variational principles. As a result we obtain generalized and complementary fractional variational formulations for extended exponentially fractional integral for example and corresponding Euler–Lagrange equations. Two illustrative examples are presented. It is observed that the formulations are in exact agreement with the Euler–Lagrange equations.
Lorenzo, C F; Hartley, T T; Malti, R
2013-05-13
A new and simplified method for the solution of linear constant coefficient fractional differential equations of any commensurate order is presented. The solutions are based on the R-function and on specialized Laplace transform pairs derived from the principal fractional meta-trigonometric functions. The new method simplifies the solution of such fractional differential equations and presents the solutions in the form of real functions as opposed to fractional complex exponential functions, and thus is directly applicable to real-world physics.
Atangana, Abdon; Gómez-Aguilar, J. F.
2018-04-01
To answer some issues raised about the concept of fractional differentiation and integration based on the exponential and Mittag-Leffler laws, we present, in this paper, fundamental differences between the power law, exponential decay, Mittag-Leffler law and their possible applications in nature. We demonstrate the failure of the semi-group principle in modeling real-world problems. We use natural phenomena to illustrate the importance of non-commutative and non-associative operators under which the Caputo-Fabrizio and Atangana-Baleanu fractional operators fall. We present statistical properties of generator for each fractional derivative, including Riemann-Liouville, Caputo-Fabrizio and Atangana-Baleanu ones. The Atangana-Baleanu and Caputo-Fabrizio fractional derivatives show crossover properties for the mean-square displacement, while the Riemann-Liouville is scale invariant. Their probability distributions are also a Gaussian to non-Gaussian crossover, with the difference that the Caputo Fabrizio kernel has a steady state between the transition. Only the Atangana-Baleanu kernel is a crossover for the waiting time distribution from stretched exponential to power law. A new criterion was suggested, namely the Atangana-Gómez fractional bracket, that helps describe the energy needed by a fractional derivative to characterize a 2-pletic manifold. Based on these properties, we classified fractional derivatives in three categories: weak, mild and strong fractional differential and integral operators. We presented some applications of fractional differential operators to describe real-world problems and we proved, with numerical simulations, that the Riemann-Liouville power-law derivative provides a description of real-world problems with much additional information, that can be seen as noise or error due to specific memory properties of its power-law kernel. The Caputo-Fabrizio derivative is less noisy while the Atangana-Baleanu fractional derivative provides an
Almost Periodic Solutions for Impulsive Fractional Stochastic Evolution Equations
Directory of Open Access Journals (Sweden)
Toufik Guendouzi
2014-08-01
Full Text Available In this paper, we consider the existence of square-mean piecewise almost periodic solutions for impulsive fractional stochastic evolution equations involving Caputo fractional derivative. The main results are obtained by means of the theory of operators semi-group, fractional calculus, fixed point technique and stochastic analysis theory and methods adopted directly from deterministic fractional equations. Some known results are improved and generalized.
Intitialization, Conceptualization, and Application in the Generalized Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
1998-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.
Initialization, conceptualization, and application in the generalized (fractional) calculus.
Lorenzo, Carl F; Hartley, Tom T
2007-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.
Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation
Abuasad, Salah; Hashim, Ishak
2018-04-01
In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.
Group formalism of Lie transformations to time-fractional partial ...
Indian Academy of Sciences (India)
Lie symmetry analysis; Fractional partial differential equation; Riemann–Liouville fractional derivative ... science and engineering. It is known that while ... differential equations occurring in different areas of applied science [11,14]. The Lie ...
International Nuclear Information System (INIS)
Li Xicheng; Xu Mingyu; Wang Shaowei
2008-01-01
In this paper, we give similarity solutions of partial differential equations of fractional order with a moving boundary condition. The solutions are given in terms of a generalized Wright function. The time-fractional Caputo derivative and two types of space-fractional derivatives are considered. The scale-invariant variable and the form of the solution of the moving boundary are obtained by the Lie group analysis. A comparison between the solutions corresponding to two types of fractional derivative is also given
Energy Technology Data Exchange (ETDEWEB)
Jin, Jie [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); Sun, Ke, E-mail: sunke@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Wang, Ziying; Han, Lanfang [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Wu, Fengchang [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Xing, Baoshan [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States)
2016-01-15
The importance of the composition of soil organic matter (SOM) for carbon (C) cycling is still under debate. Here a single soil source was used to examine the specific influence of its composition on stability ({sup 14}C activity) of SOM fractions while constraining other influential C turnover factors such as mineral, climate and plant input. The following SOM fractions were isolated from two soil samples: four humic acids, two humins, non-hydrolyzable carbon, and the demineralized fraction. We examined the isotope ratios of SOM fractions in relation to composition (such as aliphatic and aromatic C content) using solid state {sup 13}C nuclear magnetic resonance (NMR) and thermal analysis. The Δ{sup 14}C values of the fractions isolated from both an albic soil (SOMs-A) and a black soil (SOMs-B) correlated negatively with their peak temperature of decomposition and the temperature where half of the total heat of reaction was evolved, implying a potential link between thermal and biogeochemical stability of SOM fractions. Aryl C contents of SOMs-A determined using {sup 13}C NMR varied inversely with δ{sup 15}N values and directly with δ{sup 13}C values, suggesting that part of aryl C of SOMs-A might be fire-derived. The Δ{sup 14}C values of SOMs-A correlated positively with aliphatic C content and negatively with aromatic C content. We therefore concluded that fire-derived aromatic C in SOMs-A appeared to be more stable than microbially-derived aliphatic C. The greater decomposition of SOMs-B fractions weakened the relationship of their Δ{sup 14}C values with alkyl and aryl C contents. Hence, the role of the composition of SOM fractions in regulating stability might be dependent on the source of specific C forms and their stage of decomposition. - Highlights: • The effect of composition on stability of SOM fractions (SOMs) was examined. • There was a potential link between thermal and biological stability of SOMs. • Fire-derived aromatic C was likely more
International Nuclear Information System (INIS)
Jin, Jie; Sun, Ke; Wang, Ziying; Han, Lanfang; Wu, Fengchang; Xing, Baoshan
2016-01-01
The importance of the composition of soil organic matter (SOM) for carbon (C) cycling is still under debate. Here a single soil source was used to examine the specific influence of its composition on stability ("1"4C activity) of SOM fractions while constraining other influential C turnover factors such as mineral, climate and plant input. The following SOM fractions were isolated from two soil samples: four humic acids, two humins, non-hydrolyzable carbon, and the demineralized fraction. We examined the isotope ratios of SOM fractions in relation to composition (such as aliphatic and aromatic C content) using solid state "1"3C nuclear magnetic resonance (NMR) and thermal analysis. The Δ"1"4C values of the fractions isolated from both an albic soil (SOMs-A) and a black soil (SOMs-B) correlated negatively with their peak temperature of decomposition and the temperature where half of the total heat of reaction was evolved, implying a potential link between thermal and biogeochemical stability of SOM fractions. Aryl C contents of SOMs-A determined using "1"3C NMR varied inversely with δ"1"5N values and directly with δ"1"3C values, suggesting that part of aryl C of SOMs-A might be fire-derived. The Δ"1"4C values of SOMs-A correlated positively with aliphatic C content and negatively with aromatic C content. We therefore concluded that fire-derived aromatic C in SOMs-A appeared to be more stable than microbially-derived aliphatic C. The greater decomposition of SOMs-B fractions weakened the relationship of their Δ"1"4C values with alkyl and aryl C contents. Hence, the role of the composition of SOM fractions in regulating stability might be dependent on the source of specific C forms and their stage of decomposition. - Highlights: • The effect of composition on stability of SOM fractions (SOMs) was examined. • There was a potential link between thermal and biological stability of SOMs. • Fire-derived aromatic C was likely more stable than microbial-derived
International Nuclear Information System (INIS)
Hugo, Geoffrey D; Di Yan; Jian Liang
2007-01-01
In this work, five 4D image-guidance strategies (two population, an offline adaptive and two online strategies) were evaluated that compensated for both inter- and intra-fraction variability such as changes to the baseline tumour position and respiratory pattern. None of the strategies required active motion compensation such as gating or tracking; all strategies simulated a free-breathing-based treatment technique. Online kilovoltage fluoroscopy was acquired for eight patients with lung tumours, and used to construct inter- and intra-fraction tumour position variability models. Planning was performed on a mid-ventilation image acquired from a respiration-correlated CT scan. The blurring effect of tumour position variability was included in the dose calculation by convolution. CTV to PTV margins were calculated for variability in the cranio-caudal direction. A population margin of 9.0 ± 0.7 mm was required to account for setup error and respiration in the study population without the use of image-guidance. The greatest mean margin reduction was introduced by the offline adaptive strategy. A daily online correction strategy produced a small reduction (1.6 mm) in the mean margin from the offline strategy. Adaptively correcting for an inter-fraction change in the respiratory pattern had little effect on margin size due to most patients having only small daily changes in the respiratory pattern. A daily online correction strategy would be useful for patients who exhibit large variations in the daily mean tumour position, while an offline adaptive strategy is more applicable to patients with less variation
Deuterium fractionation mechanisms in interstellar clouds
International Nuclear Information System (INIS)
Dalgarno, A.; Lepp, S.
1984-01-01
The theory of the fractionation of deuterated molecules is extended to include reactions with atomic deuterium. With the recognition that dissociative recombination of H + 3 is not rapid, observational data can be used in conjunction with the theory to derive upper and lower bounds to the cosmic deuterium-hydrogen abundance ratio. We find that [D]/[H] is at least 3.4 x 10 -6 and at most 4.0 x 10 -5 with a probable value of 1 x 10 -5 . Because of the reaction HCO + +D→DCO + +H, upper limits can be derived for the fractional ionization which depend only weakly on the cosmic ray flux, zeta. In four clouds, the upper limits to the fractional ionization lie between 1.1 x 10 -6 and 1.5 x 10 -6 if zeta = 10 -7 s -1 and between 3.1 x 10 -6 and 1.8 x 10 -6 if zeta = 10 -16 s -1
An Efficient Series Solution for Nonlinear Multiterm Fractional Differential Equations
Directory of Open Access Journals (Sweden)
Moh’d Khier Al-Srihin
2017-01-01
Full Text Available In this paper, we introduce an efficient series solution for a class of nonlinear multiterm fractional differential equations of Caputo type. The approach is a generalization to our recent work for single fractional differential equations. We extend the idea of the Taylor series expansion method to multiterm fractional differential equations, where we overcome the difficulty of computing iterated fractional derivatives, which are difficult to be computed in general. The terms of the series are obtained sequentially using a closed formula, where only integer derivatives have to be computed. Several examples are presented to illustrate the efficiency of the new approach and comparison with the Adomian decomposition method is performed.
A modification of \\mathsf {WKB} method for fractional differential operators of Schrödinger's type
Sayevand, K.; Pichaghchi, K.
2017-09-01
In this paper, we were concerned with the description of the singularly perturbed differential equations within the scope of fractional calculus. However, we shall note that one of the main methods used to solve these problems is the so-called WKB method. We should mention that this was not achievable via the existing fractional derivative definitions, because they do not obey the chain rule. In order to accommodate the WKB to the scope of fractional derivative, we proposed a relatively new derivative called the local fractional derivative. By use of properties of local fractional derivative, we extend the WKB method in the scope of the fractional differential equation. By means of this extension, the WKB analysis based on the Borel resummation, for fractional differential operators of WKB type are investigated. The convergence and the Mittag-Leffler stability of the proposed approach is proven. The obtained results are in excellent agreement with the existing ones in open literature and it is shown that the present approach is very effective and accurate. Furthermore, we are mainly interested to construct the solution of fractional Schrödinger equation in the Mittag-Leffler form and how it leads naturally to this semi-classical approximation namely modified WKB.
A fractional Dirac equation and its solution
International Nuclear Information System (INIS)
Muslih, Sami I; Agrawal, Om P; Baleanu, Dumitru
2010-01-01
This paper presents a fractional Dirac equation and its solution. The fractional Dirac equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives. By applying the variational principle to a fractional action S, we obtain the fractional Euler-Lagrange equations of motion. We present a Lagrangian and a Hamiltonian for the fractional Dirac equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Dirac equation which is the same as that obtained using the fractional variational principle. Eigensolutions of this equation are presented which follow the same approach as that for the solution of the standard Dirac equation. We also provide expressions for the path integral quantization for the fractional Dirac field which, in the limit α → 1, approaches to the path integral for the regular Dirac field. It is hoped that the fractional Dirac equation and the path integral quantization of the fractional field will allow further development of fractional relativistic quantum mechanics.
A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
Yunying Zheng
2011-01-01
Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.
The Fractional Orthogonal Difference with Applications
Directory of Open Access Journals (Sweden)
Enno Diekema
2015-06-01
Full Text Available This paper is a follow-up of a previous paper of the author published in Mathematics journal in 2015, which treats the so-called continuous fractional orthogonal derivative. In this paper, we treat the discrete case using the fractional orthogonal difference. The theory is illustrated with an application of a fractional differentiating filter. In particular, graphs are presented of the absolutel value of the modulus of the frequency response. These make clear that for a good insight into the behavior of a fractional differentiating filter, one has to look for the modulus of its frequency response in a log-log plot, rather than for plots in the time domain.
Fractional Diffusion in Gaussian Noisy Environment
Directory of Open Access Journals (Sweden)
Guannan Hu
2015-03-01
Full Text Available We study the fractional diffusion in a Gaussian noisy environment as described by the fractional order stochastic heat equations of the following form: \\(D_t^{(\\alpha} u(t, x=\\textit{B}u+u\\cdot \\dot W^H\\, where \\(D_t^{(\\alpha}\\ is the Caputo fractional derivative of order \\(\\alpha\\in (0,1\\ with respect to the time variable \\(t\\, \\(\\textit{B}\\ is a second order elliptic operator with respect to the space variable \\(x\\in\\mathbb{R}^d\\ and \\(\\dot W^H\\ a time homogeneous fractional Gaussian noise of Hurst parameter \\(H=(H_1, \\cdots, H_d\\. We obtain conditions satisfied by \\(\\alpha\\ and \\(H\\, so that the square integrable solution \\(u\\ exists uniquely.
A variable-order fractal derivative model for anomalous diffusion
Directory of Open Access Journals (Sweden)
Liu Xiaoting
2017-01-01
Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.
International Nuclear Information System (INIS)
Guo, Shimin; Mei, Liquan; Li, Ying; Sun, Youfa
2012-01-01
By introducing a new general ansätz, the improved fractional sub-equation method is proposed to construct analytical solutions of nonlinear evolution equations involving Jumarie's modified Riemann–Liouville derivative. By means of this method, the space–time fractional Whitham–Broer–Kaup and generalized Hirota–Satsuma coupled KdV equations are successfully solved. The obtained results show that the proposed method is quite effective, promising and convenient for solving nonlinear fractional differential equations. -- Highlights: ► We propose a novel method for nonlinear fractional differential equations. ► Two important fractional differential equations in fluid mechanics are solved successfully. ► Some new exact solutions of the fractional differential equations are obtained. ► These solutions will advance the understanding of nonlinear physical phenomena.
Khoo, Li Teng; Abdullah, Janna Ong; Abas, Faridah; Tohit, Eusni Rahayu Mohd; Hamid, Muhajir
2015-02-24
The aims of this study were to examine the bioactive component(s) responsible for the anticoagulant activity of M. malabathricum Linn. leaf hot water crude extract via bioassay-guided fractionation and to evaluate the effect of bioactive component(s) on the intrinsic blood coagulation pathway. The active anticoagulant fraction of F3 was subjected to a series of chromatographic separation and spectroscopic analyses. Furthermore, the effect of the bioactive component(s) on the intrinsic blood coagulation pathway was studied through immediate and time incubation mixing studies. Through Activated Partial Thromboplastin Time (APTT) assay-guided fractionation, Subfraction B was considered the most potent anticoagulant fraction. Characterisation of Subfraction B indicated that anticoagulant activity could partly be due to the presence of cinnamic acid and a cinnamic acid derivative. APTT assays for both the immediate and time incubation mixing were corrected back into normal clotting time range (35.4-56.3 s). In conclusion, cinnamic acid and cinnamic acid derivative from Subfraction B were the first such compounds to be discovered from M. malabathricum Linn. leaf hot water crude extract that possess anticoagulant activity. This active anticoagulant Subfraction B prolonged blood clotting time by causing factor(s) deficiency in the intrinsic blood coagulation pathway.
Fractional graph theory a rational approach to the theory of graphs
Scheinerman, Edward R
2013-01-01
A unified treatment of the most important results in the study of fractional graph concepts, this volume explores the various ways in which integer-valued concepts can be modified to derive nonintegral values. It begins with the general fractional theory of hypergraphs and presents in-depth coverage of fundamental and advanced topics. Subjects include fractional matching, fractional coloring, fractional edge coloring, fractional arboricity via matroid methods, and fractional isomorphism. The final chapter examines additional topics such as fractional domination, fractional intersection numbers
Closed form solutions of two time fractional nonlinear wave equations
Directory of Open Access Journals (Sweden)
M. Ali Akbar
2018-06-01
Full Text Available In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G′/G-expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics. Keywords: Traveling wave solution, Soliton, Generalized (G′/G-expansion method, Time fractional Duffing equation, Time fractional Riccati equation
Modeling of Macroeconomics by a Novel Discrete Nonlinear Fractional Dynamical System
Directory of Open Access Journals (Sweden)
Zhenhua Hu
2013-01-01
Full Text Available We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states.
Simulation of chemical reactions using fractional derivatives
International Nuclear Information System (INIS)
Zabadal, J.; Vilhena, M.; Livotto, P.
2001-01-01
In this work a new approach to solve time-dependant Schroedinger equation for molecular systems is proposed. The method employs functional derivatives to describe the time evolution of the wave functions in reactive systems, in order to establish the mechanisms and products of the reaction. A numerical simulation is reported
Weyl and Marchaud derivatives: a forgotten history
Ferrari, Fausto
2017-01-01
In this paper, we recall the contribution given by Hermann Weyl and André Marchaud to the notion of fractional derivative. In addition, we discuss some relationships between the fractional Laplace operator and Marchaud derivative in the perspective to generalize these objects to different fields of the mathematics.
Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy
2018-04-01
Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.
Introduction to fractional and pseudo-differential equations with singular symbols
Umarov, Sabir
2015-01-01
The book systematically presents the theories of pseudo-differential operators with symbols singular in dual variables, fractional order derivatives, distributed and variable order fractional derivatives, random walk approximants, and applications of these theories to various initial and multi-point boundary value problems for pseudo-differential equations. Fractional Fokker-Planck-Kolmogorov equations associated with a large class of stochastic processes are presented. A complex version of the theory of pseudo-differential operators with meromorphic symbols based on the recently introduced complex Fourier transform is developed and applied for initial and boundary value problems for systems of complex differential and pseudo-differential equations.
Liu, Zhengguang; Li, Xiaoli
2018-05-01
In this article, we present a new second-order finite difference discrete scheme for a fractal mobile/immobile transport model based on equivalent transformative Caputo formulation. The new transformative formulation takes the singular kernel away to make the integral calculation more efficient. Furthermore, this definition is also effective where α is a positive integer. Besides, the T-Caputo derivative also helps us to increase the convergence rate of the discretization of the α-order(0 < α < 1) Caputo derivative from O(τ2-α) to O(τ3-α), where τ is the time step. For numerical analysis, a Crank-Nicolson finite difference scheme to solve the fractal mobile/immobile transport model is introduced and analyzed. The unconditional stability and a priori estimates of the scheme are given rigorously. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.
Butt, A. R.; Abdullah, M.; Raza, N.; Imran, M. A.
2017-10-01
In this work, semi analytical solutions for the heat and mass transfer of a fractional MHD Jeffery fluid over an infinite oscillating vertical plate with exponentially heating and constant mass diffusion via the Caputo-Fabrizio fractional derivative are obtained. The governing equations are transformed into dimensionless form by introducing dimensionless variables. A modern definition of the Caputo-Fabrizio derivative has been used to develop the fractional model for a Jeffery fluid. The expressions for temperature, concentration and velocity fields are obtained in the Laplace transformed domain. We have used the Stehfest's and Tzou's algorithm for the inverse Laplace transform to obtain the semi analytical solutions for temperature, concentration and velocity fields. In the end, in order to check the physical impact of flow parameters on temperature, concentration and velocity fields, results are presented graphically and in tabular forms.
Fractional and multivariable calculus model building and optimization problems
Mathai, A M
2017-01-01
This textbook presents a rigorous approach to multivariable calculus in the context of model building and optimization problems. This comprehensive overview is based on lectures given at five SERC Schools from 2008 to 2012 and covers a broad range of topics that will enable readers to understand and create deterministic and nondeterministic models. Researchers, advanced undergraduate, and graduate students in mathematics, statistics, physics, engineering, and biological sciences will find this book to be a valuable resource for finding appropriate models to describe real-life situations. The first chapter begins with an introduction to fractional calculus moving on to discuss fractional integrals, fractional derivatives, fractional differential equations and their solutions. Multivariable calculus is covered in the second chapter and introduces the fundamentals of multivariable calculus (multivariable functions, limits and continuity, differentiability, directional derivatives and expansions of multivariable ...
Using wavelet multi-resolution nature to accelerate the identification of fractional order system
International Nuclear Information System (INIS)
Li Yuan-Lu; Meng Xiao; Ding Ya-Qing
2017-01-01
Because of the fractional order derivatives, the identification of the fractional order system (FOS) is more complex than that of an integral order system (IOS). In order to avoid high time consumption in the system identification, the least-squares method is used to find other parameters by fixing the fractional derivative order. Hereafter, the optimal parameters of a system will be found by varying the derivative order in an interval. In addition, the operational matrix of the fractional order integration combined with the multi-resolution nature of a wavelet is used to accelerate the FOS identification, which is achieved by discarding wavelet coefficients of high-frequency components of input and output signals. In the end, the identifications of some known fractional order systems and an elastic torsion system are used to verify the proposed method. (paper)
Generalized hydrodynamic correlations and fractional memory functions
Rodríguez, Rosalio F.; Fujioka, Jorge
2015-12-01
A fractional generalized hydrodynamic (GH) model of the longitudinal velocity fluctuations correlation, and its associated memory function, for a complex fluid is analyzed. The adiabatic elimination of fast variables introduces memory effects in the transport equations, and the dynamic of the fluctuations is described by a generalized Langevin equation with long-range noise correlations. These features motivate the introduction of Caputo time fractional derivatives and allows us to calculate analytic expressions for the fractional longitudinal velocity correlation function and its associated memory function. Our analysis eliminates a spurious constant term in the non-fractional memory function found in the non-fractional description. It also produces a significantly slower power-law decay of the memory function in the GH regime that reduces to the well-known exponential decay in the non-fractional Navier-Stokes limit.
Directory of Open Access Journals (Sweden)
Hong-Ru Li
2015-01-01
Full Text Available This paper investigates the position regulation problem of permanent magnet synchronous motor (PMSM subject to parameter uncertainties and external disturbances. A novel fractional second-order nonsingular terminal sliding mode control (F2NTSMC is proposed and the finite time stability of the closed-loop system is ensured. A sliding mode disturbance observer (SMDO is developed to estimate and make feedforward compensation for the lumped disturbances of the PMSM system. Moreover, the finite-time convergence of estimation errors can be guaranteed. The control scheme combining F2NTSMC and SMDO can not only improve performance of the closed-loop system and attenuate disturbances, but also reduce chattering effectively. Simulation results show that the proposed control method can obtain satisfactory position tracking performance and strong robustness.
Fractional dynamics of charged particles in magnetic fields
Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.
2016-02-01
In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.
Weyl and Marchaud Derivatives: A Forgotten History
Directory of Open Access Journals (Sweden)
Fausto Ferrari
2018-01-01
Full Text Available In this paper, we recall the contribution given by Hermann Weyl and André Marchaud to the notion of fractional derivative. In addition, we discuss some relationships between the fractional Laplace operator and Marchaud derivative in the perspective to generalize these objects to different fields of the mathematics.
Hipergeometric solutions to some nonhomogeneous equations of fractional order
Olivares, Jorge; Martin, Pablo; Maass, Fernando
2017-12-01
In this paper a study is performed to the solution of the linear non homogeneous fractional order alpha differential equation equal to I 0(x), where I 0(x) is the modified Bessel function of order zero, the initial condition is f(0)=0 and 0 definition for the fractional derivatives is considered. Fractional derivatives have become important in physical and chemical phenomena as visco-elasticity and visco-plasticity, anomalous diffusion and electric circuits. In particular in this work the values of alpha=1/2, 1/4 and 3/4. are explicitly considered . In these cases Laplace transform is applied, and later the inverse Laplace transform leads to the solutions of the differential equation, which become hypergeometric functions.
A non-differentiable solution for the local fractional telegraph equation
Directory of Open Access Journals (Sweden)
Li Jie
2017-01-01
Full Text Available In this paper, we consider the linear telegraph equations with local fractional derivative. The local fractional Laplace series expansion method is used to handle the local fractional telegraph equation. The analytical solution with the non-differentiable graphs is discussed in detail. The proposed method is efficient and accurate.
Fractional model for heat conduction in polar bear hairs
Directory of Open Access Journals (Sweden)
Wang Qing-Li
2012-01-01
Full Text Available Time-fractional differential equations can accurately describe heat conduction in fractal media, such as wool fibers, goose down and polar bear hair. The fractional complex transform is used to convert time-fractional heat conduction equations with the modified Riemann-Liouville derivative into ordinary differential equations, and exact solutions can be easily obtained. The solution process is straightforward and concise.
Similarity Solutions for Multiterm Time-Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
A. Elsaid
2016-01-01
Full Text Available Similarity method is employed to solve multiterm time-fractional diffusion equation. The orders of the fractional derivatives belong to the interval (0,1] and are defined in the Caputo sense. We illustrate how the problem is reduced from a multiterm two-variable fractional partial differential equation to a multiterm ordinary fractional differential equation. Power series solution is obtained for the resulting ordinary problem and the convergence of the series solution is discussed. Based on the obtained results, we propose a definition for a multiterm error function with generalized coefficients.
Saikia, Sangeeta; Mahanta, Charu Lata
2016-03-01
A comparative study was done on the health promoting and functional properties of the fibers obtained as by-products from six fruits viz., pomace of carambola (Averrhoa carambola L.) and pineapple (Ananas comosus L. Merr), peels of watermelon (Citrullus lanatus), Burmese grape (Baccurea sapida Muell. Arg) and Khasi mandarin orange (Citrus reticulata Blanco), and blossom of seeded banana (Musa balbisiana, ABB). Highest yield of fiber was obtained from Burmese grape peel (BGPL, 79.94 ± 0.41 g/100 g) and seeded banana blossom (BB 77.18 ± 0.20 g/100 g). The total dietary fiber content (TDF) was highest in fiber fraction derived from pineapple pomace (PNPM, 79.76 ± 0.42 g/100 g) and BGPL (67.27 ± 0.39 g/100 g). All the samples contained insoluble dietary fiber as the major fiber fraction. The fiber samples showed good water holding, oil holding and swelling capacities. The fiber samples exhibited antioxidant activity. All the samples showed good results for glucose adsorption, amylase activity inhibition, glucose diffusion rate and glucose diffusion reduction rate index.
Energy Technology Data Exchange (ETDEWEB)
Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)
2016-02-15
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.
International Nuclear Information System (INIS)
Dale, R.G.
1986-01-01
By extending a previously developed mathematical model based on the linear-quadratic dose-effect relationship, it is possible to examine the consequences of performing fractionated treatments for which there is insufficient time between fractions to allow complete damage repair. Equations are derived which give the relative effectiveness of such treatments in terms of tissue-repair constants (μ values) and α/β ratios, and these are then applied to some examples of treatments involving multiple fractions per day. The interplay of the various mechanisms involved (including repopulation effects) and their possible influence on treatments involving closely spaced fractions are examined. If current indications of the differences in recovery rates between early- and late-reacting normal tissues are representative, then it is shown that such differences may limit the clinical potential of accelerated fractionation regimes, where several fractions per day are given in a relatively short overall time. (author)
Closed form solutions of two time fractional nonlinear wave equations
Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan
2018-06-01
In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.
Vegetation Fraction Mapping with High Resolution Multispectral Data in the Texas High Plains
Oshaughnessy, S. A.; Gowda, P. H.; Basu, S.; Colaizzi, P. D.; Howell, T. A.; Schulthess, U.
2010-12-01
Land surface models use vegetation fraction to more accurately partition latent, sensible and soil heat fluxes from a partially vegetated surface as it affects energy and moisture exchanges between the earth’s surface and atmosphere. In recent years, there is interest to integrate vegetation fraction data into intelligent irrigation scheduling systems to avoid false positive signals to irrigate. Remote sensing can facilitate the collection of vegetation fraction information on individual fields over large areas in a timely and cost-effective manner. In this study, we developed and evaluated a set of vegetation fraction models using least square regression and artificial neural network (ANN) techniques using RapidEye satellite data (6.5 m spatial resolution and on-demand temporal resolution). Four images were acquired during the 2010 summer growing season, covering bare soil to full crop cover conditions, over the USDA-ARS-Conservation and Production Research Laboratory in Bushland, Texas [350 11' N, 1020 06' W; 1,170 m elevation MSL]. Spectral signatures were extracted from 25 ground truth locations with geographic coordinates. Vegetation fraction information was derived from digital photos taken at the time of image acquisition using a supervised classification technique. Comparison of performance statistics indicate that ANN performed slightly better than least square regression models.
Fractional dynamics using an ensemble of classical trajectories
Sun, Zhaopeng; Dong, Hao; Zheng, Yujun
2018-01-01
A trajectory-based formulation for fractional dynamics is presented and the trajectories are generated deterministically. In this theoretical framework, we derive a new class of estimators in terms of confluent hypergeometric function (F11) to represent the Riesz fractional derivative. Using this method, the simulation of free and confined Lévy flight are in excellent agreement with the exact numerical and analytical results. In addition, the barrier crossing in a bistable potential driven by Lévy noise of index α is investigated. In phase space, the behavior of trajectories reveal the feature of Lévy flight in a better perspective.
Moving-boundary problems for the time-fractional diffusion equation
Directory of Open Access Journals (Sweden)
Sabrina D. Roscani
2017-02-01
Full Text Available We consider a one-dimensional moving-boundary problem for the time-fractional diffusion equation. The time-fractional derivative of order $\\alpha\\in (0,1$ is taken in the sense of Caputo. We study the asymptotic behaivor, as t tends to infinity, of a general solution by using a fractional weak maximum principle. Also, we give some particular exact solutions in terms of Wright functions.
A procedure to construct exact solutions of nonlinear fractional differential equations.
Güner, Özkan; Cevikel, Adem C
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.
Fractional equations of kicked systems and discrete maps
International Nuclear Information System (INIS)
Tarasov, Vasily E; Zaslavsky, George M
2008-01-01
Starting from kicked equations of motion with derivatives of non-integer orders, we obtain 'fractional' discrete maps. These maps are generalizations of well-known universal, standard, dissipative, kicked damped rotator maps. The main property of the suggested fractional maps is a long-term memory. The memory effects in the fractional discrete maps mean that their present state evolution depends on all past states with special forms of weights. These forms are represented by combinations of power-law functions
On a fractional difference operator
Directory of Open Access Journals (Sweden)
P. Baliarsingh
2016-06-01
Full Text Available In the present article, a set of new difference sequence spaces of fractional order has been introduced and subsequently, an application of these spaces, the notion of the derivatives and the integrals of a function to the case of non-integer order have been generalized. Certain results involving the unusual and non-uniform behavior of the corresponding difference operator have been investigated and also been verified by using some counter examples. We also verify these unusual and non-uniform behaviors by studying the geometry of fractional calculus.
Extending the D’alembert solution to space–time Modified Riemann–Liouville fractional wave equations
International Nuclear Information System (INIS)
Godinho, Cresus F.L.; Weberszpil, J.; Helayël-Neto, J.A.
2012-01-01
In the realm of complexity, it is argued that adequate modeling of TeV-physics demands an approach based on fractal operators and fractional calculus (FC). Non-local theories and memory effects are connected to complexity and the FC. The non-differentiable nature of the microscopic dynamics may be connected with time scales. Based on the Modified Riemann–Liouville definition of fractional derivatives, we have worked out explicit solutions to a fractional wave equation with suitable initial conditions to carefully understand the time evolution of classical fields with a fractional dynamics. First, by considering space–time partial fractional derivatives of the same order in time and space, a generalized fractional D’alembertian is introduced and by means of a transformation of variables to light-cone coordinates, an explicit analytical solution is obtained. To address the situation of different orders in the time and space derivatives, we adopt different approaches, as it will become clear throughout this paper. Aspects connected to Lorentz symmetry are analyzed in both approaches.
Synergetic cloud fraction determination for SCIAMACHY using MERIS
Directory of Open Access Journals (Sweden)
C. Schlundt
2011-02-01
Full Text Available Since clouds play an essential role in the Earth's climate system, it is important to understand the cloud characteristics as well as their distribution on a global scale using satellite observations. The main scientific objective of SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY onboard the ENVISAT satellite is the retrieval of vertical columns of trace gases.
On the one hand, SCIAMACHY has to be sensitive to low variations in trace gas concentrations which means the ground pixel size has to be large enough. On the other hand, such a large pixel size leads to the problem that SCIAMACHY spectra are often contaminated by clouds. SCIAMACHY spectral measurements are not well suitable to derive a reliable sub-pixel cloud fraction that can be used as input parameter for subsequent retrievals of cloud properties or vertical trace gas columns. Therefore, we use MERIS/ENVISAT spectral measurements with its high spatial resolution as sub-pixel information for the determination of MerIs Cloud fRation fOr Sciamachy (MICROS. Since MERIS covers an even broader swath width than SCIAMACHY, no problems in spatial and temporal collocation of measurements occur. This enables the derivation of a SCIAMACHY cloud fraction with an accuracy much higher as compared with other current cloud fractions that are based on SCIAMACHY's PMD (Polarization Measurement Device data.
We present our new developed MICROS algorithm, based on the threshold approach, as well as a qualitative validation of our results with MERIS satellite images for different locations, especially with respect to bright surfaces such as snow/ice and sands. In addition, the SCIAMACHY cloud fractions derived from MICROS are intercompared with other current SCIAMACHY cloud fractions based on different approaches demonstrating a considerable improvement regarding geometric cloud fraction determination using the MICROS algorithm.
Stability analysis of a class of fractional delay differential equations
Indian Academy of Sciences (India)
In this paper we analyse stability of nonlinear fractional order delay differential equations of the form D y ( t ) = a f ( y ( t − ) ) − by ( t ) , where D is a Caputo fractional derivative of order 0 < ≤ 1. We describe stability regions using critical curves. To explain the proposed theory, we discuss fractional order logistic ...
Jain, Sonal
2018-01-01
In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.
Sayevand, K.; Pichaghchi, K.
2018-04-01
In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.
Directory of Open Access Journals (Sweden)
Romain Gallet, MD
2016-01-01
Full Text Available The pathogenesis of heart failure with a preserved ejection fraction (HFpEF is unclear. Myocardial fibrosis, inflammation, and cardiac hypertrophy have been suggested to contribute to the pathogenesis of HFpEF. Cardiosphere-derived cells (CDCs are heart-derived cell products with antifibrotic and anti-inflammatory properties. This study tested whether rat CDCs were sufficient to decrease manifestations of HFpEF in hypertensive rats. Starting at 7 weeks of age, Dahl salt-sensitive rats were fed a high-salt diet for 6 to 7 weeks and randomized to receive intracoronary CDCs or placebo. Dahl rats fed normal chow served as controls. High-salt rats developed hypertension, left ventricular (LV hypertrophy, and diastolic dysfunction, without impairment of ejection fraction. Four weeks after treatment, diastolic dysfunction resolved in CDC-treated rats but not in placebo. The improved LV relaxation was associated with lower LV end-diastolic pressure, decreased lung congestion, and enhanced survival in CDC-treated rats. Histology and echocardiography revealed no decrease in cardiac hypertrophy after CDC treatment, consistent with the finding of sustained, equally-elevated blood pressure in CDC- and placebo-treated rats. Nevertheless, CDC treatment decreased LV fibrosis and inflammatory infiltrates. Serum inflammatory cytokines were likewise decreased after CDC treatment. Whole-transcriptome analysis revealed that CDCs reversed changes in numerous transcripts associated with HFpEF, including many involved in inflammation and/or fibrosis. These studies suggest that CDCs normalized LV relaxation and LV diastolic pressure while improving survival in a rat model of HFpEF. The benefits of CDCs occurred despite persistent hypertension and cardiac hypertrophy. By selectively reversing inflammation and fibrosis, CDCs may be beneficial in the treatment of HFpEF.
Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation
Petráš, Ivo
2011-01-01
"Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. ...
Soil tension mediates isotope fractionation during soil water evaporation
Gaj, Marcel; McDonnell, Jeffrey
2017-04-01
Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have
Energy Technology Data Exchange (ETDEWEB)
Uchaikin, V V; Sibatov, R T, E-mail: vuchaikin@gmail.com, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation)
2011-04-08
The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.
International Nuclear Information System (INIS)
Uchaikin, V V; Sibatov, R T
2011-01-01
The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.
An extended integrable fractional-order KP soliton hierarchy
International Nuclear Information System (INIS)
Li Li
2011-01-01
In this Letter, we consider the modified derivatives and integrals of fractional-order pseudo-differential operators. A sequence of Lax KP equations hierarchy and extended fractional KP (fKP) hierarchy are introduced, and the fKP hierarchy has Lax presentations with the extended Lax operators. In the case of the extension with the half-order pseudo-differential operators, a new integrable fKP hierarchy is obtained. A few particular examples of fractional order will be listed, together with their Lax pairs.
An extended integrable fractional-order KP soliton hierarchy
Energy Technology Data Exchange (ETDEWEB)
Li Li, E-mail: li07099@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2011-01-17
In this Letter, we consider the modified derivatives and integrals of fractional-order pseudo-differential operators. A sequence of Lax KP equations hierarchy and extended fractional KP (fKP) hierarchy are introduced, and the fKP hierarchy has Lax presentations with the extended Lax operators. In the case of the extension with the half-order pseudo-differential operators, a new integrable fKP hierarchy is obtained. A few particular examples of fractional order will be listed, together with their Lax pairs.
On a Fractional Binomial Process
Cahoy, Dexter O.; Polito, Federico
2012-02-01
The classical binomial process has been studied by Jakeman (J. Phys. A 23:2815-2825, 1990) (and the references therein) and has been used to characterize a series of radiation states in quantum optics. In particular, he studied a classical birth-death process where the chance of birth is proportional to the difference between a larger fixed number and the number of individuals present. It is shown that at large times, an equilibrium is reached which follows a binomial process. In this paper, the classical binomial process is generalized using the techniques of fractional calculus and is called the fractional binomial process. The fractional binomial process is shown to preserve the binomial limit at large times while expanding the class of models that include non-binomial fluctuations (non-Markovian) at regular and small times. As a direct consequence, the generality of the fractional binomial model makes the proposed model more desirable than its classical counterpart in describing real physical processes. More statistical properties are also derived.
q-fractional calculus and equations
Annaby, Mahmoud H
2012-01-01
This nine-chapter monograph introduces a rigorous investigation of q-difference operators in standard and fractional settings. It starts with elementary calculus of q-differences and integration of Jackson’s type before turning to q-difference equations. The existence and uniqueness theorems are derived using successive approximations, leading to systems of equations with retarded arguments. Regular q-Sturm–Liouville theory is also introduced; Green’s function is constructed and the eigenfunction expansion theorem is given. The monograph also discusses some integral equations of Volterra and Abel type, as introductory material for the study of fractional q-calculi. Hence fractional q-calculi of the types Riemann–Liouville; Grünwald–Letnikov; Caputo; Erdélyi–Kober and Weyl are defined analytically. Fractional q-Leibniz rules with applications in q-series are also obtained with rigorous proofs of the formal results of Al-Salam-Verma, which remained unproved for decades. In working ...
Directory of Open Access Journals (Sweden)
Jianke Zhang
2018-01-01
Full Text Available We study in this paper the Atangana-Baleanu fractional derivative of fuzzy functions based on the generalized Hukuhara difference. Under the condition of gH-Atangana-Baleanu fractional differentiability, we prove the generalized necessary and sufficient optimality conditions for problems of the fuzzy fractional calculus of variations with a Lagrange function. The new kernel of gH-Atangana-Baleanu fractional derivative has no singularity and no locality, which was not precisely illustrated in the previous definitions.
Matar, Fadi A; Falasiri, Shayan; Glover, Charles B; Khaliq, Asma; Leung, Calvin C; Mroue, Jad; Ebra, George
2016-11-01
To derive a simplified scoring system (SSS) that can assist in selecting patients who would benefit from the application of fractional flow reserve (FFR). Angiographers base decisions to perform FFR on their interpretation of % diameter stenosis (DS), which is subject to variability. Recent studies have shown that the amount of myocardium at jeopardy is an important factor in determining the degree of hemodynamic compromise. We conducted a retrospective multivariable analysis to identify independent predictors of hemodynamic compromise in 289 patients with 317 coronary vessels undergoing FFR. A SSS was derived using the odds ratios as a weighted factor. The receiver operator characteristics curve was used to identify the optimal cutoff (≥3) to discern a functionally significant lesion (FFR≤0.8). Male gender, left anterior descending artery apical wrap, disease proximal to lesion, minimal lumen diameter and % DS predicted abnormal FFR (≤0.8) and lesion location in the left circumflex predicted a normal FFR. Using a cutoff score of ≥3 on the SSS, a specificity of 90.4% (95% CI: 83.0-95.3) and a sensitivity of 38.0% (95% CI: 31.5-44.9) was generated with a positive predictive value of 89.0% (95% CI: 80.7%-94.6%) and negative predictive value of 41.6% (95% CI: 35.1%-48.3%). The decision to use FFR should be based not only on the % DS but also the size of the myocardial mass jeopardized. A score of ≥3 on the SSS should prompt further investigation with a pressure wire. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Stability analysis of a class of fractional delay differential equations
Indian Academy of Sciences (India)
Abstract. In this paper we analyse stability of nonlinear fractional order delay differential equa- tions of the form Dα y(t) = af (y(t − τ )) − by(t), where Dα is a Caputo fractional derivative of order 0 < α ≤ 1. We describe stability regions using critical curves. To explain the proposed theory, we discuss fractional order logistic ...
Vo, Tam D. L.; Chung, Duy T. M.; Doan, Kien T.; Le, Duy T.; Trinh, Hung V.
2017-09-01
In this study, the antioxidant capacity of peptide fractions isolated from the Tra Catfish (Pangasius hypophthalmus) by-product-derived proteolysate using ultrafiltration centrifugal devices with 5 distinct molecular-weight cutoffs (MWCOs) of 1 kDa, 3 kDa, 5 kDa, 10 kDa, and 30 kDa was investigated. Firstly, the chemical composition of the Tra Catfish by-products was analyzed. The result showed that the Tra Catfish by-products contained 58.5% moisture, 33.9% crude protein, 50.1% crude lipid and 15.8% ash (on dry weight basis). Secondly, the effects of hydrolysis time, enzyme content on the antioxidant potential of the proteolysate were studied using DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical scavenging method (DPPH• SM) and FRAP (Ferric Reducing Antioxidant Potential) method. Alcalase® 2.4 L FG was used for hydrolysis. The result of antioxidant activity of the hydrolysate showed that the 50% DPPH• inhibition concentration (IC50) of the hydrolysate reached about 6775 µg/mL which was 1645-fold higher than that of vitamin C and 17-fold higher than that of BHT (ButylatedHydroxytoluene) with the degree of hydrolysis (DH) of the hydrolysate of 14.6% when hydrolysis time was 5 hours, enzyme/substrate (E/S) ratio was 30 U/g protein, hydrolysis temperature was 55°C, and pH was 7.5. The antioxidant potential of hydrolysate using FRAP method reached about 52.12 µM Trolox equivalent which was 53-fold and 18-fold lower than those of vitamin C and BHT, respectively, when the hydrolysis time was 5 h, enzyme/substrate ratio was 30 U/g protein, temperature was 500C, and pH level was 8. Next, the proteolysate was further fractionated using MWCOs of 1 kDa, 3 kDa, 5 kDa, 10 kDa, and 30 kDa and the peptide fractions were investigated for their antioxidant activity. The result showed that the <1 kDa fraction showed strongest antioxidant activity with the IC50 of 1313.31 ± 50.65 µg/mL and FRAP value of 906.90 ± 44.32 µM Trolox equivalent. The second strongest fraction
Cadmium isotope fractionation of materials derived from various industrial processes
Energy Technology Data Exchange (ETDEWEB)
Martinková, Eva, E-mail: eva.cadkova@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Chrastný, Vladislav, E-mail: chrastny@fzp.czu.cz [Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6 (Czech Republic); Francová, Michaela, E-mail: michaela.francova@fzp.czu.cz [Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6 (Czech Republic); Šípková, Adéla, E-mail: adela.sipkova@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Čuřík, Jan, E-mail: jan.curik@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Myška, Oldřich, E-mail: oldrich.myska@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Mižič, Lukáš, E-mail: lukas.mizic@geology.cz [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic)
2016-01-25
Highlights: • All studied industrial processes were accompanied by Cd isotope fractionation. • ϵ{sup 114/110} Cd values of the waste materials were discernible from primary sources. • Technology in use plays an important role in Cd isotope fractionation. - Abstract: Our study represents ϵ{sup 114/110} Cd {sub NIST3108} values of materials resulting from anthropogenic activities such as coal burning, smelting, refining, metal coating, and the glass industry. Additionally, primary sources (ore samples, pigment, coal) processed in the industrial premises were studied. Two sphalerites, galena, coal and pigment samples exhibited ϵ{sup 114/110} Cd{sub NIST3108} values of 1.0 ± 0.2, 0.2 ± 0.2, 1.3 ± 0.1, −2.3 ± 0.2 and −0.1 ± 0.3, respectively. In general, all studied industrial processes were accompanied by Cd isotope fractionation. Most of the industrial materials studied were clearly distinguishable from the samples used as a primary source based on ϵ{sup 114/110} Cd {sub NIST3108} values. The heaviest ϵ{sup 114/110} Cd{sub NIST3108} value of 58.6 ± 0.9 was found for slag resulting from coal combustion, and the lightest ϵ{sup 114/110} Cd{sub NIST3108} value of −23 ± 2.5 was observed for waste material after Pb refinement. It is evident that ϵ{sup 114/110} Cd {sub NIST3108} values depend on technological processes, and in case of incomplete Cd transfer from source to final waste material, every industrial activity creates differences in Cd isotope composition. Our results show that Cd isotope analysis is a promising tool to track the origins of industrial waste products.
Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks.
Yang, Shuai; Yu, Juan; Hu, Cheng; Jiang, Haijun
2018-08-01
In this paper, without separating the complex-valued neural networks into two real-valued systems, the quasi-projective synchronization of fractional-order complex-valued neural networks is investigated. First, two new fractional-order inequalities are established by using the theory of complex functions, Laplace transform and Mittag-Leffler functions, which generalize traditional inequalities with the first-order derivative in the real domain. Additionally, different from hybrid control schemes given in the previous work concerning the projective synchronization, a simple and linear control strategy is designed in this paper and several criteria are derived to ensure quasi-projective synchronization of the complex-valued neural networks with fractional-order based on the established fractional-order inequalities and the theory of complex functions. Moreover, the error bounds of quasi-projective synchronization are estimated. Especially, some conditions are also presented for the Mittag-Leffler synchronization of the addressed neural networks. Finally, some numerical examples with simulations are provided to show the effectiveness of the derived theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Proliferation studies for different radiotherapy fractionation regimes
International Nuclear Information System (INIS)
Jones, L.
1996-01-01
Full text: This study was undertaken to investigate extended treatment schedules and compare the differences between schedules for highly proliferative tumours. Treatment schedules can be extended for various reasons e.g. public holidays, early side effects. For highly proliferative tumours this can dramatically reduce the effective dose delivered to the tumour. To deduce the most effective schedule fractionation regimes are compared to a common schedule so that the effects can be understood. Thus an equation to allow this to be done for the proliferative case has been derived. (i) The linear quadratic model with proliferation has been used to investigate the effect on biological effective dose (BED) when treatment schedules are extended. (ii) An equation was derived for comparison with a standard effective dose (SED) of 2Gy/fraction given daily 5 days per week, this is a common schedule in most radiotherapy centres. The SED equation derived for the proliferative case is where n 1 and n 2 are the number of fractions for the initial and equivalent schedules respectively, d 1 is the dose delivered per fraction for the initial schedules. T 1 is the time taken for the initial schedule (in days) and T p is the proliferation half life for the tumour involved. SEDs were calculated for the CHART regime of 36 fractions at 1.5 Gy in 12 days (Saunders et al. 1988, cited in Fowler J F, Brit. J. Radiol. 62: 679-694, 1989) and various other schedules. Late effects of these schedules and their standard equivalents were compared. The dose required to achieve the same BED when a treatment schedule is extended has been found to be quite large in some circumstances. For breast tumours a loss of 2Gy 10 BED to tumour occurs after ten days extension of treatment time (T p =12 days,T k =12 days). For head and neck tumours a loss of 2Gy 10 BED occurs after only three and a half days (T p =3 days). From these results it seems that an accelerated fractionation schedule would be advantageous
Directory of Open Access Journals (Sweden)
Hossein Jafari
2016-04-01
Full Text Available The non-differentiable solution of the linear and non-linear partial differential equations on Cantor sets is implemented in this article. The reduced differential transform method is considered in the local fractional operator sense. The four illustrative examples are given to show the efficiency and accuracy features of the presented technique to solve local fractional partial differential equations.
Fractional diffusion equations and anomalous diffusion
Evangelista, Luiz Roberto
2018-01-01
Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.
Fractional-order RC and RL circuits
Radwan, Ahmed Gomaa
2012-05-30
This paper is a step forward to generalize the fundamentals of the conventional RC and RL circuits in fractional-order sense. The effect of fractional orders is the key factor for extra freedom, more flexibility, and novelty. The conditions for RC and RL circuits to act as pure imaginary impedances are derived, which are unrealizable in the conventional case. In addition, the sensitivity analyses of the magnitude and phase response with respect to all parameters showing the locations of these critical values are discussed. A qualitative revision for the fractional RC and RL circuits in the frequency domain is provided. Numerical and PSpice simulations are included to validate this study. © Springer Science+Business Media, LLC 2012.
New Hamiltonian structure of the fractional C-KdV soliton equation hierarchy
International Nuclear Information System (INIS)
Yu Fajun; Zhang Hongqing
2008-01-01
A generalized Hamiltonian structure of the fractional soliton equation hierarchy is presented by using of differential forms and exterior derivatives of fractional orders. Example of the fractional Hamiltonian system of the C-KdV soliton equation hierarchy is constructed, which is a new Hamiltonian structure
Jumarie, Guy
2013-04-01
By using fractional differences, one recently proposed an alternative to the formulation of fractional differential calculus, of which the main characteristics is a new fractional Taylor series and its companion Rolle's formula which apply to non-differentiable functions. The key is that now we have at hand a differential increment of fractional order which can be manipulated exactly like in the standard Leibniz differential calculus. Briefly the fractional derivative is the quotient of fractional increments. It has been proposed that this calculus can be used to construct a differential geometry on manifold of fractional order. The present paper, on the one hand, refines the framework, and on the other hand, contributes some new results related to arc length of fractional curves, area on fractional differentiable manifold, covariant fractal derivative, Riemann-Christoffel tensor of fractional order, fractional differential equations of fractional geodesic, strip modeling of fractal space time and its relation with Lorentz transformation. The relation with Nottale's fractal space-time theory then appears in quite a natural way.
Fractional calculus in bioengineering, part 3.
Magin, Richard L
2004-01-01
Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub
Adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion
International Nuclear Information System (INIS)
Webb, S
2008-01-01
This paper presents a technique for coping with variable intrafraction organ motion when delivering intensity-modulated radiation therapy (IMRT). The strategy is an adaptive delivery in which the fluence delivered up to a particular fraction is subtracted from the required total-course planned fluence to create an adapted residual fluence for the next fraction. This requires that the fluence already delivered can be computed, knowing the intrafraction motion during each fraction. If the adaptation is unconstrained, as would be required for perfect delivery of the planned fluence, then the individual fractional fluences would become unphysical, with both negative components and spikes. Hence it is argued that constraints must be applied; first, positivity constraints and second, constraints to limit fluence spikes. Additionally, it is shown to be helpful to constrain other quantities which are explained. The power of the strategy is that it adapts to the (potentially variable) moving geometry during each fraction. It is not a perfect delivery but it is always better than making no adaptation. The fractionated nature of radiation therapy is thus exploited to advantage. The fluence adaptation method does not require re-planning at each fraction but this imposes limitations which are stated. The fuller theory of dose adaptation is also developed for intrafraction motion. The method is complementary to other adaptive strategies recently discussed with respect to interfraction motion
Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.
2013-09-01
Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.
Periodic Solutions, Eigenvalue Curves, and Degeneracy of the Fractional Mathieu Equation
International Nuclear Information System (INIS)
Parra-Hinojosa, A; Gutiérrez-Vega, J C
2016-01-01
We investigate the eigenvalue curves, the behavior of the periodic solutions, and the orthogonality properties of the Mathieu equation with an additional fractional derivative term using the method of harmonic balance. The addition of the fractional derivative term breaks the hermiticity of the equation in such a way that its eigenvalues need not be real nor its eigenfunctions orthogonal. We show that for a certain choice of parameters the eigenvalue curves reveal the appearance of degenerate eigenvalues. We offer a detailed discussion of the matrix representation of the differential operator corresponding to the fractional Mathieu equation, as well as some numerical examples of its periodic solutions. (paper)
Directory of Open Access Journals (Sweden)
Adailton S. Borges
Full Text Available Abstract A broad class of engineering systems can be satisfactory modeled under the assumptions of small deformations and linear material properties. However, many mechanical systems used in modern applications, like structural elements typical of aerospace and petroleum industries, have been characterized by increased slenderness and high static and dynamic loads. In such situations, it becomes indispensable to consider the nonlinear geometric effects and/or material nonlinear behavior. At the same time, in many cases involving dynamic loads, there comes the need for attenuation of vibration levels. In this context, this paper describes the development and validation of numerical models of viscoelastic slender beam-like structures undergoing large displacements. The numerical approach is based on the combination of the nonlinear Cosserat beam theory and a viscoelastic model based on Fractional Derivatives. Such combination enables to derive nonlinear equations of motion that, upon finite element discretization, can be used for predicting the dynamic behavior of the structure in the time domain, accounting for geometric nonlinearity and viscoelastic damping. The modeling methodology is illustrated and validated by numerical simulations, the results of which are compared to others available in the literature.
Analysis of Equivalent Circuits for Cells: A Fractional Calculus Approach
Directory of Open Access Journals (Sweden)
Bernal-Alvarado J.
2012-07-01
Full Text Available Fractional order systems are considered by many mathematicians the systems of the XXI century. The reason is that nature has proved to be best described in terms of systems composed of fractional order derivatives. This emerging area of research is slowly gaining more strength in engineering, biochemistry, medicine, biophysics, among others. This paper presents an analysis in the frequency domain equivalent of cellular systems described by equations of integer and fractional order; it also carries out an analysis in time domain in order to display the memory capacity of fractional systems. It presents the fractional differential equations equivalent models and simulations comparing integer and fractional order.
Computational Challenge of Fractional Differential Equations and the Potential Solutions: A Survey
Directory of Open Access Journals (Sweden)
Chunye Gong
2015-01-01
Full Text Available We present a survey of fractional differential equations and in particular of the computational cost for their numerical solutions from the view of computer science. The computational complexities of time fractional, space fractional, and space-time fractional equations are O(N2M, O(NM2, and O(NM(M + N compared with O(MN for the classical partial differential equations with finite difference methods, where M, N are the number of space grid points and time steps. The potential solutions for this challenge include, but are not limited to, parallel computing, memory access optimization (fractional precomputing operator, short memory principle, fast Fourier transform (FFT based solutions, alternating direction implicit method, multigrid method, and preconditioner technology. The relationships of these solutions for both space fractional derivative and time fractional derivative are discussed. The authors pointed out that the technologies of parallel computing should be regarded as a basic method to overcome this challenge, and some attention should be paid to the fractional killer applications, high performance iteration methods, high order schemes, and Monte Carlo methods. Since the computation of fractional equations with high dimension and variable order is even heavier, the researchers from the area of mathematics and computer science have opportunity to invent cornerstones in the area of fractional calculus.
A fractional Fokker-Planck model for anomalous diffusion
Energy Technology Data Exchange (ETDEWEB)
Anderson, Johan, E-mail: anderson.johan@gmail.com [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Kim, Eun-jin [Department of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Moradi, Sara [Ecole Polytechnique, CNRS UMR7648, LPP, F-91128 Palaiseau (France)
2014-12-15
In this paper, we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality of the stable Lévy distribution. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.
On the Froehlich decomposition and the condensate fraction in He II
International Nuclear Information System (INIS)
Ghassib, H.B.; Sridhar, R.
1983-09-01
The method of extracting the Bose-Einstein condensate fraction in He II within the Froehlich decomposition scheme is revisited. A new simple formula for determining this fraction is derived. Possible experimental and theoretical implications are discussed. (author)
Symmetric duality for left and right Riemann–Liouville and Caputo fractional differences
Directory of Open Access Journals (Sweden)
Thabet Abdeljawad
2017-07-01
Full Text Available A discrete version of the symmetric duality of Caputo–Torres, to relate left and right Riemann–Liouville and Caputo fractional differences, is considered. As a corollary, we provide an evidence to the fact that in case of right fractional differences, one has to mix between nabla and delta operators. As an application, we derive right fractional summation by parts formulas and left fractional difference Euler–Lagrange equations for discrete fractional variational problems whose Lagrangians depend on right fractional differences.
Sales, T. P.; Marques, Flávio D.; Pereira, Daniel A.; Rade, Domingos A.
2018-06-01
Nonlinear aeroelastic systems are prone to the appearance of limit cycle oscillations, bifurcations, and chaos. Such problems are of increasing concern in aircraft design since there is the need to control nonlinear instabilities and improve safety margins, at the same time as aircraft are subjected to increasingly critical operational conditions. On the other hand, in spite of the fact that viscoelastic materials have already been successfully used for the attenuation of undesired vibrations in several types of mechanical systems, a small number of research works have addressed the feasibility of exploring the viscoelastic effect to improve the behavior of nonlinear aeroelastic systems. In this context, the objective of this work is to assess the influence of viscoelastic materials on the aeroelastic features of a three-degrees-of-freedom typical section with hardening structural nonlinearities. The equations of motion are derived accounting for the presence of viscoelastic materials introduced in the resilient elements associated to each degree-of-freedom. A constitutive law based on fractional derivatives is adopted, which allows the modeling of temperature-dependent viscoelastic behavior in time and frequency domains. The unsteady aerodynamic loading is calculated based on the classical linear potential theory for arbitrary airfoil motion. The aeroelastic behavior is investigated through time domain simulations, and subsequent frequency transformations, from which bifurcations are identified from diagrams of limit cycle oscillations amplitudes versus airspeed. The influence of the viscoelastic effect on the aeroelastic behavior, for different values of temperature, is also investigated. The numerical simulations show that viscoelastic damping can increase the flutter speed and reduce the amplitudes of limit cycle oscillations. These results prove the potential that viscoelastic materials have to increase aircraft components safety margins regarding aeroelastic
International Nuclear Information System (INIS)
Polat, Buelent; Guenther, Iris; Wilbert, Juergen; Goebel, Joachim; Sweeney, Reinhart A.; Flentje, Michael; Guckenberger, Matthias
2008-01-01
To evaluate intra-fractional uncertainties during intensity-modulated radiotherapy (IMRT) of prostate cancer. During IMRT of 21 consecutive patients, kilovolt (kV) cone-beam computed tomography (CBCT) images were acquired prior to and immediately after treatment: a total of 252 treatment fractions with 504 CBCT studies were basis of this analysis. The prostate position in anterior-posterior (AP) direction was determined using contour matching; patient set-up based on the pelvic bony anatomy was evaluated using automatic image registration. Internal variability of the prostate position was the difference between absolute prostate and patient position errors. Intra-fractional changes of prostate position, patient position, rectal distension in AP direction and bladder volume were analyzed. With a median treatment time of 16 min, intra-fractional drifts of the prostate were > 5 mm in 12% of all fractions and a margin of 6 mm was calculated for compensation of this uncertainty. Mobility of the prostate was independent from the bony anatomy with poor correlation between absolute prostate motion and motion of the bony anatomy (R 2 = 0.24). A systematic increase of bladder filling by 41 ccm on average was observed; however, these changes did not influence the prostate position. Small variations of the prostate position occurred independently from intra-fractional changes of the rectal distension; a weak correlation between large internal prostate motion and changes of the rectal volume was observed (R 2 = 0.55). Clinically significant intra-fractional changes of the prostate position were observed and margins of 6 mm were calculated for this intra-fractional uncertainty. Repeated or continuous verification of the prostate position may allow further margin reduction. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Polat, Buelent; Guenther, Iris; Wilbert, Juergen; Goebel, Joachim; Sweeney, Reinhart A.; Flentje, Michael; Guckenberger, Matthias [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology
2008-12-15
To evaluate intra-fractional uncertainties during intensity-modulated radiotherapy (IMRT) of prostate cancer. During IMRT of 21 consecutive patients, kilovolt (kV) cone-beam computed tomography (CBCT) images were acquired prior to and immediately after treatment: a total of 252 treatment fractions with 504 CBCT studies were basis of this analysis. The prostate position in anterior-posterior (AP) direction was determined using contour matching; patient set-up based on the pelvic bony anatomy was evaluated using automatic image registration. Internal variability of the prostate position was the difference between absolute prostate and patient position errors. Intra-fractional changes of prostate position, patient position, rectal distension in AP direction and bladder volume were analyzed. With a median treatment time of 16 min, intra-fractional drifts of the prostate were > 5 mm in 12% of all fractions and a margin of 6 mm was calculated for compensation of this uncertainty. Mobility of the prostate was independent from the bony anatomy with poor correlation between absolute prostate motion and motion of the bony anatomy (R{sup 2} = 0.24). A systematic increase of bladder filling by 41 ccm on average was observed; however, these changes did not influence the prostate position. Small variations of the prostate position occurred independently from intra-fractional changes of the rectal distension; a weak correlation between large internal prostate motion and changes of the rectal volume was observed (R{sup 2} = 0.55). Clinically significant intra-fractional changes of the prostate position were observed and margins of 6 mm were calculated for this intra-fractional uncertainty. Repeated or continuous verification of the prostate position may allow further margin reduction. (orig.)
Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay
Directory of Open Access Journals (Sweden)
S. J. Sadati
2010-01-01
Full Text Available Fractional calculus started to play an important role for analysis of the evolution of the nonlinear dynamical systems which are important in various branches of science and engineering. In this line of taught in this paper we studied the stability of fractional order nonlinear time-delay systems for Caputo's derivative, and we proved two theorems for Mittag-Leffler stability of the fractional nonlinear time delay systems.
de Jesus Pereira, Nathália Cristina; Régis, Wiliam César Bento; Costa, Lourena Emanuele; de Oliveira, Jamil Silvano; da Silva, Alanna Gomes; Martins, Vivian Tamietti; Duarte, Mariana Costa; de Souza, José Roberto Rodrigues; Lage, Paula Sousa; Schneider, Mônica Santos; Melo, Maria Norma; Soto, Manuel; Soares, Sandra Aguiar; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz
2015-06-01
The development of effective prophylactic strategies to prevent leishmaniasis has become a high priority. No less important than the choice of an antigen, the association of an appropriate adjuvant is necessary to achieve a successful vaccination, as the majority of the tested antigens contain limited immunogenic properties, and need to be supplemented with immune response adjuvants in order to boost their immunogenicity. However, few effective adjuvants that can be used against leishmaniasis exist on the market today; therefore, it is possible to speculate that the research aiming to identify new adjuvants could be considered relevant. Recently, Agaricus blazei extracts have proved to be useful in enhancing the immune response to DNA vaccines against some diseases. This was based on the Th1 adjuvant activity of the polysaccharide-rich fractions from this mushroom. In this context, the present study evaluated purified fractions derived from Agaricus blazei as Th1 adjuvants through in vitro assays of their immune stimulation of spleen cells derived from naive BALB/c mice. Two of the tested six fractions (namely F2 and F4) were characterized as polysaccharide-rich fractions, and were able to induce high levels of IFN-γ, and low levels of IL-4 and IL-10 in the spleen cells. The efficacy of adjuvant action against L. infantum was evaluated in BALB/c mice, with these fractions being administered together with a recombinant antigen, LiHyp1, which was previously evaluated as a vaccine candidate, associated with saponin, against visceral leishmaniasis (VL). The associations between LiHyp1/F2 and LiHyp1/F4 were able to induce an in vivo Th1 response, which was primed by high levels of IFN-γ, IL-12, and GM-CSF, by low levels of IL-4 and IL-10; as well as by a predominance of IgG2a antibodies in the vaccinated animals. After infection, the immune profile was maintained, and the vaccines proved to be effective against L. infantum. The immune stimulatory effects in the
Hyperchaotic Chameleon: Fractional Order FPGA Implementation
Directory of Open Access Journals (Sweden)
Karthikeyan Rajagopal
2017-01-01
Full Text Available There are many recent investigations on chaotic hidden attractors although hyperchaotic hidden attractor systems and their relationships have been less investigated. In this paper, we introduce a hyperchaotic system which can change between hidden attractor and self-excited attractor depending on the values of parameters. Dynamic properties of these systems are investigated. Fractional order models of these systems are derived and their bifurcation with fractional orders is discussed. Field programmable gate array (FPGA implementations of the systems with their power and resource utilization are presented.
Directory of Open Access Journals (Sweden)
Ahmad Bashir
2010-01-01
Full Text Available We study an initial value problem for a coupled Caputo type nonlinear fractional differential system of higher order. As a first problem, the nonhomogeneous terms in the coupled fractional differential system depend on the fractional derivatives of lower orders only. Then the nonhomogeneous terms in the fractional differential system are allowed to depend on the unknown functions together with the fractional derivative of lower orders. Our method of analysis is based on the reduction of the given system to an equivalent system of integral equations. Applying the nonlinear alternative of Leray-Schauder, we prove the existence of solutions of the fractional differential system. The uniqueness of solutions of the fractional differential system is established by using the Banach contraction principle. An illustrative example is also presented.
Black holes in multi-fractional and Lorentz-violating models
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Rodriguez Fernandez, David [Universidad de Oviedo, Department of Physics, Oviedo (Spain); Ronco, Michele [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy)
2017-05-15
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length l{sub *}. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to l{sub *}. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models. (orig.)
Black holes in multi-fractional and Lorentz-violating models
International Nuclear Information System (INIS)
Calcagni, Gianluca; Rodriguez Fernandez, David; Ronco, Michele
2017-01-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length l_*. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to l_*. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models. (orig.)
Black holes in multi-fractional and Lorentz-violating models.
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-01-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q -derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length [Formula: see text]. In the q -derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to [Formula: see text]. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q -derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
A remark on fractional differential equation involving I-function
Mishra, Jyoti
2018-02-01
The present paper deals with the solution of the fractional differential equation using the Laplace transform operator and its corresponding properties in the fractional calculus; we derive an exact solution of a complex fractional differential equation involving a special function known as I-function. The analysis of the some fractional integral with two parameters is presented using the suggested Theorem 1. In addition, some very useful corollaries are established and their proofs presented in detail. Some obtained exact solutions are depicted to see the effect of each fractional order. Owing to the wider applicability of the I-function, we can conclude that, the obtained results in our work generalize numerous well-known results obtained by specializing the parameters.
Directory of Open Access Journals (Sweden)
Yunfeng Jiang
2016-07-01
Full Text Available A fractional derivative system identification approach for modeling battery dynamics is presented in this paper, where fractional derivatives are applied to approximate non-linear dynamic behavior of a battery system. The least squares-based state-variable filter (LSSVF method commonly used in the identification of continuous-time models is extended to allow the estimation of fractional derivative coefficents and parameters of the battery models by monitoring a charge/discharge demand signal and a power storage/delivery signal. In particular, the model is combined by individual fractional differential models (FDMs, where the parameters can be estimated by a least-squares algorithm. Based on experimental data, it is illustrated how the fractional derivative model can be utilized to predict the dynamics of the energy storage and delivery of a lithium iron phosphate battery (LiFePO 4 in real-time. The results indicate that a FDM can accurately capture the dynamics of the energy storage and delivery of the battery over a large operating range of the battery. It is also shown that the fractional derivative model exhibits improvements on prediction performance compared to standard integer derivative model, which in beneficial for a battery management system.
Derivation of the point spread function for zero-crossing-demodulated position-sensitive detectors
International Nuclear Information System (INIS)
Nowlin, C.H.
1976-07-01
This work is a mathematical derivation of a high-quality approximation to the point spread function for position-sensitive detectors (PSDs) that use pulse-shape modulation and crossover-time demodulation. The approximation is determined as a general function of the input signals to the crossover detectors so as to enable later determination of optimum position-decoding filters for PSDs. This work is precisely applicable to PSDs that use either RC or LC transmission line encoders. The effects of random variables, such as charge collection time, in the encoding process are included. In addition, this work presents a new, rigorous method for the determination of upper and lower bounds for conditional crossover-time distribution functions (closely related to first-passage-time distribution functions) for arbitrary signals and arbitrary noise covariance functions
International Nuclear Information System (INIS)
Teboh, Forbang R; Agee, M; Rowe, L; Creasy, T; Schultz, J; Bell, R; Wong, J; Armour, E
2014-01-01
Purpose: Immobilization devices combine rigid patient fixation as well as comfort and play a key role providing the stability required for accurate radiation delivery. In the setup step, couch re-positioning needed to align the patient is derived via registration of acquired versus reference image. For subsequent fractions, replicating the initial setup should yield identical alignment errors when compared to the reference. This is not always the case and further couch re-positioning can be needed. An important quality assurance measure is to set couch tolerances beyond which additional investigations are needed. The purpose of this work was to study the inter-fraction couch changes needed to re-align the patient and the intra-fraction stability of the alignment as a guide to establish the couch tolerances. Methods: Data from twelve patients treated on the Accuray CyberKnife (CK) system for fractionated intracranial radiotherapy and immobilized with Aquaplast RT, U-frame, F-Head-Support (Qfix, PA, USA) was used. Each fraction involved image acquisitions and registration with the reference to re-align the patient. The absolute couch position corresponding to the approved setup alignment was recorded per fraction. Intra-fraction set-up corrections were recorded throughout the treatment. Results: The average approved setup alignment was 0.03±0.28mm, 0.15±0.22mm, 0.06±0.31mm in the L/R, A/P, S/I directions respectively and 0.00±0.35degrees, 0.03±0.32degrees, 0.08±0.45degrees for roll, pitch and yaw respectively. The inter-fraction reproducibility of the couch position was 6.65mm, 10.55mm, and 4.77mm in the L/R, A/P and S/I directions respectively and 0.82degrees, 0.71degrees for roll and pitch respectively. Intra-fraction monitoring showed small average errors of 0.21±0.21mm, 0.00±0.08mm, 0.23±0.22mm in the L/R, A/P, S/I directions respectively and 0.03±0.12degrees, 0.04±0.25degrees, and 0.13±0.15degrees in the roll, pitch and yaw respectively. Conclusion
Energy Technology Data Exchange (ETDEWEB)
Teboh, Forbang R; Agee, M; Rowe, L; Creasy, T; Schultz, J; Bell, R; Wong, J; Armour, E [Johns Hopkins University, Baltimore, MD (United States)
2014-06-01
Purpose: Immobilization devices combine rigid patient fixation as well as comfort and play a key role providing the stability required for accurate radiation delivery. In the setup step, couch re-positioning needed to align the patient is derived via registration of acquired versus reference image. For subsequent fractions, replicating the initial setup should yield identical alignment errors when compared to the reference. This is not always the case and further couch re-positioning can be needed. An important quality assurance measure is to set couch tolerances beyond which additional investigations are needed. The purpose of this work was to study the inter-fraction couch changes needed to re-align the patient and the intra-fraction stability of the alignment as a guide to establish the couch tolerances. Methods: Data from twelve patients treated on the Accuray CyberKnife (CK) system for fractionated intracranial radiotherapy and immobilized with Aquaplast RT, U-frame, F-Head-Support (Qfix, PA, USA) was used. Each fraction involved image acquisitions and registration with the reference to re-align the patient. The absolute couch position corresponding to the approved setup alignment was recorded per fraction. Intra-fraction set-up corrections were recorded throughout the treatment. Results: The average approved setup alignment was 0.03±0.28mm, 0.15±0.22mm, 0.06±0.31mm in the L/R, A/P, S/I directions respectively and 0.00±0.35degrees, 0.03±0.32degrees, 0.08±0.45degrees for roll, pitch and yaw respectively. The inter-fraction reproducibility of the couch position was 6.65mm, 10.55mm, and 4.77mm in the L/R, A/P and S/I directions respectively and 0.82degrees, 0.71degrees for roll and pitch respectively. Intra-fraction monitoring showed small average errors of 0.21±0.21mm, 0.00±0.08mm, 0.23±0.22mm in the L/R, A/P, S/I directions respectively and 0.03±0.12degrees, 0.04±0.25degrees, and 0.13±0.15degrees in the roll, pitch and yaw respectively. Conclusion
Bifurcation and chaos of a new discrete fractional-order logistic map
Ji, YuanDong; Lai, Li; Zhong, SuChuan; Zhang, Lu
2018-04-01
The fractional-order discrete maps with chaotic behaviors based on the theory of ;fractional difference; are proposed in recent years. In this paper, instead of using fractional difference, a new fractionalized logistic map is proposed based on the numerical algorithm of fractional differentiation definition. The bifurcation diagrams of this map with various differential orders are given by numerical simulation. The simulation results show that the fractional-order logistic map derived in this manner holds rich dynamical behaviors because of its memory effect. In addition, new types of behaviors of bifurcation and chaos are found, which are different from those of the integer-order and the previous fractional-order logistic maps.
Boundary value problem for Caputo-Hadamard fractional differential equations
Directory of Open Access Journals (Sweden)
Yacine Arioua
2017-09-01
Full Text Available The aim of this work is to study the existence and uniqueness solutions for boundary value problem of nonlinear fractional differential equations with Caputo-Hadamard derivative in bounded domain. We used the standard and Krasnoselskii's fixed point theorems. Some new results of existence and uniqueness solutions for Caputo-Hadamard fractional equations are obtained.
Batool, Fiza; Akram, Ghazala
2018-05-01
An improved (G'/G)-expansion method is proposed for extracting more general solitary wave solutions of the nonlinear fractional Cahn-Allen equation. The temporal fractional derivative is taken in the sense of Jumarie's fractional derivative. The results of this article are generalized and extended version of previously reported solutions.
Explicit Formulae for the Continued Fraction Convergents of "Square Root of D"
Braza, Peter A.
2010-01-01
The formulae for the convergents of continued fractions are always given recursively rather than in explicit form. This article derives explicit formulae for the convergents of the continued fraction expansions for square roots.
Exact solutions of space-time fractional EW and modified EW equations
International Nuclear Information System (INIS)
Korkmaz, Alper
2017-01-01
The bright soliton solutions and singular solutions are constructed for the space-time fractional EW and the space-time fractional modified EW (MEW) equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform (FCT) and properties of modified Riemann–Liouville derivative. Then, various ansatz method are implemented to construct the solutions for both equations.
Exact solutions of nonlinear fractional differential equations by (G′/G)-expansion method
International Nuclear Information System (INIS)
Bekir Ahmet; Güner Özkan
2013-01-01
In this paper, we use the fractional complex transform and the (G′/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann—Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations
Remarks for one-dimensional fractional equations
Directory of Open Access Journals (Sweden)
Massimiliano Ferrara
2014-01-01
Full Text Available In this paper we study a class of one-dimensional Dirichlet boundary value problems involving the Caputo fractional derivatives. The existence of infinitely many solutions for this equations is obtained by exploiting a recent abstract result. Concrete examples of applications are presented.
International Nuclear Information System (INIS)
Sutherland, J; Pantarotto, J; Nair, V; Cook, G; Plourde, M; Vandervoort, E
2015-01-01
Purpose: To quantify respiratory-induced motion of liver segments using the positions of implanted fiducials during robotic radiosurgery. This study also compared fiducial motion derived from four-dimensional computed tomography (4D-CT) maximum intensity projections (MIP) with motion derived from imaging during treatment. Methods: Forty-two consecutive liver patients treated with liver ablative radiotherapy were accrued to an ethics approved retrospective study. The liver segment in which each fiducial resided was identified. Fiducial positions throughout each treatment fraction were determined using orthogonal kilovoltage images. Any data due to patient repositioning or motion was removed. Mean fiducial positions were calculated. Fiducial positions beyond two standard deviations of the mean were discarded and remaining positions were fit to a line segment using least squares minimization (LSM). For eight patients, fiducial motion was derived from 4D-CT MIPs by calculating the CT number weighted mean position of the fiducial on each slice and fitting a line segment to these points using LSM. Treatment derived fiducial trajectories were corrected for patient rotation and compared to MIP derived trajectories. Results: The mean total magnitude of fiducial motion across all liver segments in left-right, anteroposterior, and superoinferior (SI) directions were 3.0 ± 0.2 mm, 9.3 ± 0.4 mm, and 20.5 ± 0.5 mm, respectively. Differences in per-segment mean fiducial motion were found with SI motion ranging from 12.6 ± 0.8 mm to 22.6 ± 0.9 mm for segments 3 and 8, respectively. Large, varied differences between treatment and MIP derived motion at simulation were found with the mean difference for SI motion being 2.6 mm (10.8 mm standard deviation). Conclusion: The magnitude of liver fiducial motion was found to differ by liver segment. MIP derived liver fiducial motion differed from motion observed during treatment, implying that 4D-CTs may not accurately capture the
Energy Technology Data Exchange (ETDEWEB)
Sutherland, J; Pantarotto, J; Nair, V; Cook, G; Plourde, M; Vandervoort, E [The Ottawa Hospital Cancer Centre, Ottawa, Ontario (Canada)
2015-06-15
Purpose: To quantify respiratory-induced motion of liver segments using the positions of implanted fiducials during robotic radiosurgery. This study also compared fiducial motion derived from four-dimensional computed tomography (4D-CT) maximum intensity projections (MIP) with motion derived from imaging during treatment. Methods: Forty-two consecutive liver patients treated with liver ablative radiotherapy were accrued to an ethics approved retrospective study. The liver segment in which each fiducial resided was identified. Fiducial positions throughout each treatment fraction were determined using orthogonal kilovoltage images. Any data due to patient repositioning or motion was removed. Mean fiducial positions were calculated. Fiducial positions beyond two standard deviations of the mean were discarded and remaining positions were fit to a line segment using least squares minimization (LSM). For eight patients, fiducial motion was derived from 4D-CT MIPs by calculating the CT number weighted mean position of the fiducial on each slice and fitting a line segment to these points using LSM. Treatment derived fiducial trajectories were corrected for patient rotation and compared to MIP derived trajectories. Results: The mean total magnitude of fiducial motion across all liver segments in left-right, anteroposterior, and superoinferior (SI) directions were 3.0 ± 0.2 mm, 9.3 ± 0.4 mm, and 20.5 ± 0.5 mm, respectively. Differences in per-segment mean fiducial motion were found with SI motion ranging from 12.6 ± 0.8 mm to 22.6 ± 0.9 mm for segments 3 and 8, respectively. Large, varied differences between treatment and MIP derived motion at simulation were found with the mean difference for SI motion being 2.6 mm (10.8 mm standard deviation). Conclusion: The magnitude of liver fiducial motion was found to differ by liver segment. MIP derived liver fiducial motion differed from motion observed during treatment, implying that 4D-CTs may not accurately capture the
Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa
2018-06-01
In this work, we investigate the Lie symmetry analysis, exact solutions and conservation laws (Cls) to the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGDK) equation with Riemann-Liouville (RL) derivative. The time fractional CDGDK is reduced to nonlinear ordinary differential equation (ODE) of fractional order. New exact traveling wave solutions for the time fractional CDGDK are obtained by fractional sub-equation method. In the reduced equation, the derivative is in Erdelyi-Kober (EK) sense. Ibragimov's nonlocal conservation method is applied to construct Cls for time fractional CDGDK.
Theory and simulation of time-fractional fluid diffusion in porous media
International Nuclear Information System (INIS)
Carcione, José M; Sanchez-Sesma, Francisco J; Gavilán, Juan J Perez; Luzón, Francisco
2013-01-01
We simulate a fluid flow in inhomogeneous anisotropic porous media using a time-fractional diffusion equation and the staggered Fourier pseudospectral method to compute the spatial derivatives. A fractional derivative of the order of 0 < ν < 2 replaces the first-order time derivative in the classical diffusion equation. It implies a time-dependent permeability tensor having a power-law time dependence, which describes memory effects and accounts for anomalous diffusion. We provide a complete analysis of the physics based on plane waves. The concepts of phase, group and energy velocities are analyzed to describe the location of the diffusion front, and the attenuation and quality factors are obtained to quantify the amplitude decay. We also obtain the frequency-domain Green function. The time derivative is computed with the Grünwald–Letnikov summation, which is a finite-difference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. An example of the pressure field generated by a fluid injection in a heterogeneous sandstone illustrates the performance of the algorithm for different values of ν. The calculation requires storing the whole pressure field in the computer memory since anomalous diffusion ‘recalls the past’. (paper)
International Nuclear Information System (INIS)
Keeling, V; Jin, H; Ali, I; Ahmad, S
2014-01-01
Purpose: To determine dosimetric impact of positioning errors in the stereotactic hypo-fractionated treatment of intracranial lesions using 3Dtransaltional and 3D-rotational corrections (6D) frameless BrainLAB ExacTrac X-Ray system. Methods: 20 cranial lesions, treated in 3 or 5 fractions, were selected. An infrared (IR) optical positioning system was employed for initial patient setup followed by stereoscopic kV X-ray radiographs for position verification. 6D-translational and rotational shifts were determined to correct patient position. If these shifts were above tolerance (0.7 mm translational and 1° rotational), corrections were applied and another set of X-rays was taken to verify patient position. Dosimetric impact (D95, Dmin, Dmax, and Dmean of planning target volume (PTV) compared to original plans) of positioning errors for initial IR setup (XC: Xray Correction) and post-correction (XV: X-ray Verification) was determined in a treatment planning system using a method proposed by Yue et al. (Med. Phys. 33, 21-31 (2006)) with 3D-translational errors only and 6D-translational and rotational errors. Results: Absolute mean translational errors (±standard deviation) for total 92 fractions (XC/XV) were 0.79±0.88/0.19±0.15 mm (lateral), 1.66±1.71/0.18 ±0.16 mm (longitudinal), 1.95±1.18/0.15±0.14 mm (vertical) and rotational errors were 0.61±0.47/0.17±0.15° (pitch), 0.55±0.49/0.16±0.24° (roll), and 0.68±0.73/0.16±0.15° (yaw). The average changes (loss of coverage) in D95, Dmin, Dmax, and Dmean were 4.5±7.3/0.1±0.2%, 17.8±22.5/1.1±2.5%, 0.4±1.4/0.1±0.3%, and 0.9±1.7/0.0±0.1% using 6Dshifts and 3.1±5.5/0.0±0.1%, 14.2±20.3/0.8±1.7%, 0.0±1.2/0.1±0.3%, and 0.7±1.4/0.0±0.1% using 3D-translational shifts only. The setup corrections (XC-XV) improved the PTV coverage by 4.4±7.3% (D95) and 16.7±23.5% (Dmin) using 6D adjustment. Strong correlations were observed between translation errors and deviations in dose coverage for XC. Conclusion
Liu, Da-Yan; Tian, Yang; Boutat, Driss; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
Liu, Da-Yan
2015-04-30
This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
Tensor Fields for Use in Fractional-Order Viscoelasticity
Freed, Alan D.; Diethelm, Kai
2003-01-01
To be able to construct viscoelastic material models from fractional0order differentegral equations that are applicable for 3D finite-strain analysis requires definitions for fractional derivatives and integrals for symmetric tensor fields, like stress and strain. We define these fields in the body manifold. We then map them ito spatial fields expressed in terms of an Eulerian or Lagrangian reference frame where most analysts prefer to solve boundary problems.
Wavelet Methods for Solving Fractional Order Differential Equations
A. K. Gupta; S. Saha Ray
2014-01-01
Fractional calculus is a field of applied mathematics which deals with derivatives and integrals of arbitrary orders. The fractional calculus has gained considerable importance during the past decades mainly due to its application in diverse fields of science and engineering such as viscoelasticity, diffusion of biological population, signal processing, electromagnetism, fluid mechanics, electrochemistry, and many more. In this paper, we review different wavelet methods for solving both linea...
Stationarity-conservation laws for fractional differential equations with variable coefficients
International Nuclear Information System (INIS)
Klimek, Malgorzata
2002-01-01
In this paper, we study linear fractional differential equations with variable coefficients. It is shown that, by assuming some conditions for the coefficients, the stationarity-conservation laws can be derived. The area where these are valid is restricted by the asymptotic properties of solutions of the respective equation. Applications of the proposed procedure include the fractional Fokker-Planck equation in (1+1)- and (d+1)-dimensional space and the fractional Klein-Kramers equation. (author)
Stationarity-conservation laws for fractional differential equations with variable coefficients
Energy Technology Data Exchange (ETDEWEB)
Klimek, Malgorzata [Institute of Mathematics and Computer Science, Technical University of Czestochowa, Czestochowa (Poland)
2002-08-09
In this paper, we study linear fractional differential equations with variable coefficients. It is shown that, by assuming some conditions for the coefficients, the stationarity-conservation laws can be derived. The area where these are valid is restricted by the asymptotic properties of solutions of the respective equation. Applications of the proposed procedure include the fractional Fokker-Planck equation in (1+1)- and (d+1)-dimensional space and the fractional Klein-Kramers equation. (author)
Directory of Open Access Journals (Sweden)
Venkat M Ramakrishnan
Full Text Available Human adipose-derived stromal vascular fraction (hSVF cells are an easily accessible, heterogeneous cell system that can spontaneously self-assemble into functional microvasculatures in vivo. However, the mechanisms underlying vascular self-assembly and maturation are poorly understood, therefore we utilized an in vitro model to identify potential in vivo regulatory mechanisms. We utilized passage one (P1 hSVF because of the rapid UEA1+ endothelium (EC loss at even P2 culture. We exposed hSVF cells to a battery of angiogenesis inhibitors and found that the pan-Wnt inhibitor IWP2 produced the most significant hSVF-EC networking decrease (~25%. To determine which Wnt isoform(s and receptor(s may be involved, hSVF was screened by PCR for isoforms associated with angiogenesis, with only WNT5A and its receptor, FZD4, being expressed for all time points observed. Immunocytochemistry confirmed Wnt5a protein expression by hSVF. To see if Wnt5a alone could restore IWP2-induced EC network inhibition, recombinant human Wnt5a (0-150 ng/ml was added to IWP2-treated cultures. The addition of rhWnt5a significantly increased EC network area and significantly decreased the ratio of total EC network length to EC network area compared to untreated controls. To determine if Wnt5a mediates in vivo microvascular self-assembly, 3D hSVF constructs containing an IgG isotype control, anti-Wnt5a neutralizing antibody or rhWnt5a were implanted subcutaneously for 2w in immune compromised mice. Compared to IgG controls, anti-Wnt5a treatment significantly reduced vessel length density by ~41%, while rhWnt5a significantly increased vessel length density by ~62%. However, anti-Wnt5a or rhWnt5a did not significantly affect the density of segments and nodes, both of which measure vascular complexity. Taken together, this data demonstrates that endogenous Wnt5a produced by hSVF plays a regulatory role in microvascular self-assembly in vivo. These findings also suggest that
Solving Nonlinear Fractional Differential Equation by Generalized Mittag-Leffler Function Method
Arafa, A. A. M.; Rida, S. Z.; Mohammadein, A. A.; Ali, H. M.
2013-06-01
In this paper, we use Mittag—Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo's sense. To illustrate the reliability of the method, some examples are provided.
Generalized Functions for the Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
1999-01-01
Previous papers have used two important functions for the solution of fractional order differential equations, the Mittag-Leffler functionE(sub q)[at(exp q)](1903a, 1903b, 1905), and the F-function F(sub q)[a,t] of Hartley & Lorenzo (1998). These functions provided direct solution and important understanding for the fundamental linear fractional order differential equation and for the related initial value problem (Hartley and Lorenzo, 1999). This paper examines related functions and their Laplace transforms. Presented for consideration are two generalized functions, the R-function and the G-function, useful in analysis and as a basis for computation in the fractional calculus. The R-function is unique in that it contains all of the derivatives and integrals of the F-function. The R-function also returns itself on qth order differ-integration. An example application of the R-function is provided. A further generalization of the R-function, called the G-function brings in the effects of repeated and partially repeated fractional poles.
A Fractionally Integrated Wishart Stochastic Volatility Model
M. Asai (Manabu); M.J. McAleer (Michael)
2013-01-01
textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of
Approximate solution of integro-differential equation of fractional (arbitrary order
Directory of Open Access Journals (Sweden)
Asma A. Elbeleze
2016-01-01
Full Text Available In the present paper, we study the integro-differential equations which are combination of differential and Fredholm–Volterra equations that have the fractional order with constant coefficients by the homotopy perturbation and the variational iteration. The fractional derivatives are described in Caputo sense. Some illustrative examples are presented.
Directory of Open Access Journals (Sweden)
Mojdeh Hakemi Vala
2014-08-01
Full Text Available Introduction: In the recent years, due to the wide spread of resistant bacteria on one side and several different reports about the side effects of chemical drugs on the other side, vast researches on the medicinal plants have been started. In this study, antimicrobial effect of total extract of Tribulus terrestris L. and its fraction containing Benzoxazine derivative (Terresoxazine was studied for the first time in Iran.Materials and methods: Total aqueous extract of aerial parts of the plant was prepared and in order to separate the components of aqueous extract, liquid/liquid extraction with Petroleum ether was used. Formation of three layers was the result of this extraction. Layers included water fraction, Petroleum ether fraction and a third layer which was formed at the interface of water and petroleum ether. LC/MS system proved the existence of Benzixazine derivative in the water fraction and the thirds fraction. Antimicrobial effects of total extract, water fraction and the third fraction (which were the layers formed after the extraction process were examined against 10 Gram positive and negative and candida spp by cup plate method and Disk diffusion method. Also, the MIC and MBC were determined by micro dilution method.Results: Of 8 evaluated bacteria and 2 Candida spp, the total extract showed antibacterial effect only against E.coli, P.aeruginosa and B.subtilis. Size of the zone of inhibitation increased with increasing the concentration of the extract. Fraction containing Benzoxazine derivative had no effect against tested microbes. MIC and MBC determination showed that B.subtilis had the least sensitivity to the total extract, comparing to other microorganisms. Besides, comparing the zone of inhibitation of Penicillin 200 mg/ml and the zone of inhibitation of the total aqueous extract shows that the solution of total extract in water with 1000 mg/ml concentration and the solution of total extract in DMSO10% with 750 mg/ml density
On the Scaled Fractional Fourier Transformation Operator
International Nuclear Information System (INIS)
Hong-Yi, Fan; Li-Yun, Hu
2008-01-01
Based on our previous study [Chin. Phys. Lett. 24 (2007) 2238] in which the Fresnel operator corresponding to classical Fresnel transform was introduced, we derive the fractional Fourier transformation operator, and the optical operator method is then enriched
Fractional-dimensional Child-Langmuir law for a rough cathode
International Nuclear Information System (INIS)
Zubair, M.; Ang, L. K.
2016-01-01
This work presents a self-consistent model of space charge limited current transport in a gap combined of free-space and fractional-dimensional space (F α ), where α is the fractional dimension in the range 0 < α ≤ 1. In this approach, a closed-form fractional-dimensional generalization of Child-Langmuir (CL) law is derived in classical regime which is then used to model the effect of cathode surface roughness in a vacuum diode by replacing the rough cathode with a smooth cathode placed in a layer of effective fractional-dimensional space. Smooth transition of CL law from the fractional-dimensional to integer-dimensional space is also demonstrated. The model has been validated by comparing results with an experiment.
Fractional-dimensional Child-Langmuir law for a rough cathode
Energy Technology Data Exchange (ETDEWEB)
Zubair, M., E-mail: muhammad-zubair@sutd.edu.sg; Ang, L. K., E-mail: ricky-ang@sutd.edu.sg [SUTD-MIT International Design Centre, Singapore University of Technology and Design, Singapore 487372 and Engineering Product Development, Singapore University of Technology and Design, Singapore 487372 (Singapore)
2016-07-15
This work presents a self-consistent model of space charge limited current transport in a gap combined of free-space and fractional-dimensional space (F{sup α}), where α is the fractional dimension in the range 0 < α ≤ 1. In this approach, a closed-form fractional-dimensional generalization of Child-Langmuir (CL) law is derived in classical regime which is then used to model the effect of cathode surface roughness in a vacuum diode by replacing the rough cathode with a smooth cathode placed in a layer of effective fractional-dimensional space. Smooth transition of CL law from the fractional-dimensional to integer-dimensional space is also demonstrated. The model has been validated by comparing results with an experiment.
Bright and dark soliton solutions for some nonlinear fractional differential equations
International Nuclear Information System (INIS)
Guner, Ozkan; Bekir, Ahmet
2016-01-01
In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space–time fractional modified Benjamin–Bona–Mahoney (mBBM) equation, the time fractional mKdV equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional derivatives are described in the modified Riemann–Liouville sense. (paper)
Sagar, Sunil; Esau, Luke; Moosa, Basem; Khashab, Niveen M.; Bajic, Vladimir B.; Kaur, Mandeep
2014-01-01
Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer. 2014 Bentham Science Publishers.
Sagar, Sunil
2014-01-31
Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer. 2014 Bentham Science Publishers.
Directory of Open Access Journals (Sweden)
Emrullah Yaşar
Full Text Available In this paper Lie symmetry analysis of the seventh-order time fractional Sawada–Kotera–Ito (FSKI equation with Riemann–Liouville derivative is performed. Using the Lie point symmetries of FSKI equation, it is shown that it can be transformed into a nonlinear ordinary differential equation of fractional order with a new dependent variable. In the reduced equation the derivative is in Erdelyi–Kober sense. Furthermore, adapting the Ibragimov’s nonlocal conservation method to time fractional partial differential equations, we obtain conservation laws of the underlying equation. In addition, we construct some exact travelling wave solutions for the FSKI equation using the sub-equation method. Keywords: Fractional Sawada–Kotera–Ito equation, Lie symmetry, Riemann–Liouville fractional derivative, Conservation laws, Exact solutions
Combinatorial interpretation of Haldane-Wu fractional exclusion statistics.
Aringazin, A K; Mazhitov, M I
2002-08-01
Assuming that the maximal allowed number of identical particles in a state is an integer parameter, q, we derive the statistical weight and analyze the associated equation that defines the statistical distribution. The derived distribution covers Fermi-Dirac and Bose-Einstein ones in the particular cases q=1 and q--> infinity (n(i)/q-->1), respectively. We show that the derived statistical weight provides a natural combinatorial interpretation of Haldane-Wu fractional exclusion statistics, and present exact solutions of the distribution equation.
Bourin, Philippe; Bunnell, Bruce A; Casteilla, Louis; Dominici, Massimo; Katz, Adam J; March, Keith L; Redl, Heinz; Rubin, J Peter; Yoshimura, Kotaro; Gimble, Jeffrey M
2013-06-01
Adipose tissue is a rich and very convenient source of cells for regenerative medicine therapeutic approaches. However, a characterization of the population of adipose-derived stromal and stem cells (ASCs) with the greatest therapeutic potential remains unclear. Under the authority of International Federation of Adipose Therapeutics and International Society for Cellular Therapy, this paper sets out to establish minimal definitions of stromal cells both as uncultured stromal vascular fraction (SVF) and as an adherent stromal/stem cells population. Phenotypic and functional criteria for the identification of adipose-derived cells were drawn from the literature. In the SVF, cells are identified phenotypically by the following markers: CD45-CD235a-CD31-CD34+. Added value may be provided by both a viability marker and the following surface antigens: CD13, CD73, CD90 and CD105. The fibroblastoid colony-forming unit assay permits the evaluation of progenitor frequency in the SVF population. In culture, ASCs retain markers in common with other mesenchymal stromal/stem cells (MSCs), including CD90, CD73, CD105, and CD44 and remain negative for CD45 and CD31. They can be distinguished from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106. The CFU-F assay is recommended to calculate population doublings capacity of ASCs. The adipocytic, chondroblastic and osteoblastic differentiation assays serve to complete the cell identification and potency assessment in conjunction with a quantitative evaluation of the differentiation either biochemically or by reverse transcription polymerase chain reaction. The goal of this paper is to provide initial guidance for the scientific community working with adipose-derived cells and to facilitate development of international standards based on reproducible parameters. Copyright © 2013 International Society for Cellular Therapy. All rights reserved.
Lie symmetry analysis and conservation laws for the time fractional fourth-order evolution equation
Directory of Open Access Journals (Sweden)
Wang Li
2017-06-01
Full Text Available In this paper, we study Lie symmetry analysis and conservation laws for the time fractional nonlinear fourth-order evolution equation. Using the method of Lie point symmetry, we provide the associated vector fields, and derive the similarity reductions of the equation, respectively. The method can be applied wisely and efficiently to get the reduced fractional ordinary differential equations based on the similarity reductions. Finally, by using the nonlinear self-adjointness method and Riemann-Liouville time-fractional derivative operator as well as Euler-Lagrange operator, the conservation laws of the equation are obtained.
Directory of Open Access Journals (Sweden)
Niccolò Pampuro
2017-11-01
Full Text Available The phytotoxicity of four different composts obtained from pig slurry solid fraction composted by itself (SSFC and mixed with sawdust (SC, woodchips (WCC and wheat straw (WSC was tested with bioassay methods. For each compost type, the effect of water extracts of compost on seed germination and primary root growth of cress (Lepidium Sativum L. was investigated. Composts were also chemically analysed for total nitrogen, ammonium, electrical conductivity and heavy metal (Cu and Zn. The chemicals were correlated to phytotoxicity indices. The mean values of the germination index (GI obtained were 160.7, 187.9, 200.9 and 264.4 for WSC, WCC, SC and SSFC, respectively. Growth index (GrI ranged from the 229.4%, the highest value, for SSFC, followed by 201.9% for SC, and 193.1% for WCC, to the lowest value, 121.4%, for WSC. Electrical conductivity showed a significant and negative correlation with relative seed germination at the 50% and 75% concentrations. A strong positive correlation was found for water-extractable Cu with relative root growth and germination index at the 10% concentration. Water-extractable Zn showed a significant positive correlation with relative root growth and GI at the 10% concentration. These results highlighted that the four composts could be used for organic pellet production and subsequently distributed as a soil amendment with positive effects on seed germination and plant growth (GI > 80%.
Patra, Asim
2018-03-01
This paper displays the approach of the time-splitting Fourier spectral (TSFS) technique for the linear Riesz fractional Schrödinger equation (RFSE) in the semi-classical regime. The splitting technique is shown to be unconditionally stable. Further a suitable implicit finite difference discretization of second order has been manifested for the RFSE where the Riesz derivative has been discretized via an approach of fractional centered difference. Moreover the stability analysis for the implicit scheme has also been presented here via von Neumann analysis. The L2-norm and L^{∞}-norm errors are calculated for \\vert u(x,t)\\vert2, Re(u(x,t)) and Im(u(x,t)) for various cases. The results obtained by the methods are further tabulated for the absolute errors for \\vert u(x,t)\\vert2. Furthermore the graphs are depicted showing comparison of \\vert u(x,t)\\vert2 by both techniques. The derivatives are taken here in the context of the Riesz fractional sense. Apart from that, the comparative study put forth in the following section via tables and graphs between the implicit second-order finite difference method (IFDM) and the TSFS method is for the purpose of investigating the efficiency of the results obtained. Moreover the stability analysis of the presented techniques manifesting their unconditional stability makes the proposed approach more competing and accurate.
Modeling and analysis of fractional order DC-DC converter.
Radwan, Ahmed G; Emira, Ahmed A; AbdelAty, Amr M; Azar, Ahmad Taher
2017-07-11
Due to the non-idealities of commercial inductors, the demand for a better model that accurately describe their dynamic response is elevated. So, the fractional order models of Buck, Boost and Buck-Boost DC-DC converters are presented in this paper. The detailed analysis is made for the two most common modes of converter operation: Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM). Closed form time domain expressions are derived for inductor currents, voltage gain, average current, conduction time and power efficiency where the effect of the fractional order inductor is found to be strongly present. For example, the peak inductor current at steady state increases with decreasing the inductor order. Advanced Design Systems (ADS) circuit simulations are used to verify the derived formulas, where the fractional order inductor is simulated using Valsa Constant Phase Element (CPE) approximation and Generalized Impedance Converter (GIC). Different simulation results are introduced with good matching to the theoretical formulas for the three DC-DC converter topologies under different fractional orders. A comprehensive comparison with the recently published literature is presented to show the advantages and disadvantages of each approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Liu, Shasha [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhu, Yuanrong, E-mail: zhuyuanrong07@mails.ucas.ac.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wu, Fengchang, E-mail: wufengchang@vip.skleg.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Meng, Wei [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); He, Zhongqi [USDA-ARS Southern Regional Research Center, 1100 Robert E Lee Blvd, New Orleans, LA 70124 (United States); Giesy, John P. [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)
2016-10-01
Although debris from aquatic macrophytes is one of the most important endogenous sources of organic matter (OM) and nutrients in lakes, its biogeochemical cycling and contribution to internal load of nutrients in eutrophic lakes are still poorly understood. In this study, sequential fractionation by H{sub 2}O, 0.1 M NaOH and 1.0 M HCl, combined with {sup 13}C and {sup 31}P NMR spectroscopy, was developed and used to characterize organic carbon (C) and phosphorus (P) in six aquatic plants collected from Tai Lake (Ch: Taihu), China. Organic matter, determined by total organic carbon (TOC), was unequally distributed in H{sub 2}O (21.2%), NaOH (29.9%), HCl (3.5%) and residual (45.3%) fractions. For P in debris of aquatic plants, 53.3% was extracted by H{sub 2}O, 31.9% by NaOH, and 11% by HCl, with 3.8% in residual fractions. Predominant OM components extracted by H{sub 2}O and NaOH were carbohydrates, proteins and aliphatic acids. Inorganic P (P{sub i}) was the primary form of P in H{sub 2}O fractions, whereas organic P (P{sub o}) was the primary form of P in NaOH fractions. The subsequent HCl fractions extracted fewer species of C and P. Some non-extractable carbohydrates, aromatics and metal phytate compounds remained in residual fractions. Based on sequential extraction and NMR analysis, it was proposed that those forms of C (54.7% of TOC) and P (96.2% of TP) in H{sub 2}O, NaOH and HCl fractions are potentially released to overlying water as labile components, while those in residues are stable and likely preserved in sediments of lakes. These results will be helpful in understanding internal loading of nutrients from debris of aquatic macrophytes and their recycling in lakes. - Highlights: • Sequential fractionation combined with NMR analysis was applied on aquatic plants. • Labile and stable C and P forms in aquatic plants were characterized. • 54.7% of OM and 96.2% of P in aquatic plants are potentially available. • 45.3% of OM and 3.8% of P in aquatic
International Nuclear Information System (INIS)
Dale, M.P.; Hackney, D.D.
1987-01-01
A method for analysis of positional isotope exchange (PIX) during ATP ↔ HOH oxygen exchange is presented that uses a two-step degradation of ATP resulting in cleavage of the βP-OγP bond. This cleavage yields P/sub i/ derived from the γ-phosphoryl of ATP that contains all four of the γ oxygens. Both PIX between the β, γ-bridge and β-nonbridge positions and washout of the γ-nonbridge oxygens can be simultaneously followed by using ATP labeled with 17 O at the β-nonbridge positions and 18 O at the β,γ-bridge and γ-nonbridge positions. Application of this method to ATP ↔ HOH exchange during single turnovers of myosin indicates that the bulk of the ATP undergoes rapid washout of γ-nonbridge oxygens in the virtual absence of PIX. At 25 0 C with subfragment 1 the scrambling rate is at the limit of detectability of approximately 0.001 s -1 , which is 50-fold slower than the steady-state rate. This corresponds to a probability of scrambling for the β-oxygens of bound ADP of 1 in 10,000 for each cycle of reversible hydrolysis of bound ATP. A fraction of the ATP, however, does not undergo rapid washout. With myosin and stoichiometric ATP at 0 0 C, this fraction correspond to 10% of the ATP remaining at 36 s, or 2% of the initial ATP, and an equivalent level of ATP is found that does not bind irreversibly to myosin in a cold chase experiment. A significant level of apparent PIX is observed with subfragment 1 in the fraction that resists washout, and this apparent PIX is shown to be due to contaminant adenylate kinase activity. This apparent PIX due to adenylate kinase provides a possible explanation for the PIX observed by Geeves et al. with subfragment 1
International Nuclear Information System (INIS)
Huang, Chih-Hsien; Hsieh, Wen-Feng; Wu, Jing-Nuo; Cheng, Szu-Cheng; Li, Yen-Yin
2011-01-01
Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoiding the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.
Effective-field-theory model for the fractional quantum Hall effect
International Nuclear Information System (INIS)
Zhang, S.C.; Hansson, T.H.; Kivelson, S.
1989-01-01
Starting directly from the microscopic Hamiltonian, we derive a field-theory model for the fractional quantum hall effect. By considering an approximate coarse-grained version of the same model, we construct a Landau-Ginzburg theory similar to that of Girvin. The partition function of the model exhibits cusps as a function of density and the Hall conductance is quantized at filling factors ν = (2k-1)/sup -1/ with k an arbitrary integer. At these fractions the ground state is incompressible, and the quasiparticles and quasiholes have fractional charge and obey fractional statistics. Finally, we show that the collective density fluctuations are massive
A novel fractional technique for the modified point kinetics equations
Directory of Open Access Journals (Sweden)
Ahmed E. Aboanber
2016-10-01
Full Text Available A fractional model for the modified point kinetics equations is derived and analyzed. An analytical method is used to solve the fractional model for the modified point kinetics equations. This methodical technique is based on the representation of the neutron density as a power series of the relaxation time as a small parameter. The validity of the fractional model is tested for different cases of step, ramp and sinusoidal reactivity. The results show that the fractional model for the modified point kinetics equations is the best representation of neutron density for subcritical and supercritical reactors.
Some New Ostrowski Type Inequalities via Fractional Integrals
Directory of Open Access Journals (Sweden)
Ghulam Farid
2017-05-01
Full Text Available We have found a new version of well known Ostrowski inequality in a very simple and antique way via Riemann-Liouville fractional integrals. Also some related results have been derived.
International Nuclear Information System (INIS)
Simnor, Tania; Li, Sonia; Lowe, Gerry; Ostler, Peter; Bryant, Linda; Chapman, Caroline; Inchley, Dave; Hoskin, Peter J.
2009-01-01
Background and purpose: Fractionated high dose-rate (HDR) brachytherapy in the treatment of prostate cancer relies on reproducible catheter positions for each fraction to ensure adequate tumour coverage while minimising dose to normal tissues. Peri-prostatic oedema may cause caudal displacement of the catheters relative to the prostate gland between fractions. This can be corrected for by changing source dwell positions or by physical re-advancement of catheters before treatment. Materials and methods: Data for 20 consecutive monotherapy patients receiving three HDR fractions of 10.5 Gy per fraction over 2 days were analysed retrospectively. Pre-treatment CT scans were used to assess the effect of catheter movement between fractions on implant quality, with and without movement correction. Implant quality was evaluated using dosimetric parameters. Results: Compared to the first fraction (f1) the mean inter-fraction caudal movement relative to the prostate base was 7.9 mm (f2) (range 0-21 mm) and 3.9 mm (f3) (range 0-25.5 mm). PTV D90% was reduced without movement correction by a mean of 27.8% (f2) and 32.3% (f3), compared with 5.3% and 5.1%, respectively, with catheter movement correction. Dose to 2 cc of the rectum increased by a mean of 0.69 (f2) and 0.76 Gy (f3) compared with an increase of 0.03 and 0.04 Gy, respectively, with correction. The urethra V12 also increased by a mean of 0.36 (f2) and 0.39 Gy (f3) compared with 0.06 and 0.16 Gy, respectively, with correction. Conclusions: Inter-fraction correction for catheter movement using pre-treatment imaging is critical to maintain the quality of an implant. Without movement correction there is significant risk of tumour under-dosage and normal tissue over-dosage. The findings of this study justify additional imaging between fractions in order to carry out correction.
Application of the Lie Symmetry Analysis for second-order fractional differential equations
Directory of Open Access Journals (Sweden)
Mousa Ilie
2017-12-01
Full Text Available Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to illustrate the proposed approach.
Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent
2018-02-01
We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.
Riesz potential versus fractional Laplacian
Ortigueira, Manuel Duarte; Laleg-Kirati, Taous-Meriem; Machado, José Antó nio Tenreiro
2014-01-01
This paper starts by introducing the Grünwald-Letnikov derivative, the Riesz potential and the problem of generalizing the Laplacian. Based on these ideas, the generalizations of the Laplacian for 1D and 2D cases are studied. It is presented as a fractional version of the Cauchy-Riemann conditions and, finally, it is discussed with the n-dimensional Laplacian.
Riesz potential versus fractional Laplacian
Ortigueira, Manuel Duarte
2014-09-01
This paper starts by introducing the Grünwald-Letnikov derivative, the Riesz potential and the problem of generalizing the Laplacian. Based on these ideas, the generalizations of the Laplacian for 1D and 2D cases are studied. It is presented as a fractional version of the Cauchy-Riemann conditions and, finally, it is discussed with the n-dimensional Laplacian.
Symmetry properties of fractional diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Gazizov, R K; Kasatkin, A A; Lukashchuk, S Yu [Ufa State Aviation Technical University, Karl Marx strausse 12, Ufa (Russian Federation)], E-mail: gazizov@mail.rb.ru, E-mail: alexei_kasatkin@mail.ru, E-mail: lsu@mail.rb.ru
2009-10-15
In this paper, nonlinear anomalous diffusion equations with time fractional derivatives (Riemann-Liouville and Caputo) of the order of 0-2 are considered. Lie point symmetries of these equations are investigated and compared. Examples of using the obtained symmetries for constructing exact solutions of the equations under consideration are presented.
R-Function Relationships for Application in the Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
2000-01-01
The F-function, and its generalization the R-function, are of fundamental importance in the fractional calculus. It has been shown that the solution of the fundamental linear fractional differential equation may be expressed in terms of these functions. These functions serve as generalizations of the exponential function in the solution of fractional differential equations. Because of this central role in the fractional calculus, this paper explores various intrarelationships of the R-function, which will be useful in further analysis. Relationships of the R-function to the common exponential function, e(t), and its fractional derivatives are shown. From the relationships developed, some important approximations are observed. Further, the inverse relationships of the exponential function, el, in terms of the R-function are developed. Also, some approximations for the R-function are developed.
NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.
Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q
2013-03-01
In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
Conservation laws for certain time fractional nonlinear systems of partial differential equations
Singla, Komal; Gupta, R. K.
2017-12-01
In this study, an extension of the concept of nonlinear self-adjointness and Noether operators is proposed for calculating conserved vectors of the time fractional nonlinear systems of partial differential equations. In our recent work (J Math Phys 2016; 57: 101504), by proposing the symmetry approach for time fractional systems, the Lie symmetries for some fractional nonlinear systems have been derived. In this paper, the obtained infinitesimal generators are used to find conservation laws for the corresponding fractional systems.
Fractionation of boron isotopes in Icelandic hydrothermal systems
International Nuclear Information System (INIS)
Aggarwal, J.K.
1995-01-01
Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive δ 1 1B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive δ 1 1B than the high temperature systems, indicating fractionation of boron due to absorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems. (author). 14 refs., 2 figs
76 FR 4751 - Position Limits for Derivatives
2011-01-26
... saleable by long traders at its market value in normal cash marketing channels at the derivative contract's... Association, Futures Industry Association, GDF Suez Energy, Morgan Stanley, and NextEra Energy Power Marketing...
Directory of Open Access Journals (Sweden)
Diana Márquez Fernández
Full Text Available Introduction: studies performed to Myrmekioderma genus sponges show phospholipid fatty acids, volatile compounds, sterols, bioactive cyclic diterpenes, sesquiterpenes, lineal diterpenes and glycolipid ethers. Objetive: to evaluate the antiproliferative effect of seven fractions (F1-F7 obtained by flash column chromatography from the most bioactive extract of the sponge Myrmekioderma gyroderma, and to analyze the chemical composition of the most active fraction. Methods: samples of dried sponge were extracted with two different solvents: CH2Cl2 (2 x 50 mL, and CH3OH (2 x 50 mL. Each fraction was evaluated on tumor cell derived cell lines; and the cell growth, and viability were determined by a colorimeter assay using sulforhodamine B. Fatty acids structure of the most active fraction was possible by GC-MS analysis of the methyl ester, and pyrrolidine derivatives. Results: the fraction with higher activity on the assessed tumor cell lines is F4 due to it totally inhibited MDA-MB-231, and HT29 cell line growth to 5, and 25 µg/mL concentration (IC50< 1 µg/mL. Fatty acids identified in bioactive F4 fraction of the M. gyroderma sponge can be classified on the following groups: lineal chain saturated, branched-saturated, unsaturated, and a 3-hydroxy acid. Conclusions: 43 fatty acids among saturated, branched-saturated, and unsaturated were identified out of the F4 fraction with activity on the cell lines derived of breast cancer MDA-MB-231, colon carcinoma HT29, and lung carcinoma cells A-549. These results show the growth inhibitory effect shown by the fractions, on the tumor cell lines, depends on the dose.
The impact of a copper smelter on adjacent soil zinc and cadmium fractions and soil organic carbon
Energy Technology Data Exchange (ETDEWEB)
Liu Ling; Wu Longhua; Luo Yongming [Key Lab. of Soil Environment and Pollution Remediation, Chinese Academy of Sciences, NJ (China); Zhang Changbo [Shanghai Academy of Environmental Sciences, SH (China); Jiang Yugen; Qiu Xiya [Soils and Fertilisers Div., Fuyang City Agricultural Bureau, Hangzhou, ZJ (China)
2010-07-15
Purpose: We investigated the chemical fractions of Zn, Cd and Cu in soils collected from positions at different distances from a copper smelter and studied the relationships between distribution patterns of Zn, Cd and Cu, fractions and soil organic carbon (SOC), especially ''black carbon'' (BC), in contaminated soils. The relationships between soil particle size and concentrations of Zn and Cd in contaminated soil were also examined. Materials and methods: Soil samples were collected from field sites at different distances from the copper smelter, air-dried and passed through 0.25-mm and 0.149-mm nylon mesh sieves. The SOC and BC were determined. Aqua regia and sequentially extracted Zn, Cd and Cu fractions in soil and the different sizes of soil particles, and metal concentrations (Zn, Cd and Cu) in BC were also determined. Results and discussion: The soils were heavily contaminated by fly ash from the copper smelter. Concentrations of Zn, Cd and Cu in soil and SOC decreased with increasing distance from the smelter. Concentrations of Zn and Cd in the surface soil (0-15 cm) decreased from 27,017 to 892 mg kg{sup -1} and from 18.7 to 1.04 mg kg{sup -1}, respectively. Soil BC and concentrations of Zn, Cd and Cu in the BC fraction showed significant and positive relationships with the corresponding aqua regia metal concentrations in soil. Soil Zn and Cd occurred predominantly in the exchangeable and reducible fractions, but residual and oxidisable fractions of Cu that were not considered mobile or bioavailable were predominant (>60%). Concentrations of Zn and Cd in the soil particle size fractions tended to increase with decreasing particle size. Conclusions: The Cd and Zn and BC were all derived from the fly ash of the smelter. Concentrations of Zn and Cd and BC in the soil decreased significantly with increasing distance from the smelter. Zinc and Cd in contaminated soils increased as particle size decreased, and were mainly in highly available
Fractional Bhatnagar-Gross-Krook kinetic equation
Goychuk, Igor
2017-11-01
The linear Boltzmann equation (LBE) approach is generalized to describe fractional superdiffusive transport of the Lévy walk type in external force fields. The time distribution between scattering events is assumed to have a finite mean value and infinite variance. It is completely characterized by the two scattering rates, one fractional and a normal one, which defines also the mean scattering rate. We formulate a general fractional LBE approach and exemplify it with a particularly simple case of the Bohm and Gross scattering integral leading to a fractional generalization of the Bhatnagar, Gross and Krook (BGK) kinetic equation. Here, at each scattering event the particle velocity is completely randomized and takes a value from equilibrium Maxwell distribution at a given fixed temperature. We show that the retardation effects are indispensable even in the limit of infinite mean scattering rate and argue that this novel fractional kinetic equation provides a viable alternative to the fractional Kramers-Fokker-Planck (KFP) equation by Barkai and Silbey and its generalization by Friedrich et al. based on the picture of divergent mean time between scattering events. The case of divergent mean time is also discussed at length and compared with the earlier results obtained within the fractional KFP. Also a phenomenological fractional BGK equation without retardation effects is proposed in the limit of infinite scattering rates. It cannot be, however, rigorously derived from a scattering model, being rather clever postulated. It this respect, this retardationless equation is similar to the fractional KFP by Barkai and Silbey. However, it corresponds to the opposite, much more physical limit and, therefore, also presents a viable alternative.
A study of ∇-discrete fractional calculus operator on the radial ...
African Journals Online (AJOL)
The fractional calculus includes concepts of integrals and derivatives of any complex or real order. The fractional calculus is as old as the usual calculus. Recently, many scientists have been studying on this eld to provide the development and applicability to various areas of mathematics, physics, engineering and other ...
Asakura, Atsushi
2012-01-01
For postnatal growth and regeneration of skeletal muscle, satellite cells, a self-renewing pool of muscle stem cells, give rise to daughter myogenic precursor cells that contribute to the formation of new muscle fibers. In addition to this key myogenic cell class, adult skeletal muscle also contains hematopoietic stem cell and progenitor cell populations which can be purified as a side population (SP) fraction or as a hematopoietic marker CD45-positive cell population. These muscle-derived he...
Deuterium fractionation in dense interstellar clouds
International Nuclear Information System (INIS)
Millar, T.J.; Bennett, A.; Herbst, E.
1989-01-01
The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized. 60 refs
Deuterium fractionation in dense interstellar clouds
Millar, T. J.; Bennett, A.; Herbst, Eric
1989-05-01
The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized.
International Nuclear Information System (INIS)
Wubulikasimu, Reyila; Yang, Yanbing; Xue, Fei; Luo, Xianjin; Shao, Dongping; Li, Yuhuan; Gao, Rongmei; Ye, Weidong
2013-01-01
A series of novel benzimidazole derivatives bearing a heterocyclic ring as oxadiazole (21-32), thiadiazole (33-34), triazole (35-36) were synthesized and evaluated for their activities against Coxsackie virus B3 and B6 in Vero cells. Compounds 21-26, 31-36 with moieties of 2'-pyridyl, 3'-pyridyl and 4'-pyridyl at the 2-position and oxadiazoles, thiadiazole, or triazole substituent at the 4- or 5-position generally displayed activities against CVB3 and CVB6. Especially compound 24 (IC 50 = 1.08 μg/mL, SI = 61.7 against CVB3) was the promising candidate as lead compound for anti-enteroviral drug. It was observed in the incorporation of heterocyclic rings in benzimidazole at the 5-position could enhance their biological activities
Intra-fraction motion of the prostate is a random walk
Ballhausen, H.; Li, M.; Hegemann, N.-S.; Ganswindt, U.; Belka, C.
2015-01-01
A random walk model for intra-fraction motion has been proposed, where at each step the prostate moves a small amount from its current position in a random direction. Online tracking data from perineal ultrasound is used to validate or reject this model against alternatives. Intra-fraction motion of a prostate was recorded by 4D ultrasound (Elekta Clarity system) during 84 fractions of external beam radiotherapy of six patients. In total, the center of the prostate was tracked for 8 h in intervals of 4 s. Maximum likelihood model parameters were fitted to the data. The null hypothesis of a random walk was tested with the Dickey-Fuller test. The null hypothesis of stationarity was tested by the Kwiatkowski-Phillips-Schmidt-Shin test. The increase of variance in prostate position over time and the variability in motility between fractions were analyzed. Intra-fraction motion of the prostate was best described as a stochastic process with an auto-correlation coefficient of ρ = 0.92 ± 0.13. The random walk hypothesis (ρ = 1) could not be rejected (p = 0.27). The static noise hypothesis (ρ = 0) was rejected (p test rejected the null hypothesis ρ = 1 in 25% to 32% of cases. On average, the Kwiatkowski-Phillips-Schmidt-Shin test rejected the null hypothesis ρ = 0 with a probability of 93% to 96%. The variance in prostate position increased linearly over time (r2 = 0.9 ± 0.1). Variance kept increasing and did not settle at a maximum as would be expected from a stationary process. There was substantial variability in motility between fractions and patients with maximum aberrations from isocenter ranging from 0.5 mm to over 10 mm in one patient alone. In conclusion, evidence strongly suggests that intra-fraction motion of the prostate is a random walk and neither static (like inter-fraction setup errors) nor stationary (like a cyclic motion such as breathing, for example). The prostate tends to drift away from the isocenter during a fraction, and
Intra-fraction motion of the prostate is a random walk
International Nuclear Information System (INIS)
Ballhausen, H; Li, M; Hegemann, N-S; Ganswindt, U; Belka, C
2015-01-01
A random walk model for intra-fraction motion has been proposed, where at each step the prostate moves a small amount from its current position in a random direction. Online tracking data from perineal ultrasound is used to validate or reject this model against alternatives. Intra-fraction motion of a prostate was recorded by 4D ultrasound (Elekta Clarity system) during 84 fractions of external beam radiotherapy of six patients. In total, the center of the prostate was tracked for 8 h in intervals of 4 s. Maximum likelihood model parameters were fitted to the data. The null hypothesis of a random walk was tested with the Dickey–Fuller test. The null hypothesis of stationarity was tested by the Kwiatkowski–Phillips–Schmidt–Shin test. The increase of variance in prostate position over time and the variability in motility between fractions were analyzed. Intra-fraction motion of the prostate was best described as a stochastic process with an auto-correlation coefficient of ρ = 0.92 ± 0.13. The random walk hypothesis (ρ = 1) could not be rejected (p = 0.27). The static noise hypothesis (ρ = 0) was rejected (p < 0.001). The Dickey–Fuller test rejected the null hypothesis ρ = 1 in 25% to 32% of cases. On average, the Kwiatkowski–Phillips–Schmidt–Shin test rejected the null hypothesis ρ = 0 with a probability of 93% to 96%. The variance in prostate position increased linearly over time (r 2 = 0.9 ± 0.1). Variance kept increasing and did not settle at a maximum as would be expected from a stationary process. There was substantial variability in motility between fractions and patients with maximum aberrations from isocenter ranging from 0.5 mm to over 10 mm in one patient alone. In conclusion, evidence strongly suggests that intra-fraction motion of the prostate is a random walk and neither static (like inter-fraction setup errors) nor stationary (like a cyclic motion such as breathing, for example). The prostate tends to
Ping, Bonnie Tay Yen; Aziz, Haliza Abdul; Idris, Zainab
2018-01-01
High-Performance Liquid Chromatography (HPLC) methods via evaporative light scattering (ELS) and refractive index (RI) detectors are used by the local palm oil industry to monitor the TAG profiles of palm oil and its fractions. The quantitation method used is based on area normalization of the TAG components and expressed as percentage area. Although not frequently used, peak-area ratios based on TAG profiles are a possible qualitative method for characterizing the TAG of palm oil and its fractions. This paper aims to compare these two detectors in terms of peak-area ratio, percentage peak area composition, and TAG elution profiles. The triacylglycerol (TAG) composition for palm oil and its fractions were analysed under similar HPLC conditions i.e. mobile phase and column. However, different sample concentrations were used for the detectors while remaining within the linearity limits of the detectors. These concentrations also gave a good baseline resolved separation for all the TAGs components. The results of the ELSD method's percentage area composition for the TAGs of palm oil and its fractions differed from those of RID. This indicates an unequal response of TAGs for palm oil and its fractions using the ELSD, also affecting the peak area ratios. They were found not to be equivalent to those obtained using the HPLC-RID. The ELSD method showed a better baseline separation for the TAGs components, with a more stable baseline as compared with the corresponding HPLC-RID. In conclusion, the percentage area compositions and peak-area ratios for palm oil and its fractions as derived from HPLC-ELSD and RID were not equivalent due to different responses of TAG components to the ELSD detector. The HPLC-RID has a better accuracy for percentage area composition and peak-area ratio because the TAG components response equally to the detector.
Adaptive Sliding Control for a Class of Fractional Commensurate Order Chaotic Systems
Directory of Open Access Journals (Sweden)
Jian Yuan
2015-01-01
Full Text Available This paper proposes adaptive sliding mode control design for a class of fractional commensurate order chaotic systems. We firstly introduce a fractional integral sliding manifold for the nominal systems. Secondly we prove the stability of the corresponding fractional sliding dynamics. Then, by introducing a Lyapunov candidate function and using the Mittag-Leffler stability theory we derive the desired sliding control law. Furthermore, we prove that the proposed sliding manifold is also adapted for the fractional systems in the presence of uncertainties and external disturbances. At last, we design a fractional adaptation law for the perturbed fractional systems. To verify the viability and efficiency of the proposed fractional controllers, numerical simulations of fractional Lorenz’s system and Chen’s system are presented.
Approximate solution of space and time fractional higher order phase field equation
Shamseldeen, S.
2018-03-01
This paper is concerned with a class of space and time fractional partial differential equation (STFDE) with Riesz derivative in space and Caputo in time. The proposed STFDE is considered as a generalization of a sixth-order partial phase field equation. We describe the application of the optimal homotopy analysis method (OHAM) to obtain an approximate solution for the suggested fractional initial value problem. An averaged-squared residual error function is defined and used to determine the optimal convergence control parameter. Two numerical examples are studied, considering periodic and non-periodic initial conditions, to justify the efficiency and the accuracy of the adopted iterative approach. The dependence of the solution on the order of the fractional derivative in space and time and model parameters is investigated.
International Nuclear Information System (INIS)
Murillo Mejia, Mario Humberto
2006-01-01
The objective was to evaluate the data obtained by sensor MODIS onboard the EOS terra satellite land cover units. The study area is the republic of Colombia in South America. The methodology consisted of analyzing the multitemporal (vegetation, soil and shade-water) fraction images and vegetation indices (NDVI) apply the lineal spectral mixture model to products derived from derived images by sensor MODIS data obtained in years 2001 and 2003. The mosaics of the original and the transformed vegetation (soil and shade-water) bands were generated for the whole study area using SPRING 4. 0 software, developed by INPE then these mosaics were segmented, classified, mapped, and edited to obtain a moderate resolution land cover map. The results derived from MODIS analysis were compared with Landsat ETM+ data acquire for a single test site. The results of the project showed the usefulness of MODIS images for large-scale land cover mapping and monitoring studies
International Nuclear Information System (INIS)
1994-12-01
This handbook contains (1) a systematic compilation of airborne release and respirable fraction experimental data for nonreactor nuclear facilities, (2) assessments of the data, and (3) values derived from assessing the data that may be used in safety analyses when the data are applicable. To assist in consistent and effective use of this information, the handbook provides: identification of a consequence determination methodology in which the information can be used; discussion of the applicability of the information and its general technical limits; identification of specific accident phenomena of interest for which the information is applicable; and examples of use of the consequence determination methodology and airborne release and respirable fraction information
The fractional-order modeling and synchronization of electrically coupled neuron systems
Moaddy, K.
2012-11-01
In this paper, we generalize the integer-order cable model of the neuron system into the fractional-order domain, where the long memory dependence of the fractional derivative can be a better fit for the neuron response. Furthermore, the chaotic synchronization with a gap junction of two or multi-coupled-neurons of fractional-order are discussed. The circuit model, fractional-order state equations and the numerical technique are introduced in this paper for individual and multiple coupled neuron systems with different fractional-orders. Various examples are introduced with different fractional orders using the non-standard finite difference scheme together with the Grünwald-Letnikov discretization process which is easily implemented and reliably accurate. © 2011 Elsevier Ltd. All rights reserved.
The fractional-order modeling and synchronization of electrically coupled neuron systems
Moaddy, K.; Radwan, Ahmed G.; Salama, Khaled N.; Momani, Shaher M.; Hashim, Ishak
2012-01-01
In this paper, we generalize the integer-order cable model of the neuron system into the fractional-order domain, where the long memory dependence of the fractional derivative can be a better fit for the neuron response. Furthermore, the chaotic synchronization with a gap junction of two or multi-coupled-neurons of fractional-order are discussed. The circuit model, fractional-order state equations and the numerical technique are introduced in this paper for individual and multiple coupled neuron systems with different fractional-orders. Various examples are introduced with different fractional orders using the non-standard finite difference scheme together with the Grünwald-Letnikov discretization process which is easily implemented and reliably accurate. © 2011 Elsevier Ltd. All rights reserved.