WorldWideScience

Sample records for position-sensitive imaging detector

  1. Application of position-sensitive detectors to positron imaging

    International Nuclear Information System (INIS)

    Yamashita, Takaji; Uchida, Hiroshi; Watanabe, Mitsuo; Omura, Tomohide

    1994-01-01

    Positron imaging including positron emission tomography (PET) is expected to be a promising tool for basic and clinical research, because it makes possible the study of regional chemistry within multiple organs of the body in living human beings and experimental animals. New schemes of high resolution block detectors have been developed to improve the performance of positron imaging systems, which employ small segments of bismuth germanate (BGO) arrays and position-sensitive photomultiplier tubes (PS-PMT). The coincidence detector resolution of less than 2.0 mm in full width at half maximum was achieved with the detectors, which is very close to the theoretical resolution limit in positron imaging. (author)

  2. Position sensitive detector with semiconductor and image electron tube comprising such a detector

    International Nuclear Information System (INIS)

    Roziere, Guy.

    1977-01-01

    This invention concerns a position sensitive detector comprising a semiconducting substrate. It also concerns the electron tubes in which the detector may be incorporated in order to obtain an image formed at the tube input by an incident flux of particles or radiation. When a charged particle or group of such particles, electrons in particular, enter the space charge region of an inversely biased semiconductor diode, the energy supplied by these particles releases in the diode a certain number of electron-hole pairs which move in the field existing in the area towards the diode contacts. A corresponding current arises in the connections of this diode which constitutes the signal corresponding to the incident energy. Such a tube or chain of tubes is employed in nuclear medicine for observing parts of the human body, particularly by gamma radiation [fr

  3. A new position-sensitive transmission detector for epithermal neutron imaging

    International Nuclear Information System (INIS)

    Schooneveld, E M; Kockelmann, W; Rhodes, N; Tardocchi, M; Gorini, G; Perelli Cippo, E; Nakamura, T; Postma, H; Schillebeeckx, P

    2009-01-01

    A new neutron resonant transmission (NRT) detector for epithermal neutron imaging has been designed and built for the ANCIENT CHARM project, which is developing a set of complementary neutron imaging methods for analysis of cultural heritage objects. One of the techniques being exploited is NRT with the aim of performing bulk elemental analysis. The 16-pixel prototype NRT detector consists of independent crystals of 2 x 2 mm pixel size, which allow for 2D position-sensitive transmission measurements with epithermal neutrons. First results obtained at the ISIS pulsed spallation neutron source are presented. (fast track communication)

  4. Compton imaging with a highly-segmented, position-sensitive HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T.; Hirsch, R.; Reiter, P.; Birkenbach, B.; Bruyneel, B.; Eberth, J.; Hess, H.; Lewandowski, L. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Gernhaeuser, R.; Maier, L.; Schlarb, M.; Weiler, B.; Winkel, M. [Technische Universitaet Muenchen, Physik Department, Garching (Germany)

    2017-02-15

    A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of γ radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered γ-ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole 4π solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA) of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between 13.8 {sup circle} and 19.1 {sup circle}, depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular resolution of 4.6 {sup circle} was determined for the same γ-ray energy. (orig.)

  5. Position-sensitive superconductor detectors

    International Nuclear Information System (INIS)

    Kurakado, M.; Taniguchi, K.

    2016-01-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  6. Submicron position-sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Pugatch, V M; Rosenfeld, A B; Litovchenko, P G; Barabash, L I; Nemets, O F; Pavlenko, Yu N; Vasiliev, Yu O [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. for Nuclear Research

    1992-08-01

    A method has been developed to measure precisely the coordinates of charged particles incident between adjacent strips of a strip detector. The position sensitivity of an inter-strip gap has been studied by means of a pulsed laser beam and irradiation by [alpha]-particles of a [sup 226]Ra-source. The capacitive division of charge generated by the incident particle depends on the position of its track. Its coordinates were determined by two-dimensional amplitude analysis of the charges collected by neighbouring strips. This method of coordinate determination applied to studies of spatial and energy distributions of electromagnetic as well as charged particle beams (including radioactive ion beams) of low intensity could provide the highest level of the precision limited by the track dimensions of charged particles, i.e. percents of a micrometer. (orig.).

  7. Signal processors for position-sensitive detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Ken-ichi [Hosei Univ., Koganei, Tokyo (Japan). Coll. of Engineering

    1996-07-01

    Position-sensitive detectors (PSD) are widely used in following various fields: condensed matter studies, material engineering, medical radiology particle physics, astrophysics and industrial applications. X-ray diffraction analysis is one of the field where PSDs are the most important instruments. In this field, many types of PSAs are employed: position-sensitive proportional counters (PSPC), multi-wire proportional chambers (MWPC), imaging plates, image intensifiers combined CCD cameras and semiconductor array devices. Two readout systems used for PSDs, where one is a charge-division type with high stability and the other is an encoder with multiple delay, line readout circuits useful for fast counting, were reported in this paper. The multiple delay line encoding system can be applicable to high counting rate 1D and 2D gas proportional detectors. (G.K.)

  8. Compton scatter in germanium and its effect on imaging with gamma-ray position-sensitive detectors

    International Nuclear Information System (INIS)

    Sherman, I.S.; Strauss, M.G.; Brenner, R.

    1978-01-01

    The spatial spread due to Compton scatter in Ge was measured to study the reduction in image contrast and signal-to-noise ratio (S/N) resulting from erroneous readout in Ge position-sensitive detectors. The step response revealing this spread was obtained by scanning with a 122 keV γ-ray beam across a boundary of two sectors of a slotted coaxial Ge(Li) detector that is 40 mm diameter by 22 mm long. The derived line-spread function at 140 keV (/sup 99m/Tc) exhibits much shorter but thicker tails than those due to scatter in tissue as observed with a NaI detector through 5.5 cm of scattering material. Convolutions of rectangular profiles of voids with the Ge(Li) line-spread function show marked deterioration in contrast for voids less than 10 mm across, which in turn results in even greater deterioration of the S/N. As a result, the contrast for voids in Ge images is only 20 to 30 percent higher than that in NaI and the S/N is only comparable for equal detector areas. The degradation in image contrast due to scatter in Ge detectors can be greatly reduced by either using thin detectors (approximately 5 mm), where scatter virtually does not exist, or by using thicker detectors and rejecting scatter electronically. To reduce the effects of scatter on the S/N as well as on contrast, the erroneous position readouts must actually be corrected. A more realizable approach to achieving the ultimate potential of Ge detectors may be a scanning array of discrete detectors (not position sensitive) in which readout is not affected by scatter

  9. Position-sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hendrix, J.

    1982-01-01

    In this review of the application of different types of position sensitive detectors to synchrotron radiation, discussion of the proportional counters based on the gas amplification principle forms a major part. Other topics reviewed are detector requirements, multiwire proportional chamber system, drift chamber type detectors, TV detectors, and recent developments, such as that based on a micro-channel plate as the amplifying element, and charge-coupled devices. (U.K.)

  10. Gas position sensitive x-ray detectors

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1994-12-01

    The construction of gas x-ray detectors used to count and localize x-ray photons in one and two dimensions is reported. The principles of operation of the detectors are described, as well as the electronic modules comprised in the data acquisition system. Results obtained with detectors built at CBPF are shown, illustrating the performance of the Linear Position Sensitive Detectors. (author). 6 refs, 14 figs

  11. Large area two dimensional position sensitive detectors

    International Nuclear Information System (INIS)

    Sann, H.; Olmi, A.; Lynen, U.; Stelzer, H.; Gobbi, A.; Bock, R.

    1979-02-01

    After an introduction, a position-sensitive ionization chamber, a parallel-plate detector, and a multiwire position-sensitive chamber are described. Then the data acquisition and analysis methods are considered. Furthermore, the experimental methods for a multi-parameter experiment are described. Finally, the measurement of gamma-ray and neutron multiplicities and sequential fission is considered, and the results are presented. (HSI) [de

  12. Position-sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hendrix, J.

    1982-01-01

    An overview is given of the different types of position-sensitive X-ray detectors used in kinetic studies of biological molecule state changes using X-ray diffraction with synchrotron radiation as a probe. The detector requirements and principles of operation of proportional counters are outlined. Multiwire proportional chamber systems and their readout techniques are described. Other detectors discussed include a drift chamber type detector, microchannel plates, charge-couple devices and, for high count rates, an integrating TV-detector. (U.K.)

  13. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors

    Science.gov (United States)

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  14. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  15. High resolution, position sensitive detector for energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E P [Charles Evans and Associates, Redwood City, CA (United States); Strathman, M D [Charles Evans and Associates, Redwood City, CA (United States); Reed, D A [Charles Evans and Associates, Redwood City, CA (United States); Odom, R W [Charles Evans and Associates, Redwood City, CA (United States); Morse, D H [Sandia National Labs., Livermore, CA (United States); Pontau, A E [Sandia National Labs., Livermore, CA (United States)

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10[sup 10]), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 [mu]m for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 [mu]m) with an image resolution of better than 0.5 [mu]m has since been developed and its design is presented. (orig.)

  16. Position sensitive x-ray detector

    International Nuclear Information System (INIS)

    Macchione, E.L.A.

    1990-01-01

    A multi ware position sensitive gas counter for X-ray detection was developed in our laboratory, making use of commercial delay-lines for position sensing. Six delay-line chips (50 ns delay each, 40 Mhz cut-off frequency) cover a total sensitive length of 150 mm leading to a delay-risetime ratio that allows for a high-resolution position detection. Tests using the 5,9 keV X-ray line from a 55 Fe source and integral linearity better than 0,1% and a maximal differential linearity of ±4,0% were obtained operating the detector with an Ar-C H 4 (90%-10%) gas mixture at 700 torr. Similar tests were performed, using the 8,04 keV line from a Cu x-ray tube. A total resolution of 330 μm, and the same integral and differential linearities were obtained. (author)

  17. Position sensitivity of the first SmartPET HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool (United Kingdom)]. E-mail: rjc@ns.ph.liv.ac.uk; Turk, G. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Boston, A.J. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Boston, H.C. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Cresswell, J.R. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Mather, A.R. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Nolan, P.J. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Hall, C.J. [CCLRC Daresbury, Warrington, Cheshire (United Kingdom); Lazarus, I. [CCLRC Daresbury, Warrington, Cheshire (United Kingdom); Simpson, J. [CCLRC Daresbury, Warrington, Cheshire (United Kingdom); Berry, A. [School of Physics and materials Engineering, Monash University, Melbourne (Australia); Beveridge, T. [School of Physics and materials Engineering, Monash University, Melbourne (Australia); Gillam, J. [School of Physics and materials Engineering, Monash University, Melbourne (Australia); Lewis, R.A. [School of Physics and materials Engineering, Monash University, Melbourne (Australia)

    2007-04-01

    In this paper we discuss the Smart Positron Emission Tomography (PET) imaging system being developed by University of Liverpool in conjunction with CCLRC Daresbury Laboratory. We describe the motivation for the development of a semiconductor-based PET system and the advantages it will offer over current tomographs. Details of the detectors and associated electronics are discussed and results of high precision scans are presented. Analysis of this scan data has facilitated full characterization of the detector response function and calibration of the three-dimensional position sensitivity. This work presents the analysis of the depth sensitivity of the detector.

  18. Computed tomography with thermal neutrons and gaseous position sensitive detector

    International Nuclear Information System (INIS)

    Souza, Maria Ines Silvani

    2001-12-01

    A third generation tomographic system using a parallel thermal neutron beam and gaseous position sensitive detector has been developed along three discrete phases. At the first one, X-ray tomographic images of several objects, using a position sensitive detector designed and constructed for this purpose have been obtained. The second phase involved the conversion of that detector for thermal neutron detection, by using materials capable to convert neutrons into detectable charged particles, testing afterwards its performance in a tomographic system by evaluation the quality of the image arising from several test-objects containing materials applicable in the engineering field. High enriched 3 He, replacing the argon-methane otherwise used as filling gas for the X-ray detection, as well as, a gadolinium foil, have been utilized as converters. Besides the pure enriched 3 He, its mixture with argon-methane and later on with propane, have been also tested, in order to evaluate the detector efficiency and resolution. After each gas change, the overall performance of the tomographic system using the modified detector, has been analyzed through measurements of the related parameters. This was done by analyzing the images produced by test-objects containing several materials having well known attenuation coefficients for both thermal neutrons and X-rays. In order to compare the performance of the position sensitive detector as modified to detect thermal neutrons, with that of a conventional BF 3 detector, additional tomographs have been conducted using the last one. The results have been compared in terms of advantages, handicaps and complementary aspects for different kinds of radiation and materials. (author)

  19. Position-Sensitive Organic Scintillation Detectors for Nuclear Material Accountancy

    International Nuclear Information System (INIS)

    Hausladen, P.; Newby, J.; Blackston, M.

    2015-01-01

    Recent years have seen renewed interest in fast organic scintillators with pulse shape properties that enable neutron-gamma discrimination, in part because of the present shortage of He3, but primarily because of the diagnostic value of timing and pulse height information available from such scintillators. Effort at Oak Ridge National Laboratory (ORNL) associated with fast organic scintillators has concentrated on development of position-sensitive fast-neutron detectors for imaging applications. Two aspects of this effort are of interest. First, the development has revisited the fundamental limitations on pulseshape measurement imposed by photon counting statistics, properties of the scintillator, and properties of photomultiplier amplification. This idealized limit can then be used to evaluate the performance of the detector combined with data acquisition and analysis such as free-running digitizers with embedded algorithms. Second, the development of position sensitive detectors has enabled a new generation of fast-neutron imaging instruments and techniques with sufficient resolution to give new capabilities relevant to safeguards. Toward this end, ORNL has built and demonstrated a number of passive and active fast-neutron imagers, including a proof-of-concept passive imager capable of resolving individual fuel pins in an assembly via their neutron emanations. This presentation will describe the performance and construction of position-sensing fast-neutron detectors and present results of imaging measurements. (author)

  20. Neutron Position Sensitive Detectors for the ESS

    CERN Document Server

    Kirstein, Oliver; Stefanescu, Irina; Etxegarai, Maddi; Anastasopoulos, Michail; Fissum, Kevin; Gulyachkina, Anna; Höglund, Carina; Imam, Mewlude; Kanaki, Kalliopi; Khaplanov, Anton; Kittelmann, Thomas; Kolya, Scott; Nilsson, Björn; Ortega, Luis; Pfeiffer, Dorothea; Piscitelli, Francesco; Ramos, Judith Freita; Robinson, Linda; Scherzinger, Julius

    2014-01-01

    The European Spallation Source (ESS) in Lund, Sweden will become the world's leading neutron source for the study of materials. The instruments are being selected from conceptual proposals submitted by groups from around Europe. These instruments present numerous challenges for detector technology in the absence of the availability of Helium-3, which is the default choice for detectors for instruments built until today and due to the extreme rates expected across the ESS instrument suite. Additionally a new generation of source requires a new generation of detector technologies to fully exploit the opportunities that this source provides. The detectors will be sourced from partners across Europe through numerous in-kind arrangements; a process that is somewhat novel for the neutron scattering community. This contribution presents briefly the current status of detectors for the ESS, and outlines the timeline to completion. For a conjectured instrument suite based upon instruments recommended for construction, ...

  1. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active ...

  2. Beam test of the 2D position sensitive neutron detector

    International Nuclear Information System (INIS)

    Tian Lichao; Chen Yuanbo; Sun Zhijia; Tang Bin; Zhou Jianrong; Qi Huirong; Liu Rongguang; Zhang Jian; Yang Guian; Xu Hong

    2014-01-01

    China Spallation Neutron Source (CSNS), one of the Major scientific apparatuses of the national Eleventh Five-Year Plane, is under construction and three spectrumeters will be constructed in the first phase of the project. A 2D position sensitive neutron detector has been constructed for the Multifunctional Reflect spectrumeter (MR) in Institute of High Energy Physics (IHEP). The basic operation principle of the detector and the test on the residual stress diffractometer of Chinese Advanced Research Reactor (CARR) in China Institute of Atomic Energy (CIAE) is introduced in this paper. The results show that it has a good position resolution of l.18 mm (FWHM) for the neutrons of l.37 A and 2D imaging ability, which is consistent with the theory. It can satisfy the requirements of MR and lays the foundation for the construction of larger neutron detectors. (authors)

  3. Use of position sensitive detectors in medicine

    International Nuclear Information System (INIS)

    Soussaline, F.

    1982-10-01

    Medical imagery is a field where developments in physics, engineering and instrumentation can be applied directly to human diagnosis and treatment. The need to detect ever-smaller anomalies and to measure increasingly slight variations in metabolic parameters has led to a high degree of complexity in radiographic, echographic and nuclear medicine instrumentation. The wide-spread use of digital circuits and more generally the development of data processing systems and mathematical algorithms has allowed the introduction of new techniques such as emission and transmission tomography, digitalised radiography, synchronised gamma cardiology and nuclear magnetic resonance. For reasons of brevity this article is confined to the presentation of some concepts and results in the field of computer-assisted tomography and a discussion on the main parameters of imagery systems using position detectors

  4. A novel method for assessing position-sensitive detector performance

    International Nuclear Information System (INIS)

    Clinthorne, N.H.; Rogers, W.L.; Shao, L.; Hero, A.O. III; Koral, K.F.

    1989-01-01

    A marked point process model of a position-sensitive detector is developed which includes the effects of detector efficiency, spatial response, energy response, and source statistics. The average mutual information between the incident distribution of γ rays and the detector response is derived and used as a performance index for detector optimization. A brief example is presented which uses this figure-of-merit for optimization of light guide dimensions for a modular scintillation camera

  5. Two-dimensional position sensitive Si(Li) detector

    International Nuclear Information System (INIS)

    Walton, J.T.; Hubbard, G.S.; Haller, E.E.; Sommer, H.A.

    1978-11-01

    Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n + resisitive layer for one contact and a boron implanted p + resistive layer for the second contact. A position resolution of the order of 100 μm is indicated

  6. A TWO-DIMENSIONAL POSITION SENSITIVE SI(LI) DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Jack T.; Hubbard, G. Scott; Haller, Eugene E.; Sommer, Heinrich A.

    1978-11-01

    Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n{sup +} resistive layer for one contact and a boron implanted p{sup +} resistive layer for the second contact. A position resolution of the order of 100 {micro}m is indicated.

  7. Position sensitive detector used to detect beam profile

    International Nuclear Information System (INIS)

    Zhao Xiaoyan; Zhao Zhizheng; Zu Kailing; Zheng Jianhua; Wang Yifang

    2003-01-01

    In order to study the detecting system of the residual-gas beam profile, we introduce the principle and construction of the Position Sensitive Detector (PSD). The performance of PSD is tested. Position resolution, position linearity, detection efficiency and background are obtained

  8. Scintillating fibre detectors using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Drevenak, R.

    1995-01-01

    Scintillating fibre technology has made substantial progress, and has demonstrated great potential for fast tracking and triggering in high luminosity experiments in Particle Physics. Some recent issues of the RD-17 project at CERN are presented for fast and precise readout of scintillating fibre arrays, as well as for upgrade of position-sensitive photomultipliers. Excellent matching of the scintillating fibre and the position-sensitive photomultiplier, in particular in time characteristics, allowed to achieve excellent detector performances, typically a spatial resolution of ∼ 125 μm with time resolution better than 1 ns and detection efficiency greater than 95%. (author)10 refs.; 25 figs.; 1 tab

  9. Position sensitive detector for X-ray photons

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1988-01-01

    This work reports the theoretical basis and the details of the construction process, characterization and application of gas X-ray position sensitive detectors. The unidimensional detector consists of a gas camera (argon and CH 4 ), a metallic anode, a cathode and a delay line. Details of the construction process are given in order to allow the reproduction of the detector. It has been characterized by measuring its spatial resolution, homogeneity and linerity. The built linear detector has been used to obtain diffraction diagrams from polycrystalline silicon, C 23 H 48 paraffin and glassy carbon. These diagrams have been compared with those obtained under equivalent conditions with a conventional proportional detector by the step scanning method. It has been shown that the detector provides diffraction diagrams of equivalent quality to those obtained by the step scanning method, in appreciably lower time intervals. (author) [pt

  10. Digital position sensitive discrimination for 2-dimensional scintillation detectors

    International Nuclear Information System (INIS)

    Engels, R.; Reinartz, R.; Reinhart, P.

    1996-01-01

    The energy sensitivity of a two-dimensional scintillation gamma detector based on position sensitive photomultipliers has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by 50%, a discrimination unit has been developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. Depending on the spatial resolution there can be up to 65.536 position-sensitive discriminator levels defining energy windows. By this method, narrow discriminator windows can be used for reducing the low and high energy quanta without effecting the sensitivity of the detector. The new discrimination method, its performance and test measurements with gamma rays will be described. Furthermore experimental results are presented

  11. Structural Investigations using a position sensitive Neutron Detector

    International Nuclear Information System (INIS)

    Fruchart, D.; Anne, M.; Wolfers, P.; Lartigue, C.; Roudaut, E.

    1986-01-01

    In the accurate determination of the location of lights atoms such as hydrogen in a metal matrix, several types of difficulty may be encountered. Experimentally, neutron diffraction is the most convenient method for such a structure determination. The use of Position Sensitive Detectors is discussed, and selected examples illustrate the advantages and drawbacks of this type of instrument. Judging from present results, significant improvements in recording technique, data collection and reduction, and structure refinement may be obtained in the near future

  12. Position sensitive silicon detectors inside the Tevatron collider

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Bellettini, G.; Bosi, F.; Bosisio, L.; Cervelli, F.; Del Fabbro, R.; Dell'Orso, M.; Di Virgilio, A.; Focardi, E.; Giannetti, P.; Giorgi, M.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Tonelli, G.; Zetti, F.; Bertolucci, S.; Cordelli, M.; Curatolo, M.; Dulach, B.; Esposito, B.; Giromini, P.; Miscetti, S.; Sansoni, A.

    1986-01-01

    Four position sensitive silicon detectors have been tested inside the Tevatron beam pipe at Fermilab. The system is the prototype of the small angle silicon spectrometer designed to study primarily p-anti p elastic and diffractive cross-sections at the Collider of Fermilab (CDF). Particles in the beam halo during p-anti p storage tests were used to study the performance of the detectors. Efficiency, linearity of response and spatial resolution are shown. Measurements performed at different distances from the beam axis have shown that the detectors could be operated at 8.5 mm from the beam with low rates and no disturbance to the circulating beams. This distance corresponds to about 11 times the standard half-width of the local beam envelope. The behaviour of the detectors with the radiation dose has also been investigated. (orig.)

  13. Emulation workbench for position sensitive gaseous scintillation detectors

    International Nuclear Information System (INIS)

    Pereira, L.; Margato, L.M.S.; Morozov, A.; Solovov, V.; Fraga, F. A. F.

    2015-01-01

    Position sensitive detectors based on gaseous scintillation proportional counters with Anger-type readout are being used in several research areas such as neutron detection, search for dark matter and neutrinoless double beta decay. Design and optimization of such detectors are complex and time consuming tasks. Simulations, while being a powerful tool, strongly depend on the light transfer models and demand accurate knowledge of many parameters, which are often not available. Here we describe an alternative approach based on the experimental evaluation of a detector using an isotropic point-like light source with precisely controllable light emission properties, installed on a 3D positioning system. The results obtained with the developed setup at validation conditions, when the scattered light is strongly suppressed show good agreement with simulations

  14. Cylinder gauge measurement using a position sensitive detector

    International Nuclear Information System (INIS)

    St John, W. Doyle

    2007-01-01

    A position sensitive detector (PSD) has been used to determine the diameter of cylindrical pins based on the shift in a laser beam's centroid. The centroid of the light beam is defined here as the weighted average of position by the local intensity. A shift can be observed in the centroid of an otherwise axially symmetric light beam, which is partially obstructed. Additionally, the maximum shift in the centroid is a unique function of the obstructing cylinder diameter. Thus to determine the cylinder diameter, one only needs to detect this maximum shift as the cylinder is swept across the beam

  15. Position-sensitive detector system OBI for High Resolution X-Ray Powder Diffraction using on-site readable image plates

    International Nuclear Information System (INIS)

    Knapp, M.; Joco, V.; Baehtz, C.; Brecht, H.H.; Berghaeuser, A.; Ehrenberg, H.; Seggern, H. von; Fuess, H.

    2004-01-01

    A one-dimensional detector system has been developed using image plates. The detector is working in transmission mode or Debye-Scherrer geometry and is on-site readable which reduces the effort for calibration. It covers a wide angular range up to 110 deg. and shows narrow reflection half-widths depending on the capillary diameter. The acquisition time is in the range of minutes and the data quality allows for reliable Rietveld refinement of complicated structures, even in multi-phase samples. The detector opens a wide field of new applications in kinetics and temperature resolved measurements

  16. Assessing the efficiency position sensitive gaseous X-rays detectors

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Souza, Maria Ines Silvani; Lopes, Ricardo T.

    2009-01-01

    Full text: The efficiency of gaseous X-ray detectors can be evaluated from tabulated data, but this approach assumes that the whole detector volume is permeated by the electrostatic field produced by the anode-cathode. Indeed, the usual detectors are comprised by a cylindrical hull acting as cathode containing a wire at its axis as anode, a configuration which foods the space between them with the electrostatic field. Some specially designed detectors, however, as Position Sensitive Detectors, contain regions which are not submitted to the electrostatic field, and hence, their efficiency could not be assessed from the tabulated data. Direct measurements of this efficiency would require a mono-chromator or set of pure mono-energetic X-rays sources. As only very few of them are really mono-energetic, the detector response to a given energy would be spoiled by to the concomitant contribution of other energies. Yet, the information would not be completely lost, but only concealed due to the convolution carried out by the detector. Therefore, a proper unfolding would be capable to recover the information, yielding the individual detector efficiency for each of the contributing energies. The degraded information is retrieved in this work through a proper mathematical unfolding of the detector response, when exposed to Bremsstrahlung spectra from an X-ray tube submitted to different voltages. For this purpose, Lorentzian functions have been fitted to these spectra - obtained with a NaI(Tl) spectrometer - in order to characterize them with proper parameters. The mathematical convolution of these functions with a theoretical detector efficiency curve yields, after integration, values which, confronted with those experimentally measured, allow the determination of the parameters of the efficiency curve. As some parameters of this curve are well known, it is possible to represent it by proper functions. For argon-filled detectors, for instance, this efficiency has a

  17. A novel position sensitive detector for nuclear radiation. Final Report

    International Nuclear Information System (INIS)

    Kania Shah

    2006-01-01

    Current and next generation experiments in nuclear and elementary particle physics require detectors with high spatial resolution, fast response, and accurate energy information. Such detectors are required for spectroscopy, and imaging of optical and high-energy photons, charged particles, and neutrons, and are of interest not only in nuclear and high-energy physics, but also in other areas such as medical imaging, diffraction, astronomy, nuclear treaty verification, non-destructive evaluation, and geological exploration

  18. One-dimensional position sensitive detector based on photonic crystals

    International Nuclear Information System (INIS)

    Xi Feng; Qin Lan; Xue Lian; Duan Ying

    2013-01-01

    Position sensitive detectors (PSDs) are an important class of optical sensors which utilizes the lateral photovoltaic effect (LPVE). According to the operation principle of PSD, we demonstrate that LPVE can be enhanced by lengthening the lifetime of photo-generated carriers. A PSD based on photonic crystals (PCs) composed of MgF 2 and InP is proposed and designed. The transmittances of the defect PC and the reflectance of the perfect PC in the PSD are obtained with transfer matrix method. The theoretical research on the designed device shows that LPVE is enhanced by improving the transmittance of the defect PC and the reflectance of the perfect PC to lengthen the lifetime of photo-generated carriers. (authors)

  19. Linear position sensitive neutron detector using fiber optic encoded scintillators

    International Nuclear Information System (INIS)

    Davidson, P.L.; Wroe, H.

    1983-01-01

    A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min - 1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A 0

  20. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  1. Cellular automaton-based position sensitive detector equalization

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando, Nestor [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)], E-mail: nesferjo@upvnet.upv.es; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M. [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  2. Cellular automaton-based position sensitive detector equalization

    International Nuclear Information System (INIS)

    Ferrando, Nestor; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M.

    2009-01-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  3. PICsIT a position sensitive detector for space applications

    CERN Document Server

    Labanti, C; Ferriani, S; Ferro, G; Malaguti, G; Mauri, A; Rossi, E; Schiavone, F; Stephen, J B; Traci, A; Visparelli, D

    2002-01-01

    Pixellated Imaging CsI Telescope (PICsIT) is the high energy detector plane of Imager on Board INTEGRAL Satellite (IBIS), one of the main instruments on board the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite that will be launched in the year 2001. It consists of 4096 CsI(Tl) individual detector elements and operates in the energy range from 120 to 10,000 keV. PICsIT is made up of 8 identical modules, each housing 512 scintillating crystals coupled to PIN photodiodes (PD). Each crystal, 30 mm long and with a cross-section of 8.55x8.55 mm sup 2 , is wrapped with a white diffusing coating and then inserted into an aluminium crate. In order to have a compact design, two electronic boards, mounted directly below the crystal/PD assembly, host both the Analogue and Digital Front-End Electronics (FEE). The behaviour of the read-out FEE has a direct impact on the performance of the whole detector in terms of lower energy threshold, energy resolution and event time tagging. Due to the great numb...

  4. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    Science.gov (United States)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  5. An X-ray gas position sensitive detector: construction and characterization

    International Nuclear Information System (INIS)

    Barbosa, A.F.; Gabriel, A.; Gabriel, A.; Craievich, A.

    1988-01-01

    A linear x-ray gas position sensitive detector with delay line readout has been constructed. The detector is described, characterized and used for detecting x-ray diffraction patterns from polycrystals. (author) [pt

  6. Prototype of high resolution PET using resistive electrode position sensitive CdTe detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Matsuyama, Shigeo; Yamazaki, Hiromichi

    2008-01-01

    Downsizing detector elements makes it possible that spatial resolutions of positron emission tomography (PET) cameras are improved very much. From this point of view, semiconductor detectors are preferable. To obtain high resolution, the pixel type or the multi strip type of semiconductor detectors can be used. However, in this case, there is a low packing ratio problem, because a dead area between detector arrays cannot be neglected. Here, we propose the use of position sensitive semiconductor detectors with resistive electrode. The CdTe detector is promising as a detector for PET camera because of its high sensitivity. In this paper, we report development of prototype of high resolution PET using resistive electrode position sensitive CdTe detectors. We made 1-dimensional position sensitive CdTe detectors experimentally by changing the electrode thickness. We obtained 750 A as an appropriate thickness of position sensitive detectors, and evaluated the performance of the detector using a collimated 241 Am source. A good position resolution of 1.2 mm full width half maximum (FWHM) was obtained. On the basis of the fundamental development of resistive electrode position sensitive detectors, we constructed a prototype of high resolution PET which was a dual head type and was consisted of thirty-two 1-dimensional position sensitive detectors. In conclusion, we obtained high resolutions which are 0.75 mm (FWHM) in transaxial, and 1.5 mm (FWHM) in axial. (author)

  7. Silicon position sensitive detectors for the Helios (NA 34) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E Jr; Mani, S; Manns, T; Plants, D; Shepard, P F; Thompson, J A; Tosh, R; Chand, T; Shivpuri, R; Baker, W

    1987-01-15

    The design construction and testing of X-Y tracking modules for a silicon microstrip vertex detector for use in Fermilab experiment E706 is discussed. A successful adaptation of various technologies, essential for instrumenting this class of detectors at a university laboratory is described. Emphasis is placed on considerable cost reduction, design flexibiity and more rapid turnover with a view toward large detectors for the future.

  8. POSSuMUS: a position sensitive scintillating muon SiPM detector

    CERN Document Server

    Ruschke, Alexander

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle’s position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm2 to few m2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module ...

  9. The measurement of the radioactive aerosol diameter by position sensitive detectors, 3

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki; Nakamoto, Atsushi; Kanamori, Masashi; Seki, Akio.

    1981-10-01

    The measurement of the diameter of radioactive aerosol, in particular plutonium aerosol, is very important for the internal dose estimation. Determination of the diameter of radioactive aerosol is performed by using the position sensitive detectors. Position sensitive semiconductor detectors and Scintillation detectors with IIT tube are used as the position sensitive detector. The filter paper with the radioactive aerosols is contacted to the PSD which is connected to the data processor so that the diameter of the aerosol is calculated from the measured radioactivity. (author)

  10. Position-sensitive silicon strip detector characterization using particle beams

    CERN Document Server

    Maenpaeae, Teppo

    2012-01-01

    Silicon strip detectors are fast, cost-effective and have an excellent spatial resolution.They are widely used in many high-energy physics experiments. Modern high energyphysics experiments impose harsh operation conditions on the detectors, e.g., of LHCexperiments. The high radiation doses cause the detectors to eventually fail as a resultof excessive radiation damage. This has led to a need to study radiation tolerance usingvarious techniques. At the same time, a need to operate sensors approaching the endtheir lifetimes has arisen.The goal of this work is to demonstrate that novel detectors can survive the environment that is foreseen for future high-energy physics experiments. To reach this goal,measurement apparatuses are built. The devices are then used to measure the propertiesof irradiated detectors. The measurement data are analyzed, and conclusions are drawn.Three measurement apparatuses built as a part of this work are described: two telescopes measuring the tracks of the beam of a particle acceler...

  11. 1-D position sensitive single carrier semiconductor detectors

    International Nuclear Information System (INIS)

    Zhong He; Knoll, G.F.; Wehe, D.K.; Rojeski, R.; Mastrangelo, C.H.; Hammig, M.; Barrett, C.; Uritani, A.

    1996-01-01

    A single polarity charge sensing method has been studied using coplanar electrodes on 5 mm cubes of CdZnTe γ-ray detectors. This method can ameliorate the hole trapping problem of room-temperature semiconductor detectors. Our experimental results confirm that the energy resolution is dramatically improved compared with that obtained using the conventional readout method, but is still about an order of magnitude worse than the theoretical limit. A method to obtain the γ-ray interaction depth between the cathode and the anode is presented here. This technique could be used to correct for the electron trapping as a function of distance from the coplanar electrodes. Experimental results showed that a position resolution of about 0.9 mm FWHM at 122 keV can be obtained. These results will be of interest in the design of higher performance room-temperature semiconductor γ-ray detectors. (orig.)

  12. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Riedel, R.A.; Cooper, R.G.; Funk, L.L.; Clonts, L.G.

    2012-01-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  13. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, R.A., E-mail: riedelra@ornl.gov [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States); Cooper, R.G.; Funk, L.L.; Clonts, L.G. [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States)

    2012-02-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  14. Centroid finding method for position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Boie, R.A.

    1979-10-01

    A new centroid finding method for all detectors where the signal charge is collected or induced on strips of wires, or on subdivided resistive electrodes, is presented. The centroid of charge is determined by convolution of the sequentially switched outputs from these subdivisions or from the strips with a linear centroid finding filter. The position line width is inversely proportional to N/sup 3/2/, where N is the number of subdivisions

  15. Centroid finding method for position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Boie, R.A.

    1980-01-01

    A new centroid finding method for all detectors where the signal charge is collected or induced on strips or wires, or on subdivided resistive electrodes, is presented. The centroid of charge is determined by convolution of the sequentially switched outputs from these subdivisions or from the strips with a linear centroid finding filter. The position line width is inversely proportional to N 3 sup(/) 2 , where N is the number of subdivisions. (orig.)

  16. Position sensitive proportional counters as focal plane detectors

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1979-01-01

    The rise time and charge division techniques for position decoding with RC-line proportional counters are reviewed. The advantages that these detectors offer as focal plane counters for nuclear spectroscopy performed with magnetic spectrographs are discussed. The theory of operation of proportional counters as position sensing devices is summarized, as well as practical aspects affecting their application. Factors limiting the position and energy resolutions obtainable with a focal plane proportional counter are evaluated and measured position and energy loss values are presented for comparison. Detector systems capable of the multiparameter measurements required for particle identification, background suppression and ray-tracing are described in order to illustrate the wide applicability of proportional counters within complex focal plane systems. Examples of the use of these counters other than with magnetic spectrographs are given in order to demonstrate their usefulness in not only nuclear physics but also in fields such as solid state physics, biology, and medicine. The influence of the new focal plane detector systems on future magnetic spectrograph designs is discussed. (Auth.)

  17. A two-dimensional low energy gamma-ray position sensitive detector

    International Nuclear Information System (INIS)

    Charalambous, P.M.; Dean, A.J.; Drane, M.; Gil, A.; Stephen, J.B.; Young, N.G.S.; Barbareschi, L.; Perotti, F.; Villa, G.; Badiali, M.; La Padula, C.; Polcaro, F.; Ubertini, P.

    1984-01-01

    An array of 1-dimensional position sensitive detectors designed to operate over the photon energy range 0.2-10.0 MeV, so as to form an efficient 2-dimensional position sensitive detection plane is described. A series of experimental tests has been carried out to evaluate and confirm the computed capabilities. (orig.)

  18. Recent developments and applications of fast position-sensitive gas detectors

    International Nuclear Information System (INIS)

    Sauli, Fabio

    1999-01-01

    The introduction, 30 years ago, of the multiwire proportional chamber initiated a very active and fruitful period of development of fast gas detectors. Performing position-sensitive devices have been perfected, for the needs of elementary particle physics and for applications in medical diagnostics, biology, material analysis. The high rate performance of wire counters, limited by positive ions accumulation, was largely improved with the introduction of the micro-strip gas chamber, capable of achieving position accuracies of few tens of microns at radiation fluxes exceeding 1 MHz/mm 2 . The micro-strip chamber properties have been extensively studied in view of large scale use in high luminosity experiments; some interesting applications in other fields will be described here. Originally conceived as a gain booster to solve reliability problems met with micro-strips, the gas electron multiplier was invented about a year and a half ago. Progress made with high gain models is leading to a new concept in gas detectors, powerful yet cheap and reliable. Possible developments and applications will be discussed: large area position-sensitive photo detectors and X-ray imagers, including devices with non-planar geometry suited to spectrometers and crystal diffraction studies

  19. Computer modelling of position-sensitive scintillator detectors

    International Nuclear Information System (INIS)

    Schelten, J.; Kurz, R.; Kernforschungsanlage Juelich G.m.b.H.

    1983-01-01

    The essential properties of a two-dimensional PSD consisting of 7 x 7 circular PMs of diameter D = 68 mm, optically coupled to a glass block disperser of thickness H, and of a thin glass scintillator which is optically decoupled from the disperser are analyzed by computer-simulation of the detector geometry which determines the light distribution on rows and columns of PMs for a neutron capture event and the electronic signal handling which leads to the response function Q(x,y). The computer simulations were performed in order to investigate geometrical variations, such as PMs with a square photo-cathode, a hexagonal arrangement, the effect of the disperser thickness and of conical condensers in front of the PMs and edge-effects due to the finite size of the disperser. The linearity of the detector can be optimised by adjusting three smoothing parameters S, S' and S''. These parameters can be introduced if the signal processing, which determines a neutron event, is based on a course selection of three PM columns and three rows followed by a weighted pulse height division for a final determination of the x and y coordinates. This paper briefly describes the simulations and presents the calculated results which refer closely to the two-dimensional PSD which is being built in the Laboratory. (author)

  20. POSSuMUS. A position sensitive scintillating muon SiPM detector

    International Nuclear Information System (INIS)

    Ruschke, Alexander

    2014-01-01

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle's position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm 2 to few m 2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module is achieved by the path length dependent amount of detected light for crossing particles. The ratio of the light yields in both trapezoids is calculated. This value corresponds to the position of the particle traversing the detector. A spatial resolution in the order of several mm is foreseen. The position sensitivity along the scintillator module is determined by the propagation time of light to the SiPMs located on opposite sides of the detector. A spatial resolution of few cm is expected for this direction. The POSSuMUS detector is applicable as large area trigger detector with a two dimensional position information of crossing particles. This is suitable in detector tests of large area precesion detectors or for measuring the small angle scattering of cosmic muons. At the beginning of this thesis, the determination of important SiPM characteristics like the breakdown voltage is presented. In the course of this work the detector principle is proven by

  1. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  2. A position-sensitive start detector for time-of-flight measurement

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Shikazono, Naomoto; Isoyama, Goro.

    1978-08-01

    A position-sensitive start detector for a time-of-flight measurement is described. In this detector microchannel plates were used to obtain time and position signals simultaneously. A time resolution of 121 psec FWHM and a position resolution of 0.28 mm FWHM were obtained for α-particles from an 241 Am source. (auth.)

  3. A position-sensitive scintillation detector for two-dimensional angular correlation of annihilation radiation using metal-package position-sensitive photomultiplier tubes

    International Nuclear Information System (INIS)

    Inoue, Koji; Nagai, Yasuyoshi; Saito, Haruo; Nagashima, Yasuyuki; Hyodo, Toshio; Muramatsu, Shinichi; Nagai, Shota

    1999-01-01

    We have constructed and tested a prototype of a new position sensitive γ-ray detector which consists of an array of 2.6x2.6x18 mm 3 BGO scintillator blocks, a light guide, and four metal-package position-sensitive photomultiplier tubes (R5900-00-C8) recently developed by Hamamatsu Photonics Co. Ltd. Scalability of the detector of this type makes it possible to construct a larger detector using many PS-PMTs, which will be useful for the two-dimensional angular correlation of annihilation radiation apparatus

  4. Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si

    Science.gov (United States)

    Javadi, Mohammad; Gholami, Mahdiyeh; Torbatiyan, Hadis; Abdi, Yaser

    2018-03-01

    Various configurations like p-n junctions, metal-semiconductor Schottky barriers, and metal-oxide-semiconductor structures have been widely used in position-sensitive detectors. In this report, we propose a PEDOT:PSS/n-Si heterojunction as a hybrid organic/inorganic configuration for position-sensitive detectors. The influence of the thickness of the PEDOT:PSS layer, the wavelength of incident light, and the intensity of illumination on the device performance are investigated. The hybrid PSD exhibits very high sensitivity (>100 mV/mm), excellent nonlinearity (0.995) with a response time of heterojunction are very promising for developing a new class of position-sensitive detectors based on the hybrid organic/inorganic junctions.

  5. Coplanar-grid CdZnTe detector with three-dimensional position sensitivity

    International Nuclear Information System (INIS)

    Luke, P.N.; Amman, M.; Lee, J.S.; Yaver, H.

    1998-06-01

    A 3-dimensional position-sensitive coplanar-grid detector design for use with compound semiconductors is described. This detector design maintains the advantage of a coplanar-grid detector in which good energy resolution can be obtained from materials with poor charge transport. Position readout in two dimensions is accomplished using proximity-sensing electrodes adjacent to the electron-collecting grid electrode of the detector. Additionally, depth information is obtained by taking the ratio of the amplitudes of the collecting grid signal and the cathode signal. Experimental results from a prototype CdZnTe detector are presented

  6. Position-Sensitive Detector with Depth-of-Interaction Determination for Small Animal PET

    CERN Document Server

    Fedorov, A; Kholmetsky, A L; Korzhik, M V; Lecoq, P; Lobko, A S; Missevitch, O V; Tkatchev, A

    2002-01-01

    Crystal arrays made of LSO and LuAP crystals 2x2x10 mm pixels were manufactured for evaluation of detector with depth-of-interaction (DOI) determination capability intended for small animal positron emission tomograph. Position-sensitive LSO/LuAP phoswich DOI detector based on crystal 8x8 arrays and HAMAMATSU R5900-00-M64 position-sensitive multi-anode photomultiplier tube was developed and evaluated. Time resolution was found to be not worse than 1.0 ns FWHM for both layers, and spatial resolution mean value was 1.5 mm FWHM for the center of field-of-view.

  7. An overview of current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes

    CERN Document Server

    Gys, Thierry

    1999-01-01

    Current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes have stimulated increased interest from a variety of fields such as astronomy, biomedical imaging and high- energy physics. These devices are sensitive to single photons over a photon energy spectrum defined by the transmission of the optical entrance window and the photo-cathode type. Their spatial resolution ranges from a few millimeters for pad hybrid photon detectors and multi-anode photo-multiplier tubes down to a few tens of microns for pixel hybrid photon detectors and electron-bombarded charge-coupled devices. Basic technological and design aspects are assessed in this paper. (21 refs).

  8. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.

    2013-01-01

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments

  9. The performance of prototype position-sensitive neutron detectors on SXD at ISIS

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1989-02-01

    The performance of two position-sensitive neutron detector designed for use on the single crystal diffractometer (SXD) at ISIS is assessed. The two detectors examined were the Anger camera 6 Li-glass scintillator PSD and a prototype fibre-optic encoded PSD based on 6 Li-doped ZnS plastic scintillator. The latter detector is found to be both simpler to fabricate and to produce better results on the evidence to date. A summary of some of the expected science from SXD and the performance of the detectors with respect to this is also given. (author)

  10. A digital divider with extension bits for position-sensitive detectors

    International Nuclear Information System (INIS)

    Koike, Masaki; Hasegawa, Ken-ichi

    1988-01-01

    Digitizing errors produced in a digital divider for position-sensitive detectors have been reduced by adding extension bits to data bits. A relation between the extension bits and the data bits to obtain perfect position uniformity is also given. A digital divider employing 10 bit ADCs and 6 bit extension circuits has been constructed. (orig.)

  11. A new position-sensitive detector for thermal and epithermal neutrons

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Ford, N.L.; Lindberg, B.; Sachot, R.

    1977-01-01

    A new two-dimensional position-sensitive neutron detector is described. It is based on (n,γ) neutron resonance capture in a foil with subsequent detection of internal conversion electrons with a high-density proportional chamber. Large-area detectors with a 1 mm spatial resolution are feasible. A detection efficiency of 50% is possible for thermal neutrons using gadolinium-157 foil and for epithermal neutrons using hafnium-177. (Auth.)

  12. The Research of Screw Thread Parameter Measurement Based on Position Sensitive Detector and Laser

    International Nuclear Information System (INIS)

    Tong, Q B; Ding, Z L; Chen, J C; Ai, L L; Yuan, F

    2006-01-01

    A technique and system of measuring screw thread parameter based on the theory of laser measurement is presented in this paper, which can be carried out the automated measurement of screw thread parameter. An inspection instrument was designed and produced, which included exterior imaging system of optical path, transverse displacement measurement system, axial displacement measurement system, and a module to deal with, control and assess the data in the upper system. The inspection and estimate of the screw thread contour curve were completed by using position sensitive device (PSD) as photoelectric detector to measure the coordinate data of the screw thread contour curve in the transverse section, and using precise raster to measure the axial displacement of the precision worktable under the screw thread test criterion., computer can gives a measured result according to coordinate data of the screw thread obtained by PSD. The relation between measured spot and image is established, and optimum design of the system organization are introduced, including the image length of receiving lens focal length optical system and the choice of PSD , and some main factor affected measuring precision are analyzed. The experimental results show that the measurement uncertainty of screw thread minor diameter can reach 0. 5μm, which can meet most requests for the measurement of screw thread parameter

  13. Cerium doped GSO scintillators and its application to position sensitive detectors

    International Nuclear Information System (INIS)

    Ishibashi, H.; Shimizu, K.; Susa, K.; Kubota, S.

    1989-01-01

    The dependence of the light output and the decay times of Ce doped Gd/sub 2/SiO/sub 5/ on Ce concentration is measured. By using the difference in decay times on Ce concentration for GSO(Ce), the combination of different concentration of GSO(Ce) scintillators is shown to be useful as position sensitive detectors. A Ce doped Gd/sub 2/SiO/sub 5/ (GSO(Ce)) single crystal is an excellent scintillator featuring, a large light output, a short decay time and a high absorption coefficient. Further investigation aimed at its implementation to scintillators has been carried out previously. An application of the GSO(Ce) scintillators to the gamma-ray detectors of positron emission computed tomography has also been shown. The authors have investigated the dependence of its scintillation properties on the Ce concentration and its application to position sensitive detectors

  14. A setup for measurement of beam stability and position using position sensitive detector for Indus-1

    International Nuclear Information System (INIS)

    Nathwani, R.K.; Joshi, D.K.; Tyagi, Y.; Soni, R.S.; Puntambekar, T.A.; Pithawa, C.K.

    2009-01-01

    The 450 MeV electron synchrotron radiation source Indus-1 is operational at RRCAT. A set-up has been developed to measure the relative transverse positional stability of the electron beam and its position with microns resolution using position sensitive photodiodes. The set-up has been installed at the diagnostics beam line of Indus-1. Synchrotron light from photo physics beamline was reflected out by inserting a Ni coated mirror and was focused onto a duo-lateral position sensitive photodiode by using two mirrors of 1.25 meter focal length to obtain unity magnification. The set-up consists of a duo-lateral position sensitive detector (PSD), precision processing electronics and a PC based data acquisition system. A computer program captures the processed signals on to a PC using GPIB interface and displays vertical position of the beam in real time. The paper describes the salient features of the setup developed for measurement of beam stability. (author)

  15. Contribution to the study of position sensitive detectors with high spatial resolution for thermal neutron detection

    International Nuclear Information System (INIS)

    Idrissi Fakhr-Eddine, Abdellah.

    1978-01-01

    With a view to improving the spatial resolution of the localization of thermal neutrons, the work covers four position sensitive detectors: - 800 cell multi-detectors (1 dimension), - linear 'Jeu de Jacquet' detectors (1 dimension) - Multi-detector XYP 128x128 (2 dimensions), - 'Jeu de Jacquet' detector with 2 dimensions. Mention is made of the various position finding methods known so far, as well as the reasons for selecting BF 3 as detector gas. A study is then made of the parameters of the multiwire chamber whose principle will form the basis of most of the position detecting appliances subsequently dealt with. Finally, a description is given of the detection tests of the thermal neutrons in the multiwire chamber depending on the pressure, a parameter that greatly affects the accuracy of the position finding. The single dimension position tests on two kinds of appliance, the 800 cell multi-detector for the wide angle diffraction studies, and the linear 'Jeu de Jacquet' detector designed for small angle diffraction are mentioned. A description is then given of two position appliances with two dimensions; the multi-detector XYP 128x128 and the two dimensional 'Jeu de Jacquet' detector. In the case of this latter detector, only the hoped for characteristics are indicated [fr

  16. Simulation and optimisation of a position sensitive scintillation detector with wavelength shifting fibers for thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Herzkamp, Matthias; Engels, Ralf; Kemmerling, Guenter [ZEA-2, Forschungszentrum Juelich (Germany); Brueckel, Thomas [JCNS, Forschungszentrum Juelich (Germany); Stahl, Achim [III. Physikalisches Institut B, RWTH Aachen (Germany); Waasen, Stefan van [ZEA-2, Forschungszentrum Juelich (Germany); Faculty of Engineering, University of Duisburg-Essen (Germany)

    2015-07-01

    In neutron scattering experiments it is important to have position sensitive large scale detectors for thermal neutrons. A detector based on a neutron scintillator with wave length shifting fibers is a new kind of such a detector. We present the simulation of the detector based on the microscopic structure of the scintillation material of the mentioned detector. It consists of a converter and a scintillation powder bound in a matrix. The converter in our case is lithium fluoride with enriched lithium 6, to convert thermal neutrons into high energetic alpha and triton particles. The scintillation material is silver doped zinc sulfide. We show that pulse height spectra obtained by these scintillators can be be explained by the simple model of randomly distributed spheres of zinc sulfide and lithium fluoride. With this model, it is possible to optimise the mass ratio of zinc sulfide to lithium fluoride with respect to detection efficiency and/or energy deposition in zinc sulfide.

  17. Method and apparatus for formation logging using position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Gadken, L.L.

    1986-01-01

    This patent describes a method for logging earth formations using position sensitive neutron detectors. The method consists of: 1) Irradiation of earth formations in the vicinity of a well borehole with a source of fast neutrons. 2) At four longitudinally spaced distances from the neutron source in the borehole, the epithermal neutron population is detected. Each of the four separate populations is detected in an epithermally sensitive and substantially thermally insensitive portion of the same position sensitive neutron detector. A representative signal from each is then individually generated. 3) First, second, third, and fourth neutron population representative signals are combined. They derive a simultaneous measurement signal. This signal is functionally related to the porosity and also a signal functionally related to a neutron characteristic length of the earth formations in the vicinity of the borehole

  18. Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector

    Science.gov (United States)

    Yan, Pei-pei; Yang, Yong-qing; She, Wen-ji; Liu, Kai; Jiang, Kai; Duan, Jing; Shan, Qiusha

    2018-02-01

    A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4° measuring range is +/-5' error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator's dimension get compact obviously under the condition of the image quality is guaranteed.

  19. Test of a position-sensitive photomultiplier for fast scintillating fiber detector read-out

    International Nuclear Information System (INIS)

    Baehr, J.; Hoffmann, B.; Luedecke, H.; Nahnhauer, R.; Pohl, M.; Roloff, H.E.

    1993-01-01

    A position-sensitive photomultiplier with 256 anode pixels has been used to read out scintillating fibers excited by light emitting diodes, electrons from a β-source and a 5 GeV electron beam. Measurements have been done within a magnetic field up to 0.6 T. Tracking and electromagnetic shower detection capabilities of a simple fiber detector have been studied. (orig.)

  20. A large area two-dimensional position sensitive multiwire proportional detector

    CERN Document Server

    Moura, M M D; Souza, F A; Alonso, E E; Fujii, R J; Meyknecht, A B; Added, N; Aissaoui, N; Cardenas, W H Z; Ferraretto, M D; Schnitter, U; Szanto, E M; Szanto de Toledo, A; Yamamura, M S; Carlin, N

    1999-01-01

    Large area two-dimensional position sensitive multiwire proportional detectors were developed to be used in the study of light heavy-ion nuclear reactions at the University of Sao Paulo Pelletron Laboratory. Each detector has a 20x20 cm sup 2 active area and consists of three grids (X-position, anode and Y-position) made of 25 mu m diameter gold plated tungsten wires. The position is determined through resistive divider chains. Results for position resolution, linearity and efficiency as a function of energy and position for different elements are reported.

  1. Measurement and analysis of field-induced crystallographic texture using curved position-sensitive diffraction detectors

    DEFF Research Database (Denmark)

    Simons, Hugh; Daniels, John E.; Studer, Andrew J.

    2014-01-01

    This paper outlines measurement and analysis methodologies created for determining the structural responses of electroceramics to an electric field. A sample stage is developed to apply electric fields to ceramic materials at elevated temperatures during neutron diffraction experiments. The tested...... employing a curved positive sensitive detector. Methodologies are proposed to account for the geometrical effects when vector fields are applied to textured materials with angularly dispersive detector geometries. Representative results are presented for the ferroelectric (Bi1/2Na1/2)TiO3-6%BaTiO3 (BNT-6BT...

  2. A rotation-symmetric, position-sensitive annular detector for maximum counting rates

    International Nuclear Information System (INIS)

    Igel, S.

    1993-12-01

    The Germanium Wall is a semiconductor detector system containing up to four annular position sensitive ΔE-detectors from high purity germanium (HPGe) planned to complement the BIG KARL spectrometer in COSY experiments. The first diode of the system, the Quirl-detector, has a two dimensional position sensitive structure defined by 200 Archimedes' spirals on each side with opposite orientation. In this way about 40000 pixels are defined. Since each spiral element detects almost the same number of events in an experiment the whole system can be optimized for maximal counting rates. This paper describes a test setup for a first prototype of the Quirl-detector and the results of test measurements with an α-source. The detector current and the electrical separation of the spiral elements were measured. The splitting of signals due to the spread of charge carriers produced by an incident ionizing particle on several adjacent elements was investigated in detail and found to be twice as high as expected from calculations. Its influence on energy and position resolution is discussed. Electronic crosstalk via signal wires and the influence of noise from the magnetic spectrometer has been tested under experimental conditions. Additionally, vacuum feedthroughs based on printed Kapton foils pressed between Viton seals were fabricated and tested successfully concerning their vacuum and thermal properties. (orig.)

  3. A large-area, position-sensitive neutron detector with neutron/γ-ray discrimination capabilities

    International Nuclear Information System (INIS)

    Zecher, P.D.; Galonsky, A.; Kruse, J.J.; Gaff, S.J.; Ottarson, J.; Wang, J.; Seres, Z.; Ieki, K.; Iwata, Y.; Schelin, H.

    1997-01-01

    To further study neutron-rich halo nuclei, we have constructed a neutron detector array. The array consists of two separate banks of detectors, each of area 2 x 2 m 2 and containing 250 l of liquid scintillator. Each bank is position-sensitive to better than 10 cm. For neutron time-of-flight measurements, the time resolution of the detector has been demonstrated to be about 1 ns. By using the scintillator NE-213, we are able to distinguish between neutron and γ-ray signals above 1 MeV electron equivalent energy. Although the detector array was constructed for a particular experiment it has also been used in a number of other experiments. (orig.)

  4. Design and development of 1 mm resolution PET detectors with position-sensitive PMTs

    CERN Document Server

    Shao, Y; Chatziioannou, A F

    2002-01-01

    We report our investigation of a positron emission tomography (PET) detector with 1 m spatial resolution. The prototype detector consists of a 9x9 array of 1x1x10 mm sup 3 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to Hamamatsu R5900-M64 or R5900-C12 position sensitive PMT by either optical fibers or an optical fiber bundle. With a 511 eV gamma source, the intrinsic spatial resolution of this detector was measured to be 0.92 mm. All crystals were well resolved in the flood source histogram. The measured energy and coincidence timing resolutions were around 26% and 4 ns, respectively, demonstrating that sufficient light can be extracted from these small crystals for PET applications.

  5. A position sensitive silicon detector for AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Multimedia

    Gligorova, A

    2014-01-01

    The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is located at the Antiproton Decelerator (AD) at CERN and studies antimatter. The main goal of the AEḡIS experiment is to carry out the first measurement of the gravitational acceleration for antimatter in Earth’s gravitational field to a 1% relative precision. Such a measurement would test the Weak Equivalence Principle (WEP) of Einstein’s General Relativity. The gravitational acceleration for antihydrogen will be determined using a set of gravity measurement gratings (Moiré deflectometer) and a position sensitive detector. The vertical shift due to gravity of the falling antihydrogen atoms will be detected with a silicon strip detector, where the annihilation of antihydrogen will take place. This poster presents part of the development process of this detector.

  6. A microprogrammable high-speed data collection system for position sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hashizume, H.

    1984-01-01

    A high-speed data acquisition system has been designed which collects digital data from one- and two-dimensional position sensitive X-ray detectors at a maximum average data rate of 1 MHz. The system consists of two separate fast buffer memories, a 64 K word by 20-bit main storage, two timers, a display controller, a computer interface and a keyboard, controlled by a specially designed microprogrammable microprocessor. Data collection is performed by executing a microprogram stored in the control storage; data coming from a detector are first accumulated in a small but fast buffer memory by hardware and transferred to the main storage under control of the microprogram. This design not only permits time-resolved data collections but also provides maximum speed, flexibility and cost-effectiveness simultaneously. The system also accepts data from integrated detectors such as TV cameras. The system has been designed for use in experiments at conventional and synchrotron X-ray sources. (orig.)

  7. Instrumentation for Position Sensitive Detector-Powder diffractometer at CENM-Maamora

    International Nuclear Information System (INIS)

    Messous, M.-Y.; Belhorma, B.; Labrim, H.; El-Bakkari, B.; Jabri, H.

    2013-06-01

    Linear position sensitive detectors are widely used to configure neutron diffractometer and other instruments. Necessary front-end electronics and data acquisition system was developed to fulfil such instruments built around the research reactor. In this paper, the front-end electronics dedicated to the neutron powder diffractometer which will be installed in the axial beam port of the Triga Mark II research reactor (Center of Nuclear Studies of Maamora) is described. It consists of High voltage power supply, a Position-decoder and a Multichannel analyzer and data acquisition software. The 3 He-PSD detector response exposed to the neutron flow emitted by 252 Cf source held in paraffin spheres with distinct thicknesses for moderation effect, is shown. Monte-Carlo N Particles code (MCNP) simulations were also performed to study both the detector performance and the paraffin efficiency. (authors)

  8. The design of a position-sensitive thermal-neutron detector

    International Nuclear Information System (INIS)

    Zhang Yi; Chen Ziyu; Shen Ji

    2007-01-01

    We design a type of position-sensitive thermal-neutron detector. The design is based on the nuclear reaction 10 B(n, α) 7 Li, and solid boron-10 is used as the target material while the alpha and lithium-7 particles from the reaction are caught as the source of position information of the original neutrons. With the help of MCNP software, we simulate the distribution of alpha particles in the boron target, which leads to the optimal thickness of target, physical efficiency and position resolution. (authors)

  9. A time resolving data acquisition system for multiple high-resolution position sensitive detectors

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1988-01-01

    An advanced time resolving data collection system for use in neutron and x-ray spectrometry has been implemented and put into routine operation. The system collects data from high-resolution position-sensitive area detectors with a maximum cumulative rate of 10/sup 6/ events per second. The events are sorted, in real-time, into many time-slice arrays. A programmable timing control unit allows for a wide choice of time sequences and time-slice array sizes. The shortest dwell time on a slice may be below 1 ms and the delay to switch between slices is zero

  10. Reduction of digital errors of digital charge division type position-sensitive detectors

    International Nuclear Information System (INIS)

    Uritani, A.; Yoshimura, K.; Takenaka, Y.; Mori, C.

    1994-01-01

    It is well known that ''digital errors'', i.e. differential non-linearity, appear in a position profile of radiation interactions when the profile is obtained with a digital charge-division-type position-sensitive detector. Two methods are presented to reduce the digital errors. They are the methods using logarithmic amplifiers and a weighting function. The validities of these two methods have been evaluated mainly by computer simulation. These methods can considerably reduce the digital errors. The best results are obtained when both methods are applied. ((orig.))

  11. High speed USB data logger for position sensitive detector data acquisition

    International Nuclear Information System (INIS)

    Poudel, S.K.; Kulkarni, V.B.; Kumar, Santosh; Chandak, R.M.; Krishna, P.S.R.; Mukhopadhyay, R.

    2010-01-01

    Ratio ADC (RDC) module used in neutron Position Sensitive Detector (PSD) data acquisition, gives digital code signifying the position of neutron event. A High Speed USB based RDC Data Logger card has been made for logging data from multiple RDCs to PC. A CPLD on the card continuously polls the RDCs for data, and fills it in the FIFO memory of a high speed USB microcontroller. A VC++ program for neutron scattering experiments reads event codes from FIFO of microcontroller and builds spectrum on PC. This program sweeps physical parameters of sample and collects PSD data for pre-determined monitor counts. (author)

  12. Derivation of the point spread function for zero-crossing-demodulated position-sensitive detectors

    International Nuclear Information System (INIS)

    Nowlin, C.H.

    1976-07-01

    This work is a mathematical derivation of a high-quality approximation to the point spread function for position-sensitive detectors (PSDs) that use pulse-shape modulation and crossover-time demodulation. The approximation is determined as a general function of the input signals to the crossover detectors so as to enable later determination of optimum position-decoding filters for PSDs. This work is precisely applicable to PSDs that use either RC or LC transmission line encoders. The effects of random variables, such as charge collection time, in the encoding process are included. In addition, this work presents a new, rigorous method for the determination of upper and lower bounds for conditional crossover-time distribution functions (closely related to first-passage-time distribution functions) for arbitrary signals and arbitrary noise covariance functions

  13. Estimation of Compton Imager Using Single 3D Position-Sensitive LYSO Scintillator: Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewoong; Lee, Hyounggun; Kim, Younghak; Lee, Wonho [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    The performance of a Compton imager using a single three-dimensional position-sensitive LYSO scintillator detector was estimated using a Monte Carlo simulation. The Compton imager consisted of a single LYSO scintillator with a pixelized structure. The size of the scintillator and each pixel were 1.3 × 1.3 × 1.3 cm{sup 3} and 0.3 × 0.3 × 0.3 cm{sup 3}, respectively. The order of γ-ray interactions was determined based on the deposited energies in each detector. After the determination of the interaction sequence, various types of reconstruction algorithms such as simple back-projection, filtered back-projection, and list-mode maximum-likelihood expectation maximization (LM-MLEM) were applied and compared with each other in terms of their angular resolution and signal-tonoise ratio (SNR) for several γ-ray energies. The LM-MLEM reconstruction algorithm exhibited the best performance for Compton imaging in maintaining high angular resolution and SNR. The two sources of {sup 137}Cs (662 keV) could be distinguishable if they were more than 17 ◦ apart. The reconstructed Compton images showed the precise position and distribution of various radiation isotopes, which demonstrated the feasibility of the monitoring of nuclear materials in homeland security and radioactive waste management applications.

  14. First Investigation on a novel 2D position sensitive semiconductor detector concept

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  15. A large, high performance, curved 2D position-sensitive neutron detector

    CERN Document Server

    Fried, J W; Mahler, G J; Makowiecki, D S; Mead, J A; Radeka, V; Schaknowski, N A; Smith, G C; Yu, B

    2002-01-01

    A new position-sensitive neutron detector has been designed and constructed for a protein crystallography station at LANL's pulsed neutron source. This station will be one of the most advanced instruments at a major neutron user facility for protein crystallography, fiber and membrane diffraction. The detector, based on neutron absorption in sup 3 He, has a large sensitive area of 3000 cm sup 2 , angular coverage of 120 deg. , timing resolution of 1 mu s, rate capability in excess of 10 sup 6 s sup - sup 1 , position resolution of about 1.5 mm FWHM, and efficiency >50% for neutrons of interest in the range 1-10 A. Features that are key to these remarkable specifications are the utilization of eight independently operating segments within a single gas volume, fabrication of the detector vessel and internal segments with a radius of curvature of about 70 cm, optimized position readout based on charge division and signal shaping with gated baseline restoration, and engineering design with high-strength aluminum ...

  16. An ancient form of position-sensitive detector - the individual counter array

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1983-01-01

    Large position sensitive detectors (PSDs) have been very successful as high efficiency neutron powder diffractometers. Complete powder patterns can be obtained within minutes, making possible real-time measurements of structural changes accompanying chemical and electrochemical reactions. The angular resolution of such machines is determined by the diameter of the sample, and not simply by the resolution of the detector itself. It is argued that since sample diameters are usually 5mm to 10mm, it is possible to use an array of individual counters of similar diameter rather than a true PSD. Such a low to medium resolution individual counter array (ICA) can be made more efficient than the true PSD, produces an identical diffraction pattern, and has several practical advantages, including covering a greater solid angle. For high resolution powder diffraction, it has already been demonstrated that an ICA, in this case associated with Soller collimators, is again the most efficient solution. This is because the sample volume (and intensity) of a high resolution PSD decreases quadratically with the diameter of the sample. The only alternative to very small samples would be a large sample-detector distance, and then large vertical divergences cannot be achieved because of mechanical limitations on gas-filled PSD apertures; again intensity is lost. The resolution and efficiency of the ICA are discussed. (author)

  17. Study of capillary tracking detectors with position-sensitive photomultiplier readout

    International Nuclear Information System (INIS)

    Cardini, A.; Cavasinni, V.; Di Girolamo, B.; Dolinsky, S.I.; Flaminio, V.; Golovkin, S.V.; Gorin, A.M.; Medvedkov, A.M.; Pyshev, A.I.; Tyukov, V.E.; Vasilchenko, V.G.; Zymin, K.V.

    1995-01-01

    Measurements have been carried out on light yield and attenuation length in glass capillaries filled with new liquid scintillators (LS) and compared with analogous measurements made on 0.5 mm diameter plastic fibres Kuraray SCSF-38 and 3HF. It is found that, at a distance of 1 m, the light output in the capillary filled with green LS based on 1-methylnaphthalene doped with a new dye 3M15 is greater by a factor of 2 to 3 than for plastic fibres. A tracking detector consisting of a capillary bundle read out by a 100 channel position-sensitive microchannel plate photomultiplier (2MCP-100) has been built and tested in the laboratory using a cosmic ray trigger. A comparison has been made between the performance of such a detector and that of a similar one, read out by a 96 channel Philips XP1724/A photomultiplier. It was found that a bundle made of 20μm diameter capillaries with a tapered end giving a magnification of 2.56, filled with the new IPN+3M15 liquid scintillator, read out by the 2MCP-100, provides a space resolution of σ=170μm, a two-track resolution of the same value and a hit density of n=1.9/mm for tracks crossing the detector at a distance of 20 cm from the photocathode. If the same detector is read out by the Philips XP1724/A, the space resolution becomes 200μm, the two-track resolution 600μm and the hit density n=1.7/mm. The worse performance in the latter case is caused by the larger crosstalk compared with that of the 2MCP-100 PSPM. The results indicate that a LS-filled capillary detector is a very promising device for fast fibre tracking. (orig.)

  18. A detector system for two-dimensional, position-sensitive detection of neutrons and gamma quanta

    International Nuclear Information System (INIS)

    Scholz, A.

    1988-08-01

    While the well-known Anger Camera utilizes a large number of photomultiplier tubes, which are arranged in a regular array behind a scintillation crystal, the new detector system makes use of electron optics to transfer the scintillation image of a large scintillation crystal (Li-6-glass) onto a small position detector. Because of this, only few photodetectors are required for position readout, associated with only a small number of amplifier chains and a very simple position reconstruction algorithm. The reduced complexity of the readout electronics ultimately leads to an improved maintainability and reliability of the detector system. A prototype of the new detector system was built and tested. After giving an overview on already known and realized detector configurations, the basic considerations, which led to the final detector design, will be explained. Different methods of detector readout and position determination are discussed. Measurement results which were obtained with the prototype detector system are presented and explained by means of simulation calculations. (orig./HP) [de

  19. Current status and requirements for position-sensitive detectors in medicine

    CERN Document Server

    Speller, R

    2002-01-01

    This review considers the current status of detector developments for medical imaging using ionising radiation. This field is divided into two major areas; the use of X-rays for transmission imaging and the use of radioactive tracers in emission imaging (nuclear medicine). Until recently, most detector developments were for applications in nuclear medicine. However, in the past 5 years new developments in large area, X-ray-sensitive detectors have meant that both application domains are equally served. In X-ray imaging, work in CT and mammography are chosen as examples of sensor developments. Photodiode arrays in multi-slice spiral CT acquisitions are described and for mammography the use of amorphous silicon flat panel arrays is considered. The latter is an excellent example where new detector developments have required a re-think of traditional imaging methods. In gamma-ray imaging the recent developments in small area, task-specific cameras are described. Their limitations and current proposals to overcome...

  20. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes

    International Nuclear Information System (INIS)

    Yang Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-01-01

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is ∼2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach

  1. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  2. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments

    International Nuclear Information System (INIS)

    Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.

    2004-01-01

    We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed

  3. The effect of mechanical stress on lateral-effect position-sensitive detector characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, H.A. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)]. E-mail: Henrik.Andersson@miun.se; Mattsson, C.G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Thungstroem, G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Lundgren, A. [SiTek Electro Optics, Ogaerdesvaegen 13A 433 30 Partille (Sweden); Nilsson, H.-E. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)

    2006-07-01

    Position-sensitive detectors (PSDs) are widely used in noncontact measurement systems. In order to minimize the size of such systems, interest has increased in mounting the PSD chip directly onto printed circuit boards (PCBs). Stress may be induced in the PSD because of the large differences in thermal expansion coefficients, as well as the long-term geometrical stability of the chip packaging. Mechanical stress has previously been shown to have an effect on the performance of semiconductors. The accuracy, or linearity, of a lateral effect PSD is largely dependent on the homogeneity of the resistive layer. Variations of the resistivity over the active area of the PSD will result in an uneven distribution of photo-generated current, and hence an error in the readout position. In this work experiments were performed to investigate the influence of anisotropic mechanical stress in terms of nonlinearity. PSD chips of 60x3 mm active area were subjected, respectively, to different amounts of compressive and tensile stress to determine the influence on the linearity.

  4. On-line evaluation of position-sensitive detector (PSD) diffraction data

    International Nuclear Information System (INIS)

    Stansfield, R.F.D.; McIntyre, G.J.

    1985-01-01

    The amount of raw data accumulated in a single-crystal diffraction experiment using a two-dimensional Position Sensitive Detector is usually so large that it is impracticable to store it. It is therefore necessary to reduce each local three-dimensional array of counts to a Bragg intensity, in a time not longer than the average time that one reflection is active. The statistically optimum procedure comprises an estimation of the background from a large number of counts, and an integration of peak intensity within a suitable three-dimensional envelope. A typical on-line method is described, using as an example the D19 diffractometer at the Institut Max von Laue - Paul Langevin (ILL) high-flux reactor. Current methods of PSD data reduction are reviewed. These fall into three groups according to the basis of the method used to find the integration envelope: (a) statistical criteria, (b) three-dimensional sigma(I)/I analysis, and (c) pre-calculation of the resolution function. On-line data reduction imposes special requirements on diagnostics to check the precision of the reduced data, especially at the start of an experiment, when any peculiarities must be identified and allowed for in the data-reduction procedure. The diagnostic possibilities resulting from the comparison of local with global characteristics of the background and the integration envelope are discussed. (author)

  5. Peak-shape analysis for protein neutron crystallography with position-sensitive detectors

    International Nuclear Information System (INIS)

    Schoenborn, B.P.

    1983-01-01

    In neutron protein crystallography, the use of position-sensitive detectors controlled by a modern data-acquisition system permits new approaches to data-collection strategies. Instead of dealing with conventional scans, like the theta-2theta scan, that provide an integrated intensity as a function of a rotational parameter, the computer-linked counter can be used to produce a three-dimensional reflection profile. As the crystal steps (δ#betta#) through a reflection, the observed data for each step are stored in an external memory as a function of extent in 2theta and height (y) of a reflection. In this space, the reflection will be a three-dimensional distribution with dimensions determined by such basic geometrical conditions as δlambda, crystal size, mosaic spread, counter-resolution, and beam-collimation parameters. Knowledge of the interaction of these basic parameters will allow the design of optimal beam optics and will permit the delineation of the reflection from the background and permit, therefore, an accurate intensity determination. (Auth.)

  6. Position sensitive photon detectors using epitaxial InGaAs/InAlAs quantum wells

    International Nuclear Information System (INIS)

    Ganbold, T.; Antonelli, M.; Cautero, G.; Jark, H.; Eichert, D.M.; Cucini, R.; Menk, R.H.; Biasiol, G.

    2014-01-01

    This work deals with the investigation of novel position-sensitive devices based on InGaAs/InAlAs quantum wells, which could be applied to several applications of either synchrotron or conventional light sources. Such devices may be used as fast and efficient detectors due to the direct, low-energy band gap and high electron mobility at room temperature. Metamorphic In 0.75 Ga 0.25 As/In 0.75 Al 0.25 As quantum wells containing a two-dimensional electron gas were grown by molecular beam epitaxy. Two devices with size of 5 × 5 mm 2 were prepared by using optical lithography. In the first, the active layers were segmented into four electrically insulated quadrants. Indium ohmic contacts were realized on the corner of each quadrant (for readout) and on the back surface (for bias). In the second, the quantum well was left unsegmented and covered by 400 nm of Al providing a single bias electrode, while four readout electrodes were fabricated on the back side by depositing and segmenting a Ni/Ge/Au layer. Photo-generated carriers can be collected at the readout electrodes by biasing from either the QW side or the back side of the devices during beam exposure. Individual currents obtained from each electrode allow monitoring of both the position and the intensity of the impinging beam for photon energies ranging from visible to hard X-ray. Such detector prototypes were tested with synchrotron radiation. Moreover, the position of the beam can be estimated with a precision of 800 nm in the segmented QW. A lower precision of 10 μm was recorded in the unsegmented QW due to the charge diffusion through the 500-μm-thick wafer, with however a lower electronic noise due to the better uniformity of the contacts

  7. Modern trends in position-sensitive neutron detectors development for condensed matter research

    International Nuclear Information System (INIS)

    Belushkin, A.V.

    2007-01-01

    Detecting neutrons is a more complicated task compared to the detection of ionizing particles or ionizing radiation. This is why the variety of neutron detectors is much more limited. Meanwhile, different types of neutron experiments pose specific and often contradictory requirements for detector characteristics. For experiments on the high-intensity neutron sources, the high counting rate is one of the key issues. This is very important, for example, for small-angle neutron scattering and neutron reflectometry. For other experiments, characteristics like detection efficiency, high position resolution, high time resolution, neutron/gamma discrimination, large-area imaging, or compactness, are very important. Today, the cost of the detector also became one of the most important factors. There is no single type of detector which satisfies all the above criteria. Therefore, compromise is inevitable and some of the characteristics are trade off in favor of others. The present report gives an overview of detector systems presently operating at the leading neutron scattering facilities as well as some development work around the globe

  8. Position, Energy, and Transit Time Distributions in a Hemispherical Deflector Analyzer with Position Sensitive Detector

    Directory of Open Access Journals (Sweden)

    Omer Sise

    2015-01-01

    Full Text Available Practical analytic equations, for the ideal field, and numerical results from SIMION simulations, for the fringing field, are presented for the exit radius rπ and transit time tπ of electrons in a hemispherical deflector analyzer (HDA over a wide range of analyzer parameters. Results are presented for a typically dimensioned HDA with mean radius R-=101.6 mm and interradial separation ΔR=R2-R1=58.4 mm able to accommodate a 40 mm diameter position sensitive detector (PSD. Results for three different entry positions R0 are compared: R0=R- (the conventional central entry and two displaced (paracentric entries: R0=82.55 mm and R0=116 mm. Exit spreads Δrπ, Δtπ and base energy resolution ΔEB are computed for HDA pass energies E0=10, 100, 500, and 1000 eV, entry aperture sizes Δr0≤1.5 mm, entry angular spreads |αmax|≤5°, and an electron beam with relative energy spread δE/E0≤0.4%. Overall, under realistic conditions, both paracentric entries demonstrate near ideal field behavior and clear superiority over the conventional entry at R0=R-. The R0=82.55 mm entry has better absolute energy and time spread resolutions, while the R0=116 mm has better relative energy resolutions, both offering attractive alternatives for time-of-flight and coincidence applications where both energy and timing resolutions are important.

  9. Successful use of a linear position-sensitive neutron detector in solid state physics and materials science

    International Nuclear Information System (INIS)

    Schefer, J.; Fischer, P.; Heer, H.; Isacson, A.; Koch, M.; Thut, R.

    1991-01-01

    The double axis multicounter diffractometer (DMC) installed at the 10 MW reactor SAPHIR (PSI) has been designed as a good flux-good resolution (presently Δd/d≥4x10 -3 ) neutron poder diffractometer. The detector bank is based on a commercial position-sensitive linear BF 3 detector which may be automatically and precisely positioned on air cushions on inexpensive floors. This detector type has an 80deg angular opening, not allowing any standard collimation in front of the detector. We therefore developed an oscillating collimator system allowing easy use of the instrument even with sample environments such as a dilution cryostat. (orig.)

  10. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.

    Science.gov (United States)

    Ota, Ryosuke; Yamada, Ryoko; Moriya, Takahiro; Hasegawa, Tomoyuki

    2018-05-01

    Cherenkov radiation has recently received attention due to its prompt emission phenomenon, which has the potential to improve the timing performance of radiation detectors dedicated to positron emission tomography (PET). In this study, a Cherenkov-based three-dimensional (3D) position-sensitive radiation detector was proposed, which is composed of a monolithic lead fluoride (PbF 2 ) crystal and a photodetector array of which the signals can be readout independently. Monte Carlo simulations were performed to estimate the performance of the proposed detector. The position- and time resolution were evaluated under various practical conditions. The radiator size and various properties of the photodetector, e.g., readout pitch and single photon timing resolution (SPTR), were parameterized. The single photon time response of the photodetector was assumed to be a single Gaussian for the simplification. The photo detection efficiency of the photodetector was ideally 100% for all wavelengths. Compton scattering was included in simulations, but partly analyzed. To estimate the position at which a γ-ray interacted in the Cherenkov radiator, the center-of-gravity (COG) method was employed. In addition, to estimate the depth-of-interaction (DOI) principal component analysis (PCA), which is a multivariate analysis method and has been used to identify the patterns in data, was employed. The time-space distribution of Cherenkov photons was quantified to perform PCA. To evaluate coincidence time resolution (CTR), the time difference of two independent γ-ray events was calculated. The detection time was defined as the first photon time after the SPTR of the photodetector was taken into account. The position resolution on the photodetector plane could be estimated with high accuracy, by using a small number of Cherenkov photons. Moreover, PCA showed an ability to estimate the DOI. The position resolution heavily depends on the pitch of the photodetector array and the radiator

  11. Computed tomography with thermal neutrons and gaseous position sensitive detector; Tomografia computadorizada com neutrons termicos e detetor a gas sensivel a posicao

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Maria Ines Silvani

    2001-12-01

    A third generation tomographic system using a parallel thermal neutron beam and gaseous position sensitive detector has been developed along three discrete phases. At the first one, X-ray tomographic images of several objects, using a position sensitive detector designed and constructed for this purpose have been obtained. The second phase involved the conversion of that detector for thermal neutron detection, by using materials capable to convert neutrons into detectable charged particles, testing afterwards its performance in a tomographic system by evaluation the quality of the image arising from several test-objects containing materials applicable in the engineering field. High enriched {sup 3} He, replacing the argon-methane otherwise used as filling gas for the X-ray detection, as well as, a gadolinium foil, have been utilized as converters. Besides the pure enriched {sup 3} He, its mixture with argon-methane and later on with propane, have been also tested, in order to evaluate the detector efficiency and resolution. After each gas change, the overall performance of the tomographic system using the modified detector, has been analyzed through measurements of the related parameters. This was done by analyzing the images produced by test-objects containing several materials having well known attenuation coefficients for both thermal neutrons and X-rays. In order to compare the performance of the position sensitive detector as modified to detect thermal neutrons, with that of a conventional BF{sub 3} detector, additional tomographs have been conducted using the last one. The results have been compared in terms of advantages, handicaps and complementary aspects for different kinds of radiation and materials. (author)

  12. Application of a one-dimensional position-sensitive detector to a Kratky small-angle x-ray camera

    International Nuclear Information System (INIS)

    Russell, T.P.; Stein, R.S.; Kopp, M.K.; Zedler, R.E.; Hendricks, R.W.; Lin, J.S.

    1979-01-01

    A conventional Kratky small-angle collimation system has been modified to allow the use of a one-dimensional position-sensitive x-ray detector. The detector was designed specifically for use with a long-slit camera and has uniform sensitivity over the entire beam in the slit-length direction. Procedures for alignment of the collimation system are given, and a variety of tests of the performance of the system are presented. Among the latter are measurements of electronic noise and parasitic scattering as well as comparisons against samples which were also measured on other cameras. The good agreement of these comparisons demonstrates the success of the use of a position-sensitive detector with the Kratky collimation system

  13. Application of a one-dimensional position-sensitive detector to a Kratky small-angle x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Russell, T.P.; Stein, R.S.; Kopp, M.K.; Zedler, R.E.; Hendricks, R.W.; Lin, J.S.

    1979-01-01

    A conventional Kratky small-angle collimation system has been modified to allow the use of a one-dimensional position-sensitive x-ray detector. The detector was designed specifically for use with a long-slit camera and has uniform sensitivity over the entire beam in the slit-length direction. Procedures for alignment of the collimation system are given, and a variety of tests of the performance of the system are presented. Among the latter are measurements of electronic noise and parasitic scattering as well as comparisons against samples which were also measured on other cameras. The good agreement of these comparisons demonstrates the success of the use of a position-sensitive detector with the Kratky collimation system.

  14. A position sensitive detector using a NaI(Tl)/photomultiplier tube combination for the energy range 200 keV to 10 MeV

    International Nuclear Information System (INIS)

    Court, A.J.; Dean, A.J.; Yearworth, M.; Younis, F.; Chiappetti, L.; Perotti, F.; Villa, G.; Ubertini, P.; La Padula, C.

    1988-01-01

    The performance of the position sensitive detector for the ZEBRA low energy gamma-ray imaging telescope is described. The detector consists of 9 position sensitive NaI(Tl) elements each 5.8x5.0x56.0 cm viewed at either end of the long axis by 2 in. photomultiplier tubes. The total active area is 2470 cm 2 with an average positional resolution of 2.1 cm and energy resolution of 15% FWHM at 661.6 keV. The method of flight calibration is described together with the provision within the on-board electronics to correct for sources of error in the calculation of event energy loss and position. The results presented are obtained from the calibration phase of the ZEBRA telescope project. (orig.)

  15. Position sensitive X-ray or X-ray detector and 3-D-tomography using same

    International Nuclear Information System (INIS)

    1975-01-01

    A fan-shaped beam of penetrating radiation, such as X-ray or γ-ray radiation, is directed through a slice of the body to be analyzed into a position sensitive detector for deriving a shadowgraph of transmission or absorption of the penetrating radiation by the body. A number of such shadowgraphs are obtained for different angles of rotation of the fan-shaped beam relative to the center of the slice being analyzed. The detected fan beam shadowgraph data is reordered into shadowgraph data corresponding to sets of parallel paths of radiation through the body. The reordered parallel path shadowgraph data is then convoluted in accordance with a 3-D reconstruction method by convolution in a computer to derive a 3-D reconstructed tomograph of the body under analysis. In a preferred embodiment, the position sensitive detector comprises a multiwire detector wherein the wires are arrayed parallel to the direction of the divergent penetrating rays to be detected. A focussed grid collimator is interposed between the body and the position sensitive detector for collimating the penetrating rays to be detected. The source of penetrating radiation is preferably a monochromatic source

  16. Two-dimensional position sensitive silicon photodiode as a charged particle detector

    International Nuclear Information System (INIS)

    Kovacevic, K.; Zadro, M.

    1999-01-01

    A two-dimensional position sensitive silicon photodiode has been tested for measurement of position and energy of charged particles. Position nonlinearity and resolution, as well as energy resolution and ballistic deficit were measured for 5.486 MeV α-particles. The results obtained for different pulse shaping time constants are presented

  17. Modeling of a Low-Background Spectroscopic Position-Sensitive Neutron Detector

    Energy Technology Data Exchange (ETDEWEB)

    Postovarova, Daria; Evsenin, Alexey; Gorshkov, Igor; Kuznetsov, Andrey; Osetrov, Oleg; Vakhtin, Dmitry; Yurmanov, Pavel [V.G. Khlopin Radium Institute, 194021, 28, 2nd Murinsky pr., Saint-Petersburg (Russian Federation)

    2011-12-13

    A new low-background spectroscopic direction-sensitive neutron detector that would allow one to reduce the neutron background component in passive and active neutron detection techniques is proposed. The detector is based on thermal neutron detectors surrounded by a fast neutron scintillation detector, which serves at the same time as a neutron moderator. Direction sensitivity is achieved by coincidence/anticoincidence analysis between different parts of the scintillator. Results of mathematical modeling of several detector configurations are presented.

  18. Modeling of a Low-Background Spectroscopic Position-Sensitive Neutron Detector

    International Nuclear Information System (INIS)

    Postovarova, Daria; Evsenin, Alexey; Gorshkov, Igor; Kuznetsov, Andrey; Osetrov, Oleg; Vakhtin, Dmitry; Yurmanov, Pavel

    2011-01-01

    A new low-background spectroscopic direction-sensitive neutron detector that would allow one to reduce the neutron background component in passive and active neutron detection techniques is proposed. The detector is based on thermal neutron detectors surrounded by a fast neutron scintillation detector, which serves at the same time as a neutron moderator. Direction sensitivity is achieved by coincidence/anticoincidence analysis between different parts of the scintillator. Results of mathematical modeling of several detector configurations are presented.

  19. Charge Spreading and Position Sensitivity in a Segmented Planar Germanium Detector (Preprint)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Gehrels, N; Johnson, W. N; Kurfess, J. D; Phlips, B. P; Tueller, J

    1998-01-01

    The size of the charge cloud collected in a segmented germanium detector is limited by the size of the initial cloud, uniformity of the electric field, and the diffusion of electrons and holes through the detector...

  20. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F; Wieliczec, K; Becker, U

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  1. Simultaneous acquisition of X-ray spectra using a multi-wire, position-sensitive gas flow detector

    International Nuclear Information System (INIS)

    Beaven, Peter A.; Marmotti, Mauro; Kampmann, Reinhard; Knoth, Joachim; Schwenke, Heinrich

    2003-01-01

    A multi-wire, gas-filled position-sensitive detector has been developed for the simultaneous recording of wavelength-dispersed X-ray signals that enables X-ray fluorescence spectrometry with a limited multi-element capability in the low Z element range. Details of the modular construction of the detector are given. The detector performance was characterized using Al-Kα radiation and a variable slit system. The detector has been applied in a laboratory spectrometer equipped with an electron source and a double multilayer mirror device as the wavelength-dispersing element. Spectra from Al and Si obtained in the simultaneous acquisition mode show good agreement with calculations performed using a ray-tracing model

  2. Position sensitivity of the proposed segmented germanium detectors for the DESPEC project

    International Nuclear Information System (INIS)

    Khaplanov, A.; Tashenov, S.; Cederwall, B.

    2009-01-01

    The DESPEC HPGe array is a part of the NuSTAR project at FAIR, Germany. It is aimed at the spectroscopy of the stopped decaying exotic nuclei. Segmented γ-ray tracking detectors are proposed for this array in order to maximize detection efficiency and background suppression when searching for very rare events. Two types of detector modules-stacks of three 16-fold segmented planar crystals and 12- and 16-fold segmented clover detectors-have been investigated and compared from the point of view of the achievable position resolution using pulse shape analysis (PSA). To this end, detector signals from realistic γ-ray interactions have been calculated. These signals were treated by PSA in order to reconstruct the photon interaction locations. Comparing the initial interaction locations to the reconstructed ones, it was found that the double-sided strip planar detector yielded position reconstruction errors at least a factor 2 lower than the other detectors considered.

  3. Development of a high-count-rate neutron detector with position sensitivity and high efficiency

    International Nuclear Information System (INIS)

    Nelson, R.; Sandoval, J.

    1996-01-01

    While the neutron scattering community is bombarded with hints of new technologies that may deliver detectors with high-count-rate capability, high efficiency, gamma-ray insensitivity, and high resolution across large areas, only the time-tested, gas-filled 3 He and scintillation detectors are in widespread use. Future spallation sources with higher fluxes simply must exploit some of the advanced detector schemes that are as yet unproved as production systems. Technologies indicating promise as neutron detectors include pixel arrays of amorphous silicon, silicon microstrips, microstrips with gas, and new scintillation materials. This project sought to study the competing neutron detector technologies and determine which or what combination will lead to a production detector system well suited for use at a high-intensity neutron scattering source

  4. The sources of inspiration in research on position-sensitive detectors

    International Nuclear Information System (INIS)

    Charpak, G.

    1988-01-01

    The high-energy experimental physicist is constantly confronted with the problem of identifying and localizing particles, charged or neutral. The community of high-energy physicists has thus produced a variety of original methods which have found, or are beginning to find, applications in many fields that are remote from this discipline. New hadron accelerators which are foreseen for the year 2000 raise formidable problems. To take an extreme case, beams crossing at 5 ns intervals are being considered, with several interactions per crossing and with collision multiplicities close to 100. Should a high-energy experimental physicist who is interested in research on particle detectors, limit his horizon to these questions? Even if most of his effort is legitimately concentrated on solving the specific problems encountered with the projected accelerators, it would be a mistake for him to limit his activity to reaching only this goal. In many fields there is considerable demand for improvement in the methods of radiation imaging. I will list some of them, and illustrate my point - which is that contributing of this field is both fruitful and cross-fertilizing - with examples from the activity of our own group at CERN. I apologize for not doing justice to the many other efforts made in the same direction by other groups or laboratories, but the proceedings of this conference will already be illuminating in this respect. (orig.)

  5. Silicon position-sensitive detectors for the Helios (NA 34) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E Jr; Mani, S; Manns, T; Plants, D; Shepard, P F; Thompson, J A; Tosh, R; Chand, T; Shivpuri, R; Baker, W

    1987-01-15

    The design construction and testing of X-Y tracking modules for a silicon microstrip vertex detector for use in Fermilab experiment E706 is discussed. A successful adaptation of various technologies, essential for instrumenting this class of detectors at a university laboratory is described. Emphasis is placed on considerable cost reduction, design flexibiity and more rapid turnover with a view toward large detectors for the future.

  6. Comparison of multi-pole shaping and delay line clipping pre-amplifiers for position sensitive NaI(Tl) detectors

    International Nuclear Information System (INIS)

    Freifelder, R.; Karp, J.S.; Wear, J.A.; Lockyer, N.S.; Newcomer, F.M.; Surti, S.; Berg, R. van

    1998-01-01

    NaI(Tl) position sensitive detectors have been used in medical imaging for many years. For PET applications without collimators, the high counting rates place severe demands on such large area detectors. The NaI(Tl) detectors in the PENN-PET scanners are read-out via photomultiplier tubes and preamplifiers. Those preamplifiers use a delay-line clipping technique to shorten the characteristic 240 ns fall time of the NaI(Tl) signal. As an alternative, the authors have investigated a pole-zero network to shorten the signal followed by a multi-pole shaper to produce a symmetric signal suitable for high counting rates. This has been compared to the current design by measuring the energy and spatial resolution of a single detector as a function of different preamplifier designs. Data were taken over a range of ADC integration times and countrates. The new design shows improved energy resolution with short integration times. Effects on spatial resolution and deadtime are reported for large position sensitive detectors at different countrates

  7. Fast tracking detector with fiber scintillators and a position sensitive photomultiplier

    International Nuclear Information System (INIS)

    Salomon, M.; Li, V.; Smith, G.; Wu, Y.S.

    1988-11-01

    We have studied the properties of a tracking detector composed of 32 fiber scintillators coupled to a multianode photomultiplier placed in a pion beam at TRIUMF. We measured the efficiency of the detector, as well as its tracking capabilities and double hit resolution

  8. New technologies of silicon position-sensitive detectors for future tracker systems

    CERN Document Server

    Bassignana, Daniela; Lozano, M

    In view of the new generation of high luminosity colliders, HL-LHC and ILC, a farther investigation of silicon radiation detectors design and technology is demanded, in order to satisfy the stringent requirements of the experiments at such sophisticated machines. In this thesis, innovative technologies of silicon radiation detectors for future tracking systems are proposed. Three dierent devices have been studied and designed with the help of dierent tools for computer simulations. They have been manufactured in the IMB-CNM clean room facilities in Barcelona and characterized with proper experimental set-ups in order to test the detectors capabilities and the quality and suitability of the technologies used for their fabrication. The rst technology deals with the upgrade of dedicated sensors for laser alignment systems in future tracker detectors. The design and technology of common single-sided silicon microstrip detectors have been slightly modied in order to improve IR light transmittance of the devices. T...

  9. Front-end electronics for high rate, position sensitive neutron detectors

    CERN Document Server

    Yu, B; Harder, J A; Hrisoho, A; Radeka, V; Smith, G C

    2002-01-01

    Advanced neutron detectors for experiments at new spallation sources will require greater counting rate capabilities than previously attainable. This necessitates careful design of both detector and readout electronics. As part of a new instrument for protein crystallography at LANSCE, we are constructing a detector whose concept was described previously (IEEE Trans. Nucl. Sci. NS-46 (1999) 1916). Here, we describe the signal processing circuit, which is well suited for sup 3 He detectors with a continuous interpolating readout. The circuit is based on standard charge preamplification, transmission of this signal over 20 meters or so, followed by sample and hold using a second order gated baseline restorer. This latter unit provides high rate capability without requiring pole-zero and tail cancellation circuits. There is also provision for gain-adjustment. The circuits are produced in surface mounted technology.

  10. X-ray detectors based on image sensors

    International Nuclear Information System (INIS)

    Costa, A.P.R.

    1983-01-01

    X-ray detectors based on image sensors are described and a comparison is made between the advantages and the disadvantages of such a kind of detectors with the position sensitive detectors. (L.C.) [pt

  11. Improvements in γ-ray reconstruction with positive sensitive Ge detectors using the backtracking method

    International Nuclear Information System (INIS)

    Milechina, L.; Cederwall, B.

    2003-01-01

    Gamma-ray tracking, a new detection technique for nuclear spectroscopy, requires efficient algorithms for reconstructing the interaction paths of multiple γ rays in a detector volume. In the present work, we discuss the effect of the atomic electron momentum distribution in Ge as well as employment of different types of figure-of-merit within the context of the so called backtracking method

  12. Comparison of various stopping gases for {sup 3}He-based position sensitive neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Doumas, A. [United States Merchant Marine Academy, Steamboat Road, Kings Point, NY 11024 (United States); Smith, G.C., E-mail: gsmith@bnl.gov [Instrumentation Division, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2012-05-21

    A range of solid state, scintillator and gas based detectors are being developed for use at the next generation of high flux neutron facilities. Since gas detectors are expected to continue to play a key role in future specific thermal neutron experiments, a comparison of the performance characteristics of prospective stopping gases is beneficial. Gas detectors typically utilize the reaction {sup 3}He(n,p)t to detect thermal neutrons; the {sup 3}He gas is used in a mixture containing a particular stopping gas in order to maintain relatively short ranges for the proton and triton pair emitted from the n-{sup 3}He reaction. Common stopping gases include hydrocarbons (e.g. propane), carbon tetrafluoride, and noble gases such as argon and xenon. For this study, we utilized the Monte Carlo simulation code 'Stopping and Range of Ions in Matter' to analyze the expected behavior of argon, xenon, carbon dioxide, difluoroethane and octafluoropropane as stopping gases for thermal neutron detectors. We also compare these findings to our previously analyzed performance of propane, butane and carbon tetrafluoride. A discussion of these gases includes their behavior in terms of proton and triton range, ionization distribution and straggle.

  13. Comparison of various stopping gases for 3He-based position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Doumas, A.; Smith, G.C.

    2012-01-01

    A range of solid state, scintillator and gas based detectors are being developed for use at the next generation of high flux neutron facilities. Since gas detectors are expected to continue to play a key role in future specific thermal neutron experiments, a comparison of the performance characteristics of prospective stopping gases is beneficial. Gas detectors typically utilize the reaction 3 He(n,p)t to detect thermal neutrons; the 3 He gas is used in a mixture containing a particular stopping gas in order to maintain relatively short ranges for the proton and triton pair emitted from the n- 3 He reaction. Common stopping gases include hydrocarbons (e.g. propane), carbon tetrafluoride, and noble gases such as argon and xenon. For this study, we utilized the Monte Carlo simulation code “Stopping and Range of Ions in Matter” to analyze the expected behavior of argon, xenon, carbon dioxide, difluoroethane and octafluoropropane as stopping gases for thermal neutron detectors. We also compare these findings to our previously analyzed performance of propane, butane and carbon tetrafluoride. A discussion of these gases includes their behavior in terms of proton and triton range, ionization distribution and straggle.

  14. Comparison of various stopping gases for 3He-based position sensitive neutron detectors

    Science.gov (United States)

    Doumas, A.; Smith, G. C.

    2012-05-01

    A range of solid state, scintillator and gas based detectors are being developed for use at the next generation of high flux neutron facilities. Since gas detectors are expected to continue to play a key role in future specific thermal neutron experiments, a comparison of the performance characteristics of prospective stopping gases is beneficial. Gas detectors typically utilize the reaction 3He(n,p)t to detect thermal neutrons; the 3He gas is used in a mixture containing a particular stopping gas in order to maintain relatively short ranges for the proton and triton pair emitted from the n-3He reaction. Common stopping gases include hydrocarbons (e.g. propane), carbon tetrafluoride, and noble gases such as argon and xenon. For this study, we utilized the Monte Carlo simulation code "Stopping and Range of Ions in Matter" to analyze the expected behavior of argon, xenon, carbon dioxide, difluoroethane and octafluoropropane as stopping gases for thermal neutron detectors. We also compare these findings to our previously analyzed performance of propane, butane and carbon tetrafluoride. A discussion of these gases includes their behavior in terms of proton and triton range, ionization distribution and straggle.

  15. A readout system for position sensitive measurements of X-ray using silicon strip detectors

    CERN Document Server

    Dabrowski, W; Grybos, P; Idzik, M; Kudlaty, J

    2000-01-01

    In this paper we describe the development of a readout system for X-ray measurements using silicon strip detectors. The limitation concerning the inherent spatial resolution of silicon strip detectors has been evaluated by Monte Carlo simulation and the results are discussed. The developed readout system is based on the binary readout architecture and consists of two ASICs: RX32 front-end chip comprising 32 channels of preamplifiers, shapers and discriminators, and COUNT32 counter chip comprising 32 20-bit asynchronous counters and the readout logic. This work focuses on the design and performance of the front-end chip. The RX32 chip has been optimised for a low detector capacitance, in the range of 1-3 pF, and high counting rate applications. It can be used with DC coupled detectors allowing the leakage current up to a few nA per strip. For the prototype chip manufactured in a CMOS process all basic parameters have been evaluated by electronic measurements. The noise below 140 el rms has been achieved for a ...

  16. Two-dimensional position-sensitive detectors for small-angle neutron scattering

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Vandermolen, R.I.

    1990-05-01

    In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs

  17. Position sensitive plastic scintillating fibre-detectors for heavy ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, Sebastian; Tscheuschner, Joachim; Paschalis, Stefanos; Aumann, Thomas; Scheit, Heiko [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2016-07-01

    The R{sup 3}B (Reactions with Relativistic Radioactive Beams) experiment at FAIR will be able to perform kinematically complete measurements of reactions with relativistic heavy-ion beams up to 1 AGeV. In order to track the beam before the target and to determine the mass number of the scattered nucleus after the reaction, five fibre detectors with sizes between 10.24 x 10.24 cm{sup 2} and 120 x 80 cm{sup 2} are going to be built for the R{sup 3}B setup. These fibre detectors will provide x-y-position of the trajectory of charged particles after the reaction target. The light from the fibre detector is sensed using MPPCs (Multi Pixel Photon Counter). For the readout of the MPPCs we test different electronics. In this contribution we present results obtained using an α-source and a LED light source to generate light in the fibre and use the PADI-VFTX for readout.

  18. Measurement of spatial dose-rate distribution using a position sensitive detector

    International Nuclear Information System (INIS)

    Emoto, T.; Torii, T.; Nozaki, T.; Ando, H.

    1994-01-01

    Recently, the radiation detectors using plastic scintillation fibers (PSF) have been developed to measure the positions exposed to radiation such as neutrons and high energy charged particles. In particular, the time of flight (TOF) method for measuring the difference of time that two directional signals of scintillation light reach both ends of a PSF is a rather simple method for the measurement of the spatial distribution of fast neutron fluence rate. It is possible to use the PSF in nuclear facility working areas because of its flexibility, small diameter and long length. In order to apply TOF method to measure spatial gamma dose rate distribution, the characteristic tests of a detector using PSFs were carried out. First, the resolution of irradiated positions and the counting efficiency were measured with collimated gamma ray. The sensitivity to unit dose rate was also obtained. The measurement of spatial dose rate distribution was also carried out. The sensor is made of ten bundled PSFs, and the experimental setup is described. The experiment and the results are reported. It was found that the PSF detector has the good performance to measure spatial gamma dose rate distribution. (K.I.)

  19. Evaluation of the x-ray response of a position-sensitive microstrip detector with an integrated readout chip

    International Nuclear Information System (INIS)

    Rossington, C.; Jaklevic, J.; Haber, C.; Spieler, H.; Reid, J.

    1990-08-01

    The performance of an SVX silicon microstrip detector and its compatible integrated readout chip have been evaluated in response to Rh Kα x-rays (average energy 20.5 keV). The energy and spatial discrimination capabilities, efficient data management and fast readout rates make it an attractive alternative to the CCD and PDA detectors now being offered for x-ray position sensitive diffraction and EXAFS work. The SVX system was designed for high energy physics applications and thus further development of the existing system is required to optimize it for use in practical x-ray experiments. For optimum energy resolution the system noise must be decreased to its previously demonstrated low levels of 2 keV FWHM at 60 keV or less, and the data handling rate of the computer must be increased. New readout chips are now available that offer the potential of better performance. 15 refs., 7 figs

  20. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, J. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, C. [Texas A & M Univ., College Station, TX (United States)

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  1. EMSP Project Number 65015 Final Report: Three-dimensional position-sensitive germanium detectors

    International Nuclear Information System (INIS)

    Amman, Mark; Luke, Paul N.

    2001-01-01

    Critical to the DOE effort to deactivate and decommission the weapons complex facilities is the characterization of contaminated equipment and building structures. This characterization includes the isotopic identification of radioactive contaminants and the spatial mapping of these deposits. The penetrating nature of the gamma rays emitted by the radioactive contaminants provides a means to accomplish this task in a passive, non-destructive and non-intrusive manner. Through conventional gamma-ray spectroscopy, the radioactive isotopes in the contaminants can be identified by their characteristic gamma-ray signatures and the amount of each isotope by the intensity of the signature emission. With the addition of gamma-ray imaging, the spatial distributions of the isotopes can simultaneously be obtained. The ability to image radioactive contaminants can reduce waste as well as help ensure the adequate protection of workers and the environment. For example, if equipment and building materials have been subjected to radionuclide contamination, the entire structure must be treated as radioactive waste during demolition. However, only partial removal may be necessary if the contamination can be accurately located and identified. Hand-held survey instrumentation operated in the near vicinity of the contaminated objects is a common method to accomplish this task. This method necessitates long data acquisition times, direct close access, and considerable worker exposure, as well as leads to imprecise information. In contrast, imaging devices operated at a distance from the contaminated objects can accurately acquire the spatially dependent gamma-ray emission information in a single measurement. Consequently, the devices can more efficiently discriminate between contaminated and non-contaminated areas of heterogeneous objects while at the same time reducing worker exposure

  2. Development of a new signal processor for tetralateral position sensitive detector based on single-chip microcomputer

    International Nuclear Information System (INIS)

    Huang Meizhen; Shi Longzhao; Wang Yuxing; Ni Yi; Li Zhenqing; Ding Haifeng

    2006-01-01

    An inherently nonlinear relation between the output current of the tetralateral position sensitive detector (PSD) and the position of the incident light spot has been found theoretically. Based on single-chip microcomputer and the theoretical relation between output current and position, a new signal processor capable of correcting nonlinearity and reducing position measurement deviation of tetralateral PSD was developed. A tetralateral PSD (S1200, 13x13 mm 2 , Hamamatsu Photonics K.K.) was measured with the new signal processor, a linear relation between the output position of the PSD, and the incident position of the light spot was obtained. In the 60% range of a 13x13 mm 2 active area, the position nonlinearity (rms) was 0.15% and the position measurement deviation (rms) was ±20 μm. Compared with traditional analog signal processor, the new signal processor is of better compatibility, lower cost, higher precision, and easier to be interfaced

  3. Performance of a position sensitive Si(Li) x-ray detector dedicated to Compton polarimetry of stored and trapped highly-charged ions

    International Nuclear Information System (INIS)

    Weber, G; Braeuning, H; Hess, S; Maertin, R; Spillmann, U; Stoehlker, Th

    2010-01-01

    We report on a novel two-dimensional position sensitive Si(Li) detector dedicated to Compton polarimetry of x-ray radiation arising from highly-charged ions. The performance of the detector system was evaluated in ion-atom collision experiments at the ESR storage ringe at GSI, Darmstadt. Based on the data obtained, the polarimeter efficiency is estimated in this work.

  4. Effect of refraction index and thickness of the light guide in the position-sensitive gamma-ray detector using compact PS-PMTs

    International Nuclear Information System (INIS)

    Inoue, K.; Saito, H.; Nagashima, Y.; Hyodo, T.; Nagai, Y.; Muramatsu, S.; Nagai, S.

    2000-01-01

    We constructed a position-sensitive gamma-ray detector consisting of an array of BGO scintillators, a light guide and compact PS-PMTs. The effects of refractive index and thickness of the light guide of a glass plate on the detector performance were investigated. A light guide with higher refractive index and smaller thickness is found better for a good spatial resolution.

  5. Evaluation of moderately cooled pure NaI as a scintillator for position-sensitive PET detectors

    International Nuclear Information System (INIS)

    Wear, J.A.; Karp, J.S.; Haigh, A.T.; Freifelder, R.

    1996-01-01

    A new evaluation of pure NaI has been performed to determine if moderate cooling would lead to better performance than that of existing, activated NaI(Tl) position-sensitive detectors, particularly at high countrates. Using a freezer, an initial effort was performed to cool the crystal assembly to -90 C (183 K). At this temperature, pure NaI has a decay constant of 35 nsec, a light output which is about 20% that of room temperature NaI(Tl), and an energy resolution of 15%. For the PET applications the signal of room temperature (25 C) NaI(Tl) is normally pulse clipped, reducing the light output to 40% of the unclipped signal and yielding an energy resolution of 10.5%. Since the long decay of NaI(Tl) causes it to suffer more significantly than pure NaI from pre-pulse pileup, the difference in energy resolution between the two crystals at high countrates will be reduced. Also, a significantly shorter trigger deadtime with pure NaI will lead to a reduction in coincidence deadtime losses in PET. Computer simulations of large-area crystals operating at high countrates have been performed to quantify their trigger deadtime behavior and position resolution as a function of light output and pulse decay time. Having gained experience with the practical issues of cooling large crystals, measurements of position resolution have been performed with a NaI bar detector of similar geometry to the NaI(Tl) detectors in use in the PENN-PET scanner

  6. A study of an optimal technological solution for the electronics of particle position sensitive gas detectors (multiwire proportional chambers)

    International Nuclear Information System (INIS)

    Zojceski, Z.

    1997-01-01

    This work aims at optimizing the electronics for position sensitive gas detectors. The first part is a review of proportional chamber operation principles and presents the different possibilities for the architecture of the electronics. The second part involves electronic signal processing for best signal-to-noise ratio. We present a time-variant filter based on a second order base line restorer.It allows a simple pole-zero and tail cancellation at high counting rates. Also, various interpolating algorithms for cathode strip chambers have been studied. The last part reports the development of a complete electronic system, from the preamplifiers up to the readout and control interface, for the cathode strip chambers in the focal plane of the BBS Spectrometer at KVI, Holland. The system is based on application specific D-size VXI modules. In all modules, the 16-bit ADCs and FIFO memory are followed by a Digital Signal Processor, which performs data filtering and cathode induced charge interpolation. Very good analog noise performance is obtained in a multi-processor environment. (author)

  7. Development of 2-d position-sensitive neutron detector with individual readout. Operation test and establishment of detection system by means of neutron beam

    International Nuclear Information System (INIS)

    Tanaka, Hiroki; Yamagishi, Hideshi; Nakamura, Tatsuya; Soyama, Kazuhiko; Aizawa, Kazuya

    2005-04-01

    We have been developing the 2-d position-sensitive neutron detector with individual readout as next-generation-type detector system for neutron scattering experiments using intense pulsed neutron source. The detection system is designed to fulfill the specifications required for each neutron spectrometer, such as a count rate, efficiency, neutron/gamma-ray ratio, a spatial resolution and a size, by using suitable detector heads. The fundamental and imaging performances of the developed system assembled with a Multi-wire proportional counter head were evaluated using a collimated neutron beam. The system worked stably for long hours at the 4 He gas pressure of 5 atm with a mixture of 30% C 2 H 6 (0.26 atom 3 He) at gas gain of 450. The spatial resolutions were 1.4, 1.6 mm (FWHM) for a cathode- and a back strip- direction, respectively, considering a beam size. It was also confirmed that the spatial uniformity of the detection efficiency over the whole sensitive detection area was rather good, ±8% deviation from the average with the optimum discrimination level. (author)

  8. A high count rate one-dimensional position sensitive detector and a data acquisition system for time resolved X-ray scattering studies

    International Nuclear Information System (INIS)

    Pernot, P.

    1982-01-01

    A curved multiwire proportional drift chamber has been built as a general purpose instrument for X-ray scattering and X-ray diffraction experiments with synchrotron radiation. This parallaxe-free one-dimensional linear position sensitive detector has a parallel readout with a double hit logic. The data acquisition system, installed as a part of the D11 camera at LURE-DCI, is designed to perform time slicing and cyclic experiments; it has been used with either the fast multiwire chamber or a standard position sensitive detector with delay line readout [fr

  9. The noise analysis and optimum filtering techniques for a two-dimensional position sensitive orthogonal strip gamma ray detector employing resistive charge division

    International Nuclear Information System (INIS)

    Gerber, M.S.; Muller, D.W.

    1976-01-01

    The analysis of an orthogonal strip, two-dimensional position sensitive high purity germanium gamma ray detector is discussed. Position sensitivity is obtained by connecting each electrode strip on the detector to a resistor network. Charge, entering the network, divides in relation to the resistance between its entry point and the virtual earth points of the charge sensitive preamplifiers located at the end of each resistor network. The difference of the voltage pulses at the output of each preamplifier is proportional to the position at which the charge entered the resistor network and the sum of the pulse is proportional to the energy of the detected gamma ray. The analysis and spatial noise resolution is presented for this type of position sensitive detector. The results of the analysis show that the position resolution is proportional to the square root of the filter amplifier's output pulse time constant and that for energy measurement the resolution is maximized at the filter amplifier's noise corner time constant. The design of the electronic noise filtering system for the prototype gamma ray camera was based on the mathematical energy and spatial resolution equations. For the spatial channel a Gaussian trapezoidal filtering system was developed. Gaussian filtering was used for the energy channel. The detector noise model was verified by taking rms noise measurements of the filtered energy and spatial pulses from resistive readout charge dividing detectors. These measurements were within 10% of theory. (Auth.)

  10. Imaging the electron transfer reaction of Ne2+ with Ar using position-sensitive coincidence spectroscopy

    International Nuclear Information System (INIS)

    Harper, Sarah M; Hu Wanping; Price, Stephen D

    2002-01-01

    A new experiment, employing position-sensitive detection coupled with time-of-flight mass spectrometry, has been used to investigate the single-electron transfer reaction between Ne 2+ and Ar by detecting the resulting pairs of singly charged ions in coincidence. The experimental technique allows the determination of the individual velocity vectors of the ionic products, in the centre-of-mass frame, for each reactive event detected. The experiments show that forward scattering dominates the reactivity, although a bimodal angular distribution is apparent. In addition, the spectra show that at laboratory frame collision energies from 4-14 eV the reactivity is dominated by Ne 2+ (2p 4 , 3 P) accepting an electron from an argon atom to form the ground state of Ne + together with an Ar + ion in an excited electronic level, predominantly arising from the Ar + (3s 2 3p 4 3d) configuration. The form of this reactivity, and the differences between the reactivity observed in these experiments and those performed at higher collision energies, are well reproduced by Landau-Zener theory

  11. A position sensitive gamma-ray detector which employs photodiode and CsI (T1) crystals

    International Nuclear Information System (INIS)

    Dean, A.J.; Graham, G.; Hopkins, C.J.; Ramsden, D.; Lei, M.

    1987-01-01

    A compact CsI(Tl)/photodiode gamma-ray detector is described which is capable of locating the point of interaction of incident gamma-ray photons in the spectral region around 1 MeV. Laboratory tests are used to quantify both the spectral and positional resolutions of the detectors. Their likely application in space gamma-ray astronomy is also discussed

  12. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    International Nuclear Information System (INIS)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-01-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20–25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30–60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p + implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO 2 interface charge densities ( Q f ) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p + implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Q f , that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  13. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    Science.gov (United States)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-09-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p+ implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Qf) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p+ implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Qf, that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  14. On the use of one-dimensional position sensitive detector for x-ray diffraction reciprocal space mapping: Data quality and limitations

    International Nuclear Information System (INIS)

    Masson, Olivier; Boulle, Alexandre; Guinebretiere, Rene; Lecomte, Andre; Dauger, Alain

    2005-01-01

    A homemade x-ray diffractometer using one-dimensional position sensitive detector (PSD) and well suited to the study of thin epitaxial layer systems is presented. It is shown how PSDs can be advantageously used to allow fast reciprocal space mapping, which is especially interesting when analyzing poor crystalline and defective layers as usually observed with oxides and ceramics films. The quality of the data collected with such a setup and the limitations of PSDs in comparison with the use of analyzer crystals are discussed. In particular, the effects of PSD on angular precision, instrument resolution and corrections that must be applied to raw data are presented

  15. The use of a position sensitive detector or of a multidetector for the measurement of pole figures by neutron time-of-flight technique

    International Nuclear Information System (INIS)

    Walther, K.

    1990-01-01

    The neutron flux of even high flux reactors is weak in comparison with the quantum flux of X-ray tubes and therefore in order to decrease the expense on measuring time more and more neutron diffractometers are equipped with position sensitive detectors or multidetectors. In this paper the peculiarities of the use of such detecting devices are discussed for the measurement of pole figures. A special arrangement of a multidetector is proposed which will allow one to scan the whole pole figure by rotating the sample about only one axis and considerably will save measuring time. 4 refs.; 5 figs

  16. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna [Univ. of South Carolina, Columbia, SC (United States)

    2017-09-29

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron (10B) and enriched lithium (6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (tg ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10-24 cm2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.

  17. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    International Nuclear Information System (INIS)

    Mandal, Krishna

    2017-01-01

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3 He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3 He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron ( 10 B) and enriched lithium ( 6 Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (t g ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10 -24 cm 2 ), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.

  18. Barium fluoride crystals and self-quenching streamer chambers as a position sensitive gamma-ray detector

    International Nuclear Information System (INIS)

    Salomon, M.; DeMooy, S.; Ruggier, L.

    1985-01-01

    We have studied the possibility of using selfquenching streamer chambers to detect photoelectrons produced by a photoconverter in conjunction with Barium Fluoride scintillators. With the purpose to obtain a high efficiency detector, we attempted to combine a BaF 2 scintillator with a gas chamber operating at large electric fields and a high fraction of quenching gas like self-quenching streamer (SQS) chamber, as the electric fields at the cathode could be made larger than in the proportional mode. Furthermore, previous results indicated that in this mode, part of the large amplification was obtained through strong absorption of uv photons near the anode

  19. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B. [Brookhaven National Laboratory, Upton, New York 11793 (United States); Hodges, D. [University of Texas at El Paso, El Paso, Texas 79968 (United States); Lee, W. [Korea University, Seoul 136-855 (Korea, Republic of); Petryk, M. [SUNY Binghamton, Vestal, New York 13902 (United States)

    2015-07-15

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  20. Position-sensitive radiation detector

    International Nuclear Information System (INIS)

    Mathieson, E.; Smith, G.C.; Gilvin, P.J.

    1981-01-01

    Apparatus for sensing the position of radiation received has a plurality of receptors spaced in at least one line on which the position is to be determined, their outputs being associated to form at least two groups, the density of the receptors in each group varying along the line. The receptors may comprise cathode arrays of a multiwire proportional counter, with an anode array between, measuring along lines in directions x and y respectively. The density of the wires in the two groups, decreases in opposite directions. A circuit determines the ratio of the output of one group to the sum of the group outputs. In another embodiment a scintillator is viewed by a plurality of light guides, the ends of which adjacent to the scintillator form the receptors, the four groups of which each terminate on a photomultiplier. (author)

  1. High-Energy 3D Calorimeter based on position-sensitive virtual Frisch-grid CdZnTe detectors for use in Gamma-ray Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Alexey [Brookhaven National Lab. (BNL), Upton, NY (United States); De Geronimo, GianLuigi [Brookhaven National Lab. (BNL), Upton, NY (United States); Vernon, Emerson [Brookhaven National Lab. (BNL), Upton, NY (United States); Hays, Elizabeth [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Thompson, David [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); James, Ralph [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Moiseev, Alexander [Center for Research and Exploration; Technology, NASA Goddard Space Flight Center (GSFC) and Univ. of Maryland, Greenbelt, MD (United States)

    2017-08-12

    We present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frischgrid CZT detectors. This calorimeter aims to measure photons with energies from ~100 keV to 10 (goal 50) MeV. The expected energy resolution at 662 keV is ~1% FWHM, and the photon interaction positionmeasurement accuracy is ~1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section of 6x6 mm2 and length of 2-4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., > 1 cm). Also, it allows us to relax the requirements on the quality of the crystals, maintaining good energy resolution and significantly reducing the instrument cost. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons. Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays. Another viable option is to use this calorimeter as a focal plane to conduct spectroscopic measurements of cosmic γ-ray events. In combination with a coded-aperture mask, it potentially could provide mapping of the 511-keV radiation from the Galactic Center region.

  2. 18th International Workshop on Radiation Imaging Detectors

    CERN Document Server

    2016-01-01

    The International Workshops on Radiation Imaging Detectors are held yearly and provide an international forum for discussing current research and developments in the area of position sensitive detectors for radiation imaging, including semiconductor detectors, gas and scintillator-based detectors. Topics include processing and characterization of detector materials, hybridization and interconnect technologies, design of counting or integrating electronics, readout and data acquisition systems, and applications in various scientific and industrial fields. The workshop will have plenary sessions with invited and contributed papers presented orally and in poster sessions. The invited talks will be chosen to review recent advances in different areas covered in the workshop.

  3. The Use of Radiation Detectors in Medicine: Radiation Detectors for Morphological Imaging (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  4. The Use of Radiation Detectors in Medicine: Radiation Detectors for Functional Imaging (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  5. Simultaneous resolution of spectral and temporal properties of UV and visible fluorescence using single-photon counting with a position-sensitive detector

    International Nuclear Information System (INIS)

    Kelly, L.A.; Trunk, J.G.; Polewski, K.; Sutherland, J.C.

    1995-01-01

    A new fluorescence spectrometer has been assembled at the U9B beamline of the National Synchrotron Light Source to allow simultaneous multiwavelength and time-resolved fluorescence detection, as well as spatial imaging of the sample fluorescence. The spectrometer employs monochromatized, tunable UV and visible excitation light from a synchrotron bending magnet and an imaging spectrograph equipped with a single-photon sensitive emission detector. The detector is comprised of microchannel plates in series, with a resistive anode for encoding the position of the photon-derived current. The centroid position of the photon-induced electron cascade is derived in a position analyzer from the four signals measured at the corners of the resistive anode. Spectral information is obtained by dispersing the fluorescence spectrum across one dimension of the detector photocathode. Timing information is obtained by monitoring the voltage divider circuit at the last MCP detector. The signal from the MCP is used as a ''start'' signal to perform a time-correlated single photon counting experiment. The analog signal representing the position, and hence wavelength, is digitized concomitantly with the start/stop time difference and stored in the two-dimensional histogramming memory of a multiparameter analyzer

  6. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  7. Gamma-ray detectors for breast imaging

    Science.gov (United States)

    Williams, Mark B.; Goode, Allen R.; Majewski, Stan; Steinbach, Daniela; Weisenberger, Andrew G.; Wojcik, Randolph F.; Farzanpay, Farzin

    1997-07-01

    Breast cancer is the most common cancer of American women and is the leading cause of cancer-related death among women aged 15 - 54; however recent years have shown that early detection using x-ray mammography can lead to a high probability of cure. However, because of mammography's low positive predictive value, surgical or core biopsy is typically required for diagnosis. In addition, the low radiographic contrast of many nonpalpable breast masses, particularly among women with radiographically dense breasts, results in an overall rate of 10% to 25% for missed tumors. Nuclear imaging of the breast using single gamma emitters (scintimammography) such as (superscript 99m)Tc, or positron emitters such as F-18- fluorodeoxyglucose (FDG) for positron emission tomography (PET), can provide information on functional or metabolic tumor activity that is complementary to the structural information of x-ray mammography, thereby potentially reducing the number of unnecessary biopsies and missed cancers. This paper summarizes recent data on the efficacy of scintimammography using conventional gamma cameras, and describes the development of dedicated detectors for gamma emission breast imaging. The detectors use new, high density crystal scintillators and large area position sensitive photomultiplier tubes (PSPMTs). Detector design, imaging requirements, and preliminary measured imaging performance are discussed.

  8. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N V; Sun, G C; Kostamo, P; Silenas, A; Saynatjoki, A; Grant, J; Owens, A; Kozorezov, A G; Noschis, E; Van Eijk, C; Nagarkar, V; Sekiya, H; Pribat, D; Campbell, M; Lundgren, J; Arques, M; Gabrielli, A; Padmore, H; Maiorino, M; Volpert, M; Lebrun, F; Van der Putten, S; Pickford, A; Barnsley, R; Anton, M E.G.; Mitschke, M; Gros d' Aillon, E; Frojdh, C; Norlin, B; Marchal, J; Quattrocchi, M; Stohr, U; Bethke, K; Bronnimann, C H; Pouvesle, J M; Hoheisel, M; Clemens, J C; Gallin-Martel, M L; Bergamaschi, A; Redondo-Fernandez, I; Gal, O; Kwiatowski, K; Montesi, M C; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  9. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d'Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K.

    2005-01-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  10. Transmission diamond imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, John, E-mail: smedley@bnl.gov; Pinelli, Don; Gaoweia, Mengjia [Brookhaven National Laboratory, Upton, NY (United States); Muller, Erik; Ding, Wenxiang; Zhou, Tianyi [Stony Brook University, Stony Brook, NY (United States); Bohon, Jen [Case Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH (United States)

    2016-07-27

    Many modern synchrotron techniques are trending toward use of high flux beams and/or beams which require enhanced stability and precise understanding of beam position and intensity from the front end of the beamline all the way to the sample. For high flux beams, major challenges include heat load management in optics (including the vacuum windows) and a mechanism of real-time volumetric measurement of beam properties such as flux, position, and morphology. For beam stability in these environments, feedback from such measurements directly to control systems for optical elements or to sample positioning stages would be invaluable. To address these challenges, we are developing diamond-based instrumented vacuum windows with integrated volumetric x-ray intensity, beam profile and beam-position monitoring capabilities. A 50 µm thick single crystal diamond has been lithographically patterned to produce 60 µm pixels, creating a >1kilopixel free-standing transmission imaging detector. This device, coupled with a custom, FPGA-based readout, has been used to image both white and monochromatic x-ray beams and capture the last x-ray photons at the National Synchrotron Light Source (NSLS). This technology will form the basis for the instrumented end-station window of the x-ray footprinting beamline (XFP) at NSLS-II.

  11. Robust approach to maximize the range and accuracy of force application in atomic force microscopes with nonlinear position-sensitive detectors

    International Nuclear Information System (INIS)

    Silva, E C C M; Vliet, K J van

    2006-01-01

    The atomic force microscope is used increasingly to investigate the mechanical properties of materials via sample displacement under an applied force. However, both the extent of forces attainable and the accuracy of those forces measurements are significantly limited by the optical lever configuration that is commonly used to infer nanoscale deflection of the cantilever. We present a robust and general approach to characterize and compensate for the nonlinearity of the position-sensitive optical device via data processing, requiring no modification of existing instrumentation. We demonstrate that application of this approach reduced the maximum systematic error on the gradient of a force-displacement response from 50% to 5%, and doubled the calibrated force application range. Finally, we outline an experimental protocol that optimizes the use of the quasi-linear range of the most commonly available optical feedback configurations and also accounts for the residual systematic error, allowing the user to benefit from the full detection range of these indirect force sensors

  12. An apparatus for high speed measurements of small-angle x-ray scattering profiles with a linear position sensitive detector

    International Nuclear Information System (INIS)

    Hashimoto, Takeji; Suehiro, Shoji; Shibayama, Mitsuhiro; Saijo, Kenji; Kawai, Hiromichi

    1981-01-01

    An apparatus for high speed measurements of small-angle X-ray scattering (SAXS) is described. This apparatus utilizes a 12 kW rotating anode X-ray generator, a linear position sensitive proportional counter (multicathode delay line PSPC), and a two-parameter multichannel pulse height analyzer (MCA) with 12 kwords (16 bits/word) memory area available for SAXA intensity data as a function of position (scattering angles) and time slice. The two-parameter MCA is constructed within a microcomputer system, by utilizing its R/W memory for data storage, and the memory incrementing and real-time CRT display is implemented by using two direct memory access (DMA) controllers. The cycle time of the access is about 10 μs. The measuring time for SAXS profiles with this apparatus can be shortened approximately by three orders of magnitude in comparison with the measuring time with SAXS apparatuses utilizing a conventional step-scanning goniometer and a conventional X-ray tube, thus permitting time-resolved analyses of SAXS profiles. Some applications of the apparatus to dynamic SAXS measurements are presented for polymeric systems, the preliminary results of which seem to indicate the possibility of obtaining a new class of data on dynamics in structural transformation, deformation, formation and annihilation in the scale of a few tens to several hundred Angstroms. (author)

  13. DUNBID, the Delft University neutron backscattering imaging detector

    International Nuclear Information System (INIS)

    Bom, V.R.; Eijk, C.W.E. van; Ali, M.A.

    2005-01-01

    In the search for low-metallic land mines, the neutron backscattering technique may be applied if the soil is sufficiently dry. An advantage of this method is the speed of detection: the scanning speed may be made comparable to that of a metal detector. A two-dimensional position sensitive detector is tested to obtain an image of the back scattered thermal neutron radiation. Results of experiments using a radionuclide neutron source are presented. The on-mine to no-mine signal ratio can be improved by the application of a window on the neutron time-of-flight. Results using a pulsed neutron generator are also presented

  14. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)

    2016-01-12

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required to extract the information from the experiments that is needed to determine the stellar reaction rates. The tools developed through this part of the work will be made freely available for general use.

  15. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tribble, Robert E. [Texas A & M Univ., College Station, TX (United States); Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, Jeff C. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)

    2015-12-29

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested and the performance characterized in a series of tests using particle beams with a variety of atomic numbers at the Cyclotron Institute of Texas A&M University and the Heavy Ion Medical Accelerator in Chiba facility (HIMAC) in Chiba, Japan. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required

  16. High Dynamics and Precision Optical Measurement Using a Position Sensitive Detector (PSD in Reflection-Mode: Application to 2D Object Tracking over a Smart Surface

    Directory of Open Access Journals (Sweden)

    Ioan Alexandru Ivan

    2012-12-01

    Full Text Available When related to a single and good contrast object or a laser spot, position sensing, or sensitive, detectors (PSDs have a series of advantages over the classical camera sensors, including a good positioning accuracy for a fast response time and very simple signal conditioning circuits. To test the performance of this kind of sensor for microrobotics, we have made a comparative analysis between a precise but slow video camera and a custom-made fast PSD system applied to the tracking of a diffuse-reflectivity object transported by a pneumatic microconveyor called Smart-Surface. Until now, the fast system dynamics prevented the full control of the smart surface by visual servoing, unless using a very expensive high frame rate camera. We have built and tested a custom and low cost PSD-based embedded circuit, optically connected with a camera to a single objective by means of a beam splitter. A stroboscopic light source enhanced the resolution. The obtained results showed a good linearity and a fast (over 500 frames per second response time which will enable future closed-loop control by using PSD.

  17. A position sensitive parallel plate avalanche counter

    International Nuclear Information System (INIS)

    Lombardi, M.; Tan Jilian; Potenza, R.; D'amico, V.

    1986-01-01

    A position sensitive parallel plate avalanche counter with a distributed constant delay-line-cathode (PSAC) is described. The strips formed on the printed board were served as the cathode and the delay line for readout of signals. The detector (PSAC) was operated in isobutane gas at the pressure range from 10 to 20 torr. The position resolution is better than 1 mm and the time resolution is about 350 ps, for 252 Cf fission-spectrum source

  18. High resolution X radiography imaging detector-micro gap chamber

    International Nuclear Information System (INIS)

    Long Huqiang; Wang Yun; Xu Dong; Xie Kuanzhong; Bian Jianjiang

    2007-01-01

    Micro gap chamber (MGC) is a new type of Two-Dimensional position sensitive detector having excellent properties on the space and time resolution, counting rate, 2D compact structure and the flexible of application. It will become a candidate of a new tracking detector for high energy physics experiment. The basic structure and properties of MGC as well as its main research subjects are presented in this paper. Furthermore, the feasibility and validity of utilizing diamond films as the MGC gap material were also discussed in detail. So, a potential radiography imaging detector is provided in order to realize X image and X ray diffraction experiment having very good spatial and time resolution in the 3rd Generation of Synchrotron Radiation Facility. (authors)

  19. Characterization of a new dosimeter for the development of a position-sensitive detector of radioactive sources in industrial NDT equipment

    Science.gov (United States)

    Kim, K. T.; Kim, J. H.; Han, M. J.; Heo, Y. J.; Park, S. K.

    2018-02-01

    Imaging technology based on gamma-ray sources has been extensively used in non-destructive testing (NDT) to detect any possible internal defects in products without changing their shapes or functions. However, such technology has been subject to increasingly stricter regulations, and an international radiation-safety management system has been recently established. Consequently, radiation source location in NDT systems has become an essential process, given that it can prevent radiation accidents. In this study, we focused on developing a monitoring system that can detect, in real time, the position of a radioactive source in the source guide tube of a projector. We fabricated a lead iodide (PbI2) dosimeter based on the particle-in-binder method, which has a high production yield and facilitates thickness and shape adjustment. Using a gamma-ray source, we then tested the reproducibility, linearity of the dosimeter response, and the dosimeter's percentage interval distance (PID). It was found that the fabricated PbI2 dosimeter yields highly accurate, reproducible, and linear dose measurements. The PID analysis—conducted to investigate the possibility of developing a monitoring system based on the proposed dosimeter—indicated that the valid detection distance was approximately 11.3 cm. The results of this study are expected to contribute to the development of an easily usable radiation monitoring system capable of significantly reducing the risk of radiation accidents.

  20. A superfiber for position sensitive detectors

    International Nuclear Information System (INIS)

    Antich, P.; Parkey, R.; Tsyganov, E.

    1997-01-01

    Scintillating fibers are being more and more used in science and medicine to provide precise coordinate measurement systems for elementary particles and x-ray detection. However, low light collection efficiency is still most limiting factor. We present results of Monte Carlo calculations to illustrate some peculiarities of light collection in round fibers. According to our analyses, by certain modifications light collection in round scintillating and waveshifting fibers could be increased to about 20% per direction

  1. A gamma-ray tracking detector for molecular imaging

    International Nuclear Information System (INIS)

    Hall, C.J.; Lewis, R.A.; Helsby, W.I.; Nolan, P.; Boston, A.

    2003-01-01

    A design for a gamma-ray detector for molecular imaging is presented. The system is based on solid-state strip detector technology. The advantages of position sensitivity coupled with fine spectral resolution are exploited to produce a tracking detector for use with a variety of isotopes in nuclear medicine. Current design concepts employ both silicon and germanium layers to provide an energy range from 60 keV to >1 MeV. This allows a reference X-ray image to be collected simultaneously with the gamma-ray image providing accurate anatomical registration. The tracking ability of the gamma-ray detector allows ambiguities in the data set to be resolved which would otherwise cause events to be rejected in standard non-tracking system. Efficiency improvements that high solid angle coverage and the use of a higher proportion of events make time resolved imaging and multi-isotope work possible. A modular detector system, designed for viewing small animals has been accepted for funding

  2. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg

    2003-01-01

    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector for polar...

  3. The Use of Radiation Detectors in Medicine: The Future of Molecular Imaging and Multimodality Imaging: Advantages and Technological Challenges (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  4. Maximum likelihood positioning for gamma-ray imaging detectors with depth of interaction measurement

    International Nuclear Information System (INIS)

    Lerche, Ch.W.; Ros, A.; Monzo, J.M.; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Esteve, R.; Gadea, R.; Colom, R.J.; Toledo, J.; Mateo, F.; Sebastia, A.; Sanchez, F.; Benlloch, J.M.

    2009-01-01

    The center of gravity algorithm leads to strong artifacts for gamma-ray imaging detectors that are based on monolithic scintillation crystals and position sensitive photo-detectors. This is a consequence of using the centroids as position estimates. The fact that charge division circuits can also be used to compute the standard deviation of the scintillation light distribution opens a way out of this drawback. We studied the feasibility of maximum likelihood estimation for computing the true gamma-ray photo-conversion position from the centroids and the standard deviation of the light distribution. The method was evaluated on a test detector that consists of the position sensitive photomultiplier tube H8500 and a monolithic LSO crystal (42mmx42mmx10mm). Spatial resolution was measured for the centroids and the maximum likelihood estimates. The results suggest that the maximum likelihood positioning is feasible and partially removes the strong artifacts of the center of gravity algorithm.

  5. Maximum likelihood positioning for gamma-ray imaging detectors with depth of interaction measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, Ch.W. [Grupo de Sistemas Digitales, ITACA, Universidad Politecnica de Valencia, 46022 Valencia (Spain)], E-mail: lerche@ific.uv.es; Ros, A. [Grupo de Fisica Medica Nuclear, IFIC, Universidad de Valencia-Consejo Superior de Investigaciones Cientificas, 46980 Paterna (Spain); Monzo, J.M.; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Esteve, R.; Gadea, R.; Colom, R.J.; Toledo, J.; Mateo, F.; Sebastia, A. [Grupo de Sistemas Digitales, ITACA, Universidad Politecnica de Valencia, 46022 Valencia (Spain); Sanchez, F.; Benlloch, J.M. [Grupo de Fisica Medica Nuclear, IFIC, Universidad de Valencia-Consejo Superior de Investigaciones Cientificas, 46980 Paterna (Spain)

    2009-06-01

    The center of gravity algorithm leads to strong artifacts for gamma-ray imaging detectors that are based on monolithic scintillation crystals and position sensitive photo-detectors. This is a consequence of using the centroids as position estimates. The fact that charge division circuits can also be used to compute the standard deviation of the scintillation light distribution opens a way out of this drawback. We studied the feasibility of maximum likelihood estimation for computing the true gamma-ray photo-conversion position from the centroids and the standard deviation of the light distribution. The method was evaluated on a test detector that consists of the position sensitive photomultiplier tube H8500 and a monolithic LSO crystal (42mmx42mmx10mm). Spatial resolution was measured for the centroids and the maximum likelihood estimates. The results suggest that the maximum likelihood positioning is feasible and partially removes the strong artifacts of the center of gravity algorithm.

  6. Position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit uses a conventional (low-resistance, metal-wire anode) counter for spatial resolution of an ionizing event along the anode, which functions as an RC line. A pair of preamplifiers at the anode ends act as stabilized active-capacitance loads, each comprising a series-feedback, low-noise amplifier and a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction of handling of the anodes, and stabilizes the anode resistivity at high count rates (>10 6 counts/sec). (author)

  7. A pulse stacking method of particle counting applied to position sensitive detection

    International Nuclear Information System (INIS)

    Basilier, E.

    1976-03-01

    A position sensitive particle counting system is described. A cyclic readout imaging device serves as an intermediate information buffer. Pulses are allowed to stack in the imager at very high counting rates. Imager noise is completely discriminated to provide very wide dynamic range. The system has been applied to a detector using cascaded microchannel plates. Pulse height spread produced by the plates causes some loss of information. The loss is comparable to the input loss of the plates. The improvement in maximum counting rate is several hundred times over previous systems that do not permit pulse stacking. (Auth.)

  8. Intravascular imaging with a storage phosphor detector

    Energy Technology Data Exchange (ETDEWEB)

    Shikhaliev, Polad M; Petrek, Peter; Matthews, Kenneth L II; Fritz, Shannon G [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA (United States); Bujenovic, L Steven [PET Imaging Center, Our Lady of the Lake Medical Center, Baton Rouge, LA (United States); Xu Tong, E-mail: pshikhal@lsu.ed [Department of Physics, Carleton University, Ottawa (Canada)

    2010-05-21

    The aim of this study is to develop and test an intravascular positron imaging system based on a storage phosphor detector for imaging and detecting vulnerable plaques of human coronary arteries. The radiotracer F18-FDG accumulates in vulnerable plaques with inflammation of the overlying cap. The vulnerable plaques can, therefore, be imaged by recording positrons emitted from F18-FDG with a detector inserted into the artery. A prototype intravascular detector was constructed based on storage phosphor. The detector uses a flexible storage phosphor tube with 55 mm length, 2 mm diameter and 0.28 mm wall thickness. The intravascular detector is guided into the vessel using x-ray fluoroscopy and the accumulated x-ray signal must be erased prior to positron imaging. For this purpose, a light diffuser, 0.9 mm in diameter and 55 mm in length, was inserted into the detector tube. The light diffuser was connected to a laser source through a 2 m long optical fiber. The diffuser redirected the 0.38 W laser light to the inner surface of the phosphor detector to erase it. A heart phantom with 300 cm{sup 3} volume and three coronary arteries with 3.2 mm diameter and with several plaques was constructed. FDG solution with 0.5 {mu}Ci cm{sup -3} activity concentration was filled in the heart and coronary arteries. The detector was inserted in a coronary artery and the signal from the plaques and surrounding background activity was recorded for 2 min. Then the phosphor detector was extracted and read out using a storage phosphor reader. The light diffuser erased the signal resulting from fluoroscopic exposure to level below that encountered during positron imaging. Vulnerable plaques with area activities higher than 1.2 nCi mm{sup -2} were visualized by the detector. This activity is a factor of 10-20 lower than that expected in human vulnerable plaques. The detector was able to image the internal surface of the coronary vessels with 50 mm length and 360{sup 0} circumference. Spatial

  9. Ghost imaging with a single detector

    International Nuclear Information System (INIS)

    Bromberg, Yaron; Katz, Ori; Silberberg, Yaron

    2009-01-01

    We experimentally demonstrate pseudothermal ghost imaging and ghost diffraction using only a single detector. We achieve this by replacing the high-resolution detector of the reference beam with a computation of the propagating field, following a recent proposal by Shapiro [Phys. Rev. A 78, 061802(R) (2008)]. Since only a single detector is used, this provides experimental evidence that pseudothermal ghost imaging does not rely on nonlocal quantum correlations. In addition, we show the depth-resolving capability of this ghost imaging technique.

  10. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    Science.gov (United States)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR

  11. Imaging gaseous detectors and their applications

    CERN Document Server

    Nappi, Eugenio

    2013-01-01

    Covers the detector and imaging technology and their numerous applications in nuclear and high energy physics, astrophysics, medicine and radiation measurements Foreword from G. Charpak, awarded the Nobel Prize in Physics for this invention.

  12. A Thermal Imaging Instrument with Uncooled Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed work, we will perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We will define the science and...

  13. High spatial resolution gamma imaging detector based on a 5 inch diameter R3292 Hamamatsu PSPMT

    International Nuclear Information System (INIS)

    Wojcik, R.; Majewski, S.; Kross, B.; Weisenberger, A.G.; Steinbach, D.

    1998-01-01

    High resolution imaging gamma-ray detectors were developed using Hamamatsu's 5 inch diameter R3292 position sensitive PMT (PSPMT) and a variety of crystal scintillator arrays. Special readout techniques were used to maximize the active imaging area while reducing the number of readout channels. Spatial resolutions approaching 1 mm were obtained in a broad energy range from 20 to 511 keV. Results are also presented of coupling the scintillator arrays to the PMT via imaging light guides consisting of acrylic optical fibers

  14. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  15. Novel gaseous detectors for medical imaging

    International Nuclear Information System (INIS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-01-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a 'sandwich' of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors

  16. Polymer fiber detectors for photoacoustic imaging

    Science.gov (United States)

    Grün, Hubert; Berer, Thomas; Pühringer, Karoline; Nuster, Robert; Paltauf, Günther; Burgholzer, Peter

    2010-02-01

    Photoacoustic imaging is a novel imaging method for medical and biological applications, combining the advantages of Diffuse Optical Imaging (high contrast) and Ultrasonic Imaging (high spatial resolution). A short laser pulse hits the sample. The absorbed energy causes a thermoelastic expansion and thereby launches a broadband ultrasonic wave (photoacoustic signal). The distribution of absorbed energy density is reconstructed from measurements of the photoacoustic signals around the sample. For collecting photoacoustic signals either point like or extended, integrating detectors can be used. The latter integrate the pressure at least in one dimension, e.g. along a line. Thereby, the three dimensional imaging problem is reduced to a two dimensional problem. For a tomography device consisting of a scanning line detector and a rotating sample, fiber-based detectors made of polymer have been recently introduced. Fiber-based detectors are easy to use and possess a constant, high spatial resolution over their entire active length. Polymer fibers provide a better impedance matching and a better handling compared with glass fibers which were our first approach. First measurement results using polymer fiber detectors and some approaches for improving the performance are presented.

  17. Neutron beam imaging with GEM detectors

    International Nuclear Information System (INIS)

    Albani, G.; Cazzaniga, C.; Rebai, M.; Gorini, G.; Croci, G.; Muraro, A.; Cippo, E. Perelli; Tardocchi, M.; Cavenago, M.; Murtas, F.; Claps, G.; Pasqualotto, R.

    2015-01-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3 He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10 B(n,α) 7 Li reaction). GEM detectors can be realized in large area (1 m 2 ) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards

  18. Position-sensitive transition-edge sensors

    International Nuclear Information System (INIS)

    Iyomoto, N.; Bandler, S.R.; Brekosky, R.P.; Chervenak, J.A.; Figueroa-Feliciano, E.; Finkbeiner, F.M.; Kelley, R.L.; Kilbourne, C.A.; Lindeman, M.A.; Murphy, K.; Porter, F.S.; Saab, T.; Sadleir, J.E.; Talley, D.J.

    2006-01-01

    We report the latest results from our development of Position-Sensitive Transition-edge sensors (PoSTs), which are one-dimensional imaging spectrometers. In PoSTs with segmented Au absorbers, we obtained 8eV energy resolution on K Kα lines, which is consistent to the baseline energy resolution and the design values, on all of the nine pixels, by choosing the best combination of the thermal conductance in absorbers and in links that connects the absorbers. The pulse decay time of 193μs is fast enough for our purpose. In a PoST with a continuous Bi/Cu absorber, by dividing the events into 63 effective pixels, we obtained energy resolutions of 16eV at the center 'pixel', which is comparable to the baseline energy resolution, and 33eV at the outer 'pixel'. The degradation of the energy resolution in the outer 'pixel' is due to position dependence, which we can cancel out by dividing the events into smaller 'pixels' when we have sufficient X-ray events

  19. The pin pixel detector--neutron imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Rhodes, N J; Schooneveld, E M; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a neutron gas pixel detector intended for application in neutron diffraction studies is reported. Using standard electrical connector pins as point anodes, the detector is based on a commercial 100 pin connector block. A prototype detector of aperture 25.4 mmx25.4 mm has been fabricated, giving a pixel size of 2.54 mm which matches well to the spatial resolution typically required in a neutron diffractometer. A 2-Dimensional resistive divide readout system has been adapted to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics. The timing properties of the device match well to the requirements of the ISIS-pulsed neutron source.

  20. Position sensitive detection of neutrons in high radiation background field.

    Science.gov (United States)

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  1. X-ray detectors in medical imaging

    International Nuclear Information System (INIS)

    Spahn, Martin

    2013-01-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd 2 O 2 S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications

  2. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  3. LISe pixel detector for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Elan; Hamm, Daniel [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Wiggins, Brenden [Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Milburn, Rob [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Burger, Arnold [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Department of Life and Physical Sciences, Fisk University, Nashville, TN (United States); Bilheux, Hassina [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Santodonato, Louis [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chvala, Ondrej [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Stowe, Ashley [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Lukosi, Eric, E-mail: elukosi@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States)

    2016-10-11

    Semiconducting lithium indium diselenide, {sup 6}LiInSe{sub 2} or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of {sup 6}Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 µm pitch on a 5×5×0.56 mm{sup 3} LISe substrate. An experimentally verified spatial resolution of 300 µm was observed utilizing a super-sampling technique.

  4. A Thermal Imaging Instrument with Uncooled Detectors

    Science.gov (United States)

    Joseph, A. T.; Barrentine, E. M.; Brown, A. D.

    2017-12-01

    In this work, we perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. The National Research Council's Committee on Implementation of a Sustained Land Imaging Program has identified the inclusion of a thermal imager as critical for both current and future land imaging missions. Such an imaging instrument operating in two bands located at approximately 11 and 12 microns (for example, in Landsat 8, and also Landsat 9 when launched) will provide essential information for furthering our hydrologic understanding at scales of human influence, and produce field-scale moisture information through accurate retrievals of evapotranspiration (ET). Landsat 9 is slated to recycle the TIRS-2 instrument launched with Landsat 8 that uses cooled quantum well infrared photodetectors (QWIPs), hence requiring expensive and massive cryocooler technology to achieve its required spectral and spatial accuracies. Our goal is to conceptualize and develop a thermal imaging instrument which leverages recent and imminent technology advances in uncooled detectors. Such detector technology will offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. It would also allow a thermal imaging instrument to be fielded on board a low-cost platform, e.g., a CubeSat. Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, crop status, environment, and climate. Accurate satellite mapping of ET at the agricultural field scale (the finest spatial scale of the environmental processes of interest) requires high-quality thermal data to produce the corresponding accurate land surface temperature (LST) retrievals used to drive an ET model. Such an imaging instrument would provide important information on the following: 1) the relationship between land-use and land/water management practices and water use dynamics; 2) the

  5. New detectors technology for radiology imaging

    International Nuclear Information System (INIS)

    Cuzin, M.; Peyret, O.

    1998-01-01

    We summarize the main parameters which describes the radiological image at first and the advantages of pixel detectors. All detectors converts X-rays in charges either with an intermediate step with light or directly in a semi-conductor media. That is true for tomography which is the first domain where digital processing have been taken in account and for radiology where flat panel are now proposed to radiologists. Nevertheless, luminescent stimulated screens are a good way to prepare users with digital radiography. As such technique is not valuable for dynamic acquisition, we describe systems which used standard luminescent screens with CCD cameras or with IIR. Some description and comparison of flat panel independent pixel detectors are given. (authors)

  6. Feature Detector and Descriptor for Medical Images

    Science.gov (United States)

    Sargent, Dusty; Chen, Chao-I.; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Daniel

    2009-02-01

    The ability to detect and match features across multiple views of a scene is a crucial first step in many computer vision algorithms for dynamic scene analysis. State-of-the-art methods such as SIFT and SURF perform successfully when applied to typical images taken by a digital camera or camcorder. However, these methods often fail to generate an acceptable number of features when applied to medical images, because such images usually contain large homogeneous regions with little color and intensity variation. As a result, tasks like image registration and 3D structure recovery become difficult or impossible in the medical domain. This paper presents a scale, rotation and color/illumination invariant feature detector and descriptor for medical applications. The method incorporates elements of SIFT and SURF while optimizing their performance on medical data. Based on experiments with various types of medical images, we combined, adjusted, and built on methods and parameter settings employed in both algorithms. An approximate Hessian based detector is used to locate scale invariant keypoints and a dominant orientation is assigned to each keypoint using a gradient orientation histogram, providing rotation invariance. Finally, keypoints are described with an orientation-normalized distribution of gradient responses at the assigned scale, and the feature vector is normalized for contrast invariance. Experiments show that the algorithm detects and matches far more features than SIFT and SURF on medical images, with similar error levels.

  7. Cerenkov ring imaging detector development at SLAC

    International Nuclear Information System (INIS)

    Williams, S.H.

    1984-06-01

    The imaging of Cerenkov light on to photosensitive detectors promises to be a powerful technique for identifying particles in colliding beam spectrometers. Toward this end two and three dimensional imaging photon detectors are being developed at SLAC. The present techniques involve photon conversion using easily ionized exotic chemicals like tetrakisdimethyl-amino-ethylene (TMAE) in a drift and amplifying gas mixture of methane and isobutane. Single photoelectrons from Cerenkov light are currently being drifted 20 cm and a new device under study will be used to study drifting up to 80 cm along a magnetic field. A short description of a large device currently being designed for the SLD spectrometer at the Stanford Linear Collider will be given

  8. Pixel Detectors for Particle Physics and Imaging Applications

    CERN Document Server

    Wermes, N

    2003-01-01

    Semiconductor pixel detectors offer features for the detection of radiation which are interesting for particle physics detectors as well as for imaging e.g. in biomedical applications (radiography, autoradiography, protein crystallography) or in Xray astronomy. At the present time hybrid pixel detectors are technologically mastered to a large extent and large scale particle detectors are being built. Although the physical requirements are often quite different, imaging applications are emerging and interesting prototype results are available. Monolithic detectors, however, offer interesting features for both fields in future applications. The state of development of hybrid and monolithic pixel detectors, excluding CCDs, and their different suitability for particle detection and imaging, is reviewed.

  9. First observation of Cherenkov ring images using hybrid photon detectors

    International Nuclear Information System (INIS)

    Albrecht, E.; Wilkinson, G.; Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N.; Brook, N.H.; Halley, A.W.; O'Shea, V.; French, M.; Gibson, V.; Wotton, S.A.; Schomaker, R.

    1998-01-01

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C 4 F 10 gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  10. First observation of Cherenkov ring images using hybrid photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Wilkinson, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Barber, G.; Duane, A.; John, M.; Miller, D.G.; Websdale, D. [Imperial College of Science Technology and Medicine, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N. [University of Oxford, Department of Nuclear Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Brook, N.H.; Halley, A.W.; O`Shea, V. [University of Glasgow, Department of Physics, Glasgow G12 8QQ (United Kingdom); French, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Gibson, V.; Wotton, S.A. [University of Cambridge, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); Schomaker, R. [Delft Electronic Products BV, 9300 AB Roden (Netherlands)

    1998-07-11

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C{sub 4}F{sub 10} gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  11. Positron annihilation imaging device using multiple offset rings of detectors

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1981-01-01

    This patent application relates to a positron annihilation imaging device comprising two or more coaxial circular arrays of detectors (2,2'), with the detectors in one array angularly offset with respect to the detectors in the adjacent array to detect more than one tomographic image simultaneously through different cross-sections of a patient. (author)

  12. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  13. Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector

    International Nuclear Information System (INIS)

    Doncel, M.; Recchia, F.; Quintana, B.; Gadea, A.; Farnea, E.

    2010-01-01

    The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the γ-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the γ rays originated outside the target, the new generation of position sensitive γ-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the γ rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back γ rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.

  14. The radiation gas detectors with novel nanoporous converter for medical imaging applications

    Science.gov (United States)

    Zarei, H.; Saramad, S.

    2018-02-01

    For many reason it is tried to improve the quantum efficiency (QE) of position sensitive gas detectors. For energetic X-rays, the imaging systems usually consist of a bulk converter and gas amplification region. But the bulk converters have their own limitation. For X-rays, the converter thickness should be increased to achieve a greater detection efficiency, however in this case, the chance of escaping the photoelectrons is reduced. To overcome this limitation, a new type of converter, called a nanoporous converter such as Anodizing Aluminum Oxide (AAO) membrane with higher surface to volume ratio is proposed. According to simulation results with GATE code, for this nanoporous converter with the 1 mm thickness and inter pore distance of 627 nm, for 20-100 keV X-ray energies with a reasonable gas pressure and different pore diameters, the QE can be one order of magnitude greater than the bulk ones, which is a new approach for proposing high QE position sensitive gas detectors for medical imaging application and also high energy physics.

  15. Charge dividing mechanism in position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Rehak, P.

    1978-01-01

    A complete charge-division mechanism, including both the diffusion and the electromagnetic wave propagation on resistive electrodes, is presented. The charge injected into such a transmission line divides between the two ends according to the ratio of resistances and independently of the value of the line resistance, of the propagation mechanism and of the distribution of inductance and capacitance along the line. The shortest charge division time is achieved for Rl = 2π (L/C)/sup 1/2), where R, L, C are resistance, inductance and capacitance per unit length and l is the length of the line

  16. X-ray holography with a position sensitive detector

    Czech Academy of Sciences Publication Activity Database

    Lausi, A.; Kopecký, Miloš; Busetto, E.; Savoia, A.

    2002-01-01

    Roč. 101, č. 5 (2002), s. 621-628 ISSN 0587-4246 Institutional research plan: CEZ:AV0Z1010921 Keywords : fluorescence holography * resolution atoms Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.345, year: 2002

  17. GATE simulation of a LYSO-based SPECT imager: Validation and detector optimization

    International Nuclear Information System (INIS)

    Li, Suying; Zhang, Qiushi; Xie, Zhaoheng; Liu, Qi; Xu, Baixuan; Yang, Kun; Li, Changhui; Ren, Qiushi

    2015-01-01

    This paper presents a small animal SPECT system that is based on cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal, position sensitive photomultiplier tubes (PSPMTs) and parallel hole collimator. Spatial resolution test and animal experiment were performed to demonstrate the imaging performance of the detector. Preliminary results indicated a spatial resolution of 2.5 mm at FWHM that cannot meet our design requirement. Therefore, we simulated this gamma camera using GATE (GEANT 4 Application for Tomographic Emission) aiming to make detector spatial resolution less than 2 mm. First, the GATE simulation process was validated through comparison between simulated and experimental data. This also indicates the accuracy and effectiveness of GATE simulation for LYSO-based gamma camera. Then the different detector sampling methods (crystal size with 1.5, and 1 mm) and collimator design (collimator height with 30, 34.8, 38, and 43 mm) were studied to figure out an optimized parameter set. Detector sensitivity changes were also focused on with different parameters set that generated different spatial resolution results. Tradeoff curves of spatial resolution and sensitivity were plotted to determine the optimal collimator height with different sampling methods. Simulation results show that scintillation crystal size of 1 mm and collimator height of 38 mm, which can generate a spatial resolution of ∼1.8 mm and sensitivity of ∼0.065 cps/kBq, can be an ideal configuration for our SPECT imager design

  18. Depth of interaction detection with enhanced position-sensitive proportional resistor network

    International Nuclear Information System (INIS)

    Lerche, Ch.W.; Benlloch, J.M.; Sanchez, F.; Pavon, N.; Gimenez, N.; Fernandez, M.; Gimenez, M.; Sebastia, A.; Martinez, J.; Mora, F.J.

    2005-01-01

    A new method of determining the depth of interaction of γ-rays in thick inorganic scintillation crystals was tested experimentally. The method uses the strong correlation between the width of the scintillation light distribution within large continuous crystals and the γ-ray's interaction depth. This behavior was successfully reproduced by a theoretical model distribution based on the inverse square law. For the determination of the distribution's width, its standard deviation σ is computed using an enhanced position-sensitive proportional resistor network which is often used in γ-ray-imaging devices. Minor changes of this known resistor network allow the analog and real-time determination of the light distribution's 2nd moment without impairing the measurement of the energy and centroid. First experimental results are presented that confirm that the described method works correctly. Since only some cheap electronic components, but no additional detectors or crystals are required, the main advantage of this method is its low cost

  19. A Ring Imaging Cerenkov detector for the CERN OMEGA spectrometer

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Cowell, J.; Flower, P.S.

    1984-12-01

    A large acceptance Ring Imaging Cerenkov detector has been constructed for use at the CERN Omega Spectrometer. The design of the detector is discussed, with attention paid to its principal components, and preliminary results are given which show that the detector is capable of identifying pions and protons at 100 GeV/c. (author)

  20. Development of a 144-channel Hybrid Avalanche Photo-Detector for Belle II ring-imaging Cherenkov counter with an aerogel radiator

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S., E-mail: shohei.nishida@kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, N. [Toho University, Funabashi (Japan); Hara, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, T. [Nagoya University, Nagoya (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University, Hachioji (Japan); Kawai, H. [Chiba University, Chiba (Japan); Korpar, S.; Krizan, P. [Jozef Stefan Institute, Ljubljana (Slovenia); Ogawa, S. [Toho University, Funabashi (Japan); Pestotnik, R.; Ŝantelj, L.; Seljak, A. [Jozef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo Metropolitan University, Hachioji (Japan); Tabata, M. [Chiba University, Chiba (Japan); Tahirovic, E. [Jozef Stefan Institute, Ljubljana (Slovenia); Yoshida, K. [Tokyo Metropolitan University, Hachioji (Japan); Yusa, Y. [Niigata University, Niigata (Japan)

    2015-07-01

    The Belle II detector, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity-focusing ring-imaging Cherenkov counter with an aerogel radiator is being developed. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector has been developed with Hamamatsu Photonics K.K. In this report, we describe the specification of the Hybrid Avalanche Photo-Detector and the status of the mass production.

  1. Positron annihilation imaging device using multiple offset rings of detectors

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1982-01-01

    A means is provided for recording more than one tomographic image simultaneously through different cross-sections of a patient, using positron emission tomography. Separate rings of detectors are used to construct every odd-numbered slice, and coincident events that occur between adjacent rings of detectors provide a center or even-numbered slice. Detector rings are offset with respect to one another by half the angular separation of the detectors, allowing an image to be reconstructed from the central slice without the necessity of physically rotating the detector array while accumulating data

  2. First investigation of a novel 2D position-sensitive

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  3. Development of 2D-ACAR apparatus using position-sensitive photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Yasuyoshi; Saito, Haruo; Iwata, Tetsuya; Nagashima, Yasuyuki; Hyodo, Toshio [Tokyo Univ. (Japan). Coll. of Arts and Sciences; Uchida, Hiroshi; Omura, Tomohide

    1997-03-01

    A new two-dimensional angular correlation of annihilation radiation apparatus is described. Position-sensitive photomultiplier tubes coupled with two-dimensional arrays of small BGO scintillator blocks make simple and compact position-sensitive {gamma}-ray detectors. With a sample-detector distance of 5m, an angular resolution of 1.1 mrad FWHM and a coincidence count rate of {approx}2.4 c.p.s. per mCi are obtained. Its performance is demonstrated by the result of a test measurement for KI crystal in which non-localized positronium exists at low temperatures. (author)

  4. POWRS: position-sensitive motif discovery.

    Directory of Open Access Journals (Sweden)

    Ian W Davis

    Full Text Available Transcription factors and the short, often degenerate DNA sequences they recognize are central regulators of gene expression, but their regulatory code is challenging to dissect experimentally. Thus, computational approaches have long been used to identify putative regulatory elements from the patterns in promoter sequences. Here we present a new algorithm "POWRS" (POsition-sensitive WoRd Set for identifying regulatory sequence motifs, specifically developed to address two common shortcomings of existing algorithms. First, POWRS uses the position-specific enrichment of regulatory elements near transcription start sites to significantly increase sensitivity, while providing new information about the preferred localization of those elements. Second, POWRS forgoes position weight matrices for a discrete motif representation that appears more resistant to over-generalization. We apply this algorithm to discover sequences related to constitutive, high-level gene expression in the model plant Arabidopsis thaliana, and then experimentally validate the importance of those elements by systematically mutating two endogenous promoters and measuring the effect on gene expression levels. This provides a foundation for future efforts to rationally engineer gene expression in plants, a problem of great importance in developing biotech crop varieties.BSD-licensed Python code at http://grassrootsbio.com/papers/powrs/.

  5. Image scanning microscopy using a SPAD detector array (Conference Presentation)

    Science.gov (United States)

    Castello, Marco; Tortarolo, Giorgio; Buttafava, Mauro; Tosi, Alberto; Sheppard, Colin J. R.; Diaspro, Alberto; Vicidomini, Giuseppe

    2017-02-01

    The use of an array of detectors can help overcoming the traditional limitation of confocal microscopy: the compromise between signal and theoretical resolution. Each element independently records a view of the sample and the final image can be reconstructed by pixel reassignment or by inverse filtering (e.g. deconvolution). In this work, we used a SPAD array of 25 detectors specifically designed for this goal and our scanning microscopy control system (Carma) to acquire the partial images and to perform online image processing. Further work will be devoted to optimize the image reconstruction step and to improve the fill-factor of the detector.

  6. A study of an optimal technological solution for the electronics of particle position sensitive gas detectors (multiwire proportional chambers); Etude d`une solution technologique optimale pour l`electronique de localisation des particules avec des detecteurs a gaz (chambre proportionelle multifils)

    Energy Technology Data Exchange (ETDEWEB)

    Zojceski, Z. [Institut de Physique Nucleaire, CNRS - IN2P3 Universite Paris Sud, 91406 Orsay Cedex (France)

    1997-12-31

    This work aims at optimizing the electronics for position sensitive gas detectors. The first part is a review of proportional chamber operation principles and presents the different possibilities for the architecture of the electronics. The second part involves electronic signal processing for best signal-to-noise ratio. We present a time-variant filter based on a second order base line restorer.It allows a simple pole-zero and tail cancellation at high counting rates. Also, various interpolating algorithms for cathode strip chambers have been studied. The last part reports the development of a complete electronic system, from the preamplifiers up to the readout and control interface, for the cathode strip chambers in the focal plane of the BBS Spectrometer at KVI, Holland. The system is based on application specific D-size VXI modules. In all modules, the 16-bit ADCs and FIFO memory are followed by a Digital Signal Processor, which performs data filtering and cathode induced charge interpolation. Very good analog noise performance is obtained in a multi-processor environment. (author). 127 refs.

  7. A study of an optimal technological solution for the electronics of particle position sensitive gas detectors (multiwire proportional chambers); Etude d`une solution technologique optimale pour l`electronique de localisation des particules avec des detecteurs a gaz (chambre proportionelle multifils)

    Energy Technology Data Exchange (ETDEWEB)

    Zojceski, Z [Institut de Physique Nucleaire, CNRS - IN2P3 Universite Paris Sud, 91406 Orsay Cedex (France)

    1998-12-31

    This work aims at optimizing the electronics for position sensitive gas detectors. The first part is a review of proportional chamber operation principles and presents the different possibilities for the architecture of the electronics. The second part involves electronic signal processing for best signal-to-noise ratio. We present a time-variant filter based on a second order base line restorer.It allows a simple pole-zero and tail cancellation at high counting rates. Also, various interpolating algorithms for cathode strip chambers have been studied. The last part reports the development of a complete electronic system, from the preamplifiers up to the readout and control interface, for the cathode strip chambers in the focal plane of the BBS Spectrometer at KVI, Holland. The system is based on application specific D-size VXI modules. In all modules, the 16-bit ADCs and FIFO memory are followed by a Digital Signal Processor, which performs data filtering and cathode induced charge interpolation. Very good analog noise performance is obtained in a multi-processor environment. (author). 127 refs.

  8. Systems for increasing the sensitivity of gamma-ray imagers

    Science.gov (United States)

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  9. Imaging detectors and electronics - A view of the future

    International Nuclear Information System (INIS)

    Spieler, Helmuth

    2004-01-01

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large scale imaging systems routine in high energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays

  10. A gas pixel detector for X-ray imaging

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1991-11-01

    A simple, robust form of gas pixel detector is discussed which is based on the use of electronic connector pins as the gain elements. With a rate capability of >10 5 counts/s per pin, an X-ray imaging detector system capable of counting at global rates of the order of 10 10 counts/s is foreseen. (author)

  11. Image formation in track-etch detectors: Pt. 4

    International Nuclear Information System (INIS)

    Ilic, Radomir; Najzer, Mitja

    1990-01-01

    The radiographic performance of solid state nuclear track detectors was analysed with respect to image quality. Image quality is expressed in terms of three image quality factors: contrast or gradient of the detector, image unsharpness and detail discernment. Equations for the image quality factors were derived from the radiographic transfer function, taking into account image inhomogeneity caused by statistical fluctuations of track density. To find optimal radiographic conditions for a given application, a single quantity called the figure of radiographic merit was defined. It is expressed as the weighted product of the image quality factors. It was found that optimum image quality of a balanced image, characterized by equal importance of all three image quality factors, is obtained at an exposure value (defined as the product of the average visible track area and track density) of unity. (author)

  12. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gnanvo, Kondo, E-mail: kgnanvo@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Grasso, Leonard V.; Hohlmann, Marcus; Locke, Judson B.; Quintero, Amilkar [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Mitra, Debasis [Department of Computer Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2011-10-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30 cmx30 cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes ({approx}0.03 L) using GEM-based Muon Tomography.

  13. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors

    International Nuclear Information System (INIS)

    Gnanvo, Kondo; Grasso, Leonard V.; Hohlmann, Marcus; Locke, Judson B.; Quintero, Amilkar; Mitra, Debasis

    2011-01-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30 cmx30 cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes (∼0.03 L) using GEM-based Muon Tomography.

  14. The pin pixel detector--X-ray imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a soft X-ray gas pixel detector, which uses connector pins for the anodes is reported. Based on a commercial 100 pin connector block, a prototype detector of aperture 25.4 mm centre dot 25.4 mm can be economically fabricated. The individual pin anodes all show the expected characteristics of small gas detectors capable of counting rates reaching 1 MHz per pin. A 2-dimensional resistive divide readout system has been developed to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics.

  15. Simulation of scintillating fiber gamma ray detectors for medical imaging

    International Nuclear Information System (INIS)

    Chaney, R.C.; Fenyves, E.J.; Antich, P.P.

    1990-01-01

    This paper reports on plastic scintillating fibers which have been shown to be effective for high spatial and time resolution of gamma rays. They may be expected to significantly improve the resolution of current medical imaging systems such as PET and SPECT. Monte Carlo simulation of imaging systems using these detectors, provides a means to optimize their performance in this application, as well as demonstrate their resolution and efficiency. Monte Carlo results are presented for PET and SPECT systems constructed using these detectors

  16. Radiography imaging by 64 and 128 micro-strips crystalline detectors at different X-ray energies

    International Nuclear Information System (INIS)

    Leyva, A.; Cabal, A.; Montano, L. M.; Fontaine, M.; Mora, R. de la; Padilla, F.

    2006-01-01

    This paper summarizes some results obtained in the evaluation of the performance of position sensitive detectors in track reconstruction in particle physics experiments. Crystalline silicon micro-strips detectors with 64 and 128 channels and 100 μm pitch were used to obtain radiographic digital images of different objects. The more relevant figures for spectrometry applications were measured and reported. Two-dimensional images were obtained by scanning the object with a collimated beam using different source-target-detector positioning and three sources of X-rays (8.04, 18.55 and 22.16 keV). The counts acquired by each strip correspond to a particular collimator position during the scan, thus serving to reconstruct the image of the exposed to X-ray object and to reveal its internal structure. The use of some techniques for image processing allow the further improvement of the radiography quality. The preliminary results obtained using in-house made and accreditation mammography phantoms allow to infer that such detectors can be successfully introduced in the digital mammography practice. (Author)

  17. Photoconducting positions monitor and imaging detector

    Science.gov (United States)

    Shu, Deming; Kuzay, Tuncer M.

    2000-01-01

    A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.

  18. Photoacoustic projection imaging using an all-optical detector array

    Science.gov (United States)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  19. DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR

    International Nuclear Information System (INIS)

    Adam, I.; Aston, D.

    1997-11-01

    The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design

  20. Image feature detectors and descriptors foundations and applications

    CERN Document Server

    Hassaballah, Mahmoud

    2016-01-01

    This book provides readers with a selection of high-quality chapters that cover both theoretical concepts and practical applications of image feature detectors and descriptors. It serves as reference for researchers and practitioners by featuring survey chapters and research contributions on image feature detectors and descriptors. Additionally, it emphasizes several keywords in both theoretical and practical aspects of image feature extraction. The keywords include acceleration of feature detection and extraction, hardware implantations, image segmentation, evolutionary algorithm, ordinal measures, as well as visual speech recognition. .

  1. X-ray imaging with the PILATUS 100k detector

    DEFF Research Database (Denmark)

    Bech, Martin; Bunk, O.; David, C.

    2008-01-01

    We report on the application of the PILATUS 100K pixel detector for medical imaging. Experimental results are presented in the form of X-ray radiographs using standard X-ray absorption contrast and a recently developed phase contrast imaging method. The results obtained with the PILATUS detector...... are compared to results obtained with a conventional X-ray imaging system consisting of an X-ray scintillation screen, lens optics, and a charge coupled device. Finally, the results for both systems are discussed more quantitatively based on an image power spectrum analysis. Udgivelsesdato: April...

  2. Ultrafast secondary emission x-ray imaging detectors

    International Nuclear Information System (INIS)

    Akkerman, A.; Gibrekhterman, A.; Majewski, S.

    1991-07-01

    Fast high accuracy, x-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electron emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantage of solid x-ray detectors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanoseconds) response. These x-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation,with a reduced dE/dx background. We present experimental results on the operation of the secondary emission x-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors based on CsI transition radiation convertors. (author)

  3. Microelectronics used for Semiconductor Imaging Detectors

    CERN Document Server

    Heijne, Erik H M

    2010-01-01

    Semiconductor crystal technology, microelectronics developments and nuclear particle detection have been in a relation of symbiosis, all the way from the beginning. The increase of complexity in electronics chips can now be applied to obtain much more information on the incident nuclear radiation. Some basic technologies are described, in order to acquire insight in possibilities and limitations for the most recent detectors.

  4. Radiation imaging with optically read out GEM-based detectors

    Science.gov (United States)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible

  5. Musculoskeletal imaging with a prototype photon-counting detector.

    Science.gov (United States)

    Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F

    2012-01-01

    To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.

  6. Speckle imaging with the PAPA detector. [Precision Analog Photon Address

    Science.gov (United States)

    Papaliolios, C.; Nisenson, P.; Ebstein, S.

    1985-01-01

    A new 2-D photon-counting camera, the PAPA (precision analog photon address) detector has been built, tested, and used successfully for the acquisition of speckle imaging data. The camera has 512 x 512 pixels and operates at count rates of at least 200,000/sec. In this paper, technical details on the camera are presented and some of the laboratory and astronomical results are included which demonstrate the detector's capabilities.

  7. The forward ring imaging Cherenkov detector of DELPHI

    International Nuclear Information System (INIS)

    Adam, W.; Albrecht, E.; Ambec, I.; Augustinus, A.; Barnoux, C.; Bostjancic, B.; Botner, O.; Budziak, A.P.; Caloba, L.P.; Carecchio, P.; Cavalli, P.; Ceelie, L.; Cereseto, R.; Cerutti, G.; Dahl-Jensen, E.; Dam, P.; Damgaard, G.; Koning, N. de; De la Vega, A.S.; Dimitriou, N.; Dulinski, W.; Eek, L.O.; Ekeloef, T.; Erikson, J.; Florek, A.; Florek, B.; Fontanelli, F.; Fontenille, A.; Galuszka, K.; Garcia, J.; Gracco, V.; Hallgren, A.; Hao, W.; Henkes, T.; Isenhower, D.; Johansson, H.; Karvelas, E.; Kindblom, P.; Koene, B.; Korporaal, A.; Kostarakis, P.; Lenzen, G.; Lindqvist, L.E.; Lorenz, P.; Loukas, D.; Lund-Jensen, B.; Maltezos, A.; Markou, A.; Mattsson, L.; Medbo, J.; Michalowski, J.; Montano, F.; Nielsen, B.S.; Ostler, J.M.; Pakonski, K.; Perdikis, C.; Polok, G.; Robohm, A.; Sajot, G.; Sannino, M.; Saragas, E.; Schyns, E.; Squarcia, S.; Stavropoulos, G.; Stodulski, M.; Stopa, Z.; Thadome, J.; Theodosiou, G.E.; Traspedini, L.; Turala, M.; Ullaland, O.; Waerm, A.; Werner, J.; Xyroutsikos, S.; Zavrtanik, M.; Zevgolatakos, E.

    1994-01-01

    The Forward Ring Imaging Cherenkov detector of the DELPHI experiment at LEP provides hadron identification at polar angles 15 6 F 14 and a volume of gaseous C 4 F 10 , in combination provide coverage of momenta up to 40 GeV/c. A single array of photosensitive Time Projection Chambers registers the impact points of ultraviolet photons from both radiators. The design of the detector and of its readout system is described. First results obtained with a partly installed detector are reported. (orig.)

  8. Cherenkov Ring Imaging Detector front-end electronics

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Marshall, D.; Muller, D.; Nagamine, T.; Oxoby, G.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Suekane, F.; Toge, N.; Va'Vra, J.; Williams, S.; Wilson, R.J.; Whitaker, J.S.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Morrison, R.; Witherell, M.; Yellin, S.; Coyle, P.; Coyne, D.; Spencer, E.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Jacques, P.; Plano, R.; Stamer, P.; Abe, K.; Hasegawa, K.; Yuta, H.

    1990-10-01

    The SLD Cherenkov Ring Imaging Detector use a proportional wire detector for which a single channel hybrid has been developed. It consists of a preamplifier, gain selectable amplifier, load driver amplifier, power switching, and precision calibrator. For this hybrid, a bipolar, semicustom integrated circuit has been designed which includes video operational amplifiers for two of the gain stages. This approach allows maximization of the detector volume, allows DC coupling, and enables gain selection. System tests show good noise performance, calibration precision, system linearity, and signal shape uniformity over the full dynamic range. 10 refs., 8 figs

  9. THGEM based photon detector for Cherenkov imaging applications

    CERN Document Server

    Alexeev, M; Bradamante, F; Bressan, A; Chiosso, M; Ciliberti, P; Croci, G; Colantoni, M L; Dalla Torre, S; Duarte Pinto, S; Denisov, O; Diaz, V; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Giacomini, G; Giorgi, M; Gobbo, B; Heinsius, F H; Herrmann, F; Jahodova, V; Königsmann, K; Lauser, L; Levorato, S; Maggiora, A; Martin, A; Menon, G; Nerling, F; Panzieri, D; Pesaro, G; Polak, J; Rocco, E; Ropelewski, L; Sauli, F; Sbrizzai, G; Schiavon, P; Schill, C; Schopferer, S; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Takekawa, S; Tessarotto, F; Wollny, H

    2010-01-01

    We are developing a single photon detector for Cherenkov imaging counters. This detector is based on the use of THGEM electron multipliers in a multilayer design. The major goals of our project are ion feedback suppression down to a few per cent, large gain, fast response, insensitivity to magnetic fields, and a large detector size. We report about the project status and perspectives. In particular, we present a systematic study of the THGEM response as a function of geometrical parameters, production techniques and the gas mixture composition. The first figures obtained from measuring the response of a CsI coated THGEM to single photons are presented.

  10. Control of the neutron detector count rate by optical imaging

    International Nuclear Information System (INIS)

    Roquemore, A.L.; Johnson, L.C.

    1992-01-01

    The signal processing electronics used for the NE451 detectors on the TFTR multichannel neutron collimator are presently showing saturation effects at high counting rates equivalent to neutron yields of ∼10 16 n/s. While nonlinearity due to pulse pileup can be corrected for in most present TFTR experiments, additional steps are required for neutron source strengths above ∼3x10 16 n/s. These pulse pileup effects could be reduced by inserting sleeves in the collimator shielding to reduce the neutron flux in the vicinity of the detectors or by reducing the volume of detector exposed to the flux. We describe a novel method of avoiding saturation by optically controlling the number neutron events processed by the detector electronics. Because of the optical opacity of the ZnS-plastic detectors such as NE451, photons from a proton-recoil scintillation arise from a spatially localized area of the detector. By imaging a selected portion of the detector onto a photomultiplier, we reduce the effective volume of the detector in a controllable, reversible way. A prototype system, consisting of a focusing lens, a field lens, and a variable aperture, has been constructed. Results of laboratory feasibility tests are presented

  11. Energy-sensitive imaging detector applied to the dissociative recombination of D2H+

    International Nuclear Information System (INIS)

    Buhr, H.; Schwalm, D.; Mendes, M. B.; Novotny, O.; Berg, M. H.; Bing, D.; Krantz, C.; Orlov, D. A.; Sorg, T.; Stuetzel, J.; Varju, J.; Wolf, A.; Heber, O.; Rappaport, M. L.; Zajfman, D.

    2010-01-01

    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10x10 cm 2 ) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows us to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, and breakup geometries as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the Test Storage Ring (TSR) facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D 2 H + . A huge isotope effect is observed when comparing the relative branching ratio between the D 2 + H and the HD + D channel; the ratio 2B(D 2 + H)/B(HD + D), which is measured to be 1.27±0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7±0.5 at ∼5 eV.

  12. Energy-sensitive imaging detector applied to the dissociative recombination of D2H+

    Science.gov (United States)

    Buhr, H.; Mendes, M. B.; Novotný, O.; Schwalm, D.; Berg, M. H.; Bing, D.; Heber, O.; Krantz, C.; Orlov, D. A.; Rappaport, M. L.; Sorg, T.; Stützel, J.; Varju, J.; Wolf, A.; Zajfman, D.

    2010-06-01

    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10×10 cm2) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows us to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, and breakup geometries as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the Test Storage Ring (TSR) facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A huge isotope effect is observed when comparing the relative branching ratio between the D2 + H and the HD + D channel; the ratio 2B(D2 + H)/B(HD + D), which is measured to be 1.27±0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7±0.5 at ~5 eV.

  13. Imaging antimatter with a Micromegas detector

    Science.gov (United States)

    Mäckel, V.; Radics, B.; Dupre, P.; Higaki, H.; Kanai, Y.; Kuroda, N.; Matsuda, Y.; Nagata, Y.; Tajima, M.; Widmann, E.; Yamazaki, Y.

    2018-05-01

    The ASACUSA collaboration aims at measuring the ground state hyperfine splitting of antihydrogen for probing fundamental symmetries. A cryogenic trap for mixing antiprotons and positrons serves as an antihydrogen source for in-flight spectroscopy. In order to be able to monitor the antihydrogen formation process, a dedicated Micromegas tracking detector has been designed and built to record the annihilation distribution in the trap. In this paper, we present the first results from antiproton annihilation data recorded with the Micromegas, together with a description of the event reconstruction algorithm.

  14. Efficient nucleus detector in histopathology images.

    NARCIS (Netherlands)

    Vink, J.P.; Leeuwen, van M.B.; Deurzen, van C.H.M.; Haan, de G.

    2013-01-01

    In traditional cancer diagnosis, (histo)pathological images of biopsy samples are visually analysed by pathologists. However, this judgment is subjective and leads to variability among pathologists. Digital scanners may enable automated objective assessment, improved quality and reduced throughput

  15. Nanotechnology for Advanced Imaging and Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this IRAD is to apply nanotechnology to create new devices to enhance both the imaging and detection of light. We have demonstrated the capability to...

  16. Si and gaas pixel detectors for medical imaging applications

    International Nuclear Information System (INIS)

    Bisogni, M. G.

    2001-01-01

    As the use of digital radiographic equipment in the morphological imaging field is becoming the more and more diffuse, the research of new and more performing devices from public institutions and industrial companies is in constant progress. Most of these devices are based on solid-state detectors as X-ray sensors. Semiconductor pixel detectors, originally developed in the high energy physics environment, have been then proposed as digital detector for medical imaging applications. In this paper a digital single photon counting device, based on silicon and GaAs pixel detector, is presented. The detector is a thin slab of semiconductor crystal where an array of 64 by 64 square pixels, 170- m side, has been built on one side. The data read-out is performed by a VLSI integrated circuit named Photon Counting Chip (PCC), developed within the MEDIPIX collaboration. Each chip cell geometrically matches the sensor pixel. It contains a charge preamplifier, a threshold comparator and a 15 bits pseudo-random counter and it is coupled to the detector by means of bump bonding. Most important advantages of such system, with respect to a traditional X-rays film/screen device, are the wider linear dynamic range (3x104) and the higher performance in terms of MTF and DQE. Besides the single photon counting architecture allows to detect image contrasts lower than 3%. Electronics read-out performance as well as imaging capabilities of the digital device will be presented. Images of mammographic phantoms acquired with a standard Mammographic tube will be compared with radiographs obtained with traditional film/screen systems

  17. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  18. 2D position sensitive microstrip sensors with charge division along the strip Studies on the position measurement error

    CERN Document Server

    Bassignana, D; Fernandez, M; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I; Vitorero, F

    2013-01-01

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proofof-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphasis ...

  19. Theory and Development of Position-Sensitive Quantum Calorimeters. Degree awarded by Stanford Univ.

    Science.gov (United States)

    Figueroa-Feliciano, Enectali; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Quantum calorimeters are being developed as imaging spectrometers for future X-ray astrophysics observatories. Much of the science to be done by these instruments could benefit greatly from larger focal-plane coverage of the detector (without increasing pixel size). An order of magnitude more area will greatly increase the science throughput of these future instruments. One of the main deterrents to achieving this goal is the complexity of the readout schemes involved. We have devised a way to increase the number of pixels from the current baseline designs by an order of magnitude without increasing the number of channels required for readout. The instrument is a high energy resolution, distributed-readout imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (POST). A POST is a quantum calorimeter consisting of two Transition-Edge Sensors (TESS) on the ends of a long absorber capable of one-dimensional imaging spectroscopy. Comparing rise time and energy information from the two TESS, the position of the event in the POST is determined. The energy of the event is inferred from the sum of the two pulses. We have developed a generalized theoretical formalism for distributed-readout calorimeters and apply it to our devices. We derive the noise theory and calculate the theoretical energy resolution of a POST. Our calculations show that a 7-pixel POST with 6 keV saturation energy can achieve 2.3 eV resolution, making this a competitive design for future quantum calorimeter instruments. For this thesis we fabricated 7- and 15-pixel POSTS using Mo/Au TESs and gold absorbers, and moved from concept drawings on scraps of napkins to a 32 eV energy resolution at 1.5 keV, 7-pixel POST calorimeter.

  20. Multiple event 2D image intensifier scintillation detector

    International Nuclear Information System (INIS)

    Thieberger, P.; Wegner, H.E.; Lee, R.C.

    1981-01-01

    An image intensifier scintillation detector has been developed for the simultaneous detection of multiple light or heavy ions down to very low energies. The relative X-Y positions of each ion are read out by digitization of a television image of the light amplified scintillations. The maximum data rate is limited by the present television scan speed to 15 multiple events per second and to about one event second by the microcomputer presently used to store and process the data. (orig.)

  1. Medical imaging: Material change for X-ray detectors

    Science.gov (United States)

    Rowlands, John A.

    2017-10-01

    The X-ray sensitivity of radiology instruments is limited by the materials used in their detectors. A material from the perovskite family of semiconductors could allow lower doses of X-rays to be used for medical imaging. See Letter p.87

  2. The Omega Ring Imaging Cerenkov Detector readout system user's guide

    International Nuclear Information System (INIS)

    Hallewell, G.

    1984-11-01

    The manual describes the electronic readout system of the Ring Imaging Cerenkov Detector at the CERN Omega Spectrometer. The system is described in its configuration of September 1984 after the Rich readout system had been used in two Omega experiments. (U.K.)

  3. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector

    Directory of Open Access Journals (Sweden)

    Ruqaya AL Darwish

    2015-01-01

    Full Text Available There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB, with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.

  4. X-ray imaging bilinear staggered GaAs detectors

    Energy Technology Data Exchange (ETDEWEB)

    Achmadullin, R.A.; Dvoryankin, V.F. E-mail: vfd217@ire216.msk.su; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A

    2004-09-21

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 {mu}A min/(Gy cm{sup 2}). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received.

  5. X-ray imaging bilinear staggered GaAs detectors

    International Nuclear Information System (INIS)

    Achmadullin, R.A.; Dvoryankin, V.F.; Dvoryankina, G.G.; Dikaev, Y.M.Yu.M.; Krikunov, A.I.; Kudryashov, A.A.; Panova, T.M.; Petrov, A.G.; Telegin, A.A.

    2004-01-01

    The multichannel bilinear X-ray detector based on epitaxial GaAs structures is developed to obtain a digital X-ray image. Each detector operates in photovoltaic mode without reverse bias that enables almost complete elimination of detector noise arising due to leakage currents. The sensitivity range of the epitaxial GaAs photovoltaic X-ray detector covers the effective energies from 8 to 120 keV. A maximum response of the detector operating in the short-circuit mode was observed at an energy of 35 keV and amounted to 30 μA min/(Gy cm 2 ). The multichannel detector was made of 1024 pixels with pitch of 0.8 mm. The spatial resolution of double staggered sensor row is twice as high as the resolution of that of single sensor row with the same pitch. Measured spatial resolution is 1.2 line-pairs/mm, contrast sensitivity not worse 1% and dynamic range defined as the ratio of maximum detectable X-ray signal to electronic noise level more than 2000 are received

  6. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  7. Quantitative SPECT brain imaging: Effects of attenuation and detector response

    International Nuclear Information System (INIS)

    Gilland, D.R.; Jaszczak, R.J.; Bowsher, J.E.; Turkington, T.G.; Liang, Z.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    Two physical factors that substantially degrade quantitative accuracy in SPECT imaging of the brain are attenuation and detector response. In addition to the physical factors, random noise in the reconstructed image can greatly affect the quantitative measurement. The purpose of this work was to implement two reconstruction methods that compensate for attenuation and detector response, a 3D maximum likelihood-EM method (ML) and a filtered backprojection method (FB) with Metz filter and Chang attenuation compensation, and compare the methods in terms of quantitative accuracy and image noise. The methods were tested on simulated data of the 3D Hoffman brain phantom. The simulation incorporated attenuation and distance-dependent detector response. Bias and standard deviation of reconstructed voxel intensities were measured in the gray and white matter regions. The results with ML showed that in both the gray and white matter regions as the number of iterations increased, bias decreased and standard deviation increased. Similar results were observed with FB as the Metz filter power increased. In both regions, ML had smaller standard deviation than FB for a given bias. Reconstruction times for the ML method have been greatly reduced through efficient coding, limited source support, and by computing attenuation factors only along rays perpendicular to the detector

  8. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    Directory of Open Access Journals (Sweden)

    Su Luo

    2017-01-01

    Full Text Available Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

  9. Improvements to a neutral radiation detection and position sensitive process and devices

    International Nuclear Information System (INIS)

    Charpak, Georges; Nguyen, N.H.; Policarpo, Armando.

    1977-01-01

    This invention aims to provide a neutral radiation position sensitive process and device providing a spatial radiation satisfactory for most medical applications and an energy radiation that cannot be reached by gas detectors based on proportional counters or by scintillation counters. Only solid state detectors can compete with respect to energy resolution. The detector described enables large areas to be covered which cannot be reached at accessible costs by solid state detectors. With this aim in view, the invention suggests an incident neutral radiation and position sensitive process, particularly soft gamma and X radiations, whereby photoelectrons are made to form by incident radiation action on gas atoms contained in an enclosure. By means of an electric field, the electrons are diverted towards a space undergoing an electric field high enough in value to create photons by exciting gas atoms and returning them to the de-excited state. The photons are collected, through a transparent window, on a layer of a material for converting such photons into scintillations in the near or visible UV spectrum and the barycentre of the scintillations is positioned on the layer, for instance by photomultipliers or ionization detectors. According to another aspect of the invention, it suggests a detection and position sensitive device comprising (generally downstream of a collimator with a grid of inlet holes) a leak tight containment fitted with an inlet window transparent to incident radiations, filled with a gas producing electrons by interaction with the incident radiation, and fitted with electrodes for generating an electric field to divert the electrons to a space for creating secondary photons [fr

  10. Active terahertz imaging with Ne indicator lamp detector arrays

    Science.gov (United States)

    Kopeika, N. S.; Abramovich, A.; Yadid-Pecht, O.; Yitzhaky, Y.

    2009-08-01

    The advantages of terahertz (THz) imaging are well known. They penetrate well most non-conducting media and there are no known biological hazards, This makes such imaging systems important for homeland security, as they can be used to image concealed objects and often into rooms or buildings from the outside. There are also biomedical applications that are arising. Unfortunately, THz imaging is quite expensive, especially for real time systems, largely because of the price of the detector. Bolometers and pyroelectric detectors can each easily cost at least hundreds of dollars if not more, thus making focal plane arrays of them quite expensive. We have found that common miniature commercial neon indicator lamps costing typically about 30 cents each exhibit high sensitivity to THz radiation [1-3], with microsecond order rise times, thus making them excellent candidates for such focal plane arrays. NEP is on the order of 10-10 W/Hz1/2. Significant improvement of detection performance is expected when heterodyne detection is used Efforts are being made to develop focal plane array imagers using such devices at 300 GHz. Indeed, preliminary images using 4x4 arrays have already been obtained. An 8x8 VLSI board has been developed and is presently being tested. Since no similar imaging systems have been developed previously, there are many new problems to be solved with such a novel and unconventional imaging system. These devices act as square law detectors, with detected signal proportional to THz power. This allows them to act as mixers in heterodyne detection, thus allowing NEP to be reduced further by almost two orders of magnitude. Plans are to expand the arrays to larger sizes, and to employ super resolution techniques to improve image quality beyond that ordinarily obtainable at THz frequencies.

  11. A detector insert based on continuous scintillators for hybrid MR–PET imaging of the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Rato Mendes, P., E-mail: pedro.rato@ciemat.es [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J.C.; Cela, J.M. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Núñez, L.; Pastrana, M. [Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222 Majadahonda (Spain); Romero, L.; Willmott, C. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain)

    2013-02-21

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR–PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital.

  12. A detector insert based on continuous scintillators for hybrid MR–PET imaging of the human brain

    International Nuclear Information System (INIS)

    Rato Mendes, P.; Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J.C.; Cela, J.M.; Núñez, L.; Pastrana, M.; Romero, L.; Willmott, C.

    2013-01-01

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR–PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital

  13. Pixel detectors for x-ray imaging spectroscopy in space

    International Nuclear Information System (INIS)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L

    2009-01-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  14. Pixel detectors for x-ray imaging spectroscopy in space

    Science.gov (United States)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  15. Pixel detectors for x-ray imaging spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, D-81739 Munich (Germany)], E-mail: jft@hll.mpg.de

    2009-03-15

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  16. Development of a neutron imager based on superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Shigeyuki, E-mail: miyajima@nict.go.jp [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Fujimaki, Akira [Department of Quantum Engineering, Nagoya University (Japan); Hidaka, Mutsuo [National Institute of Advanced Industrial Science and Technology (Japan); Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi [J-PARC Center, Japan Atomic Energy Agency (Japan); Ishida, Takekazu [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan)

    2016-11-15

    Highlights: • A neutron detector based on superconducting meander line is demonstrated. • Fast response time of a few tens ns is obtained. • Spatial resolution is 1 μm and can be improved to sub-μm scale. • The proposed neutron detector can operate under the γ-ray fields. - Abstract: We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a {sup 10}B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a {sup 10}B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with {sup 10}B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  17. Terahertz detectors for long wavelength multi-spectral imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.

    2007-10-01

    The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.

  18. Electron imaging with Medipix2 hybrid pixel detector

    International Nuclear Information System (INIS)

    McMullan, G.; Cattermole, D.M.; Chen, S.; Henderson, R.; Llopart, X.; Summerfield, C.; Tlustos, L.; Faruqi, A.R.

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μmx55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach ∼85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach ∼35% of that expected for a perfect detector (4/π 2 ). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses

  19. Electron imaging with Medipix2 hybrid pixel detector.

    Science.gov (United States)

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  20. Development of a neutron imager based on superconducting detectors

    International Nuclear Information System (INIS)

    Miyajima, Shigeyuki; Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki; Fujimaki, Akira; Hidaka, Mutsuo; Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi; Ishida, Takekazu

    2016-01-01

    Highlights: • A neutron detector based on superconducting meander line is demonstrated. • Fast response time of a few tens ns is obtained. • Spatial resolution is 1 μm and can be improved to sub-μm scale. • The proposed neutron detector can operate under the γ-ray fields. - Abstract: We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a "1"0B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a "1"0B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with "1"0B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  1. Amorphous selenium based detectors for medical imaging applications

    Science.gov (United States)

    Mandal, Krishna C.; Kang, Sung H.; Choi, Michael; Jellison, Gerald E., Jr.

    2006-08-01

    We have developed and characterized large volume amorphous (a-) selenium (Se) stabilized alloys for room temperature medical imaging devices and high-energy physics detectors. The synthesis and preparation of well-defined and high quality a-Se (B, As, Cl) alloy materials have been conducted using a specially designed alloying reactor at EIC and installed in an argon atmosphere glove box. The alloy composition has been precisely controlled and optimized to ensure good device performance. The synthesis of large volume boron (B) doped (natural and isotopic 10B) a-Se (As, Cl) alloys has been carried out by thoroughly mixing vacuum distilled and zone-refined (ZR) Se with previously synthesized Se-As master alloys, Se-Cl master alloys and B. The synthesized a-Se (B, As, Cl) alloys have been characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infra-red spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectroscopy (ICP-MS), and detector testing. The a- Se alloys have shown high promise for x-ray detectors with its high dark resistivity (10 10-10 13 Ωcm), good charge transport properties, and cost-effective large area scalability. Details of various steps about detector fabrication and testing of these imaging devices are also presented.

  2. Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease

    Science.gov (United States)

    Foudray, Angela Marie Klohs

    Detecting, quantifying and visualizing biochemical mechanism in a living system without perturbing function is the goal of the instrument and algorithms designed in this thesis. Biochemical mechanisms of cells have long been known to be dependent on the signals they receive from their environment. Studying biological processes of cells in-vitro can vastly distort their function, since you are removing them from their natural chemical signaling environment. Mice have become the biological system of choice for various areas of biomedical research due to their genetic and physiological similarities with humans, the relatively low cost of their care, and their quick breeding cycle. Drug development and efficacy assessment along with disease detection, management, and mechanism research all have benefited from the use of small animal models of human disease. A high resolution, high sensitivity, three-dimensional (3D) positioning positron emission tomography (PET) detector system was designed through device characterization and Monte Carlo simulation. Position-sensitive avalanche photodiodes (PSAPDs) were characterized in various packaging configurations; coupled to various configurations of lutetium oxyorthosilicate (LSO) scintillation crystals. Forty novelly packaged final design devices were constructed and characterized, each providing characteristics superior to commercially available scintillation detectors used in small animal imaging systems: ˜1mm crystal identification, 14-15% of 511 keV energy resolution, and averaging 1.9 to 5.6 ns coincidence time resolution. A closed-cornered box-shaped detector configuration was found to provide optimal photon sensitivity (˜10.5% in the central plane) using dual LSO-PSAPD scintillation detector modules and Monte Carlo simulation. Standard figures of merit were used to determine optimal system acquisition parameters. A realistic model for constituent devices was developed for understanding the signals reported by the

  3. Dose energy dependence in proton imaging with thin detector

    Energy Technology Data Exchange (ETDEWEB)

    Denyak, V.V., E-mail: denyak@gmail.com [National Science Centre Kharkov Institute of Physics and Technology, St. Akademicheskaya 1, Kharkov 61108 (Ukraine); Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil); Schelin, H.R. [Pele Pequeno Principe Research Institute, Av. Silva Jardim 1632, Curitiba 80250-200 (Brazil); Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil); Silva, R.C.L.; Kozuki, C.; Paschuk, S.A.; Milhoretto, E. [Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil)

    2012-07-15

    Since the earliest works proposing the use of protons for imaging, the main advantage of protons over X-rays was expected to be a result of the specific property of the proton flux dropping off very steeply at the end of the particle range. This idea was declared but was not checked. In the present work, this assumption was investigated using the Monte Carlo simulation for the case of registration of protons with a thin detector. - Highlights: Black-Right-Pointing-Pointer Principal idea of proton imaging 'to work at the end of the range' was tested. Black-Right-Pointing-Pointer The case of thin detector was investigated. Black-Right-Pointing-Pointer The dose energy dependence was calculated using computer simulation.

  4. GPU based Monte Carlo for PET image reconstruction: detector modeling

    International Nuclear Information System (INIS)

    Légrády; Cserkaszky, Á; Lantos, J.; Patay, G.; Bükki, T.

    2011-01-01

    Monte Carlo (MC) calculations and Graphical Processing Units (GPUs) are almost like the dedicated hardware designed for the specific task given the similarities between visible light transport and neutral particle trajectories. A GPU based MC gamma transport code has been developed for Positron Emission Tomography iterative image reconstruction calculating the projection from unknowns to data at each iteration step taking into account the full physics of the system. This paper describes the simplified scintillation detector modeling and its effect on convergence. (author)

  5. The fluid systems for the SLD Cherenkov ring imaging detector

    International Nuclear Information System (INIS)

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Schneider, M.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C 2 H 6 + TMAE), radiator gas (C 5 F 12 + N 2 ) and radiator liquid (C 6 F 14 ). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported

  6. Construction and testing of the SLD Cerenkov ring imaging detector

    International Nuclear Information System (INIS)

    Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Williams, D.A.; Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.

    1990-01-01

    The authors report on the construction of the Cherenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC Linear Collider and the testing of its components. The authors include results from testing the drift boxes, liquid radiator trays, and mirrors for the barrel CRID. The authors also discuss development of the support systems essential for the operation of the CRID: gas and liquid recirculator systems and monitoring

  7. Imaging Hybrid Photon Detectors with a Reflective Photocathode

    CERN Document Server

    Ferenc, D

    2000-01-01

    Modern epitaxially grown photocathodes, like GaAsP, bring a very high inherent quantum efficiency, but are rather expensive due to the complicated manufacturing and mounting process. We argue that such photocathodes could be used in reflective mode, in order to avoid the risky and expensive removal of the epitaxial growth substrate. Besides that the quantum efficiency should increase considerably. In this paper we present results of the development of large imaging Hybrid Photon Detectors (HPDs), particularly designed for such reflective photocathodes.

  8. Low energy electron microscopy imaging using Medipix2 detector

    International Nuclear Information System (INIS)

    Sikharulidze, I.; Gastel, R. van; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  9. Low energy electron microscopy imaging using Medipix2 detector

    Energy Technology Data Exchange (ETDEWEB)

    Sikharulidze, I., E-mail: irakli@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Gastel, R. van [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Schramm, S. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); Abrahams, J.P. [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Poelsema, B. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Tromp, R.M. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands)

    2011-05-15

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  10. Ultra-thin infrared metamaterial detector for multicolor imaging applications.

    Science.gov (United States)

    Montoya, John A; Tian, Zhao-Bing; Krishna, Sanjay; Padilla, Willie J

    2017-09-18

    The next generation of infrared imaging systems requires control of fundamental electromagnetic processes - absorption, polarization, spectral bandwidth - at the pixel level to acquire desirable information about the environment with low system latency. Metamaterial absorbers have sparked interest in the infrared imaging community for their ability to enhance absorption of incoming radiation with color, polarization and/or phase information. However, most metamaterial-based sensors fail to focus incoming radiation into the active region of a ultra-thin detecting element, thus achieving poor detection metrics. Here our multifunctional metamaterial absorber is directly integrated with a novel mid-wave infrared (MWIR) and long-wave infrared (LWIR) detector with an ultra-thin (~λ/15) InAs/GaSb Type-II superlattice (T2SL) interband cascade detector. The deep sub-wavelength metamaterial detector architecture proposed and demonstrated here, thus significantly improves the detection quantum efficiency (QE) and absorption of incoming radiation in a regime typically dominated by Fabry-Perot etalons. Our work evinces the ability of multifunctional metamaterials to realize efficient wavelength selective detection across the infrared spectrum for enhanced multispectral infrared imaging applications.

  11. Image timing and detector performance of a matrix ion-chamber electronic portal imaging device

    International Nuclear Information System (INIS)

    Greer, P.

    1996-01-01

    The Oncology Centre of Auckland Hospital recently purchased a Varian PortalVision TM electronic portal imaging device (EPID). Image acquisition times, input-output characteristics and contrast-detail curves of this matrix liquid ion-chamber EPID have been measured to examine the variation in imaging performance with acquisition mode. The variation in detector performance with acquisition mode has been examined. The HV cycle time can be increased to improve image quality. Consideration should be given to the acquisition mode and HV cycle time used when imaging to ensure adequate imaging performance with reasonable imaging time. (author)

  12. Investigation of the pulse shape analysis for the position sensitive γ-ray spectrometer AGATA

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Lars; Birkenbach, Benedikt; Reiter, Peter [Institut fuer Kernphysik Koeln (Germany); Collaboration: AGATA-Collaboration

    2015-07-01

    The next generation of γ-ray spectrometers like AGATA will provide high quality γ-ray spectra by the new Gamma-Ray Tracking technique (GRT). Position sensitive HPGe detectors will allow for precise Doppler correction and small broadening of lines for spectroscopy at relativistic energies. GRT is based on the interaction position of the γ-rays within the volume of the highly segmented germanium detectors provided by Pulse Shape Analysis (PSA) methods. The proof of principle of GRT was already demonstrated with great success however systematic deviations from expected results occur. The parameterization of the following detector properties and their impact on PSA were thoroughly investigated and optimized: electron and hole mobility, crystal axis orientation, space charge distributions, crystal impurities, response functions of preamplifiers and digitizers, linear and differential crosstalk, time alignment of pulses and the distance metric. Results of an improved PSA performance are presented.

  13. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  14. Upgrade of the Detector for Imaging of Explosions

    Science.gov (United States)

    Shekhtman, L. I.; Aulchenko, V. M.; Kudryavtsev, V. N.; Kutovenko, V. D.; Titov, V. M.; Zhulanov, V. V.; Pruuel, E. L.; Ten, K. A.; Tolochko, B. P.

    Methods of dynamic imaging of explosions at a synchrotron radiation (SR) beam and small-angle X-ray scattering experiments with exploding samples are being developed in the Siberian Synchrotron Radiation Center (SSRC) at the Budker Institute of Nuclear Physics for more than fifteen years. The detector for imaging of explosions (DIMEX) was developed for these purposes and successfully operating at the beam line 0 at the VEPP-3 storage ring and at the beam line 8 at the VEPP-4 M storage ring. The DIMEX is based on gas technology and allow to measure SR flux as a function of position and time with spatial resolution of ∼200 μm (FWHM), maximum frame rate of 2 MHz and time resolution of ∼80 ns. Maximum value of the SR flux that can be measured by the present detector corresponds to ∼5000 photons/(channel*bunch) (20 keV average energy, channel area 0.1x0.5 mm2, bunch revolution frequency 4 MHz). Maximum number of frames that can be stored in the present detector is 32 and the number of channels with 0.1 mm width is 512. In order to significantly improve the precision of data obtained by the DIMEX an upgrade of the detector has been started. The electronics of the gaseous version of the detector has been changed such that the new detector is able to operate with frame rate of 8 MHz and store data in up to 100 frames. A new ASIC was developed for this purpose called DMXG64A that includes 64 channels with low noise integrator and 100 analogue memory cells in each channel. Input charge can be stored to and read out from analogue cells with maximum frequency 10 MHz. This new version of the detector is called the DIMEX-G and is planned to be used at the VEPP-3 storage ring and for SAXS studies at the VEPP-4 M storage ring. For imaging of explosions at the beam line 8 at the VEPP-4 M storage ring, where SR flux is expected to be about 10-100 times higher than at the VEPP-3, a new detector based on Si micro-strip technology is being developed. Si micro-strip sensors with

  15. Development of CRID [Cerenkov Ring Imaging Detector] single electron wire detector

    International Nuclear Information System (INIS)

    Aston, D.; Bean, A.; Bienz, T.

    1989-02-01

    We describe the R and D effort to define the design parameters, method of construction and experimental results from the single electron wire detectors. These detectors will be used for particle identification using the Cerenkov Ring Imaging techniques in the SLD experiment at SLAC. We present measurements of pulse heights for several gases as a function of gas gain, charge division performance on a single electron signal using both 7 μm and 33 μm diameter carbon wires, photon feedback in TMAE laden gas, average pulse shape, and its comparison with the predicted shape and cross-talk. In addition, we present results of wire aging tests, and other tests associated with construction of this unusual type of wire chamber. 12 refs., 9 figs

  16. Electron imaging with Medipix2 hybrid pixel detector

    CERN Document Server

    McMullan, G; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μm×55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach 35% of that expected for a perfect detector (4/π2). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected v...

  17. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    Science.gov (United States)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  18. Sparse Detector Imaging Sensor with Two-Class Silhouette Classification

    Directory of Open Access Journals (Sweden)

    David Russomanno

    2008-12-01

    Full Text Available This paper presents the design and test of a simple active near-infrared sparse detector imaging sensor. The prototype of the sensor is novel in that it can capture remarkable silhouettes or profiles of a wide-variety of moving objects, including humans, animals, and vehicles using a sparse detector array comprised of only sixteen sensing elements deployed in a vertical configuration. The prototype sensor was built to collect silhouettes for a variety of objects and to evaluate several algorithms for classifying the data obtained from the sensor into two classes: human versus non-human. Initial tests show that the classification of individually sensed objects into two classes can be achieved with accuracy greater than ninety-nine percent (99% with a subset of the sixteen detectors using a representative dataset consisting of 512 signatures. The prototype also includes a Webservice interface such that the sensor can be tasked in a network-centric environment. The sensor appears to be a low-cost alternative to traditional, high-resolution focal plane array imaging sensors for some applications. After a power optimization study, appropriate packaging, and testing with more extensive datasets, the sensor may be a good candidate for deployment in vast geographic regions for a myriad of intelligent electronic fence and persistent surveillance applications, including perimeter security scenarios.

  19. Raman characterization of high temperature materials using an imaging detector

    International Nuclear Information System (INIS)

    Rosenblatt, G.M.; Veirs, D.K.

    1989-03-01

    The characterization of materials by Raman spectroscopy has been advanced by recent technological developments in light detectors. Imaging photomultiplier-tube detectors are now available that impart position information in two dimensions while retaining photon-counting sensitivity, effectively greatly reducing noise. The combination of sensitivity and reduced noise allows smaller amounts of material to be analyzed. The ability to observe small amount of material when coupled with position information makes possible Raman characterization in which many spatial elements are analyzed simultaneously. Raman spectroscopy making use of these capabilities has been used, for instance, to analyze the phases present in carbon films and fibers and to map phase-transformed zones accompanying crack propagation in toughened zirconia ceramics. 16 refs., 6 figs., 2 tabs

  20. A ring image Cerenkov detector for the CERN Omega Spectrometer

    International Nuclear Information System (INIS)

    Davenport, M.; Deol, R.S.; Flower, P.S.

    1983-05-01

    A development program has been undertaken to produce a large ring image Cerenkov detector (RICH) for use at the CERN Omega Spectrometer. A prototype Cerenkov counter has been constructed and successfully operated in a high energy particle beam, Cerenkov rings having been observed in an experimental time projection chamber (TPC) using the photoionising agents Triethylamine (TEA) and Tetrakis (dimethylamine) ethylene (TMAE). Systematic measurements have been made of the optical properties of window materials and reflecting surfaces in the vacuum ultraviolet region. Results of these tests are presented, and the design of the large detector based on these experiences together with Monte Carlo simulations of the events expected in the WA69 experiment, is discussed. (author)

  1. Position Ring System using Anger Type Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Joel S. Karp, principal investigator

    2004-12-14

    The overall objective of our project was to develop PET scanners and imaging techniques that achieve high performance and excellent image quality. Our approach was based upon 3-D imaging (no septa) with position-sensitive Anger-logic detectors, whereby the encoding ratio of resolution elements to number of photo-multiplier tube channels is very high. This design led to a series of PET systems that emphasized cost-effectiveness and practicality in a clinical environment.

  2. Performance of a thermal imager employing a hybrid pyroelectric detector array with MOSFET readout

    International Nuclear Information System (INIS)

    Watton, R.; Mansi, M.V.

    1988-01-01

    A thermal imager employing a two-dimensional hybrid array of pyroelectric detectors with MOSFET readout has been built. The design and theoretical performance of the detector are discussed, and the results of performance measurements are presented. 8 references

  3. Recent developments in X-ray imaging detectors

    CERN Document Server

    Moy, J P

    2000-01-01

    The replacement of the radiographic film in medical imaging has been the driving force in X-ray imaging developments. It requires a approx 40 cm wide detector to cover all examinations, an equivalent noise level of 1-5 X-ray quanta per pixel, and spatial resolution in the range 100-150 mu m. The need for entirely electronic imaging equipments has fostered the development of many X-ray detectors, most of them based on an array of amorphous silicon pixels, which is the only technology capable to achieve such large areas. Essentially, two concepts have been implemented: - intermediate conversion of X-rays to light by a scintillator, detected by an array of light sensitive pixels, comprising a photodiode and a switching device, either a TFT or a diode. - conversion into electron-hole pairs in a photoconductor, collected by an array of electrodes and switches. In both cases, charge amplifiers read the generated charges line by line. Scintillator and photoconductor-based systems are now close to production. They ac...

  4. Gas microstrip detectors for X-ray tomographic flow imaging

    CERN Document Server

    Key, M J; Luggar, R D; Kundu, A

    2003-01-01

    A investigation into the suitability of gas microstrip detector technology for a high-speed industrial X-ray tomography system is reported. X-ray energies in the region 20-30 keV are well suited to the application, which involves imaging two-dimensional slices through gas/liquid multiphase pipeline flows for quantitative component fraction measurement. Stable operation over a period representing several hundred individual tomographic scans at gas gains of 500 is demonstrated using a Penning gas mixture of krypton/propylene.

  5. High gain multigap avalanche detectors for Cerenkov ring imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  6. The SLD Cerenkov Ring Imaging Detector: Progress report

    International Nuclear Information System (INIS)

    Ashford, V.; Bienz, T.; Bird, F.

    1986-10-01

    We describe test beam results from a prototype Cerenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC Linear Collider (SLC). The system includes both liquid and gas radiators, a long drift box containing gaseous TMAE and a proportional wire chamber with charge division readout. Measurements of the multiplicity and detection resolution of Cerenkov photons, from both radiators are presented. Various design aspects of a new engineering prototype, currently under construction, are discussed and recent R and D results relevant to this effort are reported

  7. Soucreless efficiency calibration for HPGe detector based on medical images

    International Nuclear Information System (INIS)

    Chen Chaobin; She Ruogu; Xiao Gang; Zuo Li

    2012-01-01

    Digital phantom of patient and region of interest (supposed to be filled with isotropy volume source) are built from medical CT images. They are used to calculate the detection efficiency of HPGe detectors located outside of human body by sourceless calibration method based on a fast integral technique and MCNP code respectively, and the results from two codes are in good accord besides a max difference about 5% at intermediate energy region. The software produced in this work are in better behavior than Monte Carlo code not only in time consume but also in complexity of problem to solve. (authors)

  8. Preliminary results from a novel CVD diamond detector system for molecular imaging applications

    International Nuclear Information System (INIS)

    Mahon, A.R.

    1996-01-01

    A novel biomolecular imaging system incorporating a Chemical Vapour Deposition diamond detector is in development. The synthetic diamond is used as a UV detector to image nucleic acids in electrophoresis gels. The microstrip diamond detector currently has a spatial resolution of 30 μm. Preliminary results are presented which include: QE measurements of diamond detectors, detector time response, detector UV response and current detection limits of biomolecules in gel. The potential applications of the technology, and its significant advantages in speed and sensitivity over the current systems are discussed

  9. The SUMO Ship Detector Algorithm for Satellite Radar Images

    Directory of Open Access Journals (Sweden)

    Harm Greidanus

    2017-03-01

    Full Text Available Search for Unidentified Maritime Objects (SUMO is an algorithm for ship detection in satellite Synthetic Aperture Radar (SAR images. It has been developed over the course of more than 15 years, using a large amount of SAR images from almost all available SAR satellites operating in L-, C- and X-band. As validated by benchmark tests, it performs very well on a wide range of SAR image modes (from Spotlight to ScanSAR and resolutions (from 1–100 m and for all types and sizes of ships, within the physical limits imposed by the radar imaging. This paper describes, in detail, the algorithmic approach in all of the steps of the ship detection: land masking, clutter estimation, detection thresholding, target clustering, ship attribute estimation and false alarm suppression. SUMO is a pixel-based CFAR (Constant False Alarm Rate detector for multi-look radar images. It assumes a K distribution for the sea clutter, corrected however for deviations of the actual sea clutter from this distribution, implementing a fast and robust method for the clutter background estimation. The clustering of detected pixels into targets (ships uses several thresholds to deal with the typically irregular distribution of the radar backscatter over a ship. In a multi-polarization image, the different channels are fused. Azimuth ambiguities, a common source of false alarms in ship detection, are removed. A reliability indicator is computed for each target. In post-processing, using the results of a series of images, additional false alarms from recurrent (fixed targets including range ambiguities are also removed. SUMO can run in semi-automatic mode, where an operator can verify each detected target. It can also run in fully automatic mode, where batches of over 10,000 images have successfully been processed in less than two hours. The number of satellite SAR systems keeps increasing, as does their application to maritime surveillance. The open data policy of the EU

  10. A prototype detector using the neutron image intensifier and multi-anode type photomultiplier tube for pulsed neutron imaging

    International Nuclear Information System (INIS)

    Ishikawa, Hirotaku; Sato, Hirotaka; Hara, Kaoru Y.; Kamiyama, Takashi

    2016-01-01

    We developed a neutron two-dimensional (2-D) detector for pulsed neutron imaging as a prototype detector, which was composed of a neutron image intensifier and a multi-anode type photomultiplier tube. A neutron transmission spectrum of α-Fe plate was measured by the prototype detector, and compared with the one measured by a typical neutron 2-D detector. The spectrum was in reasonable agreement with the one measured by the typical detector in the neutron wavelength region above 0.15 nm. In addition, a neutron transmission image of a cadmium indicator was obtained by the prototype detector. The usefulness of the prototype detector for pulsed neutron imaging was demonstrated. (author)

  11. Ultrafast Readout of Scintillating Fibres Using Upgraded Position-Sensitive Photomultipliers

    CERN Multimedia

    2002-01-01

    % RD-17 \\\\ \\\\To design a high rate topological trigger device for the future DIRAC Experiment at CERN an extensive work is in progress on a scintillating-fibre detector using a position-sensitive photomultiplier. Several detector prototypes with different lengths ($<$~50~cm) of sensitive area have been tested at T7S~PS beam. \\\\ \\\\With 0.5~mm diameter fibres a spatial resolution of $\\sim$125~$\\mu$m was obtained with a detection efficiency higher than 95\\%. The time resolution is $\\sim$600~ps, and the track position is properly digitized in real time (about 10~ns) by multi-channel peak sensing circuit. Based on experimental data simulations were also performed a comparison of different types of front-end electronics for multi-channel readout.

  12. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  13. Topological trigger device using scintillating fibers and position-sensitive photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Keiichi; Dufournaud, J; Sillou, D [Laboratoire d' Annecy-le-Vieux de Physique des Particules (LAPP), 74 (France); Agoritsas, V [European Organization for Nuclear Research, Geneva (Switzerland); Bystricky, G; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Giacomich, R; Pauletta, G; Penzo, A; Salvato, G; Schiavon, P; Villari, A [INFN, Messina (Italy) INFN, Trieste (Italy) INFN, Udine (Italy); Gorin, A M; Meschanin, A P; Nurushev, S B; Rakhmatov, V E; Rykalin, V L; Solovyanov, V L; Vasiliev, A N; Vasil' chencko, V G [Institute for High Energy Physics, Serpukhov (USSR); Oshima, N; Yamada, R [Fermi National Accelerator Lab., Batavia, IL (USA); Takeutchi, F [Kyoto-Sanyo Univ., Kyoto (Japan); Yoshida, T [Osaka City Univ. (Japan); Akchurin, N; Onel, Y; Newsom, C

    1991-07-01

    An approach to a high quality of the Level-1 Trigger is investigated on the basis of a topological trigger device. It will be realized by using scintillating fibers and position-sensitive photomultipliers, both considered as potential candidates of new detector-components thanks to their excellent time characteristics and high radiation resistances. The device is characterized in particular by its simple concept and reliable operation supported by the mature technologies emploied. The major interests of such a scheme under LHC environments reside in its capability of selcting high pperpendicular to tracks in real time, its optional immunity against low pperpendicular to tracks and loopers, as well as its effective links to other associated devices in the complex of a vertex detector. (orig.).

  14. Topological trigger device using scintillating fibres and position-sensitive photomultipliers

    CERN Document Server

    Agoritsas, V; Dufournaud, J; Giacomich, R; Gorin, A M; Kuroda, K; Meshchanin, A P; Newsom, C R; Nurushev, S B; Önel, Y M; Oshima, N; Pauletta, G; Penzo, Aldo L; Rakhmatov, V E; Rykalin, V I; Salvato, G; Schiavon, R P; Sillou, D; Solovyanov, V L; Takeutchi, F; Vasilev, V; Vasilchenko, V G; Villari, A C C; Yamada, R; Toshida, T; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    An approach to a high-quality level-1 trigger is proposed on the basis of a topological device that will be realized by using scintillating fibres and position-sensitive photomultipliers, both of which are considered as potential candidates for new detector components, thanks to their excellent time characteristics and high radiation resistance. The device is characterized, in particular, by its simple concept and reliable functioning, which are a result of the mature technologies employed. In the LHC environment, the major interests of such a scheme reside in its capability to select high ptransv. tracks in real time, in its optional immunity against low ptransv. tracks and loopers, as well as in its effective links to other associated devices within the complex of a vertex detector.

  15. Application of imaging plate neutron detector to neutron radiography

    CERN Document Server

    Fujine, S; Kamata, M; Etoh, M

    1999-01-01

    As an imaging plate neutron detector (IP-ND) has been available for thermal neutron radiography (TNR) which has high resolution, high sensitivity and wide range, some basic characteristics of the IP-ND system were measured at the E-2 facility of the KUR. After basic performances of the IP were studied, images with high quality were obtained at a neutron fluence of 2 to 7x10 sup 8 n cm sup - sup 2. It was found that the IP-ND system with Gd sub 2 O sub 3 as a neutron converter material has a higher sensitivity to gamma-ray than that of a conventional film method. As a successful example, clear radiographs of the flat view for the fuel side plates with boron burnable poison were obtained. An application of the IP-ND system to neutron radiography (NR) is presented in this paper.

  16. A fast large-area position-sensitive time-of-flight neutron detection system

    International Nuclear Information System (INIS)

    Crawford, R.K.; Haumann, J.R.

    1989-01-01

    A new position-sensitive time-of-flight neutron detection and histograming system has been developed for use at the Intense Pulsed Neutron Source. Spatial resolution of roughly 1 cm x 1 cm and time-of-flight resolution of ∼1 μsec are combined in a detection system which can ultimately be expanded to cover several square meters of active detector area. This system is based on the use of arrays of cylindrical one-dimensional position-sensitive proportional counters, and is capable of collecting the x-y-t data and sorting them into histograms at time-averaged data rates up to ∼300,000 events/sec over the full detector area and with instantaneous data rates up to more than fifty times that. Numerous hardware features have been incorporated to facilitate initial tuning of the position encoding, absolute calibration of the encoded positions, and automatic testing for drifts. 7 refs., 11 figs., 1 tabs

  17. Ultrafast readout of scintillating fibres using upgraded position-sensitive photomultipliers

    CERN Document Server

    Agoritsas, V; Ditta, J; Dufournaud, J; Giacomich, R; Gorin, A M; Kuroda, K; Meshchanin, A P; Newsom, C R; Nurushev, S B; Önel, Y M; Okada, K; Oshima, N; Pauletta, G; Penzo, Aldo L; Rakhmatov, V E; Rykalin, V I; Salvato, G; Schiavon, R P; Sillou, D; Solovyanov, V L; Takeutchi, F; Vasilev, V; Vasilchenko, V G; Villari, A C C; Yamada, R; Yoshida, T; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    In view of the new possibilities for event detection and tracking in future multi-TeV collider experiments, we propose to improve the performance of position-sensitive photomultipliers and, with it, to realize an ultrafast readout device of scintillating fibres; this should play a unique role in the complex of a future vertex detector, owing to its inherent subnanosecond resolving time as well as its capability of an extremely high counting rate. Our proposal is first aimed at upgrading the position-sensitive PM, in particular its space and time resolutions. Full advantage of the new phototube will be demonstrated in its immediate application to a generic prototype of a scintillating-fibre detector. Our programme also includes intensive R&D on a real-time digitization of the multihit topology, which should provide an essential back-up to the vertex tracking at extremely high rates, one of the most difficult problems relevant to the expected high performance of the LHC.

  18. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  19. A Micromegas Detector for Neutron Beam Imaging at the n_TOF Facility at CERN

    CERN Document Server

    Belloni, F; Berthoumieux, E; Calviani, M; Chiaveri, E; Colonna, N; Giomataris, Y; Guerrero, C; Gunsing, F; Iguaz, F J; Kebbiri, M; Pancin, J; Papaevangelou, T; Tsinganis, A; Vlachoudis, V; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Corté-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Marítnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A J M; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T J; Žugec, P

    2014-01-01

    Micromegas (Micro-MEsh Gaseous Structure) detectors are gas detectors consisting of a stack of one ionization and one proportional chamber. A micromesh separates the two communicating regions, where two different electric fields establish respectively a charge drift and a charge multiplication regime. The n\\_TOF facility at CERN provides a white neutron beam (from thermal up to GeV neutrons) for neutron induced cross section measurements. These measurements need a perfect knowlodge of the incident neutron beam, in particular regarding its spatial profile. A position sensitive micromegas detector equipped with a B-10 based neutron/charged particle converter has been extensively used at the n\\_TOF facility for characterizing the neutron beam profile and extracting the beam interception factor for samples of different size. The boron converter allowed to scan the energy region of interest for neutron induced capture reactions as a function of the neutron energy, determined by the time of flight. Experimental ...

  20. Fluorescence decay time imaging using an imaging photon detector with a radio frequency photon correlation system

    Science.gov (United States)

    Morgan, Christopher G.; Mitchell, A. C.; Murray, J. G.

    1990-05-01

    An imaging photon detector has been modified to incorporate fast timing electronics coupled to a custom built photon correlator interfaced to a RISC computer. Using excitation with intensity- muodulated light, fluorescence images can be readily obtained where contrast is determined by the decay time of emission, rather than by intensity. This technology is readily extended to multifrequency phase/demodulation fluorescence imaging or to differential polarised phase fluorometry. The potential use of the correlator for confocal imaging with a laser scanner is also briefly discussed.

  1. Development of a hybrid MSGC detector for thermal neutron imaging with a MHz data acquisition and histogramming system

    CERN Document Server

    Gebauer, B; Richter, G; Levchanovsky, F V; Nikiforov, A

    2001-01-01

    For thermal neutron imaging at the next generation of high-flux pulsed neutron sources a large area and fourfold segmented, hybrid, low-pressure, two-dimensional position sensitive, microstrip gas chamber detector, fabricated in a multilayer technology on glass substrates, is presently being developed, which utilizes a thin composite sup 1 sup 5 sup 7 Gd/CsI neutron converter. The present article focusses on the readout scheme and the data acquisition (DAQ) system. For position encoding, interpolating and fast multihit delay line based electronics is applied with up to eightfold sub-segmentation per geometrical detector segment. All signals, i.e. position, time-of-flight and pulse-height signals, are fed into deadtime-less 8-channel multihit TDC chips with 120 ps LSB via constant fraction and time-over-threshold discriminators, respectively. The multihit capability is utilized to raise the count rate limit in combination with a sum check algorithm for disentangling pulses from different events. The first vers...

  2. Image simulation of high-speed imaging by high-pressure gas ionization detector

    International Nuclear Information System (INIS)

    Miao Jichen; Liu Ximing; Wu Zhifang

    2005-01-01

    The signal of the neighbor pixels is cumulated in Freight Train Inspection System because data fetch time is shorter than ion excursion time. This paper analyzes the pertinency of neighbor pixels and designs computer simulation method to generate some emulate images such as indicator image. The result indicates the high-pressure gas ionization detector can be used in high-speed digital radiography field. (authors)

  3. Fast readout of scintillating fibres using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Akchurin, N.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Dufournaud, J.; Dyachenko, V.A.; Giacomich, R.; Gorin, A.M.; Kuroda, K.; Magaudda, D.; Newsom, C.; Okada, K.; Onel, Y.; Penzo, A.; Rakhmatov, V.Ye.; Rykalin, V.I.; Salvato, G.; Savin, A.A.; Schiavon, P.; Sillou, D.; Solovyov, Yu.A.; Takeutchi, F.; Tareb-Reyes, M.; Vasilchenko, V.G.; Yoshida, T.; Zaychenko, A.A.

    1994-01-01

    Major progress has recently been achieved in the fast readout of scintillating fibres using position-sensitive photomultipliers (PSPMs). Experimental results obtained with commercially available PSPMs already show a space resolution better than 200 μm, a time resolution of about 1.5 ns with a detection efficiency higher than 90%, and the possibility of separating double hits with a minimum distance of ∼3 mm. An upgrade of PSPMs based on new dynode structures is also in progress. Results obtained with one new PSPM prototype in a magnetic field are also presented. (orig.)

  4. A piecewise-focused high DQE detector for MV imaging.

    Science.gov (United States)

    Star-Lack, Josh; Shedlock, Daniel; Swahn, Dennis; Humber, Dave; Wang, Adam; Hirsh, Hayley; Zentai, George; Sawkey, Daren; Kruger, Isaac; Sun, Mingshan; Abel, Eric; Virshup, Gary; Shin, Mihye; Fahrig, Rebecca

    2015-09-01

    Electronic portal imagers (EPIDs) with high detective quantum efficiencies (DQEs) are sought to facilitate the use of the megavoltage (MV) radiotherapy treatment beam for image guidance. Potential advantages include high quality (treatment) beam's eye view imaging, and improved cone-beam computed tomography (CBCT) generating images with more accurate electron density maps with immunity to metal artifacts. One approach to increasing detector sensitivity is to couple a thick pixelated scintillator array to an active matrix flat panel imager (AMFPI) incorporating amorphous silicon thin film electronics. Cadmium tungstate (CWO) has many desirable scintillation properties including good light output, a high index of refraction, high optical transparency, and reasonable cost. However, due to the 0 1 0 cleave plane inherent in its crystalline structure, the difficulty of cutting and polishing CWO has, in part, limited its study relative to other scintillators such as cesium iodide and bismuth germanate (BGO). The goal of this work was to build and test a focused large-area pixelated "strip" CWO detector. A 361 × 52 mm scintillator assembly that contained a total of 28 072 pixels was constructed. The assembly comprised seven subarrays, each 15 mm thick. Six of the subarrays were fabricated from CWO with a pixel pitch of 0.784 mm, while one array was constructed from BGO for comparison. Focusing was achieved by coupling the arrays to the Varian AS1000 AMFPI through a piecewise linear arc-shaped fiber optic plate. Simulation and experimental studies of modulation transfer function (MTF) and DQE were undertaken using a 6 MV beam, and comparisons were made between the performance of the pixelated strip assembly and the most common EPID configuration comprising a 1 mm-thick copper build-up plate attached to a 133 mg/cm(2) gadolinium oxysulfide scintillator screen (Cu-GOS). Projection radiographs and CBCT images of phantoms were acquired. The work also introduces the use of a

  5. Multi-channel imaging cytometry with a single detector

    Science.gov (United States)

    Locknar, Sarah; Barton, John; Entwistle, Mark; Carver, Gary; Johnson, Robert

    2018-02-01

    Multi-channel microscopy and multi-channel flow cytometry generate high bit data streams. Multiple channels (both spectral and spatial) are important in diagnosing diseased tissue and identifying individual cells. Omega Optical has developed techniques for mapping multiple channels into the time domain for detection by a single high gain, high bandwidth detector. This approach is based on pulsed laser excitation and a serial array of optical fibers coated with spectral reflectors such that up to 15 wavelength bins are sequentially detected by a single-element detector within 2.5 μs. Our multichannel microscopy system uses firmware running on dedicated DSP and FPGA chips to synchronize the laser, scanning mirrors, and sampling clock. The signals are digitized by an NI board into 14 bits at 60MHz - allowing for 232 by 174 pixel fields in up to 15 channels with 10x over sampling. Our multi-channel imaging cytometry design adds channels for forward scattering and back scattering to the fluorescence spectral channels. All channels are detected within the 2.5 μs - which is compatible with fast cytometry. Going forward, we plan to digitize at 16 bits with an A-toD chip attached to a custom board. Processing these digital signals in custom firmware would allow an on-board graphics processing unit to display imaging flow cytometry data over configurable scanning line lengths. The scatter channels can be used to trigger data buffering when a cell is present in the beam. This approach enables a low cost mechanically robust imaging cytometer.

  6. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  7. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  8. Imaging with SiPMs in noble-gas detectors

    International Nuclear Information System (INIS)

    Yahlali, N; González, K; Fernandes, L M P; Garcia, A N C; Soriano, A

    2013-01-01

    Silicon photomultipliers (SiPMs) are photosensors widely used for imaging in a variety of high energy and nuclear physics experiments. In noble-gas detectors for double-beta decay and dark matter experiments, SiPMs are attractive photosensors for imaging. However they are insensitive to the VUV scintillation emitted by the noble gases (xenon and argon). This difficulty is overcome in the NEXT experiment by coating the SiPMs with tetraphenyl butadiene (TPB) to convert the VUV light into visible light. TPB requires stringent storage and operational conditions to prevent its degradation by environmental agents. The development of UV sensitive SiPMs is thus of utmost interest for experiments using electroluminescence of noble-gas detectors. It is in particular an important issue for a robust and background free ββ0ν experiment with xenon gas aimed by NEXT. The photon detection efficiency (PDE) of UV-enhanced SiPMs provided by Hamamatsu was determined for light in the range 250–500 nm. The PDE of standard SiPMs of the same model (S10362-33-50C), coated and non-coated with TPB, was also determined for comparison. In the UV range 250–350 nm, the PDE of the standard SiPM is shown to decrease strongly, down to about 3%. The UV-enhanced SiPM without window is shown to have the maximum PDE of 44% at 325 nm and 30% at 250 nm. The PDE of the UV-enhanced SiPM with silicon resin window has a similar trend in the UV range, although it is about 30% lower. The TPB-coated SiPM has shown to have about 6 times higher PDE than the non-coated SiPM in the range 250–315 nm. This is however below the performance of the UV-enhanced prototypes in the same wavelength range. Imaging in noble-gas detectors using UV-enhanced SiPMs is discussed.

  9. sCMOS detector for imaging VNIR spectrometry

    Science.gov (United States)

    Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian

    2013-09-01

    The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.

  10. EPR Imaging at a Few Megahertz Using SQUID Detectors

    Science.gov (United States)

    Hahn, Inseob; Day, Peter; Penanen, Konstantin; Eom, Byeong Ho

    2010-01-01

    An apparatus being developed for electron paramagnetic resonance (EPR) imaging operates in the resonance-frequency range of about 1 to 2 MHz well below the microwave frequencies used in conventional EPR. Until now, in order to obtain sufficient signal-to-noise radios (SNRs) in conventional EPR, it has been necessary to place both detectors and objects to be imaged inside resonant microwave cavities. EPR imaging has much in common with magnetic resonance imaging (MRI), which is described briefly in the immediately preceding article. In EPR imaging as in MRI, one applies a magnetic pulse to make magnetic moments (in this case, of electrons) precess in an applied magnetic field having a known gradient. The magnetic moments precess at a resonance frequency proportional to the strength of the local magnetic field. One detects the decaying resonance-frequency magnetic- field component associated with the precession. Position is encoded by use of the known relationship between the resonance frequency and the position dependence of the magnetic field. EPR imaging has recently been recognized as an important tool for non-invasive, in vivo imaging of free radicals and reduction/oxidization metabolism. However, for in vivo EPR imaging of humans and large animals, the conventional approach is not suitable because (1) it is difficult to design and construct resonant cavities large enough and having the required shapes; (2) motion, including respiration and heartbeat, can alter the resonance frequency; and (3) most microwave energy is absorbed in the first few centimeters of tissue depth, thereby potentially endangering the subject and making it impossible to obtain adequate signal strength for imaging at greater depth. To obtain greater penetration depth, prevent injury to the subject, and avoid the difficulties associated with resonant cavities, it is necessary to use lower resonance frequencies. An additional advantage of using lower resonance frequencies is that one can use

  11. Graphene-based ultrasonic detector for photoacoustic imaging

    Science.gov (United States)

    Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2018-03-01

    Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.

  12. Imaging CO2 reservoirs using muons borehole detectors

    Science.gov (United States)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial

  13. Applications of 'edge-on' illuminated porous plate detectors for diagnostic X-ray imaging

    CERN Document Server

    Shikhaliev, P M

    2002-01-01

    Scanning X-ray imaging systems for non-invasive diagnostics have several advantages over conventional imaging systems using area detectors. They significantly reduce the detected scatter radiation, cover large areas and potentially provide high spatial resolution. Applications of one-dimensional gaseous detectors and 'edge-on' illuminated silicon strip detectors for scanning imaging systems are currently under intensive investigation. The purpose of this work is to investigate 'edge-on' illuminated Porous Plate (PP) detectors for applications in diagnostic X-ray imaging. MicroChannel Plate (MCP), which is a common type of PP, has previously been investigated as a detector in surface-on illumination mode for medical X-ray imaging. However, its detection efficiency was too low for medical imaging applications. In the present study, the PP are used in the 'edge-on' illumination mode. Furthermore, the structural parameters of different PP types are optimized to improve the detection efficiency in the diagnostic X...

  14. Correcting saturation of detectors for particle/droplet imaging methods

    International Nuclear Information System (INIS)

    Kalt, Peter A M

    2010-01-01

    Laser-based diagnostic methods are being applied to more and more flows of theoretical and practical interest and are revealing interesting new flow features. Imaging particles or droplets in nephelometry and laser sheet dropsizing methods requires a trade-off of maximized signal-to-noise ratio without over-saturating the detector. Droplet and particle imaging results in lognormal distribution of pixel intensities. It is possible to fit a derived lognormal distribution to the histogram of measured pixel intensities. If pixel intensities are clipped at a saturated value, it is possible to estimate a presumed probability density function (pdf) shape without the effects of saturation from the lognormal fit to the unsaturated histogram. Information about presumed shapes of the pixel intensity pdf is used to generate corrections that can be applied to data to account for saturation. The effects of even slight saturation are shown to be a significant source of error on the derived average. The influence of saturation on the derived root mean square (rms) is even more pronounced. It is found that errors on the determined average exceed 5% when the number of saturated samples exceeds 3% of the total. Errors on the rms are 20% for a similar saturation level. This study also attempts to delineate limits, within which the detector saturation can be accurately corrected. It is demonstrated that a simple method for reshaping the clipped part of the pixel intensity histogram makes accurate corrections to account for saturated pixels. These outcomes can be used to correct a saturated signal, quantify the effect of saturation on a derived average and offer a method to correct the derived average in the case of slight to moderate saturation of pixels

  15. Electronic noise in CT detectors: Impact on image noise and artifacts.

    Science.gov (United States)

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  16. Enhancing spatial resolution of 18F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine

    International Nuclear Information System (INIS)

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I; Shi, Kuangyu

    2015-01-01

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by 18 F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [ 18 F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications. (paper)

  17. Design optimization of a breast imaging system based on silicon microstrip detectors

    International Nuclear Information System (INIS)

    Stres, S.; Mikuz, M.

    2000-01-01

    A mammographic imaging set-up using silicon microstrip detectors in edge-on geometry was simulated using the GEANT package. Deposited energy in tissue of various thicknesses was evaluated and shown to agree to within 10% with reference calculations. Optimal energies as well as spectra for mammography with silicon detectors were determined by maximizing the figure of merit of a realistic imaging set-up. The scattered to primary radiation ratio was studied for various detector geometries. It was found that fan-shaped detectors are needed to maintain the image quality for divergent photon beams. (author)

  18. Two dimension position sensitive multi-plate PPAC

    International Nuclear Information System (INIS)

    Mao Ruishi; Guo Zhongyan; Xiao Guoqing; Zhan Wenlong; Xu Hushan; Hu Zhengguo; Wang Meng; Sun Zhiyu; Chen Zhiqiang; Chen Lixin; Li Chen; Bai Jie; Zhang Jinxia; Li Cunfan

    2003-01-01

    A two-dimensional positional sensitive multi-plate PPAC with resistance chain readout has been developed for Radioactive Ion Beam Line in Lanzhou (RIBLL). The PPAC has an active area of 100 mm x 100 mm. It consists of an anode plane, a x wire plane, a y wire plane and two cathode planes. The gaps between anode and wire planes are 3 mm. And the gaps between cathodes and wire planes also are 3 mm. When filled with iso-butane at a pressure of 6.5 mb, the 0.58 mm (FWHM) position resolution and >99.2% detection efficiencies and <±50 μm linearity of the PPAC was estimated for 3 components α source

  19. State-of-the-art radiation detectors for medical imaging: Demands and trends

    Energy Technology Data Exchange (ETDEWEB)

    Darambara, Dimitra G. [Joint Department of Physics, Royal Marsden Foundation Trust and Institute of Cancer Research, Fulham Road, London SW3 6JJ (United Kingdom)]. E-mail: dimitra.darambara@icr.ac.uk

    2006-12-20

    Over the last half-century a variety of significant technical advances in several scientific fields has been pointing to an exploding growth in the field of medical imaging leading to a better interpretation of more specific anatomical, biochemical and molecular pathways. In particular, the development of novel imaging detectors and readout electronics has been critical to the advancement of medical imaging allowing the invention of breakthrough platforms for simultaneous acquisition of multi-modality images at molecular level. The present paper presents a review of the challenges, demands and constraints on radiation imaging detectors imposed by the nature of the modality and the physics of the imaging source. This is followed by a concise review and perspective on various types of state-of-the-art detector technologies that have been developed to meet these requirements. Trends, prospects and new concepts for future imaging detectors are also highlighted.

  20. State-of-the-art radiation detectors for medical imaging: Demands and trends

    International Nuclear Information System (INIS)

    Darambara, Dimitra G.

    2006-01-01

    Over the last half-century a variety of significant technical advances in several scientific fields has been pointing to an exploding growth in the field of medical imaging leading to a better interpretation of more specific anatomical, biochemical and molecular pathways. In particular, the development of novel imaging detectors and readout electronics has been critical to the advancement of medical imaging allowing the invention of breakthrough platforms for simultaneous acquisition of multi-modality images at molecular level. The present paper presents a review of the challenges, demands and constraints on radiation imaging detectors imposed by the nature of the modality and the physics of the imaging source. This is followed by a concise review and perspective on various types of state-of-the-art detector technologies that have been developed to meet these requirements. Trends, prospects and new concepts for future imaging detectors are also highlighted

  1. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, A.R. [LXi Research, Academic Unit of Medical Physics, University of Leeds, West Yorkshire (United Kingdom)], E-mail: a.r.cowen@leeds.ac.uk; Kengyelics, S.M.; Davies, A.G. [LXi Research, Academic Unit of Medical Physics, University of Leeds, West Yorkshire (United Kingdom)

    2008-05-15

    Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H.

  2. Comparison of dose and image quality of a Flat-panel detector and an image intensifier

    International Nuclear Information System (INIS)

    Lazzaro, M.; Friedrich, B.Q.; Luz, R.M. da; Silva, A.M.M. da

    2016-01-01

    With the development of new technologies, have emerged new conversion methods of X-ray image, such as flat panel detectors. The aim of this work is the comparison of entrance surface air kerma (ESAK) and image quality between an image intensifier type of detector (A) and a flat panel (B). The ESAK was obtained by placing a ionization chamber under PMMA simulators of 10, 20 and 30 cm and the image quality was obtained by using the TOR "1"8FG simulator. The ESAK to the equipment A is higher when compared to the equipment B. The high contrast resolution is better for the equipment A for all thicknesses of simulators. The equipment A has low contrast resolution with a better viewing threshold for thicknesses of 10 and 20 cm, and a worse performance for 30 cm. It is concluded that the equipment B has ESAK smaller and despite having lower resolution, in almost all cases, have appropriate image quality for diagnosis. (author)

  3. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School of Mechanical Engineering, 770 State St., Atlanta, Georgia 30332 (United States)

    2016-08-14

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  4. Automatic analysis of quality of images from X-ray digital flat detectors

    International Nuclear Information System (INIS)

    Le Meur, Y.

    2009-04-01

    Since last decade, medical imaging has grown up with the development of new digital imaging techniques. In the field of X-ray radiography, new detectors replace progressively older techniques, based on film or x-ray intensifiers. These digital detectors offer a higher sensibility and reduced overall dimensions. This work has been prepared with Trixell, the world leading company in flat detectors for medical radiography. It deals with quality control on digital images stemming from these detectors. High quality standards of medical imaging impose a close analysis of the defects that can appear on the images. This work describes a complete process for quality analysis of such images. A particular focus is given on the detection task of the defects, thanks to methods well adapted to our context of spatially correlated defects in noise background. (author)

  5. Bio-medical X-ray imaging with spectroscopic pixel detectors

    CERN Document Server

    Butler, A P H; Tipples, R; Cook, N; Watts, R; Meyer, J; Bell, A J; Melzer, T R; Butler, P H

    2008-01-01

    The aim of this study is to review the clinical potential of spectroscopic X-ray detectors and to undertake a feasibility study using a novel detector in a clinical hospital setting. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allowing for routine use of spectroscopic bio-medical imaging. We have coined the term MARS (Medipix All Resolution System) for bio-medical images that provide spatial, temporal, and energy information. The full clinical significance of spectroscopic X-ray imaging is difficult to predict but insights can be gained by examining both image reconstruction artifacts and the current uses of dual-energy techniques. This paper reviews the known uses of energy information in vascular imaging and mammography, clinically important fields. It then presents initial results from using Medipix-2, to image human tissues within a clinical radiology department. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allo...

  6. Front-end electronics for multichannel semiconductor detector systems

    CERN Document Server

    Grybos, P

    2010-01-01

    Front-end electronics for multichannel semiconductor detektor systems Volume 08, EuCARD Editorial Series on Accelerator Science and Technology The monograph is devoted to many different aspects related to front-end electronics for semiconductor detector systems, namely: − designing and testing silicon position sensitive detectors for HEP experiments and X-ray imaging applications, − designing and testing of multichannel readout electronics for semiconductor detectors used in X-ray imaging applications, especially for noise minimization, fast signal processing, crosstalk reduction and good matching performance, − optimization of semiconductor detection systems in respect to the effects of radiation damage. The monograph is the result mainly of the author's experience in the above-mentioned areas and it is an attempt of a comprehensive presentation of issues related to the position sensitive detection system working in a single photon counting mode and intended to X-ray imaging applications. The structure...

  7. Development of a novel neutron detector for imaging and analysis

    International Nuclear Information System (INIS)

    Darambara, D.G.; Beach, A.C.; Spyrou, N.M.

    1993-01-01

    A hardware system employing dynamic Random Access Memory (dRAM) has been designed to make possible the detection of neutrons. One recognised difficulty with dynamic memory devices is the alpha-particle problem. That is alpha-particle 'contamination' present within the dRAM encapsulating material may interact sufficiently as to corrupt stored data. These corruptions, 'known as soft errors', may be induced in dRAMs by the interaction of charged particles with the chip itself as a basis for system function. A preliminary feasibility study has been carried out to use dynamic RAMs as alpha-particle detectors. The initial system tests provide information upon detection efficiency, soft error reading rate, energy dependence of the soft error rate and the soft error reading rate, energy dependence of the soft error rate and the soft error operating bias relationship. These findings highlight the usefulness of such a device in neutron dosimetry, imaging and analysis, by using a neutron converter with a high cross section for the (n, α) capture reaction. (author) 20 refs.; 8 figs

  8. Imaging results and TOF studies with axial PET detectors

    Science.gov (United States)

    Joram, Christian

    2013-12-01

    We have developed a fully operational PET demonstrator setup which allows true 3D reconstruction of the 511 keV photons and therefore leads to practically parallax free images. The AX-PET concept is based on thin 100 mm long scintillation crystals (LYSO), axially oriented and arranged in layers around the field of view. Layers of wavelength shifting plastic strips mounted in between the crystal layers give the axial coordinate. Both crystals and WLS strips are individually read out by G-APD (SiPM) photodetectors. The fully scalable concept overcomes the dilemma of sensitivity versus spatial resolution which is inherent to classical PET designs. A demonstrator set-up based on two axial modules was exhaustively characterized using point-like sources, phantoms filled with radiotracer and finally rats and a mouse. The results entirely meet the performance expectations (PET concept making use of the novel digital SiPM detectors by Philips. After reproducing comparable energy and spatial resolution on a small digital AX-PET set-up with 100 mm long crystals, we demonstrated a coincidence resolving time of about 210 ps FWHM.

  9. Visual grading analysis of digital neonatal chest phantom X-ray images: Impact of detector type, dose and image processing on image quality.

    Science.gov (United States)

    Smet, M H; Breysem, L; Mussen, E; Bosmans, H; Marshall, N W; Cockmartin, L

    2018-07-01

    To evaluate the impact of digital detector, dose level and post-processing on neonatal chest phantom X-ray image quality (IQ). A neonatal phantom was imaged using four different detectors: a CR powder phosphor (PIP), a CR needle phosphor (NIP) and two wireless CsI DR detectors (DXD and DRX). Five different dose levels were studied for each detector and two post-processing algorithms evaluated for each vendor. Three paediatric radiologists scored the images using European quality criteria plus additional questions on vascular lines, noise and disease simulation. Visual grading characteristics and ordinal regression statistics were used to evaluate the effect of detector type, post-processing and dose on VGA score (VGAS). No significant differences were found between the NIP, DXD and CRX detectors (p>0.05) whereas the PIP detector had significantly lower VGAS (pProcessing did not influence VGAS (p=0.819). Increasing dose resulted in significantly higher VGAS (plevels but not image post-processing changes. VGA showed a DAK/image value above which perceived IQ did not improve, potentially useful for commissioning. • A VGA study detects IQ differences between detectors and dose levels. • The NIP detector matched the VGAS of the CsI DR detectors. • VGA data are useful in setting initial detector air kerma level. • Differences in NNPS were consistent with changes in VGAS.

  10. A computer-generated image of the LHCb detector

    CERN Multimedia

    Richard Jacobsson

    2004-01-01

    Unlike most of the detectors on the LHC, which use barrel detectors, the LHCb detector will use walls of sub-detectors to study the particles produced in the 14 TeV proton-proton collisions. This arrangement is used as the bottom and anti-bottom quark pairs produced in the collision, whose decays will be studied, travel close to the path of the colliding beams. LHCb will investigate Naure's preference for matter over antimatter through a process known as CP violation.

  11. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    International Nuclear Information System (INIS)

    Bertolucci, E.; Maiorino, M.; Mettivier, G.; Montesi, M.C.; Russo, P.

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 μm pitch) or to the Medipix2 chip (256x256 pixel, 55 μm pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-μm thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 μm circular holes with 170 μm pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order to investigate the general feasibility of this imaging probe and its resolving power. Measurements show the high resolution but low efficiency performance of the detector-collimator set, which is able to image the 122 keV source with <1 mm FWHM resolution

  12. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  13. First results from Position-Sensitive quantum calorimeters using Mo/Au Transition-Edge Sensors

    International Nuclear Information System (INIS)

    Figueroa-Feliciano, Enectali; Chervenak, Jay; Finkbeiner, Fred M.; Li, Mary; Lindeman, Mark A.; Stahle, Caroline K.; Stahle, Carl M.

    2002-01-01

    We report the first results from a high-energy-resolution imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (PoST). A PoST is a quantum calorimeter consisting of two Transition Edge Sensors (TESs) on the ends of a long absorber to do one dimensional imaging spectroscopy. Comparing rise time and energy information, the position of the event in the PoST is determined. Energy is inferred from the sum of the two pulses. We have fabricated 7- and 15-pixel PoSTs using Mo-Au TESs and Au absorbers. We have achieved 32 eV FWHM energy resolution at 1.5 keV with a 7-pixel PoST calorimeter

  14. Plastic scintillators utilization in position sensitive detection systems

    International Nuclear Information System (INIS)

    Garcia, Marcelo Bernardes; Soares, Adalberto Jose; Baptista Filho, Benedito Dias

    2002-01-01

    This paper shows the viability of using a plastic scintillator detector to determine the one dimension position of a radioactive source. The experiments were performed using collimated 99m Tc sources of several activities supplied by the Centro de Radiofarmacia (from IPEN), and a 15 cm long plastic scintillator with diameter 5,08 cm, produced by the Centro de Tecnologia das Radiacoes (also from IPEN). The spectrum was obtained using the Genie 2000 software, and the results processed using a neural network specially developed for the proposed application. The final results demonstrate the viability of the proposed application. (author)

  15. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  16. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    Science.gov (United States)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in this work. Mounted on a castered counter-weighted clinical cart, the camera also features

  17. Scintillating-fiber imaging detector for 14-MeV neutrons

    International Nuclear Information System (INIS)

    Ress, D.; Lerche, R.A.; Ellis, R.J.; Heaton, G.W.; Nelson, M.B.; Mant, G.; Lehr, D.E.

    1994-01-01

    The authors have created a detector to image the neutrons emitted by imploded inertial-confinement fusion targets. The 14-MeV neutrons, which are produced by deuterium-tritium fusion events in the target, pass through an aperture to create an image on the detector. The neutron radiation is converted to blue light (430 nm) with a 20-cm-square array of plastic scintillating fibers. Each fiber is 10-cm long with a 1-mm-square cross section; approximately 35-thousand fibers make up the array. The resulting blue-light image is reduced and amplified by a sequence of fiber-optic tapers and image intensifiers, then acquired by a CCD camera. The fiber-optic readout system was tested optically for overall throughput the resolution. The authors plan to characterize the scintillator array reusing an ion-beam neutron source as well as DT-fusion neutrons emitted by inertial confinement targets. Characterization experiments will measure the light-production efficiency, spatial resolution, and neutron scattering within the detector. Several neutron images of laser-fusion targets have been obtained with the detector. Several neutron images of laser-fusion targets have been obtained with the detector. They describe the detector and their characterization methods, present characterization results, and give examples of the neutron images

  18. Advancements of floating strip Micromegas detectors for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Klitzner, Felix; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard [LS Schaile, LMU Muenchen (Germany); Magallanes, Lorena [LS Parodi, LMU Muenchen (Germany); Universitaetsklinikum Heidelberg (Germany); Parodi, Katia [LS Parodi, LMU Muenchen (Germany); Heidelberger Ionenstrahl Therapiezentrum (Germany); Voss, Bernd [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    2016-07-01

    Floating strip Micromegas have proven to be high-rate capable tracking detectors with excellent spatial and temporal resolution for particle fluxes up to 7 MHz/cm{sup 2}. To further increase the high-rate capability a Ne:CF{sub 4} 86:14 vol.% gas mixture has been used as detector gas. We present results from measurements with a seven detector system consisting of six low material budget floating strip Micromegas, a GEM detector and a scintillator based particle range telescope. The gaseous and the scintillation detectors were read out with APV25 frontend boards, allowing for single strip readout with pulse height and timing information. A two-dimensional readout anode for floating strip Micromegas has been tested for the first time. The Micromegas detectors were operated with minimal additional drift field, which significantly improves the timing resolution and also the spatial resolution for inclined tracks. We discuss the detector performance in high-rate carbon and proton beams at the Heidelberg Ion Beam Therapy Center (HIT) and present radiographies of phantoms, acquired with the system.

  19. Small angle X-ray scattering experiments with three-dimensional imaging gas detectors

    International Nuclear Information System (INIS)

    La Monaca, A.; Iannuzzi, M.; Messi, R.

    1985-01-01

    Measurements of small angle X-ray scattering of lupolen - R, dry collagen and dry cornea are presented. The experiments have been performed with synchrotron radiation and a new three-dimensional imaging drif-chamber gas detector

  20. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yiping; Sun, Xishan [University of Texas MD Anderson Cancer Center (United States); Lou, Kai [Rice University (United States)

    2015-05-18

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  1. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    International Nuclear Information System (INIS)

    Shao, Yiping; Sun, Xishan; Lou, Kai

    2015-01-01

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  2. Microsecond-scale X-ray imaging with Controlled-Drift Detectors

    International Nuclear Information System (INIS)

    Castoldi, A.; Galimberti, A.; Guazzoni, C.; Rehak, P.; Strueder, L.

    2006-01-01

    The Controlled-Drift Detector is a fully-depleted silicon detector that allows 2-D position sensing and energy spectroscopy of X-rays in the range 0.5-20keV with excellent time resolution (few tens of μs) and limited readout channels. In this paper we review the Controlled-Drift Detector operating principle and we present the X-ray imaging and spectroscopic capabilities of Controlled Drift Detectors in microsecond-scale experiments and the more relevant applications fields

  3. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Del Guerra, A.; Zavattini, G.; Notaristefani, F. de; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-01-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO 3 :Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm 3 ), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 ± 3)% with a 150 keV threshold and (20 ± 2)% with a 300 keV threshold

  4. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  5. MUPPATS: a multiparticle 3D imaging detector system

    International Nuclear Information System (INIS)

    Faibis, A.; Koenig, W.; Kanter, E.P.; Vager, Z.

    1985-01-01

    It has long been recognized that the foil-induced dissociation of fast molecular ions is a potentially powerful method to determine the stereochemical structures of the molecular projectiles. We have recently developed a detector system specifically designed for such experiments. The MUPPATS detector is a large-area multistep low pressure gas counter. The requirements of multiparticle detection with good position and time resolution leads to a rather complex data-readout and reduction scheme. The system relies on several state-of-the-art techniques, developed in high-energy physics during recent years, to dramatically reduce the cost of the MUPPATS detector. Preliminary results for several polyatomic molecular ions have already been obtained. Some new avenues of research opened up by this detector are also described

  6. Review on the characteristics of radiation detectors for dosimetry and imaging

    International Nuclear Information System (INIS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-01-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  7. Three-dimensional, position-sensitive radiation detection

    Science.gov (United States)

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  8. Neutron diffractometer for bio-crystallography (BIX) with an imaging plate neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    We have constructed a dedicated diffractometer for neutron crystallography in biology (BIX) on the JRR-3M reactor at JAERI (Japan Atomic Energy Research Institute). The diffraction intensity from a protein crystal is weaker than that from most inorganic materials. In order to overcome the intensity problem, an elastically bent silicon monochromator and a large area detector system were specially designed. A preliminary result of diffraction experiment using BIX has been reported. An imaging plate neutron detector has been developed and a feasibility experiment was carried out on BIX. Results are reported. An imaging plate neutron detector has been developed and a feasibility test was carried out using BIX.

  9. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    International Nuclear Information System (INIS)

    Jambi, L.K.; Lees, J.E.; Bugby, S.L.; Alqahtani, M.S.; Tipper, S.; Perkins, A.C.

    2015-01-01

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported

  10. Comparison of morphological and conventional edge detectors in medical imaging applications

    Science.gov (United States)

    Kaabi, Lotfi; Loloyan, Mansur; Huang, H. K.

    1991-06-01

    Recently, mathematical morphology has been used to develop efficient image analysis tools. This paper compares the performance of morphological and conventional edge detectors applied to radiological images. Two morphological edge detectors including the dilation residue found by subtracting the original signal from its dilation by a small structuring element, and the blur-minimization edge detector which is defined as the minimum of erosion and dilation residues of the blurred image version, are compared with the linear Laplacian and Sobel and the non-linear Robert edge detectors. Various structuring elements were used in this study: regular 2-dimensional, and 3-dimensional. We utilized two criterions for edge detector's performance classification: edge point connectivity and the sensitivity to the noise. CT/MR and chest radiograph images have been used as test data. Comparison results show that the blur-minimization edge detector, with a rolling ball-like structuring element outperforms other standard linear and nonlinear edge detectors. It is less noise sensitive, and performs the most closed contours.

  11. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    International Nuclear Information System (INIS)

    Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo

    2014-01-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)

  12. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  13. Data acquisition system for linear position sensitive detector based neutron diffractometer

    International Nuclear Information System (INIS)

    Pande, S.S.; Borkar, S.P.; Behere, A.; Prafulla, S.; Srivastava, V.D.; Mukhopadhyaya, P.K.; Ghodgaonkar, M.D.; Kataria, S.K.

    2003-03-01

    This data acquisition system is developed to serve the requirements of various linear 1PSD based neutron diffractometers. A neutron diffractometer uses a neutron beam as a probe to study the crystallographic properties of materials. Presently two multi-PSD and two single-PSD diffractometers are commissioned and a few more are being installed in Dhruva. This data acquisition system is installed at each of these - diffractometers. Different requirements of individual diffractometers were studied and reconciled to design a single data acquisition system, which can be easily configured or customized for individual setups. The charge division in a linear PSD is converted to a position output with the help of an RDC (Ratio ADC). The ftont-end electronics, which consist of preamplifiers and shaping amplifiers, provide an interface between a PSD and an RDC. A PC add-on card is designed around a Transputer. It can interface 16 RDCs, a few motor controls and on/off controls. Data acquisition and other controls are implemented in the Transputer program. A front-end Windows98 application merges the raw data of different RDCs to obtain the equiangular data. Through software the data acquisition system can be configured for diffetent diffractometers. Commercially available hardware is also integrated as,a part of the data acquisition system in some of the setups. The data acquisition system is working reliably as a part of two single PSD and two multi-PSD diffractometers. It can handle data rates upto 15 K/Sec without any loss of counts. It has played a significant role in providing improved throughput and utilization ofvarious diffractometers. The'data acquisition system and its different applications are presented in this report. (author)

  14. Charge dividing mechanism on resistive electrode in position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Rehak, P.

    1978-10-01

    A complete charge-division mechanism, including both the diffusion and the electromagnetic wave propagation on resistive electrodes, is presented. The charge injected into such a transmission line divides between the two ends according to the ratio of resistancies and independently of the value of the line resistance, of the propagation mechanism and of the distribution of inductance and capacitance along the line. The shortest charge division time is achieved for Rl = 2π (L/C) 1 / 2 , where R, L, C are resistance, inductance and capacitance per unit length and l is the length of the line

  15. Data processing in neutron protein crystallography using position-sensitive detectors

    International Nuclear Information System (INIS)

    Schoenborn, B.P.

    1982-01-01

    Neutrons provide a unique probe for localizing hydrogen atoms and for distinguishing hydrogen from deuterons. Hydrogen atoms largely determine the three-dimensional structure of proteins and are responsible for many catalytic reactions. The study of hydrogen bonding and hydrogen exchange will therefore give insight into reaction mechanisms and conformational fluctuations. In addition, neutrons provide the ability to distinguish N from C and O and to allow correct orientation of groups such as histidine and glutamine. To take advantage of these unique features of neutron crystallography, one needs accurate Fourier maps depicting atomic structure to a high precision. In this paper, techniques are described for minimizing error in the observed structure factors by optimizing data collection and analysis procedures. Special attention is given to subtraction of the high background associated with hydrogen-containing molecules, which produces a disproportionately large statistical error

  16. Design and Performance Analysis of Laser Displacement Sensor Based on Position Sensitive Detector (PSD)

    International Nuclear Information System (INIS)

    Song, H X; Wang, X D; Ma, L Q; Cai, M Z; Cao, T Z

    2006-01-01

    By using PSD as sensitive element, and laser diode as emitting element, laser displacement sensor based on triangulation method has been widely used. From the point of view of design, sensor and its performance were studied. Two different sensor configurations were described. Determination of the dimension, sensing resolution and comparison of the two different configurations were presented. The factors affecting the performance of the laser displacement sensor were discussed and two methods, which can eliminate the affection of dark current and environment light, are proposed

  17. The Cerenkov ring-imaging detector recent progress and future development

    CERN Document Server

    Ekelöf, T J C; Tocqueville, J; Ypsilantis, Thomas

    1981-01-01

    Results are reported on measurements of Cerenkov ring images using a multistage MWPC with an argon-TEA gas mixture. A specific detector response of N/sub 0/=56 cm/sup -1/ was obtained. It is shown that with some minor modifications to the detector, this value can be raised to N/sub 0/=90 cm/sup -1/. Using an argon-methane-TEA mixture in the MWPC, it is shown that efficient single-photoelectron detection can be achieved with proportional wire amplification without preamplification. A design of a new type of drift chamber (TPC) detector for two-dimensional measurement of the ring image is described. The use of the Cerenkov ring-imaging technique in high- energy physics experimentation is discussed, and in particular a full solid-angle detector for LEP is suggested. (10 refs).

  18. Development and characterisation of a visible light photon counting imaging detector system

    CERN Document Server

    Barnstedt, J

    2002-01-01

    We report on the development of a visible light photon counting imaging detector system. The detector concept is based on standard 25 mm diameter microchannel plate image intensifiers made by Proxitronic in Bensheim (Germany). Modifications applied to these image intensifiers are the use of three microchannel plates instead of two and a high resistance ceramics plate used instead of the standard phosphor output screen. A wedge and strip anode mounted directly behind the high resistance ceramics plate was used as a read out device. This wedge and strip anode picks up the image charge of electron clouds emerging from the microchannel plates. The charge pulses are fed into four charge amplifiers and subsequently into a digital position decoding electronics, achieving a position resolution of up to 1024x1024 pixels. Mounting the anode outside the detector tube is a new approach and has the great advantage of avoiding electrical feedthroughs from the anode so that the standard image intensifier fabrication process...

  19. Assessment of array scintillation detector for follicle thyroid 2-d image acquisition using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Silva, Carlos Borges da; Braz, Delson

    2008-01-01

    Full text: This work presents an innovative study to find out the adequate scintillation inorganic detector array to be used coupled to a specific light photo sensor, a charge coupled device (CCD), through a fiber optic plate. The goal is to choose the type of detector that fits a 2-dimensional imaging acquisition of a cell thyroid tissue application with high resolution and detection efficiency in order to map a follicle image using gamma radiation emission. A point or volumetric source-detector simulation by using a MCNP4B general code, considering different source energies, detector materials and geometry including pixel sizes and reflector types was performed. In this study, simulations were performed for 7 x 7, 31 x 31 and 127 x 127 arrays using CsI(Tl), BGO, CdWO 4 , LSO, GOS and GSO scintillation detectors with pixel dimensions ranging from 1 x 1 cm 2 to 10 x 10 μm 2 and radiation thickness ranging from 1 mm to 10 mm. The effect of all these parameters was investigated to find the best source-detector system that results in an image with the best contrast details. The results showed that it is possible to design a specific imaging system that allows searching for in-vitro studies, specifically in radiobiology applied to endocrine physiology. A 2D image of two thyroid follicles simulated by using MCNP4B code is shown

  20. High counting rate, two-dimensional position sensitive timing RPC

    CERN Document Server

    Petrovici, M.; Simion, V; Bartos, D; Caragheorgheopol, G; Deppner, I; Adamczewski-Musch, J; Linev, S; Williams, MCS; Loizeau, P; Herrmann, N; Doroud, K; Radulescu, L; Constantin, F

    2012-01-01

    Resistive Plate Chambers (RPCs) are widely employed as muon trigger systems at the Large Hadron Collider (LHC) experiments. Their large detector volume and the use of a relatively expensive gas mixture make a closed-loop gas circulation unavoidable. The return gas of RPCs operated in conditions similar to the experimental background foreseen at LHC contains large amount of impurities potentially dangerous for long-term operation. Several gas-cleaning agents, characterized during the past years, are currently in use. New test allowed understanding of the properties and performance of a large number of purifiers. On that basis, an optimal combination of different filters consisting of Molecular Sieve (MS) 5Å and 4Å, and a Cu catalyst R11 has been chosen and validated irradiating a set of RPCs at the CERN Gamma Irradiation Facility (GIF) for several years. A very important feature of this new configuration is the increase of the cycle duration for each purifier, which results in better system stabilit...

  1. Position-sensitive proportional counters using resistance-capacitance position encoding

    International Nuclear Information System (INIS)

    Kopp, M.K.; Borkowski, C.J.

    1975-12-01

    A new method was developed for encoding the position of individual photons, neutrons, or charged particles in proportional counters by using the distributed RC line characteristics of these counters. The signal processing is described and guidelines for the design and operation of these position sensitive proportional counters (PSPCs) are given. Using these guidelines, several prototypic PSPCs were constructed to improve the spatial resolution and shorten the signal processing time; for example, the intrinsic spatial uncertainty was reduced to 28 μ fwhm for alpha particles and 100 μ fwhm for low-energy x rays (2 to 6 keV). Also, the signal processing time was reduced to 0.6 μsec without seriously degrading the spatial resolution. These results have opened new fields of application of the RC position encoding method in imaging distributions of photons, charged particles, or neutrons in nuclear medicine, physics, and radiography

  2. TU-E-BRA-05: Reverse Geometry Imaging with MV Detector for Improved Image Resolution.

    Science.gov (United States)

    Ganguly, A; Abel, E; Sun, M; Fahrig, R; Virshup, G; Star-Lack, J

    2012-06-01

    Thick pixilated scintillators can offer significant improvements in quantum efficiency over phosphor screen megavoltage (MV) detectors. However spatial resolution can be compromised due to the spreading of light across pixels within septa. Of particular interest are the lower energy x-ray photons and associated light photons that produce higher image contrast but are stopped near the scintillator entrance surface. They suffer the most scattering in the scintillator prior to detection in the photodiodes. Reversing the detector geometry, so that the incident x-ray beam passes through the photodiode array into the scintillator, allows the light to scatter less prior to detection. This also reduces the Swank noise since now higher and lower energy x-ray photons tend to produce similar electronic signals. In this work, we present simulations and measurements of detector MTF for the conventional/forward and reverse geometries to demonstrate this phenomenon. A tabletop system consisting of a Varian CX1 1MeV linear accelerator and a modified Varian Paxscan4030 with the readout electronics moved away from the incident the beam was used. A special holder was used to press a 2.5W×5.0L×2.0Hcm 3 pixellated Cesium Iodide (CsI:Tl) scintillator array on to the detector glass. The CsI array had a pitch of 0.784mm with plastic septa between pixels and the photodiode array pitch was 0.192 mm. The MTF in the forward and reverse geometries was measured using a 0.5mm thick Tantalum slanted edge. Geant4-based Monte Carlo simulations were performed for comparison. The measured and simulated MTFs matched to within 3.4(±3.7)% in the forward and 4.4(±1.5)% in reverse geometries. The reverse geometry MTF was higher than the forward geometry MTF at all spatial frequencies and doubled to .25 at 0.3lp/mm. A novel method of improving the image resolution at MV energies was demonstrated. The improvements should be more pronounced with increased scintillator thickness. Funding support provided

  3. Multi-detector CT imaging in the postoperative orthopedic patient with metal hardware

    International Nuclear Information System (INIS)

    Vande Berg, Bruno; Malghem, Jacques; Maldague, Baudouin; Lecouvet, Frederic

    2006-01-01

    Multi-detector CT imaging (MDCT) becomes routine imaging modality in the assessment of the postoperative orthopedic patients with metallic instrumentation that degrades image quality at MR imaging. This article reviews the physical basis and CT appearance of such metal-related artifacts. It also addresses the clinical value of MDCT in postoperative orthopedic patients with emphasis on fracture healing, spinal fusion or arthrodesis, and joint replacement. MDCT imaging shows limitations in the assessment of the bone marrow cavity and of the soft tissues for which MR imaging remains the imaging modality of choice despite metal-related anatomic distortions and signal alteration

  4. Added value of integrated circuit detector in head CT: objective and subjective image quality in comparison to conventional detector design.

    Science.gov (United States)

    Korn, Andreas; Bender, Benjamin; Spira, Daniel; Schabel, Christoph; Bhadelia, Rafeeque; Claussen, Claus; Ernemann, Ulrike; Brodoefel, Harald

    2014-12-01

    A new computed tomography (CT) detector with integrated electric components and shorter conducting pathways has recently been introduced to decrease system inherent electronic noise. The purpose of this study was to assess the potential benefit of such integrated circuit detector (ICD) in head CT by comparing objective and subjective image quality in low-dose examinations with a conventional detector design. Using a conventional detector, reduced-dose noncontrast head CT (255 mAs; effective dose, 1.7 mSv) was performed in 25 consecutive patients. Following transition to ICD, 25 consecutive patients were scanned using identical imaging parameters. Images in both groups were reconstructed with iterative reconstruction (IR) and filtered back projection (FBP) and assessed in terms of quantitative and qualitative image quality. Acquisition of head CT using ICD increased signal-to-noise ratio of gray and white matter by 14% (10.0 ± 1.6 vs. 11.4 ± 2.5; P = .02) and 17% (8.2 ± 0.8 vs. 9.6 ± 1.5; P = .000). The associated improvement in contrast-to-noise ratio was 12% (2.0 ± 0.5 vs. 2.2 ± 0.6; P = .121). In addition, there was a 51% increase in objective image sharpness (582 ± 85 vs. 884.5 ± 191; change in HU/Pixel; P < .000). Compared to standard acquisitions, subjective grading of noise and overall image quality scores were significantly improved with ICD (2.1 ± 0.3 vs. 1.6 ± 0.3; P < .000; 2.0 ± 0.5 vs. 1.6 ± 0.3; P = .001). Moreover, streak artifacts in the posterior fossa were substantially reduced (2.3 ± 0.7 vs. 1.7 ± 0.5; P = .004). At the same radiation level, acquisition of head CT with ICD achieves superior objective and subjective image quality and provides potential for significant dose reduction. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  5. Imaging microchannel plate detectors for XUV sky survey experiments

    International Nuclear Information System (INIS)

    Barstow, M.A.; Fraser, G.W.; Milward, S.R.

    1986-01-01

    Attention is given to the development of microchannel plate detectors for the Wide Field Camera (WFC) XUV (50-300 A) sky survey experiment on Rosat. A novel feature of the detector design is that the microchannel plates and their resistive anode readout are curved to the same radius as the WFC telescope focal surface. It is shown that curving the channel plates is not detrimental to gain uniformity. The paper describes the design of a curved resistive anode readout element and contrasts the present measurements of spatial resolution, global and local uniformity and temperature coefficient of resistance with the poor performance recently ascribed to resistive anodes in the literature. 18 references

  6. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    Kent, J.; Gomez-Cadenas, J.J.; Hogan, A.; King, M.; Rowe, W.; Watson, S.; Von Zanthier, C.; Briggs, D.D.; Levi, M.

    1990-01-01

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  7. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS

    International Nuclear Information System (INIS)

    FISHER, R.K.

    2003-01-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 (micro), are the most promising approach to imaging NIF target plasmas with the desired 5 (micro) spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 · 10 13 yield DT target plasmas with a target plane spatial resolution of ∼ 140 (micro). As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of ∼ 5000 drops (∼ 100 (micro) in diameter) of bubble detector liquid/cm 3 suspended in an inactive support gel that occupies ∼ 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are ∼ 10 (micro) in diameter, should result in ∼ 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of ∼ 10 to 50 (micro)

  8. Detector design issues for compact nuclear emission cameras dedicated to breast imaging

    International Nuclear Information System (INIS)

    Levin, Craig S.

    2003-01-01

    Certain gamma ray and positron emitting radiotracers have shown great promise for use in the detection, diagnosis and staging of breast cancer. Unfortunately, standard nuclear emission cameras (SPECT, PET) found in the clinic are not practical for breast imaging of these emissions due to inadequate spatial and energy resolutions and sensitivity, large and awkward size, and relatively high cost per study. High spatial and energy resolutions and sensitivity are needed for good lesion detectability. Due to these limitations of standard cameras, there has been recent research into the development of small, compact nuclear emission imagers dedicated for close-proximity breast imaging. The small detector head size means a variety of exotic detectors or collimators may be implemented to improve spatial and energy resolution and sensitivity performances at a reasonable cost. In this paper, we will present some of the compact gamma ray and annihilation photon imaging detector designs that have been proposed and/or developed for dedicated breast imaging. We will review the physics and discuss the advantages and disadvantages of various detector configurations. Finally we will estimate the fundamental spatial resolution potential available with close-proximity nuclear emission imaging and discuss how one may approach those limits through proper detector design

  9. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to −25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  10. Current status of multi-detector row helical CT in imaging of adult ...

    African Journals Online (AJOL)

    Current status of multi-detector row helical CT in imaging of adult acquired pancreatic diseases and assessing surgical neoplastic resectability. ... The presence of inflammation, masses, and vascular invasion was evaluated and interpreted images were obtained during each phase. Results were compared with surgery, ...

  11. Liquid-Xe detector for contraband detection

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D., E-mail: david.vartsky@weizmann.ac.il [Weizmann Institute of Science, Rehovot 76100 (Israel); Israelashvili, I. [Weizmann Institute of Science, Rehovot 76100 (Israel); Nuclear Research Center of Negev (NRCN), Beer-Sheva 9001 (Israel); Cortesi, M. [National Superconducting Cyclotron Laboratory, East Lansing 48823, MI (United States); Arazi, L.; Coimbra, A.E.; Moleri, L.; Erdal, E.; Bar, D.; Rappaport, M.; Shchemelinin, S. [Weizmann Institute of Science, Rehovot 76100 (Israel); Caspi, E.N. [Nuclear Research Center of Negev (NRCN), Beer-Sheva 9001 (Israel); Aviv, O. [Soreq NRC, Yavne 81800 (Israel); Breskin, A. [Weizmann Institute of Science, Rehovot 76100 (Israel)

    2016-07-11

    We describe progress made with a liquid-Xe (LXe) detector coupled to a gaseous photomultiplier (GPM), for combined imaging and spectroscopy of fast neutrons and gamma-rays in the MeV range. The purpose of this detector is to enable the detection of hidden explosives and fissile materials in cargo and containers. The expected position resolution is about 2 m and 3.5 mm for fast neutrons and gamma-rays, respectively. Experimental results obtained using an {sup 241}Am source yielded energy and time resolutions of 11% and 1.2 ns RMS, respectively. Initial results obtained with the position-sensitive GPM are presented.

  12. Can direct electron detectors outperform phosphor-CCD systems for TEM?

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, G; Li, X; Kirkland, A [Department of Materials, University of Oxford, Parks Road, Oxford, 0X1 3PH (United Kingdom)], E-mail: grigore.moldovan@materials.ox.ac.uk

    2008-08-15

    A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.

  13. Flat Panel PMT: advances in position sensitive photodetection

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Trotta, C.; Cinti, M.N.; Bennati, P.; Trotta, G.; Iurlaro, G.; Montani, L.; Ridolfi, S.; Cusanno, F.; Garibaldi, F.

    2003-01-01

    Over the last ten years there was being a strong advancement in photodetection. Different application fields are involved in their use in particular high energy physics, astrophysics and nuclear medicine. They usually work by coupling a scintillation crystal and more recent scintillation arrays with pixel size as small as 0.5 mm. PSPMT represents today the most ready technology for photodetection with large detection areas and very high spatial resolution. Flat panel PMT represents the last technological advancement. Its dimension is 50x50 mm 2 with a narrow peripheral dead zone (0.5 mm final goal). Its compactness allow to assemble different modules closely packed, achieving large detection areas with an effective active area of 97%. In this paper we analyze the imaging performances of PSPMT by coupling two scintillation arrays and by light spot scanning of photocathode to evaluate the linearity position response, spatial resolution and uniformity gain response as a function of light distribution spread and the number of photoelectrons generated on photocathode. The results point out a very narrow PMT intrinsic charge spread and low cross-talk between anodes. Energy resolution and spatial resolution show a good linearity with DRF variation. An unexpected intra-anode gain variation is carried out. In this paper we present the results obtained with this PSPMT regarding imaging performances principally addressed to nuclear medicine application

  14. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  15. Large-area imaging micro-well detectors for high-energy astrophysics

    CERN Document Server

    Deines-Jones, P; Hunter, S D; Jahoda, K; Owens, S M

    2002-01-01

    Micro-well detectors are pixelized imaging sensors that can be inexpensively fabricated in very large arrays. Owing to their intrinsic gain and operation at room temperature, they can be instrumented at very low power, per unit area, making them valuable for a variety of space-flight applications where wide-angle X-ray imaging or large-area particle tracking is required. For example, micro-well detectors have been chosen as the focal plane imager for Lobster-ISS, a proposed soft X-ray all-sky monitor. We have fabricated detectors which image X-rays with 200 mu m FWHM resolution at 3 keV. In agreement with other groups using similar geometries, we find nominal proportional counter energy resolution (20% at 6 keV in P-10), and stable operation at gas gains up to 30,000.

  16. 2D dose distribution images of a hybrid low field MRI-γ detector

    Energy Technology Data Exchange (ETDEWEB)

    Abril, A., E-mail: ajabrilf@unal.edu.co; Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co [Medical Physics Group, Physics department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the {sup 99m}Tc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  17. 2D dose distribution images of a hybrid low field MRI-γ detector

    International Nuclear Information System (INIS)

    Abril, A.; Agulles-Pedrós, L.

    2016-01-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the "9"9"mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  18. 2D dose distribution images of a hybrid low field MRI-γ detector

    Science.gov (United States)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  19. Characterization of LiF-based soft X-ray imaging detectors by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Bonfigli, F; Gaudio, P; Lupelli, I; Nichelatti, E; Richetta, M; Vincenti, M A; Montereali, R M

    2010-01-01

    X-ray microscopy represents a powerful tool to obtain images of samples with very high spatial resolution. The main limitation of this technique is represented by the poor spatial resolution of standard imaging detectors. We proposed an innovative high-performance X-ray imaging detector based on the visible photoluminescence of colour centres in lithium fluoride. In this work, a confocal microscope in fluorescence mode was used to characterize LiF-based imaging detectors measuring CC integrated visible fluorescence signals of LiF crystals and films (grown on several kinds of substrates) irradiated by soft X-rays produced by a laser plasma source in different exposure conditions. The results are compared with the CC photoluminescence spectra measured on the same samples and discussed.

  20. Space imaging measurement system based on fixed lens and moving detector

    Science.gov (United States)

    Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2006-08-01

    We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.

  1. Real-time imaging systems for superconducting nanowire single-photon detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hofherr, Matthias

    2014-07-01

    Superconducting nanowire singe-photon detectors (SNSPD) are promising detectors in the field of applications, where single-photon resolution is required like in quantum optics, spectroscopy or astronomy. These cryogenic detectors gain from a broad spectrum in the optical and infrared range and deliver low dark counts and low jitter. This work provides a piece of deeper physical understanding of detector functionality in combination with highly engineered readout development. A detailed analysis focuses on the intrinsic detection mechanism of SNSPDs related to the detection in the infrared regime and the evolution of dark counts. With this fundamental knowledge, the next step is the development of a multi-pixel readout at cryogenic conditions. It is demonstrated, how two auspicious multi-pixel readout concepts can be realized, which enables statistical framing like in imaging applications using RSFQ electronics with fast framing rates and the readout of a detector array with continuous real-time single-photon resolution.

  2. Single-Photon Computed Tomography With Large Position-Sensitive Phototubes*

    Science.gov (United States)

    Feldmann, John; Ranck, Amoreena; Saunders, Robert S.; Welsh, Robert E.; Bradley, Eric L.; Saha, Margaret S.; Kross, Brian; Majewski, Stan; Popov, Vladimir; Weisenberger, Andrew G.; Wojcik, Randolph

    2000-10-01

    Position-sensitive photomultiplier tubes (PSPMTs) coupled to pixelated CsI(Tl) scintillators have been used with parallel-hole collimators to view the metabolism in small animals of radiopharmaceuticals tagged with ^125I. We report here our preliminary results analyzed using a tomography program^1 written in IDL programming language. The PSPMTs are mounted on a rotating gantry so as to view the subject animal from any azimuth. Preliminary results to test the tomography algorithm have been obtained by placing a variety of plastic mouse-brain phantoms (loaded with Na^125I) in front of one of the detectors and rotating the phantom in steps through 360 degrees. Results of this simulation taken with a variety of collimator hole sizes will be compared and discussed. Extentions of this technique to the use of very small PSPMTs (Hamamatsu M-64) which are capable of a very close approach to those parts of the animal of greatest interest will be described. *Supported in part by The Department of Energy, The National Science Foundation, The American Diabetes Association, The Howard Hughes Foundation and The Jeffress Trust. 1. Tomography algorithm kindly provided by Dr. S. Meikle of The Royal Prince Albert Hospital, Sydney, Australia

  3. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites

  4. Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    Science.gov (United States)

    Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting

    2011-01-01

    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or

  5. Simulation and measurement of short infrared pulses on silicon position sensitive device

    International Nuclear Information System (INIS)

    Krapohl, D; Esebamen, O X; Nilsson, H E; Thungstroem, G

    2011-01-01

    Lateral position sensitive devices (PSD) are important for triangulation, alignment and surface measurements as well as for angle measurements. Large PSDs show a delay on rising and falling edges when irradiated with near infra-red light. This delay is also dependent on the spot position relative to the electrodes. It is however desirable in most applications to have a fast response. We investigated the responsiveness of a Sitek PSD in a mixed mode simulation of a two dimensional full sized detector. For simulation and measurement purposes focused light pulses with a wavelength of 850 nm, duration of 1μs and spot size of 280μm were used. The cause for the slopes of rise and fall time is due to time constants of the device capacitance as well as the photo-generation mechanism itself. To support the simulated results, we conducted measurements of rise and fall times on a physical device. Additionally, we quantified the homogeneity of the device by repositioning a spot of light from a pulsed ir-laser diode on the surface area.

  6. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  7. Position sensitive regions in a generic radiation sensor based on single event upsets in dynamic RAMs

    International Nuclear Information System (INIS)

    Darambara, D.G.; Spyrou, N.M.

    1997-01-01

    Modern integrated circuits are highly complex systems and, as such, are susceptible to occasional failures. Semiconductor memory devices, particularly dynamic random access memories (dRAMs), are subject to random, transient single event upsets (SEUs) created by energetic ionizing radiation. These radiation-induced soft failures in the stored data of silicon based memory chips provide the foundation for a new, highly efficient, low cost generic radiation sensor. The susceptibility and the detection efficiency of a given dRAM device to SEUs is a complicated function of the circuit design and geometry, the operating conditions and the physics of the charge collection mechanisms involved. Typically, soft error rates measure the cumulative response of all sensitive regions of the memory by broad area chip exposure in ionizing radiation environments. However, this study shows that many regions of a dynamic memory are competing charge collection centres having different upset thresholds. The contribution to soft fails from discrete regions or individual circuit elements of the memory device is unambiguously separated. Hence the use of the dRAM as a position sensitive radiation detector, with high spatial resolution, is assessed and demonstrated. (orig.)

  8. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  9. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  10. A possible role for silicon microstrip detectors in nuclear medicine Compton imaging of positron emitters

    CERN Document Server

    Scannavini, M G; Royle, G J; Cullum, I; Raymond, M; Hall, G; Iles, G

    2002-01-01

    Collimation of gamma-rays based on Compton scatter could provide in principle high resolution and high sensitivity, thus becoming an advantageous method for the imaging of radioisotopes of clinical interest. A small laboratory prototype of a Compton camera is being constructed in order to initiate studies aimed at assessing the feasibility of Compton imaging of positron emitters. The design of the camera is based on the use of a silicon collimator consisting of a stack of double-sided, AC-coupled microstrip detectors (area 6x6 cm sup 2 , 500 mu m thickness, 128 channels/side). Two APV6 chips are employed for signal readout on opposite planes of each detector. This work presents the first results on the noise performance of the silicon strip detectors. Measurements of the electrical characteristics of the detector are also reported. On the basis of the measured noise, an angular resolution of approximately 5 deg. is predicted for the Compton collimator.

  11. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  12. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wilson, Matthew D.; Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-01-01

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm"2 with one of the 80×80 pixels imaging an area equivalent to 13µm"2. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  13. Objective image characterization of a spectral CT scanner with dual-layer detector

    Science.gov (United States)

    Ozguner, Orhan; Dhanantwari, Amar; Halliburton, Sandra; Wen, Gezheng; Utrup, Steven; Jordan, David

    2018-01-01

    This work evaluated the performance of a detector-based spectral CT system by obtaining objective reference data, evaluating attenuation response of iodine and accuracy of iodine quantification, and comparing conventional CT and virtual monoenergetic images in three common phantoms. Scanning was performed using the hospital’s clinical adult body protocol. Modulation transfer function (MTF) was calculated for a tungsten wire and visual line pair targets were evaluated. Image noise power spectrum (NPS) and pixel standard deviation were calculated. MTF for monoenergetic images agreed with conventional images within 0.05 lp cm-1. NPS curves indicated that noise texture of 70 keV monoenergetic images is similar to conventional images. Standard deviation measurements showed monoenergetic images have lower noise except at 40 keV. Mean CT number and CNR agreed with conventional images at 75 keV. Measured iodine concentration agreed with true concentration within 6% for inserts at the center of the phantom. Performance of monoenergetic images at detector based spectral CT is the same as, or better than, that of conventional images. Spectral acquisition and reconstruction with a detector based platform represents the physical behaviour of iodine as expected and accurately quantifies the material concentration.

  14. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    Science.gov (United States)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  15. Lorentz angle studies for the SLD endcap Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Coyle, P.; Cavalli-Sforza, M.; Coyne, D.

    1987-11-01

    The design of the endcap Cerenkov Ring Imaging Detectors for SLD requires a detailed understanding of how electrons drift in gases under the influence of crossed electric and magnetic fields. In this report, we present recent measurements of Lorentz angles and drift velocities in gases suitable for the endcap CRID photon detectors. We compare these measurements to predictions from a theoretical model; good agreement is observed. Based on our results we present a design for detectors operating in a 0.6 Tesla transverse magnetic field. 14 refs., 10 figs., 4 tabs

  16. Characteristics of NaI detector in positron imaging device HEADTOME employing circular ring array

    International Nuclear Information System (INIS)

    Miura, Shuichi; Kanno, Iwao; Aizawa, Yasuo; Murakami, Matsutaro; Uemura, Kazuo

    1984-01-01

    In positron emission computed tomographs employing circular ring arrays of detectors, the performance of the imaging device has been specified ultimately by the characteristics of the detector. The responses of NaI detector were studied when detecting positron annihilation photon (511 keV). The study was mainly by using the NaI detector used in hybrid emission computed tomography (CT) ''HEADTOME'' we had developed. A series of measurements were carried out positioning two detectors with 40 cm distance and scanning 22 Na point source in water. Both detectors was inclined from 0 0 through 30 0 to change incident angle of positron annihilation toward crystal face. Energy window was set from 100 to 700 keV. The results were presented as follows; 1 Shortening the crystal length from 7 to 5 cm made sensitivity decrease about 10% and resolution deteriorate about 1 mm (FWHM). 2 As the results of varying the width of the crystal, 20 mm width was optimal at any incident angle. 3 The lead septum between the detectors was the thickness of 4 mm enough to reject multiple detector interactions (crosstalk). 4 Beam mask which was made of lead in order to improve spatial resolution and placed on crystal face worked effectively for incident angles from 0 0 to 15 0 but degraded uniformity of spatial resolution from 0 0 to through 30 0 . (author)

  17. The imaging pin detector - a simple and effective new imaging device for soft x-rays and soft beta emissions

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1984-01-01

    The development of a new bidimensional imaging detector system for soft X and beta radiations is reported. Based on the detection of the differential induction signals on pickup electrodes placed around a point anode in a gas avalanche detector, the system described has achieved a spatial resolution of better than 1mm fwhm over a field of 30mm diameter while preserving excellent pulse height resolution. The present device offers considerable potential as a cheap and robust imaging system for applications in X-ray diffraction and autoradiography. (author)

  18. Time-of-flight mass spectrometer using an imaging detector and a rotating electric field

    International Nuclear Information System (INIS)

    Katayama, Atsushi; Kameo, Yutaka; Nakashima, Mikio

    2008-01-01

    A new technique for minor isotope analysis that uses a rotating electric field and an imaging detector is described. The rotating electric field is generated by six cylindrically arranged plane electrodes with multi-phase sinusoidal wave voltage. When ion packets that are discriminated by time-of-flight enter the rotating electric field, they are circularly deflected, rendering a spiral image on the fluorescent screen of the detector. This spiral image represents m/z values of ions as the position and abundance of ions as brightness. For minor isotopes analyses, the micro channel plate detector under gate control operation is used to eliminate the influence of high intensity of major isotopes. (author)

  19. Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.

    2016-10-01

    An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

  20. Position Ring System using Anger Type Detectors. Progress Report (1999-2002)

    International Nuclear Information System (INIS)

    Karp, Joel S.

    2004-01-01

    The overall objective of our project was to develop PET scanners and imaging techniques that achieve high performance and excellent image quality. Our approach was based upon 3-D imaging (no septa) with position-sensitive Anger-logic detectors, whereby the encoding ratio of resolution elements to number of photo-multiplier tube channels is very high. This design led to a series of PET systems that emphasized cost-effectiveness and practicality in a clinical environment.

  1. Correlation between the physical performances measured from detectors and the diagnostic image quality in digital mammography

    International Nuclear Information System (INIS)

    Perez-Ponce, H.

    2009-05-01

    In digital mammography two approaches exist to estimate image quality. In the first approach, human observer assesses the lesion detection in mammograms. Unfortunately, such quality assessment is subject to interobserver variability, and requires a large amount of time and human resources. In the second approach, objective and human-independent parameters relating to image spatial resolution and noise (MTF and NPS) are used to evaluate digital detector performance; even if these parameters are objective, they are not directly related to lesion detection. A method leading to image quality assessment which is both human independent, and directly related to lesion detection is very important for the optimal use of mammographic units. This Ph.D thesis presents the steps towards such a method: the computation of realistic virtual images using an 'X ray source/digital detector' model taking into account the physical parameters of the detector (spatial resolution and noise measurements) measured under clinical conditions. From results obtained in this work, we have contributed to establish the link between the physical characteristics of detectors and the clinical quality of the image for usual exposition conditions. Furthermore, we suggest the use of our model for the creation of virtual images, in order to rapidly determine the optimal conditions in mammography, which usually is a long and tedious experimental process. This is an essential aspect to be taken into account for radioprotection of patients, especially in the context of organized mass screening of breast cancer. (author)

  2. Characterization of array scintillation detector for follicle thyroid 2D imaging acquisition using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Silva, Carlos Borges da

    2007-05-01

    The image acquisition methods applied to nuclear medicine and radiobiology are a valuable research study for determination of thyroid anatomy to seek disorders associated to follicular cells. The Monte Carlo (MC) simulation has also been used in problems related to radiation detection in order to map medical images since the improvement of data processing compatible with personnel computers (PC). This work presents an innovative study to find out the adequate scintillation inorganic detector array that could be coupled to a specific light photo sensor, a charge coupled device (CCD) through a fiber optic plate in order to map the follicles of thyroid gland. The goal is to choose the type of detector that fits the application suggested here with spatial resolution of 10 μm and good detector efficiency. The methodology results are useful to map a follicle image using gamma radiation emission. A source - detector simulation is performed by using a MCNP4B (Monte Carlo for Neutron Photon transport) general code considering different source energies, detector materials and geometries including pixel sizes and reflector types. The results demonstrate that by using MCNP4B code is possible to searching for useful parameters related to the systems used in nuclear medicine, specifically in radiobiology applied to endocrine physiology studies to acquiring thyroid follicles images. (author)

  3. Timing and position response of a block detector for fast neutron time-of-flight imaging

    Energy Technology Data Exchange (ETDEWEB)

    Laubach, M.A., E-mail: mlaubach@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Hayward, J.P., E-mail: jhayward@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Zhang, X., E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Cates, J.W., E-mail: jcates7@vols.utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2014-11-01

    Our research effort seeks to improve the spatial and timing performance of a block detector made of a pixilated plastic scintillator (EJ-200), first demonstrated as part of Oak Ridge National Laboratory's Advanced Portable Neutron Imaging System. Improvement of the position and time response is necessary to achieve better resolution and contrast in the images of shielded special nuclear material. Time-of-flight is used to differentiate between gamma and different sources of neutrons (e.g., transmission and fission neutrons). Factors limiting the timing and position performance of the neutron detector have been revealed through simulations and measurements. Simulations have suggested that the degradation in the ability to resolve pixels in the neutron detector is due to those interactions occurring near the light guide. The energy deposition within the neutron detector is shown to affect position performance and imaging efficiency. This examination details how energy cuts improve the position performance and degrade the imaging efficiency. Measurements have shown the neutron detector to have a timing resolution of σ=238 ps. The majority of this timing uncertainty is from the depth-of-interaction (DOI) of the neutron which is confirmed by simulations and analytical calculations.

  4. Novel Neutron Detector for High Rate Imaging Applications

    International Nuclear Information System (INIS)

    Lacy, Jeffrey L.

    2004-01-01

    The Phase II period performance was May 30, 2002 through May 29, 2004. This development effort was successfully completed within the period and budget allotted. The proposed design was successfully fabricated from B 4 C-coated aluminum and copper film, slit and wound to form 4 mm diameter straws, cut to 100 cm in length, and threaded with resistive anode wires (20 (micro)m in diameter). This paper reports testing done with two 50-straw detector modules at the reactor of the Nuclear Science Center at Texas A and M University (TAMU NSC)

  5. Non-Imaging Detectors and Counters. Chapter 10

    Energy Technology Data Exchange (ETDEWEB)

    Zanzonico, P. B. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York (United States)

    2014-12-15

    Historically, nuclear medicine has been largely an imaging based specialty, employing such diverse and increasingly sophisticated modalities as rectilinear scanning, (planar) gamma camera imaging, single photon emission computed tomography (SPECT) and positron emission tomography (PET). Non-imaging radiation detection, however, remains an essential component of nuclear medicine. This chapter reviews the operating principles, performance, applications and quality control (QC) of the various non-imaging radiation detection and measurement devices used in nuclear medicine, including survey meters, dose calibrators, well counters, intra-operative probes and organ uptake probes. Related topics, including the basics of radiation detection, statistics of nuclear counting, electronics, generic instrumentation performance parameters and nuclear medicine imaging devices, are reviewed in depth in other chapters of this book.

  6. Multi-Detector Computed Tomography Imaging Techniques in Arterial Injuries

    Directory of Open Access Journals (Sweden)

    Cameron Adler

    2018-04-01

    Full Text Available Cross-sectional imaging has become a critical aspect in the evaluation of arterial injuries. In particular, angiography using computed tomography (CT is the imaging of choice. A variety of techniques and options are available when evaluating for arterial injuries. Techniques involve contrast bolus, various phases of contrast enhancement, multiplanar reconstruction, volume rendering, and maximum intensity projection. After the images are rendered, a variety of features may be seen that diagnose the injury. This article provides a general overview of the techniques, important findings, and pitfalls in cross sectional imaging of arterial imaging, particularly in relation to computed tomography. In addition, the future directions of computed tomography, including a few techniques in the process of development, is also discussed.

  7. A simple algorithm for estimation of source-to-detector distance in Compton imaging

    International Nuclear Information System (INIS)

    Rawool-Sullivan, Mohini W.; Sullivan, John P.; Tornga, Shawn R.; Brumby, Steven P.

    2008-01-01

    Compton imaging is used to predict the location of gamma-emitting radiation sources. The X and Y coordinates of the source can be obtained using a back-projected image and a two-dimensional peak-finding algorithm. The emphasis of this work is to estimate the source-to-detector distance (Z). The algorithm presented uses the solid angle subtended by the reconstructed image at various source-to-detector distances. This algorithm was validated using both measured data from the prototype Compton imager (PCI) constructed at the Los Alamos National Laboratory and simulated data of the same imager. Results show this method can be applied successfully to estimate Z, and it provides a way of determining Z without prior knowledge of the source location. This method is faster than the methods that employ maximum likelihood method because it is based on simple back projections of Compton scatter data

  8. Image plane detector spectrophotometer - Application to O2 atmospheric band nightglow

    Science.gov (United States)

    Luo, Mingzhao; Yee, Jeng-Hwa; Hays, Paul B.

    1988-01-01

    A new variety of low resolution spectrometer is described. This device, an image plane detector spectrophotometer, has high sensitivity and modest resolution sufficient to determine the rotational temperature and brightness of molecular band emissions. It uses an interference filter as a dispersive element and a multichannel image plane detector as the photon collecting device. The data analysis technqiue used to recover the temperature of the emitter and the emission brightness is presented. The atmospheric band of molecular oxygen is used to illustrate the use of the device.

  9. A comparison of interest point and region detectors on structured, range and texture images

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Andersen, Hans Jørgen

    2015-01-01

    )) and corner based detectors (such as Hessian and Harris with both Affine/Laplace variants, SURF with determinant of Hessian based corners and SIFT with difference of Gaussians) acquired more than 90% mean average precision, whereas on range images, homogeneous region detector did not work well. TLR offered...... and textured images. It is also shown that in a bi-channel approach, combining surface and edge regions (MSER and TLR) boosts the overall performance. Among the descriptors, SIFT and SURF generally offer higher performance but low dimensional descriptors such as Steerable Filters follow closely....

  10. Isotope detectors and radiation detectors for test reliability techniqui. A preliminary project

    International Nuclear Information System (INIS)

    Christell, R.

    1977-03-01

    A survey is done of small and simple components for use as detectors for ionizing radiation, as well as different methods and components producing images of radiation fields based on position sensitive detectors. The investigation has resulted in a system for detection of stones in wood. In a second project isotope excited x ray fluorescence has been used for analysis of material resulting from wear of mechanical components. A facility for analysis has been built and test analysis has been performed. Methods for continous wear control with possibility to forecast breakdowns have been investigated. (K.K.)

  11. Detector response restoration in image reconstruction of high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Liang, Z.

    1994-01-01

    A mathematical method was studied to model the detector response of high spatial-resolution positron emission tomography systems consisting of close-packed small crystals, and to restore the resolution deteriorated due to crystal penetration and/or nonuniform sampling across the field-of-view (FOV). The simulated detector system had 600 bismuth germanate crystals of 3.14 mm width and 30 mm length packed on a single ring of 60 cm diameter. The space between crystal was filled up with lead. Each crystal was in coincidence with 200 opposite crystals so that the FOV had a radius of 30 cm. The detector response was modeled based on the attenuating properties of the crystals and the septa, as well as the geometry of the detector system. The modeled detector-response function was used to restore the projections from the sinogram of the ring-detector system. The restored projections had a uniform sampling of 1.57 mm across the FOV. The crystal penetration and/or the nonuniform sampling were compensated in the projections. A penalized maximum-likelihood algorithm was employed to accomplish the restoration. The restored projections were then filtered and backprojected to reconstruct the image. A chest phantom with a few small circular ''cold'' objects located at the center and near the periphery of FOV was computer generated and used to test the restoration. The reconstructed images from the restored projections demonstrated resolution improvement off the FOV center, while preserving the resolution near the center

  12. Modelling of the small pixel effect in gallium arsenide X-ray imaging detectors

    CERN Document Server

    Sellin, P J

    1999-01-01

    A Monte Carlo simulation has been carried out to investigate the small pixel effect in highly pixellated X-ray imaging detectors fabricated from semi-insulating gallium arsenide. The presence of highly non-uniform weighting fields in detectors with a small pixel geometry causes the majority of the induced signal to be generated when the moving charges are close to the pixellated contacts. The response of GaAs X-ray imaging detectors is further complicated by the presence of charge trapping, particularly of electrons. In this work detectors are modelled with a pixel pitch of 40 and 150 mu m, and with thicknesses of 300 and 500 mu m. Pulses induced in devices with 40 mu m pixels are due almost totally to the movement of the lightly-trapped holes and can exhibit significantly higher charge collection efficiencies than detectors with large electrodes, in which electron trapping is significant. Details of the charge collection efficiencies as a function of interaction depth in the detector and of the incident phot...

  13. Imaging plate, a new type of x-ray area detector

    International Nuclear Information System (INIS)

    Kamiya, Nobuo; Amemiya, Yoshiyuki; Miyahara, Junji.

    1986-01-01

    In respective fields of X-ray crystallography, for the purpose of the efficient collection of reciprocal space information, two-dimensional X-ray detectors such as multiwire proportional chambers and X-ray television sets have been used together with conventional X-ray films. X-ray films are characterized by uniform sensitivity and high positional resolution over a wide area, but the sensitivity is low, and the range of action and the linearity of the sensitivity is problematic. They require the development process, accordingly lack promptitude. The MWPCs and X-ray television sets are superior in the sensitivity, its linearity, the range of action and promptitude, but interior in the uniformity and resolution to the films. Imaging plate is a new X-ray area detector developed by Fuji Photo Film Co., Ltd., for digital X-ray medical image diagnosis. This detector is superior in all the above mentioned performances, and it seems very useful also for X-ray crystallography. In this paper, the system composed of an imaging plate and its reader is described, and the basic performance as an X-ray area detector and the results of having recorded the diffraction images of protein crystals as the example of applying it to X-ray crystallography are reported. The imaging plate is that the crystalline fluorescent powder of BaFBr doped with Eu 2+ ions is applied on plastic films. (Kako, I.)

  14. New Position Algorithms for the 3-D CZT Drift Detector

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan

    2017-01-01

    The 3-D position sensitive CZT detector for high-energy astrophysics developed at DTU has been investigated with a digitizer readout system. The 3-D CZT detector is based on the CZT drift-strip detector principle and was fabricated using a REDLEN CZT crystal (20 mm x 20 mm x 5 mm). The detector...... at 662 keV. The analysis required development of novel position determination algorithms which are the subject of this paper. Using the digitizer readout, we demonstrate improved position determination compared to the previous read out system based on analog electronics. Position resolutions of 0.4-mm....... These characteristics are very important for a high-energy spectral-imager suitable for use in advanced Compton telescopes, or as focal detector for new hard X-ray and soft gamma-ray focusing telescopes or in polarimeter instrumentation. CZT detectors are attractive for these applications since they offer relatively...

  15. Rapid portal imaging with a high-efficiency, large field-of-view detector.

    Science.gov (United States)

    Mosleh-Shirazi, M A; Evans, P M; Swindell, W; Symonds-Tayler, J R; Webb, S; Partridge, M

    1998-12-01

    The design, construction, and performance evaluation of an electronic portal imaging device (EPID) are described. The EPID has the same imaging geometry as the current mirror-based systems except for the x-ray detection stage, where a two-dimensional (2D) array of 1 cm thick CsI(Tl) detector elements are utilized. The approximately 18% x-ray quantum efficiency of the scintillation detector and its 30 x 40 cm2 field-of-view at the isocenter are greater than other area-imaging EPIDs. The imaging issues addressed are theoretical and measured signal-to-noise ratio, linearity of the imaging chain, influence of frame-summing on image quality and image calibration. Portal images of test objects and a humanoid phantom are used to measure the performance of the system. An image quality similar to the current devices is achieved but with a lower dose. With approximately 1 cGy dose delivered by a 6 MV beam, a 2 mm diam structure of 1.3% contrast and an 18 mm diam object of 0.125% contrast can be resolved without using image-enhancement methods. A spatial resolution of about 2 mm at the isocenter is demonstrated. The capability of the system to perform fast sequential imaging, synchronized with the radiation pulses, makes it suitable for patient motion studies and verification of intensity-modulated beams as well as its application in cone-beam megavoltage computed tomography.

  16. A direct reflection OLVF debris detector based on dark-field imaging

    Science.gov (United States)

    Li, Bo; Xi, Yinhu; Feng, Song; Mao, Junhong; Xie, You-Bai

    2018-06-01

    To solve the problems of monitoring wear debris in black oil, a direct reflection online visual ferrograph (OLVF) debris detector is presented. In current OLVF detectors, a reflected light source is used. The emitted light is reflected by wear debris directly instead of passing through the lube oil. Therefore, the transparency of the lube oil ceases to matter. Two experiments were conducted to validate the wear debris imaging feasibility and effectiveness of the newly developed detector. The results show that the visual feature information of the wear debris can be reliably obtained from black oil by this detector, and it can also be used to track the fast-changing wear of tribopairs at different wear stages. To the best of our knowledge, to date there is no other report for solving this issue.

  17. Evaluation of In-Vacuum Imaging Plate Detector for X-Ray Diffraction Microscopy

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Takahashi, Yukio; Yamamoto, Masaki; Ishikawa, Tetsuya

    2007-01-01

    We performed evaluation tests of a newly developed in-vacuum imaging plate (IP) detector for x-ray diffraction microscopy. IP detectors have advantages over direct x-ray detection charge-coupled device (CCD) detectors, which have been commonly used in x-ray diffraction microscopy experiments, in the capabilities for a high photon count and for a wide area. The detector system contains two IPs to make measurement efficient by recording data with the one while reading or erasing the other. We compared speckled diffraction patterns of single particles taken with the IP and a direct x-ray detection CCD. The IP was inferior to the CCD in spatial resolution and in signal-to-noise ratio at a low photon count

  18. Synchrotron applications of pixel and strip detectors at Diamond Light Source

    International Nuclear Information System (INIS)

    Marchal, J.; Tartoni, N.; Nave, C.

    2009-01-01

    A wide range of position-sensitive X-ray detectors have been commissioned on the synchrotron X-ray beamlines operating at the Diamond Light Source in UK. In addition to mature technologies such as image-plates, CCD-based detectors, multi-wire and micro-strip gas detectors, more recent detectors based on semiconductor pixel or strip sensors coupled to CMOS read-out chips are also in use for routine synchrotron X-ray diffraction and scattering experiments. The performance of several commercial and developmental pixel/strip detectors for synchrotron studies are discussed with emphasis on the image quality achieved with these devices. Examples of pixel or strip detector applications at Diamond Light Source as well as the status of the commissioning of these detectors on the beamlines are presented. Finally, priorities and ideas for future developments are discussed.

  19. Current technology of particle physics detectors

    International Nuclear Information System (INIS)

    Ludlam, T.W.

    1986-01-01

    A brief discussion is given of the characteristics required of new accelerator facilities, leading into a discussion of the required detectors, including position sensitive detectors, particle identification, and calorimeters

  20. X-ray Imaging Using a Hybrid Photon Counting GaAs Pixel Detector

    CERN Document Server

    Schwarz, C; Göppert, R; Heijne, Erik H M; Ludwig, J; Meddeler, G; Mikulec, B; Pernigotti, E; Rogalla, M; Runge, K; Smith, K M; Snoeys, W; Söldner-Rembold, S; Watt, J

    1999-01-01

    The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consists of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (...

  1. Tiled Array of Pixelated CZT Imaging Detectors for ProtoEXIST2 and MIRAX-HXI

    Science.gov (United States)

    Hong, Jaesub; Allen, Branden; Grindlay, Jonathan; Rodrigues, Barbara; Ellis, Jon Robert; Baker, Robert; Barthelmy, Scott; Mao, Peter; Miyasaka, Hiromasa; Apple, Jeff

    2013-12-01

    We have assembled a tiled array (220 cm2) of fine pixel (0.6 mm) imaging CZT detectors for a balloon borne wide-field hard X-ray telescope, ProtoEXIST2. ProtoEXIST2 is a prototype experiment for a next generation hard X-ray imager MIRAX-HXI on board Lattes, a spacecraft from the Agencia Espacial Brasilieira. MIRAX will survey the 5 to 200 keV sky of Galactic bulge, adjoining southern Galactic plane and the extragalactic sky with 6 ' angular resolution. This survey will open a vast discovery space in timing studies of accretion neutron stars and black holes. The ProtoEXIST2 CZT detector plane consists of 64 of 5 mm thick 2 cm × 2 cm CZT crystals tiled with a minimal gap. MIRAX will consist of 4 such detector planes, each of which will be imaged with its own coded-aperture mask. We present the packaging architecture and assembly procedure of the ProtoEXIST2 detector. On 2012, Oct 10, we conducted a successful high altitude balloon experiment of the ProtoEXIST1 and 2 telescopes, which demonstrates their technology readiness for space application. During the flight both telescopes performed as well as on the ground. We report the results of ground calibration and the initial results for the detector performance in the balloon flight.

  2. Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector

    Science.gov (United States)

    Long, Jingming; Furch, Federico J.; Durá, Judith; Tremsin, Anton S.; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-07-01

    A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.

  3. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  4. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    Science.gov (United States)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  5. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  6. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  7. Comparison of radiation dose estimates, image noise, and scan duration in pediatric body imaging for volumetric and helical modes on 320-detector CT and helical mode on 64-detector CT

    International Nuclear Information System (INIS)

    Johnston, Jennifer H.; Podberesky, Daniel J.; Larson, David B.; Alsip, Christopher; Yoshizumi, Terry T.; Angel, Erin; Barelli, Alessandra; Toncheva, Greta; Egelhoff, John C.; Anderson-Evans, Colin; Nguyen, Giao B.; Frush, Donald P.; Salisbury, Shelia R.

    2013-01-01

    Advanced multidetector CT systems facilitate volumetric image acquisition, which offers theoretic dose savings over helical acquisition with shorter scan times. Compare effective dose (ED), scan duration and image noise using 320- and 64-detector CT scanners in various acquisition modes for clinical chest, abdomen and pelvis protocols. ED and scan durations were determined for 64-detector helical, 160-detector helical and volume modes under chest, abdomen and pelvis protocols on 320-detector CT with adaptive collimation and 64-detector helical mode on 64-detector CT without adaptive collimation in a phantom representing a 5-year-old child. Noise was measured as standard deviation of Hounsfield units. Compared to 64-detector helical CT, all acquisition modes on 320-detector CT resulted in lower ED and scan durations. Dose savings were greater for chest (27-46%) than abdomen/pelvis (18-28%) and chest/abdomen/pelvis imaging (8-14%). Noise was similar across scanning modes, although some protocols on 320-detector CT produced slightly higher noise. Dose savings can be achieved for chest, abdomen/pelvis and chest/abdomen/pelvis examinations on 320-detector CT compared to helical acquisition on 64-detector CT, with shorter scan durations. Although noise differences between some modes reached statistical significance, this is of doubtful diagnostic significance and will be studied further in a clinical setting. (orig.)

  8. Radiation imaging detectors made by wafer post-processing of CMOS chips

    NARCIS (Netherlands)

    Blanco Carballo, V.M.

    2009-01-01

    In this thesis several wafer post-processing steps have been applied to CMOS chips. Amplification gas strucutures are built on top of the microchips. A complete radiation imaging detector is obtained this way. Integrated Micromegas-like and GEM-like structures were fabricated on top of Timepix CMOS

  9. A review of 4π Cerenkov ring imaging detectors

    International Nuclear Information System (INIS)

    Leith, D.W.G.S

    1989-06-01

    The design choices for 4π ring imaging Cerenkov counters -- both those of principle and those of practice -- are reviewed. The progress in construction and the performance of the devices being built for DELPHI and SLD are discussed. 13 refs., 22 figs

  10. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.

    Science.gov (United States)

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro

    2015-10-01

    To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at

  11. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  12. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    International Nuclear Information System (INIS)

    Talla, Patrick Takoukam

    2011-01-01

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 μm. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  13. PROTON RADIOGRAPHY WITH THE PIXEL DETECTOR TIMEPIX

    Directory of Open Access Journals (Sweden)

    Václav Olšanský

    2016-12-01

    Full Text Available This article presents the processing of radiographic data acquired using the position-sensitive hybrid semiconductor pixel detector Timepix. Measurements were made on thin samples at the medical ion-synchrotron HIT [1] in Heidelberg (Germany with a 221 MeV proton beam. The charge is energy by the particles crossing the sample is registered for generation of image contrast. Experimental data from the detector were processed for derivation of the energy loss of each proton using calibration matrices. The interaction point of the protons on the detector were determined with subpixel resolution by model fitting of the individual signals in the pixelated matrix. Three methods were used for calculation of these coordinates: Hough transformation, 2D Gaussian fitting and estimate the 2D mean. Parameters of calculation accuracy and calculation time are compared for each method. The final image was created by method with best parameters.

  14. Development of a programmable CCD detector for imaging, real time studies and other synchrotron radiation applications

    International Nuclear Information System (INIS)

    Brizard, C.

    1991-01-01

    A new CCD detector has been developed. The working of CCD and programmable detector is detailed in this thesis. The flexibility of the system allows the use of CCDs from different manufactures. The vacuum chamber of the detector is made of a beryllium window for experiments using X-radiation or of a quartz window coupled to a focusing optic system. Its temporal resolution is 2 microseconds with a X-radiation imaging. Images with a high spatial resolution have been obtained with the focusing system having a set of optical lenses and filters. The first X-ray diffraction experiments in the range of milliseconds and microseconds for the study of semiconductor heterostructures have been performed at X16 beam line at NSLS (National Synchrotron Light Source) with the detector illuminated by X-rays. For the first time, a X-ray beam, horizontally focused has been used to record a X-ray diffraction spectra on a 2-D detector. Finally, a X-ray diffraction method has been used to study the first steps of the crystallisation of Fe 8 0B 2 0 amorphous metallic alloy at X6 beam line at NSLS

  15. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.

    Science.gov (United States)

    Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M

    2016-03-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  16. Automatic luminous reflections detector using global threshold with increased luminosity contrast in images

    Science.gov (United States)

    Silva, Ricardo Petri; Naozuka, Gustavo Taiji; Mastelini, Saulo Martiello; Felinto, Alan Salvany

    2018-01-01

    The incidence of luminous reflections (LR) in captured images can interfere with the color of the affected regions. These regions tend to oversaturate, becoming whitish and, consequently, losing the original color information of the scene. Decision processes that employ images acquired from digital cameras can be impaired by the LR incidence. Such applications include real-time video surgeries, facial, and ocular recognition. This work proposes an algorithm called contrast enhancement of potential LR regions, which is a preprocessing to increase the contrast of potential LR regions, in order to improve the performance of automatic LR detectors. In addition, three automatic detectors were compared with and without the employment of our preprocessing method. The first one is a technique already consolidated in the literature called the Chang-Tseng threshold. We propose two automatic detectors called adapted histogram peak and global threshold. We employed four performance metrics to evaluate the detectors, namely, accuracy, precision, exactitude, and root mean square error. The exactitude metric is developed by this work. Thus, a manually defined reference model was created. The global threshold detector combined with our preprocessing method presented the best results, with an average exactitude rate of 82.47%.

  17. A high sensitivity imaging detector for electron microscopy

    International Nuclear Information System (INIS)

    Faruqi, A.R.; Andrews, H.N.; Henderson, R.

    1995-01-01

    A camera for electron microscopy based on a low readout noise cooled-CCD is described in this paper. The primary purpose of this camera is to record electron diffraction from ordered arrays of proteins but also has potential applications in imaging, electron tomography and for the automatic alignment of the electron microscope. Electrons (energy similar 120 kV) which are scattered by the specimen to form the image, which is normally recorded on film, are converted to visible photons in a polycrystalline phosphor and the resulting image is stored on the CCD (EEV 05-20, 1152 by 814, 22.5 μm square pixels). The main advantages of using CCDs include a large dynamic range, very good linearity and the possibility of immediate access to the data which is in a digitised form capable of further processing on-line during the experiment. We have built specially designed CCD ''drive'' electronics in a VME crate, interfaced to a Sun Sparcstation, for controlling the CCD operations. Data reduction programs have been installed, previously used off-line, to speed up data processing, and provide analysed data within a few minutes after the exposure. (orig.)

  18. CMOS Image Sensor with a Built-in Lane Detector

    Directory of Open Access Journals (Sweden)

    Li-Chen Fu

    2009-03-01

    Full Text Available This work develops a new current-mode mixed signal Complementary Metal-Oxide-Semiconductor (CMOS imager, which can capture images and simultaneously produce vehicle lane maps. The adopted lane detection algorithm, which was modified to be compatible with hardware requirements, can achieve a high recognition rate of up to approximately 96% under various weather conditions. Instead of a Personal Computer (PC based system or embedded platform system equipped with expensive high performance chip of Reduced Instruction Set Computer (RISC or Digital Signal Processor (DSP, the proposed imager, without extra Analog to Digital Converter (ADC circuits to transform signals, is a compact, lower cost key-component chip. It is also an innovative component device that can be integrated into intelligent automotive lane departure systems. The chip size is 2,191.4 x 2,389.8 mm, and the package uses 40 pin Dual-In-Package (DIP. The pixel cell size is 18.45 x 21.8 mm and the core size of photodiode is 12.45 x 9.6 mm; the resulting fill factor is 29.7%.

  19. CMOS Image Sensor with a Built-in Lane Detector.

    Science.gov (United States)

    Hsiao, Pei-Yung; Cheng, Hsien-Chein; Huang, Shih-Shinh; Fu, Li-Chen

    2009-01-01

    This work develops a new current-mode mixed signal Complementary Metal-Oxide-Semiconductor (CMOS) imager, which can capture images and simultaneously produce vehicle lane maps. The adopted lane detection algorithm, which was modified to be compatible with hardware requirements, can achieve a high recognition rate of up to approximately 96% under various weather conditions. Instead of a Personal Computer (PC) based system or embedded platform system equipped with expensive high performance chip of Reduced Instruction Set Computer (RISC) or Digital Signal Processor (DSP), the proposed imager, without extra Analog to Digital Converter (ADC) circuits to transform signals, is a compact, lower cost key-component chip. It is also an innovative component device that can be integrated into intelligent automotive lane departure systems. The chip size is 2,191.4 × 2,389.8 μm, and the package uses 40 pin Dual-In-Package (DIP). The pixel cell size is 18.45 × 21.8 μm and the core size of photodiode is 12.45 × 9.6 μm; the resulting fill factor is 29.7%.

  20. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy.

    Directory of Open Access Journals (Sweden)

    Chae Young Lee

    Full Text Available The purposes of this study were to optimize a proton computed tomography system (pCT for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy.

  1. Electrically-cooled HPGe detector for advanced x-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marian, V.; Clauss, J.; Pirard, B.; Quirin, P.; Flamanc, J.; Lampert, M.O. [CANBERRA France, Parc des Tanneries, 1, chemin de la roseraie, 67380 Lingolsheim (France)

    2015-07-01

    High Purity Germanium (HPGe) detectors are used for high-resolution x- and gamma-ray spectroscopy. For their operation, the necessary cryogenic cooling is performed with liquid nitrogen or with electromechanical coolers. Although mature and industrialized solutions, most of HPGe detectors integrating electrical coolers present a limited spectroscopic performance due to the generated mechanical vibration and electromagnetic interference. This paper describes a novel HPGe detector, specifically designed to address the challenges of ultimate x-ray spectroscopy and imaging applications. Due to the stringent demands associated with nano-scale imaging in synchrotron applications, a custom-designed cryostat was built around a Canberra CP5-Plus electrical cooler featuring extremely low vibration levels and high cooling power. The heat generated by the cryo-cooler itself, as well as the electronics, is evacuated via an original liquid cooling circuit. This architecture can also be used to address high ambient temperature, which does not allow conventional cryo-coolers to work properly. The multichannel detector head can consist of a segmented monolithic HPGe sensor, or several closely packed sensors. Each sensor channel is read out by state-of-the-art pulse-reset preamplifiers in order to achieve excellent energy resolution for count rates in excess of 1 Mcps. The sensitive electronics are located in EMI-proof housings to avoid any interference from other devices on a beam-line. The front-end of the detector is built using selected high-purity materials and alloys to avoid any fluorescence effects. We present a detailed description of the detector design and we report on its performance. A discussion is also given on the use of electrically cooled HPGe detectors for applications requiring ultimate energy resolution, such as synchrotron, medicine or nuclear industry. (authors)

  2. Effective and cheap X-ray television detector

    International Nuclear Information System (INIS)

    Artem'ev, A.N.; Potlovskij, K.G.; Rezvov, V.A.; Yudin, L.I.

    2002-01-01

    The position sensitive detector (PSD) is designed for investigations with traditional X-ray tubes and synchrotron radiation from 3 to 30 keV. PSD consists of light-tight box, which transforms X-ray photons to light photons. Light photons are registered with the help of TV camera. Then an image is digitized and introduced into computer. Software provides registration of the dim beam images by means of accumulation of the information. Statistic processing of the image series allows to determine of the parameters of the image. Sensitivity is 41 phot/pixel. Spatial resolution is not worse then 400 μ [ru

  3. Prospects of functional Magnetic Resonance Imaging as lie detector

    Directory of Open Access Journals (Sweden)

    Elena eRusconi

    2013-09-01

    Full Text Available Following the demise of the polygraph, supporters of assisted scientific lie detection tools have enthusiastically appropriated neuroimaging technologies as the savior of scientifically verifiable lie detection in the courtroom (Gerard, 2008: 5; however, such enthusiasm may prove premature. For in nearly every article published by independent researchers in peer reviewed journals, the respective authors acknowledge that fMRI research, processes, and technology are insufficiently developed and understood for gatekeepers to even consider introducing these neuroimaging measures into criminal courts as they stand today for the purpose of determining the veracity of statements made. Regardless of how favorable their analyses of fMRI or its future potential, they all acknowledge the presence of issues yet to be resolved. Even assuming a future where these issues are resolved and an appropriate fMRI lie-detection process is developed, its integration into criminal trials is not assured for the very success of such a future system may necessitate its exclusion from courtrooms on the basis of existing legal and ethical prohibitions. In this piece, aimed for a multidisciplinary readership, we seek to highlight and bring together the multitude of hurdles which would need to be successfully overcome before fMRI can (if ever be a viable applied lie detection system. We argue that the current status of fMRI studies on lie detection meets neither basic legal nor scientific standards. We identify four general classes of hurdles (scientific, legal and ethical, operational, and social and provide an overview on the stages and operations involved in fMRI studies, as well as the difficulties of translating these laboratory protocols into a practical criminal justice environment. It is our overall conclusion that fMRI is unlikely to constitute a viable lie detector for criminal courts.

  4. Development of the microstrip silicon detector for imaging of fast processes at a synchrotron radiation beam

    Energy Technology Data Exchange (ETDEWEB)

    Aulchenko, V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Pruuel, E. [Lavrentiev Institute of Hydrodynamics, 630090 Novosibirsk, Russian Federtion (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Shekhtman, L. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Ten, K. [Lavrentiev Institute of Hydrodynamics, 630090 Novosibirsk, Russian Federtion (Russian Federation); Tolochko, B. [Institute of Solid State chemistry and Mechanochemistry, 630090 Novosibirsk, Russian Federtion (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Zhulanov, V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation)

    2017-02-11

    In situ imaging of explosions allows to study material properties under very high pressures and temperatures. Synchrotron radiation (SR) is a powerful tool for such studies because of its unique time structure. Flashes of X-rays from individual bunches in a storage ring are so short that an object under study does not move more than 1–10 μm during exposure. If a detector is able to store images synchronously with bunches of an SR source the time resolution of such method will be determined by the duration of SR flash from individual bunch. New beam line at the VEPP-4M storage ring will allow to get X-Ray flux from each bunch close to 10{sup 6} photons/channel where channel area is 0.05×0.5 mm{sup 2} and average beam energy is about 30 keV. Bunches in the machine can be grouped into trains with 20 ns time gap. In order to meet these requirements a new detector development was started based on Si microstrip technology. The detector with a new dedicated front-end chip will be able to record images with maximum signal equivalent to 10{sup 6} photons/channel, with signal to noise ratio of ∼10{sup 3}, spatial resolution of 50 μm and maximum frame rate of 50 MHz. The detector has to drive very high peak and average currents without affecting the front-end chip, therefore a specific design of Si sensor should be developed. The front-end chip has to provide signal measurements with the dynamic range of about 10{sup 4} or more and recording of the signal to an analogue memory with the rate of 50 MHz. The concept of such detector is discussed in the paper. The results of the simulations of the main detector parameters and the results of the first measurements with the prototype sensors are presented.

  5. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system

    International Nuclear Information System (INIS)

    Zhao Bo; Zhao Wei

    2008-01-01

    In breast tomosynthesis a rapid sequence of N images is acquired when the x-ray tube sweeps through different angular views with respect to the breast. Since the total dose to the breast is kept the same as that in regular mammography, the exposure used for each image of tomosynthesis is 1/N. The low dose and high frame rate pose a tremendous challenge to the imaging performance of digital mammography detectors. The purpose of the present work is to investigate the detector performance in different operational modes designed for tomosynthesis acquisition, e.g., binning or full resolution readout, the range of view angles, and the number of views N. A prototype breast tomosynthesis system with a nominal angular range of ±25 deg. was used in our investigation. The system was equipped with an amorphous selenium (a-Se) full field digital mammography detector with pixel size of 85 μm. The detector can be read out in full resolution or 2x1 binning (binning in the tube travel direction). The focal spot blur due to continuous tube travel was measured for different acquisition geometries, and it was found that pixel binning, instead of focal spot blur, dominates the detector modulation transfer function (MTF). The noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector were measured with the exposure range of 0.4-6 mR, which is relevant to the low dose used in tomosynthesis. It was found that DQE at 0.4 mR is only 20% less than that at highest exposure for both detector readout modes. The detector temporal performance was categorized as lag and ghosting, both of which were measured as a function of x-ray exposure. The first frame lags were 8% and 4%, respectively, for binning and full resolution mode. Ghosting is negligible and independent of the frame rate. The results showed that the detector performance is x-ray quantum noise limited at the low exposures used in each view of tomosynthesis, and the temporal performance at high frame rate (up to

  6. Analysis and operation of DePFET X-ray imaging detectors

    International Nuclear Information System (INIS)

    Lauf, Thomas

    2011-01-01

    The latest active pixel sensor for X-ray imaging spectroscopy developed at the Max-Planck-Halbleiterlabor (HLL) is the Depleted P-channel Field Effect Transistor (DePFET). This detector type unites detector and first stage amplification and has excellent energy resolution, low noise readout at high speed and low power consumption. This is combined with the possibility of random accessibility of pixels and on-demand readout. In addition it possesses all advantages of a sidewards depleted device, i.e. 100% fill factor and very good quantum efficiency. In the course of the development of DePFET detectors the need of a data analysis software for DePFET devices became apparent. A new tool was developed within the scope of this thesis, which should enable scientists to analyze DePFET data, but also be flexible enough so it can be adapted to new device variants and analysis challenges. A modular concept was thus implemented: a base program running an analysis by individual steps encapsulating algorithms, which can be interchanged. The result is a flexible, adaptable, and expandable analysis software. The software was used to investigate and qualify different structural variants of DePFET detectors. Algorithms to examine detector effects and methods to correct them were developed and integrated into the software. This way, a standard analysis suite for DePFET data was built up which is used at the HLL. Beside the planned use as detector for the wide field imager in the space X-ray observatory IXO, DePFET matrices will be used as focal plane array on the Mercury Imaging X-ray Spectrometer on board the Mercury probe BepiColombo which is scheduled for launch in 2014. The developed analysis software was used in the detector development for this mission to qualify test structures, analyze detector effects and study experimental results. In the course of this development, detector prototypes were studied in respect of linearity, charge collection and detection efficiency in an

  7. Analysis and operation of DePFET X-ray imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, Thomas

    2011-04-28

    The latest active pixel sensor for X-ray imaging spectroscopy developed at the Max-Planck-Halbleiterlabor (HLL) is the Depleted P-channel Field Effect Transistor (DePFET). This detector type unites detector and first stage amplification and has excellent energy resolution, low noise readout at high speed and low power consumption. This is combined with the possibility of random accessibility of pixels and on-demand readout. In addition it possesses all advantages of a sidewards depleted device, i.e. 100% fill factor and very good quantum efficiency. In the course of the development of DePFET detectors the need of a data analysis software for DePFET devices became apparent. A new tool was developed within the scope of this thesis, which should enable scientists to analyze DePFET data, but also be flexible enough so it can be adapted to new device variants and analysis challenges. A modular concept was thus implemented: a base program running an analysis by individual steps encapsulating algorithms, which can be interchanged. The result is a flexible, adaptable, and expandable analysis software. The software was used to investigate and qualify different structural variants of DePFET detectors. Algorithms to examine detector effects and methods to correct them were developed and integrated into the software. This way, a standard analysis suite for DePFET data was built up which is used at the HLL. Beside the planned use as detector for the wide field imager in the space X-ray observatory IXO, DePFET matrices will be used as focal plane array on the Mercury Imaging X-ray Spectrometer on board the Mercury probe BepiColombo which is scheduled for launch in 2014. The developed analysis software was used in the detector development for this mission to qualify test structures, analyze detector effects and study experimental results. In the course of this development, detector prototypes were studied in respect of linearity, charge collection and detection efficiency in an

  8. Calibration of the OPAL jet chamber with UV laser beams. Measurement of the beam position with position-sensitive silicon diodes (PSD)

    International Nuclear Information System (INIS)

    Koch, J.

    1990-03-01

    The OPAL jet chamber is calibrated with tracks produced by UV laser beams. Lateral effect diodes are used for monitoring the laser beam location in the detector. These position sensitive detectors locate the point of impact in two dimensions by the charge division method. Measurements on several diodes were carried out in order to calibrate these devices and to investigate to observed pin-cushion distortion. Using the telegraphers equation suitable expressions were obtained for describing the observed behaviour. It was shown that the magnetic field of OPAL as well as the UV laser wavelength and puls duration had no influence on the position information. (orig.)

  9. Design considerations for soft X-ray television imaging detectors

    International Nuclear Information System (INIS)

    Kalata, K.; Golub, L.

    1988-01-01

    Television sensors for X-rays can be coupled to converters and image intensifiers to obtain active areas, high flux capabilities, quantum efficiency, high time resolution, or ease of construction and operation that may not be obtained with a directly illuminated sensor. A general purpose system which makes use of these capabilities for a number of applications is decribed. Some of the performance characteristics of this type of system are examined, and the expected future developments for such systems are briefly addressed. 19 refs

  10. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'vra, J.; Williams, S.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.; Whitaker, J.S.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Witherell, M.; Yellin, S.; D'Oliveira, A.; Johnson, R.A.; Martinez, J.L.; Meadows, B.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.

    1991-02-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. We report on tests of these, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating system and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, we report on the UV transmission of recirculated liquid C 6 F 14 and on the effects of CRID construction materials on electron lifetime. 9 refs., 11 figs

  11. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Bird, F.; Aston, D.; Dasu, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Nagamine, T.; Pavel, T.; Muller, D.; Williams, S.; Bienz, T.; Dolinsky, S.; Solodov, E.; Coyle, P.; Cavalli-Sforza, M.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.

    1990-01-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. This paper reports on tests of these components, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating system and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, the authors report on the UV transmission of recirculated liquid freon and on the effects of CRID construction materials on electron lifetime

  12. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'vra, J.; Williams, S.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.; Whitaker, J.S.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Witherell, M.; Yellin, S.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Meadows, B.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.

    1990-10-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. We report on tests of these components, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating systems and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, we report on the UV transmission of recirculated liquid freon and on the effects of CRID construction materials on electron lifetime. 16 refs., 12 figs

  13. Trends in the development of large area photon detectors for Cherenkov light imaging applications

    CERN Document Server

    Nappi, E

    2003-01-01

    Since the successful operations of hi-tech devices at OMEGA, DELPHI and SLD, the technique of Cherenkov light imaging has gone through an impressive and fruitful evolution driven by the conception of novel large area photon detectors. The well-assessed potentialities of thin CsI films, employed as reflective photoconverters in gas counters operated at atmospheric pressure, will be compared with the promising features of hybrid and multianode vacuum photomultipliers. Recently proposed single-photon gaseous detectors based on GEMs will also be reviewed.

  14. In-line X-ray lensless imaging with lithium fluoride film detectors

    International Nuclear Information System (INIS)

    Bonfigli, F.; Cecilia, A.; Bateni, S. Heidari; Nichelatti, E.; Pelliccia, D.; Somma, F.; Vagovic, P.; Vincenti, M.A.; Baumbach, T.; Montereali, R.M.

    2013-01-01

    In this work, we present preliminary in-line X-ray lensless projection imaging results at a synchrotron facility by using novel solid-state detectors based on non-destructive readout of photoluminescent colour centres in lithium fluoride thin films. The peculiarities of LiF radiation detectors are high spatial resolution on a large field of view, wide dynamic range, versatility and simplicity of use. These properties offered the opportunity to test a broadband X-ray synchrotron source for lensless projection imaging experiments at the TopoTomo beamline of the ANKA synchrotron facility by using a white beam spectrum (3–40 keV). Edge-enhancement effects were observed for the first time on a test object; they are discussed and compared with simulations, on the basis of the colour centre photoluminescence linear response found in the investigated irradiation conditions. -- Highlights: ► We performed broadband X-ray imaging at synchrotron by novel LiF imaging detectors. ► X-ray phase contrast experiments on LiF crystals and thin films were performed. ► Photoluminescent high-quality X-images on a LiF film only 1 μm thick were obtained. ► Edge-enhancement effects were detected and compared with simulations. ► A linearity of colour centre fluorescence response of LiF film was found

  15. Trade off study on different envelope detectors for B-mode imaging

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Bagge, J. P.; Jensen, Jørgen Arendt

    2003-01-01

    sum of the real and imaginary signals. The four detectors were evaluated on in-vivo data acquired with a B-K Medical 2102 scanner interfaced to the sampling system RASMINE. Three data sets were acquired with three different center frequencies. Hundred images were acquired as the transducer was moved......Generation of B-mode images involves envelope detection of the RF-signals. Various detection algorithms are available. A trade off between performance, price, and complexity determines the choice of algorithm in an ultrasound system. A Hilbert Transform (HT) and a subsequent computation...... of the magnitude give the ideal envelope, but the approach (IDE) is expensive and complex. A rectifier (REC) is a simple, low-cost solution, but the performance is severely degraded (especially in dynamic imaging). This study has investigated the possibility of providing a detector with a complexity and cost close...

  16. Ion beam induced charge and cathodoluminescence imaging of response uniformity of CVD diamond radiation detectors

    CERN Document Server

    Sellin, P J; Galbiati, A; Maghrabi, M; Townsend, P D

    2002-01-01

    The uniformity of response of CVD diamond radiation detectors produced from high quality diamond film, with crystallite dimensions of >100 mu m, has been studied using ion beam induced charge imaging. A micron-resolution scanning alpha particle beam was used to produce maps of pulse height response across the device. The detectors were fabricated with a single-sided coplanar electrode geometry to maximise their sensitivity to the surface region of the diamond film where the diamond crystallites are highly ordered. High resolution ion beam induced charge images of single crystallites were acquired that demonstrate variations in intra-crystallite charge transport and the termination of charge transport at the crystallite boundaries. Cathodoluminescence imaging of the same crystallites shows an inverse correlation between the density of radiative centres and regions of good charge transport.

  17. A new gaseous imaging detector for the assay of lymphocyte cultures

    International Nuclear Information System (INIS)

    Bateman, J.E.; Joyce, A.; Knight, S.C.; Bedford, P.

    1991-01-01

    Tritium-labelled cell cultures used in studies of lymphocyte proliferation at the Clinical Research Centre are blotted in arrays of 10x6 spots spaced at 6 mm. An imaging detector based on the differential induction signals produced at a central amplifying electrode has been developed for the imaging and assay of these blots. A spatial resolution ≅ 2.5 mm FWHM attained over the aperture of 60 mmx36mm enables the individual spots to be reliably counted. Data is captured in a PC/AT at rates which permit an assay to be completed in typically 30-60 min. The simplicity of both the detector and the readout electronics leads to a low cost system. Images and assay results are presented. (orig.)

  18. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    Science.gov (United States)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  19. Spatial profile measurements of ion-confining potentials using novel position-sensitive ion-energy spectrometer arrays

    International Nuclear Information System (INIS)

    Yoshida, M.; Cho, T.; Hirata, M.; Ito, H.; Kohagura, J.; Yatsu, K.; Miyoshi, S.

    2003-01-01

    The first experimental demonstration of simultaneous measurements of temporally and spatially resolved ion-confining potentials phi c and end-loss-ion fluxes I ELA has been carried out during a single plasma discharge alone by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of the GAMMA 10 tandem mirror. This position-sensitive ion-detector structure is proposed to obtain precise ion-energy spectra without any perturbations from simultaneously incident energetic electrons into the arrays. The relation between phi c and I ELA is physically interpreted in terms of Pastukhov's potential confinement theory. In particular, the importance of axisymmetric phi c formation is found for the plasma confinement

  20. Material specific X-ray imaging using an energy-dispersive pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Egan, Christopher K., E-mail: christopher.egan@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul [STFC Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0QX (United Kingdom); Jacques, Simon D.M.; Cernik, Robert J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  1. A digital data acquisition scheme for SPECT and PET small animal imaging detectors for Theranostic applications

    Science.gov (United States)

    Georgiou, M.; Fysikopoulos, E.; Loudos, G.

    2017-11-01

    Nanoparticle based drug delivery is considered as a new, promising technology for the efficient treatment of various diseases. When nanoparticles are radiolabelled it is possible to image them, using molecular imaging techniques. The use of magnetic nanoparticles in hyperthermia is one of the most promising nanomedicine directions and requires the accurate, non-invasive, monitoring of temperature increase and drug release. The combination of imaging and therapy has opened the very promising Theranostics domain. In this work, we present a digital data acquisition scheme for nuclear medicine dedicated detectors for Theranostic applications.

  2. Numerical simulation and optimal design of Segmented Planar Imaging Detector for Electro-Optical Reconnaissance

    Science.gov (United States)

    Chu, Qiuhui; Shen, Yijie; Yuan, Meng; Gong, Mali

    2017-12-01

    Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER) is a cutting-edge electro-optical imaging technology to realize miniaturization and complanation of imaging systems. In this paper, the principle of SPIDER has been numerically demonstrated based on the partially coherent light theory, and a novel concept of adjustable baseline pairing SPIDER system has further been proposed. Based on the results of simulation, it is verified that the imaging quality could be effectively improved by adjusting the Nyquist sampling density, optimizing the baseline pairing method and increasing the spectral channel of demultiplexer. Therefore, an adjustable baseline pairing algorithm is established for further enhancing the image quality, and the optimal design procedure in SPIDER for arbitrary targets is also summarized. The SPIDER system with adjustable baseline pairing method can broaden its application and reduce cost under the same imaging quality.

  3. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ISPA tube is a position-sensitive photon detector. It belongs to the family of hybrid photon detectors (HPD), recently developed by CERN and INFN with leading photodetector firms. HPDs confront in a vacuum envelope a photocathode and a silicon detector. This can be a single diode or a pixelized detector. The electrons generated by the photocathode are efficiently detected by the silicon anode by applying a high-voltage difference between them. ISPA tube can be used in high-energy applications as well as bio-medical and imaging applications.

  4. Modular focusing ring imaging Cherenkov detector for electron-ion collider experiments

    Science.gov (United States)

    Wong, C. P.; Alfred, M.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Barion, L.; Bennett, J.; Brooks, W.; Butler, C.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Del Dotto, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Elder, T.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; Haseler, T. O. S.; He, X.; van Hecke, H.; Horn, T.; Hruschka, A.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarajlic, O.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stien, H. D.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A. C.; Toh, J.; Towell, C. L.; Towell, R. S.; Tsang, T.; Turisini, M.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-11-01

    A powerful new electron-ioncollider (EIC) has been recommended in the 2015 Long Range Plan for Nuclear Science for probing the partonic structure inside nucleons and nuclei with unprecedented precision and versatility [1]. EIC detectors are currently under development [2], all of which require hadron identification over a broad kinematic range. A prototype ring imaging Cherenkov detector has been developed for hadron identification in the momentum range from 3 GeV/c to 10 GeV/c. The key feature of this new detector is a compact and modular design, achieved by using aerogel as radiator and a Fresnel lens for ring focusing. In this paper, the results from a beam test of a prototype device at Fermilab are reported.

  5. The iQID camera: An ionizing-radiation quantum imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Brian W., E-mail: brian.miller@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); College of Optical Sciences, The University of Arizona, Tucson, AZ 85719 (United States); Gregory, Stephanie J.; Fuller, Erin S. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Barrett, Harrison H.; Bradford Barber, H.; Furenlid, Lars R. [Center for Gamma-Ray Imaging, The University of Arizona, Tucson, AZ 85719 (United States); College of Optical Sciences, The University of Arizona, Tucson, AZ 85719 (United States)

    2014-12-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.

  6. Evaluation of PET Imaging Resolution Using 350 mu{m} Pixelated CZT as a VP-PET Insert Detector

    Science.gov (United States)

    Yin, Yongzhi; Chen, Ximeng; Li, Chongzheng; Wu, Heyu; Komarov, Sergey; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2014-02-01

    A cadmium-zinc-telluride (CZT) detector with 350 μm pitch pixels was studied in high-resolution positron emission tomography (PET) imaging applications. The PET imaging system was based on coincidence detection between a CZT detector and a lutetium oxyorthosilicate (LSO)-based Inveon PET detector in virtual-pinhole PET geometry. The LSO detector is a 20 ×20 array, with 1.6 mm pitches, and 10 mm thickness. The CZT detector uses ac 20 ×20 ×5 mm substrate, with 350 μm pitch pixelated anodes and a coplanar cathode. A NEMA NU4 Na-22 point source of 250 μm in diameter was imaged by this system. Experiments show that the image resolution of single-pixel photopeak events was 590 μm FWHM while the image resolution of double-pixel photopeak events was 640 μm FWHM. The inclusion of double-pixel full-energy events increased the sensitivity of the imaging system. To validate the imaging experiment, we conducted a Monte Carlo (MC) simulation for the same PET system in Geant4 Application for Emission Tomography. We defined LSO detectors as a scanner ring and 350 μm pixelated CZT detectors as an insert ring. GATE simulated coincidence data were sorted into an insert-scanner sinogram and reconstructed. The image resolution of MC-simulated data (which did not factor in positron range and acolinearity effect) was 460 μm at FWHM for single-pixel events. The image resolutions of experimental data, MC simulated data, and theoretical calculation are all close to 500 μm FWHM when the proposed 350 μm pixelated CZT detector is used as a PET insert. The interpolation algorithm for the charge sharing events was also investigated. The PET image that was reconstructed using the interpolation algorithm shows improved image resolution compared with the image resolution without interpolation algorithm.

  7. Optimizing detector thickness in dual-shot dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kam, Soohwa; Youn, Hanbean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    As a result, there exist apparent limitations in the conventional two-dimensional (2D) radiography: One is that the contrast between the structure of interest and the background in a radiograph is much less than the intrinsic subject contrast (i.e. the difference between their attenuation coefficients; Another is that the superimposed anatomical structures in the 2D radiograph results in an anatomical background clutter that may decrease the conspicuity of subtle underlying features. These limitations in spatial and material discrimination are important motivations for the recent development of 3D (e.g. tomosynthesis) and dual energy imaging (DEI) systems. DEI technique uses a combination of two images obtained at two different energies in successive x-ray exposures by rapidly switching the kilovolage (kV) applied to the x-ray tube. Commercial DEI systems usually employ a 'single' of flat-panel detector (FPD) to obtain two different kV images. However, we have a doubt in the use of the same detector for acquiring two different projections for the low- and high-kV setups because it is typically known that there exists an optimal detector thickness regarding specific imaging tasks or energies used.

  8. Imaging results and TOF studies with axial PET detectors

    CERN Document Server

    Joram, Christian

    2013-01-01

    We have developed a fully operational PET demonstrator setup which allows true 3D reconstruction of the 511 keV photons and therefore leads to practically parallax free images. The AX-PET concept is based on thin 100 mm long scintillation crystals (LYSO), axially oriented and arranged in layers around the held of view. Layers of wavelength shifting plastic strips mounted in between the crystal layers give the axial coordinate. Both crystals and WLS strips are individually read out by G-APD (SiPM) photodetectors. The Fully scalable concept overcomes the dilemma of sensitivity versus spatial resolution which is inherent to classical PET designs. A demonstrator set-up based on two axial modules was exhaustively characterized using point-like sources, phantoms filled with radiotracer and finally rats and a mouse. The results entirely meet the performance expectations ( <2 mm FWHM in all three coordinates over the complete held of view) and also demonstrated the ability to include Compton interactions (inter-cr...

  9. Counting radon tracks in Makrofol detectors with the 'image reduction and analysis facility' (IRAF) software package

    International Nuclear Information System (INIS)

    Hernandez, F.; Gonzalez-Manrique, S.; Karlsson, L.; Hernandez-Armas, J.; Aparicio, A.

    2007-01-01

    Makrofol detectors are commonly used for long-term radon ( 222 Rn) measurements in houses, schools and workplaces. The use of this type of passive detectors for the determination of radon concentrations requires the counting of the nuclear tracks produced by alpha particles on the detecting material. The 'image reduction and analysis facility' (IRAF) software package is a piece of software commonly used in astronomical applications. It allows detailed counting and mapping of sky sections where stars are grouped very closely, even forming clusters. In order to count the nuclear tracks in our Makrofol radon detectors, we have developed an inter-disciplinary application that takes advantage of the similitude that exist between counting stars in a dark sky and tracks in a track-etch detector. Thus, a low cost semi-automatic system has been set up in our laboratory which utilises a commercially available desktop scanner and the IRAF software package. A detailed description of the proposed semi-automatic method and its performance, in comparison to ocular counting, is described in detail here. In addition, the calibration factor for this procedure, 2.97+/-0.07kBqm -3 htrack -1 cm 2 , has been calculated based on the results obtained from exposing 46 detectors to certified radon concentrations. Furthermore, the results of a preliminary radon survey carried out in 62 schools in Tenerife island (Spain), using Makrofol detectors, counted with the mentioned procedure, are briefly presented. The results reported here indicate that the developed procedure permits a fast, accurate and unbiased determination of the radon tracks in a large number of detectors. The measurements carried out in the schools showed that the radon concentrations in at least 12 schools were above 200Bqm -3 and, in two of them, above 400Bqm -3 . Further studies should be performed at those schools following the European Union recommendations about radon concentrations in buildings

  10. Development of a Gamma-Ray Detector for Z-Selective Radiographic Imaging

    International Nuclear Information System (INIS)

    Brandis, Michal

    2013-11-01

    Dual-Discrete Energy Gamma-Radiography (DDEGR) is a method for Special Nuclear Materials (SNM) detection. DDEGR utilizes 15.11 and 4.43 MeV gamma-rays produced in the 11B(d,n)12C reaction, in contrast to the conventional use of continuous Bremsstrahlung radiation. The clean and well separated gamma-rays result in high contrast sensitivity, enabling detection of small quantities of SNM. The most important aspects of a DDEGR system were discussed, simulated, measured and demonstrated. An experimental measurement of gamma-ray yields from the 11B(d,n)12C reaction showed that the yields from deuterons with 3{12 MeV energy are 2{201010 N/sr/mC 4.4 MeV gamma- rays and 2{5109 N/sr/mC 15.1 MeV gamma-rays. The measured neutron yields show that the neutron energies extend to 15-23 MeV for the same deuteron energy range. A simplied inspection system was simulated with GEANT4, showing that the ect of scattering on the signal measured in the detector is acceptable. Considering the reaction gamma yields, 1.8 mA deuteron current is required for separation of high-Z materials from medium- and low-Z materials and a 4.5 mA current is required for the additional capability of separating benign high-Z materials from SNM. The main part of the work was development of a detector suitable for a DDEGR system | Time Resolved Event Counting Optical Radiation (TRECOR) detector. TRECOR detector is a novel spectroscopic imaging detector for gamma-rays within the MeV energy range that uses an event counting image intensier with gamma-rays for the rst time. Neutrons that accompany the gamma radiation enable to implement, in parallel, Fast Neutron Resonance Radiography (FNRR), a method for explosives detection. A second generation detector, TRECOR-II, is capable of detecting gamma-rays and neutrons in parallel, separating them to create particle-specic images and energy-specic images for each particle, thus enabling simultaneous implementation of the two detection methods. A full DDEGR laboratory

  11. Modeling the Effects of Mirror Misalignment in a Ring Imaging Cherenkov Detector

    Science.gov (United States)

    Hitchcock, Tawanda; Harton, Austin; Garcia, Edmundo

    2012-03-01

    The Very High Momentum Particle Identification Detector (VHMPID) has been proposed for the ALICE experiment at the Large Hadron Collider (LHC). This detector upgrade is considered necessary to study jet-matter interaction at high energies. The VHMPID identifies charged hadrons in the 5 GeV/c to 25 GeV/c momentum range. The Cherenkov photons emitted in the VHMPID radiator are collected by spherical mirrors and focused onto a photo-detector plane forming a ring image. The radius of this ring is related to the Cherenkov angle, this information coupled with the particle momentum allows the particle identification. A major issue in the RICH detector is that environmental conditions can cause movements in mirror position. In addition, chromatic dispersion causes the refractive index to shift, altering the Cherenkov angle. We are modeling a twelve mirror RICH detector taking into account the effects of mirror misalignment and chromatic dispersion using a commercial optical software package. This will include quantifying the effects of both rotational and translational mirror misalignment for the initial assembly of the module and later on particle identification.

  12. Bolometric kinetic inductance detector technology for sub-millimeter radiometric imaging

    Science.gov (United States)

    Hassel, Juha; Timofeev, Andrey V.; Vesterinen, Visa; Sipola, Hannu; Helistö, Panu; Aikio, Mika; Mäyrä, Aki; Grönberg, Leif; Luukanen, Arttu

    2015-10-01

    Radiometric sub-millimeter imaging is a candidate technology especially in security screening applications utilizing the property of radiation in the band of 0.2 - 1.0 THz to penetrate through dielectric substances such as clothing. The challenge of the passive technology is the fact that the irradiance corresponding to the blackbody radiation is very weak in this spectral band: about two orders of magnitude below that of the infrared band. Therefore the role of the detector technology is of ultimate importance to achieve sufficient sensitivity. In this paper we present results related to our technology relying on superconducting kinetic inductance detectors operating in a thermal (bolometric) mode. The detector technology is motivated by the fact that it is naturally suitable for scalable multiplexed readout systems, and operates with relatively simple cryogenics. We will review the basic concepts of the detectors, and provide experimental figures of merit. Furthermore, we will discuss the issues related to the scale-up of our detector technology into large 2D focal plane arrays.

  13. Improvement of an X-ray imaging detector based on a scintillating guides screen

    CERN Document Server

    Badel, X; Linnros, J; Kleimann, P; Froejdh, C; Petersson, C S

    2002-01-01

    An X-ray imaging detector has been developed for dental applications. The principle of this detector is based on application of a silicon charge coupled device covered by a scintillating wave-guide screen. Previous studies of such a detector showed promising results concerning the spatial resolution but low performance in terms of signal to noise ratio (SNR) and sensitivity. Recent results confirm the wave-guiding properties of the matrix and show improvement of the detector in terms of response uniformity, sensitivity and SNR. The present study is focussed on the fabrication of the scintillating screen where the principal idea is to fill a matrix of Si pores with a CsI scintillator. The photoluminescence technique was used to prove the wave-guiding property of the matrix and to inspect the filling uniformity of the pores. The final detector was characterized by X-ray evaluation in terms of spatial resolution, light output and SNR. A sensor with a spatial resolution of 9 LP/mm and a SNR over 50 has been achie...

  14. Simulation, image reconstruction and SiPM characterisation for a novel endoscopic positron emission tomography detector

    International Nuclear Information System (INIS)

    Zvolsky, Milan

    2017-12-01

    In the scope of the EndoTOFPET-US project, a novel multimodal device for ultrasound (US) endoscopy and positron emission tomography (PET) is being developed. The project aims at detecting and quantifying morphologic and functional biomarkers and developing new biomarkers for pancreas and prostate oncology. The detector system comprises a small detector probe mounted on an ultrasound endoscope and an external detector plate. The detection of the gamma rays is realised by scintillator crystals with Silicon Photomultiplier (SiPM) read-out. For the characterisation of over 4000 SiPMs for the external plate, an automatised measurement and data analysis procedure is established. The key properties of the SiPMs like breakdown voltage and dark count rate (DCR) are extracted. This knowledge is needed both as a quality assurance as well as for the calibration of the detector. The spread between minimum and maximum breakdown voltage within a SiPM array of 4 x 4 is at maximum 0.43 V with a mean of 0.15 V and an RMS of 0.06 V. This assures the optimal biasing of each SiPM at its individual operating voltage. The mean DCR amounts to 1.49 MHz with an RMS of 0.54 MHz and is thus well below the acceptable threshold of 3 MHz. Two spare modules from the external plate are re-measured and analysed several years after the module assembly, revealing a potential alteration of the SiPM noise properties over time. For the characterisation of SiPMs from different vendors, a software framework for the automatic extraction of performance parameters from pulseheight spectra, including a t of the entire spectrum, is developed and tested. In order to facilitate the modelling of the response of the EndoTOFPET-US detector, a framework is developed which is built around the Geant4-based simulation toolkit GAMOS, to simulate and reconstruct realistic imaging scenarios with this asymmetric PET detector. The simulation studies are used to compare different possible detector designs, guide the

  15. Simulation, image reconstruction and SiPM characterisation for a novel endoscopic positron emission tomography detector

    Energy Technology Data Exchange (ETDEWEB)

    Zvolsky, Milan

    2017-12-15

    In the scope of the EndoTOFPET-US project, a novel multimodal device for ultrasound (US) endoscopy and positron emission tomography (PET) is being developed. The project aims at detecting and quantifying morphologic and functional biomarkers and developing new biomarkers for pancreas and prostate oncology. The detector system comprises a small detector probe mounted on an ultrasound endoscope and an external detector plate. The detection of the gamma rays is realised by scintillator crystals with Silicon Photomultiplier (SiPM) read-out. For the characterisation of over 4000 SiPMs for the external plate, an automatised measurement and data analysis procedure is established. The key properties of the SiPMs like breakdown voltage and dark count rate (DCR) are extracted. This knowledge is needed both as a quality assurance as well as for the calibration of the detector. The spread between minimum and maximum breakdown voltage within a SiPM array of 4 x 4 is at maximum 0.43 V with a mean of 0.15 V and an RMS of 0.06 V. This assures the optimal biasing of each SiPM at its individual operating voltage. The mean DCR amounts to 1.49 MHz with an RMS of 0.54 MHz and is thus well below the acceptable threshold of 3 MHz. Two spare modules from the external plate are re-measured and analysed several years after the module assembly, revealing a potential alteration of the SiPM noise properties over time. For the characterisation of SiPMs from different vendors, a software framework for the automatic extraction of performance parameters from pulseheight spectra, including a t of the entire spectrum, is developed and tested. In order to facilitate the modelling of the response of the EndoTOFPET-US detector, a framework is developed which is built around the Geant4-based simulation toolkit GAMOS, to simulate and reconstruct realistic imaging scenarios with this asymmetric PET detector. The simulation studies are used to compare different possible detector designs, guide the

  16. The Belle II imaging Time-of-Propagation (iTOP) detector

    Science.gov (United States)

    Fast, J.; Belle II Barrel Particle Identification Group

    2017-12-01

    High precision flavor physics measurements are an essential complement to the direct searches for new physics at the LHC ATLAS and CMS experiments. Such measurements will be performed using the upgraded Belle II detector that will take data at the SuperKEKB accelerator. With 40x the luminosity of KEKB, the detector systems must operate efficiently at much higher rates than the original Belle detector. A central element of the upgrade is the barrel particle identification system. Belle II has built and installed an imaging-Time-of-Propagation (iTOP) detector. The iTOP uses quartz optics as Cherenkov radiators. The photons are transported down the quartz bars via total internal reflection with a spherical mirror at the forward end to reflect photons to the backward end where they are imaged onto an array of segmented Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMTs). The system is read out using giga-samples per second waveform sampling Application-Specific Integrated Circuits (ASICs). The combined timing and spatial distribution of the photons for each event are used to determine particle species. This paper provides an overview of the iTOP system.

  17. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.B., E-mail: prose6@gatech.edu; Erickson, A.S., E-mail: anna.erickson@me.gatech.edu

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in {sup 11}B(d,n-γ){sup 12}C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example {sup 232}Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  18. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    Science.gov (United States)

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  19. Impact of imaging quality of change pitch on coronary CTA with 64-detector row CT

    International Nuclear Information System (INIS)

    Li Xiang; Jin Chaolin; Zhang Shutong

    2009-01-01

    Objective: To investigate the impact of imaging quality of pitch on coronary CT angiography (CTA) with 64-detector row CT. Methods: 566 patients were divided into four groups according to heart rate (≤ 50, 51 ∼ 70, 71 ∼ 80 and ≥ 80 bpm). Three dimensional reconstructions were used such as volume rendering (VR), maximum intensity projection(MIP) and curved planar reformation (CPR). Each group was divided into control group and experimential group randomly, using normal pitch and revised pitch respectively, and the imaging quality and influencing factors were analyzed among the four groups. Results: There was significant difference in imaging quality among the four groups (P < 0.05). Each group had difference in imaging quality with normal pitch and revised pitch. Conclusions: The revised pitch helps to improve the imaging quality and meet the demand of diagnosis. (authors)

  20. TSV last for hybrid pixel detectors: Application to particle physics and imaging experiments

    CERN Document Server

    Henry, D; Berthelot, A; Cuchet, R; Chantre, C; Campbell, M

    Hybrid pixel detectors are now widely used in particle physics experiments and at synchrotron light sources. They have also stimulated growing interest in other fields and, in particular, in medical imaging. Through the continuous pursuit of miniaturization in CMOS it has been possible to increase the functionality per pixel while maintaining or even shrinking pixel dimensions. The main constraint on the more extensive use of the technology in all fields is the cost of module building and the difficulty of covering large areas seamlessly [1]. On another hand, in the field of electronic component integration, a new approach has been developed in the last years, called 3D Integration. This concept, based on using the vertical axis for component integration, allows improving the global performance of complex systems. Thanks to this technology, the cost and the form factor of components could be decreased and the performance of the global system could be enhanced. In the field of radiation imaging detectors the a...