WorldWideScience

Sample records for position velocity pose

  1. Binocular Vision-Based Position and Pose of Hand Detection and Tracking in Space

    Science.gov (United States)

    Jun, Chen; Wenjun, Hou; Qing, Sheng

    After the study of image segmentation, CamShift target tracking algorithm and stereo vision model of space, an improved algorithm based of Frames Difference and a new space point positioning model were proposed, a binocular visual motion tracking system was constructed to verify the improved algorithm and the new model. The problem of the spatial location and pose of the hand detection and tracking have been solved.

  2. ULTOR(Registered TradeMark) Passive Pose and Position Engine For Spacecraft Relative Navigation

    Science.gov (United States)

    Hannah, S. Joel

    2008-01-01

    The ULTOR(Registered TradeMark) Passive Pose and Position Engine (P3E) technology, developed by Advanced Optical Systems, Inc (AOS), uses real-time image correlation to provide relative position and pose data for spacecraft guidance, navigation, and control. Potential data sources include a wide variety of sensors, including visible and infrared cameras. ULTOR(Registered TradeMark) P3E has been demonstrated on a number of host processing platforms. NASA is integrating ULTOR(Registerd TradeMark) P3E into its Relative Navigation System (RNS), which is being developed for the upcoming Hubble Space Telescope (HST) Servicing Mission 4 (SM4). During SM4 ULTOR(Registered TradeMark) P3E will perform realtime pose and position measurements during both the approach and departure phases of the mission. This paper describes the RNS implementation of ULTOR(Registered TradeMark) P3E, and presents results from NASA's hardware-in-the-loop simulation testing against the HST mockup.

  3. Efficient structure from motion on large scenes using UAV with position and pose information

    Science.gov (United States)

    Teng, Xichao; Yu, Qifeng; Shang, Yang; Luo, Jing; Wang, Gang

    2018-04-01

    In this paper, we exploit prior information from global positioning systems and inertial measurement units to speed up the process of large scene reconstruction from images acquired by Unmanned Aerial Vehicles. We utilize weak pose information and intrinsic parameter to obtain the projection matrix for each view. As compared to unmanned aerial vehicles' flight altitude, topographic relief can usually be ignored, we assume that the scene is flat and use weak perspective camera to get projective transformations between two views. Furthermore, we propose an overlap criterion and select potentially matching view pairs between projective transformed views. A robust global structure from motion method is used for image based reconstruction. Our real world experiments show that the approach is accurate, scalable and computationally efficient. Moreover, projective transformations between views can also be used to eliminate false matching.

  4. Global Plate Velocities from the Global Positioning System

    Science.gov (United States)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  5. Laparoscopic cholecystectomy poses physical injury risk to surgeons: analysis of hand technique and standing position.

    Science.gov (United States)

    Youssef, Yassar; Lee, Gyusung; Godinez, Carlos; Sutton, Erica; Klein, Rosemary V; George, Ivan M; Seagull, F Jacob; Park, Adrian

    2011-07-01

    This study compares surgical techniques and surgeon's standing position during laparoscopic cholecystectomy (LC), investigating each with respect to surgeons' learning, performance, and ergonomics. Little homogeneity exists in LC performance and training. Variations in standing position (side-standing technique vs. between-standing technique) and hand technique (one-handed vs. two-handed) exist. Thirty-two LC procedures performed on a virtual reality simulator were video-recorded and analyzed. Each subject performed four different procedures: one-handed/side-standing, one-handed/between-standing, two-handed/side-standing, and two-handed/between-standing. Physical ergonomics were evaluated using Rapid Upper Limb Assessment (RULA). Mental workload assessment was acquired with the National Aeronautics and Space Administration-Task Load Index (NASA-TLX). Virtual reality (VR) simulator-generated performance evaluation and a subjective survey were analyzed. RULA scores were consistently lower (indicating better ergonomics) for the between-standing technique and higher (indicating worse ergonomics) for the side-standing technique, regardless of whether one- or two-handed. Anatomical scores overall showed side-standing to have a detrimental effect on the upper arms and trunk. The NASA-TLX showed significant association between the side-standing position and high physical demand, effort, and frustration (p<0.05). The two-handed technique in the side-standing position required more effort than the one-handed (p<0.05). No difference in operative time or complication rate was demonstrated among the four procedures. The two-handed/between-standing method was chosen as the best procedure to teach and standardize. Laparoscopic cholecystectomy poses a risk of physical injury to the surgeon. As LC is currently commonly performed in the United States, the left side-standing position may lead to increased physical demand and effort, resulting in ergonomically unsound conditions for

  6. Tooth display and lip position during spontaneous and posed smiling in adults.

    Science.gov (United States)

    Van Der Geld, Pieter; Oosterveld, Paul; Berge, Stefaan J; Kuijpers-Jagtman, Anne M

    2008-08-01

    To analyze differences in tooth display, lip-line height, and smile width between the posed smiling record, traditionally produced for orthodontic diagnosis, and the spontaneous (Duchenne) smile of joy. The faces of 122 male participants were each filmed during spontaneous and posed smiling. Spontaneous smiles were elicited through the participants watching a comical movie. Maxillary and mandibular lip-line heights, tooth display, and smile width were measured using a digital videographic method for smile analysis. Paired sample t-tests were used to compare measurements of posed and spontaneous smiling. Maxillary lip-line heights during spontaneous smiling were significantly higher than during posed smiling. Compared to spontaneous smiling, tooth display in the (pre)molar area during posed smiling decreased by up to 30%, along with a significant reduction of smile width. During posed smiling, also mandibular lip-line heights changed and the teeth were more covered by the lower lip than during spontaneous smiling. Reduced lip-line heights, tooth display, and smile width on a posed smiling record can have implications for the diagnostics of lip-line height, smile arc, buccal corridors, and plane of occlusion. Spontaneous smiling records next to posed smiling records are therefore recommended for diagnostic purposes. Because of the dynamic nature of spontaneous smiling, it is proposed to switch to dynamic video recording of the smile.

  7. Tooth display and lip position during spontaneous and posed smiling in adults.

    NARCIS (Netherlands)

    Geld, P.A.A.M. van der; Oosterveld, P.; Berge, S.J.; Kuijpers-Jagtman, A.M.

    2008-01-01

    OBJECTIVE: To analyze differences in tooth display, lip-line height, and smile width between the posed smiling record, traditionally produced for orthodontic diagnosis, and the spontaneous (Duchenne) smile of joy. MATERIAL AND METHODS: The faces of 122 male participants were each filmed during

  8. Distributed Extended Kalman Filter for Position, Velocity, Time, Estimation in Satellite Navigation Receivers

    Directory of Open Access Journals (Sweden)

    O. Jakubov

    2013-09-01

    Full Text Available Common techniques for position-velocity-time estimation in satellite navigation, iterative least squares and the extended Kalman filter, involve matrix operations. The matrix inversion and inclusion of a matrix library pose requirements on a computational power and operating platform of the navigation processor. In this paper, we introduce a novel distributed algorithm suitable for implementation in simple parallel processing units each for a tracked satellite. Such a unit performs only scalar sum, subtraction, multiplication, and division. The algorithm can be efficiently implemented in hardware logic. Given the fast position-velocity-time estimator, frequent estimates can foster dynamic performance of a vector tracking receiver. The algorithm has been designed from a factor graph representing the extended Kalman filter by splitting vector nodes into scalar ones resulting in a cyclic graph with few iterations needed. Monte Carlo simulations have been conducted to investigate convergence and accuracy. Simulation case studies for a vector tracking architecture and experimental measurements with a real-time software receiver developed at CTU in Prague were conducted. The algorithm offers compromises in stability, accuracy, and complexity depending on the number of iterations. In scenarios with a large number of tracked satellites, it can outperform the traditional methods at low complexity.

  9. Problem Posing

    OpenAIRE

    Šilhavá, Marie

    2009-01-01

    This diploma thesis concentrates on problem posing from the students' point of view. Problem posing can be either seen as a teaching method which can be used in the class, or it can be used as a tool for researchers or teachers to assess the level of students' understanding of the topic. In my research, I compare three classes, one mathematics specialist class and two generalist classes, in their ability of problem posing. As an assessment tool it seemed that mathemathics specialists were abl...

  10. MULTI-COMPONENT ANALYSIS OF POSITION-VELOCITY CUBES OF THE HH 34 JET

    International Nuclear Information System (INIS)

    Rodríguez-González, A.; Esquivel, A.; Raga, A. C.; Cantó, J.; Curiel, S.; Riera, A.; Beck, T. L.

    2012-01-01

    We present an analysis of Hα spectra of the HH 34 jet with two-dimensional spectral resolution. We carry out multi-Gaussian fits to the spatially resolved line profiles and derive maps of the intensity, radial velocity, and velocity width of each of the components. We find that close to the outflow source we have three components: a high (negative) radial velocity component with a well-collimated, jet-like morphology; an intermediate velocity component with a broader morphology; and a positive radial velocity component with a non-collimated morphology and large linewidth. We suggest that this positive velocity component is associated with jet emission scattered in stationary dust present in the circumstellar environment. Farther away from the outflow source, we find only two components (a high, negative radial velocity component, which has a narrower spatial distribution than an intermediate velocity component). The fitting procedure was carried out with the new AGA-V1 code, which is available online and is described in detail in this paper.

  11. Accuracy of velocities from repeated GPS surveys: relative positioning is concerned

    Science.gov (United States)

    Duman, Huseyin; Ugur Sanli, D.

    2016-04-01

    Over more than a decade, researchers have been interested in studying the accuracy of GPS positioning solutions. Recently, reporting the accuracy of GPS velocities has been added to this. Researchers studying landslide motion, tectonic motion, uplift, sea level rise, and subsidence still report results from GPS experiments in which repeated GPS measurements from short sessions are used. This motivated some other researchers to study the accuracy of GPS deformation rates/velocities from various repeated GPS surveys. In one of the efforts, the velocity accuracy was derived from repeated GPS static surveys using short observation sessions and Precise Point Positioning mode of GPS software. Velocities from short GPS sessions were compared with the velocities from 24 h sessions. The accuracy of velocities was obtained using statistical hypothesis testing and quantifying the accuracy of least squares estimation models. The results reveal that 45-60 % of the horizontal and none of the vertical solutions comply with the results from 24 h solutions. We argue that this case in which the data was evaluated using PPP should also apply to the case in which the data belonging to long GPS base lengths is processed using fundamental relative point positioning. To test this idea we chose the two IGS stations ANKR and NICO and derive their velocities from the reference stations held fixed in the stable EURASIAN plate. The University of Bern's GNSS software BERNESE was used to produce relative positioning solutions, and the results are compared with those of GIPSY/OASIS II PPP results. First impressions indicate that it is worth designing a global experiment and test these ideas in detail.

  12. Experimental observation of both negative and positive phase velocities in a two-dimensional sonic crystal

    International Nuclear Information System (INIS)

    Lu, Ming-Hui; Feng, Liang; Liu, Xiao-Ping; Liu, Xiao-Kang; Chen, Yan-Feng; Zhu, Yong-Yuan; Mao, Yi-Wei; Zi, Jian

    2007-01-01

    Both negative and positive phase velocities for acoustic waves have been experimentally established in a two-dimensional triangular sonic crystal (SC) consisting of steel cylinders embedded in air at first. With the increase of the SCs thickness layer by layer in the experiments, phase shifts decrease in the second band but increase in the first band, showing the negative and the positive phase velocities, respectively. Moreover, the dispersion relation of the SC is constructed by the phase information, which is consistent well with the theoretical results. These abundant characteristics of acoustic wave propagation in the SC might be useful for the device applications

  13. On the determination of heliographic positions and rotation velocities of sunspots. Pt. 2

    International Nuclear Information System (INIS)

    Balthasar, H.

    1983-01-01

    Using sunspot positions of small sunspots observed at Debrecen and Locarno as well as positions of recurrent sunspots taken from the Greenwich Photoheliographic Results (1940-1976) the influence of the Wilson depression on the rotation velocities was investigated. It was found that the Wilson depression can be determined by minimizing errors of the rotation velocities or minimizing the differences of rotation velocities determined from disk passages and central meridian passages. The Wilson depressions found were between 765 km and 2500 km for the first sample while they were between 0 km and several 1000 km for the second sample. The averaged Wilson depression for the second sample is between 500 km and 965 km depending on the reduction method. A dependence of the Wilson depression on the age of the spots investigated seems not to exist. (orig.)

  14. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity of the ...

  15. Cerebral blood flow velocity changes during upright positioning in bed after acute stroke : An observational study

    NARCIS (Netherlands)

    Aries, Marcel J; Elting, Jan Willem; Stewart, Roy; De Keyser, Jacques; Kremer, Berry; Vroomen, Patrick

    2013-01-01

    Objectives: National guidelines recommend mobilisation in bed as early as possible after acute stroke. Little is known about the influence of upright positioning on real-time cerebral flow variables in patients with stroke. We aimed to assess whether cerebral blood flow velocity (CBFV) changes

  16. Effect of head rotation on cerebral blood velocity in the prone position

    DEFF Research Database (Denmark)

    Højlund, Jakob; Sandmand, Marie; Sonne, Morten

    2012-01-01

    for cerebral blood flow. We tested in healthy subjects the hypothesis that rotating the head in the prone position reduces cerebral blood flow. Methods. Mean arterial blood pressure (MAP), stroke volume (SV), and CO were determined, together with the middle cerebral artery mean blood velocity (MCA V...... V(mean) ~10% in spite of an elevated MAP. Prone positioning with rotated head affects both CBF and cerebrovenous drainage indicating that optimal brain perfusion requires head centering....

  17. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    Energy Technology Data Exchange (ETDEWEB)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Winands, G J J [Department of Electrical Engineering, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: e.m.v.veldhuizen@tue.nl, E-mail: ebert@cwi.nl

    2008-12-07

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v {approx} 10{sup 5} m s{sup -1}. For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10{sup 6} m s{sup -1}; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d{sup 2} mm{sup -1} ns{sup -1} for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  18. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    International Nuclear Information System (INIS)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U; Winands, G J J

    2008-01-01

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v ∼ 10 5 m s -1 . For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10 6 m s -1 ; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d 2 mm -1 ns -1 for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  19. Self-Management of Patient Body Position, Pose, and Motion Using Wide-Field, Real-Time Optical Measurement Feedback: Results of a Volunteer Study

    International Nuclear Information System (INIS)

    Parkhurst, James M.; Price, Gareth J.; Sharrock, Phil J.; Jackson, Andrew S.N.; Stratford, Julie; Moore, Christopher J.

    2013-01-01

    Purpose: We present the results of a clinical feasibility study, performed in 10 healthy volunteers undergoing a simulated treatment over 3 sessions, to investigate the use of a wide-field visual feedback technique intended to help patients control their pose while reducing motion during radiation therapy treatment. Methods and Materials: An optical surface sensor is used to capture wide-area measurements of a subject's body surface with visualizations of these data displayed back to them in real time. In this study we hypothesize that this active feedback mechanism will enable patients to control their motion and help them maintain their setup pose and position. A capability hierarchy of 3 different level-of-detail abstractions of the measured surface data is systematically compared. Results: Use of the device enabled volunteers to increase their conformance to a reference surface, as measured by decreased variability across their body surfaces. The use of visual feedback also enabled volunteers to reduce their respiratory motion amplitude to 1.7 ± 0.6 mm compared with 2.7 ± 1.4 mm without visual feedback. Conclusions: The use of live feedback of their optically measured body surfaces enabled a set of volunteers to better manage their pose and motion when compared with free breathing. The method is suitable to be taken forward to patient studies

  20. The First Result of Relative Positioning and Velocity Estimation Based on CAPS

    Science.gov (United States)

    Zhao, Jiaojiao; Ge, Jian; Wang, Liang; Wang, Ningbo; Zhou, Kai; Yuan, Hong

    2018-01-01

    The Chinese Area Positioning System (CAPS) is a new positioning system developed by the Chinese Academy of Sciences based on the communication satellites in geosynchronous orbit. The CAPS has been regarded as a pilot system to test the new technology for the design, construction and update of the BeiDou Navigation Satellite System (BDS). The system structure of CAPS, including the space, ground control station and user segments, is almost like the traditional Global Navigation Satellite Systems (GNSSs), but with the clock on the ground, the navigation signal in C waveband, and different principles of operation. The major difference is that the CAPS navigation signal is first generated at the ground control station, before being transmitted to the satellite in orbit and finally forwarded by the communication satellite transponder to the user. This design moves the clock from the satellite in orbit to the ground. The clock error can therefore be easily controlled and mitigated to improve the positioning accuracy. This paper will present the performance of CAPS-based relative positioning and velocity estimation as assessed in Beijing, China. The numerical results show that, (1) the accuracies of relative positioning, using only code measurements, are 1.25 and 1.8 m in the horizontal and vertical components, respectively; (2) meanwhile, they are about 2.83 and 3.15 cm in static mode and 6.31 and 10.78 cm in kinematic mode, respectively, when using the carrier-phase measurements with ambiguities fixed; and (3) the accuracy of the velocity estimation is about 0.04 and 0.11 m/s in static and kinematic modes, respectively. These results indicate the potential application of CAPS for high-precision positioning and velocity estimation and the availability of a new navigation mode based on communication satellites. PMID:29757204

  1. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    Science.gov (United States)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  2. On the measurement of the neutrino velocity applying the standard time of the Global Positioning System

    International Nuclear Information System (INIS)

    Skeivalas, J; Parseliunas, E

    2013-01-01

    The measurement of the neutrino velocity applying the standard time of the Global Positioning System (GPS) is presented in the paper. The practical data were taken from the OPERA experiment, in which neutrino emission from the CERN LHC accelerator to Gran Sasso detector was investigated. The distance between accelerator and detector is about 730 km. The time interval was measured by benchmark clocks, which were calibrated by the standard GPS time signals received from GPS satellites. The calculation of the accuracy of the GPS time signals with respect to changes of the signals' frequencies due to the Doppler effect is presented. It is shown that a maximum error of about 200 ns could occur when GPS time signals are applied for the calibration of the clocks for the neutrino velocity measurements. (paper)

  3. An investigation of airborne GPS/INS for high accuracy position and velocity determination

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H.; Cannon, M.E. [Calgary Univ., AB (Canada). Dept. of Geomatics Engineering; Owen, T.E.; Meindl, M.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-31

    An airborne test using a differential GPS-INS system in a Twin Otter was conducted by Sandia National Laboratories to assess the feasibility of using the integrated system for cm-level position and cm/s velocity. The INS is a miniaturized ring-laser gyro IMU jointly developed by Sandia and Honeywell while the GPS system consists of the NovAtel GPSCard{trademark}. INS position, velocity and attitude data were computed using Sandia`s SANDAC flight computer system and logged at 4 Hz and GPS data was acquired at a 1 Hz rate. The mission was approximately 2.5 hours in duration and the aircraft reached separations of up to 19 km from the base station. The data was post-processed using a centralized Kalman filter approach in which the double differenced carrier phase measurements are used to update the INS data. The INS position is in turn used to detect and correct GPS carrier phase cycle slips and also to bridge GPS outages. Results are presented for the GPS-only case and also for integrated GPS/INS.

  4. Superconducting low-velocity linac for the Argonne positive-ion injector

    International Nuclear Information System (INIS)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab

  5. Superconducting low-velocity linac for the Argonne positive-ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab.

  6. Middle cerebral artery blood flow velocity during beach chair position for shoulder surgery under general anesthesia.

    Science.gov (United States)

    Hanouz, Jean-Luc; Fiant, Anne-Lise; Gérard, Jean-Louis

    2016-09-01

    The goal of the present study was to examine changes of middle cerebral artery (VMCA) blood flow velocity in patients scheduled for shoulder surgery in beach chair position. Prospective observational study. Operating room, shoulder surgery. Fifty-three consecutive patients scheduled for shoulder surgery in beach chair position. Transcranial Doppler performed after induction of general anesthesia (baseline), after beach chair positioning (BC1), during surgery 20minutes (BC2), and after back to supine position before stopping anesthesia (supine). Mean arterial pressure (MAP), end-tidal CO2, and volatile anesthetic concentration and VMCA were recorded at baseline, BC1, BC2, and supine. Postoperative neurologic complications were searched. Beach chair position induced decrease in MAP (baseline: 73±10mm Hg vs lower MAP recorded: 61±10mm Hg; P<.0001) requiring vasopressors and fluid challenge in 44 patients (83%). There was a significant decrease in VMCA after beach chair positioning (BC1: 33±10cm/s vs baseline: 39±14cm/s; P=.001). The VMCA at baseline (39±2cm/s), BC2 (35±14cm/s), and supine (39±14cm/s) were not different. The minimal alveolar concentration of volatile anesthetics, end-tidal CO2, SpO2, and MAP were not different at baseline, BC1, BC2, and supine. Beach chair position resulted in transient decrease in MAP requiring fluid challenge and vasopressors and a moderate decrease in VMCA. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A gain-field encoding of limb position and velocity in the internal model of arm dynamics.

    Directory of Open Access Journals (Sweden)

    Eun Jung Hwang

    2003-11-01

    Full Text Available Adaptability of reaching movements depends on a computation in the brain that transforms sensory cues, such as those that indicate the position and velocity of the arm, into motor commands. Theoretical consideration shows that the encoding properties of neural elements implementing this transformation dictate how errors should generalize from one limb position and velocity to another. To estimate how sensory cues are encoded by these neural elements, we designed experiments that quantified spatial generalization in environments where forces depended on both position and velocity of the limb. The patterns of error generalization suggest that the neural elements that compute the transformation encode limb position and velocity in intrinsic coordinates via a gain-field; i.e., the elements have directionally dependent tuning that is modulated monotonically with limb position. The gain-field encoding makes the counterintuitive prediction of hypergeneralization: there should be growing extrapolation beyond the trained workspace. Furthermore, nonmonotonic force patterns should be more difficult to learn than monotonic ones. We confirmed these predictions experimentally.

  8. A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system.

    Science.gov (United States)

    Gao, Bingwei; Shao, Junpeng; Yang, Xiaodong

    2014-11-01

    In order to enhance the anti-jamming ability of electro-hydraulic position servo control system at the same time improve the control precision of the system, a compound control strategy that combines velocity compensation with Active Disturbance Rejection Controller (ADRC) is proposed, and the working principle of the compound control strategy is given. ADRC controller is designed, and the extended state observer is used for observing internal parameters uncertainties and external disturbances, so that the disturbances of the system are suppressed effectively. Velocity compensation controller is designed and the compensation model is derived to further improve the positioning accuracy of the system and to achieve the velocity compensation without disturbance. The compound control strategy is verified by the simulation and experiment respectively, and the simulation and experimental results show that the electro-hydraulic position servo control system with ADRC controller can effectively inhibit the external disturbances, the precise positioning control is realized after introducing the velocity compensation controller, and verify that the compound control strategy is effective. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Influence of upper body position on middle cerebral artery blood velocity during continuous positive airway pressure breathing

    DEFF Research Database (Denmark)

    Højlund Rasmussen, J; Mantoni, T; Belhage, B

    2007-01-01

    Continuous positive airway pressure (CPAP) is a treatment modality for pulmonary oxygenation difficulties. CPAP impairs venous return to the heart and, in turn, affects cerebral blood flow (CBF) and augments cerebral blood volume (CBV). We considered that during CPAP, elevation of the upper body ...

  10. Estimation of position and velocity for a low dynamic vehicle in near space using nonresolved photometric and astrometric data.

    Science.gov (United States)

    Jing, Nan; Li, Chuang; Chong, Yaqin

    2017-01-20

    An estimation method for indirectly observable parameters for a typical low dynamic vehicle (LDV) is presented. The estimation method utilizes apparent magnitude, azimuth angle, and elevation angle to estimate the position and velocity of a typical LDV, such as a high altitude balloon (HAB). In order to validate the accuracy of the estimated parameters gained from an unscented Kalman filter, two sets of experiments are carried out to obtain the nonresolved photometric and astrometric data. In the experiments, a HAB launch is planned; models of the HAB dynamics and kinematics and observation models are built to use as time update and measurement update functions, respectively. When the HAB is launched, a ground-based optoelectronic detector is used to capture the object images, which are processed using aperture photometry technology to obtain the time-varying apparent magnitude of the HAB. Two sets of actual and estimated parameters are given to clearly indicate the parameter differences. Two sets of errors between the actual and estimated parameters are also given to show how the estimated position and velocity differ with respect to the observation time. The similar distribution curve results from the two scenarios, which agree within 3σ, verify that nonresolved photometric and astrometric data can be used to estimate the indirectly observable state parameters (position and velocity) for a typical LDV. This technique can be applied to small and dim space objects in the future.

  11. Angles-Only Navigation: Position and Velocity Solution from Absolute Triangulation

    Science.gov (United States)

    2011-01-01

    contrast to the Kalman filter approach , the algorithm presented here does not require any pre- vious estimate of position or motion, and is of closed... geocentric position vectors. Using two vectors derived from each such observation (see next section), a solution for a portion of the boat’s track was...t)x0 describes the curvature of the path in the direction x 0, which, for a geocentric coordinate system and /(t) < 0, will be toward the center of

  12. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    Science.gov (United States)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  13. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...

  14. Pose Space Surface Manipulation

    Directory of Open Access Journals (Sweden)

    Yusuke Yoshiyasu

    2012-01-01

    Full Text Available Example-based mesh deformation techniques produce natural and realistic shapes by learning the space of deformations from examples. However, skeleton-based methods cannot manipulate a global mesh structure naturally, whereas the mesh-based approaches based on a translational control do not allow the user to edit a local mesh structure intuitively. This paper presents an example-driven mesh editing framework that achieves both global and local pose manipulations. The proposed system is built with a surface deformation method based on a two-step linear optimization technique and achieves direct manipulations of a model surface using translational and rotational controls. With the translational control, the user can create a model in natural poses easily. The rotational control can adjust the local pose intuitively by bending and twisting. We encode example deformations with a rotation-invariant mesh representation which handles large rotations in examples. To incorporate example deformations, we infer a pose from the handle translations/rotations and perform pose space interpolation, thereby avoiding involved nonlinear optimization. With the two-step linear approach combined with the proposed multiresolution deformation method, we can edit models at interactive rates without losing important deformation effects such as muscle bulging.

  15. The role of ECoG magnitude and phase in decoding position, velocity and acceleration during continuous motor behavior

    Directory of Open Access Journals (Sweden)

    Jiri eHammer

    2013-11-01

    Full Text Available In neuronal population signals, including the electroencephalogram (EEG and electrocorticogram (ECoG, the low-frequency component (LFC is particularly informative about motor behavior and can be used for decoding movement parameters for brain-machine interface (BMI applications. An idea previously expressed, but as of yet not quantitatively tested, is that it is the LFC phase that is the main source of decodable information. To test this issue, we analyzed human ECoG recorded during a game-like, one-dimensional, continuous motor task with a novel decoding method suitable for unfolding magnitude and phase explicitly into a complex-valued, time-frequency signal representation, enabling quantification of the decodable information within the temporal, spatial and frequency domains and allowing disambiguation of the phase contribution from that of the spectral magnitude. The decoding accuracy based only on phase information was substantially (at least 2 fold and significantly higher than that based only on magnitudes for position, velocity and acceleration. The frequency profile of movement-related information in the ECoG data matched well with the frequency profile expected when assuming a close time-domain correlate of movement velocity in the ECoG, e.g., a (noisy copy of hand velocity. No such match was observed with the frequency profiles expected when assuming a copy of either hand position or acceleration. There was also no indication of additional magnitude-based mechanisms encoding movement information in the LFC range. Thus, our study contributes to elucidating the nature of the informative low-frequency component of motor cortical population activity and may hence contribute to improve decoding strategies and BMI performance.

  16. A comparison of ball velocity in different kicking positions with dominant and non-dominant leg in junior soccer players

    Directory of Open Access Journals (Sweden)

    MÁRIO C. MARQUES

    2011-06-01

    Full Text Available Problem Statement: The aim of this study was to compare the ball velocity in different kicking conditions with dominant and non-dominant leg in junior soccer players.Approach: Sixteen junior soccer players (age 17.6±0.6yr, height 1.76±0.06m, and weight 67.9±5.2kg participated in this study. All participants kicked a soccer ball three times in seven conditions with the dominant and non-dominant leg. 1 Kicking the ball from 11m straight forwards, 2 and 3 kicking the ball from 11m to the left and right side of the goal, 4 and 5 kicking the ball straight forwards from 11m after a pass from the left and right side, 6 and 7 kicking the ball straight forwards from 11m after a pass that came from a diagonal position (45º from the left and right side. The highest ball velocity was used for analysis.Results: Significant differences were found in ball velocity between the dominant and non-dominant leg in all conditions (p<0.001. For the dominant leg also significant differences were found in the kicking of eleven meters (ideal conditions compared with: the perpendicular passing kick after the ball on the right (p=0.0024 and left (p=0.0080 and also with a diagonal kick after pass (45 ° of the ball on the right (p=0.0017 and left (p = 0.0381. Significant differences in the kicking with the non-dominant leg were found when kicking from eleven meters to the right side of the goal in comparison to: the kick under the same conditions, to the left side of the goal (p=0.0243 after pass and shot from the left side perpendicular (p=0.0222.Conclusions/Recommendations: kicking velocity is influenced very much under different conditions when kicking with the dominant leg while for the non-dominant leg this influence was small, because the non-dominant leg is less trained, so the values of velocity in different conditions, in addition to being the lowest, are closer than those obtained with the dominant leg

  17. Single leg balancing in ballet: effects of shoe conditions and poses.

    Science.gov (United States)

    Lobo da Costa, Paula H; Azevedo Nora, Fernanda G S; Vieira, Marcus Fraga; Bosch, Kerstin; Rosenbaum, Dieter

    2013-03-01

    The purpose of this study was to describe the effects of lower limb positioning and shoe conditions on stability levels of selected single leg ballet poses performed in demi-pointe position. Fourteen female non-professional ballet dancers (mean age of 18.4±2.8 years and mean body mass index of 21.5±2.8kg/m(2)) who had practiced ballet for at least seven years, without any musculoskeletal impairment volunteered to participate in this study. A capacitive pressure platform allowed for the assessment of center of pressure variables related to the execution of three single leg ballet poses in demi pointé position: attitude devant, attitude derriére, and attitude a la second. Peak pressures, contact areas, COP oscillation areas, anterior-posterior and medio-lateral COP oscillations and velocities were compared between two shoe conditions (barefoot versus slippers) and among the different poses. Barefoot performances produced more stable poses with significantly higher plantar contact areas, smaller COP oscillation areas and smaller anterior-posterior COP oscillations. COP oscillation areas, anterior-posterior COP oscillations and medio-lateral COP velocities indicated that attitude a la second is the least challenging and attitude derriére the most challenging pose. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Boneless Pose Editing and Animation

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Hansen, Kristian Evers; Erleben, Kenny

    2007-01-01

    In this paper, we propose a pose editing and animation method for triangulated surfaces based on a user controlled partitioning of the model into deformable parts and rigid parts which are denoted handles. In our pose editing system, the user can sculpt a set of poses simply by transforming...... the handles for each pose. Using Laplacian editing, the deformable parts are deformed to match the handles. In our animation system the user can constrain one or several handles in order to define a new pose. New poses are interpolated from the examples poses, by solving a small non-linear optimization...... problem in order to obtain the interpolation weights. While the system can be used simply for building poses, it is also an animation system. The user can specify a path for a given constraint and the model is animated correspondingly....

  19. Solutions of the Bogoliubov–de Gennes equation with position dependent Fermi-velocity and gap profiles

    Energy Technology Data Exchange (ETDEWEB)

    Presilla, M. [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Panella, O., E-mail: orlando.panella@pg.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Roy, P. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2017-02-19

    It is shown that bound state solutions of the one dimensional Bogoliubov–de Gennes (BdG) equation may exist when the Fermi velocity becomes dependent on the space coordinate. The existence of bound states in continuum (BIC) like solutions has also been confirmed both in the normal phase as well as in the super-conducting phase. We also show that a combination of Fermi velocity and gap parameter step-like profiles provides scattering solutions with normal reflection and transmission. - Highlights: • Bound states of BdG equation via Fermi velocity modulation. • Existence of bound states in continuum in both the normal and the superconducting phase. • Scattering solutions and bound states within a combination of step-like Fermi velocity and gap profiles.

  20. The art of problem posing

    CERN Document Server

    Brown, Stephen I

    1990-01-01

    Updated and expanded, this second edition satisfies the same philosophical objective as the first -- to show the importance of problem posing. Although interest in mathematical problem solving increased during the past decade, problem posing remained relatively ignored. The Art of Problem Posing draws attention to this equally important act and is the innovator in the field. Special features include: * an exploration ofthe logical relationship between problem posing and problem solving * a special chapter devoted to teaching problem posing as a separate course * sketches, drawings, diagrams, and cartoons that illustrate the schemes proposed * a special section on writing in mathematics.

  1. The Effect of Motion Analysis Activities in a Video-Based Laboratory in Students' Understanding of Position, Velocity and Frames of Reference

    Science.gov (United States)

    Koleza, Eugenia; Pappas, John

    2008-01-01

    In this article, we present the results of a qualitative research project on the effect of motion analysis activities in a Video-Based Laboratory (VBL) on students' understanding of position, velocity and frames of reference. The participants in our research were 48 pre-service teachers enrolled in Education Departments with no previous strong…

  2. Seasonal and inter-annual variability in velocity and frontal position of Siachen Glacier (Eastern Karakorum) using multi-satellite data

    Science.gov (United States)

    Usman, M.; Furuya, M.; Sakakibara, D.; Abe, T.

    2017-12-01

    The anomalous behavior of Karakorum glaciers is a hot topic of discussion in the scientific community. Siachen Glacier is one of the longest glaciers ( 75km) in Karakorum Range. This glacier is supposed to be a surge type but so far no studies have confirmed this claim. Detailed velocity mapping of this glacier can possibly provide some clues about intra/inter-annual changes in velocity and observed terminus. Using L-band SAR data of ALOS-1/2, we applied the feature tracking technique (search patch of 128x128 pixels (range x azimuth) , sampling interval of 12x36 pixels) to derive velocity changes; we used GAMMA software. The velocity was calculated by following the parallel flow assumption. To calculate the local topographic gradient unit vector, we used ASTER-GDEM. We also used optical images acquired by Landsat 5 Thematic Mapper (TM), the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) to derive surface velocity. The algorithm we used is Cross-Correlation in Frequency domain on Orientation images (CCF-O). The velocity was finally calculated by setting a flow line and averaging over the area of 200x200m2. The results indicate seasonal speed up signals that modulate inter-annually from 1999 to 2011, with slight or no change in the observed frontal position. However, in ALOS-2 data, the `observed terminus' seems to have been advancing.

  3. Yoga Poses Increase Subjective Energy and State Self-Esteem in Comparison to 'Power Poses'.

    Science.gov (United States)

    Golec de Zavala, Agnieszka; Lantos, Dorottya; Bowden, Deborah

    2017-01-01

    Research on beneficial consequences of yoga focuses on the effects of yogic breathing and meditation. Less is known about the psychological effects of performing yoga postures. The present study investigated the effects of yoga poses on subjective sense of energy and self-esteem. The effects of yoga postures were compared to the effects of 'power poses,' which arguably increase the sense of power and self-confidence due to their association with interpersonal dominance (Carney et al., 2010). The study tested the novel prediction that yoga poses, which are not associated with interpersonal dominance but increase bodily energy, would increase the subjective feeling of energy and therefore increase self-esteem compared to 'high power' and 'low power' poses. A two factorial, between participants design was employed. Participants performed either two standing yoga poses with open front of the body ( n = 19), two standing yoga poses with covered front of the body ( n = 22), two expansive, high power poses ( n = 21), or two constrictive, low power poses ( n = 20) for 1-min each. The results showed that yoga poses in comparison to 'power poses' increased self-esteem. This effect was mediated by an increased subjective sense of energy and was observed when baseline trait self-esteem was controlled for. These results suggest that the effects of performing open, expansive body postures may be driven by processes other than the poses' association with interpersonal power and dominance. This study demonstrates that positive effects of yoga practice can occur after performing yoga poses for only 2 min.

  4. Performance Analysis and Design Strategy for a Second-Order, Fixed-Gain, Position-Velocity-Measured (α-β-η-θ Tracking Filter

    Directory of Open Access Journals (Sweden)

    Kenshi Saho

    2017-07-01

    Full Text Available We present a strategy for designing an α - β - η - θ filter, a fixed-gain moving-object tracking filter using position and velocity measurements. First, performance indices and stability conditions for the filter are analytically derived. Then, an optimal gain design strategy using these results is proposed and its relationship to the position-velocity-measured (PVM Kalman filter is shown. Numerical analyses demonstrate the effectiveness of the proposed strategy, as well as a performance improvement over the traditional position-only-measured α - β filter. Moreover, we apply an α - β - η - θ filter designed using this strategy to ultra-wideband Doppler radar tracking in numerical simulations. We verify that the proposed strategy can easily design the gains for an α - β - η - θ filter based on the performance of the ultra-wideband Doppler radar and a rough approximation of the target’s acceleration. Moreover, its effectiveness in predicting the steady state performance in designing the position-velocity-measured Kalman filter is also demonstrated.

  5. Problem posing reflections and applications

    CERN Document Server

    Brown, Stephen I

    2014-01-01

    As a result of the editors' collaborative teaching at Harvard in the late 1960s, they produced a ground-breaking work -- The Art Of Problem Posing -- which related problem posing strategies to the already popular activity of problem solving. It took the concept of problem posing and created strategies for engaging in that activity as a central theme in mathematics education. Based in part upon that work and also upon a number of articles by its authors, other members of the mathematics education community began to apply and expand upon their ideas. This collection of thirty readings is a tes

  6. Experimental study of the positive leader velocity as a function of the current in the initial and final-jump phases of a spark discharge

    International Nuclear Information System (INIS)

    Andreev, A. G.; Bazelyan, E. M.; Bulatov, M. U.; Kuzhekin, I. P.; Makalsky, L. M.; Sukharevskij, D. I.; Syssoev, V. S.

    2008-01-01

    A positive leader in air at gap lengths of up to 8 m was studied experimentally on an open experimental stand. The voltage source was a 6-MV pulsed voltage generator or an artificial charged aerosol cloud. The dependence of the leader velocity on the current in the range 0.2-8 A was determined by simultaneously recording the optical picture and electric parameters of the discharge. Particular attention was paid to the final-jump phase of the discharge, when the gap was completely bridged by the streamer zone of the leader. It is shown that the character of the dependence of the leader velocity on the current in this phase remains unchanged; hence, the final-jump phase can be used in experiments in which the current has to be varied within a wide range. For this purpose, one can use a damping resistance, which is inefficient in the initial phase. The parameters of the power-law dependence of the leader velocity on the current at currents of a few amperes are established reliably. It is found that the power-law dependence with constant parameters is inapplicable to calculate the leader velocity at currents of about 0.1 A, which correspond to the lower limit of the leader viability.

  7. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2012 by forcing prescribed terminus positions in ISSM

    Science.gov (United States)

    Haubner, Konstanze; Box, Jason E.; Schlegel, Nicole J.; Larour, Eric Y.; Morlighem, Mathieu; Solgaard, Anne M.; Kjeldsen, Kristian K.; Larsen, Signe H.; Rignot, Eric; Dupont, Todd K.; Kjær, Kurt H.

    2018-04-01

    Tidewater glacier velocity and mass balance are known to be highly responsive to terminus position change. Yet it remains challenging for ice flow models to reproduce observed ice margin changes. Here, using the Ice Sheet System Model (ISSM; Larour et al. 2012), we simulate the ice velocity and thickness changes of Upernavik Isstrøm (north-western Greenland) by prescribing a collection of 27 observed terminus positions spanning 164 years (1849-2012). The simulation shows increased ice velocity during the 1930s, the late 1970s and between 1995 and 2012 when terminus retreat was observed along with negative surface mass balance anomalies. Three distinct mass balance states are evident in the reconstruction: (1849-1932) with near zero mass balance, (1932-1992) with ice mass loss dominated by ice dynamical flow, and (1998-2012), when increased retreat and negative surface mass balance anomalies led to mass loss that was twice that of any earlier period. Over the multi-decadal simulation, mass loss was dominated by thinning and acceleration responsible for 70 % of the total mass loss induced by prescribed change in terminus position. The remaining 30 % of the total ice mass loss resulted directly from prescribed terminus retreat and decreasing surface mass balance. Although the method can not explain the cause of glacier retreat, it enables the reconstruction of ice flow and geometry during 1849-2012. Given annual or seasonal observed terminus front positions, this method could be a useful tool for evaluating simulations investigating the effect of calving laws.

  8. Maximal power training induced different improvement in throwing velocity and muscle strength according to playing positions in elite male handball players.

    Science.gov (United States)

    Cherif, M; Chtourou, H; Souissi, N; Aouidet, A; Chamari, K

    2016-12-01

    This study was designed to assess the effect of strength and power training on throwing velocity and muscle strength in handball players according to their playing positions. Twenty-two male handball players were assigned to either an experimental group (n=11) or a control group (n=11) (age: 22.1 ± 3.0 years). They were asked to complete (i) the ball throwing velocity test and (ii) the one-repetition maximum (1-RM) tests for the half-back squat, the pull-over, the bench press, the developed neck, and the print exercises before and after 12 weeks of maximal power training. The training was designed to improve strength and power with an intensity of 85-95% of the 1RM. In addition to their usual routine handball training sessions, participants performed two sessions per week. During each session, they performed 3-5 sets of 3-8 repetitions with 3 min of rest in between. Then, they performed specific shots (i.e., 12 to 40). Ball-throwing velocity (p<0.001) was higher after the training period in rear line players (RL). The training programme resulted in an improvement of 1RM bench press (p<0.001), 1RM developed neck (p<0.001) and 1RM print (p<0.001) in both front line (FL) and RL. The control group showed a significant improvement only in ball-throwing velocity (p<0.01) and 1RM bench press (p<0.01) in RL. A significantly greater improvement was found in ball-throwing velocity (p<0.001), 1RM bench press (p<0.001), and 1RM half-back squat exercises in players of the central axis (CA) compared to the lateral axis (LA) (p<0.01). The power training programme induced significantly greater increases in ball-throwing velocity and muscle strength in FL than RL and in CA than LA axis players.

  9. Surgical fiducial segmentation and tracking for pose estimation based on ultrasound B-mode images.

    Science.gov (United States)

    Lei Chen; Kuo, Nathanael; Aalamifar, Fereshteh; Narrow, David; Coon, Devin; Prince, Jerry; Boctor, Emad M

    2016-08-01

    Doppler ultrasound is a non-invasive diagnostic tool for the quantitative measurement of blood flow. However, given that it provides velocity data that is dependent on the location and angle of measurement, repeat measurements to detect problems over time may require an expert to return to the same location. We therefore developed an image-guidance system based on ultrasound B-mode images that enables an inexperienced user to position the ultrasound probe at the same site repeatedly in order to acquire a comparable time series of Doppler readings. The system utilizes a bioresorbable fiducial and complementing software composed of the fiducial detection, key points tracking, probe pose estimation, and graphical user interface (GUI) modules. The fiducial is an echogenic marker that is implanted at the surgical site and can be detected and tracked during ultrasound B-mode screening. The key points on the marker can next be used to determine the pose of the ultrasound probe with respect to the marker. The 3D representation of the probe with its position and orientation are then displayed in the GUI for the user guidance. The fiducial detection has been tested on the data sets collected from three animal studies. The pose estimation algorithm was validated by five data sets collected by a UR5 robot. We tested the system on a plastisol phantom and showed that it can detect and track the fiducial marker while displaying the probe pose in real-time.

  10. Method of orthogonally splitting imaging pose measurement

    Science.gov (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  11. Pose Planning for the Feed Support System of FAST

    Directory of Open Access Journals (Sweden)

    Rui Yao

    2014-01-01

    Full Text Available A six-cable driven parallel manipulator and an A-B rotator in the feed support system of the Five-hundred-meter Aperture Spherical radio Telescope (FAST are adopted for realizing the position and pose of nine feeds. The six-cable driven parallel manipulator is a flexible mechanism, which may not be stably controlled due to a small cable tension. The A-B rotator is a rigid mechanism, and its stability and accuracy can be improved by small pose angle. Based on the different characteristics, a pose planning function is presented. The optimization target of the pose planning function is to get the smallest pose angle of the A-B rotator, and the constraint condition can reflect the controllability of the six-cable driven parallel manipulator. Then, the pose planning realization process of the feed support system is proposed. Based on the pose planning method, optimized pose angles of the feed support system for the nine feeds are obtained, which suggests that the pose angle of the six-cable driven parallel manipulator changes from 0° to 14° and the pose angle of the A-B rotator changes from 0° to 26.4°.

  12. Is supergravity well-posed?

    International Nuclear Information System (INIS)

    Isenberg, J.; Bao, D.; Yasskin, P.B.

    1983-01-01

    One rather fundamental question concerning supergravity remains unresolved: Is supergravity a well-posed field theory? That is, does a set of certain (Cauchy) data specified on some initial spacelike surface determine a unique, causally propagating spacetime solution of the supergravity field equations (at least in some finite neighborhood of the initial surface)? In this paper, the authors give a very brief report on work directed towards answering this question. (Auth.)

  13. Cracked rocks with positive and negative Poisson's ratio: real-crack properties extracted from pressure dependence of elastic-wave velocities

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena

    2017-04-01

    We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.

  14. Robotic-surgical instrument wrist pose estimation.

    Science.gov (United States)

    Fabel, Stephan; Baek, Kyungim; Berkelman, Peter

    2010-01-01

    The Compact Lightweight Surgery Robot from the University of Hawaii includes two teleoperated instruments and one endoscope manipulator which act in accord to perform assisted interventional medicine. The relative positions and orientations of the robotic instruments and endoscope must be known to the teleoperation system so that the directions of the instrument motions can be controlled to correspond closely to the directions of the motions of the master manipulators, as seen by the the endoscope and displayed to the surgeon. If the manipulator bases are mounted in known locations and all manipulator joint variables are known, then the necessary coordinate transformations between the master and slave manipulators can be easily computed. The versatility and ease of use of the system can be increased, however, by allowing the endoscope or instrument manipulator bases to be moved to arbitrary positions and orientations without reinitializing each manipulator or remeasuring their relative positions. The aim of this work is to find the pose of the instrument end effectors using the video image from the endoscope camera. The P3P pose estimation algorithm is used with a Levenberg-Marquardt optimization to ensure convergence. The correct transformations between the master and slave coordinate frames can then be calculated and updated when the bases of the endoscope or instrument manipulators are moved to new, unknown, positions at any time before or during surgical procedures.

  15. Statistical Model-Based Face Pose Estimation

    Institute of Scientific and Technical Information of China (English)

    GE Xinliang; YANG Jie; LI Feng; WANG Huahua

    2007-01-01

    A robust face pose estimation approach is proposed by using face shape statistical model approach and pose parameters are represented by trigonometric functions. The face shape statistical model is firstly built by analyzing the face shapes from different people under varying poses. The shape alignment is vital in the process of building the statistical model. Then, six trigonometric functions are employed to represent the face pose parameters. Lastly, the mapping function is constructed between face image and face pose by linearly relating different parameters. The proposed approach is able to estimate different face poses using a few face training samples. Experimental results are provided to demonstrate its efficiency and accuracy.

  16. Prediction of postural risk of fall initiation based on a two-variable description of body dynamics: position and velocity of center of mass.

    Science.gov (United States)

    Honarvar, Mohammad Hadi; Nakashima, Motomu

    2013-10-01

    This research addresses the question: what is the risk of fall initiation at a certain human posture? There are postures from which no one is able to keep their balance and a fall will surely initiate (risk=1), and others from which everyone may regain their stability (risk=0). In other postures, only a portion of people can control their stability. One may interpret risk to chance of a fall to be initiated, and based on the portion of fallers assign a risk value to a given human posture (postural risk). Human posture can be mapped to a point in a 2-dimensional space: the x-v plane, the axes of which are horizontal components of the position and velocity of the center of mass of the body. For every pair of (x, v), the outcome of the balance recovery problem defines whether a person with a given strength level is able to regain their stability when released from a posture corresponding to that point. Using strength distribution data, we estimated the portion of the population who will initiate a fall if starting at a certain posture. A fast calculation approach is also introduced to replace the time-consuming method of solving the recovery problem many times. Postural risk of fall initiation for situations expressed by (x, v) pairs for the entire x-v plane is calculated and shown in a color-map. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Pose control of the chain composed of magnetic particles using external uniform and gradient magnetic fields

    International Nuclear Information System (INIS)

    Zhou, J. F.; Shao, C. L.; Gu, B. Q.

    2016-01-01

    Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole–dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient

  18. Perspective projection for variance pose face recognition from camera calibration

    Science.gov (United States)

    Fakhir, M. M.; Woo, W. L.; Chambers, J. A.; Dlay, S. S.

    2016-04-01

    Variance pose is an important research topic in face recognition. The alteration of distance parameters across variance pose face features is a challenging. We provide a solution for this problem using perspective projection for variance pose face recognition. Our method infers intrinsic camera parameters of the image which enable the projection of the image plane into 3D. After this, face box tracking and centre of eyes detection can be identified using our novel technique to verify the virtual face feature measurements. The coordinate system of the perspective projection for face tracking allows the holistic dimensions for the face to be fixed in different orientations. The training of frontal images and the rest of the poses on FERET database determine the distance from the centre of eyes to the corner of box face. The recognition system compares the gallery of images against different poses. The system initially utilises information on position of both eyes then focuses principally on closest eye in order to gather data with greater reliability. Differentiation between the distances and position of the right and left eyes is a unique feature of our work with our algorithm outperforming other state of the art algorithms thus enabling stable measurement in variance pose for each individual.

  19. Pose estimation of industrial objects towards robot operation

    Science.gov (United States)

    Niu, Jie; Zhou, Fuqiang; Tan, Haishu; Cao, Yu

    2017-10-01

    With the advantages of wide range, non-contact and high flexibility, the visual estimation technology of target pose has been widely applied in modern industry, robot guidance and other engineering practices. However, due to the influence of complicated industrial environment, outside interference factors, lack of object characteristics, restrictions of camera and other limitations, the visual estimation technology of target pose is still faced with many challenges. Focusing on the above problems, a pose estimation method of the industrial objects is developed based on 3D models of targets. By matching the extracted shape characteristics of objects with the priori 3D model database of targets, the method realizes the recognition of target. Thus a pose estimation of objects can be determined based on the monocular vision measuring model. The experimental results show that this method can be implemented to estimate the position of rigid objects based on poor images information, and provides guiding basis for the operation of the industrial robot.

  20. Pengenalan Pose Tangan Menggunakan HuMoment

    Directory of Open Access Journals (Sweden)

    Dina Budhi Utami

    2017-02-01

    Full Text Available Computer vision yang didasarkan pada pengenalan bentuk memiliki banyak potensi dalam interaksi manusia dan komputer. Pose tangan dapat dijadikan simbol interaksi manusia dengan komputer seperti halnya pada penggunaan berbagai pose tangan pada bahasa isyarat. Berbagai pose tangan dapat digunakan untuk menggantikan fungsi mouse, untuk mengendalikan robot, dan sebagainya. Penelitian ini difokuskan pada pembangunan sistem pengenalan pose tangan menggunakan HuMoment. Proses pengenalan pose tangan dimulai dengan melakukan segmentasi citra masukan untuk menghasilkan citra ROI (Region of Interest yaitu area telapak tangan. Selanjutnya dilakukan proses deteksi tepi. Kemudian dilakukan ekstraksi nilai HuMoment. Nilai HuMoment dikuantisasikan ke dalam bukukode yang dihasilkan dari proses pelatihan menggunakan K-Means. Proses kuantisasi dilakukan dengan menghitung nilai Euclidean Distance terkecil antara nilai HuMomment citra masukan dan bukukode. Berdasarkan hasil penelitian, nilai akurasi sistem dalam mengenali pose tangan adalah 88.57%.

  1. To Strike a Pose: No Stereotype Backlash for Power Posing Women

    Directory of Open Access Journals (Sweden)

    Miriam Rennung

    2016-09-01

    Full Text Available Power posing, the adoption of open and powerful postures, has effects that parallel those of actual social power. This study explored the social evaluation of adopting powerful versus powerless body postures in men and women regarding perceived warmth, competence, and the likelihood of eliciting admiration, envy, pity, and contempt. Previous findings suggest that the display of power by women may have side effects due to gender stereotyping, namely reduced warmth ratings and negative emotional reactions. An experiment (N = 2,473 asked participants to rate pictures of men and women who adopted high-power or low-power body postures. High-power posers were rated higher on competence, admiration, envy, and contempt compared to low-power posers, whereas the opposite was true for pity. There was no impact of power posing on perceived warmth. Contrary to expectations, the poser’s gender did not moderate any of the effects. These findings suggest that nonverbal displays of power do influence fundamental dimensions of social perception and their accompanying emotional reactions but result in comparably positive and negative evaluations for both genders.

  2. Manifolds for pose tracking from monocular video

    Science.gov (United States)

    Basu, Saurav; Poulin, Joshua; Acton, Scott T.

    2015-03-01

    We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).

  3. Controlled pump with internal toothed gears during four-quadrant operation. Velocity- and position control of a hydraulic handling device; Geregelte Innenzahnradpumpe im Mehrquadrantenbetrieb. Geschwindigkeits- und Positionsregelung eines hydraulischen Handlinggeraetes

    Energy Technology Data Exchange (ETDEWEB)

    Dahmann, P. [Fachhochschule Aachen (Germany). FB Luft- und Raumfahrttechnik; Hagemeister, W. [IGH, Essen (Germany); Nagel, G.; Exner, P. [Voith Turbo, Heidenheim (Germany)

    2006-07-01

    The drive of a handling device (weight 3t) is realized by an hydrocylinder, which is directly connected with the pressure side of a pump with internal toothed gears. The drive speed is generated by a frequency controlled electric motor. As a result for frequency-controlled drive can be noted less noise formation, less heat generation, an energy efficienct operation as a simple control- and regulation possibilities for position and velocities. (GL)

  4. Students’ Creativity: Problem Posing in Structured Situation

    Science.gov (United States)

    Amalina, I. K.; Amirudin, M.; Budiarto, M. T.

    2018-01-01

    This is a qualitative research concerning on students’ creativity on problem posing task. The study aimed at describing the students’ creative thinking ability to pose the mathematics problem in structured situations with varied condition of given problems. In order to find out the students’ creative thinking ability, an analysis of mathematics problem posing test based on fluency, novelty, and flexibility and interview was applied for categorizing students’ responses on that task. The data analysis used the quality of problem posing and categorized in 4 level of creativity. The results revealed from 29 secondary students grade 8, a student in CTL (Creative Thinking Level) 1 met the fluency. A student in CTL 2 met the novelty, while a student in CTL 3 met both fluency and novelty and no one in CTL 4. These results are affected by students’ mathematical experience. The findings of this study highlight that student’s problem posing creativity are dependent on their experience in mathematics learning and from the point of view of which students start to pose problem.

  5. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  6. Exemplar-based human action pose correction.

    Science.gov (United States)

    Shen, Wei; Deng, Ke; Bai, Xiang; Leyvand, Tommer; Guo, Baining; Tu, Zhuowen

    2014-07-01

    The launch of Xbox Kinect has built a very successful computer vision product and made a big impact on the gaming industry. This sheds lights onto a wide variety of potential applications related to action recognition. The accurate estimation of human poses from the depth image is universally a critical step. However, existing pose estimation systems exhibit failures when facing severe occlusion. In this paper, we propose an exemplar-based method to learn to correct the initially estimated poses. We learn an inhomogeneous systematic bias by leveraging the exemplar information within a specific human action domain. Furthermore, as an extension, we learn a conditional model by incorporation of pose tags to further increase the accuracy of pose correction. In the experiments, significant improvements on both joint-based skeleton correction and tag prediction are observed over the contemporary approaches, including what is delivered by the current Kinect system. Our experiments for the facial landmark correction also illustrate that our algorithm can improve the accuracy of other detection/estimation systems.

  7. Pose and Shape Reconstruction of a Noncooperative Spacecraft Using Camera and Range Measurements

    Directory of Open Access Journals (Sweden)

    Renato Volpe

    2017-01-01

    Full Text Available Recent interest in on-orbit proximity operations has pushed towards the development of autonomous GNC strategies. In this sense, optical navigation enables a wide variety of possibilities as it can provide information not only about the kinematic state but also about the shape of the observed object. Various mission architectures have been either tested in space or studied on Earth. The present study deals with on-orbit relative pose and shape estimation with the use of a monocular camera and a distance sensor. The goal is to develop a filter which estimates an observed satellite’s relative position, velocity, attitude, and angular velocity, along with its shape, with the measurements obtained by a camera and a distance sensor mounted on board a chaser which is on a relative trajectory around the target. The filter’s efficiency is proved with a simulation on a virtual target object. The results of the simulation, even though relevant to a simplified scenario, show that the estimation process is successful and can be considered a promising strategy for a correct and safe docking maneuver.

  8. An improved silhouette for human pose estimation

    Science.gov (United States)

    Hawes, Anthony H.; Iftekharuddin, Khan M.

    2017-08-01

    We propose a novel method for analyzing images that exploits the natural lines of a human poses to find areas where self-occlusion could be present. Errors caused by self-occlusion cause several modern human pose estimation methods to mis-identify body parts, which reduces the performance of most action recognition algorithms. Our method is motivated by the observation that, in several cases, occlusion can be reasoned using only boundary lines of limbs. An intelligent edge detection algorithm based on the above principle could be used to augment the silhouette with information useful for pose estimation algorithms and push forward progress on occlusion handling for human action recognition. The algorithm described is applicable to computer vision scenarios involving 2D images and (appropriated flattened) 3D images.

  9. Spontaneous and posed facial expression in Parkinson's disease.

    Science.gov (United States)

    Smith, M C; Smith, M K; Ellgring, H

    1996-09-01

    Spontaneous and posed emotional facial expressions in individuals with Parkinson's disease (PD, n = 12) were compared with those of healthy age-matched controls (n = 12). The intensity and amount of facial expression in PD patients were expected to be reduced for spontaneous but not posed expressions. Emotional stimuli were video clips selected from films, 2-5 min in duration, designed to elicit feelings of happiness, sadness, fear, disgust, or anger. Facial movements were coded using Ekman and Friesen's (1978) Facial Action Coding System (FACS). In addition, participants rated their emotional experience on 9-point Likert scales. The PD group showed significantly less overall facial reactivity than did controls when viewing the films. The predicted Group X Condition (spontaneous vs. posed) interaction effect on smile intensity was found when PD participants with more severe disease were compared with those with milder disease and with controls. In contrast, ratings of emotional experience were similar for both groups. Depression was positively associated with emotion rating but not with measures of facial activity. Spontaneous facial expression appears to be selectively affected in PD, whereas posed expression and emotional experience remain relatively intact.

  10. Non-standard and improperly posed problems

    CERN Document Server

    Straughan, Brian; Ames, William F

    1997-01-01

    Written by two international experts in the field, this book is the first unified survey of the advances made in the last 15 years on key non-standard and improperly posed problems for partial differential equations.This reference for mathematicians, scientists, and engineers provides an overview of the methodology typically used to study improperly posed problems. It focuses on structural stability--the continuous dependence of solutions on the initial conditions and the modeling equations--and on problems for which data are only prescribed on part of the boundary.The book addresses continuou

  11. Flexible Polyhedral Surfaces with Two Flat Poses

    Directory of Open Access Journals (Sweden)

    Hellmuth Stachel

    2015-05-01

    Full Text Available We present three types of polyhedral surfaces, which are continuously flexible and have not only an initial pose, where all faces are coplanar, but pass during their self-motion through another pose with coplanar faces (“flat pose”. These surfaces are examples of so-called rigid origami, since we only admit exact flexions, i.e., each face remains rigid during the motion; only the dihedral angles vary. We analyze the geometry behind Miura-ori and address Kokotsakis’ example of a flexible tessellation with the particular case of a cyclic quadrangle. Finally, we recall Bricard’s octahedra of Type 3 and their relation to strophoids.

  12. The nucleolus is well-posed

    Science.gov (United States)

    Fragnelli, Vito; Patrone, Fioravante; Torre, Anna

    2006-02-01

    The lexicographic order is not representable by a real-valued function, contrary to many other orders or preorders. So, standard tools and results for well-posed minimum problems cannot be used. We prove that under suitable hypotheses it is however possible to guarantee the well-posedness of a lexicographic minimum over a compact or convex set. This result allows us to prove that some game theoretical solution concepts, based on lexicographic order are well-posed: in particular, this is true for the nucleolus.

  13. Pose and Solve Varignon Converse Problems

    Science.gov (United States)

    Contreras, José N.

    2014-01-01

    The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…

  14. Head Pose Estimation from Passive Stereo Images

    DEFF Research Database (Denmark)

    Breitenstein, Michael D.; Jensen, Jeppe; Høilund, Carsten

    2009-01-01

    function. Our algorithm incorporates 2D and 3D cues to make the system robust to low-quality range images acquired by passive stereo systems. It handles large pose variations (of ±90 ° yaw and ±45 ° pitch rotation) and facial variations due to expressions or accessories. For a maximally allowed error of 30...

  15. MARVELS-1: A FACE-ON DOUBLE-LINED BINARY STAR MASQUERADING AS A RESONANT PLANETARY SYSTEM AND CONSIDERATION OF RARE FALSE POSITIVES IN RADIAL VELOCITY PLANET SEARCHES

    International Nuclear Information System (INIS)

    Wright, Jason T.; Roy, Arpita; Mahadevan, Suvrath; Wang, Sharon X.; Fleming, Scott W.; Ford, Eric B.; Payne, Matt; Lee, Brian L.; Ge, Jian; Wang, Ji; Crepp, Justin R.; Gaudi, B. Scott; Eastman, Jason; Pepper, Joshua; Cargile, Phillip; Stassun, Keivan G.; Ghezzi, Luan; González-Hernández, Jonay I.; Wisniewski, John; Dutra-Ferreira, Leticia

    2013-01-01

    We have analyzed new and previously published radial velocity (RV) observations of MARVELS-1, known to have an ostensibly substellar companion in a ∼6 day orbit. We find significant (∼100 m s –1 ) residuals to the best-fit model for the companion, and these residuals are naïvely consistent with an interior giant planet with a P = 1.965 days in a nearly perfect 3:1 period commensurability (|P b /P c – 3| –4 ). We have performed several tests for the reality of such a companion, including a dynamical analysis, a search for photometric variability, and a hunt for contaminating stellar spectra. We find many reasons to be critical of a planetary interpretation, including the fact that most of the three-body dynamical solutions are unstable. We find no evidence for transits, and no evidence of stellar photometric variability. We have discovered two apparent companions to MARVELS-1 with adaptive optics imaging at Keck; both are M dwarfs, one is likely bound, and the other is likely a foreground object. We explore false-alarm scenarios inspired by various curiosities in the data. Ultimately, a line profile and bisector analysis lead us to conclude that the ∼100 m s –1 residuals are an artifact of spectral contamination from a stellar companion contributing ∼15%-30% of the optical light in the system. We conclude that origin of this contamination is the previously detected RV companion to MARVELS-1, which is not, as previously reported, a brown dwarf, but in fact a G dwarf in a face-on orbit.

  16. Teach it Yourself - Fast Modeling of Industrial Objects for 6D Pose Estimation

    DEFF Research Database (Denmark)

    Sølund, Thomas; Rajeeth Savarimuthu, Thiusius; Glent Buch, Anders

    2015-01-01

    In this paper, we present a vision system that allows a human to create new 3D models of novel industrial parts by placing the part in two different positions in the scene. The two shot modeling framework generates models with a precision that allows the model to be used for 6D pose estimation wi....... In addition, the models are applied in a pose estimation application, evaluated with 37 different scenes with 61 unique object poses. The pose estimation results show a mean translation error on 4.97 mm and a mean rotation error on 3.38 degrees....

  17. Pose tracking for augmented reality applications in outdoor archaeological sites

    Science.gov (United States)

    Younes, Georges; Asmar, Daniel; Elhajj, Imad; Al-Harithy, Howayda

    2017-01-01

    In recent years, agencies around the world have invested huge amounts of effort toward digitizing many aspects of the world's cultural heritage. Of particular importance is the digitization of outdoor archaeological sites. In the spirit of valorization of this digital information, many groups have developed virtual or augmented reality (AR) computer applications themed around a particular archaeological object. The problem of pose tracking in outdoor AR applications is addressed. Different positional systems are analyzed, resulting in the selection of a monocular camera-based user tracker. The limitations that challenge this technique from map generation, scale, anchoring, to lighting conditions are analyzed and systematically addressed. Finally, as a case study, our pose tracking system is implemented within an AR experience in the Byblos Roman theater in Lebanon.

  18. Laser Remediation of Threats Posed by Small Orbital Debris

    Science.gov (United States)

    Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.

    2012-01-01

    The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.

  19. ONKALO POSE experiment. Phase 3: acoustic and ultrasonic monitoring

    International Nuclear Information System (INIS)

    Reyes-Montes, J.; Flynn, W.; Huang, J.

    2014-01-01

    The objectives of the third phase of the POSE experiment are to determine the in situ state of stress at Olkiluoto and the spalling strength of Olkiluoto rock, by internal heating of the experimental hole (ONK-EH3) using 8 vertically installed heaters. This report presents the results from the Acoustic and ultrasonic monitoring carried out around the third experimental hole of the POSE niche between November 2012 and May 2013. The experiment was monitored using an array of 24 transducers installed along 4 monitoring drillholes and data was automatically acquired and processed using the system installed at the niche by Applied Seismology Consultants in May 2012. Daily ultrasonic surveys were carried out between 14 th November 2012 and 21 st May 2013, monitoring the changes in transmission velocities of P and S-waves with an estimated error of ±2 m x s -1 (ASC, 2013). Changes in transmission velocities closely follow the evolution of the temperature profile in the hole wall. An increase in both P-and S-wave transmission velocities is observed at all depth levels and surveyed raypaths during the heating phase, with the highest changes observed in raypaths skimming the hole surface and depths between 2.33 m and 3.7 m. This observation indicates the closure of in situ and excavation-induced microcracks due to thermal stress. After the heaters were switched off, P-wave velocities show a marked decrease, in all raypaths reaching values below those measured at the start of the monitoring approximately 4 weeks after the heaters were switched off. The highest decrease was observed along raypaths surveying the region skimming the hole wall. This decrease below original background values indicates the induction of rock degradation as microcracking induced through the heating-cooling cycle. Changes in P- and S-wave transmission velocity were used to calculate changes in Young's modulus and Poisson's ratio along the different raypaths and depth levels. An overall

  20. Tridimensional pose estimation of a person head

    International Nuclear Information System (INIS)

    Perez Berenguer, Elisa; Soria, Carlos; Nasisi, Oscar; Mut, Vicente

    2007-01-01

    In this work, we present a method for estimating 3-D motion parameters; this method provides an alternative way for 3D head pose estimation from image sequence in the current computer vision literature. This method is robust over extended sequences and large head motions and accurately extracts the orientation angles of head from a single view. Experimental results show that this tracking system works well for development a human-computer interface for people that possess severe motor incapacity

  1. Driver head pose tracking with thermal camera

    Science.gov (United States)

    Bole, S.; Fournier, C.; Lavergne, C.; Druart, G.; Lépine, T.

    2016-09-01

    Head pose can be seen as a coarse estimation of gaze direction. In automotive industry, knowledge about gaze direction could optimize Human-Machine Interface (HMI) and Advanced Driver Assistance Systems (ADAS). Pose estimation systems are often based on camera when applications have to be contactless. In this paper, we explore uncooled thermal imagery (8-14μm) for its intrinsic night vision capabilities and for its invariance versus lighting variations. Two methods are implemented and compared, both are aided by a 3D model of the head. The 3D model, mapped with thermal texture, allows to synthesize a base of 2D projected models, differently oriented and labeled in yaw and pitch. The first method is based on keypoints. Keypoints of models are matched with those of the query image. These sets of matchings, aided with the 3D shape of the model, allow to estimate 3D pose. The second method is a global appearance approach. Among all 2D models of the base, algorithm searches the one which is the closest to the query image thanks to a weighted least squares difference.

  2. Mining Key Skeleton Poses with Latent SVM for Action Recognition

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Li

    2017-01-01

    Full Text Available Human action recognition based on 3D skeleton has become an active research field in recent years with the recently developed commodity depth sensors. Most published methods analyze an entire 3D depth data, construct mid-level part representations, or use trajectory descriptor of spatial-temporal interest point for recognizing human activities. Unlike previous work, a novel and simple action representation is proposed in this paper which models the action as a sequence of inconsecutive and discriminative skeleton poses, named as key skeleton poses. The pairwise relative positions of skeleton joints are used as feature of the skeleton poses which are mined with the aid of the latent support vector machine (latent SVM. The advantage of our method is resisting against intraclass variation such as noise and large nonlinear temporal deformation of human action. We evaluate the proposed approach on three benchmark action datasets captured by Kinect devices: MSR Action 3D dataset, UTKinect Action dataset, and Florence 3D Action dataset. The detailed experimental results demonstrate that the proposed approach achieves superior performance to the state-of-the-art skeleton-based action recognition methods.

  3. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  4. Skill Levels of Prospective Physics Teachers on Problem Posing

    Science.gov (United States)

    Cildir, Sema; Sezen, Nazan

    2011-01-01

    Problem posing is one of the topics which the educators thoroughly accentuate. Problem posing skill is defined as an introvert activity of a student's learning. In this study, skill levels of prospective physics teachers on problem posing were determined and their views on problem posing were evaluated. To this end, prospective teachers were given…

  5. Stereovision-based pose and inertia estimation of unknown and uncooperative space objects

    Science.gov (United States)

    Pesce, Vincenzo; Lavagna, Michèle; Bevilacqua, Riccardo

    2017-01-01

    Autonomous close proximity operations are an arduous and attractive problem in space mission design. In particular, the estimation of pose, motion and inertia properties of an uncooperative object is a challenging task because of the lack of available a priori information. This paper develops a novel method to estimate the relative position, velocity, angular velocity, attitude and the ratios of the components of the inertia matrix of an uncooperative space object using only stereo-vision measurements. The classical Extended Kalman Filter (EKF) and an Iterated Extended Kalman Filter (IEKF) are used and compared for the estimation procedure. In addition, in order to compute the inertia properties, the ratios of the inertia components are added to the state and a pseudo-measurement equation is considered in the observation model. The relative simplicity of the proposed algorithm could be suitable for an online implementation for real applications. The developed algorithm is validated by numerical simulations in MATLAB using different initial conditions and uncertainty levels. The goal of the simulations is to verify the accuracy and robustness of the proposed estimation algorithm. The obtained results show satisfactory convergence of estimation errors for all the considered quantities. The obtained results, in several simulations, shows some improvements with respect to similar works, which deal with the same problem, present in literature. In addition, a video processing procedure is presented to reconstruct the geometrical properties of a body using cameras. This inertia reconstruction algorithm has been experimentally validated at the ADAMUS (ADvanced Autonomous MUltiple Spacecraft) Lab at the University of Florida. In the future, this different method could be integrated to the inertia ratios estimator to have a complete tool for mass properties recognition.

  6. Gaussian particle filter based pose and motion estimation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry.A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the particle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.

  7. Relative Pose Estimation Algorithm with Gyroscope Sensor

    Directory of Open Access Journals (Sweden)

    Shanshan Wei

    2016-01-01

    Full Text Available This paper proposes a novel vision and inertial fusion algorithm S2fM (Simplified Structure from Motion for camera relative pose estimation. Different from current existing algorithms, our algorithm estimates rotation parameter and translation parameter separately. S2fM employs gyroscopes to estimate camera rotation parameter, which is later fused with the image data to estimate camera translation parameter. Our contributions are in two aspects. (1 Under the circumstance that no inertial sensor can estimate accurately enough translation parameter, we propose a translation estimation algorithm by fusing gyroscope sensor and image data. (2 Our S2fM algorithm is efficient and suitable for smart devices. Experimental results validate efficiency of the proposed S2fM algorithm.

  8. Pose Tracking Algorithm of an Endoscopic Surgery Robot Wrist

    International Nuclear Information System (INIS)

    Wang, L; Yin, H L; Meng, Q

    2006-01-01

    In recent two decades, more and more research on the endoscopic surgery has been carried out [2]. Most of the work focuses on the development of the robot in the field of robotics and the navigation of the surgery tools based on computer graphics. But the tracking and locating of the EndoWrist is also a very important aspect. This paper deals with the the tracking algorithm of the EndoWrist's pose (position and orientation). The linear tracking of the position is handled by the Kalman Filter. The quaternion-based nonlinear orientation tracking is implemented with the Extended Kalman Filter. The most innovative point of this paper is the parameterization of the motion model of the Extended Kalman Filter

  9. Pose Tracking Algorithm of an Endoscopic Surgery Robot Wrist

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L [Chinese-German Institute of Automatic Control Engineering, Tongji University (China); Yin, H L [Chinese-German Institute of Automatic Control Engineering, Tongji University (China); Meng, Q [Shanghai University of Electric Power (China)

    2006-10-15

    In recent two decades, more and more research on the endoscopic surgery has been carried out [2]. Most of the work focuses on the development of the robot in the field of robotics and the navigation of the surgery tools based on computer graphics. But the tracking and locating of the EndoWrist is also a very important aspect. This paper deals with the the tracking algorithm of the EndoWrist's pose (position and orientation). The linear tracking of the position is handled by the Kalman Filter. The quaternion-based nonlinear orientation tracking is implemented with the Extended Kalman Filter. The most innovative point of this paper is the parameterization of the motion model of the Extended Kalman Filter.

  10. Online Wavelet Complementary velocity Estimator.

    Science.gov (United States)

    Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin

    2018-02-01

    In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-02-01

    Full Text Available Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.

  12. Pose and Wind Estimation for Autonomous Parafoils

    Science.gov (United States)

    2014-09-01

    Precision Airdrop System LIDAR light detection and ranging LOP line of position MCADS Maritime Craft Air Delivery System MEMS micro-electro-mechanical...least squares SLAM simultaneous localization and mapping SPS standard positioning service TIP Turn Initiation Point TMA target motion analysis TNT...improvements and further testing on the WindPack [45]. Most recently, Herrmann proposed the use of a ground-based lidar wind measurement system to transmit

  13. A Comparison of Iterative 2D-3D Pose Estimation Methods for Real-Time Applications

    DEFF Research Database (Denmark)

    Grest, Daniel; Krüger, Volker; Petersen, Thomas

    2009-01-01

    This work compares iterative 2D-3D Pose Estimation methods for use in real-time applications. The compared methods are available for public as C++ code. One method is part of the openCV library, namely POSIT. Because POSIT is not applicable for planar 3Dpoint congurations, we include the planar P...

  14. Pose measurement method with six parameters for microassembly based on an optical micrometer

    Science.gov (United States)

    Ye, Xin; Wang, Qiang; Zhang, Zhi-jing; Sun, Yuan; Zhang, Xiao-feng

    2009-07-01

    This paper presents a new pose measurement method of microminiature parts that is capable of transforming one dimension (1D) contour size obtained by optical micrometer to three dimension (3D) data with six parameters for microassembly. Pose measurement is one of the most important processes for microminiature parts' alignment and insertion in microassembly. During the past few years, researchers have developed their microassembly systems focusing on visual identification to obtain two or three dimension data with no more than three parameters. Scanning electronic microscope (SEM), optical microscope, and stereomicroscope are applied in their systems. However, as structures of microminiature parts become increasingly complex, six parameters to represent their position and orientation are specifically needed. Firstly, The pose measurement model is established based on the introduction of measuring objects and measuring principle of optical micrometer. The measuring objects are microminiature parts with complex 3D structure. Two groups of two dimension (2D) data are gathered at two different measurement positions. Then part pose with 6 parameters is calculated, including 3 position parameters of feature point of the part and 3 orientation parameters of the part axis. Secondly, pose measurement process for a small shaft, vertical orientation determination, and position parameters obtaining are presented. 2D data is gathered by scanning the generatrix of the part, and valid data is extracted and saved in arrays. A vertical orientation criterion is proposed to determine whether the part is parallel to the Z-axis of the coordinate. If not, 2D data will be fixed into a linear equation using least square algorithm. Then orientation parameters are calculated. Center of Part End (CPE) is selected as feature point of the part, and its position parameters are extracted form two group of 2D data. Finally, a fast pose measurement device is developed and representative

  15. University Students' Problem Posing Abilities and Attitudes towards Mathematics.

    Science.gov (United States)

    Grundmeier, Todd A.

    2002-01-01

    Explores the problem posing abilities and attitudes towards mathematics of students in a university pre-calculus class and a university mathematical proof class. Reports a significant difference in numeric posing versus non-numeric posing ability in both classes. (Author/MM)

  16. Human action recognition based on estimated weak poses

    Science.gov (United States)

    Gong, Wenjuan; Gonzàlez, Jordi; Roca, Francesc Xavier

    2012-12-01

    We present a novel method for human action recognition (HAR) based on estimated poses from image sequences. We use 3D human pose data as additional information and propose a compact human pose representation, called a weak pose, in a low-dimensional space while still keeping the most discriminative information for a given pose. With predicted poses from image features, we map the problem from image feature space to pose space, where a Bag of Poses (BOP) model is learned for the final goal of HAR. The BOP model is a modified version of the classical bag of words pipeline by building the vocabulary based on the most representative weak poses for a given action. Compared with the standard k-means clustering, our vocabulary selection criteria is proven to be more efficient and robust against the inherent challenges of action recognition. Moreover, since for action recognition the ordering of the poses is discriminative, the BOP model incorporates temporal information: in essence, groups of consecutive poses are considered together when computing the vocabulary and assignment. We tested our method on two well-known datasets: HumanEva and IXMAS, to demonstrate that weak poses aid to improve action recognition accuracies. The proposed method is scene-independent and is comparable with the state-of-art method.

  17. 2D Methods for pose invariant face recognition

    CSIR Research Space (South Africa)

    Mokoena, Ntabiseng

    2016-12-01

    Full Text Available The ability to recognise face images under random pose is a task that is done effortlessly by human beings. However, for a computer system, recognising face images under varying poses still remains an open research area. Face recognition across pose...

  18. Transfer between Pose and Illumination Training in Face Recognition

    Science.gov (United States)

    Liu, Chang Hong; Bhuiyan, Md. Al-Amin; Ward, James; Sui, Jie

    2009-01-01

    The relationship between pose and illumination learning in face recognition was examined in a yes-no recognition paradigm. The authors assessed whether pose training can transfer to a new illumination or vice versa. Results show that an extensive level of pose training through a face-name association task was able to generalize to a new…

  19. The Designated Convergence Rate Problems of Consensus or Flocking of Double-Integrator Agents With General Nonequal Velocity and Position Couplings: Further Results and Patterns of Convergence Rate Contours.

    Science.gov (United States)

    Li, Wei

    2017-05-01

    This paper considers the designated convergence rate (DCR) (or the designated convergence margin) problems of consensus or flocking of coupled double-integrator agents. The DCR problems are more valuable for systems design than just convergence or stability conditions. The system setting in this paper is general, i.e., the velocity coupling and position coupling (VCPC) between agents, respectively, are set to be general and nonequal (up to rescaling), together with distinct damping and stiffness gains for the VCPC, respectively. This paper has two primary contributions on consensus: 1) further necessary and sufficient conditions are established to guarantee the DCR problems of the system, which have enriched the previous results and 2) the patterns of the convergence rate contours for the DCR are characterized, in terms of the damping and stiffness gains, which are closely related to the characteristics of the spectra of the two Laplacian matrices of the VCPC. Additionally, this paper has a contribution on matrix theory, i.e., the sufficient conditions for the simultaneous upper-triangularization of two independent Laplacian matrices, particularly from an easily verifiable topological perspective on the corresponding digraphs of these Laplacian matrices.

  20. Pose Estimation with a Kinect for Ergonomic Studies: Evaluation of the Accuracy Using a Virtual Mannequin

    Directory of Open Access Journals (Sweden)

    Pierre Plantard

    2015-01-01

    Full Text Available Analyzing human poses with a Kinect is a promising method to evaluate potentials risks of musculoskeletal disorders at workstations. In ecological situations, complex 3D poses and constraints imposed by the environment make it difficult to obtain reliable kinematic information. Thus, being able to predict the potential accuracy of the measurement for such complex 3D poses and sensor placements is challenging in classical experimental setups. To tackle this problem, we propose a new evaluation method based on a virtual mannequin. In this study, we apply this method to the evaluation of joint positions (shoulder, elbow, and wrist, joint angles (shoulder and elbow, and the corresponding RULA (a popular ergonomics assessment grid upper-limb score for a large set of poses and sensor placements. Thanks to this evaluation method, more than 500,000 configurations have been automatically tested, which would be almost impossible to evaluate with classical protocols. The results show that the kinematic information obtained by the Kinect software is generally accurate enough to fill in ergonomic assessment grids. However inaccuracy strongly increases for some specific poses and sensor positions. Using this evaluation method enabled us to report configurations that could lead to these high inaccuracies. As a supplementary material, we provide a software tool to help designers to evaluate the expected accuracy of this sensor for a set of upper-limb configurations. Results obtained with the virtual mannequin are in accordance with those obtained from a real subject for a limited set of poses and sensor placements.

  1. A Grasp-Pose Generation Method Based on Gaussian Mixture Models

    Directory of Open Access Journals (Sweden)

    Wenjia Wu

    2015-11-01

    Full Text Available A Gaussian Mixture Model (GMM-based grasp-pose generation method is proposed in this paper. Through offline training, the GMM is set up and used to depict the distribution of the robot's reachable orientations. By dividing the robot's workspace into small 3D voxels and training the GMM for each voxel, a look-up table covering all the workspace is built with the x, y and z positions as the index and the GMM as the entry. Through the definition of Task Space Regions (TSR, an object's feasible grasp poses are expressed as a continuous region. With the GMM, grasp poses can be preferentially sampled from regions with high reachability probabilities in the online grasp-planning stage. The GMM can also be used as a preliminary judgement of a grasp pose's reachability. Experiments on both a simulated and a real robot show the superiority of our method over the existing method.

  2. EFEKTIVITAS PEMBELAJARAN MATEMATIKA DENGAN METODE PROBLEM POSING BERBASIS PENDIDIKAN KARAKTER

    Directory of Open Access Journals (Sweden)

    Eka Lia Susanti

    2012-06-01

    . Method of data collection with observation sheets and tests. Data processed by the t test and the comparative effect of regression testing. The results showed that the experimental class learning achievement (82.74 was statistically exceed KKM (75. With simple linear regression test obtained regression equation Y = -15.847 + 1.194 X and R2 = 0.829. The coefficient of X is a positive number so that the activity has a positive effect on learning achievement of 82.9%. Average learning achievement experimental class (82.74 and the average learning achievement control class (72.91. In statistical learning achievement test experimental class is better than the control class learning achievement. Based on the results of the analysis is concluded (1 learning to achieve complete learning, (2 a positive influence on the activity of learning achievement, and (3 experimental class learning achievement is better than the control class learning achievement; that learning mathematics with problem posing method based on character education in the TeenZania laboratory is an effective learning.

  3. Nerve conduction velocity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  4. Improving head and body pose estimation through semi-supervised manifold alignment

    KAUST Repository

    Heili, Alexandre

    2014-10-27

    In this paper, we explore the use of a semi-supervised manifold alignment method for domain adaptation in the context of human body and head pose estimation in videos. We build upon an existing state-of-the-art system that leverages on external labelled datasets for the body and head features, and on the unlabelled test data with weak velocity labels to do a coupled estimation of the body and head pose. While this previous approach showed promising results, the learning of the underlying manifold structure of the features in the train and target data and the need to align them were not explored despite the fact that the pose features between two datasets may vary according to the scene, e.g. due to different camera point of view or perspective. In this paper, we propose to use a semi-supervised manifold alignment method to bring the train and target samples closer within the resulting embedded space. To this end, we consider an adaptation set from the target data and rely on (weak) labels, given for example by the velocity direction whenever they are reliable. These labels, along with the training labels are used to bias the manifold distance within each manifold and to establish correspondences for alignment.

  5. Head pose estimation algorithm based on deep learning

    Science.gov (United States)

    Cao, Yuanming; Liu, Yijun

    2017-05-01

    Head pose estimation has been widely used in the field of artificial intelligence, pattern recognition and intelligent human-computer interaction and so on. Good head pose estimation algorithm should deal with light, noise, identity, shelter and other factors robustly, but so far how to improve the accuracy and robustness of attitude estimation remains a major challenge in the field of computer vision. A method based on deep learning for pose estimation is presented. Deep learning with a strong learning ability, it can extract high-level image features of the input image by through a series of non-linear operation, then classifying the input image using the extracted feature. Such characteristics have greater differences in pose, while they are robust of light, identity, occlusion and other factors. The proposed head pose estimation is evaluated on the CAS-PEAL data set. Experimental results show that this method is effective to improve the accuracy of pose estimation.

  6. Local Feature Learning for Face Recognition under Varying Poses

    DEFF Research Database (Denmark)

    Duan, Xiaodong; Tan, Zheng-Hua

    2015-01-01

    In this paper, we present a local feature learning method for face recognition to deal with varying poses. As opposed to the commonly used approaches of recovering frontal face images from profile views, the proposed method extracts the subject related part from a local feature by removing the pose...... related part in it on the basis of a pose feature. The method has a closed-form solution, hence being time efficient. For performance evaluation, cross pose face recognition experiments are conducted on two public face recognition databases FERET and FEI. The proposed method shows a significant...... recognition improvement under varying poses over general local feature approaches and outperforms or is comparable with related state-of-the-art pose invariant face recognition approaches. Copyright ©2015 by IEEE....

  7. The velocity of sound

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  8. Asynchronous vehicle pose correction using visual detection of ground features

    International Nuclear Information System (INIS)

    Harnarinesingh, Randy E S; Syan, Chanan S

    2014-01-01

    The inherent noise associated with odometry manifests itself as errors in localization for autonomous vehicles. Visual odometry has been previously used in order to supplement classical vehicle odometry. However, visual odometry is limited in its ability to reduce errors in localization for large travel distances that entail the cumulative summing of individual frame-to-frame image errors. In this paper, a novel machine vision approach for tiled surfaces is proposed to address this problem. Tile edges in a laboratory environment are used to define a travel trajectory for the Quansar Qbot (autonomous vehicle) built on the iRobot iRoomba platform with a forward facing camera. Tile intersections are used to enable asynchronous error recovery for vehicle position and orientation. The proposed approach employs real-time image classification and is feasible for error mitigation for large travel distances. The average position error for an 8m travel distance using classical odometry was measured to be 0.28m. However, implementation of the proposed approach resulted in an error of 0.028m. The proposed approach therefore significantly reduces pose estimation error and could be used to supplement existing modalities such as GPS and Laser-based range sensors

  9. The lighter side of advertising: investigating posing and lighting biases.

    Science.gov (United States)

    Thomas, Nicole A; Burkitt, Jennifer A; Patrick, Regan E; Elias, Lorin J

    2008-11-01

    People tend to display the left cheek when posing for a portrait; however, this effect does not appear to generalise to advertising. The amount of body visible in the image and the sex of the poser might also contribute to the posing bias. Portraits also exhibit lateral lighting biases, with most images being lit from the left. This effect might also be present in advertisements. A total of 2801 full-page advertisements were sampled and coded for posing direction, lighting direction, sex of model, and amount of body showing. Images of females showed an overall leftward posing bias, but the biases in males depended on the amount of body visible. Males demonstrated rightward posing biases for head-only images. Overall, images tended to be lit from the top left corner. The two factors of posing and lighting biases appear to influence one another. Leftward-lit images had more leftward poses than rightward, while the opposite occurred for rightward-lit images. Collectively, these results demonstrate that the posing biases in advertisements are dependent on the amount of body showing in the image, and that biases in lighting direction interact with these posing biases.

  10. In-the-wild facial expression recognition in extreme poses

    Science.gov (United States)

    Yang, Fei; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    In the computer research area, facial expression recognition is a hot research problem. Recent years, the research has moved from the lab environment to in-the-wild circumstances. It is challenging, especially under extreme poses. But current expression detection systems are trying to avoid the pose effects and gain the general applicable ability. In this work, we solve the problem in the opposite approach. We consider the head poses and detect the expressions within special head poses. Our work includes two parts: detect the head pose and group it into one pre-defined head pose class; do facial expression recognize within each pose class. Our experiments show that the recognition results with pose class grouping are much better than that of direct recognition without considering poses. We combine the hand-crafted features, SIFT, LBP and geometric feature, with deep learning feature as the representation of the expressions. The handcrafted features are added into the deep learning framework along with the high level deep learning features. As a comparison, we implement SVM and random forest to as the prediction models. To train and test our methodology, we labeled the face dataset with 6 basic expressions.

  11. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations

    Science.gov (United States)

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2017-08-01

    The capability of an active spacecraft to accurately estimate its relative position and attitude (pose) with respect to an active/inactive, artificial/natural space object (target) orbiting in close-proximity is required to carry out various activities like formation flying, on-orbit servicing, active debris removal, and space exploration. According to the specific mission scenario, the pose determination task involves both theoretical and technological challenges related to the search for the most suitable algorithmic solution and sensor architecture, respectively. As regards the latter aspect, electro-optical sensors represent the best option as their use is compatible with mass and power limitation of micro and small satellites, and their measurements can be processed to estimate all the pose parameters. Overall, the degree of complexity of the challenges related to pose determination largely varies depending on the nature of the targets, which may be actively/passively cooperative, uncooperative but known, or uncooperative and unknown space objects. In this respect, while cooperative pose determination has been successfully demonstrated in orbit, the uncooperative case is still under study by universities, research centers, space agencies and private companies. However, in both the cases, the demand for space applications involving relative navigation maneuvers, also in close-proximity, for which pose determination capabilities are mandatory, is significantly increasing. In this framework, a review of state-of-the-art techniques and algorithms developed in the last decades for cooperative and uncooperative pose determination by processing data provided by electro-optical sensors is herein presented. Specifically, their main advantages and drawbacks in terms of achieved performance, computational complexity, and sensitivity to variability of pose and target geometry, are highlighted.

  12. Estimation of blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    imaging, and, finally, some of the more recent experimental techniques. The authors shows that the Doppler shift, usually considered the way velocity is detected, actually, plays a minor role in pulsed systems. Rather, it is the shift of position of signals between pulses that is used in velocity...

  13. Posing Problems to Understand Children's Learning of Fractions

    Science.gov (United States)

    Cheng, Lu Pien

    2013-01-01

    In this study, ways in which problem posing activities aid our understanding of children's learning of addition of unlike fractions and product of proper fractions was examined. In particular, how a simple problem posing activity helps teachers take a second, deeper look at children's understanding of fraction concepts will be discussed. The…

  14. Standard diffusive systems are well-posed linear systems

    NARCIS (Netherlands)

    Matignon, Denis; Zwart, Heiko J.

    2004-01-01

    The class of well-posed linear systems as introduced by Salamon has become a well-understood class of systems, see e.g. the work of Weiss and the book of Staffans. Many partial partial differential equations with boundary control and point observation can be formulated as a well-posed linear system.

  15. Formulas in inverse and ill-posed problems

    CERN Document Server

    Anikonov, Yu E

    1997-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  16. Turkish Primary School Teachers' Opinions about Problem Posing

    Science.gov (United States)

    Kilic, Cigdem

    2013-01-01

    Problem posing is one of the most important topics in a mathematics education. Through problem posing, students gain mathematical abilities and concepts and teachers can evaluate their students and arrange adequate learning environments. The aim of the present study is to investigate Turkish primary school teachers' opinions about problem posing…

  17. Control rod velocity limiter

    International Nuclear Information System (INIS)

    Cearley, J.E.; Carruth, J.C.; Dixon, R.C.; Spencer, S.S.; Zuloaga, J.A. Jr.

    1986-01-01

    This patent describes a velocity control arrangement for a reciprocable, vertically oriented control rod for use in a nuclear reactor in a fluid medium, the control rod including a drive hub secured to and extending from one end therefrom. The control device comprises: a toroidally shaped control member spaced from and coaxially positioned around the hub and secured thereto by a plurality of spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the toroidal member spaced therefrom in coaxial position. The side of the control member toward the control rod has a smooth generally conical surface. The side of the control member away from the control rod is formed with a concave surface constituting a single annular groove. The device also comprises inner and outer annular vanes radially spaced from one another and spaced from the side of the control member away from the control rod and positioned coaxially around and spaced from the hub and secured thereto by spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the vanes. The vanes are angled toward the control member, the outer edge of the inner vane being closer to the control member and the inner edge of the outer vane being closer to the control member. When the control rod moves in the fluid in the direction toward the drive hub the vanes direct a flow of fluid turbulence which provides greater resistance to movement of the control rod in the direction toward the drive hub than in the other direction

  18. Automatic generation of statistical pose and shape models for articulated joints.

    Science.gov (United States)

    Xin Chen; Graham, Jim; Hutchinson, Charles; Muir, Lindsay

    2014-02-01

    Statistical analysis of motion patterns of body joints is potentially useful for detecting and quantifying pathologies. However, building a statistical motion model across different subjects remains a challenging task, especially for a complex joint like the wrist. We present a novel framework for simultaneous registration and segmentation of multiple 3-D (CT or MR) volumes of different subjects at various articulated positions. The framework starts with a pose model generated from 3-D volumes captured at different articulated positions of a single subject (template). This initial pose model is used to register the template volume to image volumes from new subjects. During this process, the Grow-Cut algorithm is used in an iterative refinement of the segmentation of the bone along with the pose parameters. As each new subject is registered and segmented, the pose model is updated, improving the accuracy of successive registrations. We applied the algorithm to CT images of the wrist from 25 subjects, each at five different wrist positions and demonstrated that it performed robustly and accurately. More importantly, the resulting segmentations allowed a statistical pose model of the carpal bones to be generated automatically without interaction. The evaluation results show that our proposed framework achieved accurate registration with an average mean target registration error of 0.34 ±0.27 mm. The automatic segmentation results also show high consistency with the ground truth obtained semi-automatically. Furthermore, we demonstrated the capability of the resulting statistical pose and shape models by using them to generate a measurement tool for scaphoid-lunate dissociation diagnosis, which achieved 90% sensitivity and specificity.

  19. Face pose tracking using the four-point algorithm

    Science.gov (United States)

    Fung, Ho Yin; Wong, Kin Hong; Yu, Ying Kin; Tsui, Kwan Pang; Kam, Ho Chuen

    2017-06-01

    In this paper, we have developed an algorithm to track the pose of a human face robustly and efficiently. Face pose estimation is very useful in many applications such as building virtual reality systems and creating an alternative input method for the disabled. Firstly, we have modified a face detection toolbox called DLib for the detection of a face in front of a camera. The detected face features are passed to a pose estimation method, known as the four-point algorithm, for pose computation. The theory applied and the technical problems encountered during system development are discussed in the paper. It is demonstrated that the system is able to track the pose of a face in real time using a consumer grade laptop computer.

  20. Real-Time Head Pose Estimation on Mobile Platforms

    Directory of Open Access Journals (Sweden)

    Jianfeng Ren

    2010-06-01

    Full Text Available Many computer vision applications such as augmented reality require head pose estimation. As far as the real-time implementation of head pose estimation on relatively resource limited mobile platforms is concerned, it is required to satisfy real-time constraints while maintaining reasonable head pose estimation accuracy. The introduced head pose estimation approach in this paper is an attempt to meet this objective. The approach consists of the following components: Viola-Jones face detection, color-based face tracking using an online calibration procedure, and head pose estimation using Hu moment features and Fisher linear discriminant. Experimental results running on an actual mobile device are reported exhibiting both the real- time and accuracy aspects of the developed approach.

  1. Pose estimation for mobile robots working on turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.D.; Chen, Q.; Liu, J.J.; Sun, Z.G.; Zhang, W.Z. [Tsinghua Univ., Beijing (China). Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Dept. of Mechanical Engineering

    2009-03-11

    This paper discussed a features point detection and matching task technique for mobile robots used in wind turbine blade applications. The vision-based scheme used visual information from the robot's surrounding environment to match successive image frames. An improved pose estimation algorithm based on a scale invariant feature transform (SIFT) was developed to consider the characteristics of local images of turbine blades, pose estimation problems, and conditions. The method included a pre-subsampling technique for reducing computation and bidirectional matching for improving precision. A random sample consensus (RANSAC) method was used to estimate the robot's pose. Pose estimation conditions included a wide pose range; the distance between neighbouring blades; and mechanical, electromagnetic, and optical disturbances. An experimental platform was used to demonstrate the validity of the proposed algorithm. 20 refs., 6 figs.

  2. Person-Independent Head Pose Estimation Using Biased Manifold Embedding

    Directory of Open Access Journals (Sweden)

    Sethuraman Panchanathan

    2008-02-01

    Full Text Available Head pose estimation has been an integral problem in the study of face recognition systems and human-computer interfaces, as part of biometric applications. A fine estimate of the head pose angle is necessary and useful for several face analysis applications. To determine the head pose, face images with varying pose angles can be considered to be lying on a smooth low-dimensional manifold in high-dimensional image feature space. However, when there are face images of multiple individuals with varying pose angles, manifold learning techniques often do not give accurate results. In this work, we propose a framework for a supervised form of manifold learning called Biased Manifold Embedding to obtain improved performance in head pose angle estimation. This framework goes beyond pose estimation, and can be applied to all regression applications. This framework, although formulated for a regression scenario, unifies other supervised approaches to manifold learning that have been proposed so far. Detailed studies of the proposed method are carried out on the FacePix database, which contains 181 face images each of 30 individuals with pose angle variations at a granularity of 1∘. Since biometric applications in the real world may not contain this level of granularity in training data, an analysis of the methodology is performed on sparsely sampled data to validate its effectiveness. We obtained up to 2∘ average pose angle estimation error in the results from our experiments, which matched the best results obtained for head pose estimation using related approaches.

  3. The rarity of "unusual" [corrected] dispositions of victim bodies: staging and posing.

    Science.gov (United States)

    Keppel, Robert D; Weis, Joseph G

    2004-11-01

    The act of leaving a victim's body in an unusual position is a conscious criminal action by an offender to thwart an investigation, shock the finder and investigators of the crime scene, or give perverted pleasure to the killer. The unusual position concepts of posing and staging a murder victim have been documented thoroughly and have been accepted by the courts as a definable phenomenon. One staging case and one posing case are outlined and reveal characteristics of those homicides. From the Washington State Attorney General's Homicide Investigation and Tracking System's database on murder covering the years 1981-2000 (a total of 5,224 cases), the relative frequency of unusual body dispositions is revealed as a very rare occurrence. Only 1.3% of victims are left in an unusual position, with 0.3% being posed and 0.1% being staged. The characteristics of these types of murders also set them apart: compared to all other murders, in staged murders the victims and killers are, on average, older. All victims and offenders in the staged murders are white, with victims being disproportionately white in murders with any kind of unusual body disposition. Likewise, females stand out as victims when the body is posed, staged, or left in other unusual positions. Whereas posed bodies are more likely to include sexual assault, often in serial murders, there is no evidence of either in the staged cases. Lastly, when a body is left in an unusual position, binding is more likely, as well as the use of more "hands on" means of killing the victim, such as stabbing or cutting weapons, bludgeons, ligatures, or hands and feet.

  4. Adaptive relative pose control of spacecraft with model couplings and uncertainties

    Science.gov (United States)

    Sun, Liang; Zheng, Zewei

    2018-02-01

    The spacecraft pose tracking control problem for an uncertain pursuer approaching to a space target is researched in this paper. After modeling the nonlinearly coupled dynamics for relative translational and rotational motions between two spacecraft, position tracking and attitude synchronization controllers are developed independently by using a robust adaptive control approach. The unknown kinematic couplings, parametric uncertainties, and bounded external disturbances are handled with adaptive updating laws. It is proved via Lyapunov method that the pose tracking errors converge to zero asymptotically. Spacecraft close-range rendezvous and proximity operations are introduced as an example to validate the effectiveness of the proposed control approach.

  5. A new benchmark for pose estimation with ground truth from virtual reality

    DEFF Research Database (Denmark)

    Schlette, Christian; Buch, Anders Glent; Aksoy, Eren Erdal

    2014-01-01

    The development of programming paradigms for industrial assembly currently gets fresh impetus from approaches in human demonstration and programming-by-demonstration. Major low- and mid-level prerequisites for machine vision and learning in these intelligent robotic applications are pose estimation......, stereo reconstruction and action recognition. As a basis for the machine vision and learning involved, pose estimation is used for deriving object positions and orientations and thus target frames for robot execution. Our contribution introduces and applies a novel benchmark for typical multi...

  6. Real-time pose invariant logo and pattern detection

    Science.gov (United States)

    Sidla, Oliver; Kottmann, Michal; Benesova, Wanda

    2011-01-01

    The detection of pose invariant planar patterns has many practical applications in computer vision and surveillance systems. The recognition of company logos is used in market studies to examine the visibility and frequency of logos in advertisement. Danger signs on vehicles could be detected to trigger warning systems in tunnels, or brand detection on transport vehicles can be used to count company-specific traffic. We present the results of a study on planar pattern detection which is based on keypoint detection and matching of distortion invariant 2d feature descriptors. Specifically we look at the keypoint detectors of type: i) Lowe's DoG approximation from the SURF algorithm, ii) the Harris Corner Detector, iii) the FAST Corner Detector and iv) Lepetit's keypoint detector. Our study then compares the feature descriptors SURF and compact signatures based on Random Ferns: we use 3 sets of sample images to detect and match 3 logos of different structure to find out which combinations of keypoint detector/feature descriptors work well. A real-world test tries to detect vehicles with a distinctive logo in an outdoor environment under realistic lighting and weather conditions: a camera was mounted on a suitable location for observing the entrance to a parking area so that incoming vehicles could be monitored. In this 2 hour long recording we can successfully detect a specific company logo without false positives.

  7. The role of the posed smile in overall facial esthetics.

    Science.gov (United States)

    Havens, David C; McNamara, James A; Sigler, Lauren M; Baccetti, Tiziano

    2010-03-01

    To evaluate the role of the posed smile in overall facial esthetics, as determined by laypersons and orthodontists. Twenty orthodontists and 20 lay evaluators were asked to perform six Q-sorts on different photographs of 48 white female subjects. The six Q-sorts consisted of three different photographs for each of two time points (pre- and posttreatment), as follows: (1) smile-only, (2) face without the smile, and (3) face with the smile. The evaluators determined a split-line for attractive and unattractive images at the end of each Q-sort. The proportions of attractive patients were compared across Q-sorts using a Wilcoxon signed-rank test for paired data. The evaluators also ranked nine facial/dental characteristics at the completion of the six Q-sorts. Evaluators found the pretreatment face without the smile to be significantly more attractive than the face with the smile or the smile-only photographs. Dissimilar results were seen posttreatment; there was not a significant difference between the three posttreatment photographs. The two panels agreed on the proportion of "attractive" subjects but differed on the attractiveness level of each individual subject. The presence of a malocclusion has a negative impact on facial attractiveness. Orthodontic correction of a malocclusion affects overall facial esthetics positively. Laypeople and orthodontists agree on what is attractive. Overall facial harmony is the most important characteristic used in deciding facial attractiveness.

  8. Animated pose templates for modeling and detecting human actions.

    Science.gov (United States)

    Yao, Benjamin Z; Nie, Bruce X; Liu, Zicheng; Zhu, Song-Chun

    2014-03-01

    This paper presents animated pose templates (APTs) for detecting short-term, long-term, and contextual actions from cluttered scenes in videos. Each pose template consists of two components: 1) a shape template with deformable parts represented in an And-node whose appearances are represented by the Histogram of Oriented Gradient (HOG) features, and 2) a motion template specifying the motion of the parts by the Histogram of Optical-Flows (HOF) features. A shape template may have more than one motion template represented by an Or-node. Therefore, each action is defined as a mixture (Or-node) of pose templates in an And-Or tree structure. While this pose template is suitable for detecting short-term action snippets in two to five frames, we extend it in two ways: 1) For long-term actions, we animate the pose templates by adding temporal constraints in a Hidden Markov Model (HMM), and 2) for contextual actions, we treat contextual objects as additional parts of the pose templates and add constraints that encode spatial correlations between parts. To train the model, we manually annotate part locations on several keyframes of each video and cluster them into pose templates using EM. This leaves the unknown parameters for our learning algorithm in two groups: 1) latent variables for the unannotated frames including pose-IDs and part locations, 2) model parameters shared by all training samples such as weights for HOG and HOF features, canonical part locations of each pose, coefficients penalizing pose-transition and part-deformation. To learn these parameters, we introduce a semi-supervised structural SVM algorithm that iterates between two steps: 1) learning (updating) model parameters using labeled data by solving a structural SVM optimization, and 2) imputing missing variables (i.e., detecting actions on unlabeled frames) with parameters learned from the previous step and progressively accepting high-score frames as newly labeled examples. This algorithm belongs to a

  9. Generalized Hough transform based time invariant action recognition with 3D pose information

    Science.gov (United States)

    Muench, David; Huebner, Wolfgang; Arens, Michael

    2014-10-01

    Human action recognition has emerged as an important field in the computer vision community due to its large number of applications such as automatic video surveillance, content based video-search and human robot interaction. In order to cope with the challenges that this large variety of applications present, recent research has focused more on developing classifiers able to detect several actions in more natural and unconstrained video sequences. The invariance discrimination tradeoff in action recognition has been addressed by utilizing a Generalized Hough Transform. As a basis for action representation we transform 3D poses into a robust feature space, referred to as pose descriptors. For each action class a one-dimensional temporal voting space is constructed. Votes are generated from associating pose descriptors with their position in time relative to the end of an action sequence. Training data consists of manually segmented action sequences. In the detection phase valid human 3D poses are assumed as input, e.g. originating from 3D sensors or monocular pose reconstruction methods. The human 3D poses are normalized to gain view-independence and transformed into (i) relative limb-angle space to ensure independence of non-adjacent joints or (ii) geometric features. In (i) an action descriptor consists of the relative angles between limbs and their temporal derivatives. In (ii) the action descriptor consists of different geometric features. In order to circumvent the problem of time-warping we propose to use a codebook of prototypical 3D poses which is generated from sample sequences of 3D motion capture data. This idea is in accordance with the concept of equivalence classes in action space. Results of the codebook method are presented using the Kinect sensor and the CMU Motion Capture Database.

  10. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    Science.gov (United States)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  11. Methods for intraoperative, sterile pose-setting of patient-specific microstereotactic frames

    Science.gov (United States)

    Vollmann, Benjamin; Müller, Samuel; Kundrat, Dennis; Ortmaier, Tobias; Kahrs, Lüder A.

    2015-03-01

    This work proposes new methods for a microstereotactic frame based on bone cement fixation. Microstereotactic frames are under investigation for minimal invasive temporal bone surgery, e.g. cochlear implantation, or for deep brain stimulation, where products are already on the market. The correct pose of the microstereotactic frame is either adjusted outside or inside the operating room and the frame is used for e.g. drill or electrode guidance. We present a patientspecific, disposable frame that allows intraoperative, sterile pose-setting. Key idea of our approach is bone cement between two plates that cures while the plates are positioned with a mechatronics system in the desired pose. This paper includes new designs of microstereotactic frames, a system for alignment and first measurements to analyze accuracy and applicable load.

  12. Fast human pose estimation using 3D Zernike descriptors

    Science.gov (United States)

    Berjón, Daniel; Morán, Francisco

    2012-03-01

    Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.

  13. Influence of Velocity on Variability in Gait Kinematics

    DEFF Research Database (Denmark)

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine

    2014-01-01

    the concurrence of joint angles throughout a gait cycle at three different velocities (3.0, 4.5, 6.0 km/h). Six datasets at each velocity were collected from 16 men. A variability range VR throughout the gait cycle at each velocity for each joint angle for each person was calculated. The joint angles at each...... velocity were compared pairwise, and whenever this showed values within the VR of this velocity, the case was positive. By adding the positives throughout the gait cycle, phases with high and low concurrences were located; peak concurrence was observed at mid-stance phase. Striving for the same velocity...

  14. A pose estimation method for unmanned ground vehicles in GPS denied environments

    Science.gov (United States)

    Tamjidi, Amirhossein; Ye, Cang

    2012-06-01

    This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.

  15. Methods of RVD object pose estimation and experiments

    Science.gov (United States)

    Shang, Yang; He, Yan; Wang, Weihua; Yu, Qifeng

    2007-11-01

    Methods of measuring a RVD (rendezvous and docking) cooperative object's pose from monocular and binocular images respectively are presented. The methods solve the initial values first and optimize the object pose parameters by bundle adjustment. In the disturbance-rejecting binocular method, chosen measurement system parameters of one camera's exterior parameters are modified simultaneously. The methods need three or more cooperative target points to measure the object's pose accurately. Experimental data show that the methods converge quickly and stably, provide accurate results and do not need accurate initial values. Even when the chosen measurement system parameters are subjected to some amount of disturbance, the binocular method manages to provide fairly accurate results.

  16. Water velocity meter

    Science.gov (United States)

    Roberts, C. W.; Smith, D. L.

    1970-01-01

    Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.

  17. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  18. ESPRIT: Exercise Sensing and Pose Recovery Inference Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop ESPRIT: an Exercise Sensing and Pose Recovery Inference Tool, in support of NASA's effort in developing crew exercise technologies for...

  19. Health Issues: Do Cell Phones Pose a Health Hazard?

    Science.gov (United States)

    ... Procedures Home, Business, and Entertainment Products Cell Phones Health Issues Share Tweet Linkedin Pin it More sharing ... it Email Print Do cell phones pose a health hazard? Many people are concerned that cell phone ...

  20. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Directory of Open Access Journals (Sweden)

    María F. Ayllón

    2016-04-01

    Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.

  1. Inverse and Ill-posed Problems Theory and Applications

    CERN Document Server

    Kabanikhin, S I

    2011-01-01

    The text demonstrates the methods for proving the existence (if et all) and finding of inverse and ill-posed problems solutions in linear algebra, integral and operator equations, integral geometry, spectral inverse problems, and inverse scattering problems. It is given comprehensive background material for linear ill-posed problems and for coefficient inverse problems for hyperbolic, parabolic, and elliptic equations. A lot of examples for inverse problems from physics, geophysics, biology, medicine, and other areas of application of mathematics are included.

  2. Contactless and pose invariant biometric identification using hand surface.

    Science.gov (United States)

    Kanhangad, Vivek; Kumar, Ajay; Zhang, David

    2011-05-01

    This paper presents a novel approach for hand matching that achieves significantly improved performance even in the presence of large hand pose variations. The proposed method utilizes a 3-D digitizer to simultaneously acquire intensity and range images of the user's hand presented to the system in an arbitrary pose. The approach involves determination of the orientation of the hand in 3-D space followed by pose normalization of the acquired 3-D and 2-D hand images. Multimodal (2-D as well as 3-D) palmprint and hand geometry features, which are simultaneously extracted from the user's pose normalized textured 3-D hand, are used for matching. Individual matching scores are then combined using a new dynamic fusion strategy. Our experimental results on the database of 114 subjects with significant pose variations yielded encouraging results. Consistent (across various hand features considered) performance improvement achieved with the pose correction demonstrates the usefulness of the proposed approach for hand based biometric systems with unconstrained and contact-free imaging. The experimental results also suggest that the dynamic fusion approach employed in this work helps to achieve performance improvement of 60% (in terms of EER) over the case when matching scores are combined using the weighted sum rule.

  3. Robust head pose estimation via supervised manifold learning.

    Science.gov (United States)

    Wang, Chao; Song, Xubo

    2014-05-01

    Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. An anti-disturbing real time pose estimation method and system

    Science.gov (United States)

    Zhou, Jian; Zhang, Xiao-hu

    2011-08-01

    method can estimate pose between camera and object when part even all known features are lost, and has a quick response time benefit from GPU parallel computing. The method present here can be used widely in vision-guide techniques to strengthen its intelligence and generalization, which can also play an important role in autonomous navigation and positioning, robots fields at unknown environment. The results of simulation and experiments demonstrate that proposed method could suppress noise effectively, extracted features robustly, and achieve the real time need. Theory analysis and experiment shows the method is reasonable and efficient.

  5. A New Pose Estimation Algorithm Using a Perspective-Ray-Based Scaled Orthographic Projection with Iteration.

    Directory of Open Access Journals (Sweden)

    Pengfei Sun

    Full Text Available Pose estimation aims at measuring the position and orientation of a calibrated camera using known image features. The pinhole model is the dominant camera model in this field. However, the imaging precision of this model is not accurate enough for an advanced pose estimation algorithm. In this paper, a new camera model, called incident ray tracking model, is introduced. More importantly, an advanced pose estimation algorithm based on the perspective ray in the new camera model, is proposed. The perspective ray, determined by two positioning points, is an abstract mathematical equivalent of the incident ray. In the proposed pose estimation algorithm, called perspective-ray-based scaled orthographic projection with iteration (PRSOI, an approximate ray-based projection is calculated by a linear system and refined by iteration. Experiments on the PRSOI have been conducted, and the results demonstrate that it is of high accuracy in the six degrees of freedom (DOF motion. And it outperforms three other state-of-the-art algorithms in terms of accuracy during the contrast experiment.

  6. An Improved Method of Pose Estimation for Lighthouse Base Station Extension.

    Science.gov (United States)

    Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang

    2017-10-22

    In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal.

  7. Problem posing as a didactic resource in formal mathematics courses to train future secondary school mathematics teachers

    Directory of Open Access Journals (Sweden)

    Lorena Salazar Solórzano

    2015-06-01

    Full Text Available Beginning university training programs must focus on different competencies for mathematics teachers, i.e., not only on solving problems, but also on posing them and analyzing the mathematical activity. This paper reports the results of an exploratory study conducted with future secondary school mathematics teachers on the introduction of problem-posing tasks in formal mathematics courses, specifically in abstract algebra and real analysis courses. Evidence was found that training which includes problem-posing tasks has a positive impact on the students’ understanding of definitions, theorems and exercises within formal mathematics, as well as on their competency in reflecting on the mathematical activity. 

  8. Automated pose estimation of objects using multiple ID devices for handling and maintenance task in nuclear fusion reactor

    International Nuclear Information System (INIS)

    Umetani, Tomohiro; Morioka, Jun-ichi; Tamura, Yuichi; Inoue, Kenji; Arai, Tatsuo; Mae, Yasusi

    2011-01-01

    This paper describes a method for the automated estimation of three-dimensional pose (position and orientation) of objects by autonomous robots, using multiple identification (ID) devices. Our goal is to estimate the object pose for assembly or maintenance tasks in a real nuclear fusion reactor system, with autonomous robots cooperating in a virtual assembly system. The method estimates the three-dimensional pose for autonomous robots. This paper discusses a method of motion generation for ID acquisition using the sensory data acquired by the measurement system attached to the robots and from the environment. Experimental results show the feasibility of the proposed method. (author)

  9. Structural interface parameters are discriminatory in recognising near-native poses of protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Sony Malhotra

    Full Text Available Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied areas. Molecular interactions can also be studied computationally using the approach named as Molecular Docking. Molecular docking employs search algorithms to predict the possible conformations for interacting partners and then calculates interaction energies. However, docking proposes number of solutions as different docked poses and hence offers a serious challenge to identify the native (or near native structures from the pool of these docked poses. Here, we propose a rigorous scoring scheme called DockScore which can be used to rank the docked poses and identify the best docked pose out of many as proposed by docking algorithm employed. The scoring identifies the optimal interactions between the two protein partners utilising various features of the putative interface like area, short contacts, conservation, spatial clustering and the presence of positively charged and hydrophobic residues. DockScore was first trained on a set of 30 protein-protein complexes to determine the weights for different parameters. Subsequently, we tested the scoring scheme on 30 different protein-protein complexes and native or near-native structure were assigned the top rank from a pool of docked poses in 26 of the tested cases. We tested the ability of DockScore to discriminate likely dimer interactions that differ substantially within a homologous family and also demonstrate that DOCKSCORE can distinguish correct pose for all 10 recent CAPRI targets.

  10. A deep learning approach for pose estimation from volumetric OCT data.

    Science.gov (United States)

    Gessert, Nils; Schlüter, Matthias; Schlaefer, Alexander

    2018-05-01

    Tracking the pose of instruments is a central problem in image-guided surgery. For microscopic scenarios, optical coherence tomography (OCT) is increasingly used as an imaging modality. OCT is suitable for accurate pose estimation due to its micrometer range resolution and volumetric field of view. However, OCT image processing is challenging due to speckle noise and reflection artifacts in addition to the images' 3D nature. We address pose estimation from OCT volume data with a new deep learning-based tracking framework. For this purpose, we design a new 3D convolutional neural network (CNN) architecture to directly predict the 6D pose of a small marker geometry from OCT volumes. We use a hexapod robot to automatically acquire labeled data points which we use to train 3D CNN architectures for multi-output regression. We use this setup to provide an in-depth analysis on deep learning-based pose estimation from volumes. Specifically, we demonstrate that exploiting volume information for pose estimation yields higher accuracy than relying on 2D representations with depth information. Supporting this observation, we provide quantitative and qualitative results that 3D CNNs effectively exploit the depth structure of marker objects. Regarding the deep learning aspect, we present efficient design principles for 3D CNNs, making use of insights from the 2D deep learning community. In particular, we present Inception3D as a new architecture which performs best for our application. We show that our deep learning approach reaches errors at our ground-truth label's resolution. We achieve a mean average error of 14.89 ± 9.3 µm and 0.096 ± 0.072° for position and orientation learning, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  12. The critical ionization velocity

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  13. High Velocity Gas Gun

    Science.gov (United States)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  14. Design of container velocity profile for the suppression of liquid sloshing

    Science.gov (United States)

    Kim, Dongjoo

    2016-11-01

    In many industrial applications, high-speed position control of a liquid container causes undesirable liquid vibrations called 'sloshing' which poses a control challenge in fast maneuvering and accurate positioning of containers. Recently, it has been shown that a control theory called 'input shaping' is successfully applied to reduce the sloshing, but its success comes at a cost of longer process time. Therefore, we aim to minimize liquid sloshing without increasing the process time when a container moves horizontally by a target distance within a limited time. In this study, sensing and feedback actuation are not permitted but the container velocity is allowed to be modified from a given triangular profile. A new design is proposed by applying input shaping to the container velocity with carefully selected acceleration time. That is, the acceleration time is chosen to be the 1st mode natural period, and the input shaper is determined based on the 3rd mode natural frequency. The proposed approach is validated by performing numerical simulations, which show that the simple modification of container velocity reduces the sloshing significantly without additional process time in a feedforward manner. Supported by the NRF programs (NRF-2015R1D1A1A01059675) of Korean government.

  15. Yoga Poses Increase Subjective Energy and State Self-Esteem in Comparison to ‘Power Poses’

    Directory of Open Access Journals (Sweden)

    Agnieszka Golec de Zavala

    2017-05-01

    Full Text Available Research on beneficial consequences of yoga focuses on the effects of yogic breathing and meditation. Less is known about the psychological effects of performing yoga postures. The present study investigated the effects of yoga poses on subjective sense of energy and self-esteem. The effects of yoga postures were compared to the effects of ‘power poses,’ which arguably increase the sense of power and self-confidence due to their association with interpersonal dominance (Carney et al., 2010. The study tested the novel prediction that yoga poses, which are not associated with interpersonal dominance but increase bodily energy, would increase the subjective feeling of energy and therefore increase self-esteem compared to ‘high power’ and ‘low power’ poses. A two factorial, between participants design was employed. Participants performed either two standing yoga poses with open front of the body (n = 19, two standing yoga poses with covered front of the body (n = 22, two expansive, high power poses (n = 21, or two constrictive, low power poses (n = 20 for 1-min each. The results showed that yoga poses in comparison to ‘power poses’ increased self-esteem. This effect was mediated by an increased subjective sense of energy and was observed when baseline trait self-esteem was controlled for. These results suggest that the effects of performing open, expansive body postures may be driven by processes other than the poses’ association with interpersonal power and dominance. This study demonstrates that positive effects of yoga practice can occur after performing yoga poses for only 2 min.

  16. Multi-task pose-invariant face recognition.

    Science.gov (United States)

    Ding, Changxing; Xu, Chang; Tao, Dacheng

    2015-03-01

    Face images captured in unconstrained environments usually contain significant pose variation, which dramatically degrades the performance of algorithms designed to recognize frontal faces. This paper proposes a novel face identification framework capable of handling the full range of pose variations within ±90° of yaw. The proposed framework first transforms the original pose-invariant face recognition problem into a partial frontal face recognition problem. A robust patch-based face representation scheme is then developed to represent the synthesized partial frontal faces. For each patch, a transformation dictionary is learnt under the proposed multi-task learning scheme. The transformation dictionary transforms the features of different poses into a discriminative subspace. Finally, face matching is performed at patch level rather than at the holistic level. Extensive and systematic experimentation on FERET, CMU-PIE, and Multi-PIE databases shows that the proposed method consistently outperforms single-task-based baselines as well as state-of-the-art methods for the pose problem. We further extend the proposed algorithm for the unconstrained face verification problem and achieve top-level performance on the challenging LFW data set.

  17. Students’ Mathematical Creative Thinking through Problem Posing Learning

    Science.gov (United States)

    Ulfah, U.; Prabawanto, S.; Jupri, A.

    2017-09-01

    The research aims to investigate the differences in enhancement of students’ mathematical creative thinking ability of those who received problem posing approach assisted by manipulative media and students who received problem posing approach without manipulative media. This study was a quasi experimental research with non-equivalent control group design. Population of this research was third-grade students of a primary school in Bandung city in 2016/2017 academic year. Sample of this research was two classes as experiment class and control class. The instrument used is a test of mathematical creative thinking ability. Based on the results of the research, it is known that the enhancement of the students’ mathematical creative thinking ability of those who received problem posing approach with manipulative media aid is higher than the ability of those who received problem posing approach without manipulative media aid. Students who get learning problem posing learning accustomed in arranging mathematical sentence become matter of story so it can facilitate students to comprehend about story

  18. Temporal subtraction of chest radiographs compensating pose differences

    Science.gov (United States)

    von Berg, Jens; Dworzak, Jalda; Klinder, Tobias; Manke, Dirk; Kreth, Adrian; Lamecker, Hans; Zachow, Stefan; Lorenz, Cristian

    2011-03-01

    Temporal subtraction techniques using 2D image registration improve the detectability of interval changes from chest radiographs. Although such methods are well known for some time they are not widely used in radiologic practice. The reason is the occurrence of strong pose differences between two acquisitions with a time interval of months to years in between. Such strong perspective differences occur in a reasonable number of cases. They cannot be compensated by available image registration methods and thus mask interval changes to be undetectable. In this paper a method is proposed to estimate a 3D pose difference by the adaptation of a 3D rib cage model to both projections. The difference between both is then compensated for, thus producing a subtraction image with virtually no change in pose. The method generally assumes that no 3D image data is available from the patient. The accuracy of pose estimation is validated with chest phantom images acquired under controlled geometric conditions. A subtle interval change simulated by a piece of plastic foam attached to the phantom becomes visible in subtraction images generated with this technique even at strong angular pose differences like an anterior-posterior inclination of 13 degrees.

  19. Preparatory power posing affects nonverbal presence and job interview performance.

    Science.gov (United States)

    Cuddy, Amy J C; Wilmuth, Caroline A; Yap, Andy J; Carney, Dana R

    2015-07-01

    The authors tested whether engaging in expansive (vs. contractive) "power poses" before a stressful job interview--preparatory power posing--would enhance performance during the interview. Participants adopted high-power (i.e., expansive, open) poses or low-power (i.e., contractive, closed) poses, and then prepared and delivered a speech to 2 evaluators as part of a mock job interview. All interview speeches were videotaped and coded for overall performance and hireability and for 2 potential mediators: verbal content (e.g., structure, content) and nonverbal presence (e.g., captivating, enthusiastic). As predicted, those who prepared for the job interview with high- (vs. low-) power poses performed better and were more likely to be chosen for hire; this relation was mediated by nonverbal presence, but not by verbal content. Although previous research has focused on how a nonverbal behavior that is enacted during interactions and observed by perceivers affects how those perceivers evaluate and respond to the actor, this experiment focused on how a nonverbal behavior that is enacted before the interaction and unobserved by perceivers affects the actor's performance, which, in turn, affects how perceivers evaluate and respond to the actor. This experiment reveals a theoretically novel and practically informative result that demonstrates the causal relation between preparatory nonverbal behavior and subsequent performance and outcomes. (c) 2015 APA, all rights reserved).

  20. Pose estimation for augmented reality applications using genetic algorithm.

    Science.gov (United States)

    Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen

    2005-12-01

    This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.

  1. Cartesian Control of a 3-DOF Electro-Pneumatic Actuated Motion Platform with Exteroceptive Pose Measurement

    Directory of Open Access Journals (Sweden)

    Eduardo Izaguirre

    2011-09-01

    Full Text Available This paper presents a kinematic cartesian control scheme of 3 degree of freedom parallel robot driven by electro-pneumatic actuators based on exteroceptive pose measurement system. The inverse kinematics model is used to obtain the desired joint position coordinates from the time-varying trajectory given in task space. The proposal cascade control scheme in task space is based in two loops, the inner loop consisting in a decoupled joint position control and the outer loop which is designed to obtain an appropriate task space trajectory tracking. In order to avoid the on-line computation of direct kinematics an arrangement of inertial sensor and optical encoders are employed to provide the accurate pose measurement of end-effector. The experiment's results demonstrate the great performance of the proposed control scheme in industrial motion tracking application.

  2. Pose-Invariant Face Recognition via RGB-D Images.

    Science.gov (United States)

    Sang, Gaoli; Li, Jing; Zhao, Qijun

    2016-01-01

    Three-dimensional (3D) face models can intrinsically handle large pose face recognition problem. In this paper, we propose a novel pose-invariant face recognition method via RGB-D images. By employing depth, our method is able to handle self-occlusion and deformation, both of which are challenging problems in two-dimensional (2D) face recognition. Texture images in the gallery can be rendered to the same view as the probe via depth. Meanwhile, depth is also used for similarity measure via frontalization and symmetric filling. Finally, both texture and depth contribute to the final identity estimation. Experiments on Bosphorus, CurtinFaces, Eurecom, and Kiwi databases demonstrate that the additional depth information has improved the performance of face recognition with large pose variations and under even more challenging conditions.

  3. Pose Self-Measurement of Noncooperative Spacecraft Based on Solar Panel Triangle Structure

    Directory of Open Access Journals (Sweden)

    Jingzhou Song

    2015-01-01

    Full Text Available Aiming at the recognition and location of noncooperative spacecraft, this paper presents a monocular vision pose measurement method based on solar triangle structure. First of all, an autonomous recognition algorithm of feature structure based on sliding window Hough transformation (SWHT and inscribed circle of a triangle is proposed, and the image coordinates of feature points on the triangle can be obtained relying on this algorithm, combined with the P4P algorithm and the structure of spacecraft, calculating the relative pose of target expressed by rotation and translation matrix. The whole algorithm can be loaded into the prewritten onboard program, which will get the autocomplete feature structure extraction and relative pose measurement without human intervention, and this method does not need to mount any markers on the target. Then compare the measured values with the accurate value of the laser tracker, so that a conclusion can be drawn that the maximum position error is lower than 5% and the rotation error is lower than 4%, which meets the requirements of noncooperative spacecraft’s pose measurement for observations, tracking, and docking in the final rendezvous phase.

  4. Marker detection evaluation by phantom and cadaver experiments for C-arm pose estimation pattern

    Science.gov (United States)

    Steger, Teena; Hoßbach, Martin; Wesarg, Stefan

    2013-03-01

    C-arm fluoroscopy is used for guidance during several clinical exams, e.g. in bronchoscopy to locate the bronchoscope inside the airways. Unfortunately, these images provide only 2D information. However, if the C-arm pose is known, it can be used to overlay the intrainterventional fluoroscopy images with 3D visualizations of airways, acquired from preinterventional CT images. Thus, the physician's view is enhanced and localization of the instrument at the correct position inside the bronchial tree is facilitated. We present a novel method for C-arm pose estimation introducing a marker-based pattern, which is placed on the patient table. The steel markers form a pattern, allowing to deduce the C-arm pose by use of the projective invariant cross-ratio. Simulations show that the C-arm pose estimation is reliable and accurate for translations inside an imaging area of 30 cm x 50 cm and rotations up to 30°. Mean error values are 0.33 mm in 3D space and 0.48 px in the 2D imaging plane. First tests on C-arm images resulted in similarly compelling accuracy values and high reliability in an imaging area of 30 cm x 42.5 cm. Even in the presence of interfering structures, tested both with anatomy phantoms and a turkey cadaver, high success rates over 90% and fully satisfying execution times below 4 sec for 1024 px × 1024 px images could be achieved.

  5. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Zhenyuan Jia

    2014-12-01

    Full Text Available High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  6. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    Science.gov (United States)

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-12-12

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  7. Attitude and position tracking

    CSIR Research Space (South Africa)

    Candy, LP

    2011-01-01

    Full Text Available Several applications require the tracking of attitude and position of a body based on velocity data. It is tempting to use direction cosine matrices (DCM), for example, to track attitude based on angular velocity data, and to integrate the linear...

  8. Modified circular velocity law

    Science.gov (United States)

    Djeghloul, Nazim

    2018-05-01

    A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.

  9. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation

    Science.gov (United States)

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-01-01

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions. PMID:26184191

  10. Pose-invariant face recognition using Markov random fields.

    Science.gov (United States)

    Ho, Huy Tho; Chellappa, Rama

    2013-04-01

    One of the key challenges for current face recognition techniques is how to handle pose variations between the probe and gallery face images. In this paper, we present a method for reconstructing the virtual frontal view from a given nonfrontal face image using Markov random fields (MRFs) and an efficient variant of the belief propagation algorithm. In the proposed approach, the input face image is divided into a grid of overlapping patches, and a globally optimal set of local warps is estimated to synthesize the patches at the frontal view. A set of possible warps for each patch is obtained by aligning it with images from a training database of frontal faces. The alignments are performed efficiently in the Fourier domain using an extension of the Lucas-Kanade algorithm that can handle illumination variations. The problem of finding the optimal warps is then formulated as a discrete labeling problem using an MRF. The reconstructed frontal face image can then be used with any face recognition technique. The two main advantages of our method are that it does not require manually selected facial landmarks or head pose estimation. In order to improve the performance of our pose normalization method in face recognition, we also present an algorithm for classifying whether a given face image is at a frontal or nonfrontal pose. Experimental results on different datasets are presented to demonstrate the effectiveness of the proposed approach.

  11. Introduced organisms pose the most significant threat to the ...

    African Journals Online (AJOL)

    spamer

    Introduced organisms pose the most significant threat to the conservation status of oceanic islands (e.g.. Williamson 1996). Subantarctic Prince Edward Island, the smaller of the two islands in the Prince Edward. Island group, has few introduced organisms; it is cur- rently known to support only three introduced animals.

  12. Full Body Pose Estimation During Occlusion using Multiple Cameras

    DEFF Research Database (Denmark)

    Fihl, Preben; Cosar, Serhan

    people is a very challenging problem for methods based on pictorials structure as for any other monocular pose estimation method. In this report we present work on a multi-view approach based on pictorial structures that integrate low level information from multiple calibrated cameras to improve the 2D...

  13. Enhancing Students' Communication Skills through Problem Posing and Presentation

    Science.gov (United States)

    Sugito; E. S., Sri Mulyani; Hartono; Supartono

    2017-01-01

    This study was to explore how enhance communication skill through problem posing and presentation method. The subjects of this research were the seven grade students Junior High School, including 20 male and 14 female. This research was conducted in two cycles and each cycle consisted of four steps, they were: planning, action, observation, and…

  14. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or ...

  15. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Science.gov (United States)

    Ayllón, María F.; Gómez, Isabel A.; Ballesta-Claver, Julio

    2016-01-01

    This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas), flexibility (range of ideas),…

  16. Developing teachers' subject didactic competence through problem posing

    Czech Academy of Sciences Publication Activity Database

    Tichá, Marie; Hošpesová, A.

    2013-01-01

    Roč. 83, č. 1 (2013), s. 133-143 ISSN 0013-1954 Institutional support: RVO:67985840 Keywords : professional development * primary school teachers * problem posing Subject RIV: AM - Education Impact factor: 0.639, year: 2013 http://link.springer.com/article/10.1007%2Fs10649-012-9455-1

  17. The relative pose estimation of aircraft based on contour model

    Science.gov (United States)

    Fu, Tai; Sun, Xiangyi

    2017-02-01

    This paper proposes a relative pose estimation approach based on object contour model. The first step is to obtain a two-dimensional (2D) projection of three-dimensional (3D)-model-based target, which will be divided into 40 forms by clustering and LDA analysis. Then we proceed by extracting the target contour in each image and computing their Pseudo-Zernike Moments (PZM), thus a model library is constructed in an offline mode. Next, we spot a projection contour that resembles the target silhouette most in the present image from the model library with reference of PZM; then similarity transformation parameters are generated as the shape context is applied to match the silhouette sampling location, from which the identification parameters of target can be further derived. Identification parameters are converted to relative pose parameters, in the premise that these values are the initial result calculated via iterative refinement algorithm, as the relative pose parameter is in the neighborhood of actual ones. At last, Distance Image Iterative Least Squares (DI-ILS) is employed to acquire the ultimate relative pose parameters.

  18. 3D Facial Landmarking under Expression, Pose, and Occlusion Variations

    NARCIS (Netherlands)

    H. Dibeklioğ lu; A.A. Salah (Albert Ali); L. Akarun

    2008-01-01

    htmlabstractAutomatic localization of 3D facial features is important for face recognition, tracking, modeling and expression analysis. Methods developed for 2D images were shown to have problems working across databases acquired with different illumination conditions. Expression variations, pose

  19. POSING THE HISTORICAL JESUS QUESTION AND THE GOAL OF ...

    African Journals Online (AJOL)

    mycl

    ... study recommended that. African scholars be allowed to develop and pose the Historical Jesus ... he is seen as the starting point for modern critical study of Jesus. (Burer). ... African anthropology and culture and the data of revelation, and how this theology ... Man” from two perspectives: that of a biblical culture in the first.

  20. Problem Posing with Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Mahendra, R.; Slamet, I.; Budiyono

    2017-09-01

    One of the difficulties of students in the learning of geometry is on the subject of plane that requires students to understand the abstract matter. The aim of this research is to determine the effect of Problem Posing learning model with Realistic Mathematics Education Approach in geometry learning. This quasi experimental research was conducted in one of the junior high schools in Karanganyar, Indonesia. The sample was taken using stratified cluster random sampling technique. The results of this research indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students’ conceptual understanding significantly in geometry learning especially on plane topics. It is because students on the application of Problem Posing with Realistic Mathematics Education Approach are become to be active in constructing their knowledge, proposing, and problem solving in realistic, so it easier for students to understand concepts and solve the problems. Therefore, the model of Problem Posing learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on geometry material. Furthermore, the impact can improve student achievement.

  1. Zebra Mussels Pose a Threat to Virginia's Waters

    OpenAIRE

    Helfrich, Louis A. (Louis Anthony), 1942-; Weigmann, Diana L.; Speenburgh, Renee M.; Neves, Richard J.; Kitchel, Lisie; Bruenderman, Sue A., 1962-

    2005-01-01

    Provides an brief introduction to the invasion of the zebra mussel into American waters, explains the economic consequences they pose, and discusses if Virginia will inherit the problem, what the public can do to help, the general lifecycle of the zebra mussel and if they can be controlled, and who is working on the zebra mussel problem.

  2. Effects of pose and image resolution on automatic face recognition

    NARCIS (Netherlands)

    Mahmood, Zahid; Ali, Tauseef; Khan, Samee U.

    The popularity of face recognition systems have increased due to their use in widespread applications. Driven by the enormous number of potential application domains, several algorithms have been proposed for face recognition. Face pose and image resolutions are among the two important factors that

  3. Meanings Given to Algebraic Symbolism in Problem-Posing

    Science.gov (United States)

    Cañadas, María C.; Molina, Marta; del Río, Aurora

    2018-01-01

    Some errors in the learning of algebra suggest that students might have difficulties giving meaning to algebraic symbolism. In this paper, we use problem posing to analyze the students' capacity to assign meaning to algebraic symbolism and the difficulties that students encounter in this process, depending on the characteristics of the algebraic…

  4. CDDIS_VLBI_products_positions

    Data.gov (United States)

    National Aeronautics and Space Administration — Station positions and velocity solutions in Software INdependent EXchange (SINEX) format derived from analysis of Very Long Baseline Interferometry (VLBI) data....

  5. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...

  6. Multidisc neutron velocity selector

    International Nuclear Information System (INIS)

    Rosta, L.; Zsigmond, Gy.; Farago, B.; Mezei, F.; Ban, K.; Perendi, J.

    1987-12-01

    The prototype of a velocity selector for neutron monochromatization in the 4-20 A wavelength range is presented. The theoretical background of the multidisc rotor system is given together with a description of the mechanical construction and electronic driving system. The first tests and neutron measurements prove easy handling and excellent parameters. (author) 6 refs.; 7 figs.; 2 tabs

  7. Remote-controlled flexible pose measurement system and method for a moving target in wind tunnel

    Directory of Open Access Journals (Sweden)

    Wei LIU

    2018-01-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. This paper proposes a remote-controlled flexible pose measurement system in wind tunnel conditions for the separation of a target from an aircraft. The position and attitude parameters of a moving object are obtained by utilizing a single camera with a focal length and camera orientation that can be changed based on different measurement conditions. Using this proposed system and method, both the flexibility and efficiency of the pose measurement system can be enhanced in wind tunnel conditions to meet the measurement requirements of different objects and experiments, which is also useful for the development of an intelligent position and attitude measurement system. The position and the focal length of the camera also can be controlled remotely during measurements to enlarge both the vertical and horizontal measurement range of this system. Experiments are conducted in the laboratory to measure the position and attitude of moving objects with high flexibility and efficiency, and the measurement precision of the measurement system is also verified through experiments.

  8. A circular feature-based pose measurement method for metal part grasping

    International Nuclear Information System (INIS)

    Wu, Chenrui; He, Zaixing; Zhang, Shuyou; Zhao, Xinyue

    2017-01-01

    The grasping of circular metal parts such as bearings and flanges is a common task in industry. Limited by low texture and repeated features, the point-feature-based method is not applicable in pose measurement of these parts. In this paper, we propose a novel pose measurement method for grasping circular metal parts. This method is based on cone degradation and involves a monocular camera. To achieve higher measurement accuracy, a position-based visual servoing method is presented to continuously control an eye-in-hand, six-degrees-of-freedom robot arm to grasp the part. The uncertainty of the part’s coordinate frame during the control process is solved by defining a fixed virtual coordinate frame. Experimental results are provided to illustrate the effectiveness of the proposed method and the factors that affect measurement accuracy are analyzed. (paper)

  9. 6-DOF Pose Estimation of a Robotic Navigation Aid by Tracking Visual and Geometric Features.

    Science.gov (United States)

    Ye, Cang; Hong, Soonhac; Tamjidi, Amirhossein

    2015-10-01

    This paper presents a 6-DOF Pose Estimation (PE) method for a Robotic Navigation Aid (RNA) for the visually impaired. The RNA uses a single 3D camera for PE and object detection. The proposed method processes the camera's intensity and range data to estimates the camera's egomotion that is then used by an Extended Kalman Filter (EKF) as the motion model to track a set of visual features for PE. A RANSAC process is employed in the EKF to identify inliers from the visual feature correspondences between two image frames. Only the inliers are used to update the EKF's state. The EKF integrates the egomotion into the camera's pose in the world coordinate system. To retain the EKF's consistency, the distance between the camera and the floor plane (extracted from the range data) is used by the EKF as the observation of the camera's z coordinate. Experimental results demonstrate that the proposed method results in accurate pose estimates for positioning the RNA in indoor environments. Based on the PE method, a wayfinding system is developed for localization of the RNA in a home environment. The system uses the estimated pose and the floorplan to locate the RNA user in the home environment and announces the points of interest and navigational commands to the user through a speech interface. This work was motivated by the limitations of the existing navigation technology for the visually impaired. Most of the existing methods use a point/line measurement sensor for indoor object detection. Therefore, they lack capability in detecting 3D objects and positioning a blind traveler. Stereovision has been used in recent research. However, it cannot provide reliable depth data for object detection. Also, it tends to produce a lower localization accuracy because its depth measurement error quadratically increases with the true distance. This paper suggests a new approach for navigating a blind traveler. The method uses a single 3D time-of-flight camera for both 6-DOF PE and 3D object

  10. Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement

    Science.gov (United States)

    Yang, Juqing; Wang, Dayong; Fan, Baixing; Dong, Dengfeng; Zhou, Weihu

    2017-03-01

    In-situ intelligent manufacturing for large-volume equipment requires industrial robots with absolute high-accuracy positioning and orientation steering control. Conventional robots mainly employ an offline calibration technology to identify and compensate key robotic parameters. However, the dynamic and static parameters of a robot change nonlinearly. It is not possible to acquire a robot's actual parameters and control the absolute pose of the robot with a high accuracy within a large workspace by offline calibration in real-time. This study proposes a real-time online absolute pose steering control method for an industrial robot based on six degrees of freedom laser tracking measurement, which adopts comprehensive compensation and correction of differential movement variables. First, the pose steering control system and robot kinematics error model are constructed, and then the pose error compensation mechanism and algorithm are introduced in detail. By accurately achieving the position and orientation of the robot end-tool, mapping the computed Jacobian matrix of the joint variable and correcting the joint variable, the real-time online absolute pose compensation for an industrial robot is accurately implemented in simulations and experimental tests. The average positioning error is 0.048 mm and orientation accuracy is better than 0.01 deg. The results demonstrate that the proposed method is feasible, and the online absolute accuracy of a robot is sufficiently enhanced.

  11. Pose Estimation of Interacting People using Pictorial Structures

    DEFF Research Database (Denmark)

    Fihl, Preben; Moeslund, Thomas B.

    2010-01-01

    Pose estimation of people have had great progress in recent years but so far research has dealt with single persons. In this paper we address some of the challenges that arise when doing pose estimation of interacting people. We build on the pictorial structures framework and make important...... contributions by combining color-based appearance and edge information using a measure of the local quality of the appearance feature. In this way we not only combine the two types of features but dynamically find the optimal weighting of them. We further enable the method to handle occlusions by searching...... a foreground mask for possible occluded body parts and then applying extra strong kinematic constraints to find the true occluded body parts. The effect of applying our two contributions are show through both qualitative and quantitative tests and show a clear improvement on the ability to correctly localize...

  12. Strategic management of health risks posed by buried transuranic wastes

    International Nuclear Information System (INIS)

    Jump, R.A.

    1994-01-01

    A strategy is presented for reducing health risks at sites contaminated with buried transuranic (TRU) wastes by first taking measures to immobilize the contaminants until the second step, final action, becomes cost-effective and poses less risk to the remediation workers. The first step of this strategy does not preclude further action if it is warranted and is in harmony with environmental laws and regulations

  13. Sensing Strategies for Disambiguating among Multiple Objects in Known Poses.

    Science.gov (United States)

    1985-08-01

    ELEMENT. PROIECT. TASK Artificial Inteligence Laboratory AE OKUI UBR 545 Technology Square Cambridge, MA 021.39 11. CONTROLLING OFFICE NAME AND ADDRESS 12...AD-Ali65 912 SENSING STRATEGIES FOR DISAMBIGURTING MONG MULTIPLE 1/1 OBJECTS IN KNOWN POSES(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL ...or Dist Special 1 ’ MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 855 August, 1985 Sensing Strategies for

  14. Solution of linear ill-posed problems using overcomplete dictionaries

    OpenAIRE

    Pensky, Marianna

    2016-01-01

    In the present paper we consider application of overcomplete dictionaries to solution of general ill-posed linear inverse problems. Construction of an adaptive optimal solution for such problems usually relies either on a singular value decomposition or representation of the solution via an orthonormal basis. The shortcoming of both approaches lies in the fact that, in many situations, neither the eigenbasis of the linear operator nor a standard orthonormal basis constitutes an appropriate co...

  15. Teaching Human Poses Interactively to a Social Robot

    Science.gov (United States)

    Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.

    2013-01-01

    The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336

  16. LEVELING STUDENTS’ CREATIVE THINKING IN SOLVING AND POSING MATHEMATICAL PROBLEM

    Directory of Open Access Journals (Sweden)

    Tatag Yuli Eko Siswono

    2010-07-01

    Full Text Available Many researchers assume that people are creative, but their degree ofcreativity is different. The notion of creative thinking level has beendiscussed .by experts. The perspective of mathematics creative thinkingrefers to a combination of logical and divergent thinking which is basedon intuition but has a conscious aim. The divergent thinking is focusedon flexibility, fluency, and novelty in mathematical problem solving andproblem posing. As students have various backgrounds and differentabilities, they possess different potential in thinking patterns,imagination, fantasy and performance; therefore, students have differentlevels of creative thinking. A research study was conducted in order todevelop a framework for students’ levels of creative thinking inmathematics. This research used a qualitative approach to describe thecharacteristics of the levels of creative thinking. Task-based interviewswere conducted to collect data with ten 8thgrade junior secondary schoolstudents. The results distinguished five levels of creative thinking,namely level 0 to level 4 with different characteristics in each level.These differences are based on fluency, flexibility, and novelty inmathematical problem solving and problem posing.Keywords: student’s creative thinking, problem posing, flexibility,fluency, novelty DOI: http://dx.doi.org/10.22342/jme.1.1.794.17-40

  17. Teaching Human Poses Interactively to a Social Robot

    Directory of Open Access Journals (Sweden)

    Miguel A. Salichs

    2013-09-01

    Full Text Available The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher’s explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.

  18. Head Pose Estimation on Top of Haar-Like Face Detection: A Study Using the Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Anwar Saeed

    2015-08-01

    Full Text Available Head pose estimation is a crucial initial task for human face analysis, which is employed in several computer vision systems, such as: facial expression recognition, head gesture recognition, yawn detection, etc. In this work, we propose a frame-based approach to estimate the head pose on top of the Viola and Jones (VJ Haar-like face detector. Several appearance and depth-based feature types are employed for the pose estimation, where comparisons between them in terms of accuracy and speed are presented. It is clearly shown through this work that using the depth data, we improve the accuracy of the head pose estimation. Additionally, we can spot positive detections, faces in profile views detected by the frontal model, that are wrongly cropped due to background disturbances. We introduce a new depth-based feature descriptor that provides competitive estimation results with a lower computation time. Evaluation on a benchmark Kinect database shows that the histogram of oriented gradients and the developed depth-based features are more distinctive for the head pose estimation, where they compare favorably to the current state-of-the-art approaches. Using a concatenation of the aforementioned feature types, we achieved a head pose estimation with average errors not exceeding 5:1; 4:6; 4:2 for pitch, yaw and roll angles, respectively.

  19. IMU-based Real-time Pose Measurement system for Anterior Pelvic Plane in Total Hip Replacement Surgeries.

    Science.gov (United States)

    Zhe Cao; Shaojie Su; Hao Tang; Yixin Zhou; Zhihua Wang; Hong Chen

    2017-07-01

    With the aging of population, the number of Total Hip Replacement Surgeries (THR) increased year by year. In THR, inaccurate position of the implanted prosthesis may lead to the failure of the operation. In order to reduce the failure rate and acquire the real-time pose of Anterior Pelvic Plane (APP), we propose a measurement system in this paper. The measurement system includes two parts: Initial Pose Measurement Instrument (IPMI) and Real-time Pose Measurement Instrument (RPMI). IPMI is used to acquire the initial pose of the APP, and RPMI is used to estimate the real-time pose of the APP. Both are composed of an Inertial Measurement Unit (IMU) and magnetometer sensors. To estimate the attitude of the measurement system, the Extended Kalman Filter (EKF) is adopted in this paper. The real-time pose of the APP could be acquired together with the algorithm designed in the paper. The experiment results show that the Root Mean Square Error (RMSE) is within 1.6 degrees, which meets the requirement of THR operations.

  20. Multidisk neutron velocity selectors

    International Nuclear Information System (INIS)

    Hammouda, B.

    1992-01-01

    Helical multidisk velocity selectors used for neutron scattering applications have been analyzed and tested experimentally. Design and performance considerations are discussed along with simple explanation of the basic concept. A simple progression is used for the inter-disk spacing in the 'Rosta' design. Ray tracing computer investigations are presented in order to assess the 'coverage' (how many absorbing layers are stacked along the path of 'wrong' wavelength neutrons) and the relative number of neutrons absorbed in each disk (and therefore the relative amount of gamma radiation emitted from each disk). We discuss whether a multidisk velocity selector can be operated in the 'reverse' configuration (i.e. the selector is turned by 180 0 around a vertical axis with the rotor spun in the reverse direction). Experimental tests and calibration of a multidisk selector are reported together with evidence that a multidisk selector can be operated in the 'reverse' configuration. (orig.)

  1. Turbulent flow velocity distribution at rough walls

    International Nuclear Information System (INIS)

    Baumann, W.

    1978-08-01

    Following extensive measurements of the velocity profile in a plate channel with artificial roughness geometries specific investigations were carried out to verify the results obtained. The wall geometry used was formed by high transverse square ribs having a large pitch. The measuring position relative to the ribs was varied as a parameter thus providing a statement on the local influence of roughness ribs on the values measured. As a fundamental result it was found that the gradient of the logarithmic rough wall velocity profiles, which differs widely from the value 2.5, depends but slightly on the measuring position relative to the ribs. The gradients of the smooth wall velocity profiles deviate from 2.5 near the ribs, only. This fact can be explained by the smooth wall shear stress varying with the pitch of the ribs. (orig.) 891 GL [de

  2. A new method for measurement of granular velocities

    International Nuclear Information System (INIS)

    Nyborg Andersen, B.

    1984-01-01

    A new, supplementary method to measure granular velocities is presented. The method utilizes the Doppler shift caused by the line of sight component of the solar rotation to cause a wavelength shift through spectral lines as function of heliocentric angle. By measuring the center-to-limb variation of the granular intensity fluctations at different wavelength positions in the lines, the velocities are found. To do this, assumptions regarding the geometrical structure of the velocity and intensity fields have to be made. Preliminary application of the method results in a steep velocity gradient suggesting zero velocity at a hight of 200 km above tau 500 = 1. Possible causes are discussed

  3. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications.

    Science.gov (United States)

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-09-14

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  4. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    Science.gov (United States)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  5. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications

    Science.gov (United States)

    Musleh, Basam; Martín, David; Armingol, José María; de la Escalera, Arturo

    2016-01-01

    Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels) and the vehicle environment (meters) depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments. PMID:27649178

  6. A combined vision-inertial fusion approach for 6-DoF object pose estimation

    Science.gov (United States)

    Li, Juan; Bernardos, Ana M.; Tarrío, Paula; Casar, José R.

    2015-02-01

    The estimation of the 3D position and orientation of moving objects (`pose' estimation) is a critical process for many applications in robotics, computer vision or mobile services. Although major research efforts have been carried out to design accurate, fast and robust indoor pose estimation systems, it remains as an open challenge to provide a low-cost, easy to deploy and reliable solution. Addressing this issue, this paper describes a hybrid approach for 6 degrees of freedom (6-DoF) pose estimation that fuses acceleration data and stereo vision to overcome the respective weaknesses of single technology approaches. The system relies on COTS technologies (standard webcams, accelerometers) and printable colored markers. It uses a set of infrastructure cameras, located to have the object to be tracked visible most of the operation time; the target object has to include an embedded accelerometer and be tagged with a fiducial marker. This simple marker has been designed for easy detection and segmentation and it may be adapted to different service scenarios (in shape and colors). Experimental results show that the proposed system provides high accuracy, while satisfactorily dealing with the real-time constraints.

  7. Pose Self-Calibration of Stereo Vision Systems for Autonomous Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Basam Musleh

    2016-09-01

    Full Text Available Nowadays, intelligent systems applied to vehicles have grown very rapidly; their goal is not only the improvement of safety, but also making autonomous driving possible. Many of these intelligent systems are based on making use of computer vision in order to know the environment and act accordingly. It is of great importance to be able to estimate the pose of the vision system because the measurement matching between the perception system (pixels and the vehicle environment (meters depends on the relative position between the perception system and the environment. A new method of camera pose estimation for stereo systems is presented in this paper, whose main contribution regarding the state of the art on the subject is the estimation of the pitch angle without being affected by the roll angle. The validation of the self-calibration method is accomplished by comparing it with relevant methods of camera pose estimation, where a synthetic sequence is used in order to measure the continuous error with a ground truth. This validation is enriched by the experimental results of the method in real traffic environments.

  8. Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination.

    Science.gov (United States)

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2017-09-24

    In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective- n -Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal.

  9. Ultrasound systems for blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1998-01-01

    Medical ultrasound scanners can be used both for displayinggray-scale images of the anatomy and for visualizing theblood flow dynamically in the body.The systems can interrogate the flow at a single position in the bodyand there find the velocity distribution over time. They can also show adynamic...

  10. Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization

    Science.gov (United States)

    Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.

    2007-03-01

    We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.

  11. ONKALO POSE experiment. Phase 3: execution and monitoring

    International Nuclear Information System (INIS)

    Valli, J.; Hakala, M.; Wanne, T.; Kantia, P.; Siren, T.

    2014-01-01

    In-depth knowledge of the in situ stress state at the Olkiluoto site is critical for stability assessment both prior to and after deposition of spent nuclear fuel in order to understand and avoid potential damage to the rock at the site. Posiva's Olkiluoto Spalling Experiment (POSE) was designed specifically for this purpose with three primary goals: establish the in situ spalling/damage strength of Olkiluoto migmatitic gneiss, establish the state of in situ stress at the -345 m depth level and act as a Prediction-Outcome (P-O) exercise. Phases 1 and 2 of POSE are outlined in WR 2012-60. The objectives of the third phase of the POSE experiment are the same as the original objectives outlined above. This report outlines the execution and results of the third phase of the POSE experiment. The third phase of the experiment involved internally heating the third experimental hole (ONK-EH3) of the POSE niche in order to cause a symmetrical thermal stress increase around the hole due to the thermal expansion of rock. This thermomechanically induced stress increase, coupled with the estimated existing in situ stress state, should cause the maximum principal stress around the hole to exceed the predicted spalling strength of the rock around the hole. ONK-EH3 is located almost completely in pegmatitic granite. Four fractures near the top of the hole were mapped after boring ONK-EH3, and a tensile failure located at the contact between mica-rich gneiss and pegmatitic granite was observed 18 months after boring, prior to the experiment. Based on predictive calculations and the estimated in situ state of stress, the maximum principal stress magnitude should reach ca. 100 MPa when the temperature was just below 100 deg C after 12 weeks of heating. There were problems with the heater control unit at the beginning of the experiment, after which heating proceeded according to plan. The crack damage threshold of pegmatitic granite has been determined to be 85 ±17 MPa at Olkiluoto

  12. Diferencias en la distancia de lanzamiento y velocidad de balón según el puesto específico en jugadores de balonmano sub-18. (Differences in the throwing distance and ball velocity by playing position in under-18 handball players.

    Directory of Open Access Journals (Sweden)

    Javier Sampedro Molinuelo

    2011-01-01

    Full Text Available ResumenEl presente estudio ha analizado las diferencias entre puestos específicos ofensivos en la distancia delanzamiento con balón medicinal pesado y liviano y en la velocidad de lanzamiento con y sin oposición en jugadores en formación. Para ello, cincuenta y ocho jugadores realizaron pruebas de progresiva especificidad: lanzamiento con balón medicinal pesado (LBMP y ligero (LBML, velocidad de lanzamiento sin (VL y con oposición (VLO.VLO fue menor a VL en todos los puestos específicos, con diferencias significativas en los jugadores laterales (p AbstractThis study aims to analyze the differences in throwing distance with overweight ball and throwing velocity without and with opposition according to the playing positions in trainees handball players. For this purpose, fifty-eight players were assessed in four specific progress throwing situations: throwing with heavy medicinal ball (THMB and light medicinal ball (TLMB, throwing velocity without (TV and with opposition (TVO.TVO was less than TV in all playing positions, with significant differences in back (p doi:10.5232/ricyde2011.02202

  13. Propagation Velocity of Solid Earth Tides

    Science.gov (United States)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  14. Relative Pose Estimation and Accuracy Verification of Spherical Panoramic Image

    Directory of Open Access Journals (Sweden)

    XIE Donghai

    2017-11-01

    Full Text Available This paper improves the method of the traditional 5-point relative pose estimation algorithm, and proposes a relative pose estimation algorithm which is suitable for spherical panoramic images. The algorithm firstly computes the essential matrix, then decomposes the essential matrix to obtain the rotation matrix and the translation vector using SVD, and finally the reconstructed three-dimensional points are used to eliminate the error solution. The innovation of the algorithm lies the derivation of panorama epipolar formula and the use of the spherical distance from the point to the epipolar plane as the error term for the spherical panorama co-planarity function. The simulation experiment shows that when the random noise of the image feature points is within the range of pixel, the error of the three Euler angles is about 0.1°, and the error between the relative translational displacement and the simulated value is about 1.5°. The result of the experiment using the data obtained by the vehicle panorama camera and the POS shows that:the error of the roll angle and pitch angle can be within 0.2°, the error of the heading angle can be within 0.4°, and the error between the relative translational displacement and the POS can be within 2°. The result of our relative pose estimation algorithm is used to generate the spherical panoramic epipolar images, then we extract the key points between the spherical panoramic images and calculate the errors in the column direction. The result shows that the errors is less than 1 pixel.

  15. Regularization theory for ill-posed problems selected topics

    CERN Document Server

    Lu, Shuai

    2013-01-01

    Thismonograph is a valuable contribution to thehighly topical and extremly productive field ofregularisationmethods for inverse and ill-posed problems. The author is an internationally outstanding and acceptedmathematicianin this field. In his book he offers a well-balanced mixtureof basic and innovative aspects.He demonstrates new,differentiatedviewpoints, and important examples for applications. The bookdemontrates thecurrent developments inthe field of regularization theory,such as multiparameter regularization and regularization in learning theory. The book is written for graduate and PhDs

  16. Novelty Detection for Interactive Pose Recognition by a Social Robot

    Directory of Open Access Journals (Sweden)

    Victor Gonzalez-Pacheco

    2015-04-01

    Full Text Available Active robot learners take an active role in their own learning by making queries to their human teachers when they receive new data. However, not every received input is useful for the robot, and asking for non-informative inputs or asking too many questions might worsen the user's perception of the robot. We present a novelty detection system that enables a robot to ask labels for new stimuli only when they seem both novel and interesting. Our system separates the decision process into two steps: first, it discriminates novel from known stimuli, and second, it estimates if these stimuli are likely to happen again. Our approach uses the notion of curiosity, which controls the eagerness with which the robot asks questions to the user. We evaluate our approach in the domain of pose learning by training our robot with a set of pointing poses able to detect up to 84%, 79%, and 78% of the observed novelties in three different experiments. Our approach enables robots to keep learning continuously, even after training is finished. The introduction of the curiosity parameter allows tuning, for the conditions in which the robot should want to learn more.

  17. Probabilistic Mapping of Human Visual Attention from Head Pose Estimation

    Directory of Open Access Journals (Sweden)

    Andrea Veronese

    2017-10-01

    Full Text Available Effective interaction between a human and a robot requires the bidirectional perception and interpretation of actions and behavior. While actions can be identified as a directly observable activity, this might not be sufficient to deduce actions in a scene. For example, orienting our face toward a book might suggest the action toward “reading.” For a human observer, this deduction requires the direction of gaze, the object identified as a book and the intersection between gaze and book. With this in mind, we aim to estimate and map human visual attention as directed to a scene, and assess how this relates to the detection of objects and their related actions. In particular, we consider human head pose as measurement to infer the attention of a human engaged in a task and study which prior knowledge should be included in such a detection system. In a user study, we show the successful detection of attention to objects in a typical office task scenario (i.e., reading, working with a computer, studying an object. Our system requires a single external RGB camera for head pose measurements and a pre-recorded 3D point cloud of the environment.

  18. A comparative study of calculated and measured particle velocities

    International Nuclear Information System (INIS)

    Tariq, S.M.

    2005-01-01

    After an explosive is detonated in a blast hole, seismic waves are generated in the ground surrounding the blast hole. These waves cause the particles of rock to oscillate about its position. As the wave attenuate, the particles come back to their original position. The rapidity with which the particles move is called the particle velocity. The peak or maximum velocity is the value which is of prime concern. This value of peak particle velocity can be estimated by the equations determined by the United States Bureau of Mines and by the DUPONT. A research program was conducted by the author at the 'Beck Materials Quarry' situated near Rolla, Missouri, USA. The purpose was to draw a comparison between the predicted and measured particle velocities. It was generally found that the predicted peak particle velocities were quite high as compared to the velocities measured by the Seismographs. (author)

  19. Determining the Performances of Pre-Service Primary School Teachers in Problem Posing Situations

    Science.gov (United States)

    Kilic, Cigdem

    2013-01-01

    This study examined the problem posing strategies of pre-service primary school teachers in different problem posing situations (PPSs) and analysed the issues they encounter while posing problems. A problem posing task consisting of six PPSs (two free, two structured, and two semi-structured situations) was delivered to 40 participants.…

  20. Collaborative Assembly Operation between Two Modular Robots Based on the Optical Position Feedback

    Directory of Open Access Journals (Sweden)

    Liying Su

    2009-01-01

    Full Text Available This paper studies the cooperation between two master-slave modular robots. A cooperative robot system is set up with two modular robots and a dynamic optical meter-Optotrak. With Optotrak, the positions of the end effectors are measured as the optical position feedback, which is used to adjust the robots' end positions. A tri-layered motion controller is designed for the two cooperative robots. The RMRC control method is adopted to adjust the master robot to the desired position. With the kinematics constraints of the two robots including position and pose, joint velocity, and acceleration constraints, the two robots can cooperate well. A bolt and nut assembly experiment is executed to verify the methods.

  1. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...

  2. A New Filtering Algorithm Utilizing Radial Velocity Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-feng; DU Zi-cheng; PAN Quan

    2005-01-01

    Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.

  3. ONKALO POSE experiment. Phase 1 and 2: execution and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E. [Saanio and Riekkola Oy, Helsinki (Finland); Siren, T. [Posiva Oy, Helsinki (Finland); Hakala, M. [KMS-Hakala Oy, Nokia (Finland); Kantia, P. [Geofcon Oy, Rovaniemi (Finland)

    2014-02-15

    Posiva has conducted in the ONKALO rock characterisation facility during 2010 - 2011 an in situ experiment named POSE (Posiva's Olkiluoto Spalling Experiment). The POSE experiment had three objectives: to establish the in situ spalling/damage strength of Olkiluoto migmatitic gneiss, to establish the state of in situ stress at the -345 m depth level, and to act as a Prediction-Outcome (P-O) exercise. The POSE experiment consisted of drilling with full-face boring machine two near fullscale deposition holes, diameter 1.52 m (compared to 1.75 m for the actual deposition holes), to a depth of 7.2 m, leaving a 0.9 m pillar between the holes. The holes were planned to be located in such way that maximum excavation-induced stresses could act in the pillar and damage could then take place. Boring of the two holes in 2010 was called Phase 1 (Pillar test). This was followed in 2011 by Phase 2 (Pillar heating test) where four heaters with a length of 7.5 m heated the test area to increase the stresses around the experimental holes. In the heating phase the other hole was back-filled with sand. The test was extensively monitored during the execution using temperature monitoring, strain gauge monitoring, video monitoring, microseismic monitoring and pressure monitoring. In addition, the holes were after the test measured using ground penetration radar (GPR) and 3D photogrammetry for detailed modelling. The outcomes from the test showed that no damage, except for three opened/sheared fractures, was noticed during the boring of the holes (Phase 1). Surface damage was, though, induced by heating (Phase 2). The damage was well localized around the holes and controlled by the foliation (mica rich layers) and rock type contacts which were known to be relatively weak. Surface type failures were not observed in the gneiss, but it was noticed in limited areas in the pegmatite-granite. The depths of the damaged areas due to heating were less than 100 mm. The depths and sizes of the

  4. Macrobend optical sensing for pose measurement in soft robot arms

    International Nuclear Information System (INIS)

    Sareh, Sina; Noh, Yohan; Liu, Hongbin; Althoefer, Kaspar; Li, Min; Ranzani, Tommaso

    2015-01-01

    This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic

  5. ONKALO POSE experiment. Phase 1 and 2: execution and monitoring

    International Nuclear Information System (INIS)

    Johansson, E.; Siren, T.; Hakala, M.; Kantia, P.

    2014-02-01

    Posiva has conducted in the ONKALO rock characterisation facility during 2010 - 2011 an in situ experiment named POSE (Posiva's Olkiluoto Spalling Experiment). The POSE experiment had three objectives: to establish the in situ spalling/damage strength of Olkiluoto migmatitic gneiss, to establish the state of in situ stress at the -345 m depth level, and to act as a Prediction-Outcome (P-O) exercise. The POSE experiment consisted of drilling with full-face boring machine two near fullscale deposition holes, diameter 1.52 m (compared to 1.75 m for the actual deposition holes), to a depth of 7.2 m, leaving a 0.9 m pillar between the holes. The holes were planned to be located in such way that maximum excavation-induced stresses could act in the pillar and damage could then take place. Boring of the two holes in 2010 was called Phase 1 (Pillar test). This was followed in 2011 by Phase 2 (Pillar heating test) where four heaters with a length of 7.5 m heated the test area to increase the stresses around the experimental holes. In the heating phase the other hole was back-filled with sand. The test was extensively monitored during the execution using temperature monitoring, strain gauge monitoring, video monitoring, microseismic monitoring and pressure monitoring. In addition, the holes were after the test measured using ground penetration radar (GPR) and 3D photogrammetry for detailed modelling. The outcomes from the test showed that no damage, except for three opened/sheared fractures, was noticed during the boring of the holes (Phase 1). Surface damage was, though, induced by heating (Phase 2). The damage was well localized around the holes and controlled by the foliation (mica rich layers) and rock type contacts which were known to be relatively weak. Surface type failures were not observed in the gneiss, but it was noticed in limited areas in the pegmatite-granite. The depths of the damaged areas due to heating were less than 100 mm. The depths and sizes of the

  6. Handheld pose tracking using vision-inertial sensors with occlusion handling

    Science.gov (United States)

    Li, Juan; Slembrouck, Maarten; Deboeverie, Francis; Bernardos, Ana M.; Besada, Juan A.; Veelaert, Peter; Aghajan, Hamid; Casar, José R.; Philips, Wilfried

    2016-07-01

    Tracking of a handheld device's three-dimensional (3-D) position and orientation is fundamental to various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces. Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision and inertial data. The integration of measurements from embedded accelerometers reduces the number of unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and 3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental results show that the proposed system has achieved high accuracy of few centimeters in position estimation and few degrees in orientation estimation.

  7. High-precision pose measurement method in wind tunnels based on laser-aided vision technology

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2015-08-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. In this paper, firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology. Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and self-luminous markers are utilized to capture clear images of the object. Then, after image processing, feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated. Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed. Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments. Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.

  8. Lavrentiev regularization method for nonlinear ill-posed problems

    International Nuclear Information System (INIS)

    Kinh, Nguyen Van

    2002-10-01

    In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x 0 of non ill-posed problems F(x)=y o , where instead of y 0 noisy data y δ is an element of X with absolut(y δ -y 0 ) ≤ δ are given and F:X→X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x α δ are obtained by solving the singularly perturbed nonlinear operator equation F(x)+α(x-x*)=y δ with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter α has been chosen properly. (author)

  9. Challenges Posed by Novel Psychoactive Substances – Middle East Perspective

    Directory of Open Access Journals (Sweden)

    Maciej J. Bogusz

    2017-04-01

    Full Text Available New psychoactive substances (NPS are defined as substances of abuse, either in a pure form or a preparation, that are not controlled by the 1961 Single Convention on Narcotic Drugs or the 1971 Convention on Psychotropic Substances, but which may pose a public health threat. In this context, the term “new” does not necessarily refer to new inventions but to substances that have recently become available or popular in a given society or country. This definition indicates that the problem of NPS is not new; however, the availability of any information via new communication technologies in the 21st century has enabled the spread of unwanted and socially harmful information, like information on the commercial availability of various NPS, offered in rising amounts and brands.

  10. Level of environmental threat posed by horticultural trade in Cactaceae.

    Science.gov (United States)

    Novoa, Ana; Le Roux, Johannes J; Richardson, David M; Wilson, John R U

    2017-10-01

    Ornamental horticulture has been identified as an important threat to plant biodiversity and is a major pathway for plant invasions worldwide. In this context, the family Cactaceae is particularly challenging because it is considered the fifth most threatened large taxonomic group in the world; several species are among the most widespread and damaging invasive species; and Cactaceae is one of the most popular horticultural plant groups. Based on the Convention on International Trade in Endangered Species of Wild Flora and Fauna and the 11 largest online auction sites selling cacti, we documented the international cactus trade. To provide an in-depth look at the dynamics of the industry, we surveyed the businesses involved in the cactus trade in South Africa (a hotspot of cactus trade and invasions). We purchased seeds of every available species and used DNA barcoding to identify species to the genus level. Although <20% of this trade involved threatened species and <3% involved known invasive species, many species were identified by a common name. However, only 0.02% of the globally traded cacti were collected from wild populations. Despite a large commercial network, all South African imports (of which 15% and 1.5% were of species listed as threatened and invasive, respectively) came from the same source. With DNA barcoding, we identified 24% of the species to genus level. Based on our results, we believe that if trade restrictions are placed on the small proportion of cacti that are invasive and there is no major increase in harvesting of native populations, then the commercial trade in cactus poses a negligible environmental threat. However, there are currently no effective methods for easily identifying which cacti are traded, and both the illicit harvesting of cacti from the wild and the informal trade in invasive taxa pose on-going conservation challenges. © 2017 Society for Conservation Biology.

  11. Genetic analysis of peripheral nerve conduction velocity in twins

    NARCIS (Netherlands)

    Rijsdijk, F.V.; Boomsma, D.I.; Vernon, P.A.

    1995-01-01

    We studied variation in peripheral nerve conduction velocity (PNCV) and intelligence in a group of 16-year-old Dutch twins. It has been suggested that both brain nerve conduction velocity and PNCV are positively correlated with intelligence (Reed, 1984) and that heritable differences in NCV may

  12. Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.

    Science.gov (United States)

    Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H

    2015-09-01

    Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.

  13. Pose estimation and tracking of non-cooperative rocket bodies using Time-of-Flight cameras

    Science.gov (United States)

    Gómez Martínez, Harvey; Giorgi, Gabriele; Eissfeller, Bernd

    2017-10-01

    This paper presents a methodology for estimating the position and orientation of a rocket body in orbit - the target - undergoing a roto-translational motion, with respect to a chaser spacecraft, whose task is to match the target dynamics for a safe rendezvous. During the rendezvous maneuver the chaser employs a Time-of-Flight camera that acquires a point cloud of 3D coordinates mapping the sensed target surface. Once the system identifies the target, it initializes the chaser-to-target relative position and orientation. After initialization, a tracking procedure enables the system to sense the evolution of the target's pose between frames. The proposed algorithm is evaluated using simulated point clouds, generated with a CAD model of the Cosmos-3M upper stage and the PMD CamCube 3.0 camera specifications.

  14. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  15. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...

  16. IABP Drifting Buoy Pressure, Temperature, Position, and Interpolated Ice Velocity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The International Arctic Buoy Programme (IABP) maintains a network of drifting buoys to provide meteorological and oceanographic data for real-time operational...

  17. Hummingbirds control turning velocity using body orientation and turning radius using asymmetrical wingbeat kinematics.

    Science.gov (United States)

    Read, Tyson J G; Segre, Paolo S; Middleton, Kevin M; Altshuler, Douglas L

    2016-03-01

    Turning in flight requires reorientation of force, which birds, bats and insects accomplish either by shifting body position and total force in concert or by using left-right asymmetries in wingbeat kinematics. Although both mechanisms have been observed in multiple species, it is currently unknown how each is used to control changes in trajectory. We addressed this problem by measuring body and wingbeat kinematics as hummingbirds tracked a revolving feeder, and estimating aerodynamic forces using a quasi-steady model. During arcing turns, hummingbirds symmetrically banked the stroke plane of both wings, and the body, into turns, supporting a body-dependent mechanism. However, several wingbeat asymmetries were present during turning, including a higher and flatter outer wingtip path and a lower more deviated inner wingtip path. A quasi-steady analysis of arcing turns performed with different trajectories revealed that changes in radius were associated with asymmetrical kinematics and forces, and changes in velocity were associated with symmetrical kinematics and forces. Collectively, our results indicate that both body-dependent and -independent force orientation mechanisms are available to hummingbirds, and that these kinematic strategies are used to meet the separate aerodynamic challenges posed by changes in velocity and turning radius. © 2016 The Author(s).

  18. Segmentation, classification, and pose estimation of military vehicles in low resolution laser radar images

    Science.gov (United States)

    Neulist, Joerg; Armbruster, Walter

    2005-05-01

    Model-based object recognition in range imagery typically involves matching the image data to the expected model data for each feasible model and pose hypothesis. Since the matching procedure is computationally expensive, the key to efficient object recognition is the reduction of the set of feasible hypotheses. This is particularly important for military vehicles, which may consist of several large moving parts such as the hull, turret, and gun of a tank, and hence require an eight or higher dimensional pose space to be searched. The presented paper outlines techniques for reducing the set of feasible hypotheses based on an estimation of target dimensions and orientation. Furthermore, the presence of a turret and a main gun and their orientations are determined. The vehicle parts dimensions as well as their error estimates restrict the number of model hypotheses whereas the position and orientation estimates and their error bounds reduce the number of pose hypotheses needing to be verified. The techniques are applied to several hundred laser radar images of eight different military vehicles with various part classifications and orientations. On-target resolution in azimuth, elevation and range is about 30 cm. The range images contain up to 20% dropouts due to atmospheric absorption. Additionally some target retro-reflectors produce outliers due to signal crosstalk. The presented algorithms are extremely robust with respect to these and other error sources. The hypothesis space for hull orientation is reduced to about 5 degrees as is the error for turret rotation and gun elevation, provided the main gun is visible.

  19. The Dynamic Features of Lip Corners in Genuine and Posed Smiles

    Directory of Open Access Journals (Sweden)

    Hui Guo

    2018-02-01

    Full Text Available The smile is a frequently expressed facial expression that typically conveys a positive emotional state and friendly intent. However, human beings have also learned how to fake smiles, typically by controlling the mouth to provide a genuine-looking expression. This is often accompanied by inaccuracies that can allow others to determine that the smile is false. Mouth movement is one of the most striking features of the smile, yet our understanding of its dynamic elements is still limited. The present study analyzes the dynamic features of lip corners, and considers how they differ between genuine and posed smiles. Employing computer vision techniques, we investigated elements such as the duration, intensity, speed, symmetry of the lip corners, and certain irregularities in genuine and posed smiles obtained from the UvA-NEMO Smile Database. After utilizing the facial analysis tool OpenFace, we further propose a new approach to segmenting the onset, apex, and offset phases of smiles, as well as a means of measuring irregularities and symmetry in facial expressions. We extracted these features according to 2D and 3D coordinates, and conducted an analysis. The results reveal that genuine smiles have higher values for onset, offset, apex, and total durations, as well as offset displacement, and a variable we termed Irregularity-b (the SD of the apex phase than do posed smiles. Conversely, values tended to be lower for onset and offset Speeds, and Irregularity-a (the rate of peaks, Symmetry-a (the correlation between left and right facial movements, and Symmetry-d (differences in onset frame numbers between the left and right faces. The findings from the present study have been compared to those of previous research, and certain speculations are made.

  20. Assessing the risk posed by natural hazards to infrastructures

    Science.gov (United States)

    Eidsvig, Unni Marie K.; Kristensen, Krister; Vidar Vangelsten, Bjørn

    2017-03-01

    This paper proposes a model for assessing the risk posed by natural hazards to infrastructures, with a focus on the indirect losses and loss of stability for the population relying on the infrastructure. The model prescribes a three-level analysis with increasing level of detail, moving from qualitative to quantitative analysis. The focus is on a methodology for semi-quantitative analyses to be performed at the second level. The purpose of this type of analysis is to perform a screening of the scenarios of natural hazards threatening the infrastructures, identifying the most critical scenarios and investigating the need for further analyses (third level). The proposed semi-quantitative methodology considers the frequency of the natural hazard, different aspects of vulnerability, including the physical vulnerability of the infrastructure itself, and the societal dependency on the infrastructure. An indicator-based approach is applied, ranking the indicators on a relative scale according to pre-defined ranking criteria. The proposed indicators, which characterise conditions that influence the probability of an infrastructure malfunctioning caused by a natural event, are defined as (1) robustness and buffer capacity, (2) level of protection, (3) quality/level of maintenance and renewal, (4) adaptability and quality of operational procedures and (5) transparency/complexity/degree of coupling. Further indicators describe conditions influencing the socio-economic consequences of the infrastructure malfunctioning, such as (1) redundancy and/or substitution, (2) cascading effects and dependencies, (3) preparedness and (4) early warning, emergency response and measures. The aggregated risk estimate is a combination of the semi-quantitative vulnerability indicators, as well as quantitative estimates of the frequency of the natural hazard, the potential duration of the infrastructure malfunctioning (e.g. depending on the required restoration effort) and the number of users of

  1. Invasive Lionfish (Pterosis volitans) Pose Public Health Threats.

    Science.gov (United States)

    Diaz, James H

    2015-01-01

    The lionfish, Pterosis volitans, a native of Indo-Pacific oceans, is a popular saltwater aquarium fish despite venomous spines on its fins. Lionfish were inadvertently introduced into the western Atlantic from Florida in the early 1990s and have overpopulated and dispersed widely into the Caribbean Sea and Gulf of Mexico. Initiatives to control lionfish populations were launched, including the National Oceanographic and Atmospheric Administration (NOAA)-sponsored "Lionfish as Food Campaign".2 Recently, scientists from the Food and Drug Administration (FDA) reported that lionfish caught off the US Virgin Islands contained ciguatoxins and could cause ciguatera fish poisoning (CFP); a seafood-borne poisoning without an antidote or any specific treatment, and a potential for prolonged neurotoxicity. Lionfish pose several public health threats. New strategies to control the lionfish population explosion in coastal waters and offshore fisheries are needed now to ensure seafood safety and public health. The lionfish, Pterosis volitans, is native to the reefs of the western Indian and Pacific Oceans (Figure 1). Brightly colored with red, white, and black stripes and adorned with feathery fins, the lionfish is a popular saltwater aquarium fish despite venomous spines on its fins (Figure 2). Lionfish were introduced into the western North Atlantic from Florida in the early 1990s after some specimens were discarded by dissatisfied amateur aquarists and others escaped from hurricane-flooded public aquariums.1 Since lionfish are voracious carnivores, have few natural predators, and reproduce prolifically, they have overpopulated and dispersed widely from Cape Hatteras to Florida, throughout the Caribbean Sea, and into the Gulf of Mexico.1 The population density of lionfish in its new, invaded territory now exceeds that of its native habitat.1 As a result, campaigns to control lionfish populations were launched in Florida and the Caribbean. Lionfish now pose several public

  2. Sensor fusion in head pose tracking for augmented reality

    NARCIS (Netherlands)

    Persa, S.F.

    2006-01-01

    The focus of this thesis is on studying diverse techniques, methods and sensors for position and orientation determination with application to augmented reality applications. In Chapter 2 we reviewed a variety of existing techniques and systems for position determination. From a practical point of

  3. Velocity Dispersions Across Bulge Types

    International Nuclear Information System (INIS)

    Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich; Saglia, Roberto; Drory, Niv; Fisher, David

    2010-01-01

    We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (σ*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.

  4. The STS-93 crew pose in front of Columbia

    Science.gov (United States)

    1999-01-01

    The STS-93 crew pose in front of the Space Shuttle orbiter Columbia following their landing on runway 33 at the Shuttle Landing Facility. Main gear touchdown occurred at 11:20:35 p.m. EDT on July 27. From left to right, they are Mission Specialists Catherine G. Coleman (Ph.D.) and Stephen A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, Commander Eileen Collins, and Mission Specialist Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  5. STS-93 Commander Collins poses in front of Columbia

    Science.gov (United States)

    1999-01-01

    STS-93 Commander Eileen Collins poses in front of the Space Shuttle orbiter Columbia following her textbook landing on runway 33 at the Shuttle Landing Facility. Main gear touchdown occurred at 11:20:35 p.m. EDT on July 27. On this mission, Collins became the first woman to serve as a Shuttle commander. Also on board were her fellow STS-93 crew members: Pilot Jeffrey S. Ashby and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history.

  6. Compensating Pose Uncertainties through Appropriate Gripper Finger Cutouts

    Directory of Open Access Journals (Sweden)

    Wolniakowski Adam

    2018-03-01

    Full Text Available The gripper finger design is a recurring problem in many robotic grasping platforms used in industry. The task of switching the gripper configuration to accommodate for a new batch of objects typically requires engineering expertise, and is a lengthy and costly iterative trial-and-error process. One of the open challenges is the need for the gripper to compensate for uncertainties inherent to the workcell, e.g. due to errors in calibration, inaccurate pose estimation from the vision system, or object deformation. In this paper, we present an analysis of gripper uncertainty compensating capabilities in a sample industrial object grasping scenario for a finger that was designed using an automated simulation-based geometry optimization method (Wolniakowski et al., 2013, 2015. We test the developed gripper with a set of grasps subjected to structured perturbation in a simulation environment and in the real-world setting. We provide a comparison of the data obtained by using both of these approaches. We argue that the strong correspondence observed in results validates the use of dynamic simulation for the gripper finger design and optimization.

  7. Mendalami Dasar-Dasar dalam Pengambilan Pose pada Pemotretan Model

    Directory of Open Access Journals (Sweden)

    Agnes Paulina Gunawan

    2013-04-01

    Full Text Available There are many activities and numerous objects in this universe, which make them interesting for photographers to explore as their masterpiece. One of the things that has been enjoyed and is always developing over time is the use of human as an object, whether as a candid photography or as a posing model in accordance to photographer's concept and theme. Using human being as an object is always popular among beginners and professional photographers. Even nowadays people often hold photo shoot as a media in many social network sites. And so if they understand the simple theories in basic knowledge of using human object, the results will be maximized, and of course, much more interesting. The more a photographer does his job, the better his experience is, and his work will develop. Thus, it makes him more alert to the situation and character of a model, which will then become more observant in predicting their outcome in photography.   

  8. On linear relationship between shock velocity and particle velocity

    International Nuclear Information System (INIS)

    Dandache, H.

    1986-11-01

    We attempt to derive the linear relationship between shock velocity U s and particle velocity U p from thermodynamic considerations, taking into account an ideal gas equation of state and a Mie-Grueneisen equation of state for solids. 23 refs

  9. Correlation of right atrial appendage velocity with left atrial appendage velocity and brain natriuretic Peptide.

    Science.gov (United States)

    Kim, Bu-Kyung; Heo, Jung-Ho; Lee, Jae-Woo; Kim, Hyun-Soo; Choi, Byung-Joo; Cha, Tae-Joon

    2012-03-01

    Left atrial appendage (LAA) anatomy and function have been well characterized both in healthy and diseased people, whereas relatively little attention has been focused on the right atrial appendage (RAA). We sought to evaluate RAA flow velocity and to compare these parameters with LAA indices and with a study of biomarkers, such as brain natriuretic peptide, among patients with sinus rhythm (SR) and atrial fibrillation (AF). In a series of 79 consecutive patients referred for transesophageal echocardiography, 43 patients (23 with AF and 20 controls) were evaluated. AF was associated with a decrease in flow velocity for both LAA and RAA [LAA velocity-SR vs. AF: 61 ± 22 vs. 29 ± 18 m/sec (p vs. AF: 46 ± 20 vs. 19 ± 8 m/sec (p brain natriuretic peptide (BNP). AF was associated with decreased RAA and LAA flow velocities. RAA velocity was found to be positively correlated with LAA velocity and negatively correlated with BNP. The plasma BNP concentration may serve as a determinant of LAA and RAA functions.

  10. Adaptive nonlinear robust relative pose control of spacecraft autonomous rendezvous and proximity operations.

    Science.gov (United States)

    Sun, Liang; Huo, Wei; Jiao, Zongxia

    2017-03-01

    This paper studies relative pose control for a rigid spacecraft with parametric uncertainties approaching to an unknown tumbling target in disturbed space environment. State feedback controllers for relative translation and relative rotation are designed in an adaptive nonlinear robust control framework. The element-wise and norm-wise adaptive laws are utilized to compensate the parametric uncertainties of chaser and target spacecraft, respectively. External disturbances acting on two spacecraft are treated as a lumped and bounded perturbation input for system. To achieve the prescribed disturbance attenuation performance index, feedback gains of controllers are designed by solving linear matrix inequality problems so that lumped disturbance attenuation with respect to the controlled output is ensured in the L 2 -gain sense. Moreover, in the absence of lumped disturbance input, asymptotical convergence of relative pose are proved by using the Lyapunov method. Numerical simulations are performed to show that position tracking and attitude synchronization are accomplished in spite of the presence of couplings and uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image

    Directory of Open Access Journals (Sweden)

    Chengyu Guo

    2016-02-01

    Full Text Available Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach.

  12. 3D head pose estimation and tracking using particle filtering and ICP algorithm

    KAUST Repository

    Ben Ghorbel, Mahdi; Baklouti, Malek; Couvet, Serge

    2010-01-01

    This paper addresses the issue of 3D head pose estimation and tracking. Existing approaches generally need huge database, training procedure, manual initialization or use face feature extraction manually extracted. We propose a framework for estimating the 3D head pose in its fine level and tracking it continuously across multiple Degrees of Freedom (DOF) based on ICP and particle filtering. We propose to approach the problem, using 3D computational techniques, by aligning a face model to the 3D dense estimation computed by a stereo vision method, and propose a particle filter algorithm to refine and track the posteriori estimate of the position of the face. This work comes with two contributions: the first concerns the alignment part where we propose an extended ICP algorithm using an anisotropic scale transformation. The second contribution concerns the tracking part. We propose the use of the particle filtering algorithm and propose to constrain the search space using ICP algorithm in the propagation step. The results show that the system is able to fit and track the head properly, and keeps accurate the results on new individuals without a manual adaptation or training. © Springer-Verlag Berlin Heidelberg 2010.

  13. MODEL PEMBELAJARAN PROBLEM POSING DENGAN PENDEKATAN SAINTIFIK UNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH

    Directory of Open Access Journals (Sweden)

    Adi Purnomo

    2015-08-01

    lesson plan is effective: (1 completeness clasical is over 75%, class average is over KKM; (2 the ability of students’ problem solving that the learning use problem posing with secientific approach better than students in conventional learning; (3 scientific skill hardwork and character independencet positively to the ability of problem solving; (4 there is improvement ability of students’ problem solving and improvement in problem solving skills based on those solo taxonomy.

  14. Voxel-based registration of simulated and real patient CBCT data for accurate dental implant pose estimation

    Science.gov (United States)

    Moreira, António H. J.; Queirós, Sandro; Morais, Pedro; Rodrigues, Nuno F.; Correia, André Ricardo; Fernandes, Valter; Pinho, A. C. M.; Fonseca, Jaime C.; Vilaça, João. L.

    2015-03-01

    The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant's pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant's pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant's main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant's pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67+/-34μm and 108μm, and angular misfits of 0.15+/-0.08° and 1.4°, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants' pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.

  15. Ultra-wideband pose detection system for boom-type roadheader based on Caffery transform and Taylor series expansion

    Science.gov (United States)

    Fu, Shichen; Li, Yiming; Zhang, Minjun; Zong, Kai; Cheng, Long; Wu, Miao

    2018-01-01

    To realize unmanned pose detection of a coalmine boom-type roadheader, an ultra-wideband (UWB) pose detection system (UPDS) for a roadheader is designed, which consists of four UWB positioning base stations and three roadheader positioning nodes. The positioning base stations are used in turn to locate the positioning nodes of the roadheader fuselage. Using 12 sets of distance measurement information, a time-of-arrival (TOA) positioning model is established to calculate the 3D coordinates of three positioning nodes of the roadheader fuselage, and the three attitude angles (heading, pitch, and roll angles) of the roadheader fuselage are solved. A range accuracy experiment of a UWB P440 module was carried out in a narrow and closed tunnel, and the experiment data show that the mean error and standard deviation of the module can reach below 2 cm. Based on the TOA positioning model of the UPDS, we propose a fusion-positioning algorithm based on a Caffery transform and Taylor series expansion (CTFPA). We derived the complete calculation process, designed a flowchart, and carried out a simulation of CTFPA in MATLAB, comparing 1000 simulated positioning nodes of CTFPA and the Caffery positioning algorithm (CPA) for a 95 m long tunnel. The positioning error field of the tunnel was established, and the influence of the spatial variation on the positioning accuracy of CPA and CTFPA was analysed. The simulation results show that, compared with CPA, the positioning accuracy of CTFPA is clearly improved, and the accuracy of each axis can reach more than 5 mm. The accuracy of the X-axis is higher than that of the Y- and Z-axes. In section X-Y of the tunnel, the root mean square error (RMSE) contours of CTFPA are clear and orderly, and with an increase in the measuring distance, RMSE increases linearly. In section X-Z, the RMSE contours are concentric circles, and the variation ratio is nonlinear.

  16. Crisis planning to manage risks posed by animal rights extremists.

    Science.gov (United States)

    Bailey, Matthew R; Rich, Barbara A; Bennett, B Taylor

    2010-01-01

    Among the multitude of crises that US research institutions may face are those caused by animal rights activists. While most activists opposed to animal research use peaceful and lawful means of expressing their opinions, some extremists resort to illegal methods. Arson, break-ins, and theft with significant property damage at US animal research facilities began in the 1980s. The most troubling trend to develop in the past decade is the targeting of individuals associated with animal research, whether directly or indirectly, and the use of violent scare tactics to intimidate researchers and their families. The National Association for Biomedical Research has a 30-year history of monitoring the animal rights movement and assisting member institutions with crisis situations. In this article we discuss attacks on researchers at their homes, cyber crimes, exploitation of new media formats, infiltration of research facilities, and the targeting of external research stakeholders and business partners. We describe the need for a well-conceived crisis management plan and strong leadership to mitigate crisis situations. Institutions with well-informed leaders and crisis management teams ready to take timely action are best equipped to protect staff, laboratory animals, and research programs. They act on early warnings, provide support for targeted staff, seek legal remedies, thoughtfully control access to research facilities, and identify and enlist new research supporters. We underscore the importance of up-to-date crisis planning so that institutions are not only aware of ongoing risks posed by animal rights extremists but also better prepared to take preemptive action and able to manage those risks successfully.

  17. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov

    Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making ...

  18. Investigation of Problem-Solving and Problem-Posing Abilities of Seventh-Grade Students

    Science.gov (United States)

    Arikan, Elif Esra; Ünal, Hasan

    2015-01-01

    This study aims to examine the effect of multiple problem-solving skills on the problem-posing abilities of gifted and non-gifted students and to assess whether the possession of such skills can predict giftedness or affect problem-posing abilities. Participants' metaphorical images of problem posing were also explored. Participants were 20 gifted…

  19. Cultural adaptations to the differential threats posed by hot versus cold climates.

    Science.gov (United States)

    Murray, Damian R

    2013-10-01

    Hot and cold climates have posed differential threats to human survival throughout history. Cold temperatures can pose direct threats to survival in themselves, whereas hot temperatures may pose threats indirectly through higher prevalence of infectious disease. These differential threats yield convergent predictions for the relationship between more demanding climates and freedom of expression, but divergent predictions for freedom from discrimination.

  20. Single-frame 3D human pose recovery from multiple views

    NARCIS (Netherlands)

    Hofmann, M.; Gavrila, D.M.

    2009-01-01

    We present a system for the estimation of unconstrained 3D human upper body pose from multi-camera single-frame views. Pose recovery starts with a shape detection stage where candidate poses are generated based on hierarchical exemplar matching in the individual camera views. The hierarchy used in

  1. Multi-view 3D Human Pose Estimation in Complex Environment

    NARCIS (Netherlands)

    Hofmann, K.M.; Gavrila, D.M.

    2012-01-01

    We introduce a framework for unconstrained 3D human upper body pose estimation from multiple camera views in complex environment. Its main novelty lies in the integration of three components: single-frame pose recovery, temporal integration and model texture adaptation. Single-frame pose recovery

  2. Intelligent Control of Welding Gun Pose for Pipeline Welding Robot Based on Improved Radial Basis Function Network and Expert System

    Directory of Open Access Journals (Sweden)

    Jingwen Tian

    2013-02-01

    Full Text Available Since the control system of the welding gun pose in whole-position welding is complicated and nonlinear, an intelligent control system of welding gun pose for a pipeline welding robot based on an improved radial basis function neural network (IRBFNN and expert system (ES is presented in this paper. The structure of the IRBFNN is constructed and the improved genetic algorithm is adopted to optimize the network structure. This control system makes full use of the characteristics of the IRBFNN and the ES. The ADXRS300 micro-mechanical gyro is used as the welding gun position sensor in this system. When the welding gun position is obtained, an appropriate pitch angle can be obtained through expert knowledge and the numeric reasoning capacity of the IRBFNN. ARM is used as the controller to drive the welding gun pitch angle step motor in order to adjust the pitch angle of the welding gun in real-time. The experiment results show that the intelligent control system of the welding gun pose using the IRBFNN and expert system is feasible and it enhances the welding quality. This system has wide prospects for application.

  3. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  4. Human pose recovery using wireless inertial measurement units

    International Nuclear Information System (INIS)

    Lin, Jonathan F S; Kulić, Dana

    2012-01-01

    Many applications in rehabilitation and sports training require the assessment of the patient’s status based on observation of their movement. Small wireless sensors, such as accelerometers and gyroscopes, can be utilized to provide a quantitative measure of the human movement for assessment. In this paper, a kinematics-based approach is developed to estimate human leg posture and velocity from wearable sensors during the performance of typical physiotherapy and training exercises. The proposed approach uses an extended Kalman filter to estimate joint angles from accelerometer and gyroscopic data and is capable of recovering joint angles from arbitrary 3D motion. Additional joint limit constraints are implemented to reduce drift, and an automated approach is developed for estimating and adapting the process noise during online estimation. The approach is validated through a user study consisting of 20 subjects performing knee and hip rehabilitation exercises. When compared to motion capture, the approach achieves an average root-mean-square error of 4.27 cm for unconstrained motion, with an average joint error of 6.5°. The average root-mean-square error is 3.31 cm for sagittal planar motion, with an average joint error of 4.3°. (paper)

  5. Natural-pose hand detection in low-resolution images

    Directory of Open Access Journals (Sweden)

    Nyan Bo Bo1

    2009-07-01

    Full Text Available Robust real-time hand detection and tracking in video sequences would enable many applications in areas as diverse ashuman-computer interaction, robotics, security and surveillance, and sign language-based systems. In this paper, we introducea new approach for detecting human hands that works on single, cluttered, low-resolution images. Our prototype system, whichis primarily intended for security applications in which the images are noisy and low-resolution, is able to detect hands as smallas 2424 pixels in cluttered scenes. The system uses grayscale appearance information to classify image sub-windows as eithercontaining or not containing a human hand very rapidly at the cost of a high false positive rate. To improve on the false positiverate of the main classifier without affecting its detection rate, we introduce a post-processor system that utilizes the geometricproperties of skin color blobs. When we test our detector on a test image set containing 106 hands, 92 of those hands aredetected (86.8% detection rate, with an average false positive rate of 1.19 false positive detections per image. The rapiddetection speed, the high detection rate of 86.8%, and the low false positive rate together ensure that our system is useable asthe main detector in a diverse variety of applications requiring robust hand detection and tracking in low-resolution, clutteredscenes.

  6. Measurement of sound velocity profiles in fluids for process monitoring

    International Nuclear Information System (INIS)

    Wolf, M; Kühnicke, E; Lenz, M; Bock, M

    2012-01-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  7. Radial velocity asymmetries from jets with variable velocity profiles

    International Nuclear Information System (INIS)

    Cerqueira, A. H.; Vasconcelos, M. J.; Velazquez, P. F.; Raga, A. C.; De Colle, F.

    2006-01-01

    We have computed a set of 3-D numerical simulations of radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence), using the Yguazu-a code. In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the Hα, [O I]λ6300, [S II]λ6716 and [N II]λ6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models

  8. Fractals control in particle's velocity

    International Nuclear Information System (INIS)

    Zhang Yongping; Liu Shutang; Shen Shulan

    2009-01-01

    Julia set, a fractal set of the literature of nonlinear physics, has significance for the engineering applications. For example, the fractal structure characteristics of the generalized M-J set could visually reflect the change rule of particle's velocity. According to the real world requirement, the system need show various particle's velocity in some cases. Thus, the control of the nonlinear behavior, i.e., Julia set, has attracted broad attention. In this work, an auxiliary feedback control is introduced to effectively control the Julia set that visually reflects the change rule of particle's velocity. It satisfies the performance requirement of the real world problems.

  9. Southern high-velocity stars

    International Nuclear Information System (INIS)

    Augensen, H.J.; Buscombe, W.

    1978-01-01

    Using the model of the Galaxy presented by Eggen, Lynden-Bell and Sandage (1962), plane galactic orbits have been calculated for 800 southern high-velocity stars which possess parallax, proper motion, and radial velocity data. The stars with trigonometric parallaxes were selected from Buscombe and Morris (1958), supplemented by more recent spectroscopic data. Photometric parallaxes from infrared color indices were used for bright red giants studied by Eggen (1970), and for red dwarfs for which Rodgers and Eggen (1974) determined radial velocities. A color-color diagram based on published values of (U-B) and (B-V) for most of these stars is shown. (Auth.)

  10. Wave velocity characteristic for Kenaf natural fibre under impact damage

    Science.gov (United States)

    Zaleha, M.; Mahzan, S.; Fitri, Muhamad; Kamarudin, K. A.; Eliza, Y.; Tobi, A. L. Mohd

    2017-01-01

    This paper aims to determining the wave velocity characteristics for kenaf fibre reinforced composite (KFC) and it includes both experimental and simulation results. Lead zirconate titanate (PZT) sensor were proposed to be positioned to corresponding locations on the panel. In order to demonstrate the wave velocity, an impacts was introduced onto the panel. It is based on a classical sensor triangulation methodology, combines with experimental strain wave velocity analysis. Then the simulation was designed to replicate panel used in the experimental impacts test. This simulation was carried out using ABAQUS. It was shown that the wave velocity propagates faster in the finite element simulation. Although the experimental strain wave velocity and finite element simulation results do not match exactly, the shape of both waves is similar.

  11. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang

    2010-01-01

    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  12. Sound Velocity in Soap Foams

    International Nuclear Information System (INIS)

    Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan

    2012-01-01

    The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration

  13. Settling velocities in batch sedimentation

    International Nuclear Information System (INIS)

    Fricke, A.M.; Thompson, B.E.

    1982-10-01

    The sedimentation of mixtures containing one and two sizes of spherical particles (44 and 62 μm in diameter) was studied. Radioactive tracing with 57 Co was used to measure the settling velocities. The ratio of the settling velocity U of uniformly sized particles to the velocity predicted to Stokes' law U 0 was correlated to an expression of the form U/U 0 = epsilon/sup α/, where epsilon is the liquid volume fraction and α is an empirical constant, determined experimentally to be 4.85. No effect of viscosity on the ratio U/U 0 was observed as the viscosity of the liquid medium was varied from 1x10 -3 to 5x10 -3 Pa.s. The settling velocities of particles in a bimodal mixture were fit by the same correlation; the ratio U/U 0 was independent of the concentrations of different-sized particles

  14. Cognitive regulation of saccadic velocity by reward prospect.

    Science.gov (United States)

    Chen, Lewis L; Hung, Leroy Y; Quinet, Julie; Kosek, Kevin

    2013-08-01

    It is known that expectation of reward speeds up saccades. Past studies have also shown the presence of a saccadic velocity bias in the orbit, resulting from a biomechanical regulation over varying eccentricities. Nevertheless, whether and how reward expectation interacts with the biomechanical regulation of saccadic velocities over varying eccentricities remains unknown. We addressed this question by conducting a visually guided double-step saccade task. The role of reward expectation was tested in monkeys performing two consecutive horizontal saccades, one associated with reward prospect and the other not. To adequately assess saccadic velocity and avoid adaptation, we systematically varied initial eye positions, saccadic directions and amplitudes. Our results confirmed the existence of a velocity bias in the orbit, i.e., saccadic peak velocity decreased linearly as the initial eye position deviated in the direction of the saccade. The slope of this bias increased as saccadic amplitudes increased. Nevertheless, reward prospect facilitated velocity to a greater extent for saccades away from than for saccades toward the orbital centre, rendering an overall reduction in the velocity bias. The rate (slope) and magnitude (intercept) of reward modulation over this velocity bias were linearly correlated with amplitudes, similar to the amplitude-modulated velocity bias without reward prospect, which presumably resulted from a biomechanical regulation. Small-amplitude (≤ 5°) saccades received little modulation. These findings together suggest that reward expectation modulated saccadic velocity not as an additive signal but as a facilitating mechanism that interacted with the biomechanical regulation. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Creativity of Field-dependent and Field-independent Students in Posing Mathematical Problems

    Science.gov (United States)

    Azlina, N.; Amin, S. M.; Lukito, A.

    2018-01-01

    This study aims at describing the creativity of elementary school students with different cognitive styles in mathematical problem-posing. The posed problems were assessed based on three components of creativity, namely fluency, flexibility, and novelty. The free-type problem posing was used in this study. This study is a descriptive research with qualitative approach. Data collections were conducted through written task and task-based interviews. The subjects were two elementary students. One of them is Field Dependent (FD) and the other is Field Independent (FI) which were measured by GEFT (Group Embedded Figures Test). Further, the data were analyzed based on creativity components. The results show thatFD student’s posed problems have fulfilled the two components of creativity namely fluency, in which the subject posed at least 3 mathematical problems, and flexibility, in whichthe subject posed problems with at least 3 different categories/ideas. Meanwhile,FI student’s posed problems have fulfilled all three components of creativity, namely fluency, in which thesubject posed at least 3 mathematical problems, flexibility, in which thesubject posed problems with at least 3 different categories/ideas, and novelty, in which the subject posed problems that are purely the result of her own ideas and different from problems they have known.

  16. Point Cloud Based Relative Pose Estimation of a Satellite in Close Range

    Directory of Open Access Journals (Sweden)

    Lujiang Liu

    2016-06-01

    Full Text Available Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective.

  17. Does modern piracy pose a threat to maritime transport?

    Directory of Open Access Journals (Sweden)

    Andrzej Makowski

    2011-12-01

    Full Text Available The article is an attempt to answer the question whether the observed since 2005 “renaissance” of piracy in the Somali region and the Gulf of Aden (in general, we can speak of the eastern part of the Indian Ocean, is in a position to threaten the international chains of supplies in their global dimension. The conducted analysis of lines of maritime transport compared with the number of pirate attacks and their consequences on the individual sea areas helped to establish that, answering the main question raised in the title of the article, we can certainly say that it does not.

  18. CO and IRAS detection of an intermediate-velocity cloud

    International Nuclear Information System (INIS)

    Desert, F.X.; Bazell, D.; Blitz, L.

    1990-01-01

    In the course of a radio survey of high-Galactic-latitude clouds, CO emission was detected at the position l = 210.8 deg and b = 63.1 deg with an LSR velocity of -39 km/sec. This molecular cloud constitutes the third one with an unusually large absolute velocity at these latitudes, as compared with the 5.4-km/sec cloud-to-cloud velocity dispersion of the high-latitude molecular clouds. The position is coincident with an H I intermediate-velocity cloud (GHL 11, Verschuur H, OLM 268) and the IR-excess cloud 306 in the list by Desert et al. (1988). This cloud is clearly detected at all four IRAS wavelengths and has warmer colors than the local ISM. 27 refs

  19. Spatially-resolved velocities of thermally-produced spray droplets using a velocity-divided Abel inversion of photographed streaks

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Muraoka, K.

    2017-10-01

    Droplet velocities of thermal spray are known to have profound effects on important coating qualities, such as adhesive strength, porosity, and hardness, for various applications. For obtaining the droplet velocities, therefore, the TOF (time-of-flight) technique has been widely used, which relies on observations of emitted radiation from the droplets, where all droplets along the line-of-sight contribute to signals. Because droplets at and near the flow axis mostly contribute coating layers, it has been hoped to get spatially resolved velocities. For this purpose, a velocity-divided Abel inversion was devised from CMOS photographic data. From this result, it has turned out that the central velocity is about 25% higher than that obtained from the TOF technique for the case studied (at the position 150 mm downstream of the plasma spray gun, where substrates for spray coatings are usually placed). Further implications of the obtained results are discussed.

  20. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    Science.gov (United States)

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  1. Determination of hydrogen cluster velocities and comparison with numerical calculations

    International Nuclear Information System (INIS)

    Täschner, A.; Köhler, E.; Ortjohann, H.-W.; Khoukaz, A.

    2013-01-01

    The use of powerful hydrogen cluster jet targets in storage ring experiments led to the need of precise data on the mean cluster velocity as function of the stagnation temperature and pressure for the determination of the volume density of the target beams. For this purpose a large data set of hydrogen cluster velocity distributions and mean velocities was measured at a high density hydrogen cluster jet target using a trumpet shaped nozzle. The measurements have been performed at pressures above and below the critical pressure and for a broad range of temperatures relevant for target operation, e.g., at storage ring experiments. The used experimental method is described which allows for the velocity measurement of single clusters using a time-of-flight technique. Since this method is rather time-consuming and these measurements are typically interfering negatively with storage ring experiments, a method for a precise calculation of these mean velocities was needed. For this, the determined mean cluster velocities are compared with model calculations based on an isentropic one-dimensional van der Waals gas. Based on the obtained data and the presented numerical calculations, a new method has been developed which allows to predict the mean cluster velocities with an accuracy of about 5%. For this two cut-off parameters defining positions inside the nozzle are introduced, which can be determined for a given nozzle by only two velocity measurements

  2. Calibrating the Planck Cluster Mass Scale with Cluster Velocity Dispersions

    Science.gov (United States)

    Amodeo, Stefania; Mei, Simona; Stanford, Spencer A.; Bartlett, James G.; Melin, Jean-Baptiste; Lawrence, Charles R.; Chary, Ranga-Ram; Shim, Hyunjin; Marleau, Francine; Stern, Daniel

    2017-08-01

    We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from spectra that were obtained at the Gemini observatory with the GMOS multi-object spectrograph. We correct our estimates for effects due to finite aperture, Eddington bias, and correlated scatter between velocity dispersion and the Planck mass proxy. The result for the mass bias parameter, (1-b), depends on the value of the galaxy velocity bias, {b}{{v}}, adopted from simulations: (1-b)=(0.51+/- 0.09){b}{{v}}3. Using a velocity bias of {b}{{v}}=1.08 from Munari et al., we obtain (1-b)=0.64+/- 0.11, I.e., an error of 17% on the mass bias measurement with 17 clusters. This mass bias value is consistent with most previous weak-lensing determinations. It lies within 1σ of the value that is needed to reconcile the Planck cluster counts with the Planck primary cosmic microwave background constraints. We emphasize that uncertainty in the velocity bias severely hampers the precision of the measurements of the mass bias using velocity dispersions. On the other hand, when we fix the Planck mass bias using the constraints from Penna-Lima et al., based on weak-lensing measurements, we obtain a positive velocity bias of {b}{{v}}≳ 0.9 at 3σ .

  3. Instantaneous fluctuation velocity and skewness distributions upstream of transition onset

    International Nuclear Information System (INIS)

    Hernon, D.; Walsh, E.J.; McEligot, D.M.

    2007-01-01

    The development of streamwise orientated disturbances through the boundary layer thickness prior to transition onset for zero-pressure gradient boundary layer flow under the influence %Tu = 4.2 is presented. The analysis concentrates on the development of the maximum positive and negative of the fluctuation velocity in order to gain further insight into the transition process. The average location of the peak negative fluctuation velocity over a range of Reynolds numbers was measured in the upper portion of the boundary layer at y/δ ∼ 0.6, whereas the location of the peak positive value was measured at y/δ ∼ 0.3. The disturbance magnitude of the negative fluctuation velocity increased beyond that of the positive as transition onset approached. The distribution and disturbance magnitude of the maximum positive and negative fluctuation velocities indicate that the initiation of transition may occur on the low-speed components of the flow that are lifted up to the upper region of the boundary layer. This is in qualitative agreement with recent direct numerical simulations on the breakdown of the flow on the lifted low-speed streaks near the boundary layer edge. The results presented in this investigation also demonstrate the increased physical insight gained by examining the distributions of the maximum positive and negative of the streamwise fluctuation velocity component associated with the low- and high-speed streaks, compared to time-averaged values, in determining what structures cause the breakdown to turbulence

  4. Is the kinetic equation for turbulent gas-particle flows ill posed?

    Science.gov (United States)

    Reeks, M; Swailes, D C; Bragg, A D

    2018-02-01

    This paper is about the kinetic equation for gas-particle flows, in particular its well-posedness and realizability and its relationship to the generalized Langevin model (GLM) probability density function (PDF) equation. Previous analyses, e.g. [J.-P. Minier and C. Profeta, Phys. Rev. E 92, 053020 (2015)PLEEE81539-375510.1103/PhysRevE.92.053020], have concluded that this kinetic equation is ill posed, that in particular it has the properties of a backward heat equation, and as a consequence, its solution will in the course of time exhibit finite-time singularities. We show that this conclusion is fundamentally flawed because it ignores the coupling between the phase space variables in the kinetic equation and the time and particle inertia dependence of the phase space diffusion tensor. This contributes an extra positive diffusion that always outweighs the negative diffusion associated with the dispersion along one of the principal axes of the phase space diffusion tensor. This is confirmed by a numerical evaluation of analytic solutions of these positive and negative contributions to the particle diffusion coefficient along this principal axis. We also examine other erroneous claims and assumptions made in previous studies that demonstrate the apparent superiority of the GLM PDF approach over the kinetic approach. In so doing, we have drawn attention to the limitations of the GLM approach, which these studies have ignored or not properly considered, to give a more balanced appraisal of the benefits of both PDF approaches.

  5. 3D Printed Wearable Sensors with Liquid Metals for the Pose Detection of Snakelike Soft Robots.

    Science.gov (United States)

    Zhou, Luyu; Gao, Qing; Zhan, Jun-Fu; Xie, Chao-Qi; Fu, Jianzhong; He, Yong

    2018-06-18

    Liquid metal-based flexible sensors, which utilize advanced liquid conductive material to serve as sensitive element, is emerging as a promising solution to measure large deformations. Nowadays, one of the biggest challenges for precise control of soft robots is the detection of their real time positions. Existing fabrication methods are unable to fabricate flexible sensors that match the shape of soft robots. In this report, we firstly described a novel 3D printed multi-function inductance flexible and stretchable sensor with liquid metals (LMs), which is capable of measuring both axial tension and curvature. This sensor is fabricated with a developed coaxial liquid metal 3D printer by co-printing of silicone rubber and LMs. Due to the solenoid shape, this sensor can be easily installed on snakelike soft robots and can accurately distinguish different degrees of tensile and bending deformation. We determined the structural parameters of the sensor and proved its excellent stability and reliability. As a demonstration, we used this sensor to measure the curvature of a finger and feedback the position of endoscope, a typical snakelike structure. Because of its bending deformation form consistent with the actual working status of the soft robot and unique shape, this sensor has better practical application prospects in the pose detection.

  6. Advances in constant-velocity Moessbauer instrumentation

    International Nuclear Information System (INIS)

    Veiga, A.; Martinez, N.; Zelis, P. Mendoza; Pasquevich, G. A.; Sanchez, F. H.

    2006-01-01

    A prototype of a programmable constant-velocity scaler is presented. This instrument allows the acquisition of partial Moessbauer spectra in selected energy regions using standard drivers and transducers. It can be fully operated by a remote application, thus data acquisition can be automated. The instrument consists of a programmable counter and a constant-velocity reference. The reference waveform generator is amplitude modulated with 13-bit resolution, and is programmable in a wide range of frequencies and waveforms in order to optimize the performance of the transducer. The counter is compatible with most standard SCA, and is configured as a rate-meter that provides counts per selectable time slice at the programmed velocity. As a demonstration of the instrument applications, a partial Moessbauer spectrum of a natural iron foil was taken. Only positive energies were studied in 512 channels, accumulating 20 s per channel. A line width of 0.20 mm/s was achieved, performing with an efficiency of 80%.

  7. Perbedaan Keterampilan Pemecahan Masalah pada Pembelajaran Fisika Menggunakan Metode Problem Posing dan Problem Solving

    OpenAIRE

    Rahman, Adetya; Hartini, Sri; An'nur, Syubhan

    2015-01-01

    Teachers should be able to choose the method of learning that can help students in learning physics, namely the method of problem posing and problem solving method. The purposes of this study are : (1) describe the learning physics skills by using problem posing method, (2) describe the learning physics skills by using problem solving method, and (3) know difference between learning physics skills by using problem posing method and problem solving method in class XI of Science SMAN 6 Banjarma...

  8. Velocity distribution in snow avalanches

    Science.gov (United States)

    Nishimura, K.; Ito, Y.

    1997-12-01

    In order to investigate the detailed structure of snow avalanches, we have made snow flow experiments at the Miyanomori ski jump in Sapporo and systematic observations in the Shiai-dani, Kurobe Canyon. In the winter of 1995-1996, a new device to measure static pressures was used to estimate velocities in the snow cloud that develops above the flowing layer of avalanches. Measurements during a large avalanche in the Shiai-dani which damaged and destroyed some instruments indicate velocities increased rapidly to more than 50 m/s soon after the front. Velocities decreased gradually in the following 10 s. Velocities of the lower flowing layer were also calculated by differencing measurement of impact pressure. Both recordings in the snow cloud and in the flowing layer changed with a similar trend and suggest a close interaction between the two layers. In addition, the velocity showed a periodic change. Power spectrum analysis of the impact pressure and the static pressure depression showed a strong peak at a frequency between 4 and 6 Hz, which might imply the existence of either ordered structure or a series of surges in the flow.

  9. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    Science.gov (United States)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    stack velocities available inside the area, interpolated using the kriging geo-statistical method. The stack velocities are intersected with the position of the horizons in time domain and from this information we build a pseudo-well to calculate the initial velocity and the gradient of increase (or decrease) of velocity with depth inside the considered rock volume. The experiment is aimed to obtain estimation and a representation of the uncertainty related to the geo-statistical interpolation of velocity data in a 3D model and to have an independent control of the final results using the well markers available inside the test area as constraints. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu

  10. Velocity Estimate Following Air Data System Failure

    National Research Council Canada - National Science Library

    McLaren, Scott A

    2008-01-01

    .... A velocity estimator (VEST) algorithm was developed to combine the inertial and wind velocities to provide an estimate of the aircraft's current true velocity to be used for command path gain scheduling and for display in the cockpit...

  11. Evidence for a Creative Dilemma Posed by Repeated Collaborations.

    Directory of Open Access Journals (Sweden)

    Hiroyasu Inoue

    Full Text Available We focused on how repeat collaborations in projects for inventions affect performance. Repeat collaborations have two contradictory aspects. A positive aspect is team development or experience, and a negative aspect is team degeneration or decline. Since both contradicting phenomena are observed, inventors have a dilemma as to whether they should keep collaborating in a team or not. The dilemma has not previously been quantitatively analyzed. We provide quantitative and extensive analyses of the dilemma in creative projects by using patent data from Japan and the United States. We confirm three predictions to quantitatively validate the existence of the dilemma. The first prediction is that the greater the patent a team achieves, the longer the team will work together. The second prediction is that the impact of consecutive patents decreases after a team makes a remarkable invention, which is measured by the impact of patents. The third prediction is that the expectation of impact with new teams is greater than that with the same teams successful in the past. We find these predictions are validated in patents published in Japan and the United States. On the basis of these three predictions, we can quantitatively validate the dilemma in creative projects. We also propose preventive strategies for degeneration. One is developing technological diversity, and another is developing inventor diversity in teams. We find the two strategies are both effective by validating with the data.

  12. Cosmic string induced peculiar velocities

    International Nuclear Information System (INIS)

    van Dalen, A.; Schramm, D.N.

    1987-02-01

    We calculate analytically the probability distribution for peculiar velocities on scales from 10h -1 to 60h -1 Mpc with cosmic string loops as the dominant source of primordial gravitational perturbations. We consider a range of parameters βGμ appropriate for both hot (HDM) and cold (CDM) dark matter scenarios. An Ω = 1 CDM Universe is assumed with the loops randomly placed on a smooth background. It is shown how the effects can be estimated of loops breaking up and being born with a spectrum of sizes. It is found that to obtain large scale streaming velocities of at least 400 km/s it is necessary that either a large value for βGμ or the effect of loop fissioning and production details be considerable. Specifically, for optimal CDM string parameters Gμ = 10 -6 , β = 9, h = .5, and scales of 60h -1 Mpc, the parent size spectrum must be 36 times larger than the evolved daughter spectrum to achieve peculiar velocities of at least 400 km/s with a probability of 63%. With this scenario the microwave background dipole will be less than 800 km/s with only a 10% probability. The string induced velocity spectrum is relatively flat out to scales of about 2t/sub eq//a/sub eq/ and then drops off rather quickly. The flatness is a signature of string models of galaxy formation. With HDM a larger value of βGμ is necessary for galaxy formation since accretion on small scales starts later. Hence, with HDM, the peculiar velocity spectrum will be larger on large scales and the flat region will extend to larger scales. If large scale peculiar velocities greater than 400 km/s are real then it is concluded that strings plus CDM have difficulties. The advantages of strings plus HDM in this regard will be explored in greater detail in a later paper. 27 refs., 4 figs., 1 tab

  13. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  14. Dispersion upscaling from a pore scale characterization of Lagrangian velocities

    Science.gov (United States)

    Turuban, Régis; de Anna, Pietro; Jiménez-Martínez, Joaquín; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy

    2013-04-01

    Mixing and reactive transport are primarily controlled by the interplay between diffusion, advection and reaction at pore scale. Yet, how the distribution and spatial correlation of the velocity field at pore scale impact these processes is still an open question. Here we present an experimental investigation of the distribution and correlation of pore scale velocities and its relation with upscaled dispersion. We use a quasi two-dimensional (2D) horizontal set up, consisting of two glass plates filled with cylinders representing the grains of the porous medium : the cell is built by soft lithography technique, wich allows for full control of the system geometry. The local velocity field is quantified from particle tracking velocimetry using microspheres that are advected with the pore scale flow. Their displacement is purely advective, as the particle size is chosen large enough to avoid diffusion. We thus obtain particle trajectories as well as lagrangian velocities in the entire system. The measured velocity field shows the existence of a network of preferential flow paths in channels with high velocities, as well as very low velocity in stagnation zones, with a non Gaussian distribution. Lagrangian velocities are long range correlated in time, which implies a non-fickian scaling of the longitudinal variance of particle positions. To upscale this process we develop an effective transport model, based on correlated continous time random walk, which is entirely parametrized by the pore scale velocity distribution and correlation. The model predictions are compared with conservative tracer test data for different Peclet numbers. Furthermore, we investigate the impact of different pore geometries on the distribution and correlation of Lagrangian velocities and we discuss the link between these properties and the effective dispersion behavior.

  15. Velocity slice imaging for dissociative electron attachment

    Science.gov (United States)

    Nandi, Dhananjay; Prabhudesai, Vaibhav S.; Krishnakumar, E.; Chatterjee, A.

    2005-05-01

    A velocity slice imaging method is developed for measuring the angular distribution of fragment negative ions arising from dissociative electron attachment (DEA) to molecules. A low energy pulsed electron gun, a pulsed field ion extraction, and a two-dimensional position sensitive detector consisting of microchannel plates and a wedge-and-strip anode are used for this purpose. Detection and storage of each ion separately for its position and flight time allows analysis of the data offline for any given time slice, without resorting to pulsing the detector bias. The performance of the system is evaluated by measuring the angular distribution of O- from O2 and comparing it with existing data obtained using conventional technique. The capability of this technique in obtaining forward and backward angular distribution data is shown to have helped in resolving one of the existing problems in the electron scattering on O2.

  16. Making 2D face recognition more robust using AAMs for pose compensation

    NARCIS (Netherlands)

    Huisman, Peter; Munster, Ruud; Moro-Ellenberger, Stephanie; Veldhuis, Raymond N.J.; Bazen, A.M.

    2006-01-01

    The problem of pose in 2D face recognition is widely acknowledged. Commercial systems are limited to near frontal face images and cannot deal with pose deviations larger than 15 degrees from the frontal view. This is a problem, when using face recognition for surveillance applications in which

  17. Integrating Worked Examples into Problem Posing in a Web-Based Learning Environment

    Science.gov (United States)

    Hsiao, Ju-Yuan; Hung, Chun-Ling; Lan, Yu-Feng; Jeng, Yoau-Chau

    2013-01-01

    Most students always lack of experience and perceive difficult regarding problem posing. The study hypothesized that worked examples may have benefits for supporting students' problem posing activities. A quasi-experiment was conducted in the context of a business mathematics course for examining the effects of integrating worked examples into…

  18. Analyzing Pre-Service Primary Teachers' Fraction Knowledge Structures through Problem Posing

    Science.gov (United States)

    Kilic, Cigdem

    2015-01-01

    In this study it was aimed to determine pre-service primary teachers' knowledge structures of fraction through problem posing activities. A total of 90 pre-service primary teachers participated in this study. A problem posing test consisting of two questions was used and the participants were asked to generate as many as problems based on the…

  19. An Investigation of Eighth Grade Students' Problem Posing Skills (Turkey Sample)

    Science.gov (United States)

    Arikan, Elif Esra; Ünal, Hasan

    2015-01-01

    To pose a problem refers to the creative activity for mathematics education. The purpose of the study was to explore the eighth grade students' problem posing ability. Three learning domains such as requiring four operations, fractions and geometry were chosen for this reason. There were two classes which were coded as class A and class B. Class A…

  20. Body-part templates for recovery of 2D human poses under occlusion

    NARCIS (Netherlands)

    Poppe, Ronald Walter; Poel, Mannes; Perales, F.J.; Fisher, R.B.

    2008-01-01

    Detection of humans and estimation of their 2D poses from a single image are challenging tasks. This is especially true when part of the observation is occluded. However, given a limited class of movements, poses can be recovered given the visible body-parts. To this end, we propose a novel template

  1. Teachers Implementing Mathematical Problem Posing in the Classroom: Challenges and Strategies

    Science.gov (United States)

    Leung, Shuk-kwan S.

    2013-01-01

    This paper reports a study about how a teacher educator shared knowledge with teachers when they worked together to implement mathematical problem posing (MPP) in the classroom. It includes feasible methods for getting practitioners to use research-based tasks aligned to the curriculum in order to encourage children to pose mathematical problems.…

  2. Problem-Posing in Education: Transformation of the Practice of the Health Professional.

    Science.gov (United States)

    Casagrande, L. D. R.; Caron-Ruffino, M.; Rodrigues, R. A. P.; Vendrusculo, D. M. S.; Takayanagui, A. M. M.; Zago, M. M. F.; Mendes, M. D.

    1998-01-01

    Studied the use of a problem-posing model in health education. The model based on the ideas of Paulo Freire is presented. Four innovative experiences of teaching-learning in environmental and occupational health and patient education are reported. Notes that the problem-posing model has the capability to transform health-education practice.…

  3. The Effects of Problem Posing on Student Mathematical Learning: A Meta-Analysis

    Science.gov (United States)

    Rosli, Roslinda; Capraro, Mary Margaret; Capraro, Robert M.

    2014-01-01

    The purpose of the study was to meta-synthesize research findings on the effectiveness of problem posing and to investigate the factors that might affect the incorporation of problem posing in the teaching and learning of mathematics. The eligibility criteria for inclusion of literature in the meta-analysis was: published between 1989 and 2011,…

  4. ROTATIONAL VELOCITIES FOR M DWARFS

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Ramsey, L. W.; Jones, H. R. A.; Pavlenko, Y.; Barnes, J. R.; Pinfield, D. J.; Gallardo, J.

    2009-01-01

    We present spectroscopic rotation velocities (v sin i) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known v sin i values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of v sin is peak at low velocities (∼3 km s -1 ). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link v sin i to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with v sin i ≤ 10 km s -1 and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Hα emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Hα profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Hα emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low v

  5. Coupled bias-variance tradeoff for cross-pose face recognition.

    Science.gov (United States)

    Li, Annan; Shan, Shiguang; Gao, Wen

    2012-01-01

    Subspace-based face representation can be looked as a regression problem. From this viewpoint, we first revisited the problem of recognizing faces across pose differences, which is a bottleneck in face recognition. Then, we propose a new approach for cross-pose face recognition using a regressor with a coupled bias-variance tradeoff. We found that striking a coupled balance between bias and variance in regression for different poses could improve the regressor-based cross-pose face representation, i.e., the regressor can be more stable against a pose difference. With the basic idea, ridge regression and lasso regression are explored. Experimental results on CMU PIE, the FERET, and the Multi-PIE face databases show that the proposed bias-variance tradeoff can achieve considerable reinforcement in recognition performance.

  6. Trajectory Planning with Pose Feedback for a Dual-Arm Space Robot

    Directory of Open Access Journals (Sweden)

    Yicheng Liu

    2016-01-01

    Full Text Available In order to obtain high precision path tracking for a dual-arm space robot, a trajectory planning method with pose feedback is proposed to be introduced into the design process in this paper. Firstly, pose error kinematic models are derived from the related kinematics and desired pose command for the end-effector and the base, respectively. On this basis, trajectory planning with pose feedback is proposed from a control perspective. Theoretical analyses show that the proposed trajectory planning algorithm can guarantee that pose error converges to zero exponentially for both the end-effector and the base when the robot is out of singular configuration. Compared with the existing algorithms, the proposed algorithm can lead to higher precision path tracking for the end-effector. Furthermore, the algorithm renders the system good anti-interference property for the base. Simulation results demonstrate the effectiveness of the proposed trajectory planning algorithm.

  7. A Support System for the Electric Appliance Control Using Pose Recognition

    Science.gov (United States)

    Kawano, Takuya; Yamamoto, Kazuhiko; Kato, Kunihito; Hongo, Hitoshi

    In this paper, we propose an electric appliance control support system for aged and bedridden people using pose recognition. We proposed a pose recognition system that distinguishes between seven poses of the user on the bed. First, the face and arm regions of the user are detected by using the skin color. Our system focuses a recognition region surrounding the face region. Next, the higher order local autocorrelation features within the region are extracted. The linear discriminant analysis creates the coefficient matrix that can optimally distinguish among training data from the seven poses. Our algorithm can recognize the seven poses even if the subject wears different clothes and slightly shifts or slants on the bed. From the experimental results, our system achieved an accuracy rate of over 99 %. Then, we show that it possibles to construct one of a user-friendly system.

  8. Head Pose Estimation Using Multilinear Subspace Analysis for Robot Human Awareness

    Science.gov (United States)

    Ivanov, Tonislav; Matthies, Larry; Vasilescu, M. Alex O.

    2009-01-01

    Mobile robots, operating in unconstrained indoor and outdoor environments, would benefit in many ways from perception of the human awareness around them. Knowledge of people's head pose and gaze directions would enable the robot to deduce which people are aware of the its presence, and to predict future motions of the people for better path planning. To make such inferences, requires estimating head pose on facial images that are combination of multiple varying factors, such as identity, appearance, head pose, and illumination. By applying multilinear algebra, the algebra of higher-order tensors, we can separate these factors and estimate head pose regardless of subject's identity or image conditions. Furthermore, we can automatically handle uncertainty in the size of the face and its location. We demonstrate a pipeline of on-the-move detection of pedestrians with a robot stereo vision system, segmentation of the head, and head pose estimation in cluttered urban street scenes.

  9. Application of Shape Similarity in Pose Selection and Virtual Screening in CSARdock2014 Exercise.

    Science.gov (United States)

    Kumar, Ashutosh; Zhang, Kam Y J

    2016-06-27

    To evaluate the applicability of shape similarity in docking-based pose selection and virtual screening, we participated in the CSARdock2014 benchmark exercise for identifying the correct docking pose of inhibitors targeting factor XA, spleen tyrosine kinase, and tRNA methyltransferase. This exercise provides a valuable opportunity for researchers to test their docking programs, methods, and protocols in a blind testing environment. In the CSARdock2014 benchmark exercise, we have implemented an approach that uses ligand 3D shape similarity to facilitate docking-based pose selection and virtual screening. We showed here that ligand 3D shape similarity between bound poses could be used to identify the native-like pose from an ensemble of docking-generated poses. Our method correctly identified the native pose as the top-ranking pose for 73% of test cases in a blind testing environment. Moreover, the pose selection results also revealed an excellent correlation between ligand 3D shape similarity scores and RMSD to X-ray crystal structure ligand. In the virtual screening exercise, the average RMSD for our pose prediction was found to be 1.02 Å, and it was one of the top performances achieved in CSARdock2014 benchmark exercise. Furthermore, the inclusion of shape similarity improved virtual screening performance of docking-based scoring and ranking. The coefficient of determination (r(2)) between experimental activities and docking scores for 276 spleen tyrosine kinase inhibitors was found to be 0.365 but reached 0.614 when the ligand 3D shape similarity was included.

  10. Isotropic Optical Mouse Placement for Mobile Robot Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Sungbok Kim

    2014-06-01

    Full Text Available This paper presents the isotropic placement of multiple optical mice for the velocity estimation of a mobile robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained and the resulting Jacobian matrix is analysed symbolically. Second, the isotropic, anisotropic and singular optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. Finally, simulation results for several different placements of three optical mice are given.

  11. Using cluster analysis to organize and explore regional GPS velocities

    Science.gov (United States)

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  12. Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation

    Directory of Open Access Journals (Sweden)

    Giuseppe Airò Farulla

    2016-02-01

    Full Text Available Vision-based Pose Estimation (VPE represents a non-invasive solution to allow a smooth and natural interaction between a human user and a robotic system, without requiring complex calibration procedures. Moreover, VPE interfaces are gaining momentum as they are highly intuitive, such that they can be used from untrained personnel (e.g., a generic caregiver even in delicate tasks as rehabilitation exercises. In this paper, we present a novel master–slave setup for hand telerehabilitation with an intuitive and simple interface for remote control of a wearable hand exoskeleton, named HX. While performing rehabilitative exercises, the master unit evaluates the 3D position of a human operator’s hand joints in real-time using only a RGB-D camera, and commands remotely the slave exoskeleton. Within the slave unit, the exoskeleton replicates hand movements and an external grip sensor records interaction forces, that are fed back to the operator-therapist, allowing a direct real-time assessment of the rehabilitative task. Experimental data collected with an operator and six volunteers are provided to show the feasibility of the proposed system and its performances. The results demonstrate that, leveraging on our system, the operator was able to directly control volunteers’ hands movements.

  13. Do shade-grown coffee plantations pose a disease risk for wild birds?

    Science.gov (United States)

    Hernandez, Sonia M; Peters, Valerie E; Weygandt, P Logan; Jimenez, Carlos; Villegas, Pedro; O'Connor, Barry; Yabsley, Michael J; Garcia, Maricarmen; Riblet, Sylva M; Carroll, C Ron

    2013-06-01

    Shade-grown coffee plantations are often promoted as a conservation strategy for wild birds. However, these agro-ecosystems are actively managed for food production, which may alter bird behaviors or interactions that could change bird health, compared to natural forest. To examine whether there is a difference between the health parameters of wild birds inhabiting shade-grown coffee plantations and natural forest, we evaluated birds in Costa Rica for (1) their general body condition, (2) antibodies to pathogens, (paramyxovirus and Mycoplasma spp.), and (3) the prevalence and diversity of endo-, ecto-, and hemoparasites. We measured exposure to Mycoplasma spp. and paramyxovirus because these are pathogens that could have been introduced with domestic poultry, one mechanism by which these landscapes could be detrimental to wild birds. We captured 1,561 birds representing 75 species. Although seasonal factors influenced body condition, we did not find bird general body condition to be different. A total of 556 birds of 31 species were tested for antibodies against paramyxovirus-1. Of these, five birds tested positive, four of which were from shade coffee. Out of 461 other tests for pathogens (for antibodies and nucleotide detection), none were positive. Pterolichus obtusus, the feather mite of chickens, was found on 15 birds representing two species and all were from shade-coffee plantations. Larvated eggs of Syngamus trachea, a nematode typically associated with chickens, were found in four birds captured in shade coffee and one captured in forest. For hemoparasites, a total of 1,121 blood smears from 68 bird species were examined, and only one species showed a higher prevalence of infection in shade coffee. Our results indicate that shade-coffee plantations do not pose a significant health risk to forest birds, but at least two groups of pathogens may deserve further attention: Haemoproteus spp. and the diversity and identity of endoparasites.

  14. Assessing exposure risks for aquatic organisms posed by Tamiflu use under seasonal influenza and pandemic conditions

    International Nuclear Information System (INIS)

    Chen, Wei-Yu; Lin, Chia-Jung; Liao, Chung-Min

    2014-01-01

    Environmental pollution by anti-influenza drugs is increasingly recognized as a threat to aquatic environments. However, little is known about empirical data on risk effects posed by environmentally relevant concentrations of anti-influenza drug based on recently published ecotoxicological researches in Taiwan. Here we linked ecotoxicology models with an epidemiological scheme to assess exposure risks of aquatic organisms and environmental hazards posed by antiviral oseltamivir (Tamiflu) use in Taiwan. Built on published bioassays, we used probabilistic risk assessment model to estimate potential threats of environmentally relevant hazards on algae, daphnid, and zerbrafish. We found that Tamiflu use was unlikely to pose a significant chronic environmental risk to daphnia and zebrafish during seasonal influenza. However, the chronic environmental risk posed by Tamiflu use during pandemic was alarming. We conclude that no significant risk to algal growth was found during seasonal influenza and high pandemic Tamiflu use. -- Highlights: • Environmentally relevant concentrations of anti-influenza drug have ecotoxicologically important effects. • Tamiflu is unlikely to pose a significant chronic environmental risk during seasonal influenza. • Chronic environmental risk posed by Tamiflu during pandemic is alarming. • Tertiary process in sewage treatment plants is crucial in mitigating Tamiflu exposure risk. -- A probabilistic framework can be used for assessing exposure risks posed by environmentally relevant concentrations of anti-influenza drug in aquatic ecosystems

  15. Attribute And-Or Grammar for Joint Parsing of Human Pose, Parts and Attributes.

    Science.gov (United States)

    Park, Seyoung; Nie, Xiaohan; Zhu, Song-Chun

    2017-07-25

    This paper presents an attribute and-or grammar (A-AOG) model for jointly inferring human body pose and human attributes in a parse graph with attributes augmented to nodes in the hierarchical representation. In contrast to other popular methods in the current literature that train separate classifiers for poses and individual attributes, our method explicitly represents the decomposition and articulation of body parts, and account for the correlations between poses and attributes. The A-AOG model is an amalgamation of three traditional grammar formulations: (i)Phrase structure grammar representing the hierarchical decomposition of the human body from whole to parts; (ii)Dependency grammar modeling the geometric articulation by a kinematic graph of the body pose; and (iii)Attribute grammar accounting for the compatibility relations between different parts in the hierarchy so that their appearances follow a consistent style. The parse graph outputs human detection, pose estimation, and attribute prediction simultaneously, which are intuitive and interpretable. We conduct experiments on two tasks on two datasets, and experimental results demonstrate the advantage of joint modeling in comparison with computing poses and attributes independently. Furthermore, our model obtains better performance over existing methods for both pose estimation and attribute prediction tasks.

  16. Coupled multiview autoencoders with locality sensitivity for three-dimensional human pose estimation

    Science.gov (United States)

    Yu, Jialin; Sun, Jifeng; Luo, Shasha; Duan, Bichao

    2017-09-01

    Estimating three-dimensional (3D) human poses from a single camera is usually implemented by searching pose candidates with image descriptors. Existing methods usually suppose that the mapping from feature space to pose space is linear, but in fact, their mapping relationship is highly nonlinear, which heavily degrades the performance of 3D pose estimation. We propose a method to recover 3D pose from a silhouette image. It is based on the multiview feature embedding (MFE) and the locality-sensitive autoencoders (LSAEs). On the one hand, we first depict the manifold regularized sparse low-rank approximation for MFE and then the input image is characterized by a fused feature descriptor. On the other hand, both the fused feature and its corresponding 3D pose are separately encoded by LSAEs. A two-layer back-propagation neural network is trained by parameter fine-tuning and then used to map the encoded 2D features to encoded 3D poses. Our LSAE ensures a good preservation of the local topology of data points. Experimental results demonstrate the effectiveness of our proposed method.

  17. Velocity feedback control with a flywheel proof mass actuator

    Science.gov (United States)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  18. Topology dependent epidemic spreading velocity in weighted networks

    International Nuclear Information System (INIS)

    Duan, Wei; Qiu, Xiaogang; Quax, Rick; Lees, Michael; Sloot, Peter M A

    2014-01-01

    Many diffusive processes occur on structured networks with weighted links, such as disease spread by airplane transport or information diffusion in social networks or blogs. Understanding the impact of weight-connectivity correlations on epidemic spreading in weighted networks is crucial to support decision-making on disease control and other diffusive processes. However, a real understanding of epidemic spreading velocity in weighted networks is still lacking. Here we conduct a numerical study of the velocity of a Reed–Frost epidemic spreading process in various weighted network topologies as a function of the correlations between edge weights and node degrees. We find that a positive weight-connectivity correlation leads to a faster epidemic spreading compared to an unweighted network. In contrast, we find that both uncorrelated and negatively correlated weight distributions lead to slower spreading processes. In the case of positive weight-connectivity correlations, the acceleration of spreading velocity is weak when the heterogeneity of weight distribution increases. (paper)

  19. VeLoc: Finding Your Car in Indoor Parking Structures

    Directory of Open Access Journals (Sweden)

    Ruipeng Gao

    2018-05-01

    Full Text Available While WiFi-based indoor localization is attractive, there are many indoor places without WiFi coverage with a strong demand for localization capability. This paper describes a system and associated algorithms to address the indoor vehicle localization problem without the installation of additional infrastructure. In this paper, we propose VeLoc, which utilizes the sensor data of smartphones in the vehicle together with the floor map of the parking structure to track the vehicle in real time. VeLoc simultaneously harnesses constraints imposed by the map and environment sensing. All these cues are codified into a novel augmented particle filtering framework to estimate the position of the vehicle. Experimental results show that VeLoc performs well when even the initial position and the initial heading direction of the vehicle are completely unknown.

  20. VeLoc: Finding Your Car in Indoor Parking Structures.

    Science.gov (United States)

    Gao, Ruipeng; He, Fangpu; Li, Teng

    2018-05-02

    While WiFi-based indoor localization is attractive, there are many indoor places without WiFi coverage with a strong demand for localization capability. This paper describes a system and associated algorithms to address the indoor vehicle localization problem without the installation of additional infrastructure. In this paper, we propose VeLoc, which utilizes the sensor data of smartphones in the vehicle together with the floor map of the parking structure to track the vehicle in real time. VeLoc simultaneously harnesses constraints imposed by the map and environment sensing. All these cues are codified into a novel augmented particle filtering framework to estimate the position of the vehicle. Experimental results show that VeLoc performs well when even the initial position and the initial heading direction of the vehicle are completely unknown.

  1. Pose Estimation and Adaptive Robot Behaviour for Human-Robot Interaction

    DEFF Research Database (Denmark)

    Svenstrup, Mikael; Hansen, Søren Tranberg; Andersen, Hans Jørgen

    2009-01-01

    Abstract—This paper introduces a new method to determine a person’s pose based on laser range measurements. Such estimates are typically a prerequisite for any human-aware robot navigation, which is the basis for effective and timeextended interaction between a mobile robot and a human. The robot......’s pose. The resulting pose estimates are used to identify humans who wish to be approached and interacted with. The interaction motion of the robot is based on adaptive potential functions centered around the person that respect the persons social spaces. The method is tested in experiments...

  2. Head Pose Estimation on Eyeglasses Using Line Detection and Classification Approach

    Science.gov (United States)

    Setthawong, Pisal; Vannija, Vajirasak

    This paper proposes a unique approach for head pose estimation of subjects with eyeglasses by using a combination of line detection and classification approaches. Head pose estimation is considered as an important non-verbal form of communication and could also be used in the area of Human-Computer Interface. A major improvement of the proposed approach is that it allows estimation of head poses at a high yaw/pitch angle when compared with existing geometric approaches, does not require expensive data preparation and training, and is generally fast when compared with other approaches.

  3. Current distribution in triodes neglecting space charge and initial velocities

    NARCIS (Netherlands)

    Hamaker, H.C.

    1950-01-01

    A theory of the current distribution in triodes with positive grid is developed on the assumption that space charge and the initial velocities of both primary and secondary electrons may be neglected. This theory, which is originally due to De Lussanct de la Sablonière, has been put in a more lucid

  4. Trotting Gait of a Quadruped Robot Based on the Time-Pose Control Method

    Directory of Open Access Journals (Sweden)

    Cai RunBin

    2013-02-01

    Full Text Available We present the Time-Pose control method for the trotting gait of a quadruped robot on flat ground and up a slope. The method, with brief control structure, real-time operation ability and high adaptability, divides quadruped robot control into gait control and pose control. Virtual leg and intuitive controllers are introduced to simplify the model and generate the trajectory of mass centre and location of supporting legs in gait control, while redundancy optimization is used for solving the inverse kinematics in pose control. The models both on flat ground and up a slope are fully analysed, and different kinds of optimization methods are compared using the manipulability measure in order to select the best option. Simulations are performed, which prove that the Time-Pose control method is realizable for these two kinds of environment.

  5. Risks posed by large seismic events in the gold mining districts of South Africa

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2011-01-01

    Full Text Available buildings are considered vulnerable to damage by large seismic events, posing safety and financial risks. It is recommended that an earthquake engineer inspect the building stock and review the content and enforcement of building codes. Appropriate training...

  6. Improved pose and affinity predictions using different protocols tailored on the basis of data availability

    Science.gov (United States)

    Prathipati, Philip; Nagao, Chioko; Ahmad, Shandar; Mizuguchi, Kenji

    2016-09-01

    The D3R 2015 grand drug design challenge provided a set of blinded challenges for evaluating the applicability of our protocols for pose and affinity prediction. In the present study, we report the application of two different strategies for the two D3R protein targets HSP90 and MAP4K4. HSP90 is a well-studied target system with numerous co-crystal structures and SAR data. Furthermore the D3R HSP90 test compounds showed high structural similarity to existing HSP90 inhibitors in BindingDB. Thus, we adopted an integrated docking and scoring approach involving a combination of both pharmacophoric and heavy atom similarity alignments, local minimization and quantitative structure activity relationships modeling, resulting in the reasonable prediction of pose [with the root mean square deviation (RMSD) values of 1.75 Å for mean pose 1, 1.417 Å for the mean best pose and 1.85 Å for the mean all poses] and affinity (ROC AUC = 0.702 at 7.5 pIC50 cut-off and R = 0.45 for 180 compounds). The second protein, MAP4K4, represents a novel system with limited SAR and co-crystal structure data and little structural similarity of the D3R MAP4K4 test compounds to known MAP4K4 ligands. For this system, we implemented an exhaustive pose and affinity prediction protocol involving docking and scoring using the PLANTS software which considers side chain flexibility together with protein-ligand fingerprints analysis assisting in pose prioritization. This protocol through fares poorly in pose prediction (with the RMSD values of 4.346 Å for mean pose 1, 4.69 Å for mean best pose and 4.75 Å for mean all poses) and produced reasonable affinity prediction (AUC = 0.728 at 7.5 pIC50 cut-off and R = 0.67 for 18 compounds, ranked 1st among 80 submissions).

  7. Web-based Visualisation of Head Pose and Facial Expressions Changes:

    DEFF Research Database (Denmark)

    Kalliatakis, Grigorios; Vidakis, Nikolaos; Triantafyllidis, Georgios

    2016-01-01

    Despite significant recent advances in the field of head pose estimation and facial expression recognition, raising the cognitive level when analysing human activity presents serious challenges to current concepts. Motivated by the need of generating comprehensible visual representations from...... and accurately estimate head pose changes in unconstrained environment. In order to complete the secondary process of recognising four universal dominant facial expressions (happiness, anger, sadness and surprise), emotion recognition via facial expressions (ERFE) was adopted. After that, a lightweight data...

  8. Consistently Showing Your Best Side? Intra-individual Consistency in #Selfie Pose Orientation

    Science.gov (United States)

    Lindell, Annukka K.

    2017-01-01

    Painted and photographic portraits of others show an asymmetric bias: people favor their left cheek. Both experimental and database studies confirm that the left cheek bias extends to selfies. To date all such selfie studies have been cross-sectional; whether individual selfie-takers tend to consistently favor the same pose orientation, or switch between multiple poses, remains to be determined. The present study thus examined intra-individual consistency in selfie pose orientations. Two hundred selfie-taking participants (100 male and 100 female) were identified by searching #selfie on Instagram. The most recent 10 single-subject selfies for the each of the participants were selected and coded for type of selfie (normal; mirror) and pose orientation (left, midline, right), resulting in a sample of 2000 selfies. Results indicated that selfie-takers do tend to consistently adopt a preferred pose orientation (α = 0.72), with more participants showing an overall left cheek bias (41%) than would be expected by chance (overall right cheek bias = 31.5%; overall midline bias = 19.5%; no overall bias = 8%). Logistic regression modellng, controlling for the repeated measure of participant identity, indicated that sex did not affect pose orientation. However, selfie type proved a significant predictor when comparing left and right cheek poses, with a stronger left cheek bias for mirror than normal selfies. Overall, these novel findings indicate that selfie-takers show intra-individual consistency in pose orientation, and in addition, replicate the previously reported left cheek bias for selfies and other types of portrait, confirming that the left cheek bias also presents within individuals’ selfie corpora. PMID:28270790

  9. The Economic Impact of Terrorism in the Near East: Understanding the Threats Posed by Militant Groups

    Science.gov (United States)

    2015-05-21

    terrorist attacks of September 11th, 2001 researchers have sought to better understand the macroeconomic consequences of terrorism. Despite a...The Economic Impact of Terrorism in the Near East: Understanding the Threats Posed by Militant Groups A Monograph by MAJ Joshua Glonek...SUBTITLE The Economic Impact of Terrorism in the Near East: Understanding the Threats Posed by Militant Groups 5a. CONTRACT NUMBER 5b. GRANT

  10. Velocity distribution of fragments of catastrophic impacts

    Science.gov (United States)

    Takagi, Yasuhiko; Kato, Manabu; Mizutani, Hitoshi

    1992-01-01

    Three dimensional velocities of fragments produced by laboratory impact experiments were measured for basalts and pyrophyllites. The velocity distribution of fragments obtained shows that the velocity range of the major fragments is rather narrow, at most within a factor of 3 and that no clear dependence of velocity on the fragment mass is observed. The NonDimensional Impact Stress (NDIS) defined by Mizutani et al. (1990) is found to be an appropriate scaling parameter to describe the overall fragment velocity as well as the antipodal velocity.

  11. Control of group velocity by phase-changing collisions

    International Nuclear Information System (INIS)

    Goren, C.; Rosenbluh, M.; Wilson-Gordon, A.D.; Friedmann, H.

    2005-01-01

    We discuss the influence of phase-changing collisions on the group velocities in Doppler-broadened, cycling, degenerate two-level systems where F e =F g +1 and F g >0, interacting with pump and probe lasers, that exhibit electromagnetically induced absorption (EIA). Two model systems are considered: the N system where the pump and probe are polarized perpendicularly, and EIA is due to transfer of coherence (TOC), and the double two-level system (TLS) where both lasers have the same polarization, and EIA is due to transfer of population (TOP). For the case of Doppler-broadened EIA TOC, which occurs at low pump intensity, there is a switch from positive to negative dispersion and group velocity, as the rate of phase-changing collisions is increased. For the case of EIA TOP at low pump intensity, the dispersion and group velocity remain negative even when the collision rate is increased. Pressure-induced narrowing, accompanied by an increase in the magnitude of the negative dispersion and a decrease in the magnitude of the negative group velocity, occurs in both EIA TOC and EIA TOP, at low pump intensity. When the pump intensity is increased, a switch from negative to positive dispersion and group velocity, with increasing collision rate, also occurs in the double TLS system. However, the effect is far smaller than in the case of the N system at low pump intensity

  12. Muscle utilization patterns vary by skill levels of the practitioners across specific yoga poses (asanas).

    Science.gov (United States)

    Ni, Meng; Mooney, Kiersten; Balachandran, Anoop; Richards, Luca; Harriell, Kysha; Signorile, Joseph F

    2014-08-01

    To compare muscle activation patterns in 14 dominant side muscles during different yoga poses across three skill levels. Mixed repeated-measures descriptive study. University neuromuscular research laboratory, Miami, US. A group of 36 yoga practitioners (9 M/27 F; mean ± SD, 31.6 ± 12.6 years) with at least 3 months yoga practice experience. Each of the 11 surya namaskar poses A and B was performed separately for 15s and the surface electromyography for 14 muscles were recorded. Normalized root mean square of the electromyographic signal (NrmsEMG) for 14 muscles (5 upper body, 4 trunk, 5 lower body). There were significant main effects of pose for all fourteen muscles except middle trapezius (p<.02) and of skill level for the vastus medialis; p=.027). A significant skill level × pose interaction existed for five muscles (pectoralis major sternal head, anterior deltoid, medial deltoid, upper rectus abdominis and gastrocnemius lateralis; p<.05). Post hoc analyses using Bonferroni comparisons indicated that different poses activated specific muscle groups; however, this varied by skill level. Our results indicate that different poses can produce specific muscle activation patterns which may vary due to practitioners' skill levels. This information can be used in designing rehabilitation and training programs and for cuing during yoga training. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition

    Science.gov (United States)

    Yin, Xi; Liu, Xiaoming

    2018-02-01

    This paper explores multi-task learning (MTL) for face recognition. We answer the questions of how and why MTL can improve the face recognition performance. First, we propose a multi-task Convolutional Neural Network (CNN) for face recognition where identity classification is the main task and pose, illumination, and expression estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weight to each side task, which is a crucial problem in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the variations from the learnt identity features. Extensive experiments on the entire Multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in Multi-PIE for face recognition. Our approach is also applicable to in-the-wild datasets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.

  14. Position Information

    Data.gov (United States)

    Social Security Administration — The Position Information Data Asset provides the ability to search for active SSA position descriptions using various search criteria. An individual may search by PD...

  15. A Method for Improving the Pose Accuracy of a Robot Manipulator Based on Multi-Sensor Combined Measurement and Data Fusion

    Science.gov (United States)

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua

    2015-01-01

    An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067

  16. Electron velocity and momentum density

    International Nuclear Information System (INIS)

    Perkins, G.A.

    1978-01-01

    A null 4-vector eta + sigma/sub μ/based on Dirac's relativistic electron equation, is shown explicitly for a plane wave and various Coulomb states. This 4-vector constitutes a mechanical ''model'' for the electron in those staes, and expresses the important spinor quantities represented conventionally by n, f, g, m, j, kappa, l, and s. The model for a plane wave agrees precisely with the relation between velocity and phase gradient customarily used in quantum theory, but the models for Coulomb states contradict that relation

  17. Positive Psychology

    Science.gov (United States)

    Peterson, Christopher

    2009-01-01

    Positive psychology is a deliberate correction to the focus of psychology on problems. Positive psychology does not deny the difficulties that people may experience but does suggest that sole attention to disorder leads to an incomplete view of the human condition. Positive psychologists concern themselves with four major topics: (1) positive…

  18. Data adaptive estimation of transversal blood flow velocities

    DEFF Research Database (Denmark)

    Pirnia, E.; Jakobsson, A.; Gudmundson, E.

    2014-01-01

    the transversal blood flow. In this paper, we propose a novel data-adaptive blood flow estimator exploiting this modulation scheme. Using realistic Field II simulations, the proposed estimator is shown to achieve a notable performance improvement as compared to current state-of-the-art techniques.......The examination of blood flow inside the body may yield important information about vascular anomalies, such as possible indications of, for example, stenosis. Current Medical ultrasound systems suffer from only allowing for measuring the blood flow velocity along the direction of irradiation......, posing natural difficulties due to the complex behaviour of blood flow, and due to the natural orientation of most blood vessels. Recently, a transversal modulation scheme was introduced to induce also an oscillation along the transversal direction, thereby allowing for the measurement of also...

  19. Comparison of Safety Margin Generation Concepts in Image Guided Radiotherapy to Account for Daily Head and Neck Pose Variations.

    Science.gov (United States)

    Stoll, Markus; Stoiber, Eva Maria; Grimm, Sarah; Debus, Jürgen; Bendl, Rolf; Giske, Kristina

    2016-01-01

    Intensity modulated radiation therapy (IMRT) of head and neck tumors allows a precise conformation of the high-dose region to clinical target volumes (CTVs) while respecting dose limits to organs a risk (OARs). Accurate patient setup reduces translational and rotational deviations between therapy planning and therapy delivery days. However, uncertainties in the shape of the CTV and OARs due to e.g. small pose variations in the highly deformable anatomy of the head and neck region can still compromise the dose conformation. Routinely applied safety margins around the CTV cause higher dose deposition in adjacent healthy tissue and should be kept as small as possible. In this work we evaluate and compare three approaches for margin generation 1) a clinically used approach with a constant isotropic 3 mm margin, 2) a previously proposed approach adopting a spatial model of the patient and 3) a newly developed approach adopting a biomechanical model of the patient. All approaches are retrospectively evaluated using a large patient cohort of over 500 fraction control CT images with heterogeneous pose changes. Automatic methods for finding landmark positions in the control CT images are combined with a patient specific biomechanical finite element model to evaluate the CTV deformation. The applied methods for deformation modeling show that the pose changes cause deformations in the target region with a mean motion magnitude of 1.80 mm. We found that the CTV size can be reduced by both variable margin approaches by 15.6% and 13.3% respectively, while maintaining the CTV coverage. With approach 3 an increase of target coverage was obtained. Variable margins increase target coverage, reduce risk to OARs and improve healthy tissue sparing at the same time.

  20. The Effect of Problem Solving and Problem Posing Models and Innate Ability to Students Achievement

    Directory of Open Access Journals (Sweden)

    Ratna Kartika Irawati

    2015-04-01

    Full Text Available Pengaruh Model Problem Solving dan Problem Posing serta Kemampuan Awal terhadap Hasil Belajar Siswa   Abstract: Chemistry concepts understanding features abstract quality and requires higher order thinking skills. Yet, the learning on chemistry has not boost the higher order thinking skills of the students. The use of the learning model of Problem Solving and Problem Posing in observing the innate ability of the student is expected to resolve the issue. This study aims to determine the learning model which is effective to improve the study of the student with different level of innate ability. This study used the quasi-experimental design. The research data used in this research is the quiz/test of the class which consist of 14 multiple choice questions and 5 essay questions. The data analysis used is ANOVA Two Ways. The results showed that Problem Posing is more effective to improve the student compared to Problem Solving, students with high level of innate ability have better outcomes in learning rather than the students with low level of innate ability after being applied with the Problem solving and Problem posing model, further, Problem Solving and Problem Posing is more suitable to be applied to the students with high level of innate ability. Key Words: problem solving, problem posing, higher order thinking skills, innate ability, learning outcomes   Abstrak: Pemahaman konsep-konsep kimia yang bersifat abstrak membutuhkan keterampilan berpikir tingkat tinggi. Pembelajaran kimia belum mendorong siswa melakukan keterampilan berpikir tingkat tinggi. Penggunaan model pembelajaran Problem Solving dan Problem Posing dengan memperhatikan kemampuan awal siswa diduga dapat mengatasi masalah tersebut. Penelitian ini bertujuan untuk mengetahui model pembelajaran yang efektif dalam meningkatkan hasil belajar dengan kemampuan awal siswa yang berbeda. Penelitian ini menggunakan rancangan eksperimen semu. Data penelitian menggunakan tes hasil belajar

  1. Ubiquitous positioning

    CERN Document Server

    Mannings, Robin

    2008-01-01

    This groundbreaking resource offers a practical, in-depth understanding of Ubiquitous Positioning - positioning systems that identify the location and position of people, vehicles and objects in time and space in the digitized networked economy. The future and growth of ubiquitous positioning will be fueled by the convergence of many other areas of technology, from mobile telematics, Internet technology, and location systems, to sensing systems, geographic information systems, and the semantic web. This first-of-its-kind volume explores ubiquitous positioning from a convergence perspective, of

  2. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  3. Positioning consumption

    DEFF Research Database (Denmark)

    Halkier, Bente; Keller, Margit

    2014-01-01

    positionings emerges based on empirical examples of research in parent–children consumption. Positionings are flexible discursive fixations of the relationship between the performances of the practitioner, other practitioners, media discourse and consumption activities. The basic positioning types...... are the practice maintenance and the practice change position, with different sorts of adapting in between. Media discourse can become a resource for a resistant position against social control or for an appropriating position in favour of space for action. Regardless of the current relation to a particular media......This article analyses the ways in which media discourses become a part of contested consumption activities. We apply a positioning perspective with practice theory to focus on how practitioners relate to media discourse as a symbolic resource in their everyday practices. A typology of performance...

  4. Combining Front Vehicle Detection with 3D Pose Estimation for a Better Driver Assistance

    Directory of Open Access Journals (Sweden)

    Yu Peng

    2012-09-01

    Full Text Available Driver assistant systems enhance traffic safety and efficiency. The accurate 3D pose of a front vehicle can help a driver to make the right decision on the road. We propose a novel real-time system to estimate the 3D pose of the front vehicle. This system consists of two parallel threads: vehicle rear tracking and mapping. The vehicle rear is first identified in the video captured by an onboard camera, after license plate localization and foreground extraction. The 3D pose estimation technique is then employed with respect to the extracted vehicle rear. Most current 3D pose estimation techniques need prior models or a stereo initialization with user cooperation. It is extremely difficult to obtain prior models due to the varying appearance of vehicles' rears. Moreover, it is unsafe to ask for drivers' cooperation when a vehicle is running. In our system, two initial keyframes for stereo algorithms are automatically extracted by vehicle rear detection and tracking. Map points are defined as a collection of point features extracted from the vehicle's rear with their 3D information. These map points are inferences that relate the 2D features detected in following vehicles' rears with the 3D world. The relative 3D pose of the onboard camera to the front vehicle rear is then estimated through matching the map points with point features detected on the front vehicle rear. We demonstrate the capabilities of our system by testing on real-time and synthesized videos. In order to make the experimental analysis visible, we demonstrated an estimated 3D pose through augmented reality, which needs accurate and real-time 3D pose estimation.

  5. Application of Vectors to Relative Velocity

    Science.gov (United States)

    Tin-Lam, Toh

    2004-01-01

    The topic 'relative velocity' has recently been introduced into the Cambridge Ordinary Level Additional Mathematics syllabus under the application of Vectors. In this note, the results of relative velocity and the 'reduction to rest' technique of teaching relative velocity are derived mathematically from vector algebra, in the hope of providing…

  6. Questions Students Ask: About Terminal Velocity.

    Science.gov (United States)

    Meyer, Earl R.; Nelson, Jim

    1984-01-01

    If a ball were given an initial velocity in excess of its terminal velocity, would the upward force of air resistance (a function of velocity) be greater than the downward force of gravity and thus push the ball back upwards? An answer to this question is provided. (JN)

  7. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  8. Critical velocities in He II for independently varied superfluid and normal fluid velocities

    International Nuclear Information System (INIS)

    Baehr, M.L.

    1984-01-01

    Experiments were performed to measure the critical velocity in pure superflow and compare to the theoretical prediction; to measure the first critical velocity for independently varied superfluid and normal fluid velocities; and to investigate the propagation of the second critical velocity from the thermal counterflow line through the V/sub n/,-V/sub s/ quadrant. The experimental apparatus employed a thermal counterflow heater to adjust the normal fluid velocity, a fountain pump to vary the superfluid velocity, and a level sensing capacitor to measure the superfluid velocity. The results of the pure superfluid critical velocity measurements indicate that this velocity is temperature independent contrary to Schwarz's theory. It was found that the first critical velocity for independently varied V/sub n/ and V/sub s/ could be described by a linear function of V/sub n/ and was otherwise temperature independent. It was found that the second critical velocity could only be distinguished near the thermal counterflow line

  9. Did Buddha turn the other cheek too? A comparison of posing biases between Jesus and Buddha.

    Science.gov (United States)

    Duerksen, Kari N; Friedrich, Trista E; Elias, Lorin J

    2015-10-02

    People tend to exhibit a leftward bias in posing. Various studies suggest that posing to the left portrays a stronger emotion, whereas posing to the right portrays a more neutral emotion. Religions such as Christianity emphasize the role of strong emotions in religious experience, whereas religions such as Buddhism emphasize the calming of emotions as being important. In the present study, we investigated if the emphasis on emotionality of a religion influences the depiction of their religious figures. Specifically, we coded 484 paintings of Jesus and Buddha from online art databases for whether the deity exhibited a left bias, right bias, or central face presentation. The posing biases were analysed to discover whether paintings of Jesus would more frequently depict a leftward bias than paintings of Buddha. Jesus is more commonly depicted with a leftward bias than Buddha, and Buddha is more commonly depicted with a central face presentation than Jesus. These findings support the idea that the amount of emotionality that is to be conveyed in artwork influences the whether the subject is posed with a leftward bias.

  10. Recovering the 3d Pose and Shape of Vehicles from Stereo Images

    Science.gov (United States)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2018-05-01

    The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function, we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to deliver very precise orientation estimation results with an average absolute error smaller than 4°.

  11. Enhancing students’ mathematical problem posing skill through writing in performance tasks strategy

    Science.gov (United States)

    Kadir; Adelina, R.; Fatma, M.

    2018-01-01

    Many researchers have studied the Writing in Performance Task (WiPT) strategy in learning, but only a few paid attention on its relation to the problem-posing skill in mathematics. The problem-posing skill in mathematics covers problem reformulation, reconstruction, and imitation. The purpose of the present study was to examine the effect of WiPT strategy on students’ mathematical problem-posing skill. The research was conducted at a Public Junior Secondary School in Tangerang Selatan. It used a quasi-experimental method with randomized control group post-test. The samples were 64 students consists of 32 students of the experiment group and 32 students of the control. A cluster random sampling technique was used for sampling. The research data were obtained by testing. The research shows that the problem-posing skill of students taught by WiPT strategy is higher than students taught by a conventional strategy. The research concludes that the WiPT strategy is more effective in enhancing the students’ mathematical problem-posing skill compared to the conventional strategy.

  12. Improving attitudes toward mathematics learning with problem posing in class VIII

    Science.gov (United States)

    Vionita, Alfha; Purboningsih, Dyah

    2017-08-01

    This research is classroom action research which is collaborated to improve student's behavior toward math and mathematics learning at class VIII by using problem posing approach. The subject of research is all of students grade VIIIA which consist of 32 students. This research has been held on two period, first period is about 3 times meeting, and second period is about 4 times meeting. The instrument of this research is implementation of learning observation's guidance by using problem posing approach. Cycle test has been used to measure cognitive competence, and questionnaire to measure the students' behavior in mathematics learning process. The result of research shows the students' behavior has been improving after using problem posing approach. It is showed by the behavior's criteria of students that has increasing result from the average in first period to high in second period. Furthermore, the percentage of test result is also improve from 68,75% in first period to 78,13% in second period. On the other hand, the implementation of learning observation by using problem posing approach has also improving and it is showed by the average percentage of teacher's achievement in first period is 89,2% and student's achievement 85,8%. These results get increase in second period for both teacher and students' achievement which are 94,4% and 91,11%. As a result, students' behavior toward math learning process in class VIII has been improving by using problem posing approach.

  13. Inertial measurement unit–based iterative pose compensation algorithm for low-cost modular manipulator

    Directory of Open Access Journals (Sweden)

    Yunhan Lin

    2016-01-01

    Full Text Available It is a necessary mean to realize the accurate motion control of the manipulator which uses end-effector pose correction method and compensation method. In this article, first, we established the kinematic model and error model of the modular manipulator (WUST-ARM, and then we discussed the measurement methods and precision of the inertial measurement unit sensor. The inertial measurement unit sensor is mounted on the end-effector of modular manipulator, to get the real-time pose of the end-effector. At last, a new inertial measurement unit–based iterative pose compensation algorithm is proposed. By applying this algorithm in the pose compensation experiment of modular manipulator which is composed of low-cost rotation joints, the results show that the inertial measurement unit can obtain a higher precision when in static state; it will accurately feedback to the control system with an accurate error compensation angle after a brief delay when the end-effector moves to the target point, and after compensation, the precision errors of roll angle, pitch angle, and yaw angle are reached at 0.05°, 0.01°, and 0.27° respectively. It proves that this low-cost method provides a new solution to improve the end-effector pose of low-cost modular manipulator.

  14. Development of a very-low-velocity superconducting linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1987-01-01

    Four types of superconducting accelerator structures are being developed for use in a low velocity positive-ion injector linac for the ATLAS heavy-ion accelerator. Prototypes of the first two of these have been tested. The structures are all variants of a quarter-wave line terminated with a four-gap interdigital drift-tube array. The two structure types so far tested operate at 48.5 mHz and have an active length of 10 cm (for the particle velocity - .008c type) and 16.5 cm (for the velocity - .014c type). Effective accelerating fields of 10 MV/m have been achieved with the 10 cm structure, corresponding to an effective accelerating potential of 1 MV. The 16.5 cm structure has been operated at field levels of 6 MV/m, also giving an effective potential of 1 MV. Prototypes of the remaining two resonant geometries are under construction.

  15. Development of a very-low-velocity superconducting linac

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1987-01-01

    Four types of superconducting accelerator structures are being developed for use in a low velocity positive-ion injector linac for the ATLAS heavy-ion accelerator. Prototypes of the first two of these have been tested. The structures are all variants of a quarter-wave line terminated with a four-gap interdigital drift-tube array. The two structure types so far tested operate at 48.5 mHz and have an active length of 10 cm (for the particle velocity - .008c type) and 16.5 cm (for the velocity - .014c type). Effective accelerating fields of 10 MV/m have been achieved with the 10 cm structure, corresponding to an effective accelerating potential of 1 MV. The 16.5 cm structure has been operated at field levels of 6 MV/m, also giving an effective potential of 1 MV. Prototypes of the remaining two resonant geometries are under construction

  16. Radial extension of drift waves in presence of velocity profiles

    International Nuclear Information System (INIS)

    Sen, S.; Weiland, J.

    1994-01-01

    The effect of a radially varying poloidal velocity field on the recently found radially extended toroidal drift waves is investigated analytically. The role of velocity curvature (υ φ '') is found to have robust effects on the radial model structure of the mode. For a positive value of the curvature (Usually found in the H-mode edges) the radial model envelope, similar to the sheared slab case, becomes fully outgoing. The mode is therefore stable. On the other hand, for a negative value of the curvature (usually observed in the L-mode edges) all the characteristics of conventional drift waves return back. The radial mode envelope reduces to a localized Gaussian shape and the mode is therefore unstable again for typical (magnetic) shear values in tokamaks. Velocity shear (υ φ ??) on the other hand is found to have rather insignificant role both in determining the radial model structure and stability

  17. Velocity control of servo systems using an integral retarded algorithm.

    Science.gov (United States)

    Ramírez, Adrián; Garrido, Rubén; Mondié, Sabine

    2015-09-01

    This paper presents a design technique for the delay-based controller called Integral Retarded (IR), and its applications to velocity control of servo systems. Using spectral analysis, the technique yields a tuning strategy for the IR by assigning a triple real dominant root for the closed-loop system. This result ultimately guarantees a desired exponential decay rate σ(d) while achieving the IR tuning as explicit function of σ(d) and system parameters. The intentional introduction of delay allows using noisy velocity measurements without additional filtering. The structure of the controller is also able to avoid velocity measurements by using instead position information. The IR is compared to a classical PI, both tested in a laboratory prototype. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Maximum Likelihood-Based Methods for Target Velocity Estimation with Distributed MIMO Radar

    Directory of Open Access Journals (Sweden)

    Zhenxin Cao

    2018-02-01

    Full Text Available The estimation problem for target velocity is addressed in this in the scenario with a distributed multi-input multi-out (MIMO radar system. A maximum likelihood (ML-based estimation method is derived with the knowledge of target position. Then, in the scenario without the knowledge of target position, an iterative method is proposed to estimate the target velocity by updating the position information iteratively. Moreover, the Carmér-Rao Lower Bounds (CRLBs for both scenarios are derived, and the performance degradation of velocity estimation without the position information is also expressed. Simulation results show that the proposed estimation methods can approach the CRLBs, and the velocity estimation performance can be further improved by increasing either the number of radar antennas or the information accuracy of the target position. Furthermore, compared with the existing methods, a better estimation performance can be achieved.

  19. Temperature effects on sinking velocity of different Emiliania huxleyi strains.

    Science.gov (United States)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2018-01-01

    The sinking properties of three strains of Emiliania huxleyi in response to temperature changes were examined. We used a recently proposed approach to calculate sinking velocities from coccosphere architecture, which has the advantage to be applicable not only to culture samples, but also to field samples including fossil material. Our data show that temperature in the sub-optimal range impacts sinking velocity of E. huxleyi. This response is widespread among strains isolated in different locations and moreover comparatively predictable, as indicated by the similar slopes of the linear regressions. Sinking velocity was positively correlated to temperature as well as individual cell PIC/POC over the sub-optimum to optimum temperature range in all strains. In the context of climate change our data point to an important influence of global warming on sinking velocities. It has recently been shown that seawater acidification has no effect on sinking velocity of a Mediterranean E. huxleyi strain, while nutrient limitation seems to have a small negative effect on sinking velocity. Given that warming, acidification, and lowered nutrient availability will occur simultaneously under climate change scenarios, the question is what the net effect of different influential factors will be. For example, will the effects of warming and nutrient limitation cancel? This question cannot be answered conclusively but analyses of field samples in addition to laboratory culture studies will improve predictions because in field samples multi-factor influences and even evolutionary changes are not excluded. As mentioned above, the approach of determining sinking rate followed here is applicable to field samples. Future studies could use it to analyse not only seasonal and geographic patterns but also changes in sinking velocity over geological time scales.

  20. Cloud computing approaches for prediction of ligand binding poses and pathways.

    Science.gov (United States)

    Lawrenz, Morgan; Shukla, Diwakar; Pande, Vijay S

    2015-01-22

    We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.

  1. Categorization of questions posed before and after inquiry-based learning

    Directory of Open Access Journals (Sweden)

    Sandra Milena García González

    2014-07-01

    Full Text Available Posing research questions is the central ability of the scientific thought. This article examines the ability of sixth grade children to pose researchable questions before and after a three months’ work on a didactic sequence based on the inquiry school model. According to their purpose, the questions asked by children, after reading a text, were classified into researchable questions -susceptible to be empirically explored-, questions about a cause, and questions on a piece of data. The results show that the amount and the type of questions the students were able to pose during the intervention changed, from most of questions on data or information, to most of researchable questions, subsequently, the importance of designing teaching approaches to foster this ability was proved.

  2. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    Science.gov (United States)

    Zhu, Aichun; Wang, Tian; Snoussi, Hichem

    2018-03-01

    This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  3. Hierarchical graphical-based human pose estimation via local multi-resolution convolutional neural network

    Directory of Open Access Journals (Sweden)

    Aichun Zhu

    2018-03-01

    Full Text Available This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN. Firstly, a Relative Mixture Deformable Model (RMDM is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.

  4. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    Science.gov (United States)

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  5. Tuning the Fano factor of graphene via Fermi velocity modulation

    Science.gov (United States)

    Lima, Jonas R. F.; Barbosa, Anderson L. R.; Bezerra, C. G.; Pereira, Luiz Felipe C.

    2018-03-01

    In this work we investigate the influence of a Fermi velocity modulation on the Fano factor of periodic and quasi-periodic graphene superlattices. We consider the continuum model and use the transfer matrix method to solve the Dirac-like equation for graphene where the electrostatic potential, energy gap and Fermi velocity are piecewise constant functions of the position x. We found that in the presence of an energy gap, it is possible to tune the energy of the Fano factor peak and consequently the location of the Dirac point, by a modulation in the Fermi velocity. Hence, the peak of the Fano factor can be used experimentally to identify the Dirac point. We show that for higher values of the Fermi velocity the Fano factor goes below 1/3 at the Dirac point. Furthermore, we show that in periodic superlattices the location of Fano factor peaks is symmetric when the Fermi velocity vA and vB is exchanged, however by introducing quasi-periodicity the symmetry is lost. The Fano factor usually holds a universal value for a specific transport regime, which reveals that the possibility of controlling it in graphene is a notable result.

  6. Directional velocity estimation using focusing along the flow direction - I: Theory and simulation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2003-01-01

    A new method for directional velocity estimation is presented. The method uses beamformation along the flow direction to generate data in which the correct velocity magnitude can be directly estimated from the shift in position of the received consecutive signals. The shift is found by cross-corr...

  7. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  8. Robust Pose Estimation using the SwissRanger SR-3000 Camera

    DEFF Research Database (Denmark)

    Gudmundsson, Sigurjon Arni; Larsen, Rasmus; Ersbøll, Bjarne Kjær

    2007-01-01

    In this paper a robust method is presented to classify and estimate an objects pose from a real time range image and a low dimensional model. The model is made from a range image training set which is reduced dimensionally by a nonlinear manifold learning method named Local Linear Embedding (LLE)......). New range images are then projected to this model giving the low dimensional coordinates of the object pose in an efficient manner. The range images are acquired by a state of the art SwissRanger SR-3000 camera making the projection process work in real-time....

  9. Researcher positioning

    DEFF Research Database (Denmark)

    Mørck, Line Lerche; Khawaja, Iram

    2009-01-01

    abstract  This article focuses on the complex and multi-layered process of researcher positioning, specifically in relation to the politically sensitive study of marginalised and ‘othered' groups such as Muslims living in Denmark. We discuss the impact of different ethnic, religious and racial...... political and personal involvement by the researcher, which challenges traditional perspectives on research and researcher positioning. A key point in this regard is the importance of constant awareness of and reflection on the multiple ways in which one's positioning as a researcher influences the research...

  10. Determination of velocity correction factors for real-time air velocity monitoring in underground mines

    OpenAIRE

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-01-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction fac...

  11. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  12. Characteristic wave velocities in spherical electromagnetic cloaks

    International Nuclear Information System (INIS)

    Yaghjian, A D; Maci, S; Martini, E

    2009-01-01

    We investigate the characteristic wave velocities in spherical electromagnetic cloaks, namely, phase, ray, group and energy-transport velocities. After deriving explicit expressions for the phase and ray velocities (the latter defined as the phase velocity along the direction of the Poynting vector), special attention is given to the determination of group and energy-transport velocities, because a cursory application of conventional formulae for local group and energy-transport velocities can lead to a discrepancy between these velocities if the permittivity and permeability dyadics are not equal over a frequency range about the center frequency. In contrast, a general theorem can be proven from Maxwell's equations that the local group and energy-transport velocities are equal in linear, lossless, frequency dispersive, source-free bianisotropic material. This apparent paradox is explained by showing that the local fields of the spherical cloak uncouple into an E wave and an H wave, each with its own group and energy-transport velocities, and that the group and energy-transport velocities of either the E wave or the H wave are equal and thus satisfy the general theorem.

  13. Radiographic positioning

    International Nuclear Information System (INIS)

    Eisenberg, R.L.; Dennis, C.A.; May, C.

    1989-01-01

    This book concentrates on the routine radiographic examinations commonly performed. It details the wide variety of examinations possible and their place in initial learning and in the radiology department as references for those occasions when an unusual examination is requested. This book provides information ranging from basic terminology to skeletal positioning to special procedures. Positions are discussed and supplemented with a picture of a patient, the resulting radiograph, and a labeled diagram. Immobilization and proper shielding of the patient are also shown

  14. Position encoder

    International Nuclear Information System (INIS)

    Goursky, Vsevolod

    1975-01-01

    A circuitry for deriving the quotient of signal delivered by position-sensitive detectors is described. Digital output is obtained in the form of 10- to 12-bit words. Impact position may be determined with 0.25% accuracy when the dynamic range of the energy signal is less 1:10, and 0.5% accuracy when the dynamic range is 1:20. The division requires an average time of 5μs for 10-bit words

  15. Position encoder

    International Nuclear Information System (INIS)

    Goursky, V.

    1975-05-01

    This paper describes circuitry for deriving the quotient of signals delivered by position-sensitive detectors. Digital output is obtained in the form of 10 to 12 bit words. Impact position may be determined with 0.25% accuracy when the dynamic range of the energy signal is less than 1:10, and 0.5% accuracy when the dynamic range is 1:20. The division requires an average time of 5μs for 10-bit words [fr

  16. Geotail observations of FTE velocities

    Directory of Open Access Journals (Sweden)

    G. I. Korotova

    2009-01-01

    Full Text Available We discuss the plasma velocity signatures expected in association with flux transfer events (FTEs. Events moving faster than or opposite the ambient media should generate bipolar inward/outward (outward/inward flow perturbations normal to the nominal magnetopause in the magnetosphere (magnetosheath. Flow perturbations directly upstream and downstream from the events should be in the direction of event motion. Flows on the flanks should be in the direction opposite the motion of events moving at subsonic and subAlfvénic speeds relative to the ambient plasma. Events moving with the ambient flow should generate no flow perturbations in the ambient plasma. Alfvén waves propagating parallel (antiparallel to the axial magnetic field of FTEs may generate anticorrelated (correlated magnetic field and flow perturbations within the core region of FTEs. We present case studies illustrating many of these signatures. In the examples considered, Alfvén waves propagate along event axes away from the inferred reconnection site. A statistical study of FTEs observed by Geotail over a 3.5-year period reveals that FTEs within the magnetosphere invariably move faster than the ambient flow, while those in the magnetosheath move both faster and slower than the ambient flow.

  17. Reciprocally-Rotating Velocity Obstacles

    KAUST Repository

    Giese, Andrew

    2014-05-01

    © 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

  18. High velocity impact experiment (HVIE)

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A.; Donich, T.; Carter, P.

    1998-02-01

    The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!

  19. Group Velocity for Leaky Waves

    Science.gov (United States)

    Rzeznik, Andrew; Chumakova, Lyubov; Rosales, Rodolfo

    2017-11-01

    In many linear dispersive/conservative wave problems one considers solutions in an infinite medium which is uniform everywhere except for a bounded region. In general, localized inhomogeneities of the medium cause partial internal reflection, and some waves leak out of the domain. Often one only desires the solution in the inhomogeneous region, with the exterior accounted for by radiation boundary conditions. Formulating such conditions requires definition of the direction of energy propagation for leaky waves in multiple dimensions. In uniform media such waves have the form exp (d . x + st) where d and s are complex and related by a dispersion relation. A complex s is required since these waves decay via radiation to infinity, even though the medium is conservative. We present a modified form of Whitham's Averaged Lagrangian Theory along with modulation theory to extend the classical idea of group velocity to leaky waves. This allows for solving on the bounded region by representing the waves as a linear combination of leaky modes, each exponentially decaying in time. This presentation is part of a joint project, and applications of these results to example GFD problems will be presented by L. Chumakova in the talk ``Leaky GFD Problems''. This work is partially supported by NSF Grants DMS-1614043, DMS-1719637, and 1122374, and by the Hertz Foundation.

  20. Computing discharge using the index velocity method

    Science.gov (United States)

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  1. Collaborative Random Faces-Guided Encoders for Pose-Invariant Face Representation Learning.

    Science.gov (United States)

    Shao, Ming; Zhang, Yizhe; Fu, Yun

    2018-04-01

    Learning discriminant face representation for pose-invariant face recognition has been identified as a critical issue in visual learning systems. The challenge lies in the drastic changes of facial appearances between the test face and the registered face. To that end, we propose a high-level feature learning framework called "collaborative random faces (RFs)-guided encoders" toward this problem. The contributions of this paper are three fold. First, we propose a novel supervised autoencoder that is able to capture the high-level identity feature despite of pose variations. Second, we enrich the identity features by replacing the target values of conventional autoencoders with random signals (RFs in this paper), which are unique for each subject under different poses. Third, we further improve the performance of the framework by incorporating deep convolutional neural network facial descriptors and linking discriminative identity features from different RFs for the augmented identity features. Finally, we conduct face identification experiments on Multi-PIE database, and face verification experiments on labeled faces in the wild and YouTube Face databases, where face recognition rate and verification accuracy with Receiver Operating Characteristic curves are rendered. In addition, discussions of model parameters and connections with the existing methods are provided. These experiments demonstrate that our learning system works fairly well on handling pose variations.

  2. Morozov-type discrepancy principle for nonlinear ill-posed problems ...

    Indian Academy of Sciences (India)

    [3] Engl H W, Kunisch K and Neubauer A, Convergence rates for Tikhonov regularization of nonliner problems, Inverse Problems 5 (1989) 523–540. [4] Hanke M, Neubauer A and Scherzer O, A convergence analysis of Landweber iteration for nonlinear ill-posed problems, Numer. Math. 72 (1995) 21–37. [5] Hofmann B and ...

  3. Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Al-Naffouri, Tareq Y.

    2016-01-01

    Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.

  4. Multispectral embedding-based deep neural network for three-dimensional human pose recovery

    Science.gov (United States)

    Yu, Jialin; Sun, Jifeng

    2018-01-01

    Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.

  5. A problem-posing approach to teaching the topic of radioactivity

    NARCIS (Netherlands)

    Klaassen, C.W.J.M.

    1995-01-01

    This thesis highlights a problem-posing approach to science education. By this is meant an approach that explicitly aims at providing students with content-related motives for extending their existing conceptual resources, experiential base and belief system in a certain direction, such that a

  6. Improving head and body pose estimation through semi-supervised manifold alignment

    KAUST Repository

    Heili, Alexandre; Varadarajan, Jagannadan; Ghanem, Bernard; Ahuja, Narendra; Odobez, Jean-Marc

    2014-01-01

    structure of the features in the train and target data and the need to align them were not explored despite the fact that the pose features between two datasets may vary according to the scene, e.g. due to different camera point of view or perspective

  7. Locating binding poses in protein-ligand systems using reconnaissance metadynamics

    Science.gov (United States)

    Söderhjelm, Pär; Tribello, Gareth A.; Parrinello, Michele

    2012-01-01

    A molecular dynamics-based protocol is proposed for finding and scoring protein-ligand binding poses. This protocol uses the recently developed reconnaissance metadynamics method, which employs a self-learning algorithm to construct a bias that pushes the system away from the kinetic traps where it would otherwise remain. The exploration of phase space with this algorithm is shown to be roughly six to eight times faster than unbiased molecular dynamics and is only limited by the time taken to diffuse about the surface of the protein. We apply this method to the well-studied trypsin–benzamidine system and show that we are able to refind all the poses obtained from a reference EADock blind docking calculation. These poses can be scored based on the length of time the system remains trapped in the pose. Alternatively, one can perform dimensionality reduction on the output trajectory and obtain a map of phase space that can be used in more expensive free-energy calculations. PMID:22440749

  8. Exploiting residual information in the parameter choice for discrete ill-posed problems

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Kilmer, Misha E.; Kjeldsen, Rikke Høj

    2006-01-01

    Most algorithms for choosing the regularization parameter in a discrete ill-posed problem are based on the norm of the residual vector. In this work we propose a different approach, where we seek to use all the information available in the residual vector. We present important relations between...

  9. Morozov-type discrepancy principle for nonlinear ill-posed problems ...

    Indian Academy of Sciences (India)

    For proving the existence of a regularization parameter under a Morozov-type discrepancy principle for Tikhonov regularization of nonlinear ill-posed problems, it is required to impose additional nonlinearity assumptions on the forward operator. Lipschitz continuity of the Freéchet derivative and requirement of the Lipschitz ...

  10. Control and System Theory, Optimization, Inverse and Ill-Posed Problems

    Science.gov (United States)

    1988-09-14

    Justlfleatlen Distribut ion/ Availability Codes # AFOSR-87-0350 Avat’ and/or1987-1988 Dist Special *CONTROL AND SYSTEM THEORY , ~ * OPTIMIZATION, * INVERSE...considerable va- riety of research investigations within the grant areas (Control and system theory , Optimization, and Ill-posed problems]. The

  11. Unintended allergens in precautionary labelled and unlabelled products pose significant risks to UK allergic consumers

    NARCIS (Netherlands)

    Remington, B.C.; Baumert, J.L.; Blom, W.M.; Houben, G.F.; Taylor, S.L.; Kruizinga, A.G.

    2015-01-01

    Background Allergens in food may pose a risk to allergic consumers. While there is EU regulation for allergens present as an ingredient, this is not the case for unintended allergen presence (UAP). Food companies use precautionary allergen labels to inform allergic individuals of a potential risk

  12. Simulation-Based Optimization of Camera Placement in the Context of Industrial Pose Estimation

    DEFF Research Database (Denmark)

    Jørgensen, Troels Bo; Iversen, Thorbjørn Mosekjær; Lindvig, Anders Prier

    2018-01-01

    In this paper, we optimize the placement of a camera in simulation in order to achieve a high success rate for a pose estimation problem. This is achieved by simulating 2D images from a stereo camera in a virtual scene. The stereo images are then used to generate 3D point clouds based on two diff...

  13. A multi-camera system for real-time pose estimation

    Science.gov (United States)

    Savakis, Andreas; Erhard, Matthew; Schimmel, James; Hnatow, Justin

    2007-04-01

    This paper presents a multi-camera system that performs face detection and pose estimation in real-time and may be used for intelligent computing within a visual sensor network for surveillance or human-computer interaction. The system consists of a Scene View Camera (SVC), which operates at a fixed zoom level, and an Object View Camera (OVC), which continuously adjusts its zoom level to match objects of interest. The SVC is set to survey the whole filed of view. Once a region has been identified by the SVC as a potential object of interest, e.g. a face, the OVC zooms in to locate specific features. In this system, face candidate regions are selected based on skin color and face detection is accomplished using a Support Vector Machine classifier. The locations of the eyes and mouth are detected inside the face region using neural network feature detectors. Pose estimation is performed based on a geometrical model, where the head is modeled as a spherical object that rotates upon the vertical axis. The triangle formed by the mouth and eyes defines a vertical plane that intersects the head sphere. By projecting the eyes-mouth triangle onto a two dimensional viewing plane, equations were obtained that describe the change in its angles as the yaw pose angle increases. These equations are then combined and used for efficient pose estimation. The system achieves real-time performance for live video input. Testing results assessing system performance are presented for both still images and video.

  14. Comparison On Matching Methods Used In Pose Tracking For 3D Shape Representation

    Directory of Open Access Journals (Sweden)

    Khin Kyu Kyu Win

    2017-01-01

    Full Text Available In this work three different algorithms such as Brute Force Delaunay Triangulation and k-d Tree are analyzed on matching comparison for 3D shape representation. It is intended for developing the pose tracking of moving objects in video surveillance. To determine 3D pose of moving objects some tracking system may require full 3D pose estimation of arbitrarily shaped objects in real time. In order to perform 3D pose estimation in real time each step in the tracking algorithm must be computationally efficient. This paper presents method comparison for the computationally efficient registration of 3D shapes including free-form surfaces. Matching of free-form surfaces are carried out by using geometric point matching algorithm ICP. Several aspects of the ICP algorithm are investigated and analyzed by using specified surface setup. The surface setup processed in this system is represented by simple geometric primitive dealing with objects of free-from shape. Considered representations are a cloud of points.

  15. Towards real-time body pose estimation for presenters in meeting environments

    NARCIS (Netherlands)

    Poppe, Ronald Walter; Heylen, Dirk K.J.; Nijholt, Antinus; Poel, Mannes

    2005-01-01

    This paper describes a computer vision-based approach to body pose estimation. The algorithm can be executed in real-time and processes low resolution, monocular image sequences. A silhouette is extracted and matched against a projection of a 16 DOF human body model. In addition, skin color is used

  16. Hierarchical online appearance-based tracking for 3D head pose, eyebrows, lips, eyelids, and irises

    NARCIS (Netherlands)

    Orozco, Javier; Rudovic, Ognjen; Gonzalez Garcia, Jordi; Pantic, Maja

    In this paper, we propose an On-line Appearance-Based Tracker (OABT) for simultaneous tracking of 3D head pose, lips, eyebrows, eyelids and irises in monocular video sequences. In contrast to previously proposed tracking approaches, which deal with face and gaze tracking separately, our OABT can

  17. Investigating Mathematics Teachers Candidates' Knowledge about Problem Solving Strategies through Problem Posing

    Science.gov (United States)

    Ünlü, Melihan

    2017-01-01

    The aim of the study was to determine mathematics teacher candidates' knowledge about problem solving strategies through problem posing. This qualitative research was conducted with 95 mathematics teacher candidates studying at education faculty of a public university during the first term of the 2015-2016 academic year in Turkey. Problem Posing…

  18. Foreign-funded M&A Poses No Threatto China’s Economic Security

    Institute of Scientific and Technical Information of China (English)

    王志乐

    2007-01-01

    Foreign funded M■A(Mergers ■ Acquisitions) activity is becoming increasingly common in China.In this article Wang Zhile assesses the effects and risks associated with M■A,finding that foreign funded M■A activity is immensely beneficial to China and poses no threat to economic security.

  19. Development of a Mobile Learning System Based on a Collaborative Problem-Posing Strategy

    Science.gov (United States)

    Sung, Han-Yu; Hwang, Gwo-Jen; Chang, Ya-Chi

    2016-01-01

    In this study, a problem-posing strategy is proposed for supporting collaborative mobile learning activities. Accordingly, a mobile learning environment has been developed, and an experiment on a local culture course has been conducted to evaluate the effectiveness of the proposed approach. Three classes of an elementary school in southern Taiwan…

  20. Using Online Modelled Spatial Constraints for Pose Estimation in an Industrial Setting

    DEFF Research Database (Denmark)

    Meyer, Kenneth Korsgaard; Wolniakowski, Adam; Hagelskjær, Frederik

    2017-01-01

    We introduce a vision system that is able to on-line learn spatial constraints to improve pose estimation in terms of correct recognition as well as computational speed. By making use of a simulated industrial robot system performing various pick and place tasks, we show the effect of model...

  1. Pose Estimation using a Hierarchical 3D Representation of Contours and Surfaces

    DEFF Research Database (Denmark)

    Buch, Anders Glent; Kraft, Dirk; Kämäräinen, Joni-Kristian

    2013-01-01

    We present a system for detecting the pose of rigid objects using texture and contour information. From a stereo image view of a scene, a sparse hierarchical scene representation is reconstructed using an early cognitive vision system. We define an object model in terms of a simple context...

  2. Utilizing Semantic Interpretation of Junctions for 3D-2D Pose Estimation

    DEFF Research Database (Denmark)

    Pilz, Florian; Yan, Shi; Grest, Daniel

    2007-01-01

    In this paper we investigate the quality of 3D-2D pose estimates using hand labeled line and point correspondences. We select point correspondences from junctions in the image, allowing to construct a meaningful interpretation about how the junction is formed, as proposed in e.g. [1], [2], [3]. W...

  3. Morozov-type discrepancy principle for nonlinear ill-posed problems ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... For proving the existence of a regularization parameter under a Morozov-type discrepancy principle for Tikhonov regularization of nonlinear ill-posed problems, it is required to impose additional nonlinearity assumptions on the forward operator. Lipschitz continuity of the Freéchet derivative and requirement ...

  4. Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2016-11-29

    Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.

  5. Metals and metalloids in PM10 in Nandan County, Guangxi, China, and the health risks posed.

    Science.gov (United States)

    Guo, Guanghui; Song, Bo; Xia, Deshang; Yang, Zijie; Wang, Fopeng

    2018-03-16

    Intense mining, smelting, and tailing activities of polymetallic ore deposits have affected the environment in Nandan County, Guangxi, China. Samples of particulates with aerodynamic diameters low or equal 10 μm (PM 10 ) were collected in Nandan County to investigate the concentrations of and health risks posed by 17 metals and metalloids in the PM 10 . The metal and metalloid concentrations were lower than those found in other industrial cities. The mean Cr concentration was 7.48 ng/m 3 . Significant higher metal and metalloid concentrations were found in PM 10 from mining areas (Dachang and Chehe) than from the control area (Liuzhai) (p metalloids in PM 10 at all the sites were low, but the non-carcinogenic risks posed to children by all the metals and metalloids together exceeded the safe level (i.e., risk value > 1). The carcinogenic risks posed by Cd, Ni, and Pb were negligible at all sites, while As, Co, and Cr posed potential carcinogenic risks to the residents.

  6. 21 CFR 740.18 - Coal tar hair dyes posing a risk of cancer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Coal tar hair dyes posing a risk of cancer. 740.18... (CONTINUED) COSMETICS COSMETIC PRODUCT WARNING STATEMENTS Warning Statements § 740.18 Coal tar hair dyes... coal tar hair dye containing any ingredient listed in paragraph (b) of this section shall bear, in...

  7. Velocity field calculation for non-orthogonal numerical grids

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation, and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non

  8. Vector blood velocity estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gran, Fredrik; Udesen, Jesper

    2006-01-01

    Two methods for making vector velocity estimation in medical ultrasound are presented. All of the techniques can find both the axial and transverse velocity in the image and can be used for displaying both the correct velocity magnitude and direction. The first method uses a transverse oscillation...... in the ultrasound field to find the transverse velocity. In-vivo examples from the carotid artery are shown, where complex turbulent flow is found in certain parts of the cardiac cycle. The second approach uses directional beam forming along the flow direction to estimate the velocity magnitude. Using a correlation...... search can also yield the direction, and the full velocity vector is thereby found. An examples from a flow rig is shown....

  9. Algorithms for estimating blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2000-01-01

    Ultrasound has been used intensively for the last 15 years for studying the hemodynamics of the human body. Systems for determining both the velocity distribution at one point of interest (spectral systems) and for displaying a map of velocity in real time have been constructed. A number of schemes...... have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels...... are parallel to the skin surface. Angling the transducer will often disturb the flow, and new techniques for finding transverse velocities are needed. The various approaches for determining transverse velocities will be explained. This includes techniques using two-dimensional correlation (speckle tracking...

  10. Air velocity profiles near sleeve blockages in an unheated 7 x 7 rod bundle. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J. M.; Bates, J. M.

    1979-04-01

    Local air velocity measurements were obtained with a laser Doppler anemometer near flow blockages in an unheated 7 x 7 rod bundle. Sleeve blockages were positioned on the center nine rods to create an area reduction of 90% in the center four subchannels of the bundle. Experimental results indicated that severe flow disturbances occurred downstream from the blockage cluster but showed only minor flow disturbances upstream from the blockage. Flow reversals were detected downstream from the blockage and persisted for approximately five subchannel hydraulic diameters. The air velocity profiles were in excellent agreement with water velocity data previously obtained at essentially the same Reynolds number. Subchannel average velocity predictions obtained with the COBRA computer program were in good agreement with subchannel average velocities estimated using the measured local velocity data.

  11. Multifactor Analysis of Roadheader’s Body Pose Responses during the Horizontal Cutting Process

    Directory of Open Access Journals (Sweden)

    Kai Zong

    2018-01-01

    Full Text Available Based on the Lagrange equation in system dynamics, aiming at the horizontal cutting process, the dynamical coupling model of boom-type roadheader’s body pose was established. According to input problem of solving the model, a calculation method of the cutting head load was proposed, and the relationship between the cutting head load and pressure of the driving cylinders and swing angle of the cutting arm was obtained through simulating analysis. The simulation model was established to solve the dynamical coupling model. The cutting head load, horizontal swing angle of the cutting arm, and dip angle of coal seam were regarded as independent variables to perform changing parameter analysis in variations of the body pose. The field experiment was carried out, and the measured data is basically consistent with the simulation values. The results show that lateral displacement of the body can reach up to 6.5 cm, backward displacement can reach up to 5.2 cm, floor-based quantity can reach up to 11 cm, pitch angle of the body can reach up to 7.8°, and roll angle can reach up to 2.1°. Variations of the body pose parameters are influenced greatly by the cutting head load, while the influence from horizontal swing angle of the cutting arm and dip angle of coal seam is slighter. Among the pose parameters, floor-based quantity and pitch angle of the body vary relatively greatly, which tend to seriously influence forming quality of the roadway and should be mainly considered in deviation rectification of the roadheader’s body pose.

  12. "Preparatory power posing affects nonverbal presence and job interview performance": Correction to Cuddy et al. (2015).

    Science.gov (United States)

    2018-05-01

    Reports an error in "Preparatory power posing affects nonverbal presence and job interview performance" by Amy J. C. Cuddy, Caroline A. Wilmuth, Andy J. Yap and Dana R. Carney ( Journal of Applied Psychology , 2015[Jul], Vol 100[4], 1286-1295). In the article, the degrees of freedom associated with the three F-tests noted on pages 1289 and 1290 should be 1 and 59 (and not 1 and 60, as previously reported). Also, on p. 1290, in the first sentence under the "Mediation" heading, it should be noted that the dependent variables were regressed onto the mediators, and not the other way around. Finally, in Figures 2 and 3 (on p.interview-preparatory power posing-would enhance performance during the interview. Participants adopted high-power (i.e., expansive, open) poses or low-power (i.e., contractive, closed) poses, and then prepared and delivered a speech to 2 evaluators as part of a mock job interview. All interview speeches were videotaped and coded for overall performance and hireability and for 2 potential mediators: verbal content (e.g., structure, content) and nonverbal presence (e.g., captivating, enthusiastic). As predicted, those who prepared for the job interview with high- (vs. low-) power poses performed better and were more likely to be chosen for hire; this relation was mediated by nonverbal presence, but not by verbal content. Although previous research has focused on how a nonverbal behavior that is enacted during interactions and observed by perceivers affects how those perceivers evaluate and respond to the actor, this experiment focused on how a nonverbal behavior that is enacted before the interaction and unobserved by perceivers affects the actor's performance, which, in turn, affects how perceivers evaluate and respond to the actor. This experiment reveals a theoretically novel and practically informative result that demonstrates the causal relation between preparatory nonverbal behavior and subsequent performance and outcomes. (PsycINFO Database

  13. Remote determination of the velocity index and mean streamwise velocity profiles

    Science.gov (United States)

    Johnson, E. D.; Cowen, E. A.

    2017-09-01

    When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.

  14. Middle cerebral artery blood velocity during running

    DEFF Research Database (Denmark)

    Lyngeraa, Tobias; Pedersen, Lars Møller; Mantoni, T

    2013-01-01

    for eight subjects, respectively, were excluded from analysis because of insufficient signal quality. Running increased mean arterial pressure and mean MCA velocity and induced rhythmic oscillations in BP and in MCA velocity corresponding to the difference between step rate and heart rate (HR) frequencies....... During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow...

  15. Demonstration of a Vector Velocity Technique

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60–70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner. In this pa......With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60–70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner...

  16. On whistler-mode group velocity

    International Nuclear Information System (INIS)

    Sazhin, S.S.

    1986-01-01

    An analytical of the group velocity of whistler-mode waves propagating parallel to the magnetic field in a hot anisotropic plasma is presented. Some simple approximate formulae, which can be used for the magnetospheric applications, are derived. These formulae can predict some properties of this group velocity which were not previously recognized or were obtained by numerical methods. In particular, it is pointed out that the anisotropy tends to compensate for the influence of the electron temperature on the value of the group velocity when the wave frequency is well below the electron gyrofrequency. It is predicted, that under conditions at frequencies near the electron gyrofrequency, this velocity tends towards zero

  17. Velocity measurement of conductor using electromagnetic induction

    International Nuclear Information System (INIS)

    Kim, Gu Hwa; Kim, Ho Young; Park, Joon Po; Jeong, Hee Tae; Lee, Eui Wan

    2002-01-01

    A basic technology was investigated to measure the speed of conductor by non-contact electromagnetic method. The principle of the velocity sensor was electromagnetic induction. To design electromagnet for velocity sensor, 2D electromagnetic analysis was performed using FEM software. The sensor output was analyzed according to the parameters of velocity sensor, such as the type of magnetizing currents and the lift-off. Output of magnetic sensor was linearly depended on the conductor speed and magnetizing current. To compensate the lift-off changes during measurement of velocity, the other magnetic sensor was put at the pole of electromagnet.

  18. Conduction velocity of antigravity muscle action potentials.

    Science.gov (United States)

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  19. Positional games

    CERN Document Server

    Hefetz, Dan; Stojaković, Miloš; Szabó, Tibor

    2014-01-01

    This text serves as a thorough introduction to the rapidly developing field of positional games. This area constitutes an important branch of combinatorics, whose aim it is to systematically develop an extensive mathematical basis for a variety of two-player perfect information games. These range from such popular games as Tic-Tac-Toe and Hex to purely abstract games played on graphs and hypergraphs. The subject of positional games is strongly related to several other branches of combinatorics such as Ramsey theory, extremal graph and set theory, and the probabilistic method. These notes cover a variety of topics in positional games, including both classical results and recent important developments. They are presented in an accessible way and are accompanied by exercises of varying difficulty, helping the reader to better understand the theory. The text will benefit both researchers and graduate students in combinatorics and adjacent fields.

  20. Hydrodynamic Equations for Flocking Models without Velocity Alignment

    Science.gov (United States)

    Peruani, Fernando

    2017-10-01

    The spontaneous emergence of collective motion patterns is usually associated with the presence of a velocity alignment mechanism that mediates the interactions among the moving individuals. Despite of this widespread view, it has been shown recently that several flocking behaviors can emerge in the absence of velocity alignment and as a result of short-range, position-based, attractive forces that act inside a vision cone. Here, we derive the corresponding hydrodynamic equations of a microscopic position-based flocking model, reviewing and extending previous reported results. In particular, we show that three distinct macroscopic collective behaviors can be observed: i) the coarsening of aggregates with no orientational order, ii) the emergence of static, elongated nematic bands, and iii) the formation of moving, locally polar structures, which we call worms. The derived hydrodynamic equations indicate that active particles interacting via position-based interactions belong to a distinct class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems.

  1. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  2. Orographic precipitation and vertical velocity characteristics from drop size and fall velocity spectra observed by disdrometers

    Science.gov (United States)

    Lee, Dong-In; Kim, Dong-Kyun; Kim, Ji-Hyeon; Kang, Yunhee; Kim, Hyeonjoon

    2017-04-01

    During a summer monsoon season each year, severe weather phenomena caused by front, mesoscale convective systems, or typhoons often occur in the southern Korean Peninsula where is mostly comprised of complex high mountains. These areas play an important role in controlling formation, amount, and distribution of rainfall. As precipitation systems move over the mountains, they can develop rapidly and produce localized heavy rainfall. Thus observational analysis in the mountainous areas is required for studying terrain effects on the rapid rainfall development and its microphysics. We performed intensive field observations using two s-band operational weather radars around Mt. Jiri (1950 m ASL) during summertime on June and July in 2015-2016. Observation data of DSD (Drop Size Distribution) from Parsivel disdrometer and (w component) vertical velocity data from ultrasonic anemometers were analyzed for Typhoon Chanhom on 12 July 2015 and the heavy rain event on 1 July 2016. During the heavy rain event, a dual-Doppler radar analysis using Jindo radar and Gunsan radar was also conducted to examine 3-D wind fields and vertical structure of reflectivity in these areas. For examining up-/downdrafts in the windward or leeward side of Mt. Jiri, we developed a new scheme technique to estimate vertical velocities (w) from drop size and fall velocity spectra of Parsivel disdrometers at different stations. Their comparison with the w values observed by the 3D anemometer showed quite good agreement each other. The Z histogram with regard to the estimated w was similar to that with regard to R, indicating that Parsivel-estimated w is quite reasonable for classifying strong and weak rain, corresponding to updraft and downdraft, respectively. Mostly, positive w values (upward) were estimated in heavy rainfall at the windward side (D1 and D2). Negative w values (downward) were dominant even during large rainfall at the leeward side (D4). For D1 and D2, the upward w percentages were

  3. Researcher Positioning

    DEFF Research Database (Denmark)

    Khawaja, Iram; Mørck, Line Lerche

    2009-01-01

    involvement by the researcher, which challenges traditional perspectives onresearch and researcher positioning. A key point in this regard is the importance ofconstant awareness of and reflection on the multiple ways in which one's positioningas a researcher influences the research process. Studying the other...

  4. Position detector

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi.

    1985-01-01

    Purpose: To enable to detect the position of an moving object in a control rod position detector, stably in a digital manner at a high accuracy and free from the undesired effects of circumstantial conditions such as the reactor temperature. Constitution: Coils connected in parallel with each other are disposed along the passage of a moving object and variable resistors and relays are connected in series with each of the coils respectively. Light emitting diodes is connected in series with the contacts of the respective relays. The resistance value of the variable resistors are adjusted depending on the changes in the circumstantial conditions and temperature distribution upon carrying out the positional detection. When the object is inserted into a coils, the relevant relay is deenergized, by which the relay contacts are closed to light up the diode. In the same manner, as the object is successively inserted into the coils, the diodes are lighted-up successively thereby enabling highly accurate and stable positional detection in a digital manner, free from the undesired effects of the circumstantial conditions. (Horiuchi, T.)

  5. Daily rhythm of cerebral blood flow velocity

    Directory of Open Access Journals (Sweden)

    Spielman Arthur J

    2005-03-01

    Full Text Available Abstract Background CBFV (cerebral blood flow velocity is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1 CBFV changes are due to sleep-associated processes or 2 time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. Methods Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD ultrasonography. Other variables included core body temperature (CBT, end-tidal carbon dioxide (EtCO2, blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO served as a measure of endogenous circadian phase position. Results A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively. Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p Conclusion In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration.

  6. Velocity spectrum for the Iranian plateau

    Science.gov (United States)

    Bastami, Morteza; Soghrat, M. R.

    2018-01-01

    Peak ground acceleration (PGA) and spectral acceleration values have been proposed in most building codes/guidelines, unlike spectral velocity (SV) and peak ground velocity (PGV). Recent studies have demonstrated the importance of spectral velocity and peak ground velocity in the design of long period structures (e.g., pipelines, tunnels, tanks, and high-rise buildings) and evaluation of seismic vulnerability in underground structures. The current study was undertaken to develop a velocity spectrum and for estimation of PGV. In order to determine these parameters, 398 three-component accelerograms recorded by the Building and Housing Research Center (BHRC) were used. The moment magnitude (Mw) in the selected database was 4.1 to 7.3, and the events occurred after 1977. In the database, the average shear-wave velocity at 0 to 30 m in depth (Vs30) was available for only 217 records; thus, the site class for the remaining was estimated using empirical methods. Because of the importance of the velocity spectrum at low frequencies, the signal-to-noise ratio of 2 was chosen for determination of the low and high frequency to include a wider range of frequency content. This value can produce conservative results. After estimation of the shape of the velocity design spectrum, the PGV was also estimated for the region under study by finding the correlation between PGV and spectral acceleration at the period of 1 s.

  7. Analyses of hydraulic performance of velocity caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe

    2014-01-01

    The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...

  8. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  9. Crack velocity measurement by induced electromagnetic radiation

    International Nuclear Information System (INIS)

    Frid, V.; Rabinovitch, A.; Bahat, D.

    2006-01-01

    Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality

  10. Crack velocity measurement by induced electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Frid, V. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)]. E-mail: vfrid@bgu.ac.il; Rabinovitch, A. [Deichmann Rock Mechanics Laboratory of the Negev, Physics Department, Ben Gurion University of the Negev, Beer Sheva (Israel); Bahat, D. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2006-07-31

    Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality.

  11. Peculiar velocity measurement in a clumpy universe

    Science.gov (United States)

    Habibi, Farhang; Baghram, Shant; Tavasoli, Saeed

    Aims: In this work, we address the issue of peculiar velocity measurement in a perturbed Friedmann universe using the deviations from measured luminosity distances of standard candles from background FRW universe. We want to show and quantify the statement that in intermediate redshifts (0.5 deviations from the background FRW model are not uniquely governed by peculiar velocities. Luminosity distances are modified by gravitational lensing. We also want to indicate the importance of relativistic calculations for peculiar velocity measurement at all redshifts. Methods: For this task, we discuss the relativistic correction on luminosity distance and redshift measurement and show the contribution of each of the corrections as lensing term, peculiar velocity of the source and Sachs-Wolfe effect. Then, we use the SNe Ia sample of Union 2, to investigate the relativistic effects, we consider. Results: We show that, using the conventional peculiar velocity method, that ignores the lensing effect, will result in an overestimate of the measured peculiar velocities at intermediate redshifts. Here, we quantify this effect. We show that at low redshifts the lensing effect is negligible compare to the effect of peculiar velocity. From the observational point of view, we show that the uncertainties on luminosity of the present SNe Ia data prevent us from precise measuring the peculiar velocities even at low redshifts (z < 0.2).

  12. Radial velocities of RR Lyrae stars

    International Nuclear Information System (INIS)

    Hawley, S.L.; Barnes, T.G. III

    1985-01-01

    283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references

  13. The measurement of low air flow velocities

    NARCIS (Netherlands)

    Aghaei, A.; Mao, X.G.; Zanden, van der A.J.J.; Schaik, W.H.J.; Hendriks, N.A.

    2005-01-01

    Air flow velocity is measured with an acoustic sensor, which can be used especially for measuring low air flow velocities as well as the temperature of the air simultaneously. Two opposite transducers send a sound pulse towards each other. From the difference of the transit times, the air flow

  14. Critical Landau Velocity in Helium Nanodroplets

    NARCIS (Netherlands)

    Brauer, N.B.; Smolarek, S.; Loginov, E.; Mateo, D.; Hernando, A.; Pi, M.; Barranco, M.; Buma, W.J.; Drabbels, M.

    2013-01-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective

  15. Velocity of lordosis angle during spinal flexion and extension.

    Directory of Open Access Journals (Sweden)

    Tobias Consmüller

    Full Text Available The importance of functional parameters for evaluating the severity of low back pain is gaining clinical recognition, with evidence suggesting that the angular velocity of lordosis is critical for identification of musculoskeletal deficits. However, there is a lack of data regarding the range of functional kinematics (RoKs, particularly which include the changing shape and curvature of the spine. We address this deficit by characterising the angular velocity of lordosis throughout the thoracolumbar spine according to age and gender. The velocity of lumbar back shape changes was measured using Epionics SPINE during maximum flexion and extension activities in 429 asymptomatic volunteers. The difference between maximum positive and negative velocities represented the RoKs. The mean RoKs for flexion decreased with age; 114°/s (20-35 years, 100°/s (36-50 years and 83°/s (51-75 years. For extension, the corresponding mean RoKs were 73°/s, 57°/s and 47°/s. ANCOVA analyses revealed that age and gender had the largest influence on the RoKs (p<0.05. The Epionics SPINE system allows the rapid assessment of functional kinematics in the lumbar spine. The results of this study now serve as normative data for comparison to patients with spinal pathology or after surgical treatment.

  16. Measurements of phoretic velocities of aerosol particles in microgravity conditions

    Science.gov (United States)

    Prodi, F.; Santachiara, G.; Travaini, S.; Vedernikov, A.; Dubois, F.; Minetti, C.; Legros, J. C.

    2006-11-01

    Measurements of thermo- and diffusio-phoretic velocities of aerosol particles (carnauba wax, paraffin and sodium chloride) were performed in microgravity conditions (Drop Tower facility, in Bremen, and Parabolic Flights, in Bordeaux). In the case of thermophoresis, a temperature gradient was obtained by heating the upper plate of the cell, while the lower one was maintained at environmental temperature. For diffusiophoresis, the water vapour gradient was obtained with sintered plates imbued with a water solution of MgCl 2 and distilled water, at the top and at the bottom of the cell, respectively. Aerosol particles were observed through a digital holographic velocimeter, a device allowing the determination of 3-D coordinates of particles from the observed volume. Particle trajectories and consequently particle velocities were reconstructed through the analysis of the sequence of particle positions. The experimental values of reduced thermophoretic velocities are between the theoretical values of Yamamoto and Ishihara [Yamamoto, K., Ishihara, Y., 1988. Thermophoresis of a spherical particle in a rarefied gas of a transition regime. Phys. Fluids. 31, 3618-3624] and Talbot et al. [Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R., 1980. Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737-758], and do not show a clear dependence on the thermal conductivity of the aerosol. The existence of negative thermophoresis is not confirmed in our experiments. Concerning diffusiophoretic experiments, the results obtained show a small increase of reduced diffusiophoretic velocity with the Knudsen number.

  17. Velocity Building by Reflection Waveform Inversion without Cycle-skipping

    KAUST Repository

    Guo, Qiang

    2017-05-26

    Reflection waveform inversion (RWI) provides estimation of low wavenumber model components using reflections generated from a migration/demigration process. The resulting model tends to be a good initial model for FWI. In fact, the optimization images to combine the migration velocity analysis (MVA) objectives (given here by RWI) and the FWI ones. However, RWI may still encounter cycle-skipping at far offsets if the velocity model is highly inaccurate. Similar to MVA, RWI is devoted to focusing reflection data to its true image positions, yet because of the cycle skipping potential we tend to initially use only near offsets. To make the inversion procedure more robust, we introduce the extended image into our RWI. Extending the model perturbations (or image) allows us to better fit the data at larger offsets even with an inaccurate velocity. Thus, we implement a nested approach to optimize the velocity and extended image simultaneously using the objective function of RWI. We slowly reduce the extension, as the image becomes focused, to allow wavepath updates from far offsets to near as a natural progression from long wavelength updates to shorter ones. Applications on synthetic data demonstrate the effectiveness of our method without much additional cost to RWI.

  18. Optimal centralized and decentralized velocity feedback control on a beam

    International Nuclear Information System (INIS)

    Engels, W P; Elliott, S J

    2008-01-01

    This paper considers the optimization of a velocity feedback controller with a collocated force actuator, to minimize the kinetic energy of a simply supported beam. If the beam is excited at a single location, the optimum feedback gain varies with the position of the control system. It is shown that this variation depends partly on the location of the control force relative to the exciting force. If a distributed excitation is assumed, that is random in both time and space, a unique optimum value of the feedback gain can be found for a given control location. The effect of the control location on performance and the optimal feedback gain can then be examined and is found to be limited provided the control locations are not close to the ends of the beam. The optimization can also be performed for a multichannel velocity feedback system. Both a centralized and a decentralized controller are considered. It is shown that the difference in performance between a centralized and a decentralized controller is small, unless the control locations are closely spaced. In this case the centralized controller effectively feeds back a moment proportional to angular velocity as well as a force proportional to a velocity. It is also shown that the optimal feedback gain can be approximated on the basis of a limited model and that similar results can be achieved

  19. Maintaining positive

    OpenAIRE

    Gheorghe Gh. IONESCU; Adina Letitia NEGRUSA

    2004-01-01

    Maintaining positive work-force relationships includes in effective labor-management relations and making appropriate responses to current employee issues. Among the major current employee issues are protection from arbitrary dismissal, drug and alcohol abuse, privacy rights and family maters and they impact work. In our paper we discus two problems: first, the meanings of industrial democracy; second, the three principal operational concepts of industrial democracy (1) industrial democracy t...

  20. Comparison of high group velocity accelerating structures

    International Nuclear Information System (INIS)

    Farkas, Z.D.; Wilson, P.B.

    1987-02-01

    It is well known that waveguides with no perturbations have phase velocities greater than the velocity of light c. If the waveguide dimensions are chosen so that the phase velocity is only moderately greater than c, only small perturbations are required to reduce the phase velocity to be synchronous with a high energy particle bunch. Such a lightly loaded accelerator structure will have smaller longitudinal and transverse wake potentials and hence will lead to lower emittance growth in an accelerated beam. Since these structures are lightly loaded, their group velocities are only slightly less than c and not in the order of 0.01c, as is the case for the standard disk-loaded structures. To ascertain that the peak and average power requirements for these structures are not prohibitive, we examine the elastance and the Q for several traveling wave structures: phase slip structures, bellows-like structures, and lightly loaded disk-loaded structures

  1. Detonation velocity in poorly mixed gas mixtures

    Science.gov (United States)

    Prokhorov, E. S.

    2017-10-01

    The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.

  2. A glance at velocity structure of Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Özer, Çağlar, E-mail: caglar.ozer@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Geophysical Engineering, Izmir (Turkey); Polat, Orhan, E-mail: orhan.polat@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey)

    2016-04-18

    In this study; we investigated velocity structure of Izmir and surroundings. We used local earthquake data which was recorded by different type of instruments and obtained high resolution 3D sections. We selected more than 400 earthquakes which were occurred between 2010 and 2013. Examined tomographic sections especially in Izmir along coastal areas (Mavisehir-Inciraltı); revealed the low speed zone. Along this low-speed zone; it is consistent with the results obtained from the stratigraphic section and surface geology. While; low velocity zones are associated with faults and water content; high velocity is related to magmatic rocks or compact rocks. Along Karsıyaka, Seferihisar, Orhanlı, Izmir fault zones; low P velocity was observed. When examined higher elevations of the topography; which are composed of soured magmatic material is dominated by high P velocity. In all horizontal sections; resolution decreasing with increasing depth. The reason for this; the reduction of earthquakes causes ray tracing problems.

  3. NUI framework based on real-time head pose estimation and hand gesture recognition

    Directory of Open Access Journals (Sweden)

    Kim Hyunduk

    2016-01-01

    Full Text Available The natural user interface (NUI is used for the natural motion interface without using device or tool such as mice, keyboards, pens and markers. In this paper, we develop natural user interface framework based on two recognition module. First module is real-time head pose estimation module using random forests and second module is hand gesture recognition module, named Hand gesture Key Emulation Toolkit (HandGKET. Using the head pose estimation module, we can know where the user is looking and what the user’s focus of attention is. Moreover, using the hand gesture recognition module, we can also control the computer using the user’s hand gesture without mouse and keyboard. In proposed framework, the user’s head direction and hand gesture are mapped into mouse and keyboard event, respectively.

  4. PRA has many faces - can the safety goal be well-posed

    International Nuclear Information System (INIS)

    Bargmann, H.

    1983-01-01

    The question is discussed whether probabilistic reliability problems can, principally, be well-posed in practical situations. The problem is reduced to the question whether an underlying probabilistic experiment which is, essentially, the set of outcomes can be precisely specified such that the solution of the problem is unique. Upon reexamination of a classical paradox due to Bertrand and consideration of a typical problem of structural reliability we conclude that the possibility of well-posing a reliability problem should be considered illusory, for fundamental reasons which are inherent in practical situations. In particular, it should not be assumed that a quantitative safety goal could be verified. Generally, a probabilistic assessment should be considered as a quantitative method for establishing rational results which should, however, not be viewed as quantitative measures but as qualitative guides

  5. Dynamic Displays Enhance the Ability to Discriminate Genuine and Posed Facial Expressions of Emotion

    Science.gov (United States)

    Namba, Shushi; Kabir, Russell S.; Miyatani, Makoto; Nakao, Takashi

    2018-01-01

    Accurately gauging the emotional experience of another person is important for navigating interpersonal interactions. This study investigated whether perceivers are capable of distinguishing between unintentionally expressed (genuine) and intentionally manipulated (posed) facial expressions attributed to four major emotions: amusement, disgust, sadness, and surprise. Sensitivity to this discrimination was explored by comparing unstaged dynamic and static facial stimuli and analyzing the results with signal detection theory. Participants indicated whether facial stimuli presented on a screen depicted a person showing a given emotion and whether that person was feeling a given emotion. The results showed that genuine displays were evaluated more as felt expressions than posed displays for all target emotions presented. In addition, sensitivity to the perception of emotional experience, or discriminability, was enhanced in dynamic facial displays, but was less pronounced in the case of static displays. This finding indicates that dynamic information in facial displays contributes to the ability to accurately infer the emotional experiences of another person. PMID:29896135

  6. Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems

    International Nuclear Information System (INIS)

    Haber, E; Horesh, L; Tenorio, L

    2010-01-01

    Design of experiments for discrete ill-posed problems is a relatively new area of research. While there has been some limited work concerning the linear case, little has been done to study design criteria and numerical methods for ill-posed nonlinear problems. We present an algorithmic framework for nonlinear experimental design with an efficient numerical implementation. The data are modeled as indirect, noisy observations of the model collected via a set of plausible experiments. An inversion estimate based on these data is obtained by a weighted Tikhonov regularization whose weights control the contribution of the different experiments to the data misfit term. These weights are selected by minimization of an empirical estimate of the Bayes risk that is penalized to promote sparsity. This formulation entails a bilevel optimization problem that is solved using a simple descent method. We demonstrate the viability of our design with a problem in electromagnetic imaging based on direct current resistivity and magnetotelluric data

  7. Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization

    Science.gov (United States)

    Burman, Erik; Hansbo, Peter; Larson, Mats G.

    2018-03-01

    Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.

  8. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    International Nuclear Information System (INIS)

    Park, Byeolteo; Myung, Hyun

    2014-01-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments. (paper)

  9. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    Science.gov (United States)

    Park, Byeolteo; Myung, Hyun

    2014-12-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.

  10. A Simple and Robust Sliding Mode Velocity Observer for Moving Coil Actuators in Digital Hydraulic Valves

    DEFF Research Database (Denmark)

    Nørgård, Christian; Schmidt, Lasse; Bech, Michael Møller

    2016-01-01

    This paper focuses on estimating the velocity and position of fast switching digital hydraulic valves actuated by electromagnetic moving coil actuators, based on measurements of the coil current and voltage. The velocity is estimated by a simple first-order sliding mode observer architecture...... and the position is estimated by integrating the estimated velocity. The binary operation of digi-valves enables limiting and resetting the position estimate since the moving member is switched between the mechanical end-stops of the valve. This enables accurate tracking since drifting effects due to measurement...... noise and integration of errors in the velocity estimate may be circumvented. The proposed observer architecture is presented along with stability proofs and initial experimental results. To reveal the optimal observer performance, an optimization of the observer parameters is carried out. Subsequently...

  11. Expedition-8 Flight Members Pose Inside the Soyuz TMA-3 Vehicle

    Science.gov (United States)

    2003-01-01

    Posed inside the Soyuz TMA-3 Vehicle in a processing facility at the Baikonur Cosmodrome in Kazakhstan during a pre-launch inspection are (left to right): Expedition-8 Crew members, Michael C. Foale, Mission Commander and NASA ISS Science Officer; Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer; and European Space Agency (ESA) astronaut Pedro Duque of Spain. The three launched from the Cosmodrome on October 18, 2003 onboard a Soyuz rocket destined for the International Space Station (ISS).

  12. Investigasi Kemampuan Problem Solving dan Problem Posing Matematis Mahasiswa Via Pendekatan Realistic

    OpenAIRE

    Afriansyah, Ekasatya Aldila

    2016-01-01

    Mathematical problem solving and problem posing skill are the mathematical skills that need to be owned by students. By having this skill, students can be more creative in expressing ideas by connecting the knowledge that they held previously. But in reality, there are some students who are lack of problem solving skill; therefore it is really important to improve learning through appropriate approach. Realistic approach had been chosen as the learning theory to be applied in the class. This ...

  13. STS-30 crewmembers pose for informal portrait on JSC FB-SMS middeck

    Science.gov (United States)

    1988-01-01

    STS-30 Atlantis, Orbiter Vehicle (OV) 104, crewmembers pause briefly from their training schedule to pose for informal portrait in JSC fixed base (FB) shuttle mission simulator (SMS). On FB-SMS middeck are (left to right) Commander David M. Walker, Mission Specialist (MS) Mark C. Lee, MS Mary L. Cleave, Pilot Ronald J. Grabe, and MS Norman E. Thagard. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.

  14. Robustness of Input features from Noisy Silhouettes in Human Pose Estimation

    DEFF Research Database (Denmark)

    Gong, Wenjuan; Fihl, Preben; Gonzàlez, Jordi

    2014-01-01

    . In this paper, we explore this problem. First, We compare performances of several image features widely used for human pose estimation and explore their performances against each other and select one with best performance. Second, iterative closest point algorithm is introduced for a new quantitative...... of silhouette samples of different noise levels and compare with the selected feature on a public dataset: Human Eva dataset....

  15. Right-Hand Side Dependent Bounds for GMRES Applied to Ill-Posed Problems

    KAUST Repository

    Pestana, Jennifer

    2014-01-01

    © IFIP International Federation for Information Processing 2014. In this paper we apply simple GMRES bounds to the nearly singular systems that arise in ill-posed problems. Our bounds depend on the eigenvalues of the coefficient matrix, the right-hand side vector and the nonnormality of the system. The bounds show that GMRES residuals initially decrease, as residual components associated with large eigenvalues are reduced, after which semi-convergence can be expected because of the effects of small eigenvalues.

  16. Does nitrate deposition following astrophysical ionizing radiation events pose an additional threat to amphibians?

    OpenAIRE

    Thomas, Brian C.; Honeyman, Michelle D.

    2008-01-01

    It is known that amphibians are especially susceptible to the combination of heightened UVB radiation and increased nitrate concentrations. Various astrophysical events have been suggested as sources of ionizing radiation that could pose a threat to life on Earth, through destruction of the ozone layer and subsequent increase in UVB, followed by deposition of nitrate. In this study, we investigate whether the nitrate deposition following an ionizing event is sufficiently large to cause an add...

  17. Dr. David Brown poses with a portrait of Ronald McNair

    Science.gov (United States)

    1999-01-01

    In the gymnasium of Ronald McNair Magnet School in Cocoa, Fla., Dr. David Brown, a NASA astronaut, poses with a portrait of NASA astronaut Ronald McNair. The portrait was presented to the school by Walt Disney World during a tribute to McNair. The school had previously been renamed for the fallen astronaut who was one of a crew of seven who lost their lives during an accident following launch of the Space Shuttle Challenger in January 1986.

  18. Mickey Mouse poses with a portrait of Ronald McNair

    Science.gov (United States)

    1999-01-01

    In the gymnasium of Ronald McNair Magnet School in Cocoa, Fla., Mickey Mouse poses with a portrait of NASA astronaut Ronald McNair. The portrait was presented to the school by Walt Disney World during a tribute to McNair. The school had previously been renamed for the fallen astronaut who was one of a crew of seven who lost their lives during an accident following launch of the Space Shuttle Challenger in January 1986.

  19. Simulated Lidar Images of Human Pose using a 3DS Max Virtual Laboratory

    Science.gov (United States)

    2015-12-01

    AFRL-RH-WP-TR-2015-0089 SIMULATED LIDAR IMAGES OF HUMAN POSE USING A 3DS MAX VIRTUAL LABORATORY Jeanne Smith Isiah Davenport Infoscitex Corp...MM-YYYY) 11-12-2015 2. REPORT TYPE Interim 3. DATES COVERED (From - To) March 2013 – April 2015 4. TITLE AND SUBTITLE Simulated LIDAR ...Cleared: 88ABW-2016-0242, 25 January 2016 Report contains color 14. ABSTRACT Large sets of 3D Simulated LIDAR (Light Detection and

  20. On Landweber–Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces

    International Nuclear Information System (INIS)

    Leitão, A; Alves, M Marques

    2012-01-01

    In this paper, iterative regularization methods of Landweber–Kaczmarz type are considered for solving systems of ill-posed equations modeled (finitely many) by operators acting between Banach spaces. Using assumptions of uniform convexity and smoothness on the parameter space, we are able to prove a monotony result for the proposed method, as well as to establish convergence (for exact data) and stability results (in the noisy data case). (paper)

  1. Inverse Free Iterative Methods for Nonlinear Ill-Posed Operator Equations

    Directory of Open Access Journals (Sweden)

    Ioannis K. Argyros

    2014-01-01

    ill-posed operator equation F(x=y. The proposed method is a modified form of Tikhonov gradient (TIGRA method considered by Ramlau (2003. The regularization parameter is chosen according to the balancing principle considered by Pereverzev and Schock (2005. The error estimate is derived under a general source condition and is of optimal order. Some numerical examples involving integral equations are also given in this paper.

  2. Hard- and soft-tissue contributions to the esthetics of the posed smile in growing patients seeking orthodontic treatment.

    Science.gov (United States)

    McNamara, Laurie; McNamara, James A; Ackerman, Marc B; Baccetti, Tiziano

    2008-04-01

    The purpose of this investigation was to broaden the understanding of how various skeletal, dental, and soft-tissue relationships are related to the esthetics of the smile in patients with malocclusions before orthodontic treatment. Images of the posed smile were captured from digital video clips of 60 growing patients (33 girls, 27 boys) seeking orthodontic treatment; they were judged by panels of laypersons and orthodontists. Discriminant analysis identified determinants of the "pleasing smile" from the results of a visual analog scale. Quantitative measurements of the soft and hard tissues were made by using the smile images, cephalometric radiographs, and study models. The esthetics of the smile were correlated with specific skeletal, dental, and soft-tissue structures in the anteroposterior, vertical, and transverse dimensions (Pearson test on non-topographic correlations). The esthetic smile judgments of orthodontists agreed with those of laypersons (r >0.93). The vertical thicknesses of the lips were the most significant component of a pleasant smile, for both the orthodontists (upper lip) and laypersons (lower lip) (discriminant power: 75%). The vertical thickness of the upper lip had a significant positive correlation with the position of the maxillary incisor. Vertical lip thickness proved to be the most influential variable in smile esthetics. The significant relationship of incisor protrusion with the vertical thickness of the vermilion border of the upper lip must be considered when planning orthodontic treatment.

  3. Satellite markers: a simple method for ground truth car pose on stereo video

    Science.gov (United States)

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Pierini, Marco

    2018-04-01

    Artificial prediction of future location of other cars in the context of advanced safety systems is a must. The remote estimation of car pose and particularly its heading angle is key to predict its future location. Stereo vision systems allow to get the 3D information of a scene. Ground truth in this specific context is associated with referential information about the depth, shape and orientation of the objects present in the traffic scene. Creating 3D ground truth is a measurement and data fusion task associated with the combination of different kinds of sensors. The novelty of this paper is the method to generate ground truth car pose only from video data. When the method is applied to stereo video, it also provides the extrinsic camera parameters for each camera at frame level which are key to quantify the performance of a stereo vision system when it is moving because the system is subjected to undesired vibrations and/or leaning. We developed a video post-processing technique which employs a common camera calibration tool for the 3D ground truth generation. In our case study, we focus in accurate car heading angle estimation of a moving car under realistic imagery. As outcomes, our satellite marker method provides accurate car pose at frame level, and the instantaneous spatial orientation for each camera at frame level.

  4. The Pose Estimation of Mobile Robot Based on Improved Point Cloud Registration

    Directory of Open Access Journals (Sweden)

    Yanzi Miao

    2016-03-01

    Full Text Available Due to GPS restrictions, an inertial sensor is usually used to estimate the location of indoor mobile robots. However, it is difficult to achieve high-accuracy localization and control by inertial sensors alone. In this paper, a new method is proposed to estimate an indoor mobile robot pose with six degrees of freedom based on an improved 3D-Normal Distributions Transform algorithm (3D-NDT. First, point cloud data are captured by a Kinect sensor and segmented according to the distance to the robot. After the segmentation, the input point cloud data are processed by the Approximate Voxel Grid Filter algorithm in different sized voxel grids. Second, the initial registration and precise registration are performed respectively according to the distance to the sensor. The most distant point cloud data use the 3D-Normal Distributions Transform algorithm (3D-NDT with large-sized voxel grids for initial registration, based on the transformation matrix from the odometry method. The closest point cloud data use the 3D-NDT algorithm with small-sized voxel grids for precise registration. After the registrations above, a final transformation matrix is obtained and coordinated. Based on this transformation matrix, the pose estimation problem of the indoor mobile robot is solved. Test results show that this method can obtain accurate robot pose estimation and has better robustness.

  5. A New 3D Object Pose Detection Method Using LIDAR Shape Set.

    Science.gov (United States)

    Kim, Jung-Un; Kang, Hang-Bong

    2018-03-16

    In object detection systems for autonomous driving, LIDAR sensors provide very useful information. However, problems occur because the object representation is greatly distorted by changes in distance. To solve this problem, we propose a LIDAR shape set that reconstructs the shape surrounding the object more clearly by using the LIDAR point information projected on the object. The LIDAR shape set restores object shape edges from a bird's eye view by filtering LIDAR points projected on a 2D pixel-based front view. In this study, we use this shape set for two purposes. The first is to supplement the shape set with a LIDAR Feature map, and the second is to divide the entire shape set according to the gradient of the depth and density to create a 2D and 3D bounding box proposal for each object. We present a multimodal fusion framework that classifies objects and restores the 3D pose of each object using enhanced feature maps and shape-based proposals. The network structure consists of a VGG -based object classifier that receives multiple inputs and a LIDAR-based Region Proposal Networks (RPN) that identifies object poses. It works in a very intuitive and efficient manner and can be extended to other classes other than vehicles. Our research has outperformed object classification accuracy (Average Precision, AP) and 3D pose restoration accuracy (3D bounding box recall rate) based on the latest studies conducted with KITTI data sets.

  6. Camera pose estimation for augmented reality in a small indoor dynamic scene

    Science.gov (United States)

    Frikha, Rawia; Ejbali, Ridha; Zaied, Mourad

    2017-09-01

    Camera pose estimation remains a challenging task for augmented reality (AR) applications. Simultaneous localization and mapping (SLAM)-based methods are able to estimate the six degrees of freedom camera motion while constructing a map of an unknown environment. However, these methods do not provide any reference for where to insert virtual objects since they do not have any information about scene structure and may fail in cases of occlusion of three-dimensional (3-D) map points or dynamic objects. This paper presents a real-time monocular piece wise planar SLAM method using the planar scene assumption. Using planar structures in the mapping process allows rendering virtual objects in a meaningful way on the one hand and improving the precision of the camera pose and the quality of 3-D reconstruction of the environment by adding constraints on 3-D points and poses in the optimization process on the other hand. We proposed to benefit from the 3-D planes rigidity motion in the tracking process to enhance the system robustness in the case of dynamic scenes. Experimental results show that using a constrained planar scene improves our system accuracy and robustness compared with the classical SLAM systems.

  7. Personal privacy, information assurance, and the threat posed by malware techology

    Science.gov (United States)

    Stytz, Martin R.; Banks, Sheila B.

    2006-04-01

    In spite of our best efforts to secure the cyber world, the threats posed to personal privacy by attacks upon networks and software continue unabated. While there are many reasons for this state of affairs, clearly one of the reasons for continued vulnerabilities in software is the inability to assess their security properties and test their security systems while they are in development. A second reason for this growing threat to personal privacy is the growing sophistication and maliciousness of malware coupled with the increasing difficulty of detecting malware. The pervasive threat posed by malware coupled with the difficulties faced when trying to detect its presence or an attempted intrusion make addressing the malware threat one of the most pressing issues that must be solved in order to insure personal privacy to users of the internet. In this paper, we will discuss the threat posed by malware, the types of malware found in the wild (outside of computer laboratories), and current techniques that are available for from a successful malware penetration. The paper includes a discussion of anti-malware tools and suggestions for future anti-malware efforts.

  8. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning

    NARCIS (Netherlands)

    Schellart, W. P.; Stegman, D. R.; Farrington, R. J.; Moresi, L.

    2011-01-01

    Subduction of oceanic lithosphere occurs through both trenchward subducting plate motion and trench retreat. We investigate how subducting plate velocity, trench velocity and the partitioning of these two velocity components vary for individual subduction zone segments as a function of proximity to

  9. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    Science.gov (United States)

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  10. Results of verification and investigation of wind velocity field forecast. Verification of wind velocity field forecast model

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Kayano, Mitsunaga; Kikuchi, Hideo; Abe, Takeo; Saga, Kyoji

    1995-01-01

    In Environmental Radioactivity Research Institute, the verification and investigation of the wind velocity field forecast model 'EXPRESS-1' have been carried out since 1991. In fiscal year 1994, as the general analysis, the validity of weather observation data, the local features of wind field, and the validity of the positions of monitoring stations were investigated. The EXPRESS which adopted 500 m mesh so far was improved to 250 m mesh, and the heightening of forecast accuracy was examined, and the comparison with another wind velocity field forecast model 'SPEEDI' was carried out. As the results, there are the places where the correlation with other points of measurement is high and low, and it was found that for the forecast of wind velocity field, by excluding the data of the points with low correlation or installing simplified observation stations to take their data in, the forecast accuracy is improved. The outline of the investigation, the general analysis of weather observation data and the improvements of wind velocity field forecast model and forecast accuracy are reported. (K.I.)

  11. Galileo positioning technology

    CERN Document Server

    Lohan, Elena; Sand, Stephan; Hurskainen, Heikki

    2015-01-01

    This book covers multi-band Galileo receivers (especially E1-E5 bands of Galileo) and addresses all receiver building blocks, from the antenna and front end, through details of the baseband receiver processing blocks, up to the navigation processing, including the Galileo message structure and Position, Velocity, Time (PVT) computation. Moreover, hybridization solutions with communications systems for improved localization are discussed and an open-source GNSS receiver platform (available for download) developed at Tampere University of Technology (TUT) is addressed in detail. • Takes a holistic approach to GALILEO and related systems, such as EGNOS and hybrid solutions on mobile phones; • Provides an invaluable reference to Binary Offset Carrier modulations and related families, which are some of the trademarks of GALILEO; • Includes a detailed survey of GALILEO receiver research in Europe and existing software-defined radio (SDR) GALILEO receiver implementations; • Addresses the multiple challen...

  12. The investigation and implementation of real-time face pose and direction estimation on mobile computing devices

    Science.gov (United States)

    Fu, Deqian; Gao, Lisheng; Jhang, Seong Tae

    2012-04-01

    The mobile computing device has many limitations, such as relative small user interface and slow computing speed. Usually, augmented reality requires face pose estimation can be used as a HCI and entertainment tool. As far as the realtime implementation of head pose estimation on relatively resource limited mobile platforms is concerned, it is required to face different constraints while leaving enough face pose estimation accuracy. The proposed face pose estimation method met this objective. Experimental results running on a testing Android mobile device delivered satisfactory performing results in the real-time and accurately.

  13. Throwing velocity and kinematics in elite male water polo players.

    Science.gov (United States)

    Melchiorri, G; Padua, E; Padulo, J; D'Ottavio, S; Campagna, S; Bonifazi, M

    2011-12-01

    Fifty-three members of the Italian Men Water Polo Team were filmed using two synchronized cameras, while they were shooting a goal. Considering the differences in body mass, height, training strategies and the technical-tactical features of the players, the aims of this study were to employ video-analysis techniques in order to investigate selected kinematic parameters in water polo throwing, and to provide comprehensive quantitative information on the throwing movement in relation to the different team player positions. Video analysis was used to estimate the elbow angle at release, the shoulder angle at follow through, the back and head height at ball release, trunk rotation angle and ball velocity at release. Ball release velocities ranged from 21.0 to 29.8 m/s (average value 25.3±1.4 m/s), for field players. Goal keepers show the lowest team values (average 21.7±0.3 m/s). Similar to previous study results, ball release was typically reached just prior to the elbow approaching full extension (151.6±3.6°), and the follow through shoulder angle was 143±5.9°. No significant statistical difference was recorded between injured and non-injured athletes. No positive association was demonstrated between physical characteristics (body mass and height) and ball velocity.

  14. Analysis of photosynthate translocation velocity and measurement of weighted average velocity in transporting pathway of crops

    International Nuclear Information System (INIS)

    Ge Cailin; Luo Shishi; Gong Jian; Zhang Hao; Ma Fei

    1996-08-01

    The translocation profile pattern of 14 C-photosynthate along the transporting pathway in crops were monitored by pulse-labelling a mature leaf with 14 CO 2 . The progressive spreading of translocation profile pattern along the sheath or stem indicates that the translocation of photosynthate along the sheath or stem proceed with a range of velocities rather than with just a single velocity. The method for measuring the weighted average velocity of photosynthate translocation along the sheath or stem was established in living crops. The weighted average velocity and the maximum velocity of photosynthate translocation along the sheath in rice and maize were measured actually. (4 figs., 3 tabs.)

  15. Effect of Core Training on Male Handball Players' Throwing Velocity.

    Science.gov (United States)

    Manchado, Carmen; García-Ruiz, José; Cortell-Tormo, Juan Manuel; Tortosa-Martínez, Juan

    2017-02-01

    In handball, throwing velocity is considered to be one of the essential factors in achieving the ultimate aim of scoring a goal. The objective of the present study was to analyze the effect of a core training program on throwing velocity in 30 handball players (age 18.7 ± 3.4 years, body height 179.3 ± 7.0 cm, body mass 78.9 ± 7.7 kg), 16 of whom were in the junior category and 14 of whom were in the senior category. The 30 players were randomly divided into two groups, the control group (n = 15) and the experimental group (n = 15). For a period of ten weeks, both groups attended their regular handball training sessions (four per week), but in addition, the experimental group participated in a program specifically aimed at progressively strengthening the lumbo-pelvic region and consisting of seven exercises performed after the general warm-up in each regular session. Pre- and post-tests were carried out to analyze each player's throwing velocity from different throwing positions and thus assess the effects of this specific training program. Statistically significant differences (p ≤ 0.05) in throwing velocity were observed between the experimental group, which presented a percentage improvement of 4.5%, and the control group, which did not show any improvement. The results seem to indicate that an increase in the strength and stability of the lumbo-pelvic region can contribute to an improvement in the kinetic chain of the specific movement of throwing in handball, thus, increasing throwing velocity.

  16. Effect of Core Training on Male Handball Players’ Throwing Velocity

    Science.gov (United States)

    García-Ruiz, José; Cortell-Tormo, Juan Manuel; Tortosa-Martínez, Juan

    2017-01-01

    Abstract In handball, throwing velocity is considered to be one of the essential factors in achieving the ultimate aim of scoring a goal. The objective of the present study was to analyze the effect of a core training program on throwing velocity in 30 handball players (age 18.7 ± 3.4 years, body height 179.3 ± 7.0 cm, body mass 78.9 ± 7.7 kg), 16 of whom were in the junior category and 14 of whom were in the senior category. The 30 players were randomly divided into two groups, the control group (n = 15) and the experimental group (n = 15). For a period of ten weeks, both groups attended their regular handball training sessions (four per week), but in addition, the experimental group participated in a program specifically aimed at progressively strengthening the lumbo-pelvic region and consisting of seven exercises performed after the general warm-up in each regular session. Pre- and post-tests were carried out to analyze each player’s throwing velocity from different throwing positions and thus assess the effects of this specific training program. Statistically significant differences (p ≤ 0.05) in throwing velocity were observed between the experimental group, which presented a percentage improvement of 4.5%, and the control group, which did not show any improvement. The results seem to indicate that an increase in the strength and stability of the lumbo-pelvic region can contribute to an improvement in the kinetic chain of the specific movement of throwing in handball, thus, increasing throwing velocity. PMID:28469756

  17. Performance of a vector velocity estimator

    DEFF Research Database (Denmark)

    Munk, Peter; Jensen, Jørgen Arendt

    1998-01-01

    tracking can be found in the literature, but no method with a satisfactory performance has been found that can be used in a commercial implementation. A method for estimation of the velocity vector is presented. Here an oscillation transverse to the ultrasound beam is generated, so that a transverse motion...... in an autocorrelation approach that yields both the axial and the lateral velocity, and thus the velocity vector. The method has the advantage that a standard array transducer and a modified digital beamformer, like those used in modern ultrasound scanners, is sufficient to obtain the information needed. The signal...

  18. Balance Velocities of the Greenland Ice Sheet

    Science.gov (United States)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  19. Superhilac real-time velocity measurements

    International Nuclear Information System (INIS)

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-03-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non-destructive velocity measurements independent of the ion being accelerated. The existing system has been improved to provide the following features: a display refresh rate better than twice per second, a sensitive pseudo-correlation technique to pick out the signal from the noise, simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and a touch-screen operator interface. These improvements allow the system to be used as a routine tuning aid and beam velocity monitor

  20. Sound velocity in potassium hydroxide aqueous solution

    International Nuclear Information System (INIS)

    Tsapuryan, Kh.D.; Aleksandrov, A.A.; Kochetkov, A.I.

    1992-01-01

    Measurements of ultrasonic velocities in potassium hydroxide aqueous solutions are carried out within the frames of studies on improvement of water chemistry in NPP cooling systems. Method of echo pulses superposition with acoustic path length of 41.447 mm is used for measurements. The measurements are performed at 2.6 MHz frequency. Complex temperature dependence of ultrasonic velocity is determined. Ultrasonic velocity dependence on pressure is close to linear one. The formula for calculation of thermodynamic properties of the studied solutions on the basis of experimental data obtained is proposed

  1. Neutron stars velocities and magnetic fields

    Science.gov (United States)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  2. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-01-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  3. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-12-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  4. Velocity Segregation and Systematic Biases In Velocity Dispersion Estimates with the SPT-GMOS Spectroscopic Survey

    Science.gov (United States)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo

    2017-03-01

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra—2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17 ± 4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m< {m}* -0.5) cluster galaxies is 11 ± 4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.

  5. Determination of the filtration velocities and mean velocity in ground waters using radiotracers

    International Nuclear Information System (INIS)

    Duran P, Oscar; Diaz V, Francisco; Heresi M, Nelida

    1994-01-01

    An experimental method to determine filtration, or, Darcy velocity and mean velocity in underground waters using radiotracers, is described. After selecting the most appropriate tracers, from 6 chemical compounds, to measure water velocity, a method to measure filtration velocity was developed. By fully labelling the water column with 2 radioisotopes, Br and tritium, almost identical values were obtained for the aquifer filtration velocity in the sounding S1. This value was 0.04 m/d. Field porosity was calculated at 11% and mean velocity at 0.37 m.d. With the filtration velocity value and knowing the hydraulic variation between the soundings S1 and S2 placed at 10 meters, field permeability was estimated at 2.4 x 10 m/s. (author)

  6. Kinematics of the entire East African Rift from GPS velocities

    Science.gov (United States)

    Floyd, M.; King, R. W.

    2017-12-01

    Through a collaborative effort of the GeoPRISMS East Africa Rift GPS Working Group, we have collected and collated all of the publicly available continuous and survey-mode data for the entire rift system between 1994 and 2017 and processed these data as part of a larger velocity solution for Africa, Arabia and western Eurasia. We present here our velocity solution encompassing the major bounding plates and intervening terranes along the East African Rift from the Red Sea to the Malawi Rift and adjacent regions for GPS sites with data spans of at least 2.4 years, and north and east velocity uncertainties less than 1.5 mm/yr. To obtain realistic uncertainties for the velocity estimates, we attempted at each stage of the analysis to account for the character of the noise: During phase processing, we used an elevation-dependent weighting based on the phase residuals for each station; we then examined each position time series, removing outliers and reweighting appropriately to account for the white noise component of the errors; and e accounted for temporal correlations by estimating an equivalent random-walk magnitude for each continuous site and applying the median value (0.5 mm/√yr) to all survey-mode sites. We rigorously estimate relative rotation rates of Nubia, by choosing subset of well-determined sites such that the effective weights of western, northeastern and southern Africa were roughly equivalent, and Somalia, for which the estimate is dominated by three sites (MALI, RCMN, SEY1) whose uncertainties are a factor of 2-3 smaller than those of the other sites. For both plates, the weighted root-mean-square of the velocity residuals is 0.5 mm/yr. Our unified velocity solution provides a geodetic framework and constraints on the continental-scale kinematics of surface motions as well as more local effects both within and outside of the rift structures. Specific focus areas with denser coverage than previous fields include the Danakil block, the Afar Rift, the

  7. Sediment motion and velocity in a glacier-fed stream

    Science.gov (United States)

    Mao, L.; Dell'Agnese, A.; Comiti, F.

    2017-08-01

    Current understanding of coarse sediment transport (e.g. threshold for motion, travel length and virtual velocity) in mountain rivers is still quite limited, and even less is known about glacial streams. However, the hydrological characteristics of these systems (strong daily discharge fluctuations, high water turbidity) pose challenges to the use of tracers to monitor bed sediment dynamics, as tagged clasts are usually located after bedload events when flow stage has receded, e.g. by means of portable antennas in the case of Passive Integrated Transponders (PIT). The use of stationary antennas, still scarcely in use worldwide, to detect PIT-tagged particles has potential advantages in glacier-fed streams. If water discharge is monitored continuously, a stationary antenna provides real time data on the actual discharge at the moment of tracer particles passage. This study focuses on incipient motion and virtual velocity of bed particles measured by a stationary antennas system in a steep mountain channel (Saldur River, drainage area 18.6 km2, Italian Alps) where significant daily discharge fluctuations and bedload transport occur as a result of a nivo-glacial regime. Four stationary antennas were installed 50-m apart in the study reach. A total of 629 PIT-tagged clasts were inserted in the studied reach between 2011 and 2014, ranging in size from 35 mm to 580 mm, with an overall recovery rate of around 44%. Critical discharge for sediment entrainment was obtained by detecting the movement of tracers placed immediately upstream of antennas. Virtual velocity was derived by knowing distances between the antennas and travel time of tracers. Results on initiation of motion show that the relationship between the size of transported tracers and the discharge measured at the time clasts were passing the stationary antenna is very weak. The influence of antecedent flows on incipient motion was thus investigated by dividing the highest discharge recorded between each PIT

  8. Low-velocity superconducting accelerating structures

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  9. Wave Velocity Estimation in Heterogeneous Media

    KAUST Repository

    Asiri, Sharefa M.; Laleg-Kirati, Taous-Meriem

    2016-01-01

    In this paper, modulating functions-based method is proposed for estimating space-time dependent unknown velocity in the wave equation. The proposed method simplifies the identification problem into a system of linear algebraic equations. Numerical

  10. Ultrasonic velocity measurements in expanded liquid mercury

    International Nuclear Information System (INIS)

    Suzuki, K.; Inutake, M.; Fujiwaka, S.

    1977-10-01

    In this paper we present the first results of the sound velocity measurements in expanded liquid mercury. The measurements were made at temperatures up to 1600 0 C and pressures up to 1700 kg/cm 2 by means of an ultrasonic pulse transmission/echo technique which was newly developed for such high temperature/pressure condition. When the density is larger than 9 g/cm 3 , the observed sound velocity decreases linearly with decreasing density. At densities smaller than 9 g/cm 3 , the linear dependence on the density is no longer observed. The observed sound velocity approaches a minimum near the liquid-gas critical point (rho sub(cr) asymptotically equals 5.5 g/cm 3 ). The existing theories for sound velocity in liquid metals fail to explain the observed results. (auth.)

  11. Spectator-velocity pions from heavy ions

    International Nuclear Information System (INIS)

    Rasmussen, J.; Ridout, J.; Murphy, D.; Radi, H.M.A.

    1982-11-01

    The discussion centers on pions in the velocity regions of target and projectile, where strong spectral features appear. The topics covered include stopped-pion studies, and convoy pions in the projectile frame

  12. Imaging chemical reactions - 3D velocity mapping

    Science.gov (United States)

    Chichinin, A. I.; Gericke, K.-H.; Kauczok, S.; Maul, C.

    Visualising a collision between an atom or a molecule or a photodissociation (half-collision) of a molecule on a single particle and single quantum level is like watching the collision of billiard balls on a pool table: Molecular beams or monoenergetic photodissociation products provide the colliding reactants at controlled velocity before the reaction products velocity is imaged directly with an elaborate camera system, where one should keep in mind that velocity is, in general, a three-dimensional (3D) vectorial property which combines scattering angles and speed. If the processes under study have no cylindrical symmetry, then only this 3D product velocity vector contains the full information of the elementary process under study.

  13. Spectral Velocity Estimation in the Transverse Direction

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2013-01-01

    A method for estimating the velocity spectrum for a fully transverse flow at a beam-to-flow angle of 90is described. The approach is based on the transverse oscillation (TO) method, where an oscillation across the ultrasound beam is made during receive processing. A fourth-order estimator based...... on the correlation of the received signal is derived. A Fourier transform of the correlation signal yields the velocity spectrum. Performing the estimation for short data segments gives the velocity spectrum as a function of time as for ordinary spectrograms, and it also works for a beam-to-flow angle of 90...... estimation scheme can reliably find the spectrum at 90, where a traditional estimator yields zero velocity. Measurements have been conducted with the SARUS experimental scanner and a BK 8820e convex array transducer (BK Medical, Herlev, Denmark). A CompuFlow 1000 (Shelley Automation, Inc, Toronto, Canada...

  14. The critical ionization velocity - a bibliography

    International Nuclear Information System (INIS)

    Axnaes, I.; Brenning, N.; Raadu, M.A.

    1982-12-01

    A list of all relevant contributions, known to the authors, concerning the critical ionization velocity phenomena is presented. The contributions are classified and described in a few sentences. (Authors)

  15. The species velocity of trees in Alaska

    Science.gov (United States)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  16. Experimental investigation of ultrasonic velocity anisotropy in ...

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/pram/077/02/0345-0355. Keywords. Magnetic fluids; ultrasonic wave; sound velocity; anisotropy. Abstract. Magnetic field-induced dispersion of ultrasonic velocity in a Mn0.7Zn0.3Fe2O4 fluid (applied magnetic field is perpendicular to the ultrasonic propagation vector) is ...

  17. Jovian cloud structure and velocity fields

    International Nuclear Information System (INIS)

    Mitchell, J.L.; Terrile, R.J.; Collins, S.A.; Smith, B.A.; Muller, J.P.; Ingersoll, A.P.; Hunt, G.E.; Beebe, R.F.

    1979-01-01

    A regional comparison of the cloud structures and velocity fields (meridional as well as zonal velocities) in the jovian atmosphere (scales > 200 km) as observed by the Voyager 1 imaging system is given. It is shown that although both hemispheres of Jupiter show similar patterns of diminishing and alternating eastward and westward jets as one progresses polewards, there is a pronounced asymmetry in the structural appearance of the two hemispheres. (UK)

  18. On the velocity of the Vela pulsar

    OpenAIRE

    Gvaramadze, Vasilii

    2000-01-01

    It is shown that if the shell of the Vela supernova remnant is responsible for nearly all the scattering of the Vela pulsar, then the scintillation and proper motion velocities of the pulsar can only be reconciled with each other in the case of nonzero transverse velocity of the scattering material. A possible origin of large-scale transverse motions in the shell of the Vela supernova remnant is discussed.

  19. On the velocity of the Vela pulsar

    Science.gov (United States)

    Gvaramadze, V.

    2001-04-01

    It is shown that if the shell of the Vela supernova remnant is responsible for nearly all the scattering of the Vela pulsar, then the scintillation and proper motion velocities of the pulsar can only be reconciled with each other in the case of nonzero transverse velocity of the scattering material. A possible origin of large-scale transverse motions in the shell of the Vela supernova remnant is discussed.

  20. Velocity Memory Effect for polarized gravitational waves

    Science.gov (United States)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.