WorldWideScience

Sample records for position sensitive gas

  1. Gas position sensitive x-ray detectors

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1994-12-01

    The construction of gas x-ray detectors used to count and localize x-ray photons in one and two dimensions is reported. The principles of operation of the detectors are described, as well as the electronic modules comprised in the data acquisition system. Results obtained with detectors built at CBPF are shown, illustrating the performance of the Linear Position Sensitive Detectors. (author). 6 refs, 14 figs

  2. An X-ray gas position sensitive detector: construction and characterization

    International Nuclear Information System (INIS)

    Barbosa, A.F.; Gabriel, A.; Gabriel, A.; Craievich, A.

    1988-01-01

    A linear x-ray gas position sensitive detector with delay line readout has been constructed. The detector is described, characterized and used for detecting x-ray diffraction patterns from polycrystals. (author) [pt

  3. Position sensitive proportional counter for measurement of tritium labelled gas movement

    International Nuclear Information System (INIS)

    Mori, Chizuo; Nakamoto, Makihiko; Uritani, Akira; Watanabe, Tamaki

    1984-01-01

    A position sensitive proportional counter of a charge division type with a single resistive anode wire was constructed for the measurement of the movement of 3 H labelled gas which is flowing or diffusing in a pipe. The introduction of resistors between the anode wire and pre-amplifiers brought a uniform detection efficiency for 3 H β-rays throughout the counter. The position resolution was 3.1 mm FWHM. Detection efficiency was almost 100% uniformly over about 700 mm in the total anode length of 740 mm. The movement of 3 H labelled gas could be measured effectively. (author)

  4. Recent developments and applications of fast position-sensitive gas detectors

    International Nuclear Information System (INIS)

    Sauli, Fabio

    1999-01-01

    The introduction, 30 years ago, of the multiwire proportional chamber initiated a very active and fruitful period of development of fast gas detectors. Performing position-sensitive devices have been perfected, for the needs of elementary particle physics and for applications in medical diagnostics, biology, material analysis. The high rate performance of wire counters, limited by positive ions accumulation, was largely improved with the introduction of the micro-strip gas chamber, capable of achieving position accuracies of few tens of microns at radiation fluxes exceeding 1 MHz/mm 2 . The micro-strip chamber properties have been extensively studied in view of large scale use in high luminosity experiments; some interesting applications in other fields will be described here. Originally conceived as a gain booster to solve reliability problems met with micro-strips, the gas electron multiplier was invented about a year and a half ago. Progress made with high gain models is leading to a new concept in gas detectors, powerful yet cheap and reliable. Possible developments and applications will be discussed: large area position-sensitive photo detectors and X-ray imagers, including devices with non-planar geometry suited to spectrometers and crystal diffraction studies

  5. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  6. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  7. A primary scintillation gated high pressure position sensitive gas scintillation proportional counter (HPGSPC) for applications to x-ray astronomy

    International Nuclear Information System (INIS)

    Giarrusso, S.; Manzo, G.; Re, S.

    1985-01-01

    The authors describe a new instrument for x-ray astronomy. The instrument, based on a high pressure (5 atm.), xenon filled, position sensitive Gas Scintillation Proportional counter (HPGSPC) is expected to feature an energy resolution better than 4% at 60 keV, an angular resolution of approximately 20 arc-minutes over the full energy range (4 to 100 keV) and a field of view (FOV) of up to 30x30 degrees. A prototype flight unit of the gas cell on which the instrument is based is presently under technological development in the framework of the SAX project

  8. Simultaneous acquisition of X-ray spectra using a multi-wire, position-sensitive gas flow detector

    International Nuclear Information System (INIS)

    Beaven, Peter A.; Marmotti, Mauro; Kampmann, Reinhard; Knoth, Joachim; Schwenke, Heinrich

    2003-01-01

    A multi-wire, gas-filled position-sensitive detector has been developed for the simultaneous recording of wavelength-dispersed X-ray signals that enables X-ray fluorescence spectrometry with a limited multi-element capability in the low Z element range. Details of the modular construction of the detector are given. The detector performance was characterized using Al-Kα radiation and a variable slit system. The detector has been applied in a laboratory spectrometer equipped with an electron source and a double multilayer mirror device as the wavelength-dispersing element. Spectra from Al and Si obtained in the simultaneous acquisition mode show good agreement with calculations performed using a ray-tracing model

  9. A study of an optimal technological solution for the electronics of particle position sensitive gas detectors (multiwire proportional chambers)

    International Nuclear Information System (INIS)

    Zojceski, Z.

    1997-01-01

    This work aims at optimizing the electronics for position sensitive gas detectors. The first part is a review of proportional chamber operation principles and presents the different possibilities for the architecture of the electronics. The second part involves electronic signal processing for best signal-to-noise ratio. We present a time-variant filter based on a second order base line restorer.It allows a simple pole-zero and tail cancellation at high counting rates. Also, various interpolating algorithms for cathode strip chambers have been studied. The last part reports the development of a complete electronic system, from the preamplifiers up to the readout and control interface, for the cathode strip chambers in the focal plane of the BBS Spectrometer at KVI, Holland. The system is based on application specific D-size VXI modules. In all modules, the 16-bit ADCs and FIFO memory are followed by a Digital Signal Processor, which performs data filtering and cathode induced charge interpolation. Very good analog noise performance is obtained in a multi-processor environment. (author)

  10. Computed tomography with thermal neutrons and gaseous position sensitive detector; Tomografia computadorizada com neutrons termicos e detetor a gas sensivel a posicao

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Maria Ines Silvani

    2001-12-01

    A third generation tomographic system using a parallel thermal neutron beam and gaseous position sensitive detector has been developed along three discrete phases. At the first one, X-ray tomographic images of several objects, using a position sensitive detector designed and constructed for this purpose have been obtained. The second phase involved the conversion of that detector for thermal neutron detection, by using materials capable to convert neutrons into detectable charged particles, testing afterwards its performance in a tomographic system by evaluation the quality of the image arising from several test-objects containing materials applicable in the engineering field. High enriched {sup 3} He, replacing the argon-methane otherwise used as filling gas for the X-ray detection, as well as, a gadolinium foil, have been utilized as converters. Besides the pure enriched {sup 3} He, its mixture with argon-methane and later on with propane, have been also tested, in order to evaluate the detector efficiency and resolution. After each gas change, the overall performance of the tomographic system using the modified detector, has been analyzed through measurements of the related parameters. This was done by analyzing the images produced by test-objects containing several materials having well known attenuation coefficients for both thermal neutrons and X-rays. In order to compare the performance of the position sensitive detector as modified to detect thermal neutrons, with that of a conventional BF{sub 3} detector, additional tomographs have been conducted using the last one. The results have been compared in terms of advantages, handicaps and complementary aspects for different kinds of radiation and materials. (author)

  11. A position sensitive parallel plate avalanche counter

    International Nuclear Information System (INIS)

    Lombardi, M.; Tan Jilian; Potenza, R.; D'amico, V.

    1986-01-01

    A position sensitive parallel plate avalanche counter with a distributed constant delay-line-cathode (PSAC) is described. The strips formed on the printed board were served as the cathode and the delay line for readout of signals. The detector (PSAC) was operated in isobutane gas at the pressure range from 10 to 20 torr. The position resolution is better than 1 mm and the time resolution is about 350 ps, for 252 Cf fission-spectrum source

  12. Position sensitive x-ray detector

    International Nuclear Information System (INIS)

    Macchione, E.L.A.

    1990-01-01

    A multi ware position sensitive gas counter for X-ray detection was developed in our laboratory, making use of commercial delay-lines for position sensing. Six delay-line chips (50 ns delay each, 40 Mhz cut-off frequency) cover a total sensitive length of 150 mm leading to a delay-risetime ratio that allows for a high-resolution position detection. Tests using the 5,9 keV X-ray line from a 55 Fe source and integral linearity better than 0,1% and a maximal differential linearity of ±4,0% were obtained operating the detector with an Ar-C H 4 (90%-10%) gas mixture at 700 torr. Similar tests were performed, using the 8,04 keV line from a Cu x-ray tube. A total resolution of 330 μm, and the same integral and differential linearities were obtained. (author)

  13. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active ...

  14. Position-sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hendrix, J.

    1982-01-01

    In this review of the application of different types of position sensitive detectors to synchrotron radiation, discussion of the proportional counters based on the gas amplification principle forms a major part. Other topics reviewed are detector requirements, multiwire proportional chamber system, drift chamber type detectors, TV detectors, and recent developments, such as that based on a micro-channel plate as the amplifying element, and charge-coupled devices. (U.K.)

  15. Submicron position-sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Pugatch, V M; Rosenfeld, A B; Litovchenko, P G; Barabash, L I; Nemets, O F; Pavlenko, Yu N; Vasiliev, Yu O [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. for Nuclear Research

    1992-08-01

    A method has been developed to measure precisely the coordinates of charged particles incident between adjacent strips of a strip detector. The position sensitivity of an inter-strip gap has been studied by means of a pulsed laser beam and irradiation by [alpha]-particles of a [sup 226]Ra-source. The capacitive division of charge generated by the incident particle depends on the position of its track. Its coordinates were determined by two-dimensional amplitude analysis of the charges collected by neighbouring strips. This method of coordinate determination applied to studies of spatial and energy distributions of electromagnetic as well as charged particle beams (including radioactive ion beams) of low intensity could provide the highest level of the precision limited by the track dimensions of charged particles, i.e. percents of a micrometer. (orig.).

  16. Position-sensitive superconductor detectors

    International Nuclear Information System (INIS)

    Kurakado, M.; Taniguchi, K.

    2016-01-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  17. Signal processors for position-sensitive detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Ken-ichi [Hosei Univ., Koganei, Tokyo (Japan). Coll. of Engineering

    1996-07-01

    Position-sensitive detectors (PSD) are widely used in following various fields: condensed matter studies, material engineering, medical radiology particle physics, astrophysics and industrial applications. X-ray diffraction analysis is one of the field where PSDs are the most important instruments. In this field, many types of PSAs are employed: position-sensitive proportional counters (PSPC), multi-wire proportional chambers (MWPC), imaging plates, image intensifiers combined CCD cameras and semiconductor array devices. Two readout systems used for PSDs, where one is a charge-division type with high stability and the other is an encoder with multiple delay, line readout circuits useful for fast counting, were reported in this paper. The multiple delay line encoding system can be applicable to high counting rate 1D and 2D gas proportional detectors. (G.K.)

  18. Position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit uses a conventional (low-resistance, metal-wire anode) counter for spatial resolution of an ionizing event along the anode, which functions as an RC line. A pair of preamplifiers at the anode ends act as stabilized active-capacitance loads, each comprising a series-feedback, low-noise amplifier and a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction of handling of the anodes, and stabilizes the anode resistivity at high count rates (>10 6 counts/sec). (author)

  19. Position sensitive detector used to detect beam profile

    International Nuclear Information System (INIS)

    Zhao Xiaoyan; Zhao Zhizheng; Zu Kailing; Zheng Jianhua; Wang Yifang

    2003-01-01

    In order to study the detecting system of the residual-gas beam profile, we introduce the principle and construction of the Position Sensitive Detector (PSD). The performance of PSD is tested. Position resolution, position linearity, detection efficiency and background are obtained

  20. Position-sensitive radiation detector

    International Nuclear Information System (INIS)

    Mathieson, E.; Smith, G.C.; Gilvin, P.J.

    1981-01-01

    Apparatus for sensing the position of radiation received has a plurality of receptors spaced in at least one line on which the position is to be determined, their outputs being associated to form at least two groups, the density of the receptors in each group varying along the line. The receptors may comprise cathode arrays of a multiwire proportional counter, with an anode array between, measuring along lines in directions x and y respectively. The density of the wires in the two groups, decreases in opposite directions. A circuit determines the ratio of the output of one group to the sum of the group outputs. In another embodiment a scintillator is viewed by a plurality of light guides, the ends of which adjacent to the scintillator form the receptors, the four groups of which each terminate on a photomultiplier. (author)

  1. Large area two dimensional position sensitive detectors

    International Nuclear Information System (INIS)

    Sann, H.; Olmi, A.; Lynen, U.; Stelzer, H.; Gobbi, A.; Bock, R.

    1979-02-01

    After an introduction, a position-sensitive ionization chamber, a parallel-plate detector, and a multiwire position-sensitive chamber are described. Then the data acquisition and analysis methods are considered. Furthermore, the experimental methods for a multi-parameter experiment are described. Finally, the measurement of gamma-ray and neutron multiplicities and sequential fission is considered, and the results are presented. (HSI) [de

  2. POWRS: position-sensitive motif discovery.

    Directory of Open Access Journals (Sweden)

    Ian W Davis

    Full Text Available Transcription factors and the short, often degenerate DNA sequences they recognize are central regulators of gene expression, but their regulatory code is challenging to dissect experimentally. Thus, computational approaches have long been used to identify putative regulatory elements from the patterns in promoter sequences. Here we present a new algorithm "POWRS" (POsition-sensitive WoRd Set for identifying regulatory sequence motifs, specifically developed to address two common shortcomings of existing algorithms. First, POWRS uses the position-specific enrichment of regulatory elements near transcription start sites to significantly increase sensitivity, while providing new information about the preferred localization of those elements. Second, POWRS forgoes position weight matrices for a discrete motif representation that appears more resistant to over-generalization. We apply this algorithm to discover sequences related to constitutive, high-level gene expression in the model plant Arabidopsis thaliana, and then experimentally validate the importance of those elements by systematically mutating two endogenous promoters and measuring the effect on gene expression levels. This provides a foundation for future efforts to rationally engineer gene expression in plants, a problem of great importance in developing biotech crop varieties.BSD-licensed Python code at http://grassrootsbio.com/papers/powrs/.

  3. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  4. Position-sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hendrix, J.

    1982-01-01

    An overview is given of the different types of position-sensitive X-ray detectors used in kinetic studies of biological molecule state changes using X-ray diffraction with synchrotron radiation as a probe. The detector requirements and principles of operation of proportional counters are outlined. Multiwire proportional chamber systems and their readout techniques are described. Other detectors discussed include a drift chamber type detector, microchannel plates, charge-couple devices and, for high count rates, an integrating TV-detector. (U.K.)

  5. Position-sensitive transition-edge sensors

    International Nuclear Information System (INIS)

    Iyomoto, N.; Bandler, S.R.; Brekosky, R.P.; Chervenak, J.A.; Figueroa-Feliciano, E.; Finkbeiner, F.M.; Kelley, R.L.; Kilbourne, C.A.; Lindeman, M.A.; Murphy, K.; Porter, F.S.; Saab, T.; Sadleir, J.E.; Talley, D.J.

    2006-01-01

    We report the latest results from our development of Position-Sensitive Transition-edge sensors (PoSTs), which are one-dimensional imaging spectrometers. In PoSTs with segmented Au absorbers, we obtained 8eV energy resolution on K Kα lines, which is consistent to the baseline energy resolution and the design values, on all of the nine pixels, by choosing the best combination of the thermal conductance in absorbers and in links that connects the absorbers. The pulse decay time of 193μs is fast enough for our purpose. In a PoST with a continuous Bi/Cu absorber, by dividing the events into 63 effective pixels, we obtained energy resolutions of 16eV at the center 'pixel', which is comparable to the baseline energy resolution, and 33eV at the outer 'pixel'. The degradation of the energy resolution in the outer 'pixel' is due to position dependence, which we can cancel out by dividing the events into smaller 'pixels' when we have sufficient X-ray events

  6. Semiconducting oxide gas-sensitive resistors

    International Nuclear Information System (INIS)

    Dusastre, V.J.

    1998-01-01

    The overall aim of this thesis is to describe the gas sensing behaviour of a wide range of metal oxide semiconductors which exhibit tremendous changes in their electrical resistance at high temperatures (typically > 300 deg. C) upon exposure to traces (ppm) of reactive gases present in the air. The effects of surface segregation in antimony-doped tin dioxide (Sn 1-y Sb y O 2 ) on both the electrical response to water vapour and the catalytic combustion of methane in the presence of water vapour were demonstrated. Effects of microstructure, and especially particle size, on the behaviour (sensitivity and selectivity) of these compounds to carbon monoxide and methane were also demonstrated. A change in behaviour correlating with the Debye length was shown. Theoretical calculation methods were used to model surface segregation and surface defects. Antimony segregates as Sb 3+ and the complex (Sn(II).V o ) is a stable surface species. A model for gas response and surface reaction involving this complex is proposed. The properties of solid solution series prepared by systematic cation substitution as a way of understanding the gas response mechanism linked to the surface chemistry has been examined in (CrNbO 4 )x(Sn 1-y Sb y O 2 ) 1-x , Ti x (Sn 1-y Sb y ) 1-x O 2 , and (MWO 4 )x([Sn-Ti]O 2 ) 1x [with M: Mn, Fe, Co, Ni, Cu, Zn]. Effects of stoichiometry, microstructure, combustion gradient and surface segregation on gas (water, carbon monoxide, methane, propane and ammonia) sensitivity and selectivity have been observed and discussed. (author)

  7. Position sensitive detector for X-ray photons

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1988-01-01

    This work reports the theoretical basis and the details of the construction process, characterization and application of gas X-ray position sensitive detectors. The unidimensional detector consists of a gas camera (argon and CH 4 ), a metallic anode, a cathode and a delay line. Details of the construction process are given in order to allow the reproduction of the detector. It has been characterized by measuring its spatial resolution, homogeneity and linerity. The built linear detector has been used to obtain diffraction diagrams from polycrystalline silicon, C 23 H 48 paraffin and glassy carbon. These diagrams have been compared with those obtained under equivalent conditions with a conventional proportional detector by the step scanning method. It has been shown that the detector provides diffraction diagrams of equivalent quality to those obtained by the step scanning method, in appreciably lower time intervals. (author) [pt

  8. Computed tomography with thermal neutrons and gaseous position sensitive detector

    International Nuclear Information System (INIS)

    Souza, Maria Ines Silvani

    2001-12-01

    A third generation tomographic system using a parallel thermal neutron beam and gaseous position sensitive detector has been developed along three discrete phases. At the first one, X-ray tomographic images of several objects, using a position sensitive detector designed and constructed for this purpose have been obtained. The second phase involved the conversion of that detector for thermal neutron detection, by using materials capable to convert neutrons into detectable charged particles, testing afterwards its performance in a tomographic system by evaluation the quality of the image arising from several test-objects containing materials applicable in the engineering field. High enriched 3 He, replacing the argon-methane otherwise used as filling gas for the X-ray detection, as well as, a gadolinium foil, have been utilized as converters. Besides the pure enriched 3 He, its mixture with argon-methane and later on with propane, have been also tested, in order to evaluate the detector efficiency and resolution. After each gas change, the overall performance of the tomographic system using the modified detector, has been analyzed through measurements of the related parameters. This was done by analyzing the images produced by test-objects containing several materials having well known attenuation coefficients for both thermal neutrons and X-rays. In order to compare the performance of the position sensitive detector as modified to detect thermal neutrons, with that of a conventional BF 3 detector, additional tomographs have been conducted using the last one. The results have been compared in terms of advantages, handicaps and complementary aspects for different kinds of radiation and materials. (author)

  9. 32 CFR 154.13 - Sensitive positions.

    Science.gov (United States)

    2010-07-01

    ...) Critical-sensitive. (A) Access to Top Secret information. (B) Development or approval of plans, policies... report required in subpart K. (e) Billet control system for Top Secret. (1) To standardize and control the issuance of Top Secret clearances within the Department of Defense, a specific designated billet...

  10. Use of position sensitive detectors in medicine

    International Nuclear Information System (INIS)

    Soussaline, F.

    1982-10-01

    Medical imagery is a field where developments in physics, engineering and instrumentation can be applied directly to human diagnosis and treatment. The need to detect ever-smaller anomalies and to measure increasingly slight variations in metabolic parameters has led to a high degree of complexity in radiographic, echographic and nuclear medicine instrumentation. The wide-spread use of digital circuits and more generally the development of data processing systems and mathematical algorithms has allowed the introduction of new techniques such as emission and transmission tomography, digitalised radiography, synchronised gamma cardiology and nuclear magnetic resonance. For reasons of brevity this article is confined to the presentation of some concepts and results in the field of computer-assisted tomography and a discussion on the main parameters of imagery systems using position detectors

  11. Linear position sensitive neutron detector using fiber optic encoded scintillators

    International Nuclear Information System (INIS)

    Davidson, P.L.; Wroe, H.

    1983-01-01

    A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min - 1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A 0

  12. Digital position sensitive discrimination for 2-dimensional scintillation detectors

    International Nuclear Information System (INIS)

    Engels, R.; Reinartz, R.; Reinhart, P.

    1996-01-01

    The energy sensitivity of a two-dimensional scintillation gamma detector based on position sensitive photomultipliers has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by 50%, a discrimination unit has been developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. Depending on the spatial resolution there can be up to 65.536 position-sensitive discriminator levels defining energy windows. By this method, narrow discriminator windows can be used for reducing the low and high energy quanta without effecting the sensitivity of the detector. The new discrimination method, its performance and test measurements with gamma rays will be described. Furthermore experimental results are presented

  13. CO2 gas sensitivity of sputtered zinc oxide thin films

    Indian Academy of Sciences (India)

    TECS

    Gas sensitivity; ZnO; sputtering; XRD patterns; structure; thin films. 1. Introduction. Because zinc ... voltage and absorption properties of those fabricated films have been ... tations are useful in many physical applications. The in- plane (Hegde ...

  14. Two-dimensional position sensitive Si(Li) detector

    International Nuclear Information System (INIS)

    Walton, J.T.; Hubbard, G.S.; Haller, E.E.; Sommer, H.A.

    1978-11-01

    Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n + resisitive layer for one contact and a boron implanted p + resistive layer for the second contact. A position resolution of the order of 100 μm is indicated

  15. A TWO-DIMENSIONAL POSITION SENSITIVE SI(LI) DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Jack T.; Hubbard, G. Scott; Haller, Eugene E.; Sommer, Heinrich A.

    1978-11-01

    Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n{sup +} resistive layer for one contact and a boron implanted p{sup +} resistive layer for the second contact. A position resolution of the order of 100 {micro}m is indicated.

  16. Vantage sensitivity: individual differences in response to positive experiences.

    Science.gov (United States)

    Pluess, Michael; Belsky, Jay

    2013-07-01

    The notion that some people are more vulnerable to adversity as a function of inherent risk characteristics is widely embraced in most fields of psychology. This is reflected in the popularity of the diathesis-stress framework, which has received a vast amount of empirical support over the years. Much less effort has been directed toward the investigation of endogenous factors associated with variability in response to positive influences. One reason for the failure to investigate individual differences in response to positive experiences as a function of endogenous factors may be the absence of adequate theoretical frameworks. According to the differential-susceptibility hypothesis, individuals generally vary in their developmental plasticity regardless of whether they are exposed to negative or positive influences--a notion derived from evolutionary reasoning. On the basis of this now well-supported proposition, we advance herein the new concept of vantage sensitivity, reflecting variation in response to exclusively positive experiences as a function of individual endogenous characteristics. After distinguishing vantage sensitivity from theoretically related concepts of differential-susceptibility and resilience, we review some recent empirical evidence for vantage sensitivity featuring behavioral, physiological, and genetic factors as moderators of a wide range of positive experiences ranging from family environment and psychotherapy to educational intervention. Thereafter, we discuss genetic and environmental factors contributing to individual differences in vantage sensitivity, potential mechanisms underlying vantage sensitivity, and practical implications. 2013 APA, all rights reserved

  17. Rapid and sensitive determination of deuterium concentration by gas chromatography

    International Nuclear Information System (INIS)

    Takahashi, Tomiki; Ohokoshi, Sumio; Shinriki, Nariko; Sato, Toshio

    1984-01-01

    Gas chromatographic determination of hydrogen isotopes D 2 and HD has hitherto been carried out with a molecular sieve column kept at -195 0 C under the H 2 carrier gas. However, the amount of D 2 in hydrogen gas containing low HD concentration of less than 5 % can be practically neglected judging from the equilibrium constant of H 2 -D 2 exchange reaction. Therefore, there is no need to separate HD from D 2 . As an improvement, in this paper, the gas chromatographic determination of HD in low concentration ( 2 as a carrier gas enabled us to enhance the cell current of TCD drastically, hence gave rise to high sensitivity of HD detection. The limit of determination of the concentration of HD was 0.01%. In the case of the higher concentration (>5%) of HD in hydrogen gas, D 2 and HD have been separated and determined by the method described above, but this method takes more than ten minutes. Therefore, we designed a new gas chromatographic analysis of the HD-D 2 mixture with an activated alumina column at -195 0 C under the H 2 carrier gas (330 ml/min). The advantages of this method are in (1) rapid analysis (in 1 min), (2) no need of the rigid activation temperature ((110--250) 0 C), (3) no change of the relative molar sensitivity of HD to D 2 at the various flow rates of H 2 carrier gas ((100--300)ml/min). (author)

  18. Scintillating fibre detectors using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Drevenak, R.

    1995-01-01

    Scintillating fibre technology has made substantial progress, and has demonstrated great potential for fast tracking and triggering in high luminosity experiments in Particle Physics. Some recent issues of the RD-17 project at CERN are presented for fast and precise readout of scintillating fibre arrays, as well as for upgrade of position-sensitive photomultipliers. Excellent matching of the scintillating fibre and the position-sensitive photomultiplier, in particular in time characteristics, allowed to achieve excellent detector performances, typically a spatial resolution of ∼ 125 μm with time resolution better than 1 ns and detection efficiency greater than 95%. (author)10 refs.; 25 figs.; 1 tab

  19. A setup for measurement of beam stability and position using position sensitive detector for Indus-1

    International Nuclear Information System (INIS)

    Nathwani, R.K.; Joshi, D.K.; Tyagi, Y.; Soni, R.S.; Puntambekar, T.A.; Pithawa, C.K.

    2009-01-01

    The 450 MeV electron synchrotron radiation source Indus-1 is operational at RRCAT. A set-up has been developed to measure the relative transverse positional stability of the electron beam and its position with microns resolution using position sensitive photodiodes. The set-up has been installed at the diagnostics beam line of Indus-1. Synchrotron light from photo physics beamline was reflected out by inserting a Ni coated mirror and was focused onto a duo-lateral position sensitive photodiode by using two mirrors of 1.25 meter focal length to obtain unity magnification. The set-up consists of a duo-lateral position sensitive detector (PSD), precision processing electronics and a PC based data acquisition system. A computer program captures the processed signals on to a PC using GPIB interface and displays vertical position of the beam in real time. The paper describes the salient features of the setup developed for measurement of beam stability. (author)

  20. Sensitivity of GRETINA position resolution to hole mobility

    Energy Technology Data Exchange (ETDEWEB)

    Prasher, V.S. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Cromaz, M. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Merchan, E.; Chowdhury, P. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Crawford, H.L. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lister, C.J. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Campbell, C.M.; Lee, I.Y.; Macchiavelli, A.O. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Radford, D.C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wiens, A. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-02-21

    The sensitivity of the position resolution of the gamma-ray tracking array GRETINA to the hole charge-carrier mobility parameter is investigated. The χ{sup 2} results from a fit of averaged signal (“superpulse”) data exhibit a shallow minimum for hole mobilities 15% lower than the currently adopted values. Calibration data on position resolution is analyzed, together with simulations that isolate the hole mobility dependence of signal decomposition from other effects such as electronics cross-talk. The results effectively exclude hole mobility as a dominant parameter for improving the position resolution for reconstruction of gamma-ray interaction points in GRETINA.

  1. Position sensitivity of the first SmartPET HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool (United Kingdom)]. E-mail: rjc@ns.ph.liv.ac.uk; Turk, G. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Boston, A.J. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Boston, H.C. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Cresswell, J.R. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Mather, A.R. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Nolan, P.J. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Hall, C.J. [CCLRC Daresbury, Warrington, Cheshire (United Kingdom); Lazarus, I. [CCLRC Daresbury, Warrington, Cheshire (United Kingdom); Simpson, J. [CCLRC Daresbury, Warrington, Cheshire (United Kingdom); Berry, A. [School of Physics and materials Engineering, Monash University, Melbourne (Australia); Beveridge, T. [School of Physics and materials Engineering, Monash University, Melbourne (Australia); Gillam, J. [School of Physics and materials Engineering, Monash University, Melbourne (Australia); Lewis, R.A. [School of Physics and materials Engineering, Monash University, Melbourne (Australia)

    2007-04-01

    In this paper we discuss the Smart Positron Emission Tomography (PET) imaging system being developed by University of Liverpool in conjunction with CCLRC Daresbury Laboratory. We describe the motivation for the development of a semiconductor-based PET system and the advantages it will offer over current tomographs. Details of the detectors and associated electronics are discussed and results of high precision scans are presented. Analysis of this scan data has facilitated full characterization of the detector response function and calibration of the three-dimensional position sensitivity. This work presents the analysis of the depth sensitivity of the detector.

  2. Depression reduces perceptual sensitivity for positive words and pictures.

    Science.gov (United States)

    Atchley, Ruth Ann; Ilardi, Stephen S; Young, Keith M; Stroupe, Natalie N; O'Hare, Aminda J; Bistricky, Steven L; Collison, Elizabeth; Gibson, Linzi; Schuster, Jonathan; Lepping, Rebecca J

    2012-01-01

    There is evidence of maladaptive attentional biases for lexical information (e.g., Atchley, Ilardi, & Enloe, 2003; Atchley, Stringer, Mathias, Ilardi, & Minatrea, 2007) and for pictographic stimuli (e.g., Gotlib, Krasnoperova, Yue, & Joormann, 2004) among patients with depression. The current research looks for depressotypic processing biases among depressed out-patients and non-clinical controls, using both verbal and pictorial stimuli. A d' measure (sensitivity index) was used to examine each participant's perceptual sensitivity threshold. Never-depressed controls evidenced a detection bias for positive picture stimuli, while depressed participants had no such bias. With verbal stimuli, depressed individuals showed specific decrements in the detection of positive person-referent words (WINNER), but not with positive non-person-referent words (SUNSHINE) or with negative words. Never-depressed participants showed no such differences across word types. In the current study, depression is characterised both by an absence of the normal positivistic biases seen in individuals without mood disorders (consistent with McCabe & Gotlib, 1995), and by a specific reduction in sensitivity for person-referent positive information that might be inconsistent with depressotypic self-schemas.

  3. Cylinder gauge measurement using a position sensitive detector

    International Nuclear Information System (INIS)

    St John, W. Doyle

    2007-01-01

    A position sensitive detector (PSD) has been used to determine the diameter of cylindrical pins based on the shift in a laser beam's centroid. The centroid of the light beam is defined here as the weighted average of position by the local intensity. A shift can be observed in the centroid of an otherwise axially symmetric light beam, which is partially obstructed. Additionally, the maximum shift in the centroid is a unique function of the obstructing cylinder diameter. Thus to determine the cylinder diameter, one only needs to detect this maximum shift as the cylinder is swept across the beam

  4. Structural Investigations using a position sensitive Neutron Detector

    International Nuclear Information System (INIS)

    Fruchart, D.; Anne, M.; Wolfers, P.; Lartigue, C.; Roudaut, E.

    1986-01-01

    In the accurate determination of the location of lights atoms such as hydrogen in a metal matrix, several types of difficulty may be encountered. Experimentally, neutron diffraction is the most convenient method for such a structure determination. The use of Position Sensitive Detectors is discussed, and selected examples illustrate the advantages and drawbacks of this type of instrument. Judging from present results, significant improvements in recording technique, data collection and reduction, and structure refinement may be obtained in the near future

  5. A novel method for assessing position-sensitive detector performance

    International Nuclear Information System (INIS)

    Clinthorne, N.H.; Rogers, W.L.; Shao, L.; Hero, A.O. III; Koral, K.F.

    1989-01-01

    A marked point process model of a position-sensitive detector is developed which includes the effects of detector efficiency, spatial response, energy response, and source statistics. The average mutual information between the incident distribution of γ rays and the detector response is derived and used as a performance index for detector optimization. A brief example is presented which uses this figure-of-merit for optimization of light guide dimensions for a modular scintillation camera

  6. Improvements to a neutral radiation detection and position sensitive process and devices

    International Nuclear Information System (INIS)

    Charpak, Georges; Nguyen, N.H.; Policarpo, Armando.

    1977-01-01

    This invention aims to provide a neutral radiation position sensitive process and device providing a spatial radiation satisfactory for most medical applications and an energy radiation that cannot be reached by gas detectors based on proportional counters or by scintillation counters. Only solid state detectors can compete with respect to energy resolution. The detector described enables large areas to be covered which cannot be reached at accessible costs by solid state detectors. With this aim in view, the invention suggests an incident neutral radiation and position sensitive process, particularly soft gamma and X radiations, whereby photoelectrons are made to form by incident radiation action on gas atoms contained in an enclosure. By means of an electric field, the electrons are diverted towards a space undergoing an electric field high enough in value to create photons by exciting gas atoms and returning them to the de-excited state. The photons are collected, through a transparent window, on a layer of a material for converting such photons into scintillations in the near or visible UV spectrum and the barycentre of the scintillations is positioned on the layer, for instance by photomultipliers or ionization detectors. According to another aspect of the invention, it suggests a detection and position sensitive device comprising (generally downstream of a collimator with a grid of inlet holes) a leak tight containment fitted with an inlet window transparent to incident radiations, filled with a gas producing electrons by interaction with the incident radiation, and fitted with electrodes for generating an electric field to divert the electrons to a space for creating secondary photons [fr

  7. Position-Sensitive Organic Scintillation Detectors for Nuclear Material Accountancy

    International Nuclear Information System (INIS)

    Hausladen, P.; Newby, J.; Blackston, M.

    2015-01-01

    Recent years have seen renewed interest in fast organic scintillators with pulse shape properties that enable neutron-gamma discrimination, in part because of the present shortage of He3, but primarily because of the diagnostic value of timing and pulse height information available from such scintillators. Effort at Oak Ridge National Laboratory (ORNL) associated with fast organic scintillators has concentrated on development of position-sensitive fast-neutron detectors for imaging applications. Two aspects of this effort are of interest. First, the development has revisited the fundamental limitations on pulseshape measurement imposed by photon counting statistics, properties of the scintillator, and properties of photomultiplier amplification. This idealized limit can then be used to evaluate the performance of the detector combined with data acquisition and analysis such as free-running digitizers with embedded algorithms. Second, the development of position sensitive detectors has enabled a new generation of fast-neutron imaging instruments and techniques with sufficient resolution to give new capabilities relevant to safeguards. Toward this end, ORNL has built and demonstrated a number of passive and active fast-neutron imagers, including a proof-of-concept passive imager capable of resolving individual fuel pins in an assembly via their neutron emanations. This presentation will describe the performance and construction of position-sensing fast-neutron detectors and present results of imaging measurements. (author)

  8. New Materials for Gas Sensitive Field-Effect Device Studies

    OpenAIRE

    Salomonsson, Anette

    2005-01-01

    Gas sensor control is potentially one of the most important techniques of tomorrow for the environment. All over the world cars are preferred for transportation, and accordingly the number of cars increases, unfortunately, together with pollutants. Boilers and powerplants are other sources of pollutants to the environment. Metal-Insulator-Silicon Carbide (MISiC) Field-effect sensors in car applications and boilers have the potential to reduce the amount of pollutants. These devices are sensit...

  9. Application of position-sensitive detectors to positron imaging

    International Nuclear Information System (INIS)

    Yamashita, Takaji; Uchida, Hiroshi; Watanabe, Mitsuo; Omura, Tomohide

    1994-01-01

    Positron imaging including positron emission tomography (PET) is expected to be a promising tool for basic and clinical research, because it makes possible the study of regional chemistry within multiple organs of the body in living human beings and experimental animals. New schemes of high resolution block detectors have been developed to improve the performance of positron imaging systems, which employ small segments of bismuth germanate (BGO) arrays and position-sensitive photomultiplier tubes (PS-PMT). The coincidence detector resolution of less than 2.0 mm in full width at half maximum was achieved with the detectors, which is very close to the theoretical resolution limit in positron imaging. (author)

  10. Fast readout of scintillating fibres using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Akchurin, N.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Dufournaud, J.; Dyachenko, V.A.; Giacomich, R.; Gorin, A.M.; Kuroda, K.; Magaudda, D.; Newsom, C.; Okada, K.; Onel, Y.; Penzo, A.; Rakhmatov, V.Ye.; Rykalin, V.I.; Salvato, G.; Savin, A.A.; Schiavon, P.; Sillou, D.; Solovyov, Yu.A.; Takeutchi, F.; Tareb-Reyes, M.; Vasilchenko, V.G.; Yoshida, T.; Zaychenko, A.A.

    1994-01-01

    Major progress has recently been achieved in the fast readout of scintillating fibres using position-sensitive photomultipliers (PSPMs). Experimental results obtained with commercially available PSPMs already show a space resolution better than 200 μm, a time resolution of about 1.5 ns with a detection efficiency higher than 90%, and the possibility of separating double hits with a minimum distance of ∼3 mm. An upgrade of PSPMs based on new dynode structures is also in progress. Results obtained with one new PSPM prototype in a magnetic field are also presented. (orig.)

  11. Emulation workbench for position sensitive gaseous scintillation detectors

    International Nuclear Information System (INIS)

    Pereira, L.; Margato, L.M.S.; Morozov, A.; Solovov, V.; Fraga, F. A. F.

    2015-01-01

    Position sensitive detectors based on gaseous scintillation proportional counters with Anger-type readout are being used in several research areas such as neutron detection, search for dark matter and neutrinoless double beta decay. Design and optimization of such detectors are complex and time consuming tasks. Simulations, while being a powerful tool, strongly depend on the light transfer models and demand accurate knowledge of many parameters, which are often not available. Here we describe an alternative approach based on the experimental evaluation of a detector using an isotropic point-like light source with precisely controllable light emission properties, installed on a 3D positioning system. The results obtained with the developed setup at validation conditions, when the scattered light is strongly suppressed show good agreement with simulations

  12. First investigation of a novel 2D position-sensitive

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  13. Beam test of the 2D position sensitive neutron detector

    International Nuclear Information System (INIS)

    Tian Lichao; Chen Yuanbo; Sun Zhijia; Tang Bin; Zhou Jianrong; Qi Huirong; Liu Rongguang; Zhang Jian; Yang Guian; Xu Hong

    2014-01-01

    China Spallation Neutron Source (CSNS), one of the Major scientific apparatuses of the national Eleventh Five-Year Plane, is under construction and three spectrumeters will be constructed in the first phase of the project. A 2D position sensitive neutron detector has been constructed for the Multifunctional Reflect spectrumeter (MR) in Institute of High Energy Physics (IHEP). The basic operation principle of the detector and the test on the residual stress diffractometer of Chinese Advanced Research Reactor (CARR) in China Institute of Atomic Energy (CIAE) is introduced in this paper. The results show that it has a good position resolution of l.18 mm (FWHM) for the neutrons of l.37 A and 2D imaging ability, which is consistent with the theory. It can satisfy the requirements of MR and lays the foundation for the construction of larger neutron detectors. (authors)

  14. Two dimension position sensitive multi-plate PPAC

    International Nuclear Information System (INIS)

    Mao Ruishi; Guo Zhongyan; Xiao Guoqing; Zhan Wenlong; Xu Hushan; Hu Zhengguo; Wang Meng; Sun Zhiyu; Chen Zhiqiang; Chen Lixin; Li Chen; Bai Jie; Zhang Jinxia; Li Cunfan

    2003-01-01

    A two-dimensional positional sensitive multi-plate PPAC with resistance chain readout has been developed for Radioactive Ion Beam Line in Lanzhou (RIBLL). The PPAC has an active area of 100 mm x 100 mm. It consists of an anode plane, a x wire plane, a y wire plane and two cathode planes. The gaps between anode and wire planes are 3 mm. And the gaps between cathodes and wire planes also are 3 mm. When filled with iso-butane at a pressure of 6.5 mb, the 0.58 mm (FWHM) position resolution and >99.2% detection efficiencies and <±50 μm linearity of the PPAC was estimated for 3 components α source

  15. The positive-entropy constraint for the classical ideal gas

    International Nuclear Information System (INIS)

    Ciccariello, Salvino

    2004-01-01

    The problem of determining the state parameters' sub-domain where the behaviour of the classical ideal gas approximates that of the Bose and Fermi ideal gases is tutorially discussed. The entropy of any quantum system being always positive, the classical approximation can only be satisfactory within the parameters' sub-domain where the classical entropy turns out to be positive. We show that the sub-domain determined by this condition is close to that where de Broglie's thermal wavelength is smaller than the mean interparticle distance. The exact determination of the state parameters' region, where the particle number density, the grand potential and the entropy of quantum ideal gases differ from those of the classical gas less than a specified quantity, is also illustrated

  16. Measurement of the position resolution of the Gas Pixel Detector

    International Nuclear Information System (INIS)

    Soffitta, Paolo; Muleri, Fabio; Fabiani, Sergio; Costa, Enrico; Bellazzini, Ronaldo; Brez, Alessandro; Minuti, Massimo; Pinchera, Michele; Spandre, Gloria

    2013-01-01

    The Gas Pixel Detector was designed and built as a focal plane instrument for X-ray polarimetry of celestial sources, the last unexplored subtopics of X-ray astronomy. It promises to perform detailed and sensitive measurements resolving extended sources and detecting polarization in faint sources in crowded fields at the focus of telescopes of good angular resolution. Its polarimetric and spectral capability were already studied in earlier works. Here we investigate for the first time, with both laboratory measurements and Monte Carlo simulations, its imaging properties to confirm its unique capability to carry out imaging spectral-polarimetry in future X-ray missions.

  17. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  18. High resolution, position sensitive detector for energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E P [Charles Evans and Associates, Redwood City, CA (United States); Strathman, M D [Charles Evans and Associates, Redwood City, CA (United States); Reed, D A [Charles Evans and Associates, Redwood City, CA (United States); Odom, R W [Charles Evans and Associates, Redwood City, CA (United States); Morse, D H [Sandia National Labs., Livermore, CA (United States); Pontau, A E [Sandia National Labs., Livermore, CA (United States)

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10[sup 10]), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 [mu]m for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 [mu]m) with an image resolution of better than 0.5 [mu]m has since been developed and its design is presented. (orig.)

  19. Position sensitive silicon detectors inside the Tevatron collider

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Bellettini, G.; Bosi, F.; Bosisio, L.; Cervelli, F.; Del Fabbro, R.; Dell'Orso, M.; Di Virgilio, A.; Focardi, E.; Giannetti, P.; Giorgi, M.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Tonelli, G.; Zetti, F.; Bertolucci, S.; Cordelli, M.; Curatolo, M.; Dulach, B.; Esposito, B.; Giromini, P.; Miscetti, S.; Sansoni, A.

    1986-01-01

    Four position sensitive silicon detectors have been tested inside the Tevatron beam pipe at Fermilab. The system is the prototype of the small angle silicon spectrometer designed to study primarily p-anti p elastic and diffractive cross-sections at the Collider of Fermilab (CDF). Particles in the beam halo during p-anti p storage tests were used to study the performance of the detectors. Efficiency, linearity of response and spatial resolution are shown. Measurements performed at different distances from the beam axis have shown that the detectors could be operated at 8.5 mm from the beam with low rates and no disturbance to the circulating beams. This distance corresponds to about 11 times the standard half-width of the local beam envelope. The behaviour of the detectors with the radiation dose has also been investigated. (orig.)

  20. One-dimensional position sensitive detector based on photonic crystals

    International Nuclear Information System (INIS)

    Xi Feng; Qin Lan; Xue Lian; Duan Ying

    2013-01-01

    Position sensitive detectors (PSDs) are an important class of optical sensors which utilizes the lateral photovoltaic effect (LPVE). According to the operation principle of PSD, we demonstrate that LPVE can be enhanced by lengthening the lifetime of photo-generated carriers. A PSD based on photonic crystals (PCs) composed of MgF 2 and InP is proposed and designed. The transmittances of the defect PC and the reflectance of the perfect PC in the PSD are obtained with transfer matrix method. The theoretical research on the designed device shows that LPVE is enhanced by improving the transmittance of the defect PC and the reflectance of the perfect PC to lengthen the lifetime of photo-generated carriers. (authors)

  1. Position sensitive detection of neutrons in high radiation background field.

    Science.gov (United States)

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  2. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    Science.gov (United States)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR

  3. Mobilities of positive ions in gas ionization chambers

    International Nuclear Information System (INIS)

    Kusumegi, Asao

    1990-01-01

    Observed ion mobilities of organic molecules in Ar are compared with a complete polarization model to examine the performance of the model, and its applicability is discussed. In spite of its simplicity, the polarization model (small sphere limit) is found to agree satisfactorily with observed mobilities in the case of alkali ions in Ar. However, the model fails to account for the mobility of Ar + in Ar due to a resonant charge transfer interaction between the ion and the parent gas. On the other hand, the values of k, a parameter which depends on the kinetic and the potential energy of the relevant ion, derived from observed ion mobilities of organic molecules in Ar and in the parent gas are found to be close to each other. Except for few cases, it appears that the complete polarization model gives a reasonable approximation for the positive ion mobilities of organic molecules in Ar, though the importance of the ion mass identification is significant in considering the applicability of the model to the positive ion mobility of those organic molecules in Ar used in a gas ionization chamber. (N.K.)

  4. Co-doped phosphorene: Enhanced sensitivity of CO gas sensing

    Science.gov (United States)

    Lei, S. Y.; Luan, S.; Yu, H.

    2018-03-01

    First-principle calculation was carried out to systematically investigate carbon monoxide (CO) adsorption on pristine and cobalt (Co)-doped phosphorenes (Co-bP). Whether or not CO is adsorped, pristine phosphorene is a direct-band-gap semiconductor. However, the bandgap of Co-bP experiences direct-to-indirect transition after CO molecule adsorption, which will affect optical absorption considerably, implying that Co doping can enhance the sensitivity of phosphorene as a CO gas sensor. Moreover, Co doping can improve an adsorption energy of CO to 1.31 eV, as compared with pristine phosphorene (0.12 eV), also indicating that Co-bP is energetically favorable for CO gas sensing.

  5. Position-sensitive proportional counters using resistance-capacitance position encoding

    International Nuclear Information System (INIS)

    Kopp, M.K.; Borkowski, C.J.

    1975-12-01

    A new method was developed for encoding the position of individual photons, neutrons, or charged particles in proportional counters by using the distributed RC line characteristics of these counters. The signal processing is described and guidelines for the design and operation of these position sensitive proportional counters (PSPCs) are given. Using these guidelines, several prototypic PSPCs were constructed to improve the spatial resolution and shorten the signal processing time; for example, the intrinsic spatial uncertainty was reduced to 28 μ fwhm for alpha particles and 100 μ fwhm for low-energy x rays (2 to 6 keV). Also, the signal processing time was reduced to 0.6 μsec without seriously degrading the spatial resolution. These results have opened new fields of application of the RC position encoding method in imaging distributions of photons, charged particles, or neutrons in nuclear medicine, physics, and radiography

  6. Beam position monitor sensitivity for low-β beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1993-01-01

    At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-β beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic (β = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-β) beams

  7. Vantage Sensitivity: Environmental Sensitivity to Positive Experiences as a Function of Genetic Differences.

    Science.gov (United States)

    Pluess, Michael

    2017-02-01

    A large number of gene-environment interaction studies provide evidence that some people are more likely to be negatively affected by adverse experiences as a function of specific genetic variants. However, such "risk" variants are surprisingly frequent in the population. Evolutionary analysis suggests that genetic variants associated with increased risk for maladaptive development under adverse environmental conditions are maintained in the population because they are also associated with advantages in response to different contextual conditions. These advantages may include (a) coexisting genetic resilience pertaining to other adverse influences, (b) a general genetic susceptibility to both low and high environmental quality, and (c) a coexisting propensity to benefit disproportionately from positive and supportive exposures, as reflected in the recent framework of vantage sensitivity. After introducing the basic properties of vantage sensitivity and highlighting conceptual similarities and differences with diathesis-stress and differential susceptibility patterns of gene-environment interaction, selected and recent empirical evidence for the notion of vantage sensitivity as a function of genetic differences is reviewed. The unique contribution that the new perspective of vantage sensitivity may make to our understanding of social inequality will be discussed after suggesting neurocognitive and molecular mechanisms hypothesized to underlie the propensity to benefit disproportionately from benevolent experiences. © 2015 Wiley Periodicals, Inc.

  8. Organic positive ions in aircraft gas-turbine engine exhaust

    Science.gov (United States)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  9. Antimicrobial sensitivity pattern of gram positive CSF isolates in ...

    African Journals Online (AJOL)

    100%) to Linezolid, Vancomycin and Piperacillin-Tazobactam. However, Staphylococcus aureus were 100% sensitive to Linezolid and Vancomycin but were only 87.5% sensitive to Piperacillin-Tazobactam combination. The Streptococcus ...

  10. Characteristics of the positive ion source at reduced gas feed

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S. K., E-mail: sksharma@ipr.res.in; Bharathi, P.; Prahlad, V.; Patel, P. J.; Choksi, B.; Jana, M. R.; Bansal, L. K.; Qureshi, K.; Sumod, C. B.; Vadher, V.; Thakkar, D.; Gupta, L. N.; Rambabu, S.; Parmar, S.; Contractor, N.; Sahu, A. K.; Pandya, B.; Sridhar, B.; Pandya, S.; Baruah, U. K. [Institute for Plasma Research, Bhat, Gandhinagar (India)

    2014-11-15

    The neutral beam injector of steady state superconducting tokamak (SST1-NBI) at IPR is designed for injecting upto 1.7 MW of neutral beam (Hº, 30–55 keV) power to the tokamak plasma for heating and current drive. Operations of the positive ion source (PINI or Plug-In-Neutral-Injector) of SST1-NBI were carried out on the NBI test stand. The PINI was operated at reduced gas feed rate of 2–3 Torr l/s, without using the high speed cryo pumps. Experiments were conducted to achieve a stable beam extraction by optimizing operational parameters namely, the arc current (120–300 A), acceleration voltage (16–40 kV), and a suitable control sequence. The beam divergence, power density profiles, and species fractions (H{sup +}:H{sub 2}{sup +}:H{sub 3}{sup +}) were measured by using the diagnostics such as thermal calorimetry, infrared thermography, and Doppler shift spectroscopy. The maximum extracted beam current was about 18 A. A further increase of beam current was found to be limited by the amount of gas feed rate to the ion source.

  11. A study of an optimal technological solution for the electronics of particle position sensitive gas detectors (multiwire proportional chambers); Etude d`une solution technologique optimale pour l`electronique de localisation des particules avec des detecteurs a gaz (chambre proportionelle multifils)

    Energy Technology Data Exchange (ETDEWEB)

    Zojceski, Z. [Institut de Physique Nucleaire, CNRS - IN2P3 Universite Paris Sud, 91406 Orsay Cedex (France)

    1997-12-31

    This work aims at optimizing the electronics for position sensitive gas detectors. The first part is a review of proportional chamber operation principles and presents the different possibilities for the architecture of the electronics. The second part involves electronic signal processing for best signal-to-noise ratio. We present a time-variant filter based on a second order base line restorer.It allows a simple pole-zero and tail cancellation at high counting rates. Also, various interpolating algorithms for cathode strip chambers have been studied. The last part reports the development of a complete electronic system, from the preamplifiers up to the readout and control interface, for the cathode strip chambers in the focal plane of the BBS Spectrometer at KVI, Holland. The system is based on application specific D-size VXI modules. In all modules, the 16-bit ADCs and FIFO memory are followed by a Digital Signal Processor, which performs data filtering and cathode induced charge interpolation. Very good analog noise performance is obtained in a multi-processor environment. (author). 127 refs.

  12. A study of an optimal technological solution for the electronics of particle position sensitive gas detectors (multiwire proportional chambers); Etude d`une solution technologique optimale pour l`electronique de localisation des particules avec des detecteurs a gaz (chambre proportionelle multifils)

    Energy Technology Data Exchange (ETDEWEB)

    Zojceski, Z [Institut de Physique Nucleaire, CNRS - IN2P3 Universite Paris Sud, 91406 Orsay Cedex (France)

    1998-12-31

    This work aims at optimizing the electronics for position sensitive gas detectors. The first part is a review of proportional chamber operation principles and presents the different possibilities for the architecture of the electronics. The second part involves electronic signal processing for best signal-to-noise ratio. We present a time-variant filter based on a second order base line restorer.It allows a simple pole-zero and tail cancellation at high counting rates. Also, various interpolating algorithms for cathode strip chambers have been studied. The last part reports the development of a complete electronic system, from the preamplifiers up to the readout and control interface, for the cathode strip chambers in the focal plane of the BBS Spectrometer at KVI, Holland. The system is based on application specific D-size VXI modules. In all modules, the 16-bit ADCs and FIFO memory are followed by a Digital Signal Processor, which performs data filtering and cathode induced charge interpolation. Very good analog noise performance is obtained in a multi-processor environment. (author). 127 refs.

  13. Contribution to the study of position sensitive detectors with high spatial resolution for thermal neutron detection

    International Nuclear Information System (INIS)

    Idrissi Fakhr-Eddine, Abdellah.

    1978-01-01

    With a view to improving the spatial resolution of the localization of thermal neutrons, the work covers four position sensitive detectors: - 800 cell multi-detectors (1 dimension), - linear 'Jeu de Jacquet' detectors (1 dimension) - Multi-detector XYP 128x128 (2 dimensions), - 'Jeu de Jacquet' detector with 2 dimensions. Mention is made of the various position finding methods known so far, as well as the reasons for selecting BF 3 as detector gas. A study is then made of the parameters of the multiwire chamber whose principle will form the basis of most of the position detecting appliances subsequently dealt with. Finally, a description is given of the detection tests of the thermal neutrons in the multiwire chamber depending on the pressure, a parameter that greatly affects the accuracy of the position finding. The single dimension position tests on two kinds of appliance, the 800 cell multi-detector for the wide angle diffraction studies, and the linear 'Jeu de Jacquet' detector designed for small angle diffraction are mentioned. A description is then given of two position appliances with two dimensions; the multi-detector XYP 128x128 and the two dimensional 'Jeu de Jacquet' detector. In the case of this latter detector, only the hoped for characteristics are indicated [fr

  14. Assessing the efficiency position sensitive gaseous X-rays detectors

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Souza, Maria Ines Silvani; Lopes, Ricardo T.

    2009-01-01

    Full text: The efficiency of gaseous X-ray detectors can be evaluated from tabulated data, but this approach assumes that the whole detector volume is permeated by the electrostatic field produced by the anode-cathode. Indeed, the usual detectors are comprised by a cylindrical hull acting as cathode containing a wire at its axis as anode, a configuration which foods the space between them with the electrostatic field. Some specially designed detectors, however, as Position Sensitive Detectors, contain regions which are not submitted to the electrostatic field, and hence, their efficiency could not be assessed from the tabulated data. Direct measurements of this efficiency would require a mono-chromator or set of pure mono-energetic X-rays sources. As only very few of them are really mono-energetic, the detector response to a given energy would be spoiled by to the concomitant contribution of other energies. Yet, the information would not be completely lost, but only concealed due to the convolution carried out by the detector. Therefore, a proper unfolding would be capable to recover the information, yielding the individual detector efficiency for each of the contributing energies. The degraded information is retrieved in this work through a proper mathematical unfolding of the detector response, when exposed to Bremsstrahlung spectra from an X-ray tube submitted to different voltages. For this purpose, Lorentzian functions have been fitted to these spectra - obtained with a NaI(Tl) spectrometer - in order to characterize them with proper parameters. The mathematical convolution of these functions with a theoretical detector efficiency curve yields, after integration, values which, confronted with those experimentally measured, allow the determination of the parameters of the efficiency curve. As some parameters of this curve are well known, it is possible to represent it by proper functions. For argon-filled detectors, for instance, this efficiency has a

  15. A large, high performance, curved 2D position-sensitive neutron detector

    CERN Document Server

    Fried, J W; Mahler, G J; Makowiecki, D S; Mead, J A; Radeka, V; Schaknowski, N A; Smith, G C; Yu, B

    2002-01-01

    A new position-sensitive neutron detector has been designed and constructed for a protein crystallography station at LANL's pulsed neutron source. This station will be one of the most advanced instruments at a major neutron user facility for protein crystallography, fiber and membrane diffraction. The detector, based on neutron absorption in sup 3 He, has a large sensitive area of 3000 cm sup 2 , angular coverage of 120 deg. , timing resolution of 1 mu s, rate capability in excess of 10 sup 6 s sup - sup 1 , position resolution of about 1.5 mm FWHM, and efficiency >50% for neutrons of interest in the range 1-10 A. Features that are key to these remarkable specifications are the utilization of eight independently operating segments within a single gas volume, fabrication of the detector vessel and internal segments with a radius of curvature of about 70 cm, optimized position readout based on charge division and signal shaping with gated baseline restoration, and engineering design with high-strength aluminum ...

  16. High counting rate, two-dimensional position sensitive timing RPC

    CERN Document Server

    Petrovici, M.; Simion, V; Bartos, D; Caragheorgheopol, G; Deppner, I; Adamczewski-Musch, J; Linev, S; Williams, MCS; Loizeau, P; Herrmann, N; Doroud, K; Radulescu, L; Constantin, F

    2012-01-01

    Resistive Plate Chambers (RPCs) are widely employed as muon trigger systems at the Large Hadron Collider (LHC) experiments. Their large detector volume and the use of a relatively expensive gas mixture make a closed-loop gas circulation unavoidable. The return gas of RPCs operated in conditions similar to the experimental background foreseen at LHC contains large amount of impurities potentially dangerous for long-term operation. Several gas-cleaning agents, characterized during the past years, are currently in use. New test allowed understanding of the properties and performance of a large number of purifiers. On that basis, an optimal combination of different filters consisting of Molecular Sieve (MS) 5Å and 4Å, and a Cu catalyst R11 has been chosen and validated irradiating a set of RPCs at the CERN Gamma Irradiation Facility (GIF) for several years. A very important feature of this new configuration is the increase of the cycle duration for each purifier, which results in better system stabilit...

  17. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  18. Position, Energy, and Transit Time Distributions in a Hemispherical Deflector Analyzer with Position Sensitive Detector

    Directory of Open Access Journals (Sweden)

    Omer Sise

    2015-01-01

    Full Text Available Practical analytic equations, for the ideal field, and numerical results from SIMION simulations, for the fringing field, are presented for the exit radius rπ and transit time tπ of electrons in a hemispherical deflector analyzer (HDA over a wide range of analyzer parameters. Results are presented for a typically dimensioned HDA with mean radius R-=101.6 mm and interradial separation ΔR=R2-R1=58.4 mm able to accommodate a 40 mm diameter position sensitive detector (PSD. Results for three different entry positions R0 are compared: R0=R- (the conventional central entry and two displaced (paracentric entries: R0=82.55 mm and R0=116 mm. Exit spreads Δrπ, Δtπ and base energy resolution ΔEB are computed for HDA pass energies E0=10, 100, 500, and 1000 eV, entry aperture sizes Δr0≤1.5 mm, entry angular spreads |αmax|≤5°, and an electron beam with relative energy spread δE/E0≤0.4%. Overall, under realistic conditions, both paracentric entries demonstrate near ideal field behavior and clear superiority over the conventional entry at R0=R-. The R0=82.55 mm entry has better absolute energy and time spread resolutions, while the R0=116 mm has better relative energy resolutions, both offering attractive alternatives for time-of-flight and coincidence applications where both energy and timing resolutions are important.

  19. Ventilatory sensitivity to mild asphyxia: prone versus supine sleep position

    OpenAIRE

    Galland, B; Bolton, D; Taylor, B; Sayers, R; Williams, S

    2000-01-01

    AIMS—To compare the effects of prone and supine sleep position on the main physiological responses to mild asphyxia: increase in ventilation and arousal.
METHODS—Ventilatory and arousal responses to mild asphyxia (hypercapnia/hypoxia) were measured in 53 healthy infants at newborn and 3 months of age, during quiet sleep (QS) and active sleep (AS), and in supine and prone sleep positions. The asphyxial test mimicked face down rebreathing by slowly altering the inspired air: C...

  20. Fast reactor cover gas purification - The UK position

    International Nuclear Information System (INIS)

    Thorley, A.W.

    1987-01-01

    The cover gas in the Prototype Fast Reactor (PFR) provides an inert gas blanket for both primary and secondary sodium circuits, ensures inert gas padding exists between the upper seals associated with penetrations through the reactor roof and provides argon to items of plant such as the control rods and the rotating shield and also to on line instruments such as the secondary circuit Katharometers. In order to meet these and other requirements purification of the argon cover gas is important to ensure: gas fed to purge gaps in the area of the magnetic hold device in the control rod mechanisms is not laden with sodium aerosols and reactive impurities (O 2 , H 2 ) which could cause blocking both within the gaps and pipelines; gas phase detection systems which provide early warning of steam generator failures or oil ingress into the sodium are not affected by the presence of gaseous impurities such as H 2 , CO/CO 2 and CH 4 ; mass transfer processes involving both corrosion products and interstitial atoms cannot be sustained in the cover gas environment due to the presence of high levels of O 2 , N 2 and carburising gases; background levels of radioactivity (eg Xe 133) are sufficiently low to enable gas phase detection of failed fuel pins, and the primary circuit gas blanket activity is sufficiently reduced so that discharges to the atmosphere are minimised. This paper describes how the PFR cover gas purification system is coping with these various items and how current thinking regarding the design of cover gas purification systems for a Civil Demonstration Fast Reactor (CDFR), where larger gas volumes and higher levels of radioactivity may be involved, is being guided by current experience on PFR. The paper also briefly review the experimental work planned to study aerosol and caesium behaviour in cove gas environments and discusses the behaviour of those impurities such as Zn, oil and N 2 which are potentially damaging if certain levels are exceeded in operating

  1. Analytical expression for position sensitivity of linear response beam position monitor having inter-electrode cross talk

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh, E-mail: mukeshk@rrcat.gov.in [Beam Diagnostics Section, Indus Operations, Beam Dynamics & Diagnostics Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013 MP (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094 (India); Ojha, A.; Garg, A.D.; Puntambekar, T.A. [Beam Diagnostics Section, Indus Operations, Beam Dynamics & Diagnostics Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013 MP (India); Senecha, V.K. [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094 (India); Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013 MP (India)

    2017-02-01

    According to the quasi electrostatic model of linear response capacitive beam position monitor (BPM), the position sensitivity of the device depends only on the aperture of the device and it is independent of processing frequency and load impedance. In practice, however, due to the inter-electrode capacitive coupling (cross talk), the actual position sensitivity of the device decreases with increasing frequency and load impedance. We have taken into account the inter-electrode capacitance to derive and propose a new analytical expression for the position sensitivity as a function of frequency and load impedance. The sensitivity of a linear response shoe-box type BPM has been obtained through simulation using CST Studio Suite to verify and confirm the validity of the new analytical equation. Good agreement between the simulation results and the new analytical expression suggest that this method can be exploited for proper designing of BPM.

  2. Position sensitive proportional counters as focal plane detectors

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1979-01-01

    The rise time and charge division techniques for position decoding with RC-line proportional counters are reviewed. The advantages that these detectors offer as focal plane counters for nuclear spectroscopy performed with magnetic spectrographs are discussed. The theory of operation of proportional counters as position sensing devices is summarized, as well as practical aspects affecting their application. Factors limiting the position and energy resolutions obtainable with a focal plane proportional counter are evaluated and measured position and energy loss values are presented for comparison. Detector systems capable of the multiparameter measurements required for particle identification, background suppression and ray-tracing are described in order to illustrate the wide applicability of proportional counters within complex focal plane systems. Examples of the use of these counters other than with magnetic spectrographs are given in order to demonstrate their usefulness in not only nuclear physics but also in fields such as solid state physics, biology, and medicine. The influence of the new focal plane detector systems on future magnetic spectrograph designs is discussed. (Auth.)

  3. Modification of inkjet printer for polymer sensitive layer preparation on silicon-based gas sensors

    Directory of Open Access Journals (Sweden)

    Tianjian Li

    2015-04-01

    Full Text Available Inkjet printing is a versatile, low cost deposition technology with the capabilities for the localized deposition of high precision, patterned deposition in a programmable way, and the parallel deposition of a variety of materials. This paper demonstrates a new method of modifying the consumer inkjet printer to prepare polymer-sensitive layers on silicon wafer for gas sensor applications. A special printing tray for the modified inkjet printer to support a 4-inch silicon wafer is designed. The positioning accuracy of the deposition system is tested, based on the newly modified printer. The experimental data show that the positioning errors in the horizontal direction are negligibly small, while the positioning errors in the vertical direction rise with the increase of the printing distance of the wafer. The method for making suitable ink to be deposited to form the polymer-sensitive layer is also discussed. In the testing, a solution of 0.1 wt% polyvinyl alcohol (PVA was used as ink to prepare a sensitive layer with certain dimensions at a specific location on the surface of the silicon wafer, and the results prove the feasibility of the methods presented in this article.

  4. Centroid finding method for position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Boie, R.A.

    1979-10-01

    A new centroid finding method for all detectors where the signal charge is collected or induced on strips of wires, or on subdivided resistive electrodes, is presented. The centroid of charge is determined by convolution of the sequentially switched outputs from these subdivisions or from the strips with a linear centroid finding filter. The position line width is inversely proportional to N/sup 3/2/, where N is the number of subdivisions

  5. Centroid finding method for position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Boie, R.A.

    1980-01-01

    A new centroid finding method for all detectors where the signal charge is collected or induced on strips or wires, or on subdivided resistive electrodes, is presented. The centroid of charge is determined by convolution of the sequentially switched outputs from these subdivisions or from the strips with a linear centroid finding filter. The position line width is inversely proportional to N 3 sup(/) 2 , where N is the number of subdivisions. (orig.)

  6. Fast reactor cover gas purification - The UK position

    Energy Technology Data Exchange (ETDEWEB)

    Thorley, A W

    1987-07-01

    The cover gas in the Prototype Fast Reactor (PFR) provides an inert gas blanket for both primary and secondary sodium circuits, ensures inert gas padding exists between the upper seals associated with penetrations through the reactor roof and provides argon to items of plant such as the control rods and the rotating shield and also to on line instruments such as the secondary circuit Katharometers. In order to meet these and other requirements purification of the argon cover gas is important to ensure: gas fed to purge gaps in the area of the magnetic hold device in the control rod mechanisms is not laden with sodium aerosols and reactive impurities (O{sub 2}, H{sub 2}) which could cause blocking both within the gaps and pipelines; gas phase detection systems which provide early warning of steam generator failures or oil ingress into the sodium are not affected by the presence of gaseous impurities such as H{sub 2}, CO/CO{sub 2} and CH{sub 4}; mass transfer processes involving both corrosion products and interstitial atoms cannot be sustained in the cover gas environment due to the presence of high levels of O{sub 2}, N{sub 2} and carburising gases; background levels of radioactivity (eg Xe 133) are sufficiently low to enable gas phase detection of failed fuel pins, and the primary circuit gas blanket activity is sufficiently reduced so that discharges to the atmosphere are minimised. This paper describes how the PFR cover gas purification system is coping with these various items and how current thinking regarding the design of cover gas purification systems for a Civil Demonstration Fast Reactor (CDFR), where larger gas volumes and higher levels of radioactivity may be involved, is being guided by current experience on PFR. The paper also briefly review the experimental work planned to study aerosol and caesium behaviour in cove gas environments and discusses the behaviour of those impurities such as Zn, oil and N{sub 2} which are potentially damaging if certain

  7. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  8. Strengthening Canada's position in the North American natural gas market

    International Nuclear Information System (INIS)

    2001-09-01

    The Canadian Gas Association (CGA) is the industry organization that represents the Canadian natural gas and energy delivery industry. It is on the frontline of consumer perceptions regarding natural gas, which is the fuel of choice for Canadian homeowners. Canadian consumers have benefitted from the deregulation initiatives of the mid-1980s which provided significant growth opportunities. Given the tumultuous energy environment throughout North America, the CGA believes that a national energy strategy should be developed to address future supply issues and also to examine ways to ensure that extreme market shifts are anticipated and mitigated as much as possible. The CGA is ready to provide governments with input for such a strategy representing the perspective of the Canadian consumer. The CGA recommends that the Government of Canada, the provinces and territories adopt the following initiatives regarding the use of natural gas: (1) recognize and promote the environmental qualities and applications of natural gas, (2) encourage competition, (3) promote transparent and consistent approach to regulation, (4) reaffirm commitment to market-based policies, (5) facilitate economic research, analysis and communication about trends in the natural gas market, and (6) promote the development of new technologies that expand the uses of natural gas and support research in infrastructure development. The government's actions in the areas proposed in this report will contribute to advancing Canada's environmental objectives and economic growth. 2 figs

  9. Plastic scintillators utilization in position sensitive detection systems

    International Nuclear Information System (INIS)

    Garcia, Marcelo Bernardes; Soares, Adalberto Jose; Baptista Filho, Benedito Dias

    2002-01-01

    This paper shows the viability of using a plastic scintillator detector to determine the one dimension position of a radioactive source. The experiments were performed using collimated 99m Tc sources of several activities supplied by the Centro de Radiofarmacia (from IPEN), and a 15 cm long plastic scintillator with diameter 5,08 cm, produced by the Centro de Tecnologia das Radiacoes (also from IPEN). The spectrum was obtained using the Genie 2000 software, and the results processed using a neural network specially developed for the proposed application. The final results demonstrate the viability of the proposed application. (author)

  10. Cellular automaton-based position sensitive detector equalization

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando, Nestor [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)], E-mail: nesferjo@upvnet.upv.es; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M. [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  11. Three-dimensional, position-sensitive radiation detection

    Science.gov (United States)

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  12. 1-D position sensitive single carrier semiconductor detectors

    International Nuclear Information System (INIS)

    Zhong He; Knoll, G.F.; Wehe, D.K.; Rojeski, R.; Mastrangelo, C.H.; Hammig, M.; Barrett, C.; Uritani, A.

    1996-01-01

    A single polarity charge sensing method has been studied using coplanar electrodes on 5 mm cubes of CdZnTe γ-ray detectors. This method can ameliorate the hole trapping problem of room-temperature semiconductor detectors. Our experimental results confirm that the energy resolution is dramatically improved compared with that obtained using the conventional readout method, but is still about an order of magnitude worse than the theoretical limit. A method to obtain the γ-ray interaction depth between the cathode and the anode is presented here. This technique could be used to correct for the electron trapping as a function of distance from the coplanar electrodes. Experimental results showed that a position resolution of about 0.9 mm FWHM at 122 keV can be obtained. These results will be of interest in the design of higher performance room-temperature semiconductor γ-ray detectors. (orig.)

  13. Cellular automaton-based position sensitive detector equalization

    International Nuclear Information System (INIS)

    Ferrando, Nestor; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M.

    2009-01-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  14. 2D position sensitive microstrip sensors with charge division along the strip Studies on the position measurement error

    CERN Document Server

    Bassignana, D; Fernandez, M; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I; Vitorero, F

    2013-01-01

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proofof-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphasis ...

  15. Flat Panel PMT: advances in position sensitive photodetection

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Trotta, C.; Cinti, M.N.; Bennati, P.; Trotta, G.; Iurlaro, G.; Montani, L.; Ridolfi, S.; Cusanno, F.; Garibaldi, F.

    2003-01-01

    Over the last ten years there was being a strong advancement in photodetection. Different application fields are involved in their use in particular high energy physics, astrophysics and nuclear medicine. They usually work by coupling a scintillation crystal and more recent scintillation arrays with pixel size as small as 0.5 mm. PSPMT represents today the most ready technology for photodetection with large detection areas and very high spatial resolution. Flat panel PMT represents the last technological advancement. Its dimension is 50x50 mm 2 with a narrow peripheral dead zone (0.5 mm final goal). Its compactness allow to assemble different modules closely packed, achieving large detection areas with an effective active area of 97%. In this paper we analyze the imaging performances of PSPMT by coupling two scintillation arrays and by light spot scanning of photocathode to evaluate the linearity position response, spatial resolution and uniformity gain response as a function of light distribution spread and the number of photoelectrons generated on photocathode. The results point out a very narrow PMT intrinsic charge spread and low cross-talk between anodes. Energy resolution and spatial resolution show a good linearity with DRF variation. An unexpected intra-anode gain variation is carried out. In this paper we present the results obtained with this PSPMT regarding imaging performances principally addressed to nuclear medicine application

  16. A two-dimensional low energy gamma-ray position sensitive detector

    International Nuclear Information System (INIS)

    Charalambous, P.M.; Dean, A.J.; Drane, M.; Gil, A.; Stephen, J.B.; Young, N.G.S.; Barbareschi, L.; Perotti, F.; Villa, G.; Badiali, M.; La Padula, C.; Polcaro, F.; Ubertini, P.

    1984-01-01

    An array of 1-dimensional position sensitive detectors designed to operate over the photon energy range 0.2-10.0 MeV, so as to form an efficient 2-dimensional position sensitive detection plane is described. A series of experimental tests has been carried out to evaluate and confirm the computed capabilities. (orig.)

  17. A position-sensitive scintillation detector for two-dimensional angular correlation of annihilation radiation using metal-package position-sensitive photomultiplier tubes

    International Nuclear Information System (INIS)

    Inoue, Koji; Nagai, Yasuyoshi; Saito, Haruo; Nagashima, Yasuyuki; Hyodo, Toshio; Muramatsu, Shinichi; Nagai, Shota

    1999-01-01

    We have constructed and tested a prototype of a new position sensitive γ-ray detector which consists of an array of 2.6x2.6x18 mm 3 BGO scintillator blocks, a light guide, and four metal-package position-sensitive photomultiplier tubes (R5900-00-C8) recently developed by Hamamatsu Photonics Co. Ltd. Scalability of the detector of this type makes it possible to construct a larger detector using many PS-PMTs, which will be useful for the two-dimensional angular correlation of annihilation radiation apparatus

  18. Use of Opioid Medications for Employees in Critical Safety or Security Positions and Positions with Safety Sensitive Duties

    Science.gov (United States)

    2017-01-30

    can cause harm) to the physical well-being of or jeopardize the security of the employee , co-workers, customers or the general public through a lapse...DEPARTMENT OF THE ARMY US ARMY PUBLIC HEALTH CENTER 5158 BLACKHAWK ROAD ABERDEEN PROVING GROUND MARYLAND 21010-5403 Directorate of Clinical... Employees in Critical Safety or Security Positions and Positions with Safety Sensitive Duties. 1. REFERENCES. A. Army Regulation 40-5, Preventive

  19. Quartz crystal microbalance gas sensor with nanocrystalline diamond sensitive layer

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Laposa, A.; Kulha, Pavel; Kroutil, J.; Husák, M.; Kromka, Alexander

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2591-2597 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : gas sensor * nanocrystalline diamond * quartz resonator * thickness shear mode Subject RIV: JB - Sensor s, Measurment, Regulation Impact factor: 1.522, year: 2015

  20. Prototype of high resolution PET using resistive electrode position sensitive CdTe detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Matsuyama, Shigeo; Yamazaki, Hiromichi

    2008-01-01

    Downsizing detector elements makes it possible that spatial resolutions of positron emission tomography (PET) cameras are improved very much. From this point of view, semiconductor detectors are preferable. To obtain high resolution, the pixel type or the multi strip type of semiconductor detectors can be used. However, in this case, there is a low packing ratio problem, because a dead area between detector arrays cannot be neglected. Here, we propose the use of position sensitive semiconductor detectors with resistive electrode. The CdTe detector is promising as a detector for PET camera because of its high sensitivity. In this paper, we report development of prototype of high resolution PET using resistive electrode position sensitive CdTe detectors. We made 1-dimensional position sensitive CdTe detectors experimentally by changing the electrode thickness. We obtained 750 A as an appropriate thickness of position sensitive detectors, and evaluated the performance of the detector using a collimated 241 Am source. A good position resolution of 1.2 mm full width half maximum (FWHM) was obtained. On the basis of the fundamental development of resistive electrode position sensitive detectors, we constructed a prototype of high resolution PET which was a dual head type and was consisted of thirty-two 1-dimensional position sensitive detectors. In conclusion, we obtained high resolutions which are 0.75 mm (FWHM) in transaxial, and 1.5 mm (FWHM) in axial. (author)

  1. Position sensitive photon detectors using epitaxial InGaAs/InAlAs quantum wells

    International Nuclear Information System (INIS)

    Ganbold, T.; Antonelli, M.; Cautero, G.; Jark, H.; Eichert, D.M.; Cucini, R.; Menk, R.H.; Biasiol, G.

    2014-01-01

    This work deals with the investigation of novel position-sensitive devices based on InGaAs/InAlAs quantum wells, which could be applied to several applications of either synchrotron or conventional light sources. Such devices may be used as fast and efficient detectors due to the direct, low-energy band gap and high electron mobility at room temperature. Metamorphic In 0.75 Ga 0.25 As/In 0.75 Al 0.25 As quantum wells containing a two-dimensional electron gas were grown by molecular beam epitaxy. Two devices with size of 5 × 5 mm 2 were prepared by using optical lithography. In the first, the active layers were segmented into four electrically insulated quadrants. Indium ohmic contacts were realized on the corner of each quadrant (for readout) and on the back surface (for bias). In the second, the quantum well was left unsegmented and covered by 400 nm of Al providing a single bias electrode, while four readout electrodes were fabricated on the back side by depositing and segmenting a Ni/Ge/Au layer. Photo-generated carriers can be collected at the readout electrodes by biasing from either the QW side or the back side of the devices during beam exposure. Individual currents obtained from each electrode allow monitoring of both the position and the intensity of the impinging beam for photon energies ranging from visible to hard X-ray. Such detector prototypes were tested with synchrotron radiation. Moreover, the position of the beam can be estimated with a precision of 800 nm in the segmented QW. A lower precision of 10 μm was recorded in the unsegmented QW due to the charge diffusion through the 500-μm-thick wafer, with however a lower electronic noise due to the better uniformity of the contacts

  2. Two-dimensional position sensitive silicon photodiode as a charged particle detector

    International Nuclear Information System (INIS)

    Kovacevic, K.; Zadro, M.

    1999-01-01

    A two-dimensional position sensitive silicon photodiode has been tested for measurement of position and energy of charged particles. Position nonlinearity and resolution, as well as energy resolution and ballistic deficit were measured for 5.486 MeV α-particles. The results obtained for different pulse shaping time constants are presented

  3. A position-sensitive start detector for time-of-flight measurement

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Shikazono, Naomoto; Isoyama, Goro.

    1978-08-01

    A position-sensitive start detector for a time-of-flight measurement is described. In this detector microchannel plates were used to obtain time and position signals simultaneously. A time resolution of 121 psec FWHM and a position resolution of 0.28 mm FWHM were obtained for α-particles from an 241 Am source. (auth.)

  4. POSSuMUS: a position sensitive scintillating muon SiPM detector

    CERN Document Server

    Ruschke, Alexander

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle’s position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm2 to few m2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module ...

  5. Positivity-preserving dual time stepping schemes for gas dynamics

    Science.gov (United States)

    Parent, Bernard

    2018-05-01

    A new approach at discretizing the temporal derivative of the Euler equations is here presented which can be used with dual time stepping. The temporal discretization stencil is derived along the lines of the Cauchy-Kowalevski procedure resulting in cross differences in spacetime but with some novel modifications which ensure the positivity of the discretization coefficients. It is then shown that the so-obtained spacetime cross differences result in changes to the wave speeds and can thus be incorporated within Roe or Steger-Warming schemes (with and without reconstruction-evolution) simply by altering the eigenvalues. The proposed approach is advantaged over alternatives in that it is positivity-preserving for the Euler equations. Further, it yields monotone solutions near discontinuities while exhibiting a truncation error in smooth regions less than the one of the second- or third-order accurate backward-difference-formula (BDF) for either small or large time steps. The high resolution and positivity preservation of the proposed discretization stencils are independent of the convergence acceleration technique which can be set to multigrid, preconditioning, Jacobian-free Newton-Krylov, block-implicit, etc. Thus, the current paper also offers the first implicit integration of the time-accurate Euler equations that is positivity-preserving in the strict sense (that is, the density and temperature are guaranteed to remain positive). This is in contrast to all previous positivity-preserving implicit methods which only guaranteed the positivity of the density, not of the temperature or pressure. Several stringent reacting and inert test cases confirm the positivity-preserving property of the proposed method as well as its higher resolution and higher computational efficiency over other second-order and third-order implicit temporal discretization strategies.

  6. The measurement of the radioactive aerosol diameter by position sensitive detectors, 3

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki; Nakamoto, Atsushi; Kanamori, Masashi; Seki, Akio.

    1981-10-01

    The measurement of the diameter of radioactive aerosol, in particular plutonium aerosol, is very important for the internal dose estimation. Determination of the diameter of radioactive aerosol is performed by using the position sensitive detectors. Position sensitive semiconductor detectors and Scintillation detectors with IIT tube are used as the position sensitive detector. The filter paper with the radioactive aerosols is contacted to the PSD which is connected to the data processor so that the diameter of the aerosol is calculated from the measured radioactivity. (author)

  7. Sensitivity of orthopositronium annihilation to density fluctuations in ethane gas

    International Nuclear Information System (INIS)

    Eftekhari, A.

    1982-01-01

    The annihilation rates of orthopositronium (o-Ps) and free positrons and positronium formation fractions have been measured in gaseous ethane at seven temperatures between 295 and 377 K for densities in the range 1.2-286 amagat. The pick off quenching rate of o-Ps is observed to vary with temperature at low densities of ethane. The observed behavior of the o-Ps annihilation rates with density and temperature is interpreted in terms of density fluctuations in ethane gas. A simple theoretical model is developed which explains the observed annihilation behavior reasonably well at those temperatures and densities where density fluctuations are small. The annihilation rates of flow-energy positrons indicate the formation of positron-ethane collision complexes and self-trapping of positrons in clusters of ethane molecules. The o-Ps yields appear to be independent of temperature and show a strong dependence on the density of the gas

  8. Price-related sensitivities of greenhouse gas intensity targets

    International Nuclear Information System (INIS)

    Muller, Benito; Muller-Furstenberger, Georg

    2003-12-01

    Greenhouse gas intensities are an appealing tool to foster abatement without imposing constraints on economic growth. This paper shows, however, that the computation of intensities is subject to some significant statistical and conceptual problems which relate to the inflation proofing of GDP growth. It is shown that the choice of price-index, the updating of quantity weights and the choice of base year prices can have a significant impact upon the commitment of intensity targets

  9. An ancient form of position-sensitive detector - the individual counter array

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1983-01-01

    Large position sensitive detectors (PSDs) have been very successful as high efficiency neutron powder diffractometers. Complete powder patterns can be obtained within minutes, making possible real-time measurements of structural changes accompanying chemical and electrochemical reactions. The angular resolution of such machines is determined by the diameter of the sample, and not simply by the resolution of the detector itself. It is argued that since sample diameters are usually 5mm to 10mm, it is possible to use an array of individual counters of similar diameter rather than a true PSD. Such a low to medium resolution individual counter array (ICA) can be made more efficient than the true PSD, produces an identical diffraction pattern, and has several practical advantages, including covering a greater solid angle. For high resolution powder diffraction, it has already been demonstrated that an ICA, in this case associated with Soller collimators, is again the most efficient solution. This is because the sample volume (and intensity) of a high resolution PSD decreases quadratically with the diameter of the sample. The only alternative to very small samples would be a large sample-detector distance, and then large vertical divergences cannot be achieved because of mechanical limitations on gas-filled PSD apertures; again intensity is lost. The resolution and efficiency of the ICA are discussed. (author)

  10. Nasal continuous positive airway pressure: does bubbling improve gas exchange?

    Science.gov (United States)

    Morley, C J; Lau, R; De Paoli, A; Davis, P G

    2005-07-01

    In a randomised crossover trial, 26 babies, treated with Hudson prong continuous positive airway pressure (CPAP) from a bubbling bottle, received vigorous, high amplitude, or slow bubbling for 30 minutes. Pulse oximetry, transcutaneous carbon dioxide, and respiratory rate were recorded. The bubbling rates had no effect on carbon dioxide, oxygenation, or respiratory rate.

  11. GAS5 modulated autophagy is a mechanism modulating cisplatin sensitivity in NSCLC cells.

    Science.gov (United States)

    Zhang, N; Yang, G-Q; Shao, X-M; Wei, L

    2016-06-01

    In this study, we investigated the association between lncRNA GAS5 and cisplatin (DDP) resistance in NSCLC and further studied the regulative effect of GAS5 on autophagy and DDP resistance. GAS5 expression in cancerous and adjacent normal tissues from 15 NSCLC patients received neoadjuvant chemotherapy and the following surgery were measured using qRT-PCR analysis. GAS5 gain-and-loss study was performed using A549 and A549/DDP cells as an in-vitro model to investigate the effect of GAS5 on autophagy and cisplatin sensitivity. NSCLC tissues had a substantially lower expression of GAS5 than adjacent normal tissues. The NSCLC tissues from patients with progressive disease (PD) had even lower GAS5 expression. GAS5 knockdown increased DDP IC50 of A549 cells, while GAS5 overexpression decreased DDP IC50 of A549/DDP cells. A549/DDP cells had significantly higher basal autophagy than A549 cells. GAS5 knockdown resulted in decreased autophagy in A549 cells, while GAS5 overexpression led to increased autophagy in A549/DDP cells. Treatment with 3-MA, an autophagy inhibitor, significantly decreased DDP IC50 and promoted DDP-induced cell apoptosis in A549 cells. In addition, 3-MA also partly reversed the effect of GAS5 knockdown. In A549/DDP cells, GAS5 showed the similar effect as 3-MA in reducing DPP IC50 and promoting DDP-induced apoptosis and also presented synergic effect with 3-MA. GAS5 downregulation is associated with cisplatin resistance in NSCLC. GAS5 can inhibit autophagy and therefore enhance cisplatin sensitivity in NSCLC cells.

  12. A large area two-dimensional position sensitive multiwire proportional detector

    CERN Document Server

    Moura, M M D; Souza, F A; Alonso, E E; Fujii, R J; Meyknecht, A B; Added, N; Aissaoui, N; Cardenas, W H Z; Ferraretto, M D; Schnitter, U; Szanto, E M; Szanto de Toledo, A; Yamamura, M S; Carlin, N

    1999-01-01

    Large area two-dimensional position sensitive multiwire proportional detectors were developed to be used in the study of light heavy-ion nuclear reactions at the University of Sao Paulo Pelletron Laboratory. Each detector has a 20x20 cm sup 2 active area and consists of three grids (X-position, anode and Y-position) made of 25 mu m diameter gold plated tungsten wires. The position is determined through resistive divider chains. Results for position resolution, linearity and efficiency as a function of energy and position for different elements are reported.

  13. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Science.gov (United States)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  14. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor

    Science.gov (United States)

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-01

    Few-layer MoS2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS2/Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS2/SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS2-based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ˜50% RH), with good repeatability and selectivity of the MoS2/SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS2/SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  15. Natural gas position in the energy sector of the 21. century

    International Nuclear Information System (INIS)

    Peltier, Th.

    2000-01-01

    Natural gas with its abundant reserves, largely distributed all around the world, and with its low environmental impacts, should assert its position since the beginning of the 21. century. However, the fundamentals of our world are changing more and more rapidly and some short term events can modify this long term optimistic vision of natural gas development. This was the topic debated during a round table of the WOC 9 working committee of the CMG 2000 worldwide gas congress: the long term future of natural gas industry, the population need for a sustainable development, the potentialities of gas resources, the need for large scale interconnected energy networks, the new technologies favourable to the development of natural gas uses, the progressive 'decarbonization' of energy sources, the global warming and the role of R and D, the risks that could threat natural gas development. (J.S.)

  16. Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si

    Science.gov (United States)

    Javadi, Mohammad; Gholami, Mahdiyeh; Torbatiyan, Hadis; Abdi, Yaser

    2018-03-01

    Various configurations like p-n junctions, metal-semiconductor Schottky barriers, and metal-oxide-semiconductor structures have been widely used in position-sensitive detectors. In this report, we propose a PEDOT:PSS/n-Si heterojunction as a hybrid organic/inorganic configuration for position-sensitive detectors. The influence of the thickness of the PEDOT:PSS layer, the wavelength of incident light, and the intensity of illumination on the device performance are investigated. The hybrid PSD exhibits very high sensitivity (>100 mV/mm), excellent nonlinearity (0.995) with a response time of heterojunction are very promising for developing a new class of position-sensitive detectors based on the hybrid organic/inorganic junctions.

  17. A digital divider with extension bits for position-sensitive detectors

    International Nuclear Information System (INIS)

    Koike, Masaki; Hasegawa, Ken-ichi

    1988-01-01

    Digitizing errors produced in a digital divider for position-sensitive detectors have been reduced by adding extension bits to data bits. A relation between the extension bits and the data bits to obtain perfect position uniformity is also given. A digital divider employing 10 bit ADCs and 6 bit extension circuits has been constructed. (orig.)

  18. High resolution multiple sampling ionization chamber (MUSIC) sensitive to position coordinates

    International Nuclear Information System (INIS)

    Petrascu, H.; Kumagai, H.; Tanihata, I.; Petrascu, M.

    1999-01-01

    A new type of MUSIC sensitive to position coordinates is reported. The development of the first version of this type of chamber is based on the principles presented by Badhwar in 1973. The present detector will be used in experiments on fusion by using radioactive beams. This chamber due to the high resolution is suitable to identification and tracking of low Z particles. One of our goals, when we started this work, was to reduce as much as possible the Z value of particles that can be 'seen' by an ionization chamber. The resolution of the chamber was significantly improved by connecting the preamplifiers directly to the MUSIC's pads. These preamplifiers are able to work in vacuum and very low gas pressure. In this way the value of signal to noise ratio was increased by a factor of ∼10. The detector is of Frisch grid type, with the anode split into 10 active pads. It is the first model of a MUSIC with the field shared between the position grid and the anode pads. The Frisch grid was necessary because the detector is originally designed for very accurate energy measurements and particle identification. A drawing of this detector is shown. The detector itself consists of four main parts. The first one is the constant field-gradient cage, sandwiched in between the cathode and the Frisch grid. The second is the Frisch grid. The third is the position grid located under the Frisch grid. The last one is the plate with the anode pads. The cage is made of 100 μm Cu-Be wires. Every wire was tensioned with a weight representing half of its breaking limit. The Frisch grid was done on an aluminium frame, on which 20 μm W wires spaced 0.3 mm, were wound. For the position grid, 10 groups of 20 μm gold plated W wires have been used. Each group consisted of 5 wires spaced 0.9 mm and connected in parallel. The anode pads 7.8 x 60 mm 2 were perpendicular to the beam direction. Each pad and each of the position wire groups were connected to a preamplifier. The energy resolution

  19. Maternal sensitivity and latency to positive emotion following challenge: pathways through effortful control.

    Science.gov (United States)

    Conway, Anne; McDonough, Susan C; Mackenzie, Michael; Miller, Alison; Dayton, Carolyn; Rosenblum, Katherine; Muzik, Maria; Sameroff, Arnold

    2014-01-01

    The ability to self-generate positive emotions is an important component of emotion regulation. In this study, we focus on children's latency to express positive emotions following challenging situations and assess whether this ability operates through early maternal sensitivity and children's effortful control. Longitudinal relations between maternal sensitivity, infant negative affect, effortful control, and latency to positive emotion following challenge were examined in 156 children who were 33 months of age. Structural equation models supported the hypothesis that maternal sensitivity during infancy predicted better effortful control and, in turn, shorter latencies to positive emotions following challenge at 33 months. Directions for future research are discussed. © 2014 Michigan Association for Infant Mental Health.

  20. Gas migration in KBS-3 buffer bentonite. Sensitivity of test parameters to experimental boundary conditions

    International Nuclear Information System (INIS)

    Harrington, J.F.; Horseman, S.T.

    2003-01-01

    In the current Swedish repository design concept, hydrogen gas can be generated inside a waste canister by anaerobic corrosion of the ferrous metal liner. If the gas generation rate exceeds the diffusion rate of gas molecules in the buffer porewater, gas will accumulate in the void-space of a canister until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. Three long tenn gas injection tests have been performed on cylinders of pre-compacted MX80 bentonite. Two of these tests were undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. Gas was injected at a centrally located porous filter installed in the clay before hydration. Arrangements were made for gas to flow to three independently monitored sink-filter arrays mounted around the specimen. Axial and radial total stresses and internal porewater pressures were continuously monitored. Breakthrough and peak gas pressures were substantially larger than the sum of the swelling pressure and the external porewater. The third test was performed. using an apparatus which radially constrains the specimen during gas flow. Observed sensitivity of the breakthrough and peak gas pressures to the test boundary conditions suggests that gas entry must be accompanied by dilation of the bentonite fabric. In other words, there is a tendency for the volume of the specimen to increase during this process. The experimental evidence is consistent with the flow of gas along a relatively small number of crack-like pathways which propagate through the clay as gas pressure increases. Gas entry and breakthrough under constant volume boundary conditions causes a substantial increase in the total stress and the internal porewater pressure. It is possible to determine the point at which gas enters the clay by monitoring changes in these parameters. Localisation of gas flow within multiple pathways results, in nonuniform discharge rates at the sinks. When gas injection

  1. Gas migration in KBS-3 buffer bentonite. Sensitivity of test parameters to experimental boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, J.F.; Horseman, S.T. [British Geological Survey, Nottingham (United Kingdom)

    2003-01-01

    In the current Swedish repository design concept, hydrogen gas can be generated inside a waste canister by anaerobic corrosion of the ferrous metal liner. If the gas generation rate exceeds the diffusion rate of gas molecules in the buffer porewater, gas will accumulate in the void-space of a canister until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. Three long tenn gas injection tests have been performed on cylinders of pre-compacted MX80 bentonite. Two of these tests were undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. Gas was injected at a centrally located porous filter installed in the clay before hydration. Arrangements were made for gas to flow to three independently monitored sink-filter arrays mounted around the specimen. Axial and radial total stresses and internal porewater pressures were continuously monitored. Breakthrough and peak gas pressures were substantially larger than the sum of the swelling pressure and the external porewater. The third test was performed. using an apparatus which radially constrains the specimen during gas flow. Observed sensitivity of the breakthrough and peak gas pressures to the test boundary conditions suggests that gas entry must be accompanied by dilation of the bentonite fabric. In other words, there is a tendency for the volume of the specimen to increase during this process. The experimental evidence is consistent with the flow of gas along a relatively small number of crack-like pathways which propagate through the clay as gas pressure increases. Gas entry and breakthrough under constant volume boundary conditions causes a substantial increase in the total stress and the internal porewater pressure. It is possible to determine the point at which gas enters the clay by monitoring changes in these parameters. Localisation of gas flow within multiple pathways results, in nonuniform discharge rates at the sinks. When gas injection

  2. Comparing the sensitivity of permafrost and marine gas hydrate to climate warming

    International Nuclear Information System (INIS)

    Taylor, A.E.; Dallimore, S.R.; Hyndman, R.D.; Wright, F.

    2005-01-01

    The sensitivity of Arctic subpermafrost gas hydrate at the Mallik borehole was compared to temperate marine gas hydrate located offshore southwestern Canada. In particular, a finite element geothermal model was used to determine the sensitivity to the end of the ice age, and contemporary climate warming of a 30 m thick methane hydrate layer lying at the base of a gas hydrate stability zone prior to 13.5 kiloannum (ka) before present (BP). It was suggested that the 30 m gas-hydrate-bearing layer would have disappeared by now, according to the thermal signal alone. However, the same gas-hydrate-bearing layer underlying permafrost would persist until at least 4 ka after present, even with contemporary climate warming. The longer time for subpermafrost gas hydrate comes from the thawing pore ice at the base of permafrost, at the expense of dissociation of the deeper gas hydrate. The dissociation of underlying gas hydrate from climate surface warming is buffered by the overlying permafrost

  3. An investigation of the matrix sensitivity of refinery gas analysis using gas chromatography with flame ionisation detection.

    Science.gov (United States)

    Ferracci, Valerio; Brown, Andrew S; Harris, Peter M; Brown, Richard J C

    2015-02-27

    The response of a flame ionisation detector (FID) on a gas chromatograph to methane, ethane, propane, i-butane and n-butane in a series of multi-component refinery gas standards was investigated to assess the matrix sensitivity of the instrument. High-accuracy synthetic gas standards, traceable to the International System of Units, were used to minimise uncertainties. The instrument response exhibited a small dependence on the component amount fraction: this behaviour, consistent with that of another FID, was thoroughly characterised over a wide range of component amount fractions and was shown to introduce a negligible bias in the analysis of refinery gas samples, provided a suitable reference standard is employed. No significant effects of the molar volume, density and viscosity of the gas mixtures on the instrument response were observed, indicating that the FID is suitable for the analysis of refinery gas mixtures over a wide range of component amount fractions provided that appropriate drift-correction procedures are employed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Superior selectivity and sensitivity of blue phosphorus nanotubes in gas sensing applications

    KAUST Repository

    Montes Muñoz, Enrique

    2017-05-23

    On the basis of first principles calculations, we study the adsorption of CO, CO2, NH3, NO, and NO2 molecules on armchair and zigzag blue phosphorus nanotubes. The nanotubes are found to surpass the gas sensing performance of other one-dimensional materials, in particular Si nanowires and carbon nanotubes, and two-dimensional materials, in particular graphene, phosphorene, and MoS2. Investigation of the energetics of the gas adsorption and induced charge transfers indicates that blue phosphorus nanotubes are highly sensitive to N-based molecules, in particular NO2, due to covalent bonding. The current–voltage characteristics of nanotubes connected to Au electrodes are derived by the non-equilibrium Green\\'s function formalism and used to quantitatively evaluate the change in resistivity upon gas adsorption. The observed selectivity and sensitivity properties make blue phosphorus nanotubes superior gas sensors for a wide range of applications.

  5. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    Science.gov (United States)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  6. POSSuMUS. A position sensitive scintillating muon SiPM detector

    International Nuclear Information System (INIS)

    Ruschke, Alexander

    2014-01-01

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle's position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm 2 to few m 2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module is achieved by the path length dependent amount of detected light for crossing particles. The ratio of the light yields in both trapezoids is calculated. This value corresponds to the position of the particle traversing the detector. A spatial resolution in the order of several mm is foreseen. The position sensitivity along the scintillator module is determined by the propagation time of light to the SiPMs located on opposite sides of the detector. A spatial resolution of few cm is expected for this direction. The POSSuMUS detector is applicable as large area trigger detector with a two dimensional position information of crossing particles. This is suitable in detector tests of large area precesion detectors or for measuring the small angle scattering of cosmic muons. At the beginning of this thesis, the determination of important SiPM characteristics like the breakdown voltage is presented. In the course of this work the detector principle is proven by

  7. Position-Sensitive Detector with Depth-of-Interaction Determination for Small Animal PET

    CERN Document Server

    Fedorov, A; Kholmetsky, A L; Korzhik, M V; Lecoq, P; Lobko, A S; Missevitch, O V; Tkatchev, A

    2002-01-01

    Crystal arrays made of LSO and LuAP crystals 2x2x10 mm pixels were manufactured for evaluation of detector with depth-of-interaction (DOI) determination capability intended for small animal positron emission tomograph. Position-sensitive LSO/LuAP phoswich DOI detector based on crystal 8x8 arrays and HAMAMATSU R5900-00-M64 position-sensitive multi-anode photomultiplier tube was developed and evaluated. Time resolution was found to be not worse than 1.0 ns FWHM for both layers, and spatial resolution mean value was 1.5 mm FWHM for the center of field-of-view.

  8. Development of 2D-ACAR apparatus using position-sensitive photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Yasuyoshi; Saito, Haruo; Iwata, Tetsuya; Nagashima, Yasuyuki; Hyodo, Toshio [Tokyo Univ. (Japan). Coll. of Arts and Sciences; Uchida, Hiroshi; Omura, Tomohide

    1997-03-01

    A new two-dimensional angular correlation of annihilation radiation apparatus is described. Position-sensitive photomultiplier tubes coupled with two-dimensional arrays of small BGO scintillator blocks make simple and compact position-sensitive {gamma}-ray detectors. With a sample-detector distance of 5m, an angular resolution of 1.1 mrad FWHM and a coincidence count rate of {approx}2.4 c.p.s. per mCi are obtained. Its performance is demonstrated by the result of a test measurement for KI crystal in which non-localized positronium exists at low temperatures. (author)

  9. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, Giovanni, E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Swiler, L.P., E-mail: LPSwile@sandia.gov [Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Luzzi, L., E-mail: Lelio.Luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, via La Masa 34, I-20156 Milano (Italy); Van Uffelen, P., E-mail: Paul.Van-Uffelen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Karlsruhe (Germany); Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)

    2015-01-15

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO{sub 2} single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  10. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.

    2013-01-01

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments

  11. Position paper on the impact of including methane number in natural gas regulation

    International Nuclear Information System (INIS)

    2014-01-01

    GIIGNL has developed a position paper to describe methane number and the possible impact on the LNG market of a future regulation/specification for this parameter which is linked to natural gas quality. Currently, there are several standards describing calculation methods of natural gas methane number, but there are doubts about their reliability and the results differ from each other. No official regulation which states a minimum value for methane number of natural gas has been identified. A methane number of 80, as recommended by some organisations in Europe, would endanger the LNG supply to the market, limiting acceptable LNG sources, or would require expensive gas treatment. In the long term, if there is a market for high methane number natural gas, this may be an opportunity for LNG terminals able to adjust or manage supplies to the desired methane number

  12. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  13. Face Inversion Disproportionately Disrupts Sensitivity to Vertical over Horizontal Changes in Eye Position

    Science.gov (United States)

    Crookes, Kate; Hayward, William G.

    2012-01-01

    Presenting a face inverted (upside down) disrupts perceptual sensitivity to the spacing between the features. Recently, it has been shown that this disruption is greater for vertical than horizontal changes in eye position. One explanation for this effect proposed that inversion disrupts the processing of long-range (e.g., eye-to-mouth distance)…

  14. Sensitivity Analyses of Alternative Methods for Disposition of High-Level Salt Waste: A Position Statement

    International Nuclear Information System (INIS)

    Harris, S.P.; Tuckfield, R.C.

    1998-01-01

    This position paper provides the approach and detail pertaining to a sensitivity analysis for the Phase II definition of weighted evaluation criteria weights and utility function values on the total utility scores for each Initial List alternative due to uncertainty and bias in engineering judgment

  15. Method and apparatus for formation logging using position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Gadken, L.L.

    1986-01-01

    This patent describes a method for logging earth formations using position sensitive neutron detectors. The method consists of: 1) Irradiation of earth formations in the vicinity of a well borehole with a source of fast neutrons. 2) At four longitudinally spaced distances from the neutron source in the borehole, the epithermal neutron population is detected. Each of the four separate populations is detected in an epithermally sensitive and substantially thermally insensitive portion of the same position sensitive neutron detector. A representative signal from each is then individually generated. 3) First, second, third, and fourth neutron population representative signals are combined. They derive a simultaneous measurement signal. This signal is functionally related to the porosity and also a signal functionally related to a neutron characteristic length of the earth formations in the vicinity of the borehole

  16. Enhancement of NH3 gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles.

    Science.gov (United States)

    Nguyen, Lich Quang; Phan, Pho Quoc; Duong, Huyen Ngoc; Nguyen, Chien Duc; Nguyen, Lam Huu

    2013-01-30

    Multi-walled carbon nanotube (MWCNT) film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH(3) gas sensing applications. The MWCNT-based sensor is sensitive to NH(3) gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH(3), compared with alcohol and LPG.

  17. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lich Quang Nguyen

    2013-01-01

    Full Text Available Multi-walled carbon nanotube (MWCNT film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH3 gas sensing applications. The MWCNT-based sensor is sensitive to NH3 gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH3, compared with alcohol and LPG.

  18. Sensitivity analysis of power excursion in RSG-GAS reactor due to reactivity insertion

    International Nuclear Information System (INIS)

    Pinem, Surian; Sembiring, Tagor Malem

    2002-01-01

    Reactor kinetics has a very important role in reactor operation safety and nuclear reactor control. One of the important aspects in reactor kinetics is power behavior as function of time due to chain reaction in the core. The calculation was performed using kinetic equation and feedback reactivity and evaluated using static power coefficient. Analysis was performed for oxide 250 g, silicide 250 g and silicide 300 g fuel elements with insertion of positive reactivity, negative reactivity and reactivity close to delay neutron fraction. The calculation of power excursion sensitivity showed that the insertion of 0,5 % Δk/k, in the fuel element of silicide 300 g is bigger 5 % than the one of oxide 250 g or silicide 250 g. If inserted by - 1,2 % Δk/k, there is no change among three fuel elements. Therefore, in kinetic point of view, it is showed there is no significant influence in the RSG-GAS reactor operation safety is the current core of oxide 250 g is converted to silicide 250 g or to silicide 300 g

  19. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO2 Modified Layers

    Directory of Open Access Journals (Sweden)

    Niuzi Xue

    2017-10-01

    Full Text Available It is important to improve the sensitivities and selectivities of metal oxide semiconductor (MOS gas sensors when they are used to monitor the state of hydrogen in aerospace industry and electronic field. In this paper, the ordered mesoporous SnO2 (m-SnO2 powders were prepared by sol-gel method, and the morphology and structure were characterized by X-ray diffraction analysis (XRD, transmission electron microscope (TEM and Brunauer–Emmett–Teller (BET. The gas sensors were fabricated using m-SnO2 as the modified layers on the surface of commercial SnO2 (c-SnO2 by screen printing technology, and tested for gas sensing towards ethanol, benzene and hydrogen with operating temperatures ranging from 200 °C to 400 °C. Higher sensitivity was achieved by using the modified m-SnO2 layers on the c-SnO2 gas sensor, and it was found that the S(c/m2 sensor exhibited the highest response (Ra/Rg = 22.2 to 1000 ppm hydrogen at 400 °C. In this paper, the mechanism of the sensitivity and selectivity improvement of the gas sensors is also discussed.

  20. The design of a position-sensitive thermal-neutron detector

    International Nuclear Information System (INIS)

    Zhang Yi; Chen Ziyu; Shen Ji

    2007-01-01

    We design a type of position-sensitive thermal-neutron detector. The design is based on the nuclear reaction 10 B(n, α) 7 Li, and solid boron-10 is used as the target material while the alpha and lithium-7 particles from the reaction are caught as the source of position information of the original neutrons. With the help of MCNP software, we simulate the distribution of alpha particles in the boron target, which leads to the optimal thickness of target, physical efficiency and position resolution. (authors)

  1. Experimental dead time corrections for a linear position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Yelon, W.B.; Tompson, C.W.; Mildner, D.F.R.; Berliner, R.; Missouri Univ., Columbia

    1984-01-01

    Two simple counters included in the charge-digitization circuitry of a position-sensitive proportional counter using the charge division method for position encoding have enabled us to determine the dead time losses for the system. An interesting positional dependence of the dead time tau is observed, which agrees with a simple model. The system enables us to correct the experimental data for dead time and to be indifferent to the relatively slow analog-to-digital converters used in the system. (orig.)

  2. Tests of crossed-wire position sensitive photomultipliers for scintillating fiber particle tracking

    International Nuclear Information System (INIS)

    Perdrisat, C.F.; Koechner, D.; Majewski, S.; Pourang, R.; Wilson, C.D.; Zorn, C.

    1995-01-01

    Several applications of two Hamamatsu position sensitive photomultiplier tubes to the detection of high energy particles with scintillating fibers are discussed. The PMTs are of the multiwire anode grid design, type R2486 and R4135. These tubes were tested with both single samples and arrays of 2 and 3 mm diameter scintillating fibers. Measurements of position resolution of the PMTs using either the charge digitization or the delay line readout techniques were made. The results indicate an intrinsic inability of the technique to reconstruct the actual position of a fiber on the photocathode when its location falls halfway between two grid wires. A way to overcome this limit is suggested. (orig.)

  3. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    Science.gov (United States)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  4. New enhanced sensitivity infrared laser spectroscopy techniques applied to reactive plasmas and trace gas detection

    NARCIS (Netherlands)

    Welzel, S.

    2009-01-01

    Infrared laser absorption spectroscopy (IRLAS) employing both tuneable diode and quantum cascade lasers (TDLs, QCLs) has been applied with both high sensitivity and high time resolution to plasma diagnostics and trace gas measurements. TDLAS combined with a conventional White type multiple pass cell

  5. Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Quintero, A.; Vargas-Villamil, F.D. [Prog. de Matematicas Aplicadas y Computacion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico, D.F. 07330 (Mexico); Arce-Medina, E. [Instituto Politecnico Nacional, ESIQIE, Ed. 8 Col. Lindavista, Mexico, D.F. 07738 (Mexico)

    2008-01-30

    In this work, a sensitivity analysis of a light gas oil deep hydrodesulfurization catalytic distillation column is presented. The aim is to evaluate the effects of various parameters and operating conditions on the organic sulfur compound elimination by using a realistic light gas oil fraction. The hydrocarbons are modeled using pseudocompounds, while the organic sulfur compounds are modeled using model compounds, i.e., dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). These are among the most refractive sulfur compounds present in the oil fractions. A sensitivity analysis is discussed for the reflux ratio, bottom flow rate, condenser temperature, hydrogen and gas oil feed stages, catalyst loading, the reactive, stripping, and rectifying stages, feed disturbances, and multiple feeds. The results give insight into the qualitative effect of some of the operating variables and disturbances on organic sulfur elimination. In addition, they show that special attention must be given to the bottom flow rate and LGO feed rate control. (author)

  6. Titanium dioxide-based carbon monoxide gas sensors: Effects of crystallinity and chemistry on sensitivity

    Science.gov (United States)

    Seeley, Zachary Mark

    Among metal-oxide gas sensors which change electrical resistive properties upon exposure to target gasses, titanium dioxide (TiO2) has received attention for its sensitivity and stability during high temperature (>500°C) operation. However, due to the sensing mechanism sensitivity, selectivity, and stability remain as critical deficiencies to be resolved before these sensors reach commercial use. In this study, TiO2 thick films of approximately 30mum and thin films of approximately 1mum thick were fabricated to assess the influence of their material properties on gas sensing mechanism. Increased calcination temperature of TiO2 thick films led to grain growth, reduction in specific surface area, and particle-particle necking. These properties are known to degrade sensitivity; however the measured carbon monoxide (CO) gas response improved with increasing calcination temperature up to 800°C. It was concluded that the sensing improvement was due to increased crystallinity within the films. Sensing properties of TiO2 thin films of were also dependent on crystallization, however; due to the smaller volume of material, they reached optimized crystallization at lower temperatures of 650°C, compared to 800°C for thick films. Incorporation of tungsten (W) and nickel (Ni) ions into the films created donor and acceptor defect sites, respectively, within the electronic band gap of TiO2. The additional n-type defects in W-doped TiO 2 improved n-type CO response, while p-type defects in Ni-doped TiO 2 converted the gas response to p-type. Chemistry of thin films had a more significant impact on the electrical properties and gas response than did microstructure or crystallinity. Doped films could be calcined at higher temperatures and yet remain highly sensitive to CO. Thin films with p-n bi-layer structure were fabricated to determine the influence of a p-n junction on gas sensing properties. No effect of the junction was observed and the sensing response neared the average

  7. Sensitivity of the Positive and Negative Syndrome Scale (PANSS) in Detecting Treatment Effects via Network Analysis.

    Science.gov (United States)

    Esfahlani, Farnaz Zamani; Sayama, Hiroki; Visser, Katherine Frost; Strauss, Gregory P

    2017-12-01

    Objective: The Positive and Negative Syndrome Scale is a primary outcome measure in clinical trials examining the efficacy of antipsychotic medications. Although the Positive and Negative Syndrome Scale has demonstrated sensitivity as a measure of treatment change in studies using traditional univariate statistical approaches, its sensitivity to detecting network-level changes in dynamic relationships among symptoms has yet to be demonstrated using more sophisticated multivariate analyses. In the current study, we examined the sensitivity of the Positive and Negative Syndrome Scale to detecting antipsychotic treatment effects as revealed through network analysis. Design: Participants included 1,049 individuals diagnosed with psychotic disorders from the Phase I portion of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Of these participants, 733 were clinically determined to be treatment-responsive and 316 were found to be treatment-resistant. Item level data from the Positive and Negative Syndrome Scale were submitted to network analysis, and macroscopic, mesoscopic, and microscopic network properties were evaluated for the treatment-responsive and treatment-resistant groups at baseline and post-phase I antipsychotic treatment. Results: Network analysis indicated that treatment-responsive patients had more densely connected symptom networks after antipsychotic treatment than did treatment-responsive patients at baseline, and that symptom centralities increased following treatment. In contrast, symptom networks of treatment-resistant patients behaved more randomly before and after treatment. Conclusions: These results suggest that the Positive and Negative Syndrome Scale is sensitive to detecting treatment effects as revealed through network analysis. Its findings also provide compelling new evidence that strongly interconnected symptom networks confer an overall greater probability of treatment responsiveness in patients with

  8. Effect of Indium Doping on the Sensitivity of SnO2 Gas Sensor

    International Nuclear Information System (INIS)

    Suharni; Sayono

    2009-01-01

    The dependence of sensitivity f SnO 2 gas sensors on indium concentration has been studied. Undoped and indium-doped SnO 2 gas sensors have been prepared by DC sputtering technique with following parameters i.e : electrode voltage of 3 kV, current 20 mA, vacuum pressure 1.8 × 10 -1 torr, deposition time 60 minutes and temperature of 200℃. The effect of weight variations of indium in order of 0.0370; 0.0485 and 0.0702 grams into SnO 2 thin film gas sensor for optimum result were investigated. The measurement of resistance, sensitivity and response time for various temperature for detecting of carbon monoxide (CO), Ammonia (NH 3 ) and acetone (CH 3 COCH 3 ) gas for indium doped has been done. From the analysis result shows that for indium doped 0.0702 g on the SnO 2 the resistance can be decreased from 832.0 kΩ to 3.9 kΩ and the operating temperature from 200℃ to 90℃ and improving the sensitivity from 15.92% to 40.09% and a response time from 30 seconds to 10 seconds for CO. (author)

  9. Analysis of the strength of sea gas pipelines of positive buoyancy conditioned by glaciation

    Science.gov (United States)

    Malkov, Venyamin; Kurbatova, Galina; Ermolaeva, Nadezhda; Malkova, Yulia; Petrukhin, Ruslan

    2018-05-01

    A technique for estimating the stress state of a gas pipeline laid along the seabed in northern latitudes in the presence of glaciation is proposed. It is assumed that the pipeline lies on the bottom of the seabed, but under certain conditions on the some part of the pipeline a glaciation is formed and the gas pipeline section in the place of glaciation can come off the ground due to the positive buoyancy of the ice. Calculation of additional stresses caused by bending of the pipeline is of practical interest for strength evaluation. The gas pipeline is a two-layer cylindrical shell of circular cross section. The inner layer is made of high-strength steel, the outer layer is made of reinforced ferroconcrete. The proposed methodology for calculating the gas pipeline for strength is based on the equations of the theory of shells. The procedure takes into account the effect of internal gas pressure, external pressure of sea water, the weight of two-layer gas pipeline and the weight of the ice layer. The lifting force created by the displaced fluid and the positive buoyancy of the ice is also taken into account. It is significant that the listed loads cause only two types of deformation of the gas pipeline: axisymmetric and antisymmetric. The interaction of the pipeline with the ground as an elastic foundation is not considered. The main objective of the research is to establish the fact of separation of part of the pipeline from the ground. The method of calculations of stresses and deformations occurring in a model sea gas pipeline is presented.

  10. Ultrafast Readout of Scintillating Fibres Using Upgraded Position-Sensitive Photomultipliers

    CERN Multimedia

    2002-01-01

    % RD-17 \\\\ \\\\To design a high rate topological trigger device for the future DIRAC Experiment at CERN an extensive work is in progress on a scintillating-fibre detector using a position-sensitive photomultiplier. Several detector prototypes with different lengths ($<$~50~cm) of sensitive area have been tested at T7S~PS beam. \\\\ \\\\With 0.5~mm diameter fibres a spatial resolution of $\\sim$125~$\\mu$m was obtained with a detection efficiency higher than 95\\%. The time resolution is $\\sim$600~ps, and the track position is properly digitized in real time (about 10~ns) by multi-channel peak sensing circuit. Based on experimental data simulations were also performed a comparison of different types of front-end electronics for multi-channel readout.

  11. Cerium doped GSO scintillators and its application to position sensitive detectors

    International Nuclear Information System (INIS)

    Ishibashi, H.; Shimizu, K.; Susa, K.; Kubota, S.

    1989-01-01

    The dependence of the light output and the decay times of Ce doped Gd/sub 2/SiO/sub 5/ on Ce concentration is measured. By using the difference in decay times on Ce concentration for GSO(Ce), the combination of different concentration of GSO(Ce) scintillators is shown to be useful as position sensitive detectors. A Ce doped Gd/sub 2/SiO/sub 5/ (GSO(Ce)) single crystal is an excellent scintillator featuring, a large light output, a short decay time and a high absorption coefficient. Further investigation aimed at its implementation to scintillators has been carried out previously. An application of the GSO(Ce) scintillators to the gamma-ray detectors of positron emission computed tomography has also been shown. The authors have investigated the dependence of its scintillation properties on the Ce concentration and its application to position sensitive detectors

  12. Coplanar-grid CdZnTe detector with three-dimensional position sensitivity

    International Nuclear Information System (INIS)

    Luke, P.N.; Amman, M.; Lee, J.S.; Yaver, H.

    1998-06-01

    A 3-dimensional position-sensitive coplanar-grid detector design for use with compound semiconductors is described. This detector design maintains the advantage of a coplanar-grid detector in which good energy resolution can be obtained from materials with poor charge transport. Position readout in two dimensions is accomplished using proximity-sensing electrodes adjacent to the electron-collecting grid electrode of the detector. Additionally, depth information is obtained by taking the ratio of the amplitudes of the collecting grid signal and the cathode signal. Experimental results from a prototype CdZnTe detector are presented

  13. Reduction of digital errors of digital charge division type position-sensitive detectors

    International Nuclear Information System (INIS)

    Uritani, A.; Yoshimura, K.; Takenaka, Y.; Mori, C.

    1994-01-01

    It is well known that ''digital errors'', i.e. differential non-linearity, appear in a position profile of radiation interactions when the profile is obtained with a digital charge-division-type position-sensitive detector. Two methods are presented to reduce the digital errors. They are the methods using logarithmic amplifiers and a weighting function. The validities of these two methods have been evaluated mainly by computer simulation. These methods can considerably reduce the digital errors. The best results are obtained when both methods are applied. ((orig.))

  14. High speed USB data logger for position sensitive detector data acquisition

    International Nuclear Information System (INIS)

    Poudel, S.K.; Kulkarni, V.B.; Kumar, Santosh; Chandak, R.M.; Krishna, P.S.R.; Mukhopadhyay, R.

    2010-01-01

    Ratio ADC (RDC) module used in neutron Position Sensitive Detector (PSD) data acquisition, gives digital code signifying the position of neutron event. A High Speed USB based RDC Data Logger card has been made for logging data from multiple RDCs to PC. A CPLD on the card continuously polls the RDCs for data, and fills it in the FIFO memory of a high speed USB microcontroller. A VC++ program for neutron scattering experiments reads event codes from FIFO of microcontroller and builds spectrum on PC. This program sweeps physical parameters of sample and collects PSD data for pre-determined monitor counts. (author)

  15. A new position-sensitive detector for thermal and epithermal neutrons

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Ford, N.L.; Lindberg, B.; Sachot, R.

    1977-01-01

    A new two-dimensional position-sensitive neutron detector is described. It is based on (n,γ) neutron resonance capture in a foil with subsequent detection of internal conversion electrons with a high-density proportional chamber. Large-area detectors with a 1 mm spatial resolution are feasible. A detection efficiency of 50% is possible for thermal neutrons using gadolinium-157 foil and for epithermal neutrons using hafnium-177. (Auth.)

  16. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F; Wieliczec, K; Becker, U

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  17. The local lymph node assay: current position in the regulatory classification of skin sensitizing chemicals.

    Science.gov (United States)

    Basketter, David A; Gerberick, G Frank; Kimber, Ian

    2007-01-01

    The local lymph node assay (LLNA) is being used increasingly in the identification of skin sensitizing chemicals for regulatory purposes. In the context of new chemicals legislation (REACH) in Europe, it is the preferred assay. The rationale for this is that the LLNA quantitative and objective approach to skin sensitization testing allied with the important animal welfare benefits that the method offers. However, as with certain guinea pig sensitization tests before it, this increasing use also brings experience with an increasingly wide range of industrial and other chemicals where the outcome of the assay does not always necessarily meet with the expectations of those conducting it. Sometimes, the result appears to be a false negative, but rather more commonly, the complaint is that the chemical represents a false positive. Against this background we have here reviewed a number of instances where false positive and false negative results have been described and have sought to reconcile science with expectation. Based on these analyses, it is our conclusion that false positives and false negatives do occur in the LLNA, as they do with any other skin sensitization assay (and indeed with all tests used for hazard identification), and that this occurs for a number of reasons. We further conclude, however, that false positive results in the LLNA, as with the guinea pig maximization test, arise most commonly via failure to distinguish what is scientifically correct from that which is unpalatable. The consequences of this confusion are discussed in the article, particularly in relation to the need to integrate both potency measurement and risk assessments into classification and labelling schemes that aim to manage potential risks to human health.

  18. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Riedel, R.A.; Cooper, R.G.; Funk, L.L.; Clonts, L.G.

    2012-01-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  19. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, R.A., E-mail: riedelra@ornl.gov [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States); Cooper, R.G.; Funk, L.L.; Clonts, L.G. [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States)

    2012-02-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  20. Test of a position-sensitive photomultiplier for fast scintillating fiber detector read-out

    International Nuclear Information System (INIS)

    Baehr, J.; Hoffmann, B.; Luedecke, H.; Nahnhauer, R.; Pohl, M.; Roloff, H.E.

    1993-01-01

    A position-sensitive photomultiplier with 256 anode pixels has been used to read out scintillating fibers excited by light emitting diodes, electrons from a β-source and a 5 GeV electron beam. Measurements have been done within a magnetic field up to 0.6 T. Tracking and electromagnetic shower detection capabilities of a simple fiber detector have been studied. (orig.)

  1. DIAGNOSIS OF CULTURE POSITIVE URINARY TRACT INFECTIONS AND THEIR ANTIMICROBIAL SENSITIVITY PROFILE IN TERTIARY CARE CENTRE

    Directory of Open Access Journals (Sweden)

    Prince Sreekumar Pius

    2016-12-01

    Full Text Available BACKGROUND Urinary tract infection is very common all over the world and in India more than 10 million cases are reported per year. It is one of the common infections diagnosed in the outpatients as well as the hospitalised patients. Empirical treatment of community acquired urinary tract infections are determined by the antibiotic sensitivity in a population. This study was conducted to determine the antimicrobial sensitivity amongst the uropathogens to help establish local guidelines on treatment of urinary tract infection. MATERIALS AND METHODS In this study, we collected 1306 samples from patients in whom we suspected to have urinary tract infection based on clinical signs and symptoms (e.g. with fever (greater than 38°C without another explanation or from a patient who had at least one urinary symptom (dysuria, urgency, frequency, or suprapubic pain or tenderness in our hospital during January 2016-June 2016. RESULTS Urine cultures were positive for 18% of the patients. Among these cultures, Klebsiella pneumonia (41%, Escherichia coli (35% and Pseudomonas aeruginosa (7% were the common organisms found. Highest antimicrobial sensitivity amongst these pathogens was found with cefoperazone/sulbactam and amikacin. CONCLUSION Cefoperazone/sulbactam and amikacin were the highly sensitive systemic antibiotics while ciprofloxacin and norfloxacin were the sensitive oral antibiotics in our locality.

  2. Range position and climate sensitivity: The structure of among-population demographic responses to climatic variation

    Science.gov (United States)

    Amburgey, Staci M.; Miller, David A. W.; Grant, Evan H. Campbell; Rittenhouse, Tracy A. G.; Benard, Michael F.; Richardson, Jonathan L.; Urban, Mark C.; Hughson, Ward; Brand, Adrianne B,; Davis, Christopher J.; Hardin, Carmen R.; Paton, Peter W. C.; Raithel, Christopher J.; Relyea, Rick A.; Scott, A. Floyd; Skelly, David K.; Skidds, Dennis E.; Smith, Charles K.; Werner, Earl E.

    2018-01-01

    Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the

  3. Positive words or negative words: whose valence strength are we more sensitive to?

    Science.gov (United States)

    Yang, Jiemin; Zeng, Jing; Meng, Xianxin; Zhu, Liping; Yuan, Jiajin; Li, Hong; Yusoff, Nasir

    2013-10-02

    The present study investigates the human brains' sensitivity to the valence strength of emotionally positive and negative chinese words. Event-Related Potentials were recorded, in two different experimental sessions, for Highly Positive (HP), Mildly Positive (MP) and neutral (NP) words and for Highly Negative (HN), Mildly Negative (MN) and neutral (NN) words, while subjects were required to count the number of words, irrespective of word meanings. The results showed a significant emotion effect in brain potentials for both HP and MP words, and the emotion effect occurred faster for HP words than MP words: HP words elicited more negative deflections than NP words in N2 (250-350 ms) and P3 (350-500 ms) amplitudes, while MP words elicited a significant emotion effect in P3, but not in N2, amplitudes. By contrast, HN words elicited larger amplitudes than NN words in N2 but not in P3 amplitudes, whereas MN words produced no significant emotion effect across N2 and P3 components. Moreover, the size of emotion-neutral differences in P3 amplitudes was significantly larger for MP compared to MN words. Thus, the human brain is reactive to both highly and mildly positive words, and this reactivity increased with the positive valence strength of the words. Conversely, the brain is less reactive to the valence of negative relative to positive words. These results suggest that human brains are equipped with increased sensitivity to the valence strength of positive compared to negative words, a type of emotional stimuli that are well known for reduced arousal. © 2013 Elsevier B.V. All rights reserved.

  4. Sensitivity analysis of the noble gas transport and fate model: CASCADR9

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Barker, L.E.

    1994-03-01

    CASCADR9 is a desert alluvial soil site-specific noble gas transport and fate model. Input parameters for CASCADR9 are: man-made source term, background concentration of radionuclides, radon half-life, soil porosity, period of barometric pressure wave, amplitude of barometric pressure wave, and effective eddy diffusivity. Using average flux, total flow, and radon concentration at the 40 day mark as output parameters, a sensitivity analysis for CASCADR9 is carried out, under a variety of scenarios. For each scenario, the parameter to which output parameters are most sensitive are identified

  5. Evidence for the concentration induced extinction of gas sensitivity in amorphous and nanostructured Te thin films

    International Nuclear Information System (INIS)

    Tsiulyanu, D.; Mocreac, O.; Enachi, M.; Volodina, G.

    2013-01-01

    The extinction of sensitivity to nitrogen dioxide induced by high gas concentration have been observed in ultrathin tellurium films. The phenomenon becomes apparent in both continuous and nanostructured films shown by AFM, SEM and XRD analyses to be in amorphous state. Sensitivity of 30 nm thickness Te film decreases near linearly with concentration increase between 150 and 500 ppb of nitrogen dioxide. The results are explained in terms of formation of a nitrogen dioxide catalytic gate in which a molecule adsorbs (and desorbs) without reacting. (authors)

  6. Stimuli-Responsive NO Release for On-Demand Gas-Sensitized Synergistic Cancer Therapy.

    Science.gov (United States)

    Fan, Wenpei; Yung, Bryant C; Chen, Xiaoyuan

    2018-03-08

    Featuring high biocompatibility, the emerging field of gas therapy has attracted extensive attention in the medical and scientific communities. Currently, considerable research has focused on the gasotransmitter nitric oxide (NO) owing to its unparalleled dual roles in directly killing cancer cells at high concentrations and cooperatively sensitizing cancer cells to other treatments for synergistic therapy. Of particular note, recent state-of-the-art studies have turned our attention to the chemical design of various endogenous/exogenous stimuli-responsive NO-releasing nanomedicines and their biomedical applications for on-demand NO-sensitized synergistic cancer therapy, which are discussed in this Minireview. Moreover, the potential challenges regarding NO gas therapy are also described, aiming to advance the development of NO nanomedicines as well as usher in new frontiers in this fertile research area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Highly Sensitive and Selective Gas Sensor Using Hydrophilic and Hydrophobic Graphenes

    Science.gov (United States)

    Some, Surajit; Xu, Yang; Kim, Youngmin; Yoon, Yeoheung; Qin, Hongyi; Kulkarni, Atul; Kim, Taesung; Lee, Hyoyoung

    2013-01-01

    New hydrophilic 2D graphene oxide (GO) nanosheets with various oxygen functional groups were employed to maintain high sensitivity in highly unfavorable environments (extremely high humidity, strong acidic or basic). Novel one-headed polymer optical fiber sensor arrays using hydrophilic GO and hydrophobic reduced graphene oxide (rGO) were carefully designed, leading to the selective sensing of volatile organic gases for the first time. The two physically different surfaces of GO and rGO could provide the sensing ability to distinguish between tetrahydrofuran (THF) and dichloromethane (MC), respectively, which is the most challenging issue in the area of gas sensors. The eco-friendly physical properties of GO allowed for faster sensing and higher sensitivity when compared to previous results for rGO even under extreme environments of over 90% humidity, making it the best choice for an environmentally friendly gas sensor. PMID:23736838

  8. A fast large-area position-sensitive time-of-flight neutron detection system

    International Nuclear Information System (INIS)

    Crawford, R.K.; Haumann, J.R.

    1989-01-01

    A new position-sensitive time-of-flight neutron detection and histograming system has been developed for use at the Intense Pulsed Neutron Source. Spatial resolution of roughly 1 cm x 1 cm and time-of-flight resolution of ∼1 μsec are combined in a detection system which can ultimately be expanded to cover several square meters of active detector area. This system is based on the use of arrays of cylindrical one-dimensional position-sensitive proportional counters, and is capable of collecting the x-y-t data and sorting them into histograms at time-averaged data rates up to ∼300,000 events/sec over the full detector area and with instantaneous data rates up to more than fifty times that. Numerous hardware features have been incorporated to facilitate initial tuning of the position encoding, absolute calibration of the encoded positions, and automatic testing for drifts. 7 refs., 11 figs., 1 tabs

  9. Head position in the MEG helmet affects the sensitivity to anterior sources.

    Science.gov (United States)

    Marinkovic, K; Cox, B; Reid, K; Halgren, E

    2004-11-30

    Current MEG instruments derive the whole-head coverage by utilizing a helmet-shaped opening at the bottom of the dewar. These helmets, however, are quite a bit larger than most people's heads so subjects commonly lean against the back wall of the helmet in order to maintain a steady position. In such cases the anterior brain sources may be too distant to be picked up by the sensors reliably. Potential "invisibility" of the frontal and anterior temporal sources may be particularly troublesome for the studies of cognition and language, as they are subserved significantly by these areas. We examined the sensitivity of the distributed anatomically-constrained MEG (aMEG) approach to the head position ("front" vs. "back") secured within a helmet with custom-tailored bite-bars during a lexical decision task. The anterior head position indeed resulted in much greater sensitivity to language-related activity in frontal and anterior temporal locations. These results emphasize the need to adjust the head position in the helmet in order to maximize the "visibility" of the sources in the anterior brain regions in cognitive and language tasks.

  10. The Research of Micro-structure and Gas Sensitivity of SnO2

    Directory of Open Access Journals (Sweden)

    Mingxin Song

    2014-07-01

    Full Text Available This paper adopts Sol-gel method and solid state reaction to make SnO2 matrix material and Sb2O3 is used as zuji to make SnO2 gas sensor under different sintering temperature. XRD analysis, SEM analysis and response time restoration test of working voltage sensitivity are choose to research SnO2 gas sensor constituents and influence factor on sensing properties by processing. Experiment results show that when the SnO2 make by sol-get method and Sb2O3 take up 2 %, Polyvinyl alcohol as an organic binder, platinum as catalyst, SnO2 gas sensor can get optimal integral sensing properties.

  11. The position dependent influence that sensitivity correction processing gives the signal-to-noise ratio measurement in parallel imaging

    International Nuclear Information System (INIS)

    Murakami, Koichi; Yoshida, Koji; Yanagimoto, Shinichi

    2012-01-01

    We studied the position dependent influence that sensitivity correction processing gave the signal-to-noise ratio (SNR) measurement of parallel imaging (PI). Sensitivity correction processing that referred to the sensitivity distribution of the body coil improved regional uniformity more than the sensitivity uniformity correction filter with a fixed correction factor. In addition, the position dependent influence to give the SNR measurement in PI was different from the sensitivity correction processing. Therefore, if we divide SNR of the sensitivity correction processing image by SNR of the original image in each pixel and calculate SNR ratio, we can show the position dependent influence that sensitivity correction processing gives the SNR measurement in PI. It is with an index of the sensitivity correction processing precision. (author)

  12. Sensitivity, Specificity, and Positivity Predictors of the Pneumococcal Urinary Antigen Test in Community-Acquired Pneumonia.

    Science.gov (United States)

    Molinos, Luis; Zalacain, Rafael; Menéndez, Rosario; Reyes, Soledad; Capelastegui, Alberto; Cillóniz, Catia; Rajas, Olga; Borderías, Luis; Martín-Villasclaras, Juan J; Bello, Salvador; Alfageme, Inmaculada; Rodríguez de Castro, Felipe; Rello, Jordi; Ruiz-Manzano, Juan; Gabarrús, Albert; Musher, Daniel M; Torres, Antoni

    2015-10-01

    Detection of the C-polysaccharide of Streptococcus pneumoniae in urine by an immune-chromatographic test is increasingly used to evaluate patients with community-acquired pneumonia. We assessed the sensitivity and specificity of this test in the largest series of cases to date and used logistic regression models to determine predictors of positivity in patients hospitalized with community-acquired pneumonia. We performed a multicenter, prospective, observational study of 4,374 patients hospitalized with community-acquired pneumonia. The urinary antigen test was done in 3,874 cases. Pneumococcal infection was diagnosed in 916 cases (21%); 653 (71%) of these cases were diagnosed exclusively by the urinary antigen test. Sensitivity and specificity were 60 and 99.7%, respectively. Predictors of urinary antigen positivity were female sex; heart rate≥125 bpm, systolic blood pressureantibiotic treatment; pleuritic chest pain; chills; pleural effusion; and blood urea nitrogen≥30 mg/dl. With at least six of all these predictors present, the probability of positivity was 52%. With only one factor present, the probability was only 12%. The urinary antigen test is a method with good sensitivity and excellent specificity in diagnosing pneumococcal pneumonia, and its use greatly increased the recognition of community-acquired pneumonia due to S. pneumoniae. With a specificity of 99.7%, this test could be used to direct simplified antibiotic therapy, thereby avoiding excess costs and risk for bacterial resistance that result from broad-spectrum antibiotics. We also identified predictors of positivity that could increase suspicion for pneumococcal infection or avoid the unnecessary use of this test.

  13. Compton imaging with a highly-segmented, position-sensitive HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T.; Hirsch, R.; Reiter, P.; Birkenbach, B.; Bruyneel, B.; Eberth, J.; Hess, H.; Lewandowski, L. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Gernhaeuser, R.; Maier, L.; Schlarb, M.; Weiler, B.; Winkel, M. [Technische Universitaet Muenchen, Physik Department, Garching (Germany)

    2017-02-15

    A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of γ radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered γ-ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole 4π solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA) of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between 13.8 {sup circle} and 19.1 {sup circle}, depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular resolution of 4.6 {sup circle} was determined for the same γ-ray energy. (orig.)

  14. Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key.

    Science.gov (United States)

    Pincebourde, Sylvain; Casas, Jérôme

    2016-01-01

    Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines>borer tunnels≫galls>bark mines>mines in aquatic plants>upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors

  15. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    International Nuclear Information System (INIS)

    Nakate, U.T.; Bulakhe, R.N.; Lokhande, C.D.; Kale, S.N.

    2016-01-01

    Highlights: • We studied ZnO nanorods film for liquefied petroleum gas (LPG) sensing. • The Au sensitization on ZnO nanorods gives improved LPG sensing response. • The Au–ZnO shows 48% LPG response for 1040 ppm with fast response time of 50 S. • We proposed schematic for sensing mechanism using band diagram. - Abstract: The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  16. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Nakate, U.T., E-mail: umesh.nakate@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology, Deemed University, Pune 411025 (India); Bulakhe, R.N.; Lokhande, C.D. [Department of Physics, Thin films Physics Laboratory, Shivaji University Kolhapur 416004 (India); Kale, S.N. [Department of Applied Physics, Defence Institute of Advanced Technology, Deemed University, Pune 411025 (India)

    2016-05-15

    Highlights: • We studied ZnO nanorods film for liquefied petroleum gas (LPG) sensing. • The Au sensitization on ZnO nanorods gives improved LPG sensing response. • The Au–ZnO shows 48% LPG response for 1040 ppm with fast response time of 50 S. • We proposed schematic for sensing mechanism using band diagram. - Abstract: The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  17. Study of functional properties of gas-sensitive cobalt-containing polyacrylonitrile films

    Science.gov (United States)

    Semenistaya, T. V.; Voronova, A. A.

    2017-11-01

    The design of the sensor materials with challenging gas-sensitivity can be solved by materials selection and their compatibility with the manufacturing technologies that allows to operate the process of formation of nanocomposite structure and to receive the required material. The polyacrylonitrile (PAN) as the conducting polymer with a highly π-conjugated polymeric chain due to flexibility for tailoring the structure of the final products by the pyrolysis method under the influence of incoherent IR-radiation is chosen. The aim of the work was to study the peculiarities of formation procedure of cobalt-containing PAN films. The gas-sensing Co-containing PAN films have been fabricated. The different temperature and time have been used to form the films. Depending on intensity and exposure time of IR-radiation the thermostructured PAN films with resistance values of · 108 Ω to 1010 Ω have been fabricated. It is shown that the heat-treated PAN is the p-type semiconductor. Irrespective of the level of the modifying additive in film-forming solution and the time-temperature modes little change of film resistance has been found. It has been found that the Co-containing PAN films are gas-sensing films and have high selectivity to Cl2 and NO2. A stationary state gas distribution method was used for testing gas-sensing properties. Obtained the Co-containing PAN films are perspective for low-temperature applications as Cl2 and NO2 sensors.

  18. A rotation-symmetric, position-sensitive annular detector for maximum counting rates

    International Nuclear Information System (INIS)

    Igel, S.

    1993-12-01

    The Germanium Wall is a semiconductor detector system containing up to four annular position sensitive ΔE-detectors from high purity germanium (HPGe) planned to complement the BIG KARL spectrometer in COSY experiments. The first diode of the system, the Quirl-detector, has a two dimensional position sensitive structure defined by 200 Archimedes' spirals on each side with opposite orientation. In this way about 40000 pixels are defined. Since each spiral element detects almost the same number of events in an experiment the whole system can be optimized for maximal counting rates. This paper describes a test setup for a first prototype of the Quirl-detector and the results of test measurements with an α-source. The detector current and the electrical separation of the spiral elements were measured. The splitting of signals due to the spread of charge carriers produced by an incident ionizing particle on several adjacent elements was investigated in detail and found to be twice as high as expected from calculations. Its influence on energy and position resolution is discussed. Electronic crosstalk via signal wires and the influence of noise from the magnetic spectrometer has been tested under experimental conditions. Additionally, vacuum feedthroughs based on printed Kapton foils pressed between Viton seals were fabricated and tested successfully concerning their vacuum and thermal properties. (orig.)

  19. Application of digital waveform processing to position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Takenaka, Yasuto; Uritani, Akira; Mori, Chizuo

    1995-01-01

    In a charge-division type position-sensitive proportional counter (PSPC) with an anode wire of small resistance, a reflected component from an opposite end and thermal noise involved in signals deteriorate the position resolution of the PSPC. A digital waveform processing method was applied to the reduction of these undesirable effects by skillfully utilizing their signal characteristics that can be observed as inversely correlative signals between two-output signals from both sides of the PSPC. The digital waveform processing could improve the position resolution compared to a conventional pulse height processing method with analog filters. When the digital waveform processing was applied to signals of an equivalent circuit simulating the PSPC, the position resolutions defined by the full width at half maximum were improved to about 30% of those of conventional analog pulse processing. In the case of an actual PSPC, the position resolutions by the digital waveform processing were improved by 4-10% as compared with those of conventional pulse height processing. (author)

  20. Sensitivity analysis of an Advanced Gas-cooled Reactor control rod model

    International Nuclear Information System (INIS)

    Scott, M.; Green, P.L.; O’Driscoll, D.; Worden, K.; Sims, N.D.

    2016-01-01

    Highlights: • A model was made of the AGR control rod mechanism. • The aim was to better understand the performance when shutting down the reactor. • The model showed good agreement with test data. • Sensitivity analysis was carried out. • The results demonstrated the robustness of the system. - Abstract: A model has been made of the primary shutdown system of an Advanced Gas-cooled Reactor nuclear power station. The aim of this paper is to explore the use of sensitivity analysis techniques on this model. The two motivations for performing sensitivity analysis are to quantify how much individual uncertain parameters are responsible for the model output uncertainty, and to make predictions about what could happen if one or several parameters were to change. Global sensitivity analysis techniques were used based on Gaussian process emulation; the software package GEM-SA was used to calculate the main effects, the main effect index and the total sensitivity index for each parameter and these were compared to local sensitivity analysis results. The results suggest that the system performance is resistant to adverse changes in several parameters at once.

  1. A pulse stacking method of particle counting applied to position sensitive detection

    International Nuclear Information System (INIS)

    Basilier, E.

    1976-03-01

    A position sensitive particle counting system is described. A cyclic readout imaging device serves as an intermediate information buffer. Pulses are allowed to stack in the imager at very high counting rates. Imager noise is completely discriminated to provide very wide dynamic range. The system has been applied to a detector using cascaded microchannel plates. Pulse height spread produced by the plates causes some loss of information. The loss is comparable to the input loss of the plates. The improvement in maximum counting rate is several hundred times over previous systems that do not permit pulse stacking. (Auth.)

  2. A time resolving data acquisition system for multiple high-resolution position sensitive detectors

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1988-01-01

    An advanced time resolving data collection system for use in neutron and x-ray spectrometry has been implemented and put into routine operation. The system collects data from high-resolution position-sensitive area detectors with a maximum cumulative rate of 10/sup 6/ events per second. The events are sorted, in real-time, into many time-slice arrays. A programmable timing control unit allows for a wide choice of time sequences and time-slice array sizes. The shortest dwell time on a slice may be below 1 ms and the delay to switch between slices is zero

  3. The performance of prototype position-sensitive neutron detectors on SXD at ISIS

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1989-02-01

    The performance of two position-sensitive neutron detector designed for use on the single crystal diffractometer (SXD) at ISIS is assessed. The two detectors examined were the Anger camera 6 Li-glass scintillator PSD and a prototype fibre-optic encoded PSD based on 6 Li-doped ZnS plastic scintillator. The latter detector is found to be both simpler to fabricate and to produce better results on the evidence to date. A summary of some of the expected science from SXD and the performance of the detectors with respect to this is also given. (author)

  4. Ultrafast readout of scintillating fibers using upgraded position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Onel, Y.

    1994-01-01

    Experimental results obtained with commercially available position-sensitive photomultipliers (PSPM) coupled with 0.5 mm diameter scintillating fiber arrays show some promising performances such as space resolution better than 200 μm and time resolution ∼ 1.5 ns with a detection efficiency higher than 90%. Major progress has also been recently achieved with an upgrade of a PSPM based on new grid dynode structures. Two-track spatial resolution has been studied using the upgraded PSPM. Initial studies demonstrate that two tracks separated by a minimum distance of 3 mm are resolved

  5. Measurement and analysis of field-induced crystallographic texture using curved position-sensitive diffraction detectors

    DEFF Research Database (Denmark)

    Simons, Hugh; Daniels, John E.; Studer, Andrew J.

    2014-01-01

    This paper outlines measurement and analysis methodologies created for determining the structural responses of electroceramics to an electric field. A sample stage is developed to apply electric fields to ceramic materials at elevated temperatures during neutron diffraction experiments. The tested...... employing a curved positive sensitive detector. Methodologies are proposed to account for the geometrical effects when vector fields are applied to textured materials with angularly dispersive detector geometries. Representative results are presented for the ferroelectric (Bi1/2Na1/2)TiO3-6%BaTiO3 (BNT-6BT...

  6. A new position-sensitive transmission detector for epithermal neutron imaging

    International Nuclear Information System (INIS)

    Schooneveld, E M; Kockelmann, W; Rhodes, N; Tardocchi, M; Gorini, G; Perelli Cippo, E; Nakamura, T; Postma, H; Schillebeeckx, P

    2009-01-01

    A new neutron resonant transmission (NRT) detector for epithermal neutron imaging has been designed and built for the ANCIENT CHARM project, which is developing a set of complementary neutron imaging methods for analysis of cultural heritage objects. One of the techniques being exploited is NRT with the aim of performing bulk elemental analysis. The 16-pixel prototype NRT detector consists of independent crystals of 2 x 2 mm pixel size, which allow for 2D position-sensitive transmission measurements with epithermal neutrons. First results obtained at the ISIS pulsed spallation neutron source are presented. (fast track communication)

  7. Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings

    International Nuclear Information System (INIS)

    Sanjari, M S; Chen, X; Hülsmann, P; Litvinov, Yu A; Nolden, F; Piotrowski, J; Steck, M; Stöhlker, Th

    2015-01-01

    Position sensitive beam monitors are indispensable for the beam diagnostics in storage rings. Apart from their applications in the measurements of beam parameters, they can be used in non-destructive in-ring decay studies of radioactive ion beams as well as enhancing precision in the isochronous mass measurement technique. In this work, we introduce a novel approach based on cavities with elliptical cross-section, in order to compensate the limitations of known designs for the application in ion storage rings. The design is aimed primarily for future heavy ion storage rings of the FAIR project. The conceptual design is discussed together with simulation results. (paper)

  8. Identifying Moderators of the Link Between Parent and Child Anxiety Sensitivity: The Roles of Gender, Positive Parenting, and Corporal Punishment.

    Science.gov (United States)

    Graham, Rebecca A; Weems, Carl F

    2015-07-01

    A substantial body of literature suggests that anxiety sensitivity is a risk factor for the development of anxiety problems and research has now begun to examine the links between parenting, parent anxiety sensitivity and their child's anxiety sensitivity. However, the extant literature has provided mixed findings as to whether parent anxiety sensitivity is associated with child anxiety sensitivity, with some evidence suggesting that other factors may influence the association. Theoretically, specific parenting behaviors may be important to the development of child anxiety sensitivity and also in understanding the association between parent and child anxiety sensitivity. In this study, 191 families (n = 255 children and adolescents aged 6-17 and their parents) completed measures of child anxiety sensitivity (CASI) and parenting (APQ-C), and parents completed measures of their own anxiety sensitivity (ASI) and their parenting (APQ-P). Corporal punishment was associated with child anxiety sensitivity and the child's report of their parent's positive parenting behaviors moderated the association between parent and child anxiety sensitivity. The child's gender was also found to moderate the association between parent and child anxiety sensitivity, such that there was a positive association between girls' and their parents anxiety sensitivity and a negative association in boys. The findings advance the understanding of child anxiety sensitivity by establishing a link with corporal punishment and by showing that the association between parent and child anxiety sensitivity may depend upon the parenting context and child's gender.

  9. Effect of body position changes on pulmonary gas exchange in Eisenmenger's syndrome.

    Science.gov (United States)

    Sandoval, J; Alvarado, P; Martínez-Guerra, M L; Gómez, A; Palomar, A; Meza, S; Santos, E; Rosas, M

    1999-04-01

    Preliminary studies on sleep of patients with congenital heart disease and Eisenmenger's syndrome (ES) at our institution demonstrated nocturnal worsening arterial unsaturation, which appeared to be a body position-related phenomenon. To investigate the potential effect of body position on gas exchange in ES, we carried out a prospective study of 28 patients (mean age, 34.8 +/- 11.7 yr) with established ES due to congenital heart disease. In every patient, arterial blood gases were performed during both sitting and supine positions under three different conditions: room air, while breathing 100% oxygen, and after breathing oxygen at a flow rate of 3 L/min through nasal prongs. Alveolar oxygen pressure (PaO2) for the calculation of alveolar-arterial oxygen tension differences (AaPO2) was derived from the alveolar gas equation using PaCO2 and assuming R = 1. We used paired t test, repeated-measures two-way ANOVA with Bonferroni's test, and regression analysis. From sitting to supine position on room air, there was a significant decrease in PaO2 (from 52.5 +/- 7.5 to 47.5 +/- 5.5 mm Hg; p position. A ventilation-perfusion (V/Q) distribution abnormality and/or a diffusion limitation phenomenon rather than an increase in true shunt may be the mechanisms responsible for this finding. The response to nasal O 2 we observed warrants a trial with long-term nocturnal oxygen therapy in these patients.

  10. Investigation of the pulse shape analysis for the position sensitive γ-ray spectrometer AGATA

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Lars; Birkenbach, Benedikt; Reiter, Peter [Institut fuer Kernphysik Koeln (Germany); Collaboration: AGATA-Collaboration

    2015-07-01

    The next generation of γ-ray spectrometers like AGATA will provide high quality γ-ray spectra by the new Gamma-Ray Tracking technique (GRT). Position sensitive HPGe detectors will allow for precise Doppler correction and small broadening of lines for spectroscopy at relativistic energies. GRT is based on the interaction position of the γ-rays within the volume of the highly segmented germanium detectors provided by Pulse Shape Analysis (PSA) methods. The proof of principle of GRT was already demonstrated with great success however systematic deviations from expected results occur. The parameterization of the following detector properties and their impact on PSA were thoroughly investigated and optimized: electron and hole mobility, crystal axis orientation, space charge distributions, crystal impurities, response functions of preamplifiers and digitizers, linear and differential crosstalk, time alignment of pulses and the distance metric. Results of an improved PSA performance are presented.

  11. Penicillin sensitivity among children without a positive history for penicillin allergy.

    Science.gov (United States)

    Cetinkaya, Feyzullah; Cag, Yakup

    2004-06-01

    To establish the prevalence of positive penicillin skin tests among outpatients without any drug reaction history. Skin testing was performed in 147 children (aged 6-13 years) who had had received a penicillin preparation at least three times in the last 12 months without any allergic reaction. Before testing, detailed pediatric and allergy history were learned and then all children were tested with benzyl penicilloyl polylysin (PPL) and mixture of minor antigenic determinants. The test procedures were made epidermally and intradermally subsequently in every subject. The overall frequency of positive skin reactions to penicillin antigens was 10.2%. A mild systemic reaction was observed in one of the children during testing with PPL. We concluded that frequent use of penicillin and other beta-lactam antibiotics leads to sensitization of children in our study population despite these children seem to be asymptomatic during testing time. Copyright 2004 Blackwell Munksgaard

  12. Derivation of the point spread function for zero-crossing-demodulated position-sensitive detectors

    International Nuclear Information System (INIS)

    Nowlin, C.H.

    1976-07-01

    This work is a mathematical derivation of a high-quality approximation to the point spread function for position-sensitive detectors (PSDs) that use pulse-shape modulation and crossover-time demodulation. The approximation is determined as a general function of the input signals to the crossover detectors so as to enable later determination of optimum position-decoding filters for PSDs. This work is precisely applicable to PSDs that use either RC or LC transmission line encoders. The effects of random variables, such as charge collection time, in the encoding process are included. In addition, this work presents a new, rigorous method for the determination of upper and lower bounds for conditional crossover-time distribution functions (closely related to first-passage-time distribution functions) for arbitrary signals and arbitrary noise covariance functions

  13. First Investigation on a novel 2D position sensitive semiconductor detector concept

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  14. Instrumentation for Position Sensitive Detector-Powder diffractometer at CENM-Maamora

    International Nuclear Information System (INIS)

    Messous, M.-Y.; Belhorma, B.; Labrim, H.; El-Bakkari, B.; Jabri, H.

    2013-06-01

    Linear position sensitive detectors are widely used to configure neutron diffractometer and other instruments. Necessary front-end electronics and data acquisition system was developed to fulfil such instruments built around the research reactor. In this paper, the front-end electronics dedicated to the neutron powder diffractometer which will be installed in the axial beam port of the Triga Mark II research reactor (Center of Nuclear Studies of Maamora) is described. It consists of High voltage power supply, a Position-decoder and a Multichannel analyzer and data acquisition software. The 3 He-PSD detector response exposed to the neutron flow emitted by 252 Cf source held in paraffin spheres with distinct thicknesses for moderation effect, is shown. Monte-Carlo N Particles code (MCNP) simulations were also performed to study both the detector performance and the paraffin efficiency. (authors)

  15. First results from Position-Sensitive quantum calorimeters using Mo/Au Transition-Edge Sensors

    International Nuclear Information System (INIS)

    Figueroa-Feliciano, Enectali; Chervenak, Jay; Finkbeiner, Fred M.; Li, Mary; Lindeman, Mark A.; Stahle, Caroline K.; Stahle, Carl M.

    2002-01-01

    We report the first results from a high-energy-resolution imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (PoST). A PoST is a quantum calorimeter consisting of two Transition Edge Sensors (TESs) on the ends of a long absorber to do one dimensional imaging spectroscopy. Comparing rise time and energy information, the position of the event in the PoST is determined. Energy is inferred from the sum of the two pulses. We have fabricated 7- and 15-pixel PoSTs using Mo-Au TESs and Au absorbers. We have achieved 32 eV FWHM energy resolution at 1.5 keV with a 7-pixel PoST calorimeter

  16. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    Science.gov (United States)

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.

  17. Positive alcohol use expectancies moderate the association between anxiety sensitivity and alcohol use across adolescence.

    Science.gov (United States)

    Borges, Allison M; Lejuez, Carl W; Felton, Julia W

    2018-06-01

    Anxiety sensitivity (AS), or the fear of anxious symptoms and the belief that these symptoms may have negative physical, social, and cognitive consequences, is one personality trait that emerges in early adolescence and may be linked to alcohol use. However, findings are equivocal as to whether elevated AS during adolescence directly predicts alcohol use. Adolescents do report increases in positive alcohol use expectancies during this developmental period, and these expectancies have been found to be significantly associated with alcohol use. The current study examined whether positive alcohol use expectancies and AS in early adolescence predicted changes in alcohol use throughout adolescence. This aim was examined via secondary data analyses from a longitudinal study examining the development of risk behaviors in adolescents. Results of univariate latent growth curve modeling suggest that AS alone was not a significant predictor of baseline alcohol use or change in use over time after controlling for gender, age, and self-reported anxiety. However, AS in early adolescence was found to be a significant predictor of increases in alcohol use across adolescence for youth who reported greater positive alcohol use expectancies. These results indicate that beliefs regarding the positive effects of alcohol use are an important moderator in the relation between AS and change in alcohol use during adolescence. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Serial position effects are sensitive predictors of conversion from MCI to Alzheimer's disease dementia.

    Science.gov (United States)

    Egli, Simone C; Beck, Irene R; Berres, Manfred; Foldi, Nancy S; Monsch, Andreas U; Sollberger, Marc

    2014-10-01

    It is unclear whether the predictive strength of established cognitive variables for progression to Alzheimer's disease (AD) dementia from mild cognitive impairment (MCI) varies depending on time to conversion. We investigated which cognitive variables were best predictors, and which of these variables remained predictive for patients with longer times to conversion. Seventy-five participants with MCI were assessed on measures of learning, memory, language, and executive function. Relative predictive strengths of these measures were analyzed using Cox regression models. Measures of word-list position-namely, serial position scores-together with Short Delay Free Recall of word-list learning best predicted conversion to AD dementia. However, only serial position scores predicted those participants with longer time to conversion. Results emphasize that the predictive strength of cognitive variables varies depending on time to conversion to dementia. Moreover, finer measures of learning captured by serial position scores were the most sensitive predictors of AD dementia. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  19. [INVITED] Porphyrin-nanoassembled fiber-optic gas sensor fabrication: Optimization of parameters for sensitive ammonia gas detection

    Science.gov (United States)

    Korposh, Sergiy; Kodaira, Suguru; Selyanchyn, Roman; Ledezma, Francisco H.; James, Stephen W.; Lee, Seung-Woo

    2018-05-01

    Highly sensitive fiber-optic ammonia gas sensors were fabricated via layer-by-layer deposition of poly(diallyldimethylammonium chloride) (PDDA) and tetrakis(4-sulfophenyl)porphine (TSPP) onto the surface of the core of a hard-clad multimode fiber that was stripped of its polymer cladding. The effects of film thickness, length of sensing area, and depth of evanescent wave penetration were investigated to clearly understand the sensor performance. The sensitivity of the fiber-optic sensor to ammonia was linear in the concentration range of 0.5-50 ppm and the response and recovery times were less than 3 min, with a limit of detection of 0.5 ppm, when a ten-cycle PDDA/TSPP film was assembled on the surface of the core along a 1 cm-long stripped section of the fiber. The sensor's response towards ammonia was also checked under different relative humidity conditions and a simple statistical data treatment approach, principal component analysis, demonstrated the feasibility of ammonia sensing in environmental relative humidity ranging from dry 7% to highly saturated 80%. Penetration depths of the evanescent wave for the optimal sensor configuration were estimated to be 30 and 33 nm at wavelengths of 420 and 706 nm, which are in a good agreement with the thickness of the 10-cycle deposited film (ca. 30 nm).

  20. Development of a position-sensitive fission counter and measurement of neutron flux distributions

    International Nuclear Information System (INIS)

    Yamagishi, Hideshi; Soyama, Kazuhiko; Kakuta, Tsunemi

    2001-08-01

    A position-sensitive fission counter (PSFC) that operates in high neutron flux and high gamma-ray background such as at the side of a power reactor vessel has been developed. Neutron detection using the PSFC with a solenoid electrode is based on a delay-line method. The PSFC that has the outer diameter of 25 mm and the sensitive length of 1000 mm was manufactured for investigation of the performances. The PSFC provided output current pulses that were sufficiently higher than the alpha noise, though the PSFC has a solenoid electrode and large electrode-capacitance. The S/N ratio of PSFC outputs proved to be higher than that of ordinary fission counters with 200 mm sensitive length. A performance test to measure neutron flux distributions by a neutron measuring system with the PSFC was carried out by the side of a graphite pile, W2.4 x H1.4 x L1.2 m, with neutron sources, Am-Be 370 GBq x 2. It was confirmed that the neutron flux distribution was well measured with the system. (author)

  1. Sensitivity and offset calibration for the beam position monitors at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Chung, Y.; Barr, D.; Decker, G.; Evans, K. Jr.; Kahana, E.

    1995-01-01

    The beam position monitors (BPMs) play a critically important role in commissioning and operation of accelerators. Accurate determination of the offsets relative to the magnetic axis and sensitivities of individual BPMs is thus needed. We will describe in this paper the schemes for calibrating all of the 360 BPMs for sensitivity and offset in the 7-GeV Advanced Photon Source (APS) storage ring and the results. For the sensitivity calibration, a 2-dimensional map of the BPM response in the aluminum vacuum chamber is obtained theoretically, which is combined with the measured nonlinear response of the BPM electronics. A set of 2-dimensional polynomial coefficients is then obtained to approximate the result analytically. The offset calibration of the BPMs is done relative to the magnetic axis of the quadrupoles using the beam. This avoids the problem arising from various mechanical sources as well as the offset in the processing electronics. The measurement results for the resolution and long-term drift of the BPM electronics shows 0.06-μm/√Hz resolution and 2-μm/hr drift over a period of 1.5 hrs

  2. Development of a geometric uncertainty model describing the accuracy of position-sensitive, coincidence neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Cory L., E-mail: cory@psu.ed [Department of Mechanical and Nuclear Engineering, The Pennsylvania, State University, University Park, PA 16802 (United States); Brenizer, J.S. [Department of Mechanical and Nuclear Engineering, The Pennsylvania, State University, University Park, PA 16802 (United States)

    2011-01-01

    A diameter of uncertainty (D{sub u}) was derived from a geometric uncertainty model describing the error that would be introduced into position-sensitive, coincidence neutron detection measurements by charged-particle transport phenomena and experimental setup. The transport of {alpha} and Li ions, produced by the {sup 10}B(n,{alpha}) {sup 7}Li reaction, through free-standing boro-phosphosilicate glass (BPSG) films was modeled using the Monte Carlo code SRIM, and the results of these simulations were used as input to determine D{sub u} for position-sensitive, coincidence techniques. The results of these calculations showed that D{sub u} is dependent on encoder separation, the angle of charged particle emission, and film thickness. For certain emission scenarios, the magnitude of D{sub u} is larger than the physical size of the neutron converting media that were being modeled. Spheres of uncertainty were developed that describe the difference in flight path times among the bounding-case emission scenarios that were considered in this work. It was shown the overlapping spheres represent emission angles and particle flight path lengths that would be difficult to resolve in terms of particle time-of-flight measurements. However, based on the timing resolution of current nuclear instrumentation, emission events that yield large D{sub u} can be discriminated by logical arguments during spectral deconvolution.

  3. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites

  4. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  5. Ultrafast readout of scintillating fibres using upgraded position-sensitive photomultipliers

    CERN Document Server

    Agoritsas, V; Ditta, J; Dufournaud, J; Giacomich, R; Gorin, A M; Kuroda, K; Meshchanin, A P; Newsom, C R; Nurushev, S B; Önel, Y M; Okada, K; Oshima, N; Pauletta, G; Penzo, Aldo L; Rakhmatov, V E; Rykalin, V I; Salvato, G; Schiavon, R P; Sillou, D; Solovyanov, V L; Takeutchi, F; Vasilev, V; Vasilchenko, V G; Villari, A C C; Yamada, R; Yoshida, T; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    In view of the new possibilities for event detection and tracking in future multi-TeV collider experiments, we propose to improve the performance of position-sensitive photomultipliers and, with it, to realize an ultrafast readout device of scintillating fibres; this should play a unique role in the complex of a future vertex detector, owing to its inherent subnanosecond resolving time as well as its capability of an extremely high counting rate. Our proposal is first aimed at upgrading the position-sensitive PM, in particular its space and time resolutions. Full advantage of the new phototube will be demonstrated in its immediate application to a generic prototype of a scintillating-fibre detector. Our programme also includes intensive R&D on a real-time digitization of the multihit topology, which should provide an essential back-up to the vertex tracking at extremely high rates, one of the most difficult problems relevant to the expected high performance of the LHC.

  6. The sensitivity and dynamic response of field ionization gas sensor based on ZnO nanorods

    International Nuclear Information System (INIS)

    Min Jiahua; Liang Xiaoyan; Wang Bin; Wang Linjun; Zhao Yue; Shi Weimin; Xia Yiben

    2011-01-01

    Field ionization gas sensors based on ZnO nanorods (50–300 nm in diameter, and 3–8 μm in length) with and without a buffer layer were fabricated, and the influence of the orientation of nano-ZnO on the ionization response of devices was discussed, including the sensitivity and dynamic response of the ZnO nanorods with preferential orientation. The results indicated that ZnO nanorods as sensor anode could dramatically decrease the breakdown voltage. The XRD and SEM images illustrated that nano-ZnO with a ZnO buffer layer displayed high c-axis orientation, which helps to significantly reduce the breakdown voltage. Device A based on ZnO nanorods with a ZnO buffer layer could distinguish toluene and acetone. The dynamic responses of device A to the NO x compounds presented the sensitivity of 0.045 ± 0.007 ppm/pA and the response speed within 17–40 s, and indicated a linear relationship between NO x concentration and current response at low NO x concentrations. In addition, the dynamic responses to benzene, isopropyl alcohol, ethanol, and methanol reveals that the device has higher sensitivity to gas with larger static polarizability and lower ionization energy.

  7. Sensitive resonant gas sensor operating in air with metal organic frameworks coating

    KAUST Repository

    Jaber, Nizar; Ilyas, Saad; Shekhah, Osama; Eddaoudi, Mohamed; Younis, Mohammad I.

    2017-01-01

    We report a practical resonant gas sensor that is uniformly coated with metal organic frameworks (MOFs) and excited near the higher order modes for a higher attained sensitivity. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of the squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic force electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOFs functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  8. Sensitive resonant gas sensor operating in air with metal organic frameworks coating

    KAUST Repository

    Jaber, Nizar

    2017-08-09

    We report a practical resonant gas sensor that is uniformly coated with metal organic frameworks (MOFs) and excited near the higher order modes for a higher attained sensitivity. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of the squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic force electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOFs functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  9. Adaptation to the waste anesthesia gas system: Gaps in knowledge and opportunities for positive environmental impact

    Directory of Open Access Journals (Sweden)

    John Palmisano

    2015-12-01

    Full Text Available Canisters containing activated charcoal are commonly used in the laboratory setting to collect waste anesthetic gas (WAG. This requires the weighing of the WAG canister after each use and for investigators to maintain an accurate time log of anesthesia duration. A typical rodent anesthesia station may include the use of 3 WAG canisters; one for the anesthesia induction box, one for the operative table, and one for gas monitoring. To simplify the anesthesia breathing circuit, we have developed a “T” connector that replaces the need for having multiple WAG canisters. The “T” connector directs the waste anesthetic from multiple sources; the anesthesia induction box, operative table and gas monitor into a single WAG canister. Use of the “T” connector appears to be a safe, acceptable device that conveniently directs waste gas while improving charcoal adsorption within the canister. In addition, this device may have a positive impact on the environment with a secondary benefit of possible cost savings associated with the purchase and disposal of the hazardous waste contents.

  10. Sensitivity and specificity of oral HPV detection for HPV-positive head and neck cancer.

    Science.gov (United States)

    Gipson, Brooke J; Robbins, Hilary A; Fakhry, Carole; D'Souza, Gypsyamber

    2018-02-01

    The incidence of HPV-related head and neck squamous cell carcinoma (HPV-HNSCC) is increasing. Oral samples are easy and non-invasive to collect, but the diagnostic accuracy of oral HPV detection methods for classifying HPV-positive HNSCC tumors has not been well explored. In a systematic review, we identified eight studies of HNSCC patients meeting our eligibility criteria of having: (1) HPV detection in oral rinse or oral swab samples, (2) tumor HPV or p16 testing, (3) a publication date within the last 10 years (January 2007-May 2017, as laboratory methods change), and (4) at least 15 HNSCC cases. Data were abstracted from each study and a meta-analysis performed to calculate sensitivity and specificity. Eight articles meeting inclusion criteria were identified. Among people diagnosed with HNSCC, oral HPV detection has good specificity (92%, 95% CI = 82-97%) and moderate sensitivity (72%, 95% CI = 45-89%) for HPV-positive HNSCC tumor. Results were similar when restricted to studies with only oropharyngeal cancer cases, with oral rinse samples, or testing for HPV16 DNA (instead of any oncogenic HPV) in the oral samples. Among those who already have HNSCC, oral HPV detection has few false-positives but may miss one-half to one-quarter of HPV-related cases (false-negatives). Given these findings in cancer patients, the utility of oral rinses and swabs as screening tests for HPV-HNSCC among healthy populations is probably limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium

    Science.gov (United States)

    Van Uytven, E.; Willems, P.

    2018-03-01

    Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.

  12. The Influence of Several Doped Ions on Gas Sensitivity of Hematite

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The dehydrating activation energies of the hematite with several doped ions used for the alcohol sensor were determinated by thermogravimetric differential thermal analyzer (TG-DTA) and the grain size of the samples were observed with TEM. The hematites with different doping amounts of Sn4 + were investigated by Mossbauer spectrometer. It shows that the different doped ion is of influence for grain growth of the hematite. The decrease of grain size stemmed from the doped ion causes gas sensitivity for alcohol to increase and the dehydrating activation energy to decrease correspondingly. When the different amounts of Sn4 + is doped in hematite, the microstructure of the hematite can be influenced.

  13. Preliminary Sensitivity Study on Gas-Cooled Reactor for NHDD System Using MARS-GCR

    International Nuclear Information System (INIS)

    Lee, Seung Wook; Jeong, Jae Jun; Lee, Won Jae

    2005-01-01

    A Gas-Cooled Reactor (GCR) is considered as one of the most outstanding tools for a massive hydrogen production without CO 2 emission. Till now, two types of GCR are regarded as a viable nuclear reactor for a hydrogen production: Prismatic Modular Reactor (PMR), Pebble Bed Reactor (PBR). In this paper, a preliminary sensitivity study on two types of GCR is carried out by using MARS-GCR to find out the effect on the peak fuel and reactor pressure vessel (RPV) temperature, with varying the condition of a reactor inlet, outlet temperature, and system pressure for both PMR and PBR

  14. Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    Science.gov (United States)

    Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting

    2011-01-01

    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or

  15. Recent improvements to RC-line encoded position-sensitive proportional counters

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Kopp, M.K.

    1977-01-01

    Continuing research on the principles of position encoding with RC lines has advanced the design of position-sensitive proportional counters (PSPCs) to meet the requirements for high count rates (>10 5 counts/sec) and good spatial resolution (>10 4 spatial elements) in small-angle scattering experiments with x rays and neutrons. Low-noise preamplifiers were developed with pole-zero cancellation in the feedback circuit and modular linear amplifiers with passive RCL shaping which, compared to previous designs, reduce output saturation at high count rates approx.20 times and shorten the position signal processing time to 2 ) for low-energy ( 800 x 800 mm 2 ) for the measurement of small-angle scattering with neutrons. The method of electronic thickness discrimination was applied to change the effective thickness of an area PSPC from 12 to 2 cm whenever the molybdenum target of an x-ray generator was changed to a copper target. This thickness adjustment increased the signal-to-background ratio by a factor of approx.6 for the 8-keV photons from the copper target, while maintaining a >90% detection efficiency

  16. Preliminary Study of Position-Sensitive Large-Area Radiation Portal Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chang Hwy; Kim, Hyunok; Moon, Myung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jongyul [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Jong Won; Lim, Yong Kon [Korea Institute of Ocean Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    An RPM, which is a passive inspection method, is a system for monitoring the movement of radioactive materials at an airport, seaport, border, etc. To detect a γ-ray, an RPM using the plastic scintillator is generally used. The method of γ-ray detection using an RPM with a plastic scintillator is to measure lights generated by an incident γ-ray in the scintillator. Generally, a large-area RPM uses one or two photomultiplier tubes (PMT) for light collection. However, in this study, we developed a 4-ch RPM that can measure the radiation signal using 4 PMTs. The reason for using 4 PMTs is to calculate the position of the radiation source. In addition, we developed an electric device for acquisition of a 4-ch output signal at the same time. To estimate the performance of the developed RPM, we performed an RPM test using a {sup 60}Co γ-ray check source. In this study, we performed the development of a 4-ch RPM. The major function of the typical RPM is to measure the radiation. However, we developed a position-sensitive 4-ch RPM, which can be used to measure the location of the radiation source, as well as the radiation measurement, at the same time. In the future, we plan to develop an algorithm for a position detection of the radiation. In addition, an algorithm will be applied to an RPM.

  17. Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy.

    Science.gov (United States)

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto

    2018-06-04

    In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.

  18. Effects of vertical positioning on gas exchange and lung volumes in acute respiratory distress syndrome.

    Science.gov (United States)

    Richard, Jean-Christophe M; Maggiore, Salvatore Maurizio; Mancebo, Jordi; Lemaire, François; Jonson, Bjorn; Brochard, Laurent

    2006-10-01

    Supine position may contribute to the loss of aerated lung volume in patients with acute respiratory distress syndrome (ARDS). We hypothesized that verticalization increases lung volume and improves gas exchange by reducing the pressure surrounding lung bases. Prospective observational physiological study in a medical ICU. In 16 patients with ARDS we measured arterial blood gases, pressure-volume curves of the respiratory system recorded from positive-end expiratory pressure (PEEP), and changes in lung volume in supine and vertical positions (trunk elevated at 45 degrees and legs down at 45 degrees ). Vertical positioning increased PaO(2) significantly from 94+/-33 to 142+/-49 mmHg, with an increase higher than 40% in 11 responders. The volume at 20 cmH(2)O measured on the PV curve from PEEP increased using the vertical position only in responders (233+/-146 vs. -8+/-9 1ml in nonresponders); this change was correlated to oxygenation change (rho=0.55). End-expiratory lung volume variation from supine to vertical and 1 h later back to supine, measured in 12 patients showed a significant increase during the 1-h upright period in responders (n=7) but not in nonresponders (n=5; 215+/-220 vs. 10+/-22 ml), suggesting a time-dependent recruitment. Vertical positioning is a simple technique that may improve oxygenation and lung recruitment in ARDS patients.

  19. An X-ray beam position monitor based on the photoluminescence of helium gas

    Science.gov (United States)

    Revesz, Peter; White, Jeffrey A.

    2005-03-01

    A new method for white beam position monitoring for both bend magnet and wiggler synchrotron X-ray radiation has been developed. This method utilizes visible light luminescence generated as a result of ionization by the intense X-ray flux. In video beam position monitors (VBPMs), the luminescence of helium gas at atmospheric pressure is observed through a view port using a CCD camera next to the beam line. The beam position, profile, integrated intensity and FWHM are calculated from the distribution of luminescence intensity in each captured image by custom software. Misalignment of upstream apertures changes the image profile making VBPMs helpful for initial alignment of upstream beam line components. VBPMs can thus provide more information about the X-ray beam than most beam position monitors (BPMs). A beam position calibration procedure, employing a tilted plane-parallel glass plate placed in front of the camera lens, has also been developed. The accuracy of the VBPM system was measured during a bench-top experiment to be better than 1 μm. The He-luminescence-based VBPM system has been operative on three CHESS beam lines (F hard-bend and wiggler, A-line wiggler and G-line wiggler) for about a year. The beam positions are converted to analog voltages and used as feedback signals for beam stabilization. In our paper we discuss details of VBPM construction and describe further results of its performance.

  20. Macular hole surgery with short-acting gas and short-duration face-down positioning

    Directory of Open Access Journals (Sweden)

    Xirou T

    2012-07-01

    Full Text Available Tina Xirou,1 Panagiotis G Theodossiadis,2 Michael Apostolopoulos,3 A Stamatina Kabanarou,1 Elias Feretis,1 Ioannis D Ladas,3 Chrysanthi Koutsandrea31Vitreoretinal Unit, Red Cross Hospital, 2B Department of Ophthalmology, University of Athens, Greece; 3A Department of Ophthalmology, University of Athens, GreecePurpose: To report on the outcomes of vitrectomy and sulfur hexafluoride (SF6 gas tamponade for idiopathic macular holes with 2 days of face-down positioning.Patients and methods: This was a prospective, nonrandomized, observational sequential case-series study on 23 consecutive patients receiving macular hole surgery using 20% SF6 and advised to stay in a face-down position for 2 days postoperatively (SF6 group. These patients were compared to 23 consecutive patients who had previously undergone macular hole surgery, had received 14% C3F8, and were advised to maintain a face-down position for 2 days (C3F8 group. Patients in both groups underwent vitrectomy, internal limiting membrane peeling, and fluid gas exchange using either SF6 or C3F8. Preoperative and postoperative data included best corrected visual acuity recorded in LogMAR units, slit-lamp biomicroscopy, and optical coherence tomography.Results: At a 6-month follow-up, macular hole closure was noted in 23/23 eyes (100% and in 22/23 eyes (96% in the SF6 and C3F8 groups, respectively. The improvement in visual acuity (measured through Snellen acuity lines both preoperatively until 6 months postoperatively was 4.08 ± 2.31 (95% confidence interval [CI]: 3.08–5.08 for the SF6 group and 2.87 ± 2.30 (95% CI: 1.87–3.86 for the C3F8 group; this difference was not statistically significant (P = 0.06.Conclusion: Vitrectomy with internal limiting membrane peeling and a short-acting gas tamponade using SF6 with posture limitation for 2 days may give a high success rate in macular hole surgery.Keywords: idiopathic macular holes, SF6 gas tamponade, C3F8 gas tamponade

  1. Simulation and optimisation of a position sensitive scintillation detector with wavelength shifting fibers for thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Herzkamp, Matthias; Engels, Ralf; Kemmerling, Guenter [ZEA-2, Forschungszentrum Juelich (Germany); Brueckel, Thomas [JCNS, Forschungszentrum Juelich (Germany); Stahl, Achim [III. Physikalisches Institut B, RWTH Aachen (Germany); Waasen, Stefan van [ZEA-2, Forschungszentrum Juelich (Germany); Faculty of Engineering, University of Duisburg-Essen (Germany)

    2015-07-01

    In neutron scattering experiments it is important to have position sensitive large scale detectors for thermal neutrons. A detector based on a neutron scintillator with wave length shifting fibers is a new kind of such a detector. We present the simulation of the detector based on the microscopic structure of the scintillation material of the mentioned detector. It consists of a converter and a scintillation powder bound in a matrix. The converter in our case is lithium fluoride with enriched lithium 6, to convert thermal neutrons into high energetic alpha and triton particles. The scintillation material is silver doped zinc sulfide. We show that pulse height spectra obtained by these scintillators can be be explained by the simple model of randomly distributed spheres of zinc sulfide and lithium fluoride. With this model, it is possible to optimise the mass ratio of zinc sulfide to lithium fluoride with respect to detection efficiency and/or energy deposition in zinc sulfide.

  2. Environmental gram-positive mastitis treatment: in vitro sensitivity and bacteriologic cure.

    Science.gov (United States)

    Cattell, M B; Dinsmore, R P; Belschner, A P; Carmen, J; Goodell, G

    2001-09-01

    A clinical trial was conducted in a large dairy herd to determine the efficacy of intramammary pirlimycin hydrochloride administration during lactation for bacteriologic clearance of gram-positive environmental clinical and subclinical mastitis infections. Quarters infected with environmental streptococci that received pirlimycin therapy (13/28) were 1.8 times more likely to resolve infection than untreated quarters (5/14). The small numbers of quarters infected with coagulase-negative staphylococci resulted in inadequate power to assess treatment differences in cure rate. Although the association was not statistically significant, quarters from cows with sensitive environmental streptococci isolates from composite samples (8/13) resolved infection with treatment at approximately twice the rate of treated quarters with resistant isolates (3/10).

  3. A large-area, position-sensitive neutron detector with neutron/γ-ray discrimination capabilities

    International Nuclear Information System (INIS)

    Zecher, P.D.; Galonsky, A.; Kruse, J.J.; Gaff, S.J.; Ottarson, J.; Wang, J.; Seres, Z.; Ieki, K.; Iwata, Y.; Schelin, H.

    1997-01-01

    To further study neutron-rich halo nuclei, we have constructed a neutron detector array. The array consists of two separate banks of detectors, each of area 2 x 2 m 2 and containing 250 l of liquid scintillator. Each bank is position-sensitive to better than 10 cm. For neutron time-of-flight measurements, the time resolution of the detector has been demonstrated to be about 1 ns. By using the scintillator NE-213, we are able to distinguish between neutron and γ-ray signals above 1 MeV electron equivalent energy. Although the detector array was constructed for a particular experiment it has also been used in a number of other experiments. (orig.)

  4. Design and development of 1 mm resolution PET detectors with position-sensitive PMTs

    CERN Document Server

    Shao, Y; Chatziioannou, A F

    2002-01-01

    We report our investigation of a positron emission tomography (PET) detector with 1 m spatial resolution. The prototype detector consists of a 9x9 array of 1x1x10 mm sup 3 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to Hamamatsu R5900-M64 or R5900-C12 position sensitive PMT by either optical fibers or an optical fiber bundle. With a 511 eV gamma source, the intrinsic spatial resolution of this detector was measured to be 0.92 mm. All crystals were well resolved in the flood source histogram. The measured energy and coincidence timing resolutions were around 26% and 4 ns, respectively, demonstrating that sufficient light can be extracted from these small crystals for PET applications.

  5. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  6. Topological trigger device using scintillating fibers and position-sensitive photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Keiichi; Dufournaud, J; Sillou, D [Laboratoire d' Annecy-le-Vieux de Physique des Particules (LAPP), 74 (France); Agoritsas, V [European Organization for Nuclear Research, Geneva (Switzerland); Bystricky, G; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Giacomich, R; Pauletta, G; Penzo, A; Salvato, G; Schiavon, P; Villari, A [INFN, Messina (Italy) INFN, Trieste (Italy) INFN, Udine (Italy); Gorin, A M; Meschanin, A P; Nurushev, S B; Rakhmatov, V E; Rykalin, V L; Solovyanov, V L; Vasiliev, A N; Vasil' chencko, V G [Institute for High Energy Physics, Serpukhov (USSR); Oshima, N; Yamada, R [Fermi National Accelerator Lab., Batavia, IL (USA); Takeutchi, F [Kyoto-Sanyo Univ., Kyoto (Japan); Yoshida, T [Osaka City Univ. (Japan); Akchurin, N; Onel, Y; Newsom, C

    1991-07-01

    An approach to a high quality of the Level-1 Trigger is investigated on the basis of a topological trigger device. It will be realized by using scintillating fibers and position-sensitive photomultipliers, both considered as potential candidates of new detector-components thanks to their excellent time characteristics and high radiation resistances. The device is characterized in particular by its simple concept and reliable operation supported by the mature technologies emploied. The major interests of such a scheme under LHC environments reside in its capability of selcting high pperpendicular to tracks in real time, its optional immunity against low pperpendicular to tracks and loopers, as well as its effective links to other associated devices in the complex of a vertex detector. (orig.).

  7. Depth of interaction detection with enhanced position-sensitive proportional resistor network

    International Nuclear Information System (INIS)

    Lerche, Ch.W.; Benlloch, J.M.; Sanchez, F.; Pavon, N.; Gimenez, N.; Fernandez, M.; Gimenez, M.; Sebastia, A.; Martinez, J.; Mora, F.J.

    2005-01-01

    A new method of determining the depth of interaction of γ-rays in thick inorganic scintillation crystals was tested experimentally. The method uses the strong correlation between the width of the scintillation light distribution within large continuous crystals and the γ-ray's interaction depth. This behavior was successfully reproduced by a theoretical model distribution based on the inverse square law. For the determination of the distribution's width, its standard deviation σ is computed using an enhanced position-sensitive proportional resistor network which is often used in γ-ray-imaging devices. Minor changes of this known resistor network allow the analog and real-time determination of the light distribution's 2nd moment without impairing the measurement of the energy and centroid. First experimental results are presented that confirm that the described method works correctly. Since only some cheap electronic components, but no additional detectors or crystals are required, the main advantage of this method is its low cost

  8. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    Science.gov (United States)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  9. Position sensitive detector with semiconductor and image electron tube comprising such a detector

    International Nuclear Information System (INIS)

    Roziere, Guy.

    1977-01-01

    This invention concerns a position sensitive detector comprising a semiconducting substrate. It also concerns the electron tubes in which the detector may be incorporated in order to obtain an image formed at the tube input by an incident flux of particles or radiation. When a charged particle or group of such particles, electrons in particular, enter the space charge region of an inversely biased semiconductor diode, the energy supplied by these particles releases in the diode a certain number of electron-hole pairs which move in the field existing in the area towards the diode contacts. A corresponding current arises in the connections of this diode which constitutes the signal corresponding to the incident energy. Such a tube or chain of tubes is employed in nuclear medicine for observing parts of the human body, particularly by gamma radiation [fr

  10. A position sensitive silicon detector for AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Multimedia

    Gligorova, A

    2014-01-01

    The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is located at the Antiproton Decelerator (AD) at CERN and studies antimatter. The main goal of the AEḡIS experiment is to carry out the first measurement of the gravitational acceleration for antimatter in Earth’s gravitational field to a 1% relative precision. Such a measurement would test the Weak Equivalence Principle (WEP) of Einstein’s General Relativity. The gravitational acceleration for antihydrogen will be determined using a set of gravity measurement gratings (Moiré deflectometer) and a position sensitive detector. The vertical shift due to gravity of the falling antihydrogen atoms will be detected with a silicon strip detector, where the annihilation of antihydrogen will take place. This poster presents part of the development process of this detector.

  11. A microprogrammable high-speed data collection system for position sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hashizume, H.

    1984-01-01

    A high-speed data acquisition system has been designed which collects digital data from one- and two-dimensional position sensitive X-ray detectors at a maximum average data rate of 1 MHz. The system consists of two separate fast buffer memories, a 64 K word by 20-bit main storage, two timers, a display controller, a computer interface and a keyboard, controlled by a specially designed microprogrammable microprocessor. Data collection is performed by executing a microprogram stored in the control storage; data coming from a detector are first accumulated in a small but fast buffer memory by hardware and transferred to the main storage under control of the microprogram. This design not only permits time-resolved data collections but also provides maximum speed, flexibility and cost-effectiveness simultaneously. The system also accepts data from integrated detectors such as TV cameras. The system has been designed for use in experiments at conventional and synchrotron X-ray sources. (orig.)

  12. Topological trigger device using scintillating fibres and position-sensitive photomultipliers

    CERN Document Server

    Agoritsas, V; Dufournaud, J; Giacomich, R; Gorin, A M; Kuroda, K; Meshchanin, A P; Newsom, C R; Nurushev, S B; Önel, Y M; Oshima, N; Pauletta, G; Penzo, Aldo L; Rakhmatov, V E; Rykalin, V I; Salvato, G; Schiavon, R P; Sillou, D; Solovyanov, V L; Takeutchi, F; Vasilev, V; Vasilchenko, V G; Villari, A C C; Yamada, R; Toshida, T; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    An approach to a high-quality level-1 trigger is proposed on the basis of a topological device that will be realized by using scintillating fibres and position-sensitive photomultipliers, both of which are considered as potential candidates for new detector components, thanks to their excellent time characteristics and high radiation resistance. The device is characterized, in particular, by its simple concept and reliable functioning, which are a result of the mature technologies employed. In the LHC environment, the major interests of such a scheme reside in its capability to select high ptransv. tracks in real time, in its optional immunity against low ptransv. tracks and loopers, as well as in its effective links to other associated devices within the complex of a vertex detector.

  13. Increasing the selectivity and sensitivity of gas sensors for the detection of explosives

    Science.gov (United States)

    Mallin, Daniel

    Over the past decade, the use of improvised explosive devices (IEDs) has increased, domestically and internationally, highlighting a growing need for a method to quickly and reliably detect explosive devices in both military and civilian environments before the explosive can cause damage. Conventional techniques have been successful in explosive detection, however they typically suffer from enormous costs in capital equipment and maintenance, costs in energy consumption, sampling, operational related expenses, and lack of continuous and real-time monitoring. The goal was thus to produce an inexpensive, portable sensor that continuously monitors the environment, quickly detects the presence of explosive compounds and alerts the user. In 2012, here at URI, a sensor design was proposed for the detection of triacetone triperoxide (TATP). The design entailed a thermodynamic gas sensor that measures the heat of decomposition between trace TATP vapor and a metal oxide catalyst film. The sensor was able to detect TATP vapor at the part per million level (ppm) and showed great promise for eventual commercial use, however, the sensor lacked selectivity. Thus, the specific objective of this work was to take the original sensor design proposed in 2012 and to make several key improvements to advance the sensor towards commercialization. It was demonstrated that a sensor can be engineered to detect TATP and ignore the effects of interferent H2O2 molecules by doping SnO2 films with varying amounts of Pd. Compared with a pure SnO2 catalyst, a SnO2, film doped with 8 wt. % Pd had the highest selectivity between TATP and H2O2. Also, at 12 wt. % Pd, the response to TATP and H2O2 was enhanced, indicating that sensitivity, not only selectivity, can be increased by modifying the composition of the catalyst. An orthogonal detection system was demonstrated. The platform consists of two independent sensing mechanisms, one thermodynamic and one conductometric, which take measurements from

  14. Computational design and characterization of a temperature-sensitive plasmid replicon for gram positive thermophiles

    Directory of Open Access Journals (Sweden)

    Olson Daniel G

    2012-05-01

    Full Text Available Abstract Background Temperature-sensitive (Ts plasmids are useful tools for genetic engineering, but there are currently none compatible with the gram positive, thermophilic, obligate anaerobe, Clostridium thermocellum. Traditional mutagenesis techniques yield Ts mutants at a low frequency, and therefore requires the development of high-throughput screening protocols, which are also not available for this organism. Recently there has been progress in the development of computer algorithms which can predict Ts mutations. Most plasmids currently used for genetic modification of C. thermocellum are based on the replicon of plasmid pNW33N, which replicates using the RepB replication protein. To address this problem, we set out to create a Ts plasmid by mutating the gene coding for the RepB replication protein using an algorithm designed by Varadarajan et al. (1996 for predicting Ts mutants based on the amino-acid sequence of the protein. Results A library of 34 mutant plasmids was designed, synthesized and screened, resulting in 6 mutants which exhibited a Ts phenotype. Of these 6, the one with the most temperature-sensitive phenotype (M166A was compared with the original plasmid. It exhibited lower stability at 48°C and was completely unable to replicate at 55°C. Conclusions The plasmid described in this work could be useful in future efforts to genetically engineer C. thermocellum, and the method used to generate this plasmid may be useful for others trying to make Ts plasmids.

  15. Position sensitive regions in a generic radiation sensor based on single event upsets in dynamic RAMs

    International Nuclear Information System (INIS)

    Darambara, D.G.; Spyrou, N.M.

    1997-01-01

    Modern integrated circuits are highly complex systems and, as such, are susceptible to occasional failures. Semiconductor memory devices, particularly dynamic random access memories (dRAMs), are subject to random, transient single event upsets (SEUs) created by energetic ionizing radiation. These radiation-induced soft failures in the stored data of silicon based memory chips provide the foundation for a new, highly efficient, low cost generic radiation sensor. The susceptibility and the detection efficiency of a given dRAM device to SEUs is a complicated function of the circuit design and geometry, the operating conditions and the physics of the charge collection mechanisms involved. Typically, soft error rates measure the cumulative response of all sensitive regions of the memory by broad area chip exposure in ionizing radiation environments. However, this study shows that many regions of a dynamic memory are competing charge collection centres having different upset thresholds. The contribution to soft fails from discrete regions or individual circuit elements of the memory device is unambiguously separated. Hence the use of the dRAM as a position sensitive radiation detector, with high spatial resolution, is assessed and demonstrated. (orig.)

  16. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.

    Science.gov (United States)

    Kudo, Hiroyuki; Suzuki, Yuki; Gessei, Tomoko; Takahashi, Daishi; Arakawa, Takahiro; Mitsubayashi, Kohji

    2010-10-15

    An ultrahigh-sensitive fiber-optic biochemical gas sensor (bio-sniffer) for continuous monitoring of indoor formaldehyde was constructed and tested. The bio-sniffer measures gaseous formaldehyde as fluorescence of nicotinamide adenine dinucleotide (NADH), which is the product of formaldehyde dehydrogenase (FALDH) reaction. The bio-sniffer device was constructed by attaching a flow cell with a FALDH immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode (UV-LED) with peak emission of 335 nm as an excitation light source. The excitation light was introduced to an optical fiber probe, and fluorescence emission of neighboring NADH, which was produced by applying formaldehyde vapor to the FALDH membrane, was concentrically measured with a photomultiplier tube. Assessment of the bio-sniffer was carried out using a standard gas generator. Response, calibration range and selectivity to other chemical substances were investigated. Circulating phosphate buffer, which contained NAD+, available for continuous monitoring of formaldehyde vapor. The calibration range of the bio-sniffer was 2.5 ppb to 10 ppm, which covers the guideline value of the World Health Organization (80 ppb). High selectivity to other gaseous substances due to specific activity of FALDH was also confirmed. Considering its high sensitivity, a possible application of the bio-sniffer is continuous indoor formaldehyde monitoring to provide healthy residential atmosphere. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Techno-economic sensitivity study of heliostat field parameters for micro-gas turbine CSP

    Science.gov (United States)

    Landman, Willem A.; Gauché, Paul; Dinter, Frank; Myburgh, J. T.

    2017-06-01

    Concentrating solar power systems based on micro-gas turbines potentially offer numerous benefits should they become commercially viable. Heliostat fields for such systems have unique requirements in that the number of heliostats and the focal ratios are typically much lower than conventional central receiver systems. This paper presents a techno-economic sensitivity study of heliostat field parameters for a micro-gas turbine central receiver system. A 100 kWe minitower system is considered for the base case and a one-at-a-time strategy is used to investigate parameter sensitivities. Increasing heliostat focal ratios are found to have significant optical performance benefits due to both a reduction in astigmatic aberrations and a reduction in the number of facet focal lengths required; confirming the hypothesis that smaller heliostats offer a techno-economic advantage. Fixed Horizontal Axis tracking mechanism is shown to outperform the conventional Azimuth Zenith tracking mechanism in high density heliostat fields. Although several improvements to heliostat field performance are discussed, the capex fraction of the heliostat field for such system is shown to be almost half that of a conventional central receiver system and optimum utilization of the higher capex components, namely; the receiver and turbine subsystems, are more rewarding than that of the heliostat field.

  18. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  19. Undoped and doped poly(tetraphenylbenzidine) as sensitive material for an impedimetric nitrogen dioxide gas dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Marr, I.; Moos, R., E-mail: functional.materials@uni-bayreuth.de [Department of Functional Materials, University of Bayreuth, Bayreuth 95440 (Germany); Neumann, K.; Thelakkat, M. [Department of Macromolecular Chemistry I, Applied Functional Polymers, University of Bayreuth, Bayreuth 95440 (Germany)

    2014-09-29

    This article presents a nitrogen dioxide (NO{sub 2}) detecting gas dosimeter based on poly(tetraphenylbenzidine) poly(TPD) as nitrogen oxide (NO{sub x}) sensitive layer. Gas dosimeters are suitable devices to determine reliably low levels of analytes over a long period of time. During NO{sub x} exposure, the analyte molecules are accumulated irreversibly in the sensing layer of the dosimeter enhancing the conductivity of the hole conducting poly(TPD), which can be measured by impedance spectroscopy. Due to their possibility for low cost production by simple printing techniques and very good physical, photochemical, and electrochemical properties, poly(TPD)s are suitable for application in gas dosimeters operated at room temperature. We studied the effect of doping with a Co(III)-complex in combination with a conducting salt on the dosimeter behavior. Compared to the undoped material, a strong influence of the doping can be observed: the conductivity of the sensing material increases significantly, the noise of the signal decreases and an unwanted recovery of the sensor signal can be prevented, leading to a NO{sub x} detection limit <10 ppm.

  20. Estimation of Compton Imager Using Single 3D Position-Sensitive LYSO Scintillator: Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewoong; Lee, Hyounggun; Kim, Younghak; Lee, Wonho [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    The performance of a Compton imager using a single three-dimensional position-sensitive LYSO scintillator detector was estimated using a Monte Carlo simulation. The Compton imager consisted of a single LYSO scintillator with a pixelized structure. The size of the scintillator and each pixel were 1.3 × 1.3 × 1.3 cm{sup 3} and 0.3 × 0.3 × 0.3 cm{sup 3}, respectively. The order of γ-ray interactions was determined based on the deposited energies in each detector. After the determination of the interaction sequence, various types of reconstruction algorithms such as simple back-projection, filtered back-projection, and list-mode maximum-likelihood expectation maximization (LM-MLEM) were applied and compared with each other in terms of their angular resolution and signal-tonoise ratio (SNR) for several γ-ray energies. The LM-MLEM reconstruction algorithm exhibited the best performance for Compton imaging in maintaining high angular resolution and SNR. The two sources of {sup 137}Cs (662 keV) could be distinguishable if they were more than 17 ◦ apart. The reconstructed Compton images showed the precise position and distribution of various radiation isotopes, which demonstrated the feasibility of the monitoring of nuclear materials in homeland security and radioactive waste management applications.

  1. The effect of mechanical stress on lateral-effect position-sensitive detector characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, H.A. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)]. E-mail: Henrik.Andersson@miun.se; Mattsson, C.G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Thungstroem, G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Lundgren, A. [SiTek Electro Optics, Ogaerdesvaegen 13A 433 30 Partille (Sweden); Nilsson, H.-E. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)

    2006-07-01

    Position-sensitive detectors (PSDs) are widely used in noncontact measurement systems. In order to minimize the size of such systems, interest has increased in mounting the PSD chip directly onto printed circuit boards (PCBs). Stress may be induced in the PSD because of the large differences in thermal expansion coefficients, as well as the long-term geometrical stability of the chip packaging. Mechanical stress has previously been shown to have an effect on the performance of semiconductors. The accuracy, or linearity, of a lateral effect PSD is largely dependent on the homogeneity of the resistive layer. Variations of the resistivity over the active area of the PSD will result in an uneven distribution of photo-generated current, and hence an error in the readout position. In this work experiments were performed to investigate the influence of anisotropic mechanical stress in terms of nonlinearity. PSD chips of 60x3 mm active area were subjected, respectively, to different amounts of compressive and tensile stress to determine the influence on the linearity.

  2. Simulation and measurement of short infrared pulses on silicon position sensitive device

    International Nuclear Information System (INIS)

    Krapohl, D; Esebamen, O X; Nilsson, H E; Thungstroem, G

    2011-01-01

    Lateral position sensitive devices (PSD) are important for triangulation, alignment and surface measurements as well as for angle measurements. Large PSDs show a delay on rising and falling edges when irradiated with near infra-red light. This delay is also dependent on the spot position relative to the electrodes. It is however desirable in most applications to have a fast response. We investigated the responsiveness of a Sitek PSD in a mixed mode simulation of a two dimensional full sized detector. For simulation and measurement purposes focused light pulses with a wavelength of 850 nm, duration of 1μs and spot size of 280μm were used. The cause for the slopes of rise and fall time is due to time constants of the device capacitance as well as the photo-generation mechanism itself. To support the simulated results, we conducted measurements of rise and fall times on a physical device. Additionally, we quantified the homogeneity of the device by repositioning a spot of light from a pulsed ir-laser diode on the surface area.

  3. Position-sensitive proportional counter with low-resistance metal-wire anode

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which uses a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counther. A pair of specially designed activecapacitance preamplifiers terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, lownoise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at te anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates

  4. Measurement of spatial dose-rate distribution using a position sensitive detector

    International Nuclear Information System (INIS)

    Emoto, T.; Torii, T.; Nozaki, T.; Ando, H.

    1994-01-01

    Recently, the radiation detectors using plastic scintillation fibers (PSF) have been developed to measure the positions exposed to radiation such as neutrons and high energy charged particles. In particular, the time of flight (TOF) method for measuring the difference of time that two directional signals of scintillation light reach both ends of a PSF is a rather simple method for the measurement of the spatial distribution of fast neutron fluence rate. It is possible to use the PSF in nuclear facility working areas because of its flexibility, small diameter and long length. In order to apply TOF method to measure spatial gamma dose rate distribution, the characteristic tests of a detector using PSFs were carried out. First, the resolution of irradiated positions and the counting efficiency were measured with collimated gamma ray. The sensitivity to unit dose rate was also obtained. The measurement of spatial dose rate distribution was also carried out. The sensor is made of ten bundled PSFs, and the experimental setup is described. The experiment and the results are reported. It was found that the PSF detector has the good performance to measure spatial gamma dose rate distribution. (K.I.)

  5. Semiautomatic imputation of activity travel diaries : use of global positioning system traces, prompted recall, and context-sensitive learning algorithms

    NARCIS (Netherlands)

    Moiseeva, A.; Jessurun, A.J.; Timmermans, H.J.P.; Stopher, P.

    2016-01-01

    Anastasia Moiseeva, Joran Jessurun and Harry Timmermans (2010), ‘Semiautomatic Imputation of Activity Travel Diaries: Use of Global Positioning System Traces, Prompted Recall, and Context-Sensitive Learning Algorithms’, Transportation Research Record: Journal of the Transportation Research Board,

  6. Highly sensitive and selective room-temperature NO_2 gas sensor based on bilayer transferred chemical vapor deposited graphene

    International Nuclear Information System (INIS)

    Seekaew, Yotsarayuth; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Wongchoosuk, Chatchawal

    2017-01-01

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO_2 gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO_2 sensitivity of 1.409 ppm"−"1. • The NO_2-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO_2 detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO_2 than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm"−"1 towards NO_2 over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO_2-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO_2 molecules.

  7. Increased sensitivity to positive social stimuli in monozygotic twins at risk of bipolar vs. unipolar disorder.

    Science.gov (United States)

    Kærsgaard, S; Meluken, I; Kessing, L V; Vinberg, M; Miskowiak, K W

    2018-05-01

    Abnormalities in affective cognition are putative endophenotypes for bipolar and unipolar disorders but it is unclear whether some abnormalities are disorder-specific. We therefore investigated affective cognition in monozygotic twins at familial risk of bipolar disorder relative to those at risk of unipolar disorder and to low-risk twins. Seventy monozygotic twins with a co-twin history of bipolar disorder (n = 11), of unipolar disorder (n = 38) or without co-twin history of affective disorder (n = 21) were included. Variables of interest were recognition of and vigilance to emotional faces, emotional reactivity and -regulation in social scenarios and non-affective cognition. Twins at familial risk of bipolar disorder showed increased recognition of low to moderate intensity of happy facial expressions relative to both unipolar disorder high-risk twins and low-risk twins. Bipolar disorder high-risk twins also displayed supraliminal attentional avoidance of happy faces compared with unipolar disorder high-risk twins and greater emotional reactivity in positive and neutral social scenarios and less reactivity in negative social scenarios than low-risk twins. In contrast with our hypothesis, there was no negative bias in unipolar disorder high-risk twins. There were no differences between the groups in demographic characteristics or non-affective cognition. The modest sample size limited the statistical power of the study. Increased sensitivity and reactivity to positive social stimuli may be a neurocognitive endophenotype that is specific for bipolar disorder. If replicated in larger samples, this 'positive endophenotype' could potentially aid future diagnostic differentiation between unipolar and bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Impact of gas pressure on fission chamber sensitivity in Campbelling mode

    International Nuclear Information System (INIS)

    Geslot, B.; Blaise, P.; Loiseau, P.; Filliatre, P.; Jammes, C.; Breaud, S.; Villard, J-F.; Blanc-de-Lanaute, N.

    2013-06-01

    The study presented in this paper is based on measurements conducted in the MINERVE zero power reactor operated at CEA Cadarache with a CEA-made U-235 miniature fission chamber (8 mm in diameter) and obtained in both pulse and Campbelling modes. Our objective was to investigate the impact of the filling gas mixture and pressure on each operating mode, using the capacity of the chamber to be refilled with gas. Three gas mixtures were tested (pure Ar, Ar+4%N 2 and Ar+10%CH 4 ) with pressure ranging from 1 to 9 bars. The Mean Fission Product Charge (MFPC), which is the mean charge deposited in the gas by fission products, was obtained from pulse mode signals for each detector setting. It is shown the MFPC is another key parameter to optimize the detector neutron sensitivity, after the fissile coating cross section. Campbelling mode signal was acquired with the Fast Neutron Detector System (FNDS) recently developed by CEA and SCK·CEN. Interesting results were obtained which improve our knowledge of the detector operation. Firstly, it was found that the measurements obtained in both modes are very consistent. The MFPC as a function of the gas pressure was found to be not monotonic. Instead, it features a maximum between 3 and 4 bars. This behavior is expected if the detector does not operate in saturation regime. Indeed, our standard voltage bias of 300 V appeared to be not high enough so that the saturation regime is established. Saturation curves measured in Campbelling mode were fitted using a detector modeling in order to extrapolate the saturation regime MFPC, which came to be independent from the gas. Secondly, obtained results show that the measuring range in Campbelling mode with this detector starts from fission rates as low as a few thousand counts per second. So the so called overlapping range, in which both pulse and Campbelling modes are usable, is about one decade with our spectroscopy modules and more than two decades with fast counting electronic

  9. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    OpenAIRE

    Shams Bilal; Yao Jun; Zhang Kai; Zhang Lei

    2017-01-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large...

  10. Enhancement of the sensitivity of gas sensor based on microstructure optical fiber

    Science.gov (United States)

    Morshed, Monir; Hasan, Md. Imran; Razzak, S. M. Abdur

    2015-12-01

    This paper proposes the design and characterization of microstructure optical fiber for gas sensing applications. The aim is to detect toxic and colorless gases over a wide transmission band covering 0.80 µm to 2.00 µm wavelength. Numerical investigation is carried out by using the finite element method (FEM). The numerical study shows that sensitivity of the proposed sensor is moderately increased by introducing four non-circular holes around the defected core of photonic crystal fiber and the confinement loss is also reduced. Furthermore, we confirm that increasing the diameter of central air core and size of the non-circular holes can improve the relative sensitivity and the confinement loss is reduced by increasing the diameter of air holes in the cladding. The enhancement of the relative sensitivity is more than 27.58% (0.1323 to 0.1688) at the wavelength λ=1.33µm that is the absorption line of methane (CH4) and hydrogen fluoride (HF) gases. The confinement loss of the fiber is 1.765×10-8 dB/m.

  11. Theory and Development of Position-Sensitive Quantum Calorimeters. Degree awarded by Stanford Univ.

    Science.gov (United States)

    Figueroa-Feliciano, Enectali; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Quantum calorimeters are being developed as imaging spectrometers for future X-ray astrophysics observatories. Much of the science to be done by these instruments could benefit greatly from larger focal-plane coverage of the detector (without increasing pixel size). An order of magnitude more area will greatly increase the science throughput of these future instruments. One of the main deterrents to achieving this goal is the complexity of the readout schemes involved. We have devised a way to increase the number of pixels from the current baseline designs by an order of magnitude without increasing the number of channels required for readout. The instrument is a high energy resolution, distributed-readout imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (POST). A POST is a quantum calorimeter consisting of two Transition-Edge Sensors (TESS) on the ends of a long absorber capable of one-dimensional imaging spectroscopy. Comparing rise time and energy information from the two TESS, the position of the event in the POST is determined. The energy of the event is inferred from the sum of the two pulses. We have developed a generalized theoretical formalism for distributed-readout calorimeters and apply it to our devices. We derive the noise theory and calculate the theoretical energy resolution of a POST. Our calculations show that a 7-pixel POST with 6 keV saturation energy can achieve 2.3 eV resolution, making this a competitive design for future quantum calorimeter instruments. For this thesis we fabricated 7- and 15-pixel POSTS using Mo/Au TESs and gold absorbers, and moved from concept drawings on scraps of napkins to a 32 eV energy resolution at 1.5 keV, 7-pixel POST calorimeter.

  12. A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector

    International Nuclear Information System (INIS)

    Kaanta, Bradley C; Zhang, Xin; Chen, Hua

    2010-01-01

    The monolithic integration of a high sensitivity detector with a gas chromatography (GC) separation column creates many potential advantages over the discrete components of a traditional chromatography system. In miniaturized high-speed GC systems, component interconnections can cause crucial errors and loss of fidelity during detection and analysis. A monolithically integrated device would eliminate the need to create helium-tight interconnections, which are bulky and labor intensive. Additionally, batch fabrication of integrated devices that no longer require expensive and fragile detectors can decrease the cost of micro GC systems through economies of scale. We present the design, fabrication and operation of a monolithic GC separation column and detector. Our device is able to separate nitrogen, methane and carbon dioxide within 30 s. This method of device integration could be applied to the existing wealth of column geometries and chemistries designed for specialized applications.

  13. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature

    Science.gov (United States)

    Sinha, M.; Mahapatra, R.; Mondal, B.; Ghosh, R.

    2017-04-01

    In the present work, zinc oxide (ZnO) microrods with the average diameter of 350 nm have been synthesized on fluorine doped tin oxide (FTO) substrate using a hydrothermal reaction process at a low temperature of 90°C. The methanol gas sensing behaviour of as-synthesized ZnO microrods have been studied at different operating temperatures (100-300°C). The gas sensing results show that the ZnO microrods exhibit excellent sensitivity, selectivity, and stability toward methanol gas at 300°C. The as-grown ZnO microrods sensor also shows the good sensitivity for methanol even at a low operating temperature of 100°C. The ultra-high sensitivity of 4.41 × 104% [gas sensitivity, S g = ( I g - I a)/ I a × 100%] and 5.11 × 102% to 100 ppm methanol gas at a temperature of 300°C and 100°C, respectively, has been observed. A fast response time of 200 ms and 270 ms as well as a recovery time of 120 ms and 1330 ms to methanol gas have also been found at an operating temperature of 300°C and 100°C, respectively. The response and recovery time decreases with increasing operation temperature of the sensor.

  14. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.

    Science.gov (United States)

    Ota, Ryosuke; Yamada, Ryoko; Moriya, Takahiro; Hasegawa, Tomoyuki

    2018-05-01

    Cherenkov radiation has recently received attention due to its prompt emission phenomenon, which has the potential to improve the timing performance of radiation detectors dedicated to positron emission tomography (PET). In this study, a Cherenkov-based three-dimensional (3D) position-sensitive radiation detector was proposed, which is composed of a monolithic lead fluoride (PbF 2 ) crystal and a photodetector array of which the signals can be readout independently. Monte Carlo simulations were performed to estimate the performance of the proposed detector. The position- and time resolution were evaluated under various practical conditions. The radiator size and various properties of the photodetector, e.g., readout pitch and single photon timing resolution (SPTR), were parameterized. The single photon time response of the photodetector was assumed to be a single Gaussian for the simplification. The photo detection efficiency of the photodetector was ideally 100% for all wavelengths. Compton scattering was included in simulations, but partly analyzed. To estimate the position at which a γ-ray interacted in the Cherenkov radiator, the center-of-gravity (COG) method was employed. In addition, to estimate the depth-of-interaction (DOI) principal component analysis (PCA), which is a multivariate analysis method and has been used to identify the patterns in data, was employed. The time-space distribution of Cherenkov photons was quantified to perform PCA. To evaluate coincidence time resolution (CTR), the time difference of two independent γ-ray events was calculated. The detection time was defined as the first photon time after the SPTR of the photodetector was taken into account. The position resolution on the photodetector plane could be estimated with high accuracy, by using a small number of Cherenkov photons. Moreover, PCA showed an ability to estimate the DOI. The position resolution heavily depends on the pitch of the photodetector array and the radiator

  15. The Research of Screw Thread Parameter Measurement Based on Position Sensitive Detector and Laser

    International Nuclear Information System (INIS)

    Tong, Q B; Ding, Z L; Chen, J C; Ai, L L; Yuan, F

    2006-01-01

    A technique and system of measuring screw thread parameter based on the theory of laser measurement is presented in this paper, which can be carried out the automated measurement of screw thread parameter. An inspection instrument was designed and produced, which included exterior imaging system of optical path, transverse displacement measurement system, axial displacement measurement system, and a module to deal with, control and assess the data in the upper system. The inspection and estimate of the screw thread contour curve were completed by using position sensitive device (PSD) as photoelectric detector to measure the coordinate data of the screw thread contour curve in the transverse section, and using precise raster to measure the axial displacement of the precision worktable under the screw thread test criterion., computer can gives a measured result according to coordinate data of the screw thread obtained by PSD. The relation between measured spot and image is established, and optimum design of the system organization are introduced, including the image length of receiving lens focal length optical system and the choice of PSD , and some main factor affected measuring precision are analyzed. The experimental results show that the measurement uncertainty of screw thread minor diameter can reach 0. 5μm, which can meet most requests for the measurement of screw thread parameter

  16. Single-Photon Computed Tomography With Large Position-Sensitive Phototubes*

    Science.gov (United States)

    Feldmann, John; Ranck, Amoreena; Saunders, Robert S.; Welsh, Robert E.; Bradley, Eric L.; Saha, Margaret S.; Kross, Brian; Majewski, Stan; Popov, Vladimir; Weisenberger, Andrew G.; Wojcik, Randolph

    2000-10-01

    Position-sensitive photomultiplier tubes (PSPMTs) coupled to pixelated CsI(Tl) scintillators have been used with parallel-hole collimators to view the metabolism in small animals of radiopharmaceuticals tagged with ^125I. We report here our preliminary results analyzed using a tomography program^1 written in IDL programming language. The PSPMTs are mounted on a rotating gantry so as to view the subject animal from any azimuth. Preliminary results to test the tomography algorithm have been obtained by placing a variety of plastic mouse-brain phantoms (loaded with Na^125I) in front of one of the detectors and rotating the phantom in steps through 360 degrees. Results of this simulation taken with a variety of collimator hole sizes will be compared and discussed. Extentions of this technique to the use of very small PSPMTs (Hamamatsu M-64) which are capable of a very close approach to those parts of the animal of greatest interest will be described. *Supported in part by The Department of Energy, The National Science Foundation, The American Diabetes Association, The Howard Hughes Foundation and The Jeffress Trust. 1. Tomography algorithm kindly provided by Dr. S. Meikle of The Royal Prince Albert Hospital, Sydney, Australia

  17. On-line evaluation of position-sensitive detector (PSD) diffraction data

    International Nuclear Information System (INIS)

    Stansfield, R.F.D.; McIntyre, G.J.

    1985-01-01

    The amount of raw data accumulated in a single-crystal diffraction experiment using a two-dimensional Position Sensitive Detector is usually so large that it is impracticable to store it. It is therefore necessary to reduce each local three-dimensional array of counts to a Bragg intensity, in a time not longer than the average time that one reflection is active. The statistically optimum procedure comprises an estimation of the background from a large number of counts, and an integration of peak intensity within a suitable three-dimensional envelope. A typical on-line method is described, using as an example the D19 diffractometer at the Institut Max von Laue - Paul Langevin (ILL) high-flux reactor. Current methods of PSD data reduction are reviewed. These fall into three groups according to the basis of the method used to find the integration envelope: (a) statistical criteria, (b) three-dimensional sigma(I)/I analysis, and (c) pre-calculation of the resolution function. On-line data reduction imposes special requirements on diagnostics to check the precision of the reduced data, especially at the start of an experiment, when any peculiarities must be identified and allowed for in the data-reduction procedure. The diagnostic possibilities resulting from the comparison of local with global characteristics of the background and the integration envelope are discussed. (author)

  18. Peak-shape analysis for protein neutron crystallography with position-sensitive detectors

    International Nuclear Information System (INIS)

    Schoenborn, B.P.

    1983-01-01

    In neutron protein crystallography, the use of position-sensitive detectors controlled by a modern data-acquisition system permits new approaches to data-collection strategies. Instead of dealing with conventional scans, like the theta-2theta scan, that provide an integrated intensity as a function of a rotational parameter, the computer-linked counter can be used to produce a three-dimensional reflection profile. As the crystal steps (δ#betta#) through a reflection, the observed data for each step are stored in an external memory as a function of extent in 2theta and height (y) of a reflection. In this space, the reflection will be a three-dimensional distribution with dimensions determined by such basic geometrical conditions as δlambda, crystal size, mosaic spread, counter-resolution, and beam-collimation parameters. Knowledge of the interaction of these basic parameters will allow the design of optimal beam optics and will permit the delineation of the reflection from the background and permit, therefore, an accurate intensity determination. (Auth.)

  19. Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector

    Science.gov (United States)

    Yan, Pei-pei; Yang, Yong-qing; She, Wen-ji; Liu, Kai; Jiang, Kai; Duan, Jing; Shan, Qiusha

    2018-02-01

    A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4° measuring range is +/-5' error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator's dimension get compact obviously under the condition of the image quality is guaranteed.

  20. Imaging the electron transfer reaction of Ne2+ with Ar using position-sensitive coincidence spectroscopy

    International Nuclear Information System (INIS)

    Harper, Sarah M; Hu Wanping; Price, Stephen D

    2002-01-01

    A new experiment, employing position-sensitive detection coupled with time-of-flight mass spectrometry, has been used to investigate the single-electron transfer reaction between Ne 2+ and Ar by detecting the resulting pairs of singly charged ions in coincidence. The experimental technique allows the determination of the individual velocity vectors of the ionic products, in the centre-of-mass frame, for each reactive event detected. The experiments show that forward scattering dominates the reactivity, although a bimodal angular distribution is apparent. In addition, the spectra show that at laboratory frame collision energies from 4-14 eV the reactivity is dominated by Ne 2+ (2p 4 , 3 P) accepting an electron from an argon atom to form the ground state of Ne + together with an Ar + ion in an excited electronic level, predominantly arising from the Ar + (3s 2 3p 4 3d) configuration. The form of this reactivity, and the differences between the reactivity observed in these experiments and those performed at higher collision energies, are well reproduced by Landau-Zener theory

  1. Effect of heat and moisture exchanger (HME positioning on inspiratory gas humidification

    Directory of Open Access Journals (Sweden)

    Nishimura Masaji

    2006-08-01

    Full Text Available Abstract Background In mechanically ventilated patients, we investigated how positioning the heat and moisture exchanger (HME at different places on the ventilator circuit affected inspiratory gas humidification. Methods Absolute humidity (AH and temperature (TEMP at the proximal end of endotracheal tube (ETT were measured in ten mechanically ventilated patients. The HME was connected either directly proximal to the ETT (Site 1 or at before the circuit Y-piece (Site 2: distance from proximal end of ETT and Site 2 was about 19 cm (Figure. 1. Two devices, Hygrobac S (Mallinckrodt Dar, Mirandola, Italy and Thermovent HEPA (Smiths Medical International Ltd., Kent, UK were tested. AH and TEMP were measured with a hygrometer (Moiscope, MERA Co., Ltd., Tokyo, Japan. Results Hygrobac S provided significantly higher AH and TEMP at both sites than Thermovent HEPA. Both Hygrobac S and with Thermovent HEPA provided significantly higher AH and TEMP when placed proximally to the ETT. Conclusion Although placement proximal to the ETT improved both AH and TEMP in both HMEs tested, one HME performed better in the distal position than the other HME in the proximal position. We conclude the both the type and placement of HME can make a significant difference in maintaining AH and TEMP during adult ventilation.

  2. Effect of heat and moisture exchanger (HME) positioning on inspiratory gas humidification

    Science.gov (United States)

    Inui, Daisuke; Oto, Jun; Nishimura, Masaji

    2006-01-01

    Background In mechanically ventilated patients, we investigated how positioning the heat and moisture exchanger (HME) at different places on the ventilator circuit affected inspiratory gas humidification. Methods Absolute humidity (AH) and temperature (TEMP) at the proximal end of endotracheal tube (ETT) were measured in ten mechanically ventilated patients. The HME was connected either directly proximal to the ETT (Site 1) or at before the circuit Y-piece (Site 2: distance from proximal end of ETT and Site 2 was about 19 cm) (Figure. 1). Two devices, Hygrobac S (Mallinckrodt Dar, Mirandola, Italy) and Thermovent HEPA (Smiths Medical International Ltd., Kent, UK) were tested. AH and TEMP were measured with a hygrometer (Moiscope, MERA Co., Ltd., Tokyo, Japan). Results Hygrobac S provided significantly higher AH and TEMP at both sites than Thermovent HEPA. Both Hygrobac S and with Thermovent HEPA provided significantly higher AH and TEMP when placed proximally to the ETT. Conclusion Although placement proximal to the ETT improved both AH and TEMP in both HMEs tested, one HME performed better in the distal position than the other HME in the proximal position. We conclude the both the type and placement of HME can make a significant difference in maintaining AH and TEMP during adult ventilation. PMID:16895607

  3. Diagrammatic expansion for positive spectral functions beyond GW: Application to vertex corrections in the electron gas

    Science.gov (United States)

    Stefanucci, G.; Pavlyukh, Y.; Uimonen, A.-M.; van Leeuwen, R.

    2014-09-01

    We present a diagrammatic approach to construct self-energy approximations within many-body perturbation theory with positive spectral properties. The method cures the problem of negative spectral functions which arises from a straightforward inclusion of vertex diagrams beyond the GW approximation. Our approach consists of a two-step procedure: We first express the approximate many-body self-energy as a product of half-diagrams and then identify the minimal number of half-diagrams to add in order to form a perfect square. The resulting self-energy is an unconventional sum of self-energy diagrams in which the internal lines of half a diagram are time-ordered Green's functions, whereas those of the other half are anti-time-ordered Green's functions, and the lines joining the two halves are either lesser or greater Green's functions. The theory is developed using noninteracting Green's functions and subsequently extended to self-consistent Green's functions. Issues related to the conserving properties of diagrammatic approximations with positive spectral functions are also addressed. As a major application of the formalism we derive the minimal set of additional diagrams to make positive the spectral function of the GW approximation with lowest-order vertex corrections and screened interactions. The method is then applied to vertex corrections in the three-dimensional homogeneous electron gas by using a combination of analytical frequency integrations and numerical Monte Carlo momentum integrations to evaluate the diagrams.

  4. CFD Analysis of Nozzle Exit Position Effect in Ejector Gas Removal System in Geothermal Power Plant

    Directory of Open Access Journals (Sweden)

    Setyo Nugroho

    2015-06-01

    Full Text Available The single stage ejector is used to extract the Non CondensableGas (NCG in the condenser using the working principle of the Venturi tube. Three dimensional computational simulation of the ejector according to the operating conditions was conducted to determine the flow in the ejector. Motive steam entering through the convergent – divergent nozzle with increasing flow velocity so that the low pressure exist around the nozzle. Comparison is done also in a two dimensional simulation to know the differences occurring phenomena and flow inside ejector. Different simulation results obtained between two dimensional and three dimensional simulation. Reverse flow which occurs in the mixing chamber made the static pressure in the area has increased dramatically. Then the variation performed on Exit Nozzle Position (NXP to determine the changes of the flow of the NCG and the vacuum level of the ejector. Keywords: Ejector, NCG, CFD, Compressible flow.

  5. A sensitivity study of the oxidation of compressed natural gas on platinum

    KAUST Repository

    Badra, Jihad

    2013-11-01

    This paper presents a sensitivity study for the oxidation of methane (CH4) over platinum (Pt). Some dominant reactions in the CH 4-Pt surface chemistry were identified and the rates of these reactions were subsequently modified to enhance the calculations. Initially, a range of CH4-Pt surface mechanisms available in the literature are used, along with the relevant detailed gaseous chemistry to compute the structure of premixed compressed natural gas (CNG)/air flames co-flowing around a flat, vertical, unconfined, rectangular, and platinum plate. Comparison with existing measurements of surface temperature and species concentrations revealed significant discrepancies for all mechanisms. Sensitivity analysis has identified nine key reactions which dominate the heterogeneous chemistry of methane over platinum. The rates of these reactions were modified over a reasonable range and in different combinations leading to an "optimal" mechanism for methane/air surface chemistry on platinum. The new mechanism is then used with the same flow geometry for different cases varying the temperature of the incoming mixture (Tjet), its equivalence ratio (Φ) and the Reynolds number (Re). Results from the modified surface mechanism demonstrate reasonably good agreement with the experimental data for a wide range of operating conditions. © 2013 Elsevier Ltd. All rights reserved.

  6. High Temperature and High Sensitive NOx Gas Sensor with Hetero-Junction Structure using Laser Ablation Method

    Science.gov (United States)

    Gao, Wei; Shi, Liqin; Hasegawa, Yuki; Katsube, Teruaki

    In order to develop a high temperature (200°C˜400°C) and high sensitive NOx gas sensor, we developed a new structure of SiC-based hetero-junction device Pt/SnO2/SiC/Ni, Pt/In2O3/SiC/Ni and Pt/WO3/SiC/Ni using a laser ablation method for the preparation of both metal (Pt) electrode and metal-oxide film. It was found that Pt/In2O3/SiC/Ni sensor shows higher sensitivity to NO2 gas compared with the Pt/SnO2/SiC/Ni and Pt/WO3/SiC/Ni sensor, whereas the Pt/WO3/SiC/Ni sensor had better sensitivity to NO gas. These results suggest that selective detection of NO and NO2 gases may be obtained by choosing different metal oxide films.

  7. Development of a new signal processor for tetralateral position sensitive detector based on single-chip microcomputer

    International Nuclear Information System (INIS)

    Huang Meizhen; Shi Longzhao; Wang Yuxing; Ni Yi; Li Zhenqing; Ding Haifeng

    2006-01-01

    An inherently nonlinear relation between the output current of the tetralateral position sensitive detector (PSD) and the position of the incident light spot has been found theoretically. Based on single-chip microcomputer and the theoretical relation between output current and position, a new signal processor capable of correcting nonlinearity and reducing position measurement deviation of tetralateral PSD was developed. A tetralateral PSD (S1200, 13x13 mm 2 , Hamamatsu Photonics K.K.) was measured with the new signal processor, a linear relation between the output position of the PSD, and the incident position of the light spot was obtained. In the 60% range of a 13x13 mm 2 active area, the position nonlinearity (rms) was 0.15% and the position measurement deviation (rms) was ±20 μm. Compared with traditional analog signal processor, the new signal processor is of better compatibility, lower cost, higher precision, and easier to be interfaced

  8. Sensitive method for the analysis of carbohydrates by gas chromatography of 3H-labeled alditol acetates

    International Nuclear Information System (INIS)

    Prehm, P.; Scheid, A.

    1978-01-01

    A highly sensitive method has been developed for the analysis of carbohydrates from glycoproteins or lipopolysaccharides. The method is based on labeling the carbohydrates with [ 3 H] sodium borohydride, acetylating the resulting alditols and separating them by gas chromatography. The gas effluent is fractionated by trapping on silicone-coated glass beads and the amount of radioactivity is determined. This permits the quantitation of as little as 0.2 nmoles monosaccharide with an accuracy of 10 to 15%. (Auth)

  9. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Directory of Open Access Journals (Sweden)

    Shams Bilal

    2017-08-01

    Full Text Available Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources.

  10. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes

    International Nuclear Information System (INIS)

    Yang Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-01-01

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is ∼2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach

  11. Study of capillary tracking detectors with position-sensitive photomultiplier readout

    International Nuclear Information System (INIS)

    Cardini, A.; Cavasinni, V.; Di Girolamo, B.; Dolinsky, S.I.; Flaminio, V.; Golovkin, S.V.; Gorin, A.M.; Medvedkov, A.M.; Pyshev, A.I.; Tyukov, V.E.; Vasilchenko, V.G.; Zymin, K.V.

    1995-01-01

    Measurements have been carried out on light yield and attenuation length in glass capillaries filled with new liquid scintillators (LS) and compared with analogous measurements made on 0.5 mm diameter plastic fibres Kuraray SCSF-38 and 3HF. It is found that, at a distance of 1 m, the light output in the capillary filled with green LS based on 1-methylnaphthalene doped with a new dye 3M15 is greater by a factor of 2 to 3 than for plastic fibres. A tracking detector consisting of a capillary bundle read out by a 100 channel position-sensitive microchannel plate photomultiplier (2MCP-100) has been built and tested in the laboratory using a cosmic ray trigger. A comparison has been made between the performance of such a detector and that of a similar one, read out by a 96 channel Philips XP1724/A photomultiplier. It was found that a bundle made of 20μm diameter capillaries with a tapered end giving a magnification of 2.56, filled with the new IPN+3M15 liquid scintillator, read out by the 2MCP-100, provides a space resolution of σ=170μm, a two-track resolution of the same value and a hit density of n=1.9/mm for tracks crossing the detector at a distance of 20 cm from the photocathode. If the same detector is read out by the Philips XP1724/A, the space resolution becomes 200μm, the two-track resolution 600μm and the hit density n=1.7/mm. The worse performance in the latter case is caused by the larger crosstalk compared with that of the 2MCP-100 PSPM. The results indicate that a LS-filled capillary detector is a very promising device for fast fibre tracking. (orig.)

  12. Spectral radiance of strong lines in positive column mercury discharges with argon carrier gas

    International Nuclear Information System (INIS)

    Sansonetti, Craig J; Reader, Joseph

    2006-01-01

    The spectral radiance of the 185 and 254 nm lines in two positive column mercury discharge lamps was measured over a wide range of operating conditions. The lamps had internal diameters of 5 and 23 mm. Argon was used as a carrier gas. The lamps were operated with cold spot temperatures of 20, 40 and 60 0 C. At each of these temperatures, results were obtained for five currents ranging from 20 to 100 mA for the 5 mm lamp and from 200 to 1000 mA for the 23 mm lamp. For each current studied, results were determined for argon pressures ranging from 66.6 to 666 Pa (0.5 to 5.0 Torr) in the 5 mm lamp and 26.6 to 666 Pa (0.2 to 5.0 Torr) in the 23 mm lamp. An argon miniarc was used as the radiometric standard. By calibrating the spectral response of the optical system with a well-characterized mercury pencil lamp, results were obtained for 12 additional Hg lines from 289 to 579 nm. For the 23 mm lamp the electric field in the positive column was measured. For this lamp the radiated power as a percentage of input power was also determined. The results provide an experimental basis for validating computer models of Hg fluorescent lamp discharges

  13. Sensitivity Range Analysis of Infrared (IR) Transmitter and Receiver Sensor to Detect Sample Position in Automatic Sample Changer

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Nolida Yussup; Nur Aira Abdul Rahman; Maslina Ibrahim

    2016-01-01

    Sensitivity range of IR Transmitter and Receiver Sensor influences the effectiveness of the sensor to detect position of a sample. Then the purpose of this analysis is to determine the suitable design and specification the electronic driver of the sensor to gain appropriate sensitivity range for required operation. The related activities to this analysis cover electronic design concept and specification, calibration of design specification and evaluation on design specification for required application. (author)

  14. Dynamic Control of Adsorption Sensitivity for Photo-EMF-Based Ammonia Gas Sensors Using a Wireless Network

    Directory of Open Access Journals (Sweden)

    Yuriy Vashpanov

    2011-11-01

    Full Text Available This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time.

  15. Snowflake-Shaped ZnO Nanostructures-Based Gas Sensor for Sensitive Detection of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Tianli Han

    2017-01-01

    Full Text Available Volatile organic compounds (VOCs have been considered severe risks to human health. Gas sensors for the sensitive detection of VOCs are highly required. However, the preparation of gas-sensing materials with a high gas diffusion performance remains a great challenge. Here, through a simple hydrothermal method accompanied with a subsequent thermal treatment, a special porous snowflake-shaped ZnO nanostructure was presented for sensitive detection of VOCs including diethyl ether, methylbenzene, and ethanol. The fabricated gas sensors exhibit a good sensing performance including high responses to VOCs and a short response/recovery time. The responses of the ZnO-based gas sensor to 100 ppm ethanol, methylbenzene, and diethyl ether are about 27, 21, and 11, respectively, while the response times to diethyl ether and methylbenzene are less than 10 seconds. The gas adsorption-desorption kinetics is also investigated, which shows that the gas-sensing behaviors to different target gases are remarkably different, making it possible for target recognition in practical applications.

  16. Evaluation of human skin tests for potential dermal irritant and contact sensitizing products: a position paper

    NARCIS (Netherlands)

    Loveren H van; Jong WH de; Garssen J; LPI

    1998-01-01

    Prediction of human cutaneous irritation and sensitization in view of hazard identification has primarily relied on the use of laboratory animals. Such studies in laboratory animals have been very instrumental in the detection of potential contact sensitizing agents. There are however many

  17. Elongated dust clouds in a uniform DC positive column of low pressure gas discharge

    International Nuclear Information System (INIS)

    Usachev, A D; Zobnin, A V; Petrov, O F; Fortov, V E; Thoma, M H; Pustylnik, M Y; Fink, M A; Morfill, G E

    2016-01-01

    Experimental investigations of the formation of elongated dust clouds and their influence on the plasma glow intensity of the uniform direct current (DC) positive column (PC) have been performed under microgravity conditions. For the axial stabilization of the dust cloud position a polarity switching DC gas discharge with a switching frequency of 250 Hz was used. During the experiment, a spontaneous division of one elongated dust cloud into two smaller steady state dust clouds has been observed. Quantitative data on the dust cloud shape, size and dust number density distribution were obtained. Axial and radial distributions of plasma emission within the 585.2 nm and 703.2 nm neon spectral lines were measured over the whole discharge volume. It has been found that both spectral line intensities at the dust cloud region grew 1.7 times with respect to the undisturbed positive column region; in this the 585.2 nm line intensity increased by 10% compared to the 703.2 nm line intensity. For a semi-quantitative explanation of the observed phenomena the Schottky approach based on the equation of diffusion was used. The model reasonably explains the observed glow enhancement as an increasing of the ionization rate in the discharge with dust cloud, which compensates ion-electron recombination on the dust grain surfaces. In this, the ionization rate increases due to the growing of the DC axial electric field, and the glow grows directly proportional to the electric field. It is shown that the fundamental condition of the radial stability of the dusty plasma cloud is equal to the ionization and recombination rates within the cloud volume that is possible only when the electron density is constant and the radial electric field is absent within the dust cloud. (paper)

  18. Effects of Nebulizer Position, Gas Flow, and CPAP on Aerosol Bronchodilator Delivery: An In Vitro Study.

    Science.gov (United States)

    Ball, Lorenzo; Sutherasan, Yuda; Caratto, Valentina; Sanguineti, Elisa; Marsili, Maria; Raimondo, Pasquale; Ferretti, Maurizio; Kacmarek, Robert M; Pelosi, Paolo

    2016-03-01

    The aim of this study was to investigate the effects of different delivery circuit configurations, nebulizer positions, CPAP levels, and gas flow on the amount of aerosol bronchodilator delivered during simulated spontaneous breathing in an in vitro model. A pneumatic lung simulator was connected to 5 different circuits for aerosol delivery, 2 delivering CPAP through a high-flow generator tested at 30, 60, and 90 L/min supplementary flow and 5, 10, and 15 cm H2O CPAP and 3 with no CPAP: a T-piece configuration with one extremity closed with a cap, a T-piece configuration without cap and nebulizer positioned proximally, and a T-piece configuration without cap and nebulizer positioned distally. Albuterol was collected with a filter, and the percentage amount delivered was measured by infrared spectrophotometry. Configurations with continuous high-flow CPAP delivered higher percentage amounts of albuterol compared with the configurations without CPAP (9.1 ± 6.0% vs 6.2 ± 2.8%, P = .03). Among configurations without CPAP, the best performance was obtained with a T-piece with one extremity closed with a cap. In CPAP configurations, the highest delivery (13.8 ± 4.4%) was obtained with the nebulizer placed proximal to the lung simulator, independent of flow. CPAP at 15 cm H2O resulted in the highest albuterol delivery (P = .02). Based on our in vitro study, without CPAP, a T-piece with a cap at one extremity maximizes albuterol delivery. During high-flow CPAP, the nebulizer should always be placed proximal to the patient, after the T-piece, using the highest CPAP clinically indicated. Copyright © 2016 by Daedalus Enterprises.

  19. Positive end-expiratory pressure improves gas exchange and pulmonary mechanics during partial liquid ventilation.

    Science.gov (United States)

    Kirmse, M; Fujino, Y; Hess, D; Kacmarek, R M

    1998-11-01

    Partial liquid ventilation (PLV) with perflubron (PFB) has been proposed as an adjunct to the current therapies for the acute respiratory distress syndrome (ARDS). Because PFB has been also referred to as "liquid PEEP," distributing to the most gravity-dependent regions of the lung, less attention has been paid to the amount of applied positive end-expiratory pressure (PEEP). We hypothesized that higher PEEP levels than currently applied are needed to optimize gas exchange, and that the lower inflection point (LIP) of the pressure-volume curve could be used to estimate the amount of PEEP needed when the lung is filled with PFB. Lung injury was induced in 23 sheep by repeated lung lavage with warmed saline until the PaO2/FIO2 ratio fell below 150. Five sheep were used to investigate the change of the LIP when the lung was filled with PFB in increments of 5 ml/kg/body weight to a total of 30 ml/kg/body weight. To evaluate the impact of PEEP set at LIP +1 cm H2O we randomized an additional 15 sheep to three groups with different doses (7.5 ml, 15 ml, 30 ml/kg/body weight) of PFB. In random order a PEEP of 5 cm H2O or PEEP at LIP +1 cm H2O was applied. The LIP decreased with incremental filling of PFB to a minimum at 10 ml (p PFB shifts the LIP to the left, and that setting PEEP at LIP +1 cm H2O improves gas exchange at moderate to high doses of PFB.

  20. Calibration of the OPAL jet chamber with UV laser beams. Measurement of the beam position with position-sensitive silicon diodes (PSD)

    International Nuclear Information System (INIS)

    Koch, J.

    1990-03-01

    The OPAL jet chamber is calibrated with tracks produced by UV laser beams. Lateral effect diodes are used for monitoring the laser beam location in the detector. These position sensitive detectors locate the point of impact in two dimensions by the charge division method. Measurements on several diodes were carried out in order to calibrate these devices and to investigate to observed pin-cushion distortion. Using the telegraphers equation suitable expressions were obtained for describing the observed behaviour. It was shown that the magnetic field of OPAL as well as the UV laser wavelength and puls duration had no influence on the position information. (orig.)

  1. Comparison of various stopping gases for {sup 3}He-based position sensitive neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Doumas, A. [United States Merchant Marine Academy, Steamboat Road, Kings Point, NY 11024 (United States); Smith, G.C., E-mail: gsmith@bnl.gov [Instrumentation Division, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2012-05-21

    A range of solid state, scintillator and gas based detectors are being developed for use at the next generation of high flux neutron facilities. Since gas detectors are expected to continue to play a key role in future specific thermal neutron experiments, a comparison of the performance characteristics of prospective stopping gases is beneficial. Gas detectors typically utilize the reaction {sup 3}He(n,p)t to detect thermal neutrons; the {sup 3}He gas is used in a mixture containing a particular stopping gas in order to maintain relatively short ranges for the proton and triton pair emitted from the n-{sup 3}He reaction. Common stopping gases include hydrocarbons (e.g. propane), carbon tetrafluoride, and noble gases such as argon and xenon. For this study, we utilized the Monte Carlo simulation code 'Stopping and Range of Ions in Matter' to analyze the expected behavior of argon, xenon, carbon dioxide, difluoroethane and octafluoropropane as stopping gases for thermal neutron detectors. We also compare these findings to our previously analyzed performance of propane, butane and carbon tetrafluoride. A discussion of these gases includes their behavior in terms of proton and triton range, ionization distribution and straggle.

  2. Comparison of various stopping gases for 3He-based position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Doumas, A.; Smith, G.C.

    2012-01-01

    A range of solid state, scintillator and gas based detectors are being developed for use at the next generation of high flux neutron facilities. Since gas detectors are expected to continue to play a key role in future specific thermal neutron experiments, a comparison of the performance characteristics of prospective stopping gases is beneficial. Gas detectors typically utilize the reaction 3 He(n,p)t to detect thermal neutrons; the 3 He gas is used in a mixture containing a particular stopping gas in order to maintain relatively short ranges for the proton and triton pair emitted from the n- 3 He reaction. Common stopping gases include hydrocarbons (e.g. propane), carbon tetrafluoride, and noble gases such as argon and xenon. For this study, we utilized the Monte Carlo simulation code “Stopping and Range of Ions in Matter” to analyze the expected behavior of argon, xenon, carbon dioxide, difluoroethane and octafluoropropane as stopping gases for thermal neutron detectors. We also compare these findings to our previously analyzed performance of propane, butane and carbon tetrafluoride. A discussion of these gases includes their behavior in terms of proton and triton range, ionization distribution and straggle.

  3. Comparison of various stopping gases for 3He-based position sensitive neutron detectors

    Science.gov (United States)

    Doumas, A.; Smith, G. C.

    2012-05-01

    A range of solid state, scintillator and gas based detectors are being developed for use at the next generation of high flux neutron facilities. Since gas detectors are expected to continue to play a key role in future specific thermal neutron experiments, a comparison of the performance characteristics of prospective stopping gases is beneficial. Gas detectors typically utilize the reaction 3He(n,p)t to detect thermal neutrons; the 3He gas is used in a mixture containing a particular stopping gas in order to maintain relatively short ranges for the proton and triton pair emitted from the n-3He reaction. Common stopping gases include hydrocarbons (e.g. propane), carbon tetrafluoride, and noble gases such as argon and xenon. For this study, we utilized the Monte Carlo simulation code "Stopping and Range of Ions in Matter" to analyze the expected behavior of argon, xenon, carbon dioxide, difluoroethane and octafluoropropane as stopping gases for thermal neutron detectors. We also compare these findings to our previously analyzed performance of propane, butane and carbon tetrafluoride. A discussion of these gases includes their behavior in terms of proton and triton range, ionization distribution and straggle.

  4. Which way the natural gas price. An attempt to predict the direction of natural gas spot price movements using trader positions

    International Nuclear Information System (INIS)

    Buchanan, W.K.; Hodges, P.; Theis, J.

    2001-01-01

    This research provides a method of predicting direction of spot price movements in the natural gas market for the month succeeding from market participants positions in the futures market. Cumby and Modest (Cumby, R.E., Modest, D.M., 1987. Testing for market timing ability: a framework for forecast evaluation. Journal of Financial Economics 19, 169-189) provide the backdrop for analyzing the futures market positions of large hedgers and speculators to arrive at conclusions of market price movements in the spot market. This methodology is suggested as a means for municipalities entering the natural gas market to improve upon their ordering of quantities of gas for the ensuing months in order to take advantage of possibly foreseeable price trends

  5. Radon Gas Concentration Measurement In Soil For Some Holy Positions In Al-Najaf Al-Ashraf Governorate

    International Nuclear Information System (INIS)

    Hasan, K.H.; Hussain, H.H.

    2014-01-01

    In this search we measurement Radon gas concentration in the soil of holy positions in Al-Najaf Al-Ashraf city.We choice it for honorable position in all the world and, because millions of peoples and religious sciences students visit it.we selected 23 positions .By using a short-term way in modern technology its (RAD7) to measured concentration for depths (10,30,50,70)cm in all the holy positions.All the concentration in position studies within the range allowed of the global

  6. How gas producers can position themselves to take advantage of a deregulated energy market

    International Nuclear Information System (INIS)

    Reid, S.D.

    1996-01-01

    An overview of Norcen Energy Resource's finances, their production of oil, natural gas liquids (NGL) and gas, and their approach to marketing was provided in this poster presentation. Formerly owned power projects and current opportunities for Norcen were summarized. The potential role of natural gas in electrical restructuring, and some possible marketing strategies were highlighted

  7. Position-specific 13C distributions within propane from experiments and natural gas samples

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael D.; Eiler, John M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, 'bulk' isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  8. Position-specific 13C distributions within propane from experiments and natural gas samples

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex L.; Lawson, Michael; Ferreira, A.A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael; Eilers, J.M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, ‘bulk’ isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  9. Modeling of a Low-Background Spectroscopic Position-Sensitive Neutron Detector

    Energy Technology Data Exchange (ETDEWEB)

    Postovarova, Daria; Evsenin, Alexey; Gorshkov, Igor; Kuznetsov, Andrey; Osetrov, Oleg; Vakhtin, Dmitry; Yurmanov, Pavel [V.G. Khlopin Radium Institute, 194021, 28, 2nd Murinsky pr., Saint-Petersburg (Russian Federation)

    2011-12-13

    A new low-background spectroscopic direction-sensitive neutron detector that would allow one to reduce the neutron background component in passive and active neutron detection techniques is proposed. The detector is based on thermal neutron detectors surrounded by a fast neutron scintillation detector, which serves at the same time as a neutron moderator. Direction sensitivity is achieved by coincidence/anticoincidence analysis between different parts of the scintillator. Results of mathematical modeling of several detector configurations are presented.

  10. Modeling of a Low-Background Spectroscopic Position-Sensitive Neutron Detector

    International Nuclear Information System (INIS)

    Postovarova, Daria; Evsenin, Alexey; Gorshkov, Igor; Kuznetsov, Andrey; Osetrov, Oleg; Vakhtin, Dmitry; Yurmanov, Pavel

    2011-01-01

    A new low-background spectroscopic direction-sensitive neutron detector that would allow one to reduce the neutron background component in passive and active neutron detection techniques is proposed. The detector is based on thermal neutron detectors surrounded by a fast neutron scintillation detector, which serves at the same time as a neutron moderator. Direction sensitivity is achieved by coincidence/anticoincidence analysis between different parts of the scintillator. Results of mathematical modeling of several detector configurations are presented.

  11. FTIR gas analysis with improved sensitivity and selectivity for CWA and TIC detection

    Science.gov (United States)

    Phillips, Charles M.; Tan, Huwei

    2010-04-01

    This presentation describes the use of an FTIR (Fourier Transform Infrared)-based spectrometer designed to continuously monitor ambient air for the presence of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). The necessity of a reliable system capable of quickly and accurately detecting very low levels of CWAs and TICs while simultaneously retaining a negligible false alarm rate will be explored. Technological advancements in FTIR sensing have reduced noise while increasing selectivity and speed of detection. These novel analyzer design characteristics are discussed in detail and descriptions are provided which show how optical throughput, gas cell form factor, and detector response are optimized. The hardware and algorithms described here will explain why this FTIR system is very effective for the simultaneous detection and speciation of a wide variety of toxic compounds at ppb concentrations. Analytical test data will be reviewed demonstrating the system's sensitivity to and selectivity for specific CWAs and TICs; this will include recent data acquired as part of the DHS ARFCAM (Autonomous Rapid Facility Chemical Agent Monitor) project. These results include analyses of the data from live agent testing for the determination of CWA detection limits, immunity to interferences, detection times, residual noise analysis and false alarm rates. Sensing systems such as this are critical for effective chemical hazard identification which is directly relevant to the CBRNE community.

  12. A Sensitivity Analysis of Timing and Costs of Greenhouse Gas Emission Reductions

    International Nuclear Information System (INIS)

    Gerlagh, R.; Van der Zwaan, B.

    2004-01-01

    This paper analyses the optimal timing and macro-economic costs of carbon emission reductions that mitigate the global average atmospheric temperature increase. We use a macro-economic model in which there are two competing energy sources, fossil-fuelled and non-fossil-fuelled. Technological change is represented endogenously through learning curves, and niche markets exist implying positive demand for the relatively expensive non-fossil-fuelled energy source. Under these conditions, with a temperature increase constraint of 2C, early abatement is found to be optimal, and, compared to the results of many existing top-down models, the costs of this strategy prove to be low. We perform an extensive sensitivity analysis of our results regarding the uncertainties that dominate various economic and technological modeling parameters. Uncertainties in the learning rate and the elasticity of substitution between the two different energy sources most significantly affect the robustness of our findings

  13. The fabrication of high sensitivity gold nanorod H2S gas sensors utilizing the highly uniform anodic aluminum oxide template

    Directory of Open Access Journals (Sweden)

    Chien-Yu Li

    2016-12-01

    Full Text Available Gold nanorod were fabricated using anodic alumina oxide template for H2S gas detection. The nanorod gas sensor exhibits high surface density and contact area, which can increase detection sensitivity. The anodic alumina oxide template contains an array of pores, with a width of 70 nm and a length of 27μm. Au nanorod were obtained through electro-deposition under a pulse bias of −1 V. The resistance of the Au nanorod was recorded upon exposure to various concentrations of H2S. The resistance could be attributed to the high electron affinity between sulfide and Au nanorod. Au–sulfide bonds provide strong bonding, which could alter the conductivity of the sensor. The gas sensor exhibits high sensitivity and short response time for H2S detection at room temperature.

  14. Partially slotted crystals for a high-resolution γ-camera based on a position sensitive photomultiplier

    International Nuclear Information System (INIS)

    Giokaris, N.; Loudos, G.; Maintas, D.; Karabarbounis, A.; Lembesi, M.; Spanoudaki, V.; Stiliaris, E.; Boukis, S.; Gektin, A.; Pedash, V.; Gayshan, V.

    2005-01-01

    Partially slotted crystals have been designed and constructed and have been used to evaluate the performance with respect to the spatial resolution of a γ-camera based on a position-sensitive photomultiplier. It is shown that the resolution obtained with such a crystal is only slightly worse than the one obtained with a fully pixelized one whose cost, however, is much higher

  15. Measurement of gas temperature and OH density in the afterglow of pulsed positive corona discharge

    International Nuclear Information System (INIS)

    Ono, Ryo; Oda, Tetsuji

    2008-01-01

    The gas temperature and OH density in the afterglow of pulsed positive corona discharge are measured using the laser-induced predissociation fluorescence (LIPF) of OH radicals. Discharge occurs in a 13 mm point-to-plane gap in an atmospheric-pressure H 2 O(2.8%)/O 2 (2.0%)/N 2 mixture. The temperature measurement shows that (i) the temperature increases after discharge and (ii) the temperature near the anode tip (within 1 mm from the anode tip) is much higher than that of the rest of the discharge volume. Near the anode tip, the temperature increases from 500 K (t = 0 μs) to 1100 K (t = 20 μs), where t is the postdischarge time, while it increases from 400 K (t = 0 μs) to 700 K (t = 100 μs) in the rest of the discharge volume away from the anode tip. This temperature difference between the two volumes (near and far from the anode tip) causes a difference in the decay rate of OH density: OH density near the anode tip decays approximately 10 times slower than that far from the tip. The spatial distribution of OH density shows good agreement with that of the secondary streamer luminous intensity. This shows that OH radicals are mainly produced in the secondary streamer, not in the primary one

  16. Application of a one-dimensional position-sensitive detector to a Kratky small-angle x-ray camera

    International Nuclear Information System (INIS)

    Russell, T.P.; Stein, R.S.; Kopp, M.K.; Zedler, R.E.; Hendricks, R.W.; Lin, J.S.

    1979-01-01

    A conventional Kratky small-angle collimation system has been modified to allow the use of a one-dimensional position-sensitive x-ray detector. The detector was designed specifically for use with a long-slit camera and has uniform sensitivity over the entire beam in the slit-length direction. Procedures for alignment of the collimation system are given, and a variety of tests of the performance of the system are presented. Among the latter are measurements of electronic noise and parasitic scattering as well as comparisons against samples which were also measured on other cameras. The good agreement of these comparisons demonstrates the success of the use of a position-sensitive detector with the Kratky collimation system

  17. Application of a one-dimensional position-sensitive detector to a Kratky small-angle x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Russell, T.P.; Stein, R.S.; Kopp, M.K.; Zedler, R.E.; Hendricks, R.W.; Lin, J.S.

    1979-01-01

    A conventional Kratky small-angle collimation system has been modified to allow the use of a one-dimensional position-sensitive x-ray detector. The detector was designed specifically for use with a long-slit camera and has uniform sensitivity over the entire beam in the slit-length direction. Procedures for alignment of the collimation system are given, and a variety of tests of the performance of the system are presented. Among the latter are measurements of electronic noise and parasitic scattering as well as comparisons against samples which were also measured on other cameras. The good agreement of these comparisons demonstrates the success of the use of a position-sensitive detector with the Kratky collimation system.

  18. Development of 2-d position-sensitive neutron detector with individual readout. Operation test and establishment of detection system by means of neutron beam

    International Nuclear Information System (INIS)

    Tanaka, Hiroki; Yamagishi, Hideshi; Nakamura, Tatsuya; Soyama, Kazuhiko; Aizawa, Kazuya

    2005-04-01

    We have been developing the 2-d position-sensitive neutron detector with individual readout as next-generation-type detector system for neutron scattering experiments using intense pulsed neutron source. The detection system is designed to fulfill the specifications required for each neutron spectrometer, such as a count rate, efficiency, neutron/gamma-ray ratio, a spatial resolution and a size, by using suitable detector heads. The fundamental and imaging performances of the developed system assembled with a Multi-wire proportional counter head were evaluated using a collimated neutron beam. The system worked stably for long hours at the 4 He gas pressure of 5 atm with a mixture of 30% C 2 H 6 (0.26 atom 3 He) at gas gain of 450. The spatial resolutions were 1.4, 1.6 mm (FWHM) for a cathode- and a back strip- direction, respectively, considering a beam size. It was also confirmed that the spatial uniformity of the detection efficiency over the whole sensitive detection area was rather good, ±8% deviation from the average with the optimum discrimination level. (author)

  19. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments

    International Nuclear Information System (INIS)

    Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.

    2004-01-01

    We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed

  20. Fabrication of highly sensitive and selective H{sub 2} gas sensor based on SnO{sub 2} thin film sensitized with microsized Pd islands

    Energy Technology Data Exchange (ETDEWEB)

    Van Toan, Nguyen; Viet Chien, Nguyen; Van Duy, Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam); Si Hong, Hoang [School of Electrical Engineering (SEE), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Nguyen, Hugo [Division of Microsystems Technology, Department of Engineering Sciences, Uppsala University, 75237 Uppsala (Sweden); Duc Hoa, Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam); Van Hieu, Nguyen, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam)

    2016-01-15

    Highlights: • H{sub 2} gas sensors based on SnO{sub 2} thin film sensitized with Pd islands were fabricated. • The sensors could monitor hazardous H{sub 2}n gas at low concentrations of 25–250 ppm. • H{sub 2} response of Pd/SnO{sub 2} is higher than that of Pt/SnO{sub 2} and Au/SnO{sub 2} sensors. • Enhancement of sensor performance was discussed based on spillover and diffusion mechanisms. - Abstract: Ultrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H{sub 2} sensing devices by adopting a simple design of planar-type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO{sub 2} thin film-based sensors that were sensitized with microsized Pd islands were fabricated at a wafer-scale by using a sputtering system combined with micro-electronic techniques. The thicknesses of SnO{sub 2} thin film and microsized Pd islands were optimized to maximize the sensing performance of the devices. The optimized sensor could be used for monitoring hydrogen gas at low concentrations of 25–250 ppm, with a linear dependence to H{sub 2} concentration and a fast response and recovery time. The sensor also showed excellent selectivity for monitoring H{sub 2} among other gases, such as CO, NH{sub 3}, and LPG, and satisfactory characteristics for ensuring safety in handling hydrogen. The hydrogen sensing characteristics of the sensors sensitized with Pt and Au islands were also studied to clarify the sensing mechanisms.

  1. Musical training and empathy positively impact adults’ sensitivity to infant distress

    Directory of Open Access Journals (Sweden)

    Christine E Parsons

    2014-12-01

    Full Text Available Crying is the most powerful auditory signal of infant need. Adults’ ability to perceive and respond to crying is important for infant survival and in the provision of care. This study investigated a number of listener variables that might impact on adults’ perception of infant cry distress, namely parental status, musical training and empathy. Sensitivity to infant distress was tested using a previously validated task, which experimentally manipulated distress by varying the pitch of infant cries. Parents with musical training showed a significant advantage on this task when compared with parents without. The extent of the advantage was correlated with the amount of self-reported musical training. For non-parents, individual differences in empathy were associated with task performance, with higher empathy scores corresponding to greater sensitivity to infant distress. We suggest that sensitivity to infant distress can be impacted by a number of listener variables, and may be amenable to training.

  2. Development of a high-count-rate neutron detector with position sensitivity and high efficiency

    International Nuclear Information System (INIS)

    Nelson, R.; Sandoval, J.

    1996-01-01

    While the neutron scattering community is bombarded with hints of new technologies that may deliver detectors with high-count-rate capability, high efficiency, gamma-ray insensitivity, and high resolution across large areas, only the time-tested, gas-filled 3 He and scintillation detectors are in widespread use. Future spallation sources with higher fluxes simply must exploit some of the advanced detector schemes that are as yet unproved as production systems. Technologies indicating promise as neutron detectors include pixel arrays of amorphous silicon, silicon microstrips, microstrips with gas, and new scintillation materials. This project sought to study the competing neutron detector technologies and determine which or what combination will lead to a production detector system well suited for use at a high-intensity neutron scattering source

  3. 78 FR 42982 - Submission for Review: Information Collection; Questionnaire for Non-Sensitive Positions (SF 85)

    Science.gov (United States)

    2013-07-18

    ... Government civilian or military positions, or positions in private entities performing work for the Federal... adjudication. The SF 85 is completed by civilian employees of the Federal Government, military personnel, and... Security Number and provide the results to OPM. Clarifying language was added to the Authorization for...

  4. Liquid natural gas occupies an increasing position in the energy mix of the USA

    International Nuclear Information System (INIS)

    2002-01-01

    Although the profitability of using liquid natural gas (LNG) depends on the fluctuations of the gas price, LNG will play an increasing role in the ''energy mix'' of the USA. The amount of LNG imported by the USA rose by 175% from 1998 to 2001. There are at present four receiving stations for LNG in the USA and they will probably be extended. Plans to build gas-powered power stations in California will increase the demand for natural gas in the coming years. Several companies have announced their desire to build receiving stations for LNG. There is, however, some opposition from environmentalists

  5. Uncertainty and sensitivity analyses for gas and brine migration at the Waste Isolation Pilot Plant, May 1992

    International Nuclear Information System (INIS)

    Helton, J.C.; Bean, J.E.; Butcher, B.M.; Garner, J.W.; Vaughn, P.; Schreiber, J.D.; Swift, P.N.

    1993-08-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis, stepwise regression analysis and examination of scatterplots are used in conjunction with the BRAGFLO model to examine two phase flow (i.e., gas and brine) at the Waste Isolation Pilot Plant (WIPP), which is being developed by the US Department of Energy as a disposal facility for transuranic waste. The analyses consider either a single waste panel or the entire repository in conjunction with the following cases: (1) fully consolidated shaft, (2) system of shaft seals with panel seals, and (3) single shaft seal without panel seals. The purpose of this analysis is to develop insights on factors that are potentially important in showing compliance with applicable regulations of the US Environmental Protection Agency (i.e., 40 CFR 191, Subpart B; 40 CFR 268). The primary topics investigated are (1) gas production due to corrosion of steel, (2) gas production due to microbial degradation of cellulosics, (3) gas migration into anhydrite marker beds in the Salado Formation, (4) gas migration through a system of shaft seals to overlying strata, and (5) gas migration through a single shaft seal to overlying strata. Important variables identified in the analyses include initial brine saturation of the waste, stoichiometric terms for corrosion of steel and microbial degradation of cellulosics, gas barrier pressure in the anhydrite marker beds, shaft seal permeability, and panel seal permeability

  6. A high resolution position sensitive X-ray MWPC for small angle X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.

    1981-02-01

    A small sealed-off delay line readout MWPC X-ray detector has been designed and built for small angle X-ray diffraction applications. Featuring a sensitive area of 100 mm x 25 mm it yields a spatial resolution of 0.13 mm (standard deviation) with a high rate capability and good quantum efficiency for copper K radiation. (author)

  7. An overview of current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes

    CERN Document Server

    Gys, Thierry

    1999-01-01

    Current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes have stimulated increased interest from a variety of fields such as astronomy, biomedical imaging and high- energy physics. These devices are sensitive to single photons over a photon energy spectrum defined by the transmission of the optical entrance window and the photo-cathode type. Their spatial resolution ranges from a few millimeters for pad hybrid photon detectors and multi-anode photo-multiplier tubes down to a few tens of microns for pixel hybrid photon detectors and electron-bombarded charge-coupled devices. Basic technological and design aspects are assessed in this paper. (21 refs).

  8. Positioning of the new trademark HEIN GAS in the liberalized gas market; Die Neupositionierung der Marke HEIN GAS im liberalisierten Gasmarkt

    Energy Technology Data Exchange (ETDEWEB)

    Unbehaun, C. [HEIN GAS Hamburger Gaswerke GmbH, Hamburg (Germany)

    2000-10-01

    Trademarks are getting increasingly important as a marketing factor in natural gas supply. The HEIN GAS company aims at becoming one of the top utilities in northern Germany. The contribution shows how marketing research and strategies are employed to achieve this. [German] Die kommunikativen Aktivitaeten aller Gasunternehmen werden zukuenftig einen entscheidenden Marktfaktor darstellen, um Geschaefts- und Privatkunden zu halten bzw. weitere zu gewinnen. Gerade im deutschen Gasmarkt, der durch austauschbare Produkte gekennzeichnet ist, kommt der Marke besondere Bedeutung zu. Der Preis ist zwar ein wichtiger, aber nicht immer allein entscheidendeer Wettbewerbsfaktor. Fuer das Unternehmen HEIN GAS heisst dies, auch im kommunikativen Wettbewerb zu bestehen. Es wird der Weg beschrieben, HEIN GAS zu einer Fuehrungsmarke im norddeutschen Waermemarkt zu etablieren. Dabei wird aufgezeigt, wie die Ergebnisse durch Marktforschung ueberprueft werden.

  9. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow

    Science.gov (United States)

    Rodgers, Keith B.; Latif, Mojib; Legutke, Stephanie

    2000-09-01

    The sensitivity of the thermal structure of the equatorial Pacific and Indian Ocean pycnoclines to a model's representation of the Indonesian Straits connecting the two basins is investigated. Two integrations are performed using the global HOPE ocean model. The initial conditions and surface forcing for both cases are identical; the only difference between the runs is that one has an opening for the Indonesian Straits which spans the equator on the Pacific side, and the other has an opening which lies fully north of the equator. The resulting sensitivity throughout much of the upper ocean is greater than 0.5°C for both the equatorial Indian and Pacific. A realistic simulation of net Indonesian Throughflow (ITF) transport (measured in Sverdrups) is not sufficient for an adequate simulation of equatorial watermasses. The ITF must also contain a realistic admixture of northern and southern Pacific source water.

  10. A fast position sensitive photodetector based on a CsI reflective photocathode

    International Nuclear Information System (INIS)

    Arnold, R.; Christophel, E.; Guyonnet, J.L.

    1991-01-01

    A fast detector was built for UV photon detection that depends on a CsI sensitized pad cathode. The rapidity of the detector is compared with that of a more classical chamber filled with photosensitive gases such as TEA or TMAE. Estimates of the quantum yield of the photocathode at 160 and 200 nm are given. The performances obtained make it a good photodetector candidate to be operated at high luminosity accelerators. (author) 7 refs., 19 figs

  11. A Nose for Hydrogen Gas: Fast, Sensitive H2 Sensors Using Electrodeposited Nanomaterials.

    Science.gov (United States)

    Penner, Reginald M

    2017-08-15

    Hydrogen gas (H 2 ) is odorless and flammable at concentrations above 4% (v/v) in air. Sensors capable of detecting it rapidly at lower concentrations are needed to "sniff" for leaked H 2 wherever it is used. Electrical H 2 sensors are attractive because of their simplicity and low cost: Such sensors consist of a metal (usually palladium, Pd) resistor. Exposure to H 2 causes a resistance increase, as Pd metal is converted into more resistive palladium hydride (PdH x ). Sensors based upon Pd alloy films, developed in the early 1990s, were both too slow and too insensitive to meet the requirements of H 2 safety sensing. In this Account, we describe the development of H 2 sensors that are based upon electrodeposited nanomaterials. This story begins with the rise to prominence of nanowire-based sensors in 2001 and our demonstration that year of the first nanowire-based H 2 sensor. The Pd nanowires used in these experiments were prepared by electrodepositing Pd at linear step-edge defects on a graphite electrode surface. In 2005, lithographically patterned nanowire electrodeposition (LPNE) provided the capability to pattern single Pd nanowires on dielectrics using electrodeposition. LPNE also provided control over the nanowire thickness (±1 nm) and width (±10-15%). Using single Pd nanowires, it was demonstrated in 2010 that smaller nanowires responded more rapidly to H 2 exposure. Heating the nanowire using Joule self-heating (2010) also dramatically accelerated sensor response and recovery, leading to the conclusion that thermally activated H 2 chemisorption and desorption of H 2 were rate-limiting steps in sensor response to and recovery from H 2 exposure. Platinum (Pt) nanowires, studied in 2012, showed an inverted resistance response to H 2 exposure, that is, the resistance of Pt nanowires decreased instead of increased upon H 2 exposure. H 2 dissociatively chemisorbs at a Pt surface to form Pt-H, but in contrast to Pd, it stays on the Pt surface. Pt nanowires

  12. Sensitivity of peak positions to flight-path parameters in a deep-inelastic scattering neutron TOF spectrometer

    International Nuclear Information System (INIS)

    Gray, E.MacA.; Chatzidimitriou-Dreismann, C.A.; Blach, T.P.

    2012-01-01

    The effects of small changes in flight-path parameters (primary and secondary flight paths, detector angles), and of displacement of the sample along the beam axis away from its ideal position, are examined for an inelastic time-of-flight (TOF) neutron spectrometer, emphasising the deep-inelastic regime. The aim was to develop a rational basis for deciding what measured shifts in the positions of spectral peaks could be regarded as reliable in the light of the uncertainties in the calibrated flight-path parameters. Uncertainty in the length of the primary or secondary flight path has the least effect on the positions of the peaks of H, D and He, which are dominated by the accuracy of the calibration of the detector angles. This aspect of the calibration of a TOF spectrometer therefore demands close attention to achieve reliable outcomes where the position of the peaks is of significant scientific interest and is discussed in detail. The corresponding sensitivities of the position of peak of the Compton profile, J(y), to flight-path parameters and sample position are also examined, focusing on the comparability across experiments of results for H, D and He. We show that positioning the sample to within a few mm of the ideal position is required to ensure good comparability between experiments if data from detectors at high forward angles are to be reliably interpreted.

  13. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna [Univ. of South Carolina, Columbia, SC (United States)

    2017-09-29

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron (10B) and enriched lithium (6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (tg ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10-24 cm2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.

  14. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    International Nuclear Information System (INIS)

    Mandal, Krishna

    2017-01-01

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3 He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3 He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron ( 10 B) and enriched lithium ( 6 Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (t g ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10 -24 cm 2 ), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.

  15. Successful use of a linear position-sensitive neutron detector in solid state physics and materials science

    International Nuclear Information System (INIS)

    Schefer, J.; Fischer, P.; Heer, H.; Isacson, A.; Koch, M.; Thut, R.

    1991-01-01

    The double axis multicounter diffractometer (DMC) installed at the 10 MW reactor SAPHIR (PSI) has been designed as a good flux-good resolution (presently Δd/d≥4x10 -3 ) neutron poder diffractometer. The detector bank is based on a commercial position-sensitive linear BF 3 detector which may be automatically and precisely positioned on air cushions on inexpensive floors. This detector type has an 80deg angular opening, not allowing any standard collimation in front of the detector. We therefore developed an oscillating collimator system allowing easy use of the instrument even with sample environments such as a dilution cryostat. (orig.)

  16. Istaroxime, a positive inotropic agent devoid of proarrhythmic properties in sensitive chronic atrioventricular block dogs.

    Science.gov (United States)

    Bossu, Alexandre; Kostense, Amée; Beekman, Henriette D M; Houtman, Marien J C; van der Heyden, Marcel A G; Vos, Marc A

    2018-05-10

    Current inotropic agents in heart failure therapy associate with low benefit and significant adverse effects, including ventricular arrhythmias. Istaroxime, a novel Na + /K + -transporting ATPase inhibitor, also stimulates SERCA2a activity, which would confer improved inotropic and lusitropic properties with less proarrhythmic effects. We investigated hemodynamic, electrophysiological and potential proarrhythmic and antiarrhythmic effects of istaroxime in control and chronic atrioventricular block (CAVB) dogs sensitive to drug-induced Torsades de Pointes arrhythmias (TdP). In isolated normal canine ventricular cardiomyocytes, istaroxime (0.3-10 μM) evoked no afterdepolarizations and significantly shortened action potential duration (APD) at 3 and 10 μM. Istaroxime at 3 μg/kg/min significantly increased left ventricular (LV) contractility (dP/dt + ) and relaxation (dP/dt-) respectively by 81 and 94% in anesthetized control dogs (n = 6) and by 61 and 49% in anesthetized CAVB dogs (n = 7) sensitive to dofetilide-induced TdP. While istaroxime induced no ventricular arrhythmias in control conditions, only single ectopic beats occurred in 2/7 CAVB dogs, which were preceded by increase of short-term variability of repolarization (STV) and T wave alternans in LV unipolar electrograms. Istaroxime pre-treatment (3 μg/kg/min for 60 min) did not alleviate dofetilide-induced increase in repolarization and STV, and mildly reduced incidence of TdP from 6/6 to 4/6 CAVB dogs. In six CAVB dogs with dofetilide-induced TdP, administration of istaroxime (90 μg/kg/5 min) suppressed arrhythmic episodes in two animals. Taken together, inotropic and lusitropic properties of istaroxime in CAVB dogs were devoid of significant proarrhythmic effects in sensitive CAVB dogs, and istaroxime provides a moderate antiarrhythmic efficacy in prevention and suppression of dofetilide-induced TdP. Copyright © 2018. Published by Elsevier Ltd.

  17. Design and Performance Analysis of Laser Displacement Sensor Based on Position Sensitive Detector (PSD)

    International Nuclear Information System (INIS)

    Song, H X; Wang, X D; Ma, L Q; Cai, M Z; Cao, T Z

    2006-01-01

    By using PSD as sensitive element, and laser diode as emitting element, laser displacement sensor based on triangulation method has been widely used. From the point of view of design, sensor and its performance were studied. Two different sensor configurations were described. Determination of the dimension, sensing resolution and comparison of the two different configurations were presented. The factors affecting the performance of the laser displacement sensor were discussed and two methods, which can eliminate the affection of dark current and environment light, are proposed

  18. A detector system for two-dimensional, position-sensitive detection of neutrons and gamma quanta

    International Nuclear Information System (INIS)

    Scholz, A.

    1988-08-01

    While the well-known Anger Camera utilizes a large number of photomultiplier tubes, which are arranged in a regular array behind a scintillation crystal, the new detector system makes use of electron optics to transfer the scintillation image of a large scintillation crystal (Li-6-glass) onto a small position detector. Because of this, only few photodetectors are required for position readout, associated with only a small number of amplifier chains and a very simple position reconstruction algorithm. The reduced complexity of the readout electronics ultimately leads to an improved maintainability and reliability of the detector system. A prototype of the new detector system was built and tested. After giving an overview on already known and realized detector configurations, the basic considerations, which led to the final detector design, will be explained. Different methods of detector readout and position determination are discussed. Measurement results which were obtained with the prototype detector system are presented and explained by means of simulation calculations. (orig./HP) [de

  19. Endocrine sensitivity of the receptor-positive T61 human breast carcinoma serially grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Spang-Thomsen, M; Skovgaard Poulsen, H

    1985-01-01

    A study was made on the effect of ovariectomy, 17 beta-oestradiol, and tamoxifen on the oestrogen and progesterone receptor-positive T61 human breast carcinoma grown in nude mice. The effect of the treatment was evaluated by the specific growth delay calculated on the basis of Gompertz growth cur...... but is not a sufficiently clear marker to allow prediction of the endocrine sensitivity of individual breast tumours....

  20. Synthesis, characterization and gas sensitivity of MoO3 nanoparticles

    Indian Academy of Sciences (India)

    TECS

    Sol–gel citrate; metal oxide; gas sensing; nanoparticles; SEM. 1. Introduction ... et al (2005) demonstrated the advantageous use of nano- structured cerium oxide .... Hoffheins B, Taylor R F and Schultz J S (eds) 1996 Solid state resistive gas ...

  1. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Science.gov (United States)

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  2. Gas cooking, kitchen ventilation, and asthma, allergic symptoms and sensitization in young children - the PIAMA study

    NARCIS (Netherlands)

    Willers, SM; Brunekreef, B; Oldenwening, M; Smit, HA; Kerkhof, M; Gerritsen, J; De Jongste, JC; De Vries, H.

    Background: Several studies reported inconsistent associations between using gas for cooking and respiratory symptoms or lung function in children. Kitchen ventilation characteristics may modify the relationship between gas cooking and respiratory health. The aim of this study was to investigate the

  3. Sensitivity and environmental response of the CMS RPC gas gain monitoring system

    CERN Document Server

    Benussi, L.; Colafranceschi, S.; Fabbri, F.L.; Giardoni, M.; Ortenzi, B.; Paolozzi, A.; Passamonti, L.; Pierluigi, D.; Ponzio, B.; Russo, A.; Colaleo, A.; Loddo, F.; Maggi, M.; Ranieri, A.; Abbrescia, M.; Iaselli, G.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Romano, F.; Roselli, G.; Trentadue, R.; Tupputi, S.; Guida, R.; Polese, G.; Sharma, A.; Cimmino, A.; Lomidze, D.; Paolucci, D.; Piccolo, P.; Baesso, P.; Necchi, M.; Pagano, D.; Ratti, S.P.; Vitulo, P.; Viviani, C.

    Results from the gas gain monitoring (GGM) system for the muon detector using RPC in the CMS experiment at the LHC is presented. The system is designed to provide fast and accurate determination of any shift in the working point of the chambers due to gas mixture changes.

  4. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    Science.gov (United States)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  5. Negative/positive chemotaxis of a droplet: Dynamic response to a stimulant gas

    Science.gov (United States)

    Sakuta, Hiroki; Magome, Nobuyuki; Mori, Yoshihito; Yoshikawa, Kenichi

    2016-05-01

    We report here the repulsive/attractive motion of an oil droplet floating on an aqueous phase caused by the application of a stimulant gas. A cm-sized droplet of oleic acid is repelled by ammonia vapor. In contrast, a droplet of aniline on an aqueous phase moves toward hydrochloric acid as a stimulant. The mechanisms of these characteristic behaviors of oil droplets are discussed in terms of the spatial gradient of the interfacial tension caused by the stimulant gas.

  6. Mobil positioning itself to become Canada's premier oil and gas company

    International Nuclear Information System (INIS)

    Thomas, A.

    1994-01-01

    To achieve its goal of becoming Canada's premier oil and gas company by the year 2000, Mobil Oil Canada is empowering its employees and applying appropriate technology to unlock resources and create value. Mobil produces 4.1 million m 3 of oil and natural gas liquids, 5.6 million m 3 /y of natural gas and 438,000 tonnes/y of sulfur. It also operates over 3,000 wells in western Canada and eleven gas processing plants, manages 1,700 km of pipeline, and has 33% interest in the Hibernia project on the Grand Banks. Oil lifting costs have decreased over the past three years from $3.40/bbl to $2.80/bbl and development costs are under $2/bbl. Innovative technology used to achieve high production and low costs include the use of three dimensional seismic surveys and horizontal drilling. Other techniques used at particular sites include installation of downhole injection regulators to control problems of segregation and metering between different water injection zones at the Carson Creek field, use of artificial lifts in gas wells, and a dual gas lift at the Rainbow Lake oil field. At the Lone Pine gas plant, the first Superclaus-99 sulfur recovery process was installed, reducing sulfur emissions by 60% and increasing recovery efficiency from 95% to 98%. Mobil has operated in Canada since 1940 and has made significant discoveries, including Canada's largest producing oil field, the Pembina. In 1971, Mobil discovered gas of commercial significance off the east coast and helped discover the Hibernia and Venture fields. The Hibernia project is scheduled to come on stream in 1997 and Mobil expects the economics of the project to be favorable, with a $12-13/bbl oil price needed to break even. 7 figs

  7. Position sensitive X-ray or X-ray detector and 3-D-tomography using same

    International Nuclear Information System (INIS)

    1975-01-01

    A fan-shaped beam of penetrating radiation, such as X-ray or γ-ray radiation, is directed through a slice of the body to be analyzed into a position sensitive detector for deriving a shadowgraph of transmission or absorption of the penetrating radiation by the body. A number of such shadowgraphs are obtained for different angles of rotation of the fan-shaped beam relative to the center of the slice being analyzed. The detected fan beam shadowgraph data is reordered into shadowgraph data corresponding to sets of parallel paths of radiation through the body. The reordered parallel path shadowgraph data is then convoluted in accordance with a 3-D reconstruction method by convolution in a computer to derive a 3-D reconstructed tomograph of the body under analysis. In a preferred embodiment, the position sensitive detector comprises a multiwire detector wherein the wires are arrayed parallel to the direction of the divergent penetrating rays to be detected. A focussed grid collimator is interposed between the body and the position sensitive detector for collimating the penetrating rays to be detected. The source of penetrating radiation is preferably a monochromatic source

  8. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    OpenAIRE

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-01-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the co...

  9. Position sensitivity of the proposed segmented germanium detectors for the DESPEC project

    International Nuclear Information System (INIS)

    Khaplanov, A.; Tashenov, S.; Cederwall, B.

    2009-01-01

    The DESPEC HPGe array is a part of the NuSTAR project at FAIR, Germany. It is aimed at the spectroscopy of the stopped decaying exotic nuclei. Segmented γ-ray tracking detectors are proposed for this array in order to maximize detection efficiency and background suppression when searching for very rare events. Two types of detector modules-stacks of three 16-fold segmented planar crystals and 12- and 16-fold segmented clover detectors-have been investigated and compared from the point of view of the achievable position resolution using pulse shape analysis (PSA). To this end, detector signals from realistic γ-ray interactions have been calculated. These signals were treated by PSA in order to reconstruct the photon interaction locations. Comparing the initial interaction locations to the reconstructed ones, it was found that the double-sided strip planar detector yielded position reconstruction errors at least a factor 2 lower than the other detectors considered.

  10. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  11. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver

    2017-06-01

    At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH 4 ) emissions. Here, we quantify the thaw-induced increase in CH 4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO 2 ) exchange. Using nested wetland and landscape eddy covariance net CH 4 flux measurements in combination with flux footprint modeling, we find that landscape CH 4 emissions increase with increasing wetland-to-forest ratio. Landscape CH 4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH 4 emission of ~13 g CH 4  m -2 is the dominating contribution to the landscape CH 4 emission of ~7 g CH 4  m -2 . In contrast, forest contributions to landscape CH 4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr -1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH 4  m -2  yr -1 in landscape CH 4 emissions. A long-term net CO 2 uptake of >200 g CO 2  m -2  yr -1 is required to offset the positive radiative forcing of increasing CH 4 emissions until the end of the 21st century as indicated by an atmospheric CH 4 and CO 2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO 2 flux measurements suggest a long-term net CO 2 uptake between 49 and 157 g CO 2  m -2  yr -1 . Thus, thaw-induced CH 4 emission increases likely exert a positive net radiative greenhouse gas

  12. Two-dimensional position-sensitive detectors for small-angle neutron scattering

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Vandermolen, R.I.

    1990-05-01

    In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs

  13. Output pulse-shapes of position-sensitive proportional counters using high resistance single wire

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Nishiyama, Fumitaka; Hasai, Hiromi

    1980-01-01

    The measurements and model analysis of the output pulse-shapes from a single wire proportional counter (SWPC) which has a high resistance anode are described. The characteristics of the observed pulse-shapes are determined by only one parameter which is a function of anode resistance and load resistance and they are reproduced by a simple model. Using this model, the methods for position read-out are discussed in a systematical way. (author)

  14. Time-of-flight position-sensitive x-ray detection

    International Nuclear Information System (INIS)

    Mowat, J.W.

    1981-01-01

    A new method for recording beam-foil time-of-flight data is described. A stationary, side-window, position-senstive proportional counter, oriented with anode wire parallel to the ion beam, views the decay in flight of excited ions through a Soller slit x-ray collimator. In contrast to the standard method, the exciter foil, placed within or upstream from the field of view, is not moved during the acquisition of a decay curve. Each point on the anode acts like an independent detector seeing a unique segment of the ion beam. The correspondence between the downstream distance at which an ion decays and the position along the anode at which the x-ray is detected makes a pulse-height spectrum of position pulses equivalent to a time-of-flight decay curve. Thus an entire decay curve can now be acquired without moving the foil. Increased efficiency is the most significant improvement over the standard method in which the radiation detector views only a small segment of the flight path at any one time. Experiments using translating foils are subject to a spurious dependence of x-ray intensity on foil position if the foil is non-uniform (or non-uniformly aged) and wobbles as it moves. This effect is eliminated here. Foil aging effects which influence excitation rates and introduce a slowly varying time dependence of the x-ray intensity are automatically normalized by this multichannel technique. The application of this method to metastable x-ray emitting states of low-Z ions are discussed

  15. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    Science.gov (United States)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  16. Influence of discharge voltage on the sensitivity of the resultant sputtered NiO thin films toward hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Khalaf, Mohammed K. [Center of Applied Physics, Directorate of Materials Research, Ministry of Science and Technology, Baghdad (Iraq); Mutlak, Rajaa H. [Dept. of Physics, College of Science, University of Baghdad, Ministry of Higher Education and Scientific Research, Baghdad (Iraq); Khudiar, Ausama I., E-mail: ausamaikhudiar@yahoo.com [Center of Applied Physics, Directorate of Materials Research, Ministry of Science and Technology, Baghdad (Iraq); Hial, Qahtan G. [Dept. of Physics, College of Science, University of Baghdad, Ministry of Higher Education and Scientific Research, Baghdad (Iraq)

    2017-06-01

    Nickel oxide thin films were deposited on glass substrates as the main gas sensor for H{sub 2} by the DC sputtering technique at various discharge voltages within the range of 1.8–2.5 kV. Their structural, optical and gas sensing properties were investigated by XRD, AFM, SEM, ultraviolet visible spectroscopy and home-made gas sensing measurement units. A diffraction peak in the direction of NiO (200) was observed for the sputtered films, thereby indicating that these films were polycrystalline in nature. The optical band gap of the films decreased from 3.8 to 3.5 eV when the thickness of the films was increased from 83.5 to 164.4 nm in relation to an increase in the sputtering discharge voltage from 1.8 to 2.5 kV, respectively. The gas sensitivity performance of the NiO films that were formed was studied and the electrical responses of the NiO-based sensors toward different H{sub 2} concentrations were also considered. The sensitivity of the gas sensor increased with the working temperature and H{sub 2} gas concentration. The thickness of the NiO thin films was also an important parameter in determining the properties of the NiO films as H{sub 2} sensors. It was shown in this study that NiO films have the capability to detect H{sub 2} concentrations below 3% in wet air, a feature that allows this material to be used directly for the monitoring of the environment.

  17. Photonic Crystal Fiber-Based High Sensitivity Gas Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research, Inc. proposes to develop a lightweight, compact, rugged, near and mid-infrared gas-sensing spectroscopy instrument to accurately measure the...

  18. Photonic Crystal Fiber-Based High Sensitivity Gas Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research, Inc. proposes to develop a lightweight, compact, rugged, near-infrared gas-sensing spectroscopy instrument to accurately measure the abundance of...

  19. Superior selectivity and sensitivity of blue phosphorus nanotubes in gas sensing applications

    KAUST Repository

    Montes Muñ oz, Enrique; Schwingenschlö gl, Udo

    2017-01-01

    -dimensional materials, in particular Si nanowires and carbon nanotubes, and two-dimensional materials, in particular graphene, phosphorene, and MoS2. Investigation of the energetics of the gas adsorption and induced charge transfers indicates that blue phosphorus

  20. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications

    International Nuclear Information System (INIS)

    Hoa, Nguyen Duc; Duy, Nguyen Van; Hieu, Nguyen Van

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO 3 nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO 3 sensor exhibited a high performance to NO 2 gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO 2 ) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO 2 . In addition, the developed sensor exhibited selective detection of low NO 2 concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  1. Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Molecular Gas Flow

    Science.gov (United States)

    Shneider, Mikhail

    2014-10-01

    Contraction of the gas discharge, when current contracts from a significant volume of weakly ionized plasma into a thin arc channel, was attracted attention of scientists for more than a century. Studies of the contraction (also called constriction) mechanisms, besides carrying interesting science, are of practical importance, especially when contraction should be prevented. A set of time-dependent two-dimensional equations for the non-equilibrium weakly-ionized nitrogen/ air plasma is formulated. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; by taking into account the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the pressure (gas density) drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge where the current flows along the density gradient of the background gas was discussed. In this talk the problems related to the dynamic contraction of the current channel inside a quasineutral positive column of a self-sustained glow discharge in molecular gas in a rectangular duct with convection cooling will be discussed. Study presented in this talk was stimulated by the fact that there are large number of experiments on the dynamic contraction of a glow discharge in nitrogen and air flows and a many of possible applications. Similar processes play a role in the powerful gas-discharge lasers. In addition, the problem of dynamic contraction in the large volume of non-equilibrium weakly ionized plasma is closely related to the problem of streamer to leader transitions in lightning and blue jets.

  2. Current status and requirements for position-sensitive detectors in medicine

    CERN Document Server

    Speller, R

    2002-01-01

    This review considers the current status of detector developments for medical imaging using ionising radiation. This field is divided into two major areas; the use of X-rays for transmission imaging and the use of radioactive tracers in emission imaging (nuclear medicine). Until recently, most detector developments were for applications in nuclear medicine. However, in the past 5 years new developments in large area, X-ray-sensitive detectors have meant that both application domains are equally served. In X-ray imaging, work in CT and mammography are chosen as examples of sensor developments. Photodiode arrays in multi-slice spiral CT acquisitions are described and for mammography the use of amorphous silicon flat panel arrays is considered. The latter is an excellent example where new detector developments have required a re-think of traditional imaging methods. In gamma-ray imaging the recent developments in small area, task-specific cameras are described. Their limitations and current proposals to overcome...

  3. A general technique for characterizing x-ray position sensitive arrays

    International Nuclear Information System (INIS)

    Dufresne, E.; Bruning, R.; Sutton, M.; Stephenson, G.B.

    1994-03-01

    We present a general statistical technique for characterizing x-ray sensitive linear diode arrays and CCD arrays. We apply this technique to characterize the response of a linear diode array, Princeton Instrument model X-PDA, and a virtual phase CCD array, TI 4849, to direct illumination by x-rays. We find that the response of the linear array is linearly proportional to the incident intensity and uniform over its length to within 2 %. Its quantum efficiency is 38 % for Cu K α x-rays. The resolution function is evaluated from the spatial autocorrelation function and falls to 10 % of its peak value after one pixel. On the other hand, the response of the CCD detecting system to direct x-ray exposure is non-linear. To properly quantify the scattered x-rays, one must correct for the non- linearity. The resolution is two pixels along the serial transfer direction. We characterize the noise of the CCD and propose a model that takes into account the non-linearity and the resolution function to estimate the quantum efficiency of the detector. The quantum efficiency is 20 %

  4. Australia's Greenhouse Challenge is a positive step towards abatement of gas emissions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Australian industry has responded favourably to the Federal Government's Greenhouse Clallenge Program (GCP) which has focused on curbing greenhouse gas emission from the manufacturing, mining and energy sector. It is a carefully shaped program which prompts companies and groups to thoroughly review their individual operations and identify areas where credible new or addition emission control can be employed. There are now 42 companies and associations that have signed agreements in GCP. Together they account for some 15 % of Australia's total greenhouse gas emissions. It is expected that by 2000 the emission increase will be cut to 7 % and the total emissions cut by 16 million tonnes for the 42 companies concerned

  5. Amazingly resilient Indigenous people! Using transformative learning to facilitate positive student engagement with sensitive material.

    Science.gov (United States)

    Jackson, Debra; Power, Tamara; Sherwood, Juanita; Geia, Lynore

    2013-12-01

    If health professionals are to effectively contribute to improving the health of Indigenous people, understanding of the historical, political, and social disadvantage that has lead to health disparity is essential. This paper describes a teaching and learning experience in which four Australian Indigenous academics in collaboration with a non-Indigenous colleague delivered an intensive workshop for masters level post-graduate students. Drawing upon the paedagogy of Transformative Learning, the objectives of the day included facilitating students to explore their existing understandings of Indigenous people, the impact of ongoing colonisation, the diversity of Australia's Indigenous people, and developing respect for alternative worldviews. Drawing on a range of resources including personal stories, autobiography, film and interactive sessions, students were challenged intellectually and emotionally by the content. Students experienced the workshop as a significant educational event, and described feeling transformed by the content, better informed, more appreciative of other worldviews and Indigenous resilience and better equipped to contribute in a more meaningful way to improving the quality of health care for Indigenous people. Where this workshop differs from other Indigenous classes was in the involvement of an Indigenous teaching team. Rather than a lone academic who can often feel vulnerable teaching a large cohort of non-Indigenous students, an Indigenous teaching team reinforced Indigenous authority and created an emotionally and culturally safe space within which students were allowed to confront and explore difficult truths. Findings support the value of multiple teaching strategies underpinned by the theory of transformational learning, and the potential benefits of facilitating emotional as well as intellectual student engagement when presenting sensitive material.

  6. High sensitive quasi freestanding epitaxial graphene gas sensor on 6H-SiC

    NARCIS (Netherlands)

    Iezhokin, I.; Offermans, P.; Brongersma, S.H.; Giesbers, A.J.M.; Flipse, C.F.J.

    2013-01-01

    We have measured the electrical response to NO2, N2, NH3, and CO for epitaxial graphene and quasi freestanding epitaxial graphene on 6H-SiC substrates. Quasi freestanding epitaxial graphene shows a 6 fold increase in NO2 sensitivity compared to epitaxial graphene. Both samples show a sensitivity

  7. Modern trends in position-sensitive neutron detectors development for condensed matter research

    International Nuclear Information System (INIS)

    Belushkin, A.V.

    2007-01-01

    Detecting neutrons is a more complicated task compared to the detection of ionizing particles or ionizing radiation. This is why the variety of neutron detectors is much more limited. Meanwhile, different types of neutron experiments pose specific and often contradictory requirements for detector characteristics. For experiments on the high-intensity neutron sources, the high counting rate is one of the key issues. This is very important, for example, for small-angle neutron scattering and neutron reflectometry. For other experiments, characteristics like detection efficiency, high position resolution, high time resolution, neutron/gamma discrimination, large-area imaging, or compactness, are very important. Today, the cost of the detector also became one of the most important factors. There is no single type of detector which satisfies all the above criteria. Therefore, compromise is inevitable and some of the characteristics are trade off in favor of others. The present report gives an overview of detector systems presently operating at the leading neutron scattering facilities as well as some development work around the globe

  8. Position sensitive plastic scintillating fibre-detectors for heavy ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, Sebastian; Tscheuschner, Joachim; Paschalis, Stefanos; Aumann, Thomas; Scheit, Heiko [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2016-07-01

    The R{sup 3}B (Reactions with Relativistic Radioactive Beams) experiment at FAIR will be able to perform kinematically complete measurements of reactions with relativistic heavy-ion beams up to 1 AGeV. In order to track the beam before the target and to determine the mass number of the scattered nucleus after the reaction, five fibre detectors with sizes between 10.24 x 10.24 cm{sup 2} and 120 x 80 cm{sup 2} are going to be built for the R{sup 3}B setup. These fibre detectors will provide x-y-position of the trajectory of charged particles after the reaction target. The light from the fibre detector is sensed using MPPCs (Multi Pixel Photon Counter). For the readout of the MPPCs we test different electronics. In this contribution we present results obtained using an α-source and a LED light source to generate light in the fibre and use the PADI-VFTX for readout.

  9. A novel resveratrol-salinomycin combination sensitizes ER-positive breast cancer cells to apoptosis.

    Science.gov (United States)

    Venkatadri, Rajkumar; Iyer, Anand Krishnan V; Kaushik, Vivek; Azad, Neelam

    2017-08-01

    Resveratrol is a dietary compound that has been widely reported for its anticancer activities. However, successful extrapolation of its effects to pre-clinical studies is met with limited success due to inadequate bioavailability. We investigated the potential of combination therapy to improve the efficacy of resveratrol in a more physiologically relevant dose range. The effect of resveratrol on canonical Wnt signaling was evaluated by Western blotting. Wnt modulators HLY78 (activator) and salinomycin (inhibitor) were evaluated in combination with resveratrol for their effect on breast cancer cell viability (MTT assay), cell cycle progression and apoptosis (Western blotting). Bliss independency model was used to evaluate combinatorial effects of resveratrol-salinomycin combination. Resveratrol downregulated canonical Wnt signaling proteins in treated breast cancer cells (MCF-7, MDA-MB-231 and MDA-MB-468) in the dose range of 50-200μM, which also affected cellular viability. However, at very low doses (0-50μM), resveratrol exhibited no cellular toxicity. Co-treatment with salinomycin significantly potentiated the anti-cancer effects of resveratrol, whereas HLY78 co-treatment had minimal effect. Bliss independency model revealed that Wnt inhibition synergistically potentiates the effects of resveratrol in MCF-7 and BT474 cells. Significantly downregulated canonical Wnt signaling proteins and marker of epithelial-mesenchymal transition (EMT), vimentin were observed in cells treated with resveratrol-salinomycin combination. Cell cycle arrest, caspase activation and apoptosis induction in cells treated with resveratrol-salinomycin combination further confirmed the efficacy of the combination. We report a novel resveratrol-salinomycin combination for targeting ER-positive breast cancer cells and present evidence for successful pre-clinical implementation of resveratrol. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban

  10. Data acquisition system for linear position sensitive detector based neutron diffractometer

    International Nuclear Information System (INIS)

    Pande, S.S.; Borkar, S.P.; Behere, A.; Prafulla, S.; Srivastava, V.D.; Mukhopadhyaya, P.K.; Ghodgaonkar, M.D.; Kataria, S.K.

    2003-03-01

    This data acquisition system is developed to serve the requirements of various linear 1PSD based neutron diffractometers. A neutron diffractometer uses a neutron beam as a probe to study the crystallographic properties of materials. Presently two multi-PSD and two single-PSD diffractometers are commissioned and a few more are being installed in Dhruva. This data acquisition system is installed at each of these - diffractometers. Different requirements of individual diffractometers were studied and reconciled to design a single data acquisition system, which can be easily configured or customized for individual setups. The charge division in a linear PSD is converted to a position output with the help of an RDC (Ratio ADC). The ftont-end electronics, which consist of preamplifiers and shaping amplifiers, provide an interface between a PSD and an RDC. A PC add-on card is designed around a Transputer. It can interface 16 RDCs, a few motor controls and on/off controls. Data acquisition and other controls are implemented in the Transputer program. A front-end Windows98 application merges the raw data of different RDCs to obtain the equiangular data. Through software the data acquisition system can be configured for diffetent diffractometers. Commercially available hardware is also integrated as,a part of the data acquisition system in some of the setups. The data acquisition system is working reliably as a part of two single PSD and two multi-PSD diffractometers. It can handle data rates upto 15 K/Sec without any loss of counts. It has played a significant role in providing improved throughput and utilization ofvarious diffractometers. The'data acquisition system and its different applications are presented in this report. (author)

  11. Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature

    Directory of Open Access Journals (Sweden)

    G. Behzadi pour

    Full Text Available In this study, fabrication of highly sensitive PdNPs/SiO2/Si hydrogen gas sensor using experimental and theoretical methods has been investigated. Using chemical method the PdNPs are synthesized and characterized by X-ray diffraction (XRD. The average size of PdNPs is 11 nm. The thickness of the oxide film was 20 nm and the surface of oxide film analyzed using Atomic-force microscopy (AFM. The C-V curve for the PdNPs/SiO2/Si hydrogen gas sensor in 1% hydrogen concentration and at the room temperature has been reported. The response time and recovery time for 1% hydrogen concentration at room temperature were 1.2 s and 10 s respectively. The response (R% for PdNPs/SiO2/Si MOS capacitor hydrogen sensor was 96%. The PdNPs/SiO2/Si MOS capacitor hydrogen sensor showed very fast response and recovery times compared to SWCNTs/PdNPs, graphene/PdNPs, nanorod/PdNPs and nanowire/PdNPs hydrogen gas sensors. Keywords: Sensitive, Oxide film, Capacitive, Resistance

  12. Electrophoresis of biomass decomposition products and position sensitive detection of the separated C-14 labelled substrates by plastic scintillator measurements

    International Nuclear Information System (INIS)

    Gruenwald, M.

    1985-12-01

    The subject of this work is separation and analysis of hydrothermally decomposed biomass solution by zone electrophoresis of charged hydrocarbon-borate complexes. The first half is dedicated to the electrophoresis. The second half describes a new evaluation method for chromatographs and electropherograms by position sensitive detection of C-14 β radiation in a 1 mm thick plastic scintillator. This method is applied to hydrothermally decomposed (U-C-14)-D glucose solutions and the results are compared to conventional chromatography. Performance numbers of the method are given. Extension to isoelectrically focused gels is also considered. (G.Q.)

  13. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, M.J.; Liekhus, K.J. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R. [Benchmark Environmental Corp. (United States)

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  14. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    International Nuclear Information System (INIS)

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1995-08-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations

  15. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    International Nuclear Information System (INIS)

    Connolly, M.J.; Liekhus, K.J.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations

  16. A sensitivity study of the oxidation of compressed natural gas on platinum

    KAUST Repository

    Badra, Jihad; Masri, Assaad Rachid; Farooq, Aamir

    2013-01-01

    This paper presents a sensitivity study for the oxidation of methane (CH4) over platinum (Pt). Some dominant reactions in the CH 4-Pt surface chemistry were identified and the rates of these reactions were subsequently modified to enhance

  17. Front-end circuit for position sensitive silicon and vacuum tube photomultipliers with gain control and depth of interaction measurement

    International Nuclear Information System (INIS)

    Herrero, Vicente; Colom, Ricardo; Gadea, Rafael; Lerche, Christoph W.; Cerda, Joaquin; Sebastia, Angel; Benlloch, Jose M.

    2007-01-01

    Silicon Photomultipliers, though still under development for mass production, may be an alternative to traditional Vacuum Photomultipliers Tubes (VPMT). As a consequence, electronic front-ends initially designed for VPMT will need to be modified. In this simulation, an improved architecture is presented which is able to obtain impact position and depth of interaction of a gamma ray within a continuous scintillation crystal, using either kind of PM. A current sensitive preamplifier stage with individual gain adjustment interfaces the multi-anode PM outputs with a current division resistor network. The preamplifier stage allows to improve front-end processing delay and temporal resolution behavior as well as to increase impact position calculation resolution. Depth of interaction (DOI) is calculated from the width of the scintillation light distribution, which is related to the sum of voltages in resistor network input nodes. This operation is done by means of a high-speed current mode scheme

  18. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: kristopher.novak@wsl.ch; Schaub, M. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Fuhrer, J. [Swiss Federal Research Station for Agroecology and Agriculture FAL, 8046 Zurich (Switzerland); Skelly, J.M. [Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 (United States); Hug, C. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Landolt, W. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bleuler, P. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2005-07-15

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures.

  19. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    International Nuclear Information System (INIS)

    Novak, K.; Schaub, M.; Fuhrer, J.; Skelly, J.M.; Hug, C.; Landolt, W.; Bleuler, P.; Kraeuchi, N.

    2005-01-01

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures

  20. A highly selective and sensitive "turn-on" fluorescence chemodosimeter for the detection of mustard gas.

    Science.gov (United States)

    Raghavender Goud, D; Purohit, Ajay Kumar; Tak, Vijay; Dubey, Devendra Kumar; Kumar, Pravin; Pardasani, Deepak

    2014-10-21

    A new chemodosimetric protocol based on a tandem S-alkylation followed by desulfurisation reaction of rhodamine-thioamide with mustard gas is reported. The chemodosimeter is highly selective for potential DNA alkylating agents like sulfur mustard, over other simple alkyl halides with the limit of detection of 4.75 μM.

  1. Sensitivity studies on parameters affecting gas release from an underground rock cavern

    International Nuclear Information System (INIS)

    Schlueter, E.; Pruess, K.

    1990-01-01

    A series of numerical simulation experiments is performed to quantify the effects of the release and migration of non-condensible gas in water-saturated fractured rock formations. The relative importance of multiphase parameters such as relative permeability, capillary pressure, intrinsic permeability, and porosity on system behavior is studied. 10 refs., 28 figs., 5 tabs

  2. Sensitivity study of experimental measures for the nuclear liquid-gas phase transition in the statistical multifragmentation model

    Science.gov (United States)

    Lin, W.; Ren, P.; Zheng, H.; Liu, X.; Huang, M.; Wada, R.; Qu, G.

    2018-05-01

    The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter, the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent (τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear multifragmention processes within the framework of the statistical multifragmentation model (SMM). The sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear liquid-gas phase transition.

  3. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2nanorods: Detailed study on the annealing temperature

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-07-01

    Full Text Available Applications of ultra-highly sensitive and selective methane (CH(sub4)) room temperature gas sensors are important for various operations especially in underground mining environment. Therefore, this study is set out to investigate the effect...

  4. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors

    Science.gov (United States)

    Cui, Shumao; Pu, Haihui; Wells, Spencer A.; Wen, Zhenhai; Mao, Shun; Chang, Jingbo; Hersam, Mark C.; Chen, Junhong

    2015-01-01

    Two-dimensional (2D) layered materials have attracted significant attention for device applications because of their unique structures and outstanding properties. Here, a field-effect transistor (FET) sensor device is fabricated based on 2D phosphorene nanosheets (PNSs). The PNS sensor exhibits an ultrahigh sensitivity to NO2 in dry air and the sensitivity is dependent on its thickness. A maximum response is observed for 4.8-nm-thick PNS, with a sensitivity up to 190% at 20 parts per billion (p.p.b.) at room temperature. First-principles calculations combined with the statistical thermodynamics modelling predict that the adsorption density is ∼1015 cm−2 for the 4.8-nm-thick PNS when exposed to 20 p.p.b. NO2 at 300 K. Our sensitivity modelling further suggests that the dependence of sensitivity on the PNS thickness is dictated by the band gap for thinner sheets (10 nm). PMID:26486604

  5. SU-G-BRB-03: Assessing the Sensitivity and False Positive Rate of the Integrated Quality Monitor (IQM) Large Area Ion Chamber to MLC Positioning Errors

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, E McKenzie; DeMarco, J; Steers, J; Fraass, B [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To examine both the IQM’s sensitivity and false positive rate to varying MLC errors. By balancing these two characteristics, an optimal tolerance value can be derived. Methods: An un-modified SBRT Liver IMRT plan containing 7 fields was randomly selected as a representative clinical case. The active MLC positions for all fields were perturbed randomly from a square distribution of varying width (±1mm to ±5mm). These unmodified and modified plans were measured multiple times each by the IQM (a large area ion chamber mounted to a TrueBeam linac head). Measurements were analyzed relative to the initial, unmodified measurement. IQM readings are analyzed as a function of control points. In order to examine sensitivity to errors along a field’s delivery, each measured field was divided into 5 groups of control points, and the maximum error in each group was recorded. Since the plans have known errors, we compared how well the IQM is able to differentiate between unmodified and error plans. ROC curves and logistic regression were used to analyze this, independent of thresholds. Results: A likelihood-ratio Chi-square test showed that the IQM could significantly predict whether a plan had MLC errors, with the exception of the beginning and ending control points. Upon further examination, we determined there was ramp-up occurring at the beginning of delivery. Once the linac AFC was tuned, the subsequent measurements (relative to a new baseline) showed significant (p <0.005) abilities to predict MLC errors. Using the area under the curve, we show the IQM’s ability to detect errors increases with increasing MLC error (Spearman’s Rho=0.8056, p<0.0001). The optimal IQM count thresholds from the ROC curves are ±3%, ±2%, and ±7% for the beginning, middle 3, and end segments, respectively. Conclusion: The IQM has proven to be able to detect not only MLC errors, but also differences in beam tuning (ramp-up). Partially supported by the Susan Scott Foundation.

  6. The nature of the positive ion contribution to a gas discharge

    International Nuclear Information System (INIS)

    Fletcher, J.; Blevin, H.A.

    1980-06-01

    The technique for studying swarms of electrons in a gas discharge by observing the photon flux from the discharge developed in the authors's laboratories has been adapted to investigate the role of the secondary mechanisms in hydrogen and nitrogen. The results show that, contrary to previous indications, ion bombardment of the cathode plays only a negligible, if any, part in the low pressure discharge in hydrogen and nitrogen at low E/N while at high E/N only the contribution of the atomic ion is significant

  7. Palmitate-induced ER stress increases trastuzumab sensitivity in HER2/neu-positive breast cancer cells

    International Nuclear Information System (INIS)

    Baumann, Jan; Wong, Jason; Sun, Yan; Conklin, Douglas S.

    2016-01-01

    CHOP-dependent apoptosis as well as a partial activation of the ER stress response network via XBP1 and ATF6. This response appears to be a general feature of HER2/neu-positive breast cancer cells but not cells that overexpress only HER2/neu. Exogenous palmitate reduces HER2 and HER3 protein levels without changes in phosphorylation and sensitizes HER2/neu-positive breast cancer cells to treatment with the HER2-targeted therapy trastuzumab. Several studies have shown that HER2, FASN and fatty acid synthesis are functionally linked. Exogenous palmitate exerts its toxic effects in part through inducing ER stress, reducing HER2 expression and thereby sensitizing cells to trastuzumab. These data provide further evidence that HER2 signaling and fatty acid metabolism are highly integrated processes that may be important for disease development and progression. The online version of this article (doi:10.1186/s12885-016-2611-8) contains supplementary material, which is available to authorized users

  8. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    Science.gov (United States)

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm 3 and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. HIV symptom distress and anxiety sensitivity in relation to panic, social anxiety, and depression symptoms among HIV-positive adults.

    Science.gov (United States)

    Gonzalez, Adam; Zvolensky, Michael J; Parent, Justin; Grover, Kristin W; Hickey, Michael

    2012-03-01

    Although past work has documented relations between HIV/AIDS and negative affective symptoms and disorders, empirical work has only just begun to address explanatory processes that may underlie these associations. The current investigation sought to test the main and interactive effects of HIV symptom distress and anxiety sensitivity in relation to symptoms of panic disorder (PD), social anxiety disorder (SA), and depression among people with HIV/AIDS. Participants were 164 adults with HIV/AIDS (17.1% women; mean age, 48.40) recruited from AIDS service organizations (ASOs) in Vermont/New Hampshire and New York City. The sample identified as 40.9% white/Caucasian, 31.1% black, 22.0% Hispanic, and 6.1% mixed/other; with more than half (56.7%) reporting an annual income less than or equal to $10,000. Both men and women reported unprotected sex with men as the primary route of HIV transmission (64.4% and 50%, respectively). HIV symptom distress and anxiety sensitivity (AS) were significantly positively related to PD, SA, and depression symptoms. As predicted, there was a significant interaction between HIV symptom distress and anxiety sensitivity in terms of PD and SA symptoms, but not depressive symptoms. Results suggest that anxiety sensitivity and HIV symptom distress are clinically relevant factors to consider in terms of anxiety and depression among people living with HIV/AIDS. It may be important to evaluate these factors among patients with HIV/AIDS to identify individuals who may be at a particularly high risk for anxiety and depression problems. Limitations included recruitment from ASOs, cross-sectional self-report data, and lack of a clinical diagnostic assessment.

  10. Propagation of uncertainty and sensitivity analysis in an integral oil-gas plume model

    KAUST Repository

    Wang, Shitao

    2016-05-27

    Polynomial Chaos expansions are used to analyze uncertainties in an integral oil-gas plume model simulating the Deepwater Horizon oil spill. The study focuses on six uncertain input parameters—two entrainment parameters, the gas to oil ratio, two parameters associated with the droplet-size distribution, and the flow rate—that impact the model\\'s estimates of the plume\\'s trap and peel heights, and of its various gas fluxes. The ranges of the uncertain inputs were determined by experimental data. Ensemble calculations were performed to construct polynomial chaos-based surrogates that describe the variations in the outputs due to variations in the uncertain inputs. The surrogates were then used to estimate reliably the statistics of the model outputs, and to perform an analysis of variance. Two experiments were performed to study the impacts of high and low flow rate uncertainties. The analysis shows that in the former case the flow rate is the largest contributor to output uncertainties, whereas in the latter case, with the uncertainty range constrained by aposteriori analyses, the flow rate\\'s contribution becomes negligible. The trap and peel heights uncertainties are then mainly due to uncertainties in the 95% percentile of the droplet size and in the entrainment parameters.

  11. Propagation of uncertainty and sensitivity analysis in an integral oil-gas plume model

    KAUST Repository

    Wang, Shitao; Iskandarani, Mohamed; Srinivasan, Ashwanth; Thacker, W. Carlisle; Winokur, Justin; Knio, Omar

    2016-01-01

    Polynomial Chaos expansions are used to analyze uncertainties in an integral oil-gas plume model simulating the Deepwater Horizon oil spill. The study focuses on six uncertain input parameters—two entrainment parameters, the gas to oil ratio, two parameters associated with the droplet-size distribution, and the flow rate—that impact the model's estimates of the plume's trap and peel heights, and of its various gas fluxes. The ranges of the uncertain inputs were determined by experimental data. Ensemble calculations were performed to construct polynomial chaos-based surrogates that describe the variations in the outputs due to variations in the uncertain inputs. The surrogates were then used to estimate reliably the statistics of the model outputs, and to perform an analysis of variance. Two experiments were performed to study the impacts of high and low flow rate uncertainties. The analysis shows that in the former case the flow rate is the largest contributor to output uncertainties, whereas in the latter case, with the uncertainty range constrained by aposteriori analyses, the flow rate's contribution becomes negligible. The trap and peel heights uncertainties are then mainly due to uncertainties in the 95% percentile of the droplet size and in the entrainment parameters.

  12. Controlling the position of a stabilized detonation wave in a supersonic gas mixture flow in a plane channel

    Science.gov (United States)

    Levin, V. A.; Zhuravskaya, T. A.

    2017-03-01

    Stabilization of a detonation wave in a stoichiometric hydrogen-air mixture flowing at a supersonic velocity into a plane symmetric channel with constriction has been studied in the framework of a detailed kinetic mechanism of the chemical interaction. Conditions ensuring the formation of a thrust-producing f low with a stabilized detonation wave in the channel are determined. The inf luence of the inf low Mach number, dustiness of the combustible gas mixture supplied to the channel, and output cross-section size on the position of a stabilized detonation wave in the f low has been analyzed with a view to increasing the efficiency of detonation combustion of the gas mixture. It is established that thrust-producing flow with a stabilized detonation wave can be formed in the channel without any energy consumption.

  13. Compton scatter in germanium and its effect on imaging with gamma-ray position-sensitive detectors

    International Nuclear Information System (INIS)

    Sherman, I.S.; Strauss, M.G.; Brenner, R.

    1978-01-01

    The spatial spread due to Compton scatter in Ge was measured to study the reduction in image contrast and signal-to-noise ratio (S/N) resulting from erroneous readout in Ge position-sensitive detectors. The step response revealing this spread was obtained by scanning with a 122 keV γ-ray beam across a boundary of two sectors of a slotted coaxial Ge(Li) detector that is 40 mm diameter by 22 mm long. The derived line-spread function at 140 keV (/sup 99m/Tc) exhibits much shorter but thicker tails than those due to scatter in tissue as observed with a NaI detector through 5.5 cm of scattering material. Convolutions of rectangular profiles of voids with the Ge(Li) line-spread function show marked deterioration in contrast for voids less than 10 mm across, which in turn results in even greater deterioration of the S/N. As a result, the contrast for voids in Ge images is only 20 to 30 percent higher than that in NaI and the S/N is only comparable for equal detector areas. The degradation in image contrast due to scatter in Ge detectors can be greatly reduced by either using thin detectors (approximately 5 mm), where scatter virtually does not exist, or by using thicker detectors and rejecting scatter electronically. To reduce the effects of scatter on the S/N as well as on contrast, the erroneous position readouts must actually be corrected. A more realizable approach to achieving the ultimate potential of Ge detectors may be a scanning array of discrete detectors (not position sensitive) in which readout is not affected by scatter

  14. Sensitivity analysis of the kinetic behaviour of a Gas Cooled Fast Reactor to variations of the delayed neutron parameters

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.; Lathouwers, D.

    2007-01-01

    In advanced Generation IV (fast) reactors an integral fuel cycle is envisaged, where all Heavy Metal is recycled in the reactor. This leads to a nuclear fuel with a considerable content of Minor Actinides. For many of these isotopes the nuclear data is not very well known. In this paper the sensitivity of the kinetic behaviour of the reactor to the dynamic parameters λ k , β k and the delayed spectrum χ d,k is studied using first order perturbation theory. In the current study, feedback due to Doppler and/or thermohydraulic effects are not treated. The theoretical framework is applied to a Generation IV Gas Cooled Fast Reactor. The results indicate that the first-order approach is satisfactory for small variations of the data. Sensitivities to delayed neutron data are similar for increasing and decreasing transients. Sensitivities generally increase with reactivity for increasing transients. For decreasing transients, there are less clearly defined trends, although the sensitivity to the delayed neutron spectrum decreases with larger sub-criticality, as expected. For this research, an adjoint capable version of the time-dependent diffusion code DALTON is under development. (authors)

  15. Structural characteristics and UV-light enhanced gas sensitivity of La-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Ge Chunqiao; Xie Changsheng; Hu Mulin; Gui Yanghai; Bai Zikui; Zeng Dawen

    2007-01-01

    La-doped ZnO nanoparticles were synthesized by sol-gel method starting from zinc acetate dihydrate, lanthanum sesquioxide, alcohol and nitric acid. The crystal structure and morphology of the nanoparticles were characterized by XRD, FESEM, respectively. The thermal decomposition behavior of the the ZnO-based xerogel was detected by TG-DSC. The results show that as-prepared nanoparticles with the hexagonal wurtzite contain the adsorbed water and some organic compounds below 300 o C, which is the key to the calcinations of the ZnO-based xerogel. Pure ZnO and La-doped ZnO thick film sensors were prepared and tested for specific sensitivity to alcohol and benzene with (and without) UV-light excitation. Among all, 10 at.%La-ZnO-based sensors are significantly sensitive to 100 ppm alcohol and 100 ppm benzene. There is an obvious enhancement of the gas-sensing performances with UV-light excitation. That is, the sensitivity to 100 ppm benzene rises twice. The observed sensitivity to alcohol and benzene could be explained with the surface adsorption theory and the conduction-band theory

  16. Thermo-sensitive polymer nanospheres as a smart plugging agent for shale gas drilling operations.

    Science.gov (United States)

    Wang, Wei-Ji; Qiu, Zheng-Song; Zhong, Han-Yi; Huang, Wei-An; Dai, Wen-Hao

    2017-01-01

    Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcohol-water medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive monomer N -isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA-St) nanospheres at 80 °C, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD-SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability.

  17. Canadian Gas Association position paper on year 2000 update - November 1998

    International Nuclear Information System (INIS)

    Goard, R.C.

    1998-01-01

    An update to the response of the Canadian Gas Association (CGA) addressing the year 2000 (Y2K) problem is provided. CGA's Y2K Task Force consists of senior management as well as working committees of Y2K project managers, business continuity planners and multi-disciplinary resources from major member companies. The mandate of the Task Force is to collaborate and communicate on identifying and mitigating the technical, financial, legal and resource risks associated with Y2K, however, each member company is responsible for its own risk mitigation, compliance and contingency plans. CGA favours tax incentives to companies to encourage investment in Y2K remediation efforts. It also favours legislation that would reduce the risk of lawsuits for small, medium and large enterprises who are conscientiously working toward a solution. 3 refs

  18. Low-Temperature Synthesis and Gas Sensitivity of Perovskite-Type LaCoO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lorenzo Gildo Ortiz

    2014-01-01

    Full Text Available LaCoO3 nanoparticles with perovskite-type structure were prepared by a microwave-assisted colloidal method. Lanthanum nitrate, cobalt nitrate, and ethylenediamine were used as precursors and ethyl alcohol as solvent. The thermal decomposition of the precursors leads to the formation of LaCoO3 from a temperature of 500°C. The structural, morphological, and compositional properties of LaCoO3 nanoparticles were studied in this work by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and atomic force microscopy (AFM. Pellets were manufactured in order to test the gas sensing properties of LaCoO3 powders in carbon monoxide (CO and propane (C3H8 atmospheres. Agglomerates of nanoparticles with high connectivity, forming a porous structure, were observed from SEM and TEM analysis. LaCoO3 pellets presented a high sensitivity in both CO and C3H8 at different concentrations and operating temperatures. As was expected, sensitivity increased with the gas concentration and operation temperature increase.

  19. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  20. Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS

    Science.gov (United States)

    Xing, Lei; Liu, Xueqin; Zhang, Jin; Liu, Huaishan; Zhang, Jing; Li, Zizheng; Wang, Jianhua

    2018-02-01

    Compared to towed streamers, ocean-bottom seismometers (OBS) obtain both S-wave data and richer wavefield information. In this paper, the induced polarization method is used to conduct wavefield separation on OBS data obtained from the Shenhu area in the South China Sea. A comparison of the changes in P- and S-waves, and a comprehensive analysis of geological factors within the area, enable analysis and description of the occurrence of natural gas hydrate in the study area. Results show an increase in P-wave velocity when natural gas hydrate exists in the formation, whereas the S-wave velocity remains almost constant, as S-waves can only propagate through the rock skeleton. Therefore, the bottom-simulating reflection (BSR) response of the P-wave is better than that of the S-wave in the frequency analysis profile. In a wide-angle section, the refractive wave of the hydrate layer is evident when using P-wave components but identification is difficult with S-wave components. This velocity model illustrates the sensitivity of P- and S-wave components to gas hydrate. The use of this polarization method and results of analysis provide technical and theoretical support for research on hydrate deposits and other geological features in the Shenhu area.

  1. A constant level liquefied gas regulator sensitive to ± 0,2 mm (1960)

    International Nuclear Information System (INIS)

    Moreau, C.

    1960-01-01

    This device has been designed to maintain a constant level of liquid nitrogen around an adsorption bulb used for the determination of specific surface areas by the BET method. We have in fact already shown elsewhere the necessity of defining carefully the temperature in the bulb and of reducing fluctuations to a minimum. Various apparatus has already been described but it did not offer the sensitivity and the safety in use which we have particularly sought to achieve. (author) [fr

  2. BACTERIOLOGICAL STUDY OF COAGULASE-POSITIVE AND COAGULASE-NEGATIVE STAPHYLOCOCCI IN RELATION TO METHICILLIN SENSITIVITY TESTING

    Directory of Open Access Journals (Sweden)

    Padmanabham Yalangi

    2016-10-01

    Full Text Available BACKGROUND Staphylococcus aureus has long been recognised as an important pathogen in human disease. Staphylococci infection occurs regularly in hospitalised patients and has serious consequences despite antibiotic therapy. Shortly after introduction of methicillin after clinical use Methicillin-Resistant Staphylococcus Aureus (MRSA were identified in many countries and become one of the most common causes of nosocomial infections. The aim of the study is to know the methicillin sensitivity of both coagulase-negative and coagulase-positive staphylococci isolated from various samples. MATERIALS AND METHODS 100 strains of staphylococci both coagulase positive and coagulase negative were isolated in the Department of Microbiology from various clinical samples. They were confirmed by morphology, staining methods and by using standard bacteriological procedures and biochemical reactions. Antibiotic susceptibility testing was performed by Kirby Bauer disc diffusion test. RESULTS Predominant species from pus were S. epidermidis (42.42% and from sputum S. haemolyticus (31.81% from blood S. haemolyticus (53.33%. 53% of strains produced beta-lactamase. Majority 47.22% by S. epidermidis from pus followed by S. haemolyticus 23.33% from pus. Beta-lactamase production was least from throat swab (5.55%. Out of 32 coagulase-positive staphylococci tested to methicillin 15 (46.87% were found to be sensitive, 17 (53.13% were found to be resistant. Out of 68 coagulase-negative staphylococci tested, 13 (19.11% were found to sensitive and 55 (80.88% were found to be resistant. 72% of strains were sensitive to novobiocin and 28% resistant to novobiocin. 43% showed drug resistance to 2 drugs. 14% to 3 drugs and 5 drugs. 6% of staphylococci sensitive to all the 10 drugs. CONCLUSION MRSA is a type of bacteria that is resistant to a number of widely used antibiotics. This means MRSA infections can be more difficult to treat than other bacterial infections. In recent years

  3. Position statement on 'Economic Impact of Oil and Gas Development within the Province of Newfoundland and Labrador

    International Nuclear Information System (INIS)

    1998-01-01

    This document contains the statement outlining the official position of the Newfoundland Ocean Industries Association (NOIA) concerning the report on the 'Economic Impact of Oil and Gas Development within the Province of Newfoundland and Labrador'. NOIA's position reflects the concern that Newfoundland businesses and individuals be involved in this emerging industry. Not unexpectedly, the statement is directed primarily towards improving economic opportunity for its members, but it also argues in favour of increasing economic activity within the province as whole. The Position Statement addresses six major issues of concern. These are: a full and fair opportunity for Newfoundland-resident supply and service companies to bid on an internationally competitive basis; a level playing field for all those who submit bids for contracts; enhancement of Newfoundland technology, expertise and facilities, as well as support of technology transfer to interested and capable Newfoundland businesses or companies; a life-of-field approach to planning, or linking capital expenditure and operational expenditure in order to achieve long-term positive economic impact within Newfoundland and Labrador; a supplier development program to encourage the development of an internationally competitive Newfoundland supply community; and the encouragement of operators and major contractors to fulfill specific requirements for positive economic impact within the province

  4. Evaluation of the x-ray response of a position-sensitive microstrip detector with an integrated readout chip

    International Nuclear Information System (INIS)

    Rossington, C.; Jaklevic, J.; Haber, C.; Spieler, H.; Reid, J.

    1990-08-01

    The performance of an SVX silicon microstrip detector and its compatible integrated readout chip have been evaluated in response to Rh Kα x-rays (average energy 20.5 keV). The energy and spatial discrimination capabilities, efficient data management and fast readout rates make it an attractive alternative to the CCD and PDA detectors now being offered for x-ray position sensitive diffraction and EXAFS work. The SVX system was designed for high energy physics applications and thus further development of the existing system is required to optimize it for use in practical x-ray experiments. For optimum energy resolution the system noise must be decreased to its previously demonstrated low levels of 2 keV FWHM at 60 keV or less, and the data handling rate of the computer must be increased. New readout chips are now available that offer the potential of better performance. 15 refs., 7 figs

  5. Measurement of 18O + 10B fusion cross section and construction of a position sensitive ionization chamber

    International Nuclear Information System (INIS)

    Added, N.

    1987-01-01

    The 18 O + 10 B fusion reaction has been investigated within the bombarding energy range of 29,0 MeV lab 0 lab 0 angular range. For this purpose, a high resolution position sensitive ionization chamber has been developed and constructed. Experimental results compared to model predictions and experimental systematics found in the literature allows to reject compound nucleus limitation to the fusion cross section up to energies as high as five times the coulomb barrier. Statistical model fits to the residues elementary distributions reveal a quite difuse partial fusion cross section in the angular momentum space. Systematic analysis of fusion barrier height (V B ) and radius (R B ) for neighbouring nuclei point out the importance of the nuclear matter difuseness in the competition between the fusion and quasi-direct process. Calculations within this framework were performed. (author) [pt

  6. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Del Guerra, A.; Zavattini, G.; Notaristefani, F. de; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-01-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO 3 :Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm 3 ), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 ± 3)% with a 150 keV threshold and (20 ± 2)% with a 300 keV threshold

  7. Spatial profile measurements of ion-confining potentials using novel position-sensitive ion-energy spectrometer arrays

    International Nuclear Information System (INIS)

    Yoshida, M.; Cho, T.; Hirata, M.; Ito, H.; Kohagura, J.; Yatsu, K.; Miyoshi, S.

    2003-01-01

    The first experimental demonstration of simultaneous measurements of temporally and spatially resolved ion-confining potentials phi c and end-loss-ion fluxes I ELA has been carried out during a single plasma discharge alone by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of the GAMMA 10 tandem mirror. This position-sensitive ion-detector structure is proposed to obtain precise ion-energy spectra without any perturbations from simultaneously incident energetic electrons into the arrays. The relation between phi c and I ELA is physically interpreted in terms of Pastukhov's potential confinement theory. In particular, the importance of axisymmetric phi c formation is found for the plasma confinement

  8. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.

    Science.gov (United States)

    Xu, Li; Jin, Li; Long, Lu; Liu, Linlin; He, Xin; Gao, Wei; Zhu, Longfu; Zhang, Xianlong

    2012-12-01

    Overexpression of a cotton defense-related gene GbWRKY1 in Arabidopsis resulted in modification of the root system by enhanced auxin sensitivity to positively regulate the Pi starvation response. GbWRKY1 was a cloned WRKY transcription factor from Gossypium barbadense, which was firstly identified as a defense-related gene and showed moderate similarity with AtWRKY75 from Arabidopsis thaliana. Overexpression of GbWRKY1 in Arabidopsis resulted in attenuated Pi starvation stress symptoms, including reduced accumulation of anthocyanin and impaired density of lateral roots (LR) in low Pi stress. The study also indicated that overexpression of GbWRKY1 caused plants constitutively exhibited Pi starvation response including increased development of LR, relatively high level of total P and Pi, high expression level of some high-affinity Pi transporters and phosphatases as well as enhanced accumulation of acid phosphatases activity during Pi-sufficient. It was speculated that GbWRKY1 may act as a positive regulator in the Pi starvation response as well as AtWRKY75. GbWRKY1 probably involves in the modulation of Pi homeostasis and participates in the Pi allocation and remobilization but do not accumulate more Pi in Pi-deficient condition, which was different from the fact that AtWRKY75 influenced the Pi status of the plant during Pi deprivation by increasing root surface area and accumulation of more Pi. Otherwise, further study suggested that the overexpression plants were more sensitive to auxin than wild-type and GbWRKY1 may partly influence the LPR1-dependent (low phosphate response 1) Pi starvation signaling pathway and was putatively independent of SUMO E3 ligase SIZ1 and PHR1 (phosphate starvation response 1) in response to Pi starvation.

  9. Influence of multiple sclerosis, age and degree of disability, in the position of the contrast sensitivity curve peak

    Directory of Open Access Journals (Sweden)

    A F Nunes

    2014-01-01

    Full Text Available Context: Contrast sensitivity (CS function is one of the most important tests available for evaluating visual impairment. Multiple sclerosis (MS can produce highly selective losses in visual function and psychophysical studies have demonstrated CS deficits for some spatial frequencies. Aims: This work studies the differences in CS between a group of controls and a group of MS patients, focusing on the location of the maximum sensitivity peak, shape of the curve, and determination of the most affected spatial frequencies. Materials and Methods: Using a sinusoidal stimulus the authors assessed CS function in 28 subjects with definitive relapsing remitting MS, and in 50 controls with acuities of 20/25 or better. The peaks of the CS curves were studied by fitting third degree polynomials to individual sets of data. Results: Compared with the control group, the CS function curve for MS subjects showed more deficits in extreme points (low- and high-spatial frequencies. Our results display significant CS losses, at the high-frequencies band level, in the beginning of the disease. When the disease progresses and the disabilities appear, there are greater losses at the low-frequencies band level. In average, the CS curve peaks for the MS group were shifted in relation to the control group. Conclusions: CS losses in the MS group suggest an association with ageing and disability level in the expanded disability status scale. The position of the CS function peak is influenced by MS, age, and degree of disability.

  10. Development of a highly sensitive current and position monitor with HTS squids and an HTS magnetic shield

    International Nuclear Information System (INIS)

    Watanabe, T.; Ikeda, T.; Kase, M.; Yano, Y.; Watanabe, S.; Sasaki, Y.; Kawaguchi, T.

    2005-01-01

    A highly sensitive current and position monitor with HTS (High-Temperature Superconducting) SQUIDs (Superconducting QUantum Interference Device) and an HTS magnetic shield for the measurement of the intensity of faint beams, such as a radioisotope beam, has been developed for the RIKEN RI beam factory project. The HTS magnetic shield and the HTS current sensor including the HTS SQUID are cooled by a low-vibration pulse-tube refrigerator. Both the HTS magnetic shield and the HTS current sensor were fabricated by dip-coating a thin Bi 2 -Sr 2 -Ca 2 -Cu 3 -O x (Bi-2223) layer on 99.9% MgO ceramic substrates. The HTS technology enables us to develop a system equipped with a downsized and highly sensitive current monitor. Recently, a prototype system was completed and installed in the beam transport line of the RIKEN Ring Cyclotron to measure the DC-current of high-energy heavy-ion beams. As a result, we succeeded in measuring the intensity of the 600 nA 40 Ar 17+ beam (95 MeV/u). We describe the present status of the monitor system and the results of the beam measurements. (author)

  11. Italian position paper on heat and mass transfer in the reactor cover gas

    International Nuclear Information System (INIS)

    Caponetti, R.; Olivieri, P.; Petrazzuolo, F.

    1986-01-01

    The major effort being made in Italy with regard to the development of fast nuclear reactors is concentrated, as is known, in the construction of the PEC reactor, whose mechanical completion is expected early in 1988. The 116MWt PEC (Prova Elementi di Combustibile; i.e. Fuel Element Testing) reactor is sodium cooled. It is being built to study the behavior of fuel elements under thermal and neutronic conditions similar to those of fast nuclear power stations. Particular attention is being dedicated to safety aspects. This document furnishes a number of construction solutions with regard to that reactor and preparatory approaches to its operation, namely: a brief description of the construction solutions as far as concerns the Closure Head Assembly and the cover gas circuit together with its main components; the description of some test facilities arranged for abatement and measurement of sodium aerosol concentration; a number of preliminary evaluation results obtained thus far with regard to the formation, transport and depositing of sodium aerosols

  12. Highly sensitive and selective room-temperature NO{sub 2} gas sensor based on bilayer transferred chemical vapor deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Seekaew, Yotsarayuth [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand); Phokharatkul, Ditsayut; Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Wongchoosuk, Chatchawal, E-mail: chatchawal.w@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand)

    2017-05-15

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO{sub 2} gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO{sub 2} sensitivity of 1.409 ppm{sup −1}. • The NO{sub 2}-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO{sub 2} detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO{sub 2} than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm{sup −1} towards NO{sub 2} over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO{sub 2}-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO{sub 2} molecules.

  13. High-sensitive nitrogen dioxide and ethanol gas sensor using a reduced graphene oxide-loaded double split ring resonator

    Science.gov (United States)

    Singh, Sandeep Kumar; Azad, Prakrati; Akhtar, M. J.; Kar, Kamal K.

    2017-08-01

    A reduced graphene oxide (rGO) incorporated double split ring resonator (DSRR) portable microwave gas sensor is proposed in this work. The sensor is fabricated using two major steps: the DSRR is fabricated on the FR-4 substrate, which is excited by a high impedance microstrip line. The rGO is synthesized via a chemical route and coated inside the smaller ring of the DSRR. The SEM micrographs reveal crumpled sheets of rGO that provide a large surface area, and the XRD patterns of the as-synthesized rGO reveal the two-dimensional structure of the rGO nanosheets. The sensor performance is measured at room temperature using 100-400 ppm of ethanol and NO2 target gases. At 400 ppm, the sensor reveals a shift of 420 and 390 MHz in the S 21 frequency for NO2 and ethanol gases, respectively. The frequency shifts of 130 and 120 MHz in the S 21 resonance frequency are obtained for NO2 and ethanol gases, respectively, at a very low concentration of 100 ppm. The high sensitivity of the proposed rGO gas sensor is achieved due to the combined effect of the large surface area of the rGO responsible for accommodating more gas molecules, and its increased conductivity due to the transfer of the electron from the rGO. Moreover, an exceedingly short response time is observed for NO2 in comparison to ethanol, which allows the proposed sensor to be used for the selective detection of NO2 in a harsh environment. The overall approach used in this study is quite simple, and has great potential to enhance the gas detection behaviour of rGO.

  14. Sensitive monitoring of monoterpene metabolites in human urine using two-step derivatisation and positive chemical ionisation-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Schmidt, Lukas; Belov, Vladimir N.; Göen, Thomas

    2013-01-01

    Highlights: •Sensitive monitoring of 10 metabolites of (R)-limonene, α-pinene, and Δ 3 -carene in human urine samples. •Fast and simple sample preparation and derivatisation procedure using two-step silylation for unreactive tertiary hydroxyl groups. •Synthesis of reference substances and isotopically labelled internal standards of (R)-limonene, α-pinene, and Δ 3 -carene metabolites. •Study on (R)-limonene, α-pinene, and Δ 3 -carene metabolite background exposure of 36 occupationally unexposed volunteers. -- Abstract: A gas chromatographic–positive chemical ionisation-tandem mass spectrometric (GC–PCI-MS/MS) method for the simultaneous determination of 10 oxidative metabolites of the monoterpenoid hydrocarbons α-pinene, (R)-limonene, and Δ 3 -carene ((+)-3-carene) in human urine was developed and tested for the monoterpene biomonitoring of the general population (n = 36). The method involves enzymatic cleavage of the glucuronides followed by solid-supported liquid–liquid extraction and derivatisation using a two-step reaction with N,O-bis(trimethylsilyl)-trifluoroacetamide and N-(trimethylsilyl)imidazole. The method proved to be both sensitive and reliable with detection limits ranging from 0.1 to 0.3 μg L −1 . In contrast to the frequent and distinct quantities of (1S,2S,4R)-limonene-1,2-diol, the (1R,2R,4R)-stereoisomer could not be detected. The expected metabolite of (+)-3-carene, 3-caren-10-ol was not detected in any of the samples. All other metabolites were detected in almost all urine samples. The procedure enables for the first time the analysis of trace levels of a broad spectrum of mono- and bicyclic monoterpenoid metabolites (alcohols, diols, and carboxylic acids) in human urine. This analytical procedure is a powerful tool for population studies as well as for the discovery of human metabolism and toxicokinetics of monoterpenes

  15. The liberalization of the European gas sector and the strategic positioning of firms: A dynamic approach for corporate competence building

    International Nuclear Information System (INIS)

    Avadikyan, A.; Amesse, F.; Cohendet, P.; Heraud, J-A.

    2002-01-01

    A framework to explain how competitive changes occurring in one sector can affect both the dynamics of required competencies and the frontiers with adjacent sectors is proposed. When applied to the natural gas sector, the results provide a better understanding of how competencies in the sector evolve according to the new market structure and the strategic movements engaged in by the different players. The proposed framework combines the two approaches -- evolution and strategy -- to show that a firm's competencies define both membership in a specific sector and its distinctiveness from its competitors. To define the strategic positioning process the concept of core competencies is introduced, i.e. competencies developed by firms through their specific history which, when combined in a specific manner with new competencies could give them sustainable competitive advantage. Finally, the authors explain the concept of dynamic capabilities, which rely on a set of organizational and strategic processes needed to integrate, develop and create new competencies in order to initiate, or to adapt to market changes. The final conclusion is that the recent liberalization of the European gas and power sectors weakened institutional entry barriers, a phenomenon which compelled operators traditionally protected by regional or national monopolies to compete with other potential actors. With specific reference to the gas, power and oil industries it is stated that if they had relatively clear frontiers in the past, these frontiers have now become increasingly permeable. However, this weakening of institutional barriers has a beneficial consequence: it allows companies to deploy strategies to take advantage of new growth and rent appropriation opportunities. Examples of adaptation by European oil companies, power companies and natural gas firms are used to illustrate the principles embodied in the proposed framework. 18 refs., 1 fig

  16. A High Position Resolution X-ray Detector: an Edge on Illuminated Capillary Plate Combined with a Gas Amplification Structure

    CERN Document Server

    Iacobaeus, C.; Lund-Jensen, B.; Ostling, J.; Pavlopoulos, P.; Peskov, V.; Tokanai, F.

    2006-01-01

    We have developed and successfully tested a prototype of a new type of high position resolution hybrid X-ray detector. It contains a thin wall lead glass capillary plate converter of X-rays combined with a microgap parallel-plate avalanche chamber filled with gas at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0-90 degree. The detection efficiency, depending on the geometry, photon energy, incident angle and the mode of operation, was between 5-30 percent in a single step mode and up to 50 percent in a multi-layered combination. Depending on the capillary geometry, the position resolution achieved was between 0.050-0.250 mm in digital form and was practically independent of the photon energy or gas mixture. The usual lead glass capillary plates operated without noticeable charging up effects at counting rates of 50 Hz/mm2, and hydrogen treated capillaries up to 10E5 Hz/mm2. The developed detector may open new possibil...

  17. A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.

    Science.gov (United States)

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M

    2014-05-22

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.

  18. Gas Plasma Pre-treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Guo, Li; Xu, Ruobing; Zhao, Yiming; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Chen, Hailan; Kong, Michael G.

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious nosocomial infections, and recurrent MRSA infections primarily result from the survival of persister cells after antibiotic treatment. Gas plasma, a novel source of ROS (reactive oxygen species) and RNS (reactive nitrogen species) generation, not only inactivates pathogenic microbes but also restore the sensitivity of MRSA to antibiotics. This study further found that sublethal treatment of MRSA with both plasma and plasma-activated saline increased the antibiotic sensitivity and promoted the eradication of persister cells by tetracycline, gentamycin, clindamycin, chloramphenicol, ciprofloxacin, rifampicin, and vancomycin. The short-lived ROS and RNS generated by plasma played a primary role in the process and induced the increase of many species of ROS and RNS in MRSA cells. Thus, our data indicated that the plasma treatment could promote the effects of many different classes of antibiotics and act as an antibiotic sensitizer for the treatment of antibiotic-resistant bacteria involved in infectious diseases. PMID:29628915

  19. Positive feedback of greenhouse gas balances to warming is determined by non-growing season emissions in an alpine meadow

    Science.gov (United States)

    Niu, S.; Wang, J.; Quan, Q.; Chen, W.; Wen, X.; Yu, G.

    2017-12-01

    Large uncertainties exist in the sources and sinks of greenhouse gases (CO2, CH4, N2O) in response to climate warming and human activity. So far, numerous previous studies have evaluated the CO2 budget, but little attention has paid to CH4 and N2O budgets and the concurrent balance of these three gases in combination, especially in the non-growing season. Here, we synthesized eddy covariance measurement with the automatic chamber measurements of CO2, CH4, and N2O exposed to three levels of temperature treatments (ambient, +1.5 °C, +2.5 °C) and two disturbance treatments (ummowing, mowing) in an alpine meadow on the Tibetan Plateau. We have found that warming caused increase in CH4 uptake and decrease in N2O emission offset little of the enhancement in CO2 emission, triggering a positive feedback to climate warming. Warming switches the ecosystem from a net sink (-17 ± 14 g CO2-eq m-2 yr-1) in the control to a net source of greenhouse gases of 94 ± 36 gCO2-eq m-2 yr-1 in the plots with +1.5 °C warming treatment, and 177 ± 6 gCO2-eq m-2 yr-1 in the plots with +2.5 °C warming treatment. The changes in the non-growing season balance, rather than those in the growing season, dominate the warming responses of annual greehouse gas balance. And this is not changed by mowing. The dominant role of responses of winter greenhouse gas balance in the positive feedback of ecosystem to climate warming highlights that greenhouse gas balance in cold season has to be considered when assessing climate-carbon cycle feedback.

  20. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Murazaki, Minoru; Uno, Yuichi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of {+-}13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, {alpha}, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and {sup 3}He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, calculated value agreed well with measurement data of PSPC without Cd cover. (author)

  1. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    CERN Document Server

    Murazaki, M; Uno, Y

    2003-01-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of +-13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, alpha, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and sup 3 He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, ...

  2. Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene.

    Science.gov (United States)

    Kim, Young Hwan; Kim, Sunghwan

    2010-03-01

    Positive-ion atmospheric pressure chemical ionization (APCI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses of petroleum sample were performed with higher sensitivity by switching the solvent composition from toluene and methanol or acetonitrile to a one-component system consisting only of toluene. In solvent blends, molecular ions were more abundant than were protonated ions with increasing percentages of toluene. In 100% toluene, the double-bond equivalence (DBE) distributions of molecular ions obtained by APCI MS for each compound class were very similar to those obtained in dopant assisted atmospheric pressure photo ionization (APPI) MS analyses. Therefore, it was concluded that charge-transfer reaction, which is important in toluene-doped APPI processes, also plays a major role in positive-ion APCI. In the DBE distributions of S(1), S(2), and SO heteroatom classes, a larger enhancement in the relative abundance of molecular ions at fairly specific DBE values was observed as the solvent was progressively switched to toluene. This enhanced abundance of molecular ions was likely dependent on molecular structure. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  3. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies

    Science.gov (United States)

    Briscoe, Adriana D.; Bybee, Seth M.; Bernard, Gary D.; Yuan, Furong; Sison-Mangus, Marilou P.; Reed, Robert D.; Warren, Andrew D.; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-01-01

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)—a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with λmax = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate. PMID:20133601

  4. Estimation of internal heat transfer coefficients and detection of rib positions in gas turbine blades from transient surface temperature measurements

    International Nuclear Information System (INIS)

    Heidrich, P; Wolfersdorf, J v; Schmidt, S; Schnieder, M

    2008-01-01

    This paper describes a non-invasive, non-destructive, transient inverse measurement technique that allows one to determine internal heat transfer coefficients and rib positions of real gas turbine blades from outer surface temperature measurements after a sudden flow heating. The determination of internal heat transfer coefficients is important during the design process to adjust local heat transfer to spatial thermal load. The detection of rib positions is important during production to fulfill design and quality requirements. For the analysis the one-dimensional transient heat transfer problem inside of the turbine blade's wall was solved. This solution was combined with the Levenberg-Marquardt method to estimate the unknown boundary condition by an inverse technique. The method was tested with artificial data to determine uncertainties with positive results. Then experimental testing with a reference model was carried out. Based on the results, it is concluded that the presented inverse technique could be used to determine internal heat transfer coefficients and to detect rib positions of real turbine blades.

  5. Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity

    Science.gov (United States)

    Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry

    2018-05-01

    Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.

  6. Evaluation of moderately cooled pure NaI as a scintillator for position-sensitive PET detectors

    International Nuclear Information System (INIS)

    Wear, J.A.; Karp, J.S.; Haigh, A.T.; Freifelder, R.

    1996-01-01

    A new evaluation of pure NaI has been performed to determine if moderate cooling would lead to better performance than that of existing, activated NaI(Tl) position-sensitive detectors, particularly at high countrates. Using a freezer, an initial effort was performed to cool the crystal assembly to -90 C (183 K). At this temperature, pure NaI has a decay constant of 35 nsec, a light output which is about 20% that of room temperature NaI(Tl), and an energy resolution of 15%. For the PET applications the signal of room temperature (25 C) NaI(Tl) is normally pulse clipped, reducing the light output to 40% of the unclipped signal and yielding an energy resolution of 10.5%. Since the long decay of NaI(Tl) causes it to suffer more significantly than pure NaI from pre-pulse pileup, the difference in energy resolution between the two crystals at high countrates will be reduced. Also, a significantly shorter trigger deadtime with pure NaI will lead to a reduction in coincidence deadtime losses in PET. Computer simulations of large-area crystals operating at high countrates have been performed to quantify their trigger deadtime behavior and position resolution as a function of light output and pulse decay time. Having gained experience with the practical issues of cooling large crystals, measurements of position resolution have been performed with a NaI bar detector of similar geometry to the NaI(Tl) detectors in use in the PENN-PET scanner

  7. Viability of GTL (Gas to Liquids) plants: a sensitivity analysis of determinant variables; Viabilidade das plantas GTL: uma analise de sensibilidade das variaveis determinantes

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Edmar Luiz Fagundes de; Bicalho, Ronaldo Goulard [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Economia; Bomtempo, Jose Vitor [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2004-07-01

    The article presents the results of a model for economic evaluation applied to GTL projects. The key variables for the GTL projects used in this model were: investment costs, operational costs, efficiency of conversion, possible lines of products (diesel, naphtha and specialty) and prices. From the analysis of the economic viability of projects for hypothetical GTL plants, there were simulations of the cash flow of these plants, using the technique of Monte Carlo. From these simulations were unable to calculate the probability of viability of the projects. For a plant of 10,000 barrels, using a triangular distribution, (cost of investment, price and composition of products, price and quantity of natural gas consumed), the probability of getting a positive net value was 59%. Scales of 20,000 barrels to 40,000 barrels the probability of viability was 80% and 93%, respectively. It was found that the economic viability of GTL plants is very sensitive to the scale of production. This analysis of sensitivity was extended to others variables, allowing an assessment of critical variables for GTL plants. (author)

  8. Does air gas aesthesiometry generate a true mechanical stimulus for corneal sensitivity measurement?

    Science.gov (United States)

    Nosch, Daniela S; Pult, Heiko; Albon, Julie; Purslow, Christine; Murphy, Paul J

    2018-03-01

    Belmonte Ocular Pain Meter (OPM) air jet aesthesiometry overcomes some of the limitations of the Cochet-Bonnet aesthesiometer. However, for true mechanical corneal sensitivity measurement, the airflow stimulus temperature of the aesthesiometer must equal ocular surface temperature (OST), to avoid additional response from temperature-sensitive nerves. The aim of this study was to determine: (A) the stimulus temperature inducing no or least change in OST; and (B) to evaluate if OST remains unchanged with different stimulus durations and airflow rates. A total of 14 subjects (mean age 25.14 ± 2.18 years; seven women) participated in this clinical cohort study: (A) OST was recorded using an infrared camera (FLIR A310) during the presentation of airflow stimuli, at five temperatures, ambient temperature (AT) +5°C, +10°C, +15°C, +20°C and +30°C, using the OPM aesthesiometer (duration three seconds; over a four millimetre distance; airflow rate 60 ml/min); and (B) OST measurements were repeated with two stimulus temperatures (AT +10°C and +15°C) while varying stimulus durations (three seconds and five seconds) and airflow rates (30, 60, 80 and 100 ml/min). Inclusion criteria were age measures (analysis of variance) and appropriate post-hoc t-tests were applied. (A) Stimulus temperatures of AT +10°C and +15°C induced the least changes in OST (-0.20 ± 0.13°C and 0.08 ± 0.05°C). (B) OST changes were statistically significant with both stimulus temperatures and increased with increasing airflow rates (p air stimulus of the Belmonte OPM because its air jet stimulus with mechanical setting is likely to have a thermal component. Appropriate stimulus selection for an air jet aesthesiometer must incorporate stimulus temperature control that can vary with stimulus duration and airflow rate. © 2017 Optometry Australia.

  9. Y-Doped ZnO Nanorods by Hydrothermal Method and Their Acetone Gas Sensitivity

    Directory of Open Access Journals (Sweden)

    Peng Yu

    2013-01-01

    Full Text Available Pure and yttrium- (Y- doped (1 at%, 3 at%, and 7 at% ZnO nanorods were synthesized using a hydrothermal process. The crystallography and microstructure of the synthesized samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray spectroscopy (EDX. Comparing with pure ZnO nanorods, Y-doped ZnO exhibited improved acetone sensing properties. The response of 1 at% Y-doped ZnO nanorods to 100 ppm acetone is larger than that of pure ZnO nanorods. The response and recovery times of 1 at% Y-doped ZnO nanorods to 100 ppm acetone are about 30 s and 90 s, respectively. The gas sensor based on Y-doped ZnO nanorods showed good selectivity to acetone in the interfere gases of ammonia, benzene, formaldehyde, toluene, and methanol. The formation mechanism of the ZnO nanorods was briefly analyzed.

  10. Sensitivity of Emissions to Uncertainties in Residual Gas Fraction Measurements in Automotive Engines: A Numerical Study

    Directory of Open Access Journals (Sweden)

    S. M. Aithal

    2018-01-01

    Full Text Available Initial conditions of the working fluid (air-fuel mixture within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accurately interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4% in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.

  11. Computational sensitivity study of spray dispersion and mixing on the fuel properties in a gas turbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Grosshans, Holger; Szász, Robert-Zoltán [Division of Fluid Mechanics, Lund University (Sweden); Cao, Le [Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing (China); Fuchs, Laszlo, E-mail: holger.grosshans@uclouvain.be [Department of Mechanics, KTH, Stockholm (Sweden)

    2017-04-15

    A swirl stabilized gas turbine burner has been simulated in order to assess the effects of the fuel properties on spray dispersion and fuel–air mixing. The properties under consideration include fuel surface tension, viscosity and density. The turbulence of the gas phase is modeled applying the methodology of large eddy simulation whereas the dispersed liquid phase is described by Lagrangian particle tracking. The exchange of mass, momentum and energy between the two phases is accounted for by two-way coupling. Bag and stripping breakup regimes are considered for secondary droplet breakup, using the Reitz–Diwakar and the Taylor analogy breakup models. Moreover, a model for droplet evaporation is included. The results reveal a high sensitivity of the spray structure to variations of all investigated parameters. In particular, a decrease in the surface tension or the fuel viscosity, or an increase in the fuel density, lead to less stable liquid structures. As a consequence, smaller droplets are generated and the overall spray surface area increases, leading to faster evaporation and mixing. Furthermore, with the trajectories of the small droplets being strongly influenced by aerodynamic forces (and less by their own inertia), the spray is more affected by the turbulent structures of the gaseous phase and the spray dispersion is enhanced. (paper)

  12. Charge Sensitive Amplifier (CSA) in cold gas of Liquid Argon (LAr) Time Projection Chamber (TPC)

    International Nuclear Information System (INIS)

    Bechetoille, E; Mathez, H; Zoccarato, Y

    2011-01-01

    This paper presents our work on a 8-channel low noise Front-End electronic coupled to a Liquid Argon (LAr) TPC (Time Projection Chamber). Each channel consists of a Charge Sensitive Amplifier (CSA), a band pass filter and a 50 Ohms buffer as line driver. A serial link based on a 'i2c-like' protocol, provides multiple configuration features to the circuit by accessing slow control registers. In this paper, we describe the CSA, the shaper and the slow control part. The feedback network of the CSA is made of a capacitance and a resistor. Their values are respectively 250 fF and 4 MΩ. An input referred noise of, at most, 1500 e- rms must be achieved at -100 deg. C with an input detector capacitance of 250 pF to ensure a correct measurement of the minimal signal of 18000e- (2.88 fC). The power consumption in this cryogenic setup must be less than 40 mW from a 3.3 V power supply.

  13. Positive dielectrophoresis used for selective trapping of nanoparticles from flue gas in a gradient field electrodes device

    Energy Technology Data Exchange (ETDEWEB)

    Lungu, Mihail, E-mail: lmihai@physics.uvt.ro; Neculae, Adrian; Lungu, Antoanetta [West University of Timisoara, Faculty of Physics (Romania)

    2015-12-15

    This paper investigates the possibility to use positive dielectrophoresis (pDEP) for selective trapping of nanoparticle dispersed in flue gas in a vertical pDEP-based microfluidic system. The experimental gradient field electrodes device contains as main part a vertical deposition plate with parallel planar electrodes in single connection on an insulating substrate, parallel to the reference electrode—a dielectric plate with a metalized side. The performances of the device were described and analyzed by numerical simulations and experimental tests in terms of two new specific parameters, called Retention rate and Filtration, related to the trapping of nanoparticles in suspension inside the device and the consequent purification of flue gas. It is outlined, both numerically and experimentally, that the concentration of particles trapped inside the device decreases as they are moving away from the inlet zone. The experimental results also highlight the nanoparticle size distribution of the particles collected from the deposition plate, using a nanoparticle tracking analysis method, and their selective capture on the deposition plate, depending on the amplitude and shape of the applied voltage, in a good agreement with the numerical simulations results.

  14. Positive-column plasma studied by fast-flow glow discharge mass spectrometry: Could it be a 'Rydberg gas?'

    International Nuclear Information System (INIS)

    Mason, Rod S.; Miller, Pat D.; Mortimer, Ifor; Mitchell, David J.; Dash, Neil A.

    2003-01-01

    Ions created from the fast-flowing positive column plasma of a glow discharge were monitored using a high voltage magnetic sector mass spectrometer. Since the field gradient and sheath potentials created by the plasma inside the source opposed cation transfer, it is inferred that the ions detected were the field-ionized Rydberg species. This is supported by the mass spectral changes which occurred when a negative bias was applied to the sampling aperture and by the contrasting behavior when attached to a quadrupole analyzer. Reaction with H 2 (titrated into the flowing plasma) quenched not only the ionization of discharge gas Rydberg atoms but also the passage of electric current through the plasma, without significant changes to the field and sheath potentials. Few 'free' ions were present and the lifetimes of the Rydberg atoms detected were much longer than seen in lower pressure experiments, indicating additional stabilization in the plasma environment. The observations support the model of the flowing plasma, given previously [R. S. Mason, P. D. Miller, and I. P. Mortimer, Phys. Rev. E 55, 7462 (1997)] as mainly a neutral Rydberg atom gas, rather than a conventional ion-electron plasma

  15. Preparation, characterization and CO{sub 2} gas sensitivity of Polyaniline doped with Sodium Superoxide (NaO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Barde, R.V., E-mail: rajeshbarde1976@gmail.com

    2016-01-15

    Highlights: • NaO{sub 2} prepared in single step method from NaNO{sub 3} in oxygen rich environment. • The sensors show better performance towards the CO{sub 2}. • A significant sensitivity and fast response toward of CO{sub 2} is observed. • Sensing response assign to transition from n-type to p-type behavior of samples. - Abstract: The sodium superoxide was prepared in single step method by heating sodium nitrate (NaNO{sub 3}) in oxygen rich environment. The PANi/NaO{sub 2} composites were prepared using Ex-situ technique range from 5–20 wt.%. The crystallinity and structure morphology of the PANi/ NaO{sub 2} composite films were characterized by X-ray diffraction, Scanning electron microscopy and Fourier transform infrared spectroscopy respectively. The sensor response was estimated by the change in electrical resistance of sensor in presence of CO{sub 2} gas. The sensor response and selectivity for pure PANi and doped PANi/NaO{sub 2} sensors as a function of concentration of CO{sub 2} at room temperature has been systematically studied. The sensors show better performance towards the CO{sub 2}. A significant sensitivity and fast response toward CO{sub 2} observed for the 20 wt.% PANi/NaO{sub 2} composite film. The sensing response curve assign to transition from n-type to p-type behavior of samples.

  16. Photodiode array for position-sensitive detection using high X-ray flux provided by synchrotron radiation

    Science.gov (United States)

    Jucha, A.; Bonin, D.; Dartyge, E.; Flank, A. M.; Fontaine, A.; Raoux, D.

    1984-09-01

    Synchrotron radiation provides a high intensity source over a large range of wavelengths. This is the prominent quality that has laid the foundations of the EXAFS development (Extended X-ray Absorption Fine Structure). EXAFS data can be collected in different ways. A full scan requires 5 to 10 min, compared to the one-day data collection of a conventional Bremsstrahlung X-ray tube. Recently, by using the new photodiode array (R 1024 SFX) manufactured by Reticon, it has been possible to reduce the data collection time to less than 100 ms. The key elements of this new EXAFS method are a dispersive optics combined with a position sensitive detector able to work under very high flux conditions. The total aperture of 2500 μm × 25 μm for each pixel is well suited to spectroscopic applications. Besides its high dynamic range (> 10 4) and its linearity, the rapidity of the readout allows a flux of 10 9-10 10 photons/s over the 1024 sensing elements.

  17. Characterization of particulate and gas exposures of sensitive subpopulations living in Baltimore and Boston.

    Science.gov (United States)

    Koutrakis, Petros; Suh, Helen H; Sarnat, Jeremy A; Brown, Kathleen Ward; Coull, Brent A; Schwartz, Joel

    2005-12-01

    Personal exposures to particulate and gaseous pollutants and corresponding ambient concentrations were measured for 56 subjects living in Baltimore, Maryland, and 43 subjects living in Boston, Massachusetts. The 3 Baltimore cohorts consisted of 20 healthy older adults (seniors), 21 children, and 15 individuals with physician-diagnosed chronic obstructive pulmonary disease (COPD*). The 2 Boston cohorts were 20 healthy seniors and 23 children. All children were 9 to 13 years of age; seniors were 65 years of age or older; and the COPD participants had moderate to severe physician-diagnosed COPD. Personal exposures to particulate matter with aerodynamic diameters less than 2.5 microm (PM2.5), sulfate (SO(4)2-), elemental carbon (EC), ozone (03), nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured simultaneously for 24 hours/day. All subjects were monitored for 8 to 12 consecutive days. The primary objectives of this study were (1) to characterize the personal particulate and gaseous exposures for individuals sensitive to PM health effects and (2) to assess the appropriateness of exposure assessment strategies for use in PM epidemiologic studies. Personal exposures to multiple pollutants and ambient concentrations were measured for subjects from each cohort from each location. Pollutant data were analyzed using correlation and mixed-model regression analyses. In Baltimore, personal PM2.5 exposures tended to be comparable to (and frequently lower than) corresponding ambient concentrations; in Boston, the personal exposures were frequently higher. Overall, personal exposures to the gaseous pollutants, especially O3 and SO2, were considerably lower than corresponding ambient concentrations because of the lack of indoor sources for these gases and their high removal rate on indoor surfaces. Further, the impact of ambient particles on personal exposure (the infiltration factor) and differences in infiltration factor by city, season, and cohort were investigated

  18. Cu-modified carbon spheres/reduced graphene oxide as a high sensitivity of gas sensor for NO2 detection at room temperature

    Science.gov (United States)

    Su, Zhibin; Tan, Li; Yang, Ruiqiang; Zhang, Yu; Tao, Jin; Zhang, Nan; Wen, Fusheng

    2018-03-01

    Nitrogen dioxide (NO2) as one of the most serious air pollution is harmful to people's health, therefore high-performance gas sensors is critically needed. Here, Cu-modified carbon spheres/reduced graphene oxide (Cu@CS/RGO) composite have been prepared as NO2 gas sensor material. Carbon sphere in the interlayer of RGO can increase the specific surface area of RGO. Copper nanoparticles decorated on the surface of CS can effectively enhance the adsorption activity of RGO as supplier of free electrons. The experimental results showed that its particular structure improved the gas sensitivity of RGO at different NO2 concentrations at room temperature.

  19. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors

    Science.gov (United States)

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  20. An advanced CFD model to study the effect of non-condensable gas on cavitation in positive displacement pumps

    Directory of Open Access Journals (Sweden)

    Iannetti Aldo

    2015-09-01

    Full Text Available An advanced transient CFD model of a positive displacement reciprocating pump was created to study its behavior and performance in cavitating condition during the inlet stroke. The “full” cavitation model developed by Singhal et al. was utilized, and a sensitivity analysis test on two air mass fraction amounts (1.5 and 15 parts per million was carried out to study the influence of the dissolved air content in water on the cavitation phenomenon. The model was equipped with user defined functions to introduce the liquid compressibility, which stabilizes the simulation, and to handle the two-way coupling between the pressure field and the inlet valve lift history. Estimation of the performance is also presented in both cases.

  1. Multi-Detector CT Findings of the Normal Appendix in Children: Evaluation of the Position, Diameter, and Presence or Absence of Intraluminal Gas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Woon Ju; Kim, Jong Chul [Dept. of Radiology, Chungnam National University College of Medicine, Daejeon (Korea, Republic of)

    2011-08-15

    To assess the usefulness of multi-detector CT (MDCT) with multiplanar reformations (MPR) for the evaluation of the position, diameter and presence or absence of intraluminal gas in the normal appendix in children. From 2007 to 2010, we retrospectively analyzed the MDCT images of normal appendices in 133 children, and evaluated the position, diameter, and presence or absence of intraluminal gas in the appendix. Among the 133 appendices, type I (postileal and medial paracecal position) was found in 64 children, type II (subcecal position) in 22, type III (retrocecal and retrocolic/laterocolic position) in 15, type IV (preileal and medial colic position) in 16, and type V (lower pelvic position) in 16 children. The mean diameter was 5.8 mm {+-} 1.2 (SD) (range; 3.2-8.7 mm). There was a high correlation between the appendiceal diameter and age (p = 0.000).There was no statistically significant difference in the appendiceal diameter between boys and girls (p = 0.470). Intraluminal gas was found in 115 appendices and there was no statistically significant correlation between the appendiceal diameter and intraluminal gas (p = 0.502). The MDCT with MPR was useful for the evaluation of the normal appendices in children. The procedure may be useful for the diagnosis of equivocal or unusual appendicitis in children.

  2. Sensitive monitoring of monoterpene metabolites in human urine using two-step derivatisation and positive chemical ionisation-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Lukas [Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstrasse 25/29, 91054 Erlangen (Germany); Belov, Vladimir N. [Max Planck Institute for Biophysical Chemistry, Facility for Synthetic Chemistry, Am Fassberg 11, 37077 Göttingen (Germany); Göen, Thomas, E-mail: Thomas.Goeen@ipasum.med.uni-erlangen.de [Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstrasse 25/29, 91054 Erlangen (Germany)

    2013-09-02

    Highlights: •Sensitive monitoring of 10 metabolites of (R)-limonene, α-pinene, and Δ{sup 3}-carene in human urine samples. •Fast and simple sample preparation and derivatisation procedure using two-step silylation for unreactive tertiary hydroxyl groups. •Synthesis of reference substances and isotopically labelled internal standards of (R)-limonene, α-pinene, and Δ{sup 3}-carene metabolites. •Study on (R)-limonene, α-pinene, and Δ{sup 3}-carene metabolite background exposure of 36 occupationally unexposed volunteers. -- Abstract: A gas chromatographic–positive chemical ionisation-tandem mass spectrometric (GC–PCI-MS/MS) method for the simultaneous determination of 10 oxidative metabolites of the monoterpenoid hydrocarbons α-pinene, (R)-limonene, and Δ{sup 3}-carene ((+)-3-carene) in human urine was developed and tested for the monoterpene biomonitoring of the general population (n = 36). The method involves enzymatic cleavage of the glucuronides followed by solid-supported liquid–liquid extraction and derivatisation using a two-step reaction with N,O-bis(trimethylsilyl)-trifluoroacetamide and N-(trimethylsilyl)imidazole. The method proved to be both sensitive and reliable with detection limits ranging from 0.1 to 0.3 μg L{sup −1}. In contrast to the frequent and distinct quantities of (1S,2S,4R)-limonene-1,2-diol, the (1R,2R,4R)-stereoisomer could not be detected. The expected metabolite of (+)-3-carene, 3-caren-10-ol was not detected in any of the samples. All other metabolites were detected in almost all urine samples. The procedure enables for the first time the analysis of trace levels of a broad spectrum of mono- and bicyclic monoterpenoid metabolites (alcohols, diols, and carboxylic acids) in human urine. This analytical procedure is a powerful tool for population studies as well as for the discovery of human metabolism and toxicokinetics of monoterpenes.

  3. Sensitivity and specificity of CT colonography for the detection of colonic neoplasia after positive faecal occult blood testing: systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Plumb, Andrew A.; Pendse, Douglas A.; Taylor, Stuart A. [University College London, Centre for Medical Imaging, London (United Kingdom); Halligan, Steve [University College London, Centre for Medical Imaging, London (United Kingdom); University College London, University College Hospital, Centre for Medical Imaging, Podium Level 2, London (United Kingdom); Mallett, Susan [University of Oxford, Department of Primary Care Health Sciences, Oxford (United Kingdom)

    2014-05-15

    CT colonography (CTC) is recommended after positive faecal occult blood testing (FOBt) when colonoscopy is incomplete or infeasible. We aimed to estimate the sensitivity and specificity of CTC for colorectal cancer and adenomatous polyps following positive FOBt via systematic review. The MEDLINE, EMBASE, AMED and Cochrane Library databases were searched for CTC studies reporting sensitivity and specificity for colorectal cancer and adenomatous polyps. Included subjects had tested FOBt-positive by guaiac or immunochemical methods. Per-patient detection rates were summarized via forest plots. Meta-analysis of sensitivity and specificity was conducted using a bivariate random effects model and the average operating point calculated. Of 538 articles considered, 5 met inclusion criteria, describing results from 622 patients. Research study quality was good. CTC had a high per-patient average sensitivity of 88.8 % (95 % CI 83.6 to 92.5 %) for ≥6 mm adenomas or colorectal cancer, with low between-study heterogeneity. Specificity was both more heterogeneous and lower, at an average of 75.4 % (95 % CI 58.6 to 86.8 %). Few studies have investigated CTC in FOBt-positive individuals. CTC is sensitive at a ≥6 mm threshold but specificity is lower and variable. Despite the limited data, these results suggest that CTC may adequately substitute for colonoscopy when the latter is undesirable. (orig.)

  4. Sensitivity and specificity of CT colonography for the detection of colonic neoplasia after positive faecal occult blood testing: systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Plumb, Andrew A.; Pendse, Douglas A.; Taylor, Stuart A.; Halligan, Steve; Mallett, Susan

    2014-01-01

    CT colonography (CTC) is recommended after positive faecal occult blood testing (FOBt) when colonoscopy is incomplete or infeasible. We aimed to estimate the sensitivity and specificity of CTC for colorectal cancer and adenomatous polyps following positive FOBt via systematic review. The MEDLINE, EMBASE, AMED and Cochrane Library databases were searched for CTC studies reporting sensitivity and specificity for colorectal cancer and adenomatous polyps. Included subjects had tested FOBt-positive by guaiac or immunochemical methods. Per-patient detection rates were summarized via forest plots. Meta-analysis of sensitivity and specificity was conducted using a bivariate random effects model and the average operating point calculated. Of 538 articles considered, 5 met inclusion criteria, describing results from 622 patients. Research study quality was good. CTC had a high per-patient average sensitivity of 88.8 % (95 % CI 83.6 to 92.5 %) for ≥6 mm adenomas or colorectal cancer, with low between-study heterogeneity. Specificity was both more heterogeneous and lower, at an average of 75.4 % (95 % CI 58.6 to 86.8 %). Few studies have investigated CTC in FOBt-positive individuals. CTC is sensitive at a ≥6 mm threshold but specificity is lower and variable. Despite the limited data, these results suggest that CTC may adequately substitute for colonoscopy when the latter is undesirable. (orig.)

  5. A high count rate one-dimensional position sensitive detector and a data acquisition system for time resolved X-ray scattering studies

    International Nuclear Information System (INIS)

    Pernot, P.

    1982-01-01

    A curved multiwire proportional drift chamber has been built as a general purpose instrument for X-ray scattering and X-ray diffraction experiments with synchrotron radiation. This parallaxe-free one-dimensional linear position sensitive detector has a parallel readout with a double hit logic. The data acquisition system, installed as a part of the D11 camera at LURE-DCI, is designed to perform time slicing and cyclic experiments; it has been used with either the fast multiwire chamber or a standard position sensitive detector with delay line readout [fr

  6. A Micro CO2 Gas Sensor Based on Sensing of pH-Sensitive Hydrogel Swelling by Means of a Pressure Sensor

    NARCIS (Netherlands)

    Herber, S.; Bomer, Johan G.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2005-01-01

    In this paper a sensor is presented for the detection of carbon dioxide gas inside the stomach in order to diagnose gastrointestinal ischemia. The operational principle of the sensor is measuring the CO2 induced pressure generation of a confined pH-sensitive hydrogel by means of a micro pressure

  7. Reactivity and selectivity of the electrophile aromatic substitution in the gas phase by positive 80Br and 125I decay ions

    International Nuclear Information System (INIS)

    Knust, E.J.

    1975-02-01

    The nuclear isomeric transition sup(80m)Br(IT) 80 Br or the electron capture decay 125 Xe(EC) 125 I in the presence of high concentrations of a noble gas such as Ar or Xe are suitable for the study of the electrophilic substitution of bromium or iodonium ions in the gas phase. By using this nuclear method, which, unlike physical methods, also allows the determination of the isomer distribution, the electrophilic aromatic bromation and iodation of mono-substituted benzene compounds through unsolvated positive bromine or iodine ions could be investigated for the first time using radio-gas chromatographic techniques. (orig./LH) [de

  8. Visualisation of gas-liquid mass transfer around a rising bubble in a quiescent liquid using an oxygen sensitive dye

    Science.gov (United States)

    Dietrich, Nicolas; Hebrard, Gilles

    2018-02-01

    An approach for visualizing and measuring the mass transfer around a single bubble rising in a quiescent liquid is reported. A colorimetric technique, developed by (Dietrich et al. Chem Eng Sci 100:172-182, 2013) using an oxygen sensitive redox dye was implemented. It was based on the reduction of the colorimetric indicator in presence of oxygen, this reduction being catalysed by sodium hydroxide and glucose. In this study, resazurin was selected because it offered various reduced forms with colours ranging from transparent (without oxygen) to pink (in presence of oxygen). These advantages made it possible to visualize the spatio-temporal oxygen mass transfer around rising bubbles. Images were recorded by a CCD camera and, after post-processing, the shape, size, and velocity of the bubbles were measured and the colours around the bubbles mapped. A calibration, linking the level of colour with the dissolved oxygen concentration, enabled colour maps to be converted into oxygen concentration fields. A rheoscopic fluid was used to visualize the wake of the bubbles. A calculation method was also developed to determine the transferred oxygen fluxes around bubbles of two sizes (d = 0.82 mm and d = 2.12 mm) and the associated liquid-side mass transfer coefficients. The results compared satisfactorily with classical global measurements made by oxygen micro-sensors or from the classical models. This study thus constitutes a striking example of how this new colorimetric method could become a remarkable tool for exploring gas-liquid mass transfer in fluids.

  9. Development of Sensitive and Specific Analysis of Vildagliptin in Pharmaceutical Formulation by Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ebru Uçaktürk

    2015-01-01

    Full Text Available A sensitive and selective gas chromatography-mass spectrometry (GC-MS method was developed and fully validated for the determination of vildagliptin (VIL in pharmaceutical formulation. Prior to GC-MS analysis, VIL was efficiently derivatized with MSTFA/NH4I/β-mercaptoethanol at 60°C for 30 min. The obtained O-TMS derivative of VIL was detected by selected ion monitoring mode using the diagnostic ions m/z 223 and 252. Nandrolone was chosen as internal standard. The GC-MS method was fully validated by the following validation parameters: limit of detection (LOD and quantitation (LOQ, linearity, precision, accuracy, specificity, stability, robustness, and ruggedness. LOD and LOQ were found to be 1.5 and 3.5 ng mL−1, respectively. The GC-MS method is linear in the range of 3.5–300 ng mL−1. The intra- and interday precision values were less than ≤3.62%. The intra- and interday accuracy values were found in the range of -0.26–2.06%. Finally, the GC-MS method was successfully applied to determine VIL in pharmaceutical formulation.

  10. The noise analysis and optimum filtering techniques for a two-dimensional position sensitive orthogonal strip gamma ray detector employing resistive charge division

    International Nuclear Information System (INIS)

    Gerber, M.S.; Muller, D.W.

    1976-01-01

    The analysis of an orthogonal strip, two-dimensional position sensitive high purity germanium gamma ray detector is discussed. Position sensitivity is obtained by connecting each electrode strip on the detector to a resistor network. Charge, entering the network, divides in relation to the resistance between its entry point and the virtual earth points of the charge sensitive preamplifiers located at the end of each resistor network. The difference of the voltage pulses at the output of each preamplifier is proportional to the position at which the charge entered the resistor network and the sum of the pulse is proportional to the energy of the detected gamma ray. The analysis and spatial noise resolution is presented for this type of position sensitive detector. The results of the analysis show that the position resolution is proportional to the square root of the filter amplifier's output pulse time constant and that for energy measurement the resolution is maximized at the filter amplifier's noise corner time constant. The design of the electronic noise filtering system for the prototype gamma ray camera was based on the mathematical energy and spatial resolution equations. For the spatial channel a Gaussian trapezoidal filtering system was developed. Gaussian filtering was used for the energy channel. The detector noise model was verified by taking rms noise measurements of the filtered energy and spatial pulses from resistive readout charge dividing detectors. These measurements were within 10% of theory. (Auth.)

  11. A position sensitive detector using a NaI(Tl)/photomultiplier tube combination for the energy range 200 keV to 10 MeV

    International Nuclear Information System (INIS)

    Court, A.J.; Dean, A.J.; Yearworth, M.; Younis, F.; Chiappetti, L.; Perotti, F.; Villa, G.; Ubertini, P.; La Padula, C.

    1988-01-01

    The performance of the position sensitive detector for the ZEBRA low energy gamma-ray imaging telescope is described. The detector consists of 9 position sensitive NaI(Tl) elements each 5.8x5.0x56.0 cm viewed at either end of the long axis by 2 in. photomultiplier tubes. The total active area is 2470 cm 2 with an average positional resolution of 2.1 cm and energy resolution of 15% FWHM at 661.6 keV. The method of flight calibration is described together with the provision within the on-board electronics to correct for sources of error in the calculation of event energy loss and position. The results presented are obtained from the calibration phase of the ZEBRA telescope project. (orig.)

  12. Barium fluoride crystals and self-quenching streamer chambers as a position sensitive gamma-ray detector

    International Nuclear Information System (INIS)

    Salomon, M.; DeMooy, S.; Ruggier, L.

    1985-01-01

    We have studied the possibility of using selfquenching streamer chambers to detect photoelectrons produced by a photoconverter in conjunction with Barium Fluoride scintillators. With the purpose to obtain a high efficiency detector, we attempted to combine a BaF 2 scintillator with a gas chamber operating at large electric fields and a high fraction of quenching gas like self-quenching streamer (SQS) chamber, as the electric fields at the cathode could be made larger than in the proportional mode. Furthermore, previous results indicated that in this mode, part of the large amplification was obtained through strong absorption of uv photons near the anode

  13. Gas-cooled reactor programs. Fuel-management positioning and accounting module: FUELMANG Version V1. 11, September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Medlin, T.W.; Hill, K.L.; Johnson, G.L.; Jones, J.E.; Vondy, D.R.

    1982-01-01

    This report documents the code module FUELMANG for fuel management of a reactor. This code may be used to position fuel during the calculation of a reactor history, maintain a mass balance history of the fuel movement, and calculate the unit fuel cycle component of the electrical generation cost. In addition to handling fixed feed fuel without recycle, provision has been made for fuel recycle with various options applied to the recycled fuel. A continuous fueling option is also available with the code. A major edit produced by the code is a detailed summary of the mass balance history of the reactor and a fuel cost analysis of that mass balance history. This code is incorporated in the system containing the VENTURE diffusion theory neutronics code for routine use. Fuel movement according to prescribed instructions is performed without the access of additional user input data during the calculation of a reactor operating history. Local application has been primarily for analysis of the performance of gas-cooled thermal reactor core concepts.

  14. Gas-cooled reactor programs. Fuel-management positioning and accounting module: FUELMANG Version V1.11, September 1981

    International Nuclear Information System (INIS)

    Medlin, T.W.; Hill, K.L.; Johnson, G.L.; Jones, J.E.; Vondy, D.R.

    1982-01-01

    This report documents the code module FUELMANG for fuel management of a reactor. This code may be used to position fuel during the calculation of a reactor history, maintain a mass balance history of the fuel movement, and calculate the unit fuel cycle component of the electrical generation cost. In addition to handling fixed feed fuel without recycle, provision has been made for fuel recycle with various options applied to the recycled fuel. A continuous fueling option is also available with the code. A major edit produced by the code is a detailed summary of the mass balance history of the reactor and a fuel cost analysis of that mass balance history. This code is incorporated in the system containing the VENTURE diffusion theory neutronics code for routine use. Fuel movement according to prescribed instructions is performed without the access of additional user input data during the calculation of a reactor operating history. Local application has been primarily for analysis of the performance of gas-cooled thermal reactor core concepts

  15. Distribution, vertical position and ecological implications of shallow gas in Bahía Blanca estuary (Argentina)

    Science.gov (United States)

    Bravo, M. E.; Aliotta, S.; Fiori, S.; Ginsberg, S.

    2018-03-01

    There has been a growing interest in the study of shallow gas due its importance in relation to the marine environment, climate change and human activities. In Bahía Blanca estuary, Argentina, shallow gas has a wide distribution. Acoustic turbidity and blanking are the main seismic evidence for the presence of shallow gas in the estuary. The former prevails in the inner sector of the estuary where gas is either near or in contact with the seabed. Gas deposits are generally associated with paleochannels corresponding to the Holocene paleodeltaic environment. Distribution studies of shallow gas in this estuary are necessary because its presence implies not only a geological risk for harbor activities but also because it may have noxious effects on the marine ecosystem, mainly on benthic communities. The comparison of benthic communities at a gas site (GS) with those at a control site (CS) indicated that gas could generate impoverishment in terms of individuals' abundance (GS: N = 357; CS: N = 724). Also, diversity indices showed great differences in the community structure at each site. This indicates that methane gas may act as a natural disturbance agent in estuarine ecosystems. The presence of gas in seabed sediments must therefore be taken into account when distribution studies are conducted of estuarine benthic communities.

  16. Low incidence of minor BRAF V600 mutation-positive subclones in primary and metastatic melanoma determined by sensitive and quantitative real-time PCR

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Clemmensen, Ole; Hoejberg, Lise

    2013-01-01

    BRAF V600 mutation is an important biological marker for therapeutic guidance in melanoma, where mutation-positive cases are candidates for therapy targeting mutant B-Raf. Recent studies showing intratumor variation in BRAF mutation status have caused concern that sensitive mutation analysis can ...

  17. Performance of a position sensitive Si(Li) x-ray detector dedicated to Compton polarimetry of stored and trapped highly-charged ions

    International Nuclear Information System (INIS)

    Weber, G; Braeuning, H; Hess, S; Maertin, R; Spillmann, U; Stoehlker, Th

    2010-01-01

    We report on a novel two-dimensional position sensitive Si(Li) detector dedicated to Compton polarimetry of x-ray radiation arising from highly-charged ions. The performance of the detector system was evaluated in ion-atom collision experiments at the ESR storage ringe at GSI, Darmstadt. Based on the data obtained, the polarimeter efficiency is estimated in this work.

  18. Effect of refraction index and thickness of the light guide in the position-sensitive gamma-ray detector using compact PS-PMTs

    International Nuclear Information System (INIS)

    Inoue, K.; Saito, H.; Nagashima, Y.; Hyodo, T.; Nagai, Y.; Muramatsu, S.; Nagai, S.

    2000-01-01

    We constructed a position-sensitive gamma-ray detector consisting of an array of BGO scintillators, a light guide and compact PS-PMTs. The effects of refractive index and thickness of the light guide of a glass plate on the detector performance were investigated. A light guide with higher refractive index and smaller thickness is found better for a good spatial resolution.

  19. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  20. Gas Sensor

    KAUST Repository

    Luebke, Ryan; Eddaoudi, Mohamed; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Salama, Khaled N.

    2015-01-01

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  1. Impact of variation in the BDNF gene on social stress sensitivity and the buffering impact of positive emotions: replication and extension of a gene-environment interaction.

    Science.gov (United States)

    van Winkel, Mark; Peeters, Frenk; van Winkel, Ruud; Kenis, Gunter; Collip, Dina; Geschwind, Nicole; Jacobs, Nele; Derom, Catherine; Thiery, Evert; van Os, Jim; Myin-Germeys, Inez; Wichers, Marieke

    2014-06-01

    A previous study reported that social stress sensitivity is moderated by the brain-derived-neurotrophic-factor(Val66Met) (BDNF rs6265) genotype. Additionally, positive emotions partially neutralize this moderating effect. The current study aimed to: (i) replicate in a new independent sample of subjects with residual depressive symptoms the moderating effect of BDNF(Val66Met) genotype on social stress sensitivity, (ii) replicate the neutralizing impact of positive emotions, (iii) extend these analyses to other variations in the BDNF gene in the new independent sample and the original sample of non-depressed individuals. Previous findings were replicated in an experience sampling method (ESM) study. Negative Affect (NA) responses to social stress were stronger in "Val/Met" carriers of BDNF(Val66Met) compared to "Val/Val" carriers. Positive emotions neutralized the moderating effect of BDNF(Val66Met) genotype on social stress sensitivity in a dose-response fashion. Finally, two of four additional BDNF SNPs (rs11030101, rs2049046) showed similar moderating effects on social stress-sensitivity across both samples. The neutralizing effect of positive emotions on the moderating effects of these two additional SNPs was found in one sample. In conclusion, ESM has important advantages in gene-environment (GxE) research and may attribute to more consistent findings in future GxE research. This study shows how the impact of BDNF genetic variation on depressive symptoms may be explained by its impact on subtle daily life responses to social stress. Further, it shows that the generation of positive affect (PA) can buffer social stress sensitivity and partially undo the genetic susceptibility. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  2. Long-term gas and brine migration at the Waste Isolation Pilot Plant: Preliminary sensitivity analyses for post-closure 40 CFR 268 (RCRA), May 1992

    International Nuclear Information System (INIS)

    1992-12-01

    This report describes preliminary probabilistic sensitivity analyses of long term gas and brine migration at the Waste Isolation Pilot Plant (WIPP). Because gas and brine are potential transport media for organic compounds and heavy metals, understanding two-phase flow in the repository and the surrounding Salado Formation is essential to evaluating long-term compliance with 40 CFR 268.6, which is the portion of the Land Disposal Restrictions of the Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act that states the conditions for disposal of specified hazardous wastes. Calculations described here are designed to provide guidance to the WIPP Project by identifying important parameters and helping to recognize processes not yet modeled that may affect compliance. Based on these analyses, performance is sensitive to shaft-seal permeabilities, parameters affecting gas generation, and the conceptual model used for the disturbed rock zone surrounding the excavation. Brine migration is less likely to affect compliance with 40 CFR 268.6 than gas migration. However, results are preliminary, and additional iterations of uncertainty and sensitivity analyses will be required to provide the confidence needed for a defensible compliance evaluation. Specifically, subsequent analyses will explicitly include effects of salt creep and, when conceptual and computational models are available, pressure-dependent fracturing of anhydrite marker beds

  3. Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis

    NARCIS (Netherlands)

    Hougardy, BMT; Maduro, JH; van der Zee, AGJ; de Groot, DJA; van den Heuvel, FAJ; de Vries, EGE; de Jong, S

    2006-01-01

    In cervical carcinogenesis, the p53 tumor suppressor pathway is disrupted by HPV (human papilloma virus) E6 oncogene expression. E6 targets p53 for rapid proteasome-mediated degradation. We therefore investigated whether proteasome inhibition by MG132 could restore wild-type p53 levels and sensitize

  4. Reflexive Positioning in a Politically Sensitive Situation: Dealing with the Threats of Researching the West Bank Settler Experience

    Science.gov (United States)

    Possick, Chaya

    2009-01-01

    For the past 7 years, the author has conducted qualitative research projects revolving around the experiences of West Bank settlers. The political situation in Israel in general, and the West Bank in particular, has undergone rapid and dramatic political, military, and social changes during this period. In highly politically sensitive situations…

  5. Positions and synthesis of the seminar on the market of the natural gas; Planteamientos y sintesis del seminario sobre el mercado del gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez R, Raul

    1996-10-01

    In development of this event, the political, juridical, economic, environmental and social elements were analyzed that affect the formation of the national market, equally, the stimuli were discussed for the participation of the private sector, the decisive action promoter that has completed the state, to constitute enough reserves of natural gas, to build the infrastructure and to impel the formation of the market, as well as their perspectives and the possibilities to conform a culture of the use of the natural gas as product of the maturity of the market; the author also refers to the politicians of the national plan of development and the energy planning.

  6. Sensitivity Analysis of Population in The Generation of Hazardous and Non-Harzardous Wastes, and Gas from Dumpsites of Ogbomosoland in Nigeria

    Directory of Open Access Journals (Sweden)

    Samson O. Ojoawo

    2013-01-01

    Full Text Available This paper applies the principles of system dynamics modeling in studying the pattern of population changes and the corresponding non-hazardous wastes and gas being generated from the dumpsites of Ogbomosoland, Nigeria. The five (5 Local government Areas (LGAs of Ogbomosoland were categorized as Urban (Ogbomoso North and Ogbomoso South and Rural (Oriire, Ogo Oluwa and Suurulere based on the size, population of residents, consumption pattern and socio-economic activities of the area. A sensitivity analysis of the simulated variables i.e the population, wastes and gas, was performed by employing the developed model results. Findings showed that the wastes and gas increased with the increased population in the 1000 years period. Also, gas production exceeds wastes generation rates for the rural LGAs in all cases. After a 25 years benchmark, when the simulated population of the urban and rural LGAs are respectively 303,411 and 344,735, the rates of waste generation are 3.33x106 and 6.22 x106 m 3 , while the corresponding rates of gas production is 2.44x103 and 6.47x103 m 3 in same order. The study concludes that wastes and gas generation from dumpsites are highly sensitive to population growth. It also concluded that the rate of gas generation is higher in organic wastes of the rural LGAs. The maximum population permissible in the model is 300,000 thus design of full-fledge landfills is recommended to replace the existing dumpsites in the study area.

  7. Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response.

    Science.gov (United States)

    Nakate, Umesh T; Patil, Pramila; Bulakhe, R N; Lokhande, C D; Kale, Sangeeta N; Naushad, Mu; Mane, Rajaram S

    2016-10-15

    We report the rapid (superhydrophobic to superhydrophilic) transition property and improvement in the liquefied petroleum gas (LPG) sensing response of zinc oxide (ZnO) nanorods (NRs) on UV-irradiation and platinum (Pt) surface sensitization, respectively. The morphological evolution of ZnO NRs is evidenced from the field emission scanning electron microscope and atomic force microscope digital images and for the structural elucidation X-ray diffraction pattern is used. Elemental survey mapping is obtained from energy dispersive X-ray analysis spectrum. The optical properties have been studied by UV-Visible and photoluminescence spectroscopy measurements. The rapid (120sec) conversion of superhydrophobic (154°) ZnO NRs film to superhydrophilic (7°) is obtained under UV light illumination and the superhydrophobicity is regained by storing sample in dark. The mechanism for switching wettability behavior of ZnO NRs has thoroughly been discussed. In second phase, Pt-sensitized ZnO NRs film has demonstrated considerable gas sensitivity at 260ppm concentration of LPG. At 623K operating temperature, the maximum LPG response of 58% and the response time of 49sec for 1040ppm LPG concentration of Pt- sensitized ZnO NRs film are obtained. This higher LPG response of Pt-sensitized ZnO NRs film over pristine is primarily due to electronic effect and catalytic effect (spill-over effect) caused by an additional of Pt on ZnO NRs film surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Microstructure and gas sensitive properties of alpha-Fe2O3-MO2 (M: Sn and Ti) materials prepared by ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, R.; Mørup, Steen

    1998-01-01

    Metastable alpha-Fe2O3-MO2 (M: Sn and Ti) solid solutions can be synthesized by mechanical alloying. The alloy formation, microstructure, and gas sensitive properties of mechanically milled alpha-Fe2O3-SnO2 materials are discussed. Tin ions in alpha-Fe2O3 are found to occupy the empty octahedral...... holes in the alpha-Fe2O3 lattice. This interstitial model can also describe the structure of alpha-Fe2O3-TiO2 solid solutions. Finally, a correlation of gas sensitive properties with microstructure of alpha-Fe2O3-SnO2 materials is presented....

  9. Pros and cons of an expansion of the natural gas system in the Nordic Countries - sensitivity analysis of the scenario results from stage one of the Nordleden project

    International Nuclear Information System (INIS)

    2001-12-01

    The report shows that the maximum economic profit from a transnordic gas grid amounts to 5-30 billion SEK (0.5-3 billion USD), depending on scenarios. This holds even under relatively strict CO 2 limitations. The profit is in the same range as the profits from emissions trading or from free trade in electricity in the Nordic market. In absolute numbers, the profit increases with increased energy demand. The natural gas supply could amount to about 300 TWh in year 2030, if the price at the border does not surpass 70 SEK/MWh (7 USD/MWh). The main expansion would be in central power and heat production. However, the report also shows that the transnordic gas grid could become a burden for the Nordic energy system, as the profit could be negative in the case where the investment is done according to the design case, but the gas price gets higher. The worst case could result in a loss of about 30 billion SEK. However, it is probably more realistic to assume that the market actors try to minimize their own risks through long term contracts with fixed prices and volumes, leading to a transfer of the risk to the society as a whole, being forced to renounce cheaper solutions for reaching the environmental goals in the case where natural gas becomes a more expensive fuel than supposed in the planning stage. The corresponding risk is much lower from a CO 2 point of view, i.e. if future CO 2 reduction limit become more strict than in the planning stage, the value of the gas grid is only marginally affected. Sensitivity analysis where the Nordic cooperation is widened to include trade in electricity (which already is a fact) and emission rights show that the optimum natural gas supply is affected, but to a small degree only. The net effect is a certain redistribution of the natural gas use between the countries

  10. Neutral vs positive oral contrast in diagnosing acute appendicitis with contrast-enhanced CT: sensitivity, specificity, reader confidence and interpretation time

    Science.gov (United States)

    Naeger, D M; Chang, S D; Kolli, P; Shah, V; Huang, W; Thoeni, R F

    2011-01-01

    Objective The study compared the sensitivity, specificity, confidence and interpretation time of readers of differing experience in diagnosing acute appendicitis with contrast-enhanced CT using neutral vs positive oral contrast agents. Methods Contrast-enhanced CT for right lower quadrant or right flank pain was performed in 200 patients with neutral and 200 with positive oral contrast including 199 with proven acute appendicitis and 201 with other diagnoses. Test set disease prevalence was 50%. Two experienced gastrointestinal radiologists, one fellow and two first-year residents blindly assessed all studies for appendicitis (2000 readings) and assigned confidence scores (1=poor to 4=excellent). Receiver operating characteristic (ROC) curves were generated. Total interpretation time was recorded. Each reader's interpretation with the two agents was compared using standard statistical methods. Results Average reader sensitivity was found to be 96% (range 91–99%) with positive and 95% (89–98%) with neutral oral contrast; specificity was 96% (92–98%) and 94% (90–97%). For each reader, no statistically significant difference was found between the two agents (sensitivities p-values >0.6; specificities p-values>0.08), in the area under the ROC curve (range 0.95–0.99) or in average interpretation times. In cases without appendicitis, positive oral contrast demonstrated improved appendix identification (average 90% vs 78%) and higher confidence scores for three readers. Average interpretation times showed no statistically significant differences between the agents. Conclusion Neutral vs positive oral contrast does not affect the accuracy of contrast-enhanced CT for diagnosing acute appendicitis. Although positive oral contrast might help to identify normal appendices, we continue to use neutral oral contrast given its other potential benefits. PMID:20959365

  11. Chemical surface treatment with toluene to enhance sensitivity of NO2 gas sensors based on CuPcTs/Alq3 thin films

    Directory of Open Access Journals (Sweden)

    Mahdi H. Suhail

    2017-09-01

    Full Text Available A nitrogen dioxide (NO2 gas sensor based on the blend of copper phthalocyanine-tetrasulfonic acid tetrasodium/tris-(8-hydroxyquinolinealuminum (CuPcTs/Alq3 thin films was fabricated. The effect of chemical surface treatment with toluene on the structural, surface morphology and device sensitivity has been examined. The X-ray diffraction (XRD patterns of as-deposited and toluene-treated films exhibit a broad hump peak at 2θ = 24°. The atomic force microscopy (AFM measurements show that the average particle diameter decreases with immersing time. The needle like shapes can be seen from scanning electron microscopy (SEM images for films treated with toluene for an immersing time of 60 min. Gas sensor characterizations demonstrate that all samples have superior NO2 gas sensitivity at a operating temperature of 373 K. The increase of the sensor sensitivity with increasing chemical treatment time up to 60 min was observed. All films show the stable and repeatable response patterns.

  12. Effect of Gold (Au) Doping on the Surface of CeO2 Materials Surface Gas Sensor to NH3, CO and HNO3 Detection Sensitivity

    International Nuclear Information System (INIS)

    Sayono; Tjipto Sujitno; Agus Santoso; Sunardi

    2002-01-01

    Research on the effect of various dose and energy of gold ions (1.2 x 10 16 ion/cm 2 , 40 keV; 4.4 x 10 16 ion/cm 2 , 60 keV and 4.6 x 10 16 ion/cm 2 , 80 keV) implanted into CeO 2 thin layer gas sensor has been carried out using ion accelerator. The effect such as their resistance and sensitivity for various temperature and gas sensor such as NH 3 , CO and HNO 3 has been done. It was found that the best resistance and sensitivity was achieved at ion dose 1.2 x 10 16 ion/cm 2 and 40 keV. At this conditions, the resistance was 2.22 MΩ and sensitivity was (70.3 ± 8.38)% for NH 3 ; (45 ± 6.78)% for CO and (30.3 ± 5.5)% for HNO 3 gas, at the sensor temperature of 325 o C and concentration of 4800 ppm. (author)

  13. Sensitivity of the corneal-plane refractive compensation to change in power and axial position of an intraocular lens

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2009-12-01

    Full Text Available If an intraocular lens is displaced or if its power is changed what are the consequences for the refractive compensation of the eye?  Gaussian optics is used to obtain explicit formulae for the sensitivityof the corneal-plane refractive compensation (also called the refraction, refractive state, etc to change in power and axial displacement of a thin intraocular lens implanted in a simple eye.  In particular, for a pseudophakic Gullstrand simplified eye with intraocular lens placed 5 mm behind the cornea the sensitivity to errors in the power of the intraocular lens is about  71 . 0 − 71 for an intraocular lens of power   for an intraocular lens of power 20 D, that is, the refractive compensation decreases by about 0.71 dioptres per dioptre increase in the power of the intraocular lens.  More generally the sensitivity is approximately  ( m   0037 . 0 63 . 0 F − − 0.63 ( 003 . 0 63 . 0 − − (0.0037mF where FI is the power of the intraocular lens.  Also for Gullstrand’s simplified eye the sensitivity of refractive compensation to axial displacement of the intraocular lens is approximately linear in FI about  (64D FI, in fact.  That is, for each dioptre of the power of the intraocular lens the refractive compensation increases by about 0.064 dioptres per millimetre of axial displacement towards the retina. 

  14. Semiautomatic imputation of activity travel diaries : use of global positioning system traces, prompted recall, and context-sensitive learning algorithms

    NARCIS (Netherlands)

    Moiseeva, A.; Jessurun, J.; Timmermans, H.J.P.

    2010-01-01

    The new generation of dynamic activity-based models requires multiday or multiweek activity-travel data. Global Positioning System (GPS) tracers may be a powerful technology to collect such data, but previous applications of this technology to collect data of full activity travel patterns (not just

  15. Identification of hazelnut major allergens in sensitive patients with positive double-blind, placebo-controlled food challenge results

    DEFF Research Database (Denmark)

    Pastorello, Elide A; Vieths, Stefan; Pravettoni, Valerio

    2002-01-01

    The hazelnut major allergens identified to date are an 18-kd protein homologous to Bet v 1 and a 14-kd allergen homologous to Bet v 2. No studies have reported hazelnut allergens recognized in patients with positive double-blind, placebo-controlled food challenge (DBPCFC) results or in patients...

  16. Design and construction techniques for one-meter position sensitive proportional counters of the helical delay line type

    International Nuclear Information System (INIS)

    Orbesen, S.D.; Sherman, J.D.; Flynn, E.R.

    1976-03-01

    A description is given of the techniques involved in the construction of a one-meter long helical proportional counter which produces excellent position accuracy of 1 mm while yielding particle identification through a measurement of energy loss and total energy

  17. A position sensitive gamma-ray detector which employs photodiode and CsI (T1) crystals

    International Nuclear Information System (INIS)

    Dean, A.J.; Graham, G.; Hopkins, C.J.; Ramsden, D.; Lei, M.

    1987-01-01

    A compact CsI(Tl)/photodiode gamma-ray detector is described which is capable of locating the point of interaction of incident gamma-ray photons in the spectral region around 1 MeV. Laboratory tests are used to quantify both the spectral and positional resolutions of the detectors. Their likely application in space gamma-ray astronomy is also discussed

  18. Assessment of skin sensitization under REACH: A case report on vehicle choice in the LLNA and its crucial role preventing false positive results.

    Science.gov (United States)

    Watzek, Nico; Berger, Franz; Kolle, Susanne Noreen; Kaufmann, Tanja; Becker, Matthias; van Ravenzwaay, Bennard

    2017-04-01

    In the EU, chemicals with a production or import volume in quantities of one metric ton per year or more have to be tested for skin sensitizing properties under the REACH regulation. The murine Local Lymph Node Assay (LLNA) and its modifications are widely used to fulfil the data requirement, as it is currently considered the first-choice method for in vivo testing to cover this endpoint. This manuscript describes a case study highlighting the importance of understanding the chemistry of the test material during testing for 'skin sensitization' of MCDA (mixture of 2,4- and 2,6-diamino-methylcyclohexane) with particular focus on the vehicle used. While the BrdU-ELISA modification of the LLNA using acetone/olive oil (AOO) as vehicle revealed expectable positive results. However, the concentration control analysis unexpectedly revealed an instability of MCDA in the vehicle AOO. Further studies on the reactivity showed MCDA to rapidly react with AOO under formation of various imine structures, which might have caused the positive LLNA result. The repetition of the LLNA using propylene glycol (PG) as vehicle did not confirm the positive results of the LLNA using AOO. Finally, a classification of MCDA as skin sensitizer according to the Globally Harmonized System (GHS) was not justified. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Simulation of Transient Response of Ir-TES for Position-Sensitive TES with Waveform Domain Multiplexing

    Science.gov (United States)

    Minamikawa, Y.; Sato, H.; Mori, F.; Damayanthi, R. M. T.; Takahashi, H.; Ohno, M.

    2008-04-01

    We are developing a new x-ray microcalorimeter based on a superconducting transition edge sensor (TES) as an imaging sensor. Our measurement shows unique waveforms which we consider as an expression of thermal nonuniformity of TES films. This arises from the different thermal responses, so that response signal shapes would vary according to the position of the incident x-ray. This position dependency deteriorate the measured energy resolution, but with appropriate waveform analysis, this would be useful for imaging device. For more inspection, we have developed a simulation code which enables a dynamic simulation to obtain a transient response of the TES by finite differential method. Temperature and electric current distributions are calculated. As a result, we successfully obtained waveform signals. The calculated signal waveforms have similar characteristics to the measured signals. This simulation visualized the transition state of the device and will help to design better detector.

  20. Controlling processes that are sensitive to natural gas quality; Procedes de controle sensibles a la qualite du gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Wild, K R [BG Technology Ltd (United Kingdom)

    2000-07-01

    In the UK, and in many other countries throughout the world, the quality of natural gas supplied to customers is maintained to a safe specification. Nevertheless, the specification usually allows some variation in the calorific value of the gas. For a small number of industrial or commercial consumers, this variation can present some difficulties. Measurement of these small, and sometimes rapid, changes is required to allow suitable control systems to be implemented. In the past, the measurement of gas quality has been either inadequate for accurate control or too expensive. BG Technology has developed an acceptable cost solution to this long-standing problem. This paper describes how this novel technology presents exciting new opportunities for gas combustion control and other applications. (author)

  1. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Duy, Nguyen Van [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  2. Sensitivity of Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations

    Science.gov (United States)

    2016-06-12

    Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and

  3. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    International Nuclear Information System (INIS)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-01-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20–25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30–60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p + implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO 2 interface charge densities ( Q f ) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p + implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Q f , that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  4. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    Science.gov (United States)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-09-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p+ implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Qf) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p+ implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Qf, that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  5. Positional Arrangements of Waste Exhaust Gas Ducts of C-Type Balanced Chimney Heating Devices on Building Façades

    Directory of Open Access Journals (Sweden)

    Erkan AVLAR

    2009-01-01

    Full Text Available In Turkey today, with the increase in availability of natural gas,detached heating devices are being preferred over existingheating devices. Due to the lack of chimneys in existing buildingsin Turkey or the presence of chimneys that fail to conformto standards, the use of C-type balanced chimney devices has increased.C-type balanced chimney devices take the combustionair directly from the outside by a specific air duct as detachedheating equipment, with enclosed combustion chambers anda specific waste gas exhaust duct, and they are ventilated independentlyof the field of equipment. Because of their essentiality,the use of a chimney is not required in these devices;the waste gas is exhausted through walls, windows, doors, orbalconies. The natural gas is a clean fossil fuel that requires nostorage in buildings and is easy to use. However, water vapor,carbon dioxide and nitrogen oxides are produced by the combustionof natural gas. It is widely known that high concentrationsof these products can have some adverse effects onhumans such as dizziness, headaches and nausea. As a result,the waste products could recoil through wall openings on thefaçade to create unhealthy indoor environments that could bedangerous to human health. Therefore, the importance of standardsand regulations about the positional arrangements of thewaste gas exhaust ducts of C-type balanced chimney devices onbuilding façades is increasing. In this research, we analyze thestudies of the Institution of Turkish Standards, Chamber of MechanicalEngineers, gas distribution companies, municipalitiesand authorized firms and compare the criteria to determine thenecessary application method. According to our comparison ofthe references accessed, the criteria are not uniform.

  6. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    Science.gov (United States)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that

  7. Low Temperature-Induced 30 (LTI30 positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation

    Directory of Open Access Journals (Sweden)

    Haitao eShi

    2015-10-01

    Full Text Available As a dehydrin belonging to group II late embryogenesis abundant protein (LEA family, Arabidopsis Low Temperature-Induced 30 (LTI30/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT. Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2 accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation.

  8. Sensitivity Improvement of Ammonia Gas Sensor Based on Poly(3,4-ethylenedioxy thiophene):Poly(styrenesulfonate) by Employing Doping of Bromo cresol Green

    International Nuclear Information System (INIS)

    Aba, L.; Yusuf, Y.; Triyana, K.; Aba, L.; Siswanta, D.

    2014-01-01

    The aim of this research is to improve the sensitivity of ammonia gas sensor (hereafter referred to as sensor) based on poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonate) (PEDOT:PSS) by employing the doping dye of bromo cresol green (BCG). The doping process was carried out by mixing the BCG and the PEDOT:PSS in a solution with an optimum ratio of 1:1 in volume. The sensor was fabricated by using spin-coating technique followed by annealing process. For comparison, the BCG thin film and the PEDOT:PSS thin film were also deposited with the same method on glass substrates. For optical characterization, a red-light laser diode with a 650 nm wavelength was used as light source. Under illumination with the laser diode, the bare glass substrate and BCG film showed no absorption. The sensor exhibited linear response to ammonia gas for the range of 200 ppm to 800 ppm. It increased the sensitivity of sensor based on PEDOT:PSS with BCG doping being about twofold higher compared to that of without BCG doping. Furthermore, the response time and the recovery time of the sensor were found very fast. It suggests that the optical sensor based on BCG-doped PEDOT:PSS is promising for application as ammonia gas sensor.

  9. Upconversion enhanced degenerate four-wave mixing in the mid-infrared for sensitive detection of acetylene in gas flows

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Dam, Jeppe Seidelin; Sahlberg, Anna-Lena

    2014-01-01

    We present a new background free method for in situ gas detection that combines degenerate four-wave mixing with an infra-red light detector based on parametric frequency upconversion of infra-red light. The system is demonstrated at mid infrared wavelengths for low concentration measurements...... of acetylene diluted in a N2 gas flow at ambient conditions. It is demonstrated that the system is able to cover more than 100 nm in scanning range and detect concentrations as low as 3 ppm based on the R9e line. A major issue in small signal measurements is scattered light and it is showed how a spatial...

  10. Positive association between high-sensitivity C-reactive protein level and diabetes mellitus among US non-Hispanic black adults.

    Science.gov (United States)

    Shankar, A; Li, J

    2008-08-01

    Previous epidemiologic studies have demonstrated a positive association between serum C-reactive protein (CRP) level and diabetes mellitus. However among US race-ethnicities, the putative association between CRP and diabetes mellitus in non-Hispanic Blacks is not clear. We specifically examined the association between high-sensitivity CRP level and diabetes mellitus in a representative sample of US non-Hispanic blacks. Cross-sectional study among 1,479 National Health and Nutrition Examination Survey 1999-2002 non-Hispanic black participants aged > or = 20 years. Main outcome-of-interest was the presence of diabetes mellitus (fasting plasma glucose > or = 126 mg/dL, non-fasting plasma glucose > or = 200 mg/dL, or self-reported current use of oral hypoglycemic medication or insulin) (n=204). Higher CRP levels were positively associated with diabetes mellitus, independent of smoking, waist circumference, hypertension, and other confounders. Multivariable odds ratio (OR) [95% confidence intervals (CI)] comparing elevated CRP level (>3 mg/L) to low CRP level (diabetes mellitus appeared to be present across the full range of CRP, without any threshold effect. Higher serum high-sensitivity CRP levels are positively associated with diabetes mellitus in a sample of US non-Hispanic blacks. Inflammatory processes previously shown to be related to diabetes mellitus in other race-ethnicities may be involved in non-Hispanic blacks also.

  11. School, Supervision and Adolescent-Sensitive Clinic Care: Combination Social Protection and Reduced Unprotected Sex Among HIV-Positive Adolescents in South Africa.

    Science.gov (United States)

    Toska, Elona; Cluver, Lucie D; Boyes, Mark E; Isaacsohn, Maya; Hodes, Rebecca; Sherr, Lorraine

    2017-09-01

    Social protection can reduce HIV-risk behavior in general adolescent populations, but evidence among HIV-positive adolescents is limited. This study quantitatively tests whether social protection is associated with reduced unprotected sex among 1060 ART-eligible adolescents from 53 government facilities in South Africa. Potential social protection included nine 'cash/cash-in-kind' and 'care' provisions. Analyses tested interactive/additive effects using logistic regressions and marginal effects models, controlling for covariates. 18 % of all HIV-positive adolescents and 28 % of girls reported unprotected sex. Lower rates of unprotected sex were associated with access to school (OR 0.52 95 % CI 0.33-0.82 p = 0.005), parental supervision (OR 0.54 95 % CI 0.33-0.90 p = 0.019), and adolescent-sensitive clinic care (OR 0.43 95 % CI 0.25-0.73 p = 0.002). Gender moderated the effect of adolescent-sensitive clinic care. Combination social protection had additive effects amongst girls: without any provisions 49 % reported unprotected sex; with 1-2 provisions 13-38 %; and with all provisions 9 %. Combination social protection has the potential to promote safer sex among HIV-positive adolescents, particularly girls.

  12. Improvement in the Sensitivity of PbO Doped Tin Oxide Thick Film Gas Sensor by RF and Microwave Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    J. K. SRIVASTAVA

    2010-07-01

    Full Text Available In the present work efforts have been made to analyze the effect of oxygen plasma and PbO doping on the sensitivity of SnO2-based thick film gas sensor for methanol, propanol and acetone. The effect of substrate temperature on the response of dual frequency (RF and microwave plasma treated thick film sensor array has also been studied. To achieve this, three sensor arrays (each with four tin oxide sensors doped with different (1 %, 2 %, 3 % and 4 % PbO concentrations were fabricated by thick film technology and then treated with oxygen plasma for various durations (5 min, 10 min. and 15 min.. The plasma treated sensors were found to possess appreciably high sensitivity at room temperature in comparison to untreated sensor. The sensitivity showed the increasing trend with plasma exposure time and 15 minutes exposure time was found to be most suitable as the sensitivity of the plasma treated sensors for this duration were high towards all the chosen vapors with maximum (97 % value for propanol. The sensitivity of the sensors were found to be increasing gradually as PbO concentration was varied from 1- 4%.

  13. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu, E-mail: 48151660@qq.com

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were

  14. Theoretical Study On The Interaction Between Xenon And Positive Silver Clusters In Gas Phase And On The (001) Chabazite Surface

    International Nuclear Information System (INIS)

    Hunter, D.

    2009-01-01

    A systematic study on the adsorption of xenon on silver clusters in the gas phase and on the (001) surface of silver-exchanged chabazite is reported. Density functional theory at the B3LYP level with the cluster model was employed. The results indicate that the dominant part of the binding is the σ donation, which is the charge transfer from the 5p orbital of Xe to the 5s orbital of Ag and is not the previously suggested d π -d π back-donation. A correlation between the binding energy and the degree of σ donation is found. Xenon was found to bind strongly to silver cluster cations and not to neutral ones. The binding strength decreases as the cluster size increases for both cases, clusters in the gas-phase and on the chabazite surface. The Ag + cation is the strongest binding site for xenon both in gas phase and on the chabazite surface with the binding energies of 73.9 and 14.5 kJ/mol, respectively. The results also suggest that the smaller silver clusters contribute to the negative chemical shifts observed in the 129 Xe NMR spectra in experiments.

  15. Quartz crystal micro–balance gas sensor with ink–jet printed nano–diamond sensitive layer

    Czech Academy of Sciences Publication Activity Database

    Kulha, Pavel; Kroutil, J.; Laposa, A.; Procházka, Václav; Husák, M.

    2016-01-01

    Roč. 67, č. 1 (2016), s. 61-64 ISSN 1335-3632 Institutional support: RVO:68378271 Keywords : gas sensor * QCM * nanodiamond * ink-jet printing Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.483, year: 2016

  16. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 4: Sensitivity analysis of transport pressures and benchmarking with conventional technology for gas transport

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel energy and cost effective transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier and an integrated receiving terminal. In the offshore section, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. In the onshore process, the cryogenic exergy in the LNG is utilized to cool and liquefy the cold carriers, LCO 2 and LIN. The transport pressures for LNG, LIN and LCO 2 will influence the thermodynamic efficiency as well as the ship utilization; hence sensitivity analyses are performed, showing that the ship utilization for the payload will vary between 58% and 80%, and the transport chain exergy efficiency between 48% and 52%. A thermodynamically optimized process requires 319 kWh/tonne LNG. The NG lost due to power generation needed to operate the LEC processes is roughly one third of the requirement in a conventional transport chain for stranded NG gas with CO 2 capture and sequestration (CCS)

  17. On the use of one-dimensional position sensitive detector for x-ray diffraction reciprocal space mapping: Data quality and limitations

    International Nuclear Information System (INIS)

    Masson, Olivier; Boulle, Alexandre; Guinebretiere, Rene; Lecomte, Andre; Dauger, Alain

    2005-01-01

    A homemade x-ray diffractometer using one-dimensional position sensitive detector (PSD) and well suited to the study of thin epitaxial layer systems is presented. It is shown how PSDs can be advantageously used to allow fast reciprocal space mapping, which is especially interesting when analyzing poor crystalline and defective layers as usually observed with oxides and ceramics films. The quality of the data collected with such a setup and the limitations of PSDs in comparison with the use of analyzer crystals are discussed. In particular, the effects of PSD on angular precision, instrument resolution and corrections that must be applied to raw data are presented

  18. The use of a position sensitive detector or of a multidetector for the measurement of pole figures by neutron time-of-flight technique

    International Nuclear Information System (INIS)

    Walther, K.

    1990-01-01

    The neutron flux of even high flux reactors is weak in comparison with the quantum flux of X-ray tubes and therefore in order to decrease the expense on measuring time more and more neutron diffractometers are equipped with position sensitive detectors or multidetectors. In this paper the peculiarities of the use of such detecting devices are discussed for the measurement of pole figures. A special arrangement of a multidetector is proposed which will allow one to scan the whole pole figure by rotating the sample about only one axis and considerably will save measuring time. 4 refs.; 5 figs

  19. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

  20. In-vitro evaluation of limitations and possibilities for the future use of intracorporeal gas exchangers placed in the upper lobe position.

    Science.gov (United States)

    Schumer, Erin; Höffler, Klaus; Kuehn, Christian; Slaughter, Mark; Haverich, Axel; Wiegmann, Bettina

    2018-03-01

    The lack of donor organs has led to the development of alternative "destination therapies", such as a bio-artificial lung (BA) for end-stage lung disease. Ultimately aiming at a fully implantable BA, general capabilities and limitations of different oxygenators were tested based on the model of BA positioning at the right upper lobe. Three different-sized oxygenators (neonatal, paediatric, and adult) were tested in a mock circulation loop regarding oxygenation and decarboxylation capacities for three respiratory pathologies. Blood flows were imitated by a roller pump, and respiration was imitated by a mechanical ventilator with different FiO 2 applications. Pressure drops across the oxygenators and the integrity of the gas-exchange hollow fibers were analyzed. The neonatal oxygenator proved to be insufficient regarding oxygenation and decarboxylation. Despite elevated pCO 2 levels, the paediatric and adult oxygenators delivered comparable sufficient oxygen levels, but sufficient decarboxylation across the oxygenators was ensured only at flow rates of 0.5 L min. Only the adult oxygenator indicated no significant pressure drops. For all tested conditions, gas-exchange hollow fibers remained intact. This is the first study showing the general feasibility of delivering sufficient levels of gas exchange to an intracorporeal BA via patient's breathing, without damaging gas-exchange hollow fiber membranes.

  1. Sensitivity, specificity and predictive probability values of serum agglutination test titres for the diagnosis of Salmonella Dublin culture-positive bovine abortion and stillbirth.

    Science.gov (United States)

    Sánchez-Miguel, C; Crilly, J; Grant, J; Mee, J F

    2018-06-01

    The objective of this study was to determine the diagnostic value of maternal serology for the diagnosis of Salmonella Dublin bovine abortion and stillbirth. A retrospective, unmatched, case-control study was carried out using twenty year's data (1989-2009) from bovine foetal submissions to an Irish government veterinary laboratory. Cases (n = 214) were defined as submissions with a S. Dublin culture-positive foetus from a S. Dublin unvaccinated dam where results of maternal S. Dublin serology were available. Controls (n = 415) were defined as submissions where an alternative diagnosis other than S. Dublin was made in a foetus from an S. Dublin unvaccinated dam where the results of maternal S. Dublin serology were available. A logistic regression model was fitted to the data: the dichotomous dependent variable was the S. Dublin foetal culture result, and the independent variables were the maternal serum agglutination test (SAT) titre results. Salmonella serology correctly classified 87% of S. Dublin culture-positive foetuses at a predicted probability threshold of 0.44 (cut-off at which sensitivity and specificity are at a maximum, J = 0.67). The sensitivity of the SAT at the same threshold was 73.8% (95% CI: 67.4%-79.5%), and the specificity was 93.2% (95% CI: 90.3%-95.4%). The positive and negative predictive values were 84.9% (95% CI: 79.3%-88.6%) and 87.3% (95% CI: 83.5%-91.3%), respectively. This study illustrates that the use of predicted probability values, rather than the traditional arbitrary breakpoints of negative, inconclusive and positive, increases the diagnostic value of the maternal SAT. Veterinary laboratory diagnosticians and veterinary practitioners can recover from the test results, information previously categorized, particularly from those results declared to be inconclusive. © 2017 Blackwell Verlag GmbH.

  2. W18O49 nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst

    International Nuclear Information System (INIS)

    Sun Shibin; Chang Xueting; Dong Lihua; Zhang Yidong; Li Zhenjiang; Qiu Yanyan

    2011-01-01

    A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W 18 O 49 nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W 18 O 49 NRs sensors exhibit superior reducing gas-sensing properties to those of bare W 18 O 49 NRs, and they are highly selective and sensitive to NH 3 , acetone, and H 2 S with short response and recovery times. The Ag/AgCl/W 18 O 49 NRs photocatlysts also possess higher photocatalytic performance than bare W 18 O 49 NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W 18 O 49 NRs composite were proposed. - Graphical Abstract: The Ag/AgCl nanoparticles adhered well to the W 18 O 49 nanorod. The Ag could act as transfer center of the photoexcited carriers, prohibiting their recombinations in both W 18 O 49 and AgCl. Highlights: → Ag/AgCl/W 18 O 49 NRs were successfully obtained via a clean photochemical route. → The Ag/AgCl nanoparticles decorated on the W 18 O 49 NRs possessed cladding structure. → The Ag/AgCl/W 18 O 49 NRs exhibited excellent gas-sensing and photocatalytic properties.

  3. Simultaneous resolution of spectral and temporal properties of UV and visible fluorescence using single-photon counting with a position-sensitive detector

    International Nuclear Information System (INIS)

    Kelly, L.A.; Trunk, J.G.; Polewski, K.; Sutherland, J.C.

    1995-01-01

    A new fluorescence spectrometer has been assembled at the U9B beamline of the National Synchrotron Light Source to allow simultaneous multiwavelength and time-resolved fluorescence detection, as well as spatial imaging of the sample fluorescence. The spectrometer employs monochromatized, tunable UV and visible excitation light from a synchrotron bending magnet and an imaging spectrograph equipped with a single-photon sensitive emission detector. The detector is comprised of microchannel plates in series, with a resistive anode for encoding the position of the photon-derived current. The centroid position of the photon-induced electron cascade is derived in a position analyzer from the four signals measured at the corners of the resistive anode. Spectral information is obtained by dispersing the fluorescence spectrum across one dimension of the detector photocathode. Timing information is obtained by monitoring the voltage divider circuit at the last MCP detector. The signal from the MCP is used as a ''start'' signal to perform a time-correlated single photon counting experiment. The analog signal representing the position, and hence wavelength, is digitized concomitantly with the start/stop time difference and stored in the two-dimensional histogramming memory of a multiparameter analyzer

  4. In vitro activity of XF-73, a novel antibacterial agent, against antibiotic-sensitive and -resistant Gram-positive and Gram-negative bacterial species.

    Science.gov (United States)

    Farrell, David J; Robbins, Marion; Rhys-Williams, William; Love, William G

    2010-06-01

    The antibacterial activity of XF-73, a dicationic porphyrin drug, was investigated against a range of Gram-positive and Gram-negative bacteria with known antibiotic resistance profiles, including resistance to cell wall synthesis, protein synthesis, and DNA and RNA synthesis inhibitors as well as cell membrane-active antibiotics. Antibiotic-sensitive strains for each of the bacterial species tested were also included for comparison purposes. XF-73 was active [minimum inhibitory concentration (MIC) 0.25-4 mg/L] against all of the Gram-positive bacteria tested, irrespective of the antibiotic resistance profile of the isolates, suggesting that the mechanism of action of XF-73 is unique compared with the major antibiotic classes. Gram-negative activity was lower (MIC 1 mg/L to > 64 mg/L). Minimum bactericidal concentration data confirmed that the activity of XF-73 was bactericidal. Time-kill kinetics against healthcare-associated and community-associated meticillin-resistant Staphylococcus aureus isolates demonstrated that XF-73 was rapidly bactericidal, with > 5 log(10) kill obtained after 15 min at 2 x MIC, the earliest time point sampled. The post-antibiotic effect (PAE) for XF-73 under conditions where the PAE for vancomycin was 5.4 h. XF-73 represents a novel broad-spectrum Gram-positive antibacterial drug with potentially beneficial characteristics for the treatment and prevention of Gram-positive bacterial infections. 2010. Published by Elsevier B.V.

  5. Comparison of multi-pole shaping and delay line clipping pre-amplifiers for position sensitive NaI(Tl) detectors

    International Nuclear Information System (INIS)

    Freifelder, R.; Karp, J.S.; Wear, J.A.; Lockyer, N.S.; Newcomer, F.M.; Surti, S.; Berg, R. van

    1998-01-01

    NaI(Tl) position sensitive detectors have been used in medical imaging for many years. For PET applications without collimators, the high counting rates place severe demands on such large area detectors. The NaI(Tl) detectors in the PENN-PET scanners are read-out via photomultiplier tubes and preamplifiers. Those preamplifiers use a delay-line clipping technique to shorten the characteristic 240 ns fall time of the NaI(Tl) signal. As an alternative, the authors have investigated a pole-zero network to shorten the signal followed by a multi-pole shaper to produce a symmetric signal suitable for high counting rates. This has been compared to the current design by measuring the energy and spatial resolution of a single detector as a function of different preamplifier designs. Data were taken over a range of ADC integration times and countrates. The new design shows improved energy resolution with short integration times. Effects on spatial resolution and deadtime are reported for large position sensitive detectors at different countrates

  6. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta.

    Science.gov (United States)

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene ( MMP20 ) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  7. Limit to mass sensitivity of nanoresonators with random rough surfaces due to intrinsic sources and interactions with the surrounding gas

    NARCIS (Netherlands)

    Palasantzas, G.

    2008-01-01

    We investigate initially the influence of thermomechanical and momentum exchange noise on the limit to mass sensitivity Delta m of nanoresonators with random rough surfaces, which are characterized by the roughness amplitude w, the correlation length xi, and the roughness exponent 0

  8. Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test case

    CSIR Research Space (South Africa)

    Nickless, A

    2014-05-01

    Full Text Available observation of atmospheric CO(sub2) concentrations at fixed monitoring stations. The LPDM model, which can be used to derive the sensitivity matrix used in an inversion, was run for each potential site for the months of July (representative of the Southern...

  9. A Miniaturized Carbon Dioxide Gas Sensor Based on Sensing of pH-Sensitive Hydrogel Swelling with a Pressure Sensor

    NARCIS (Netherlands)

    Herber, S.; Bomer, Johan G.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2005-01-01

    A measurement concept has been realized for the detection of carbon dioxide, where the CO2 induced pressure generation by an enclosed pH-sensitive hydrogel is measured with a micro pressure sensor. The application of the sensor is the quantification of the partial pressure of CO2 (Pco2) in the

  10. Synthesis, characterization and gas sensitivity investigation of Ni0.5Zn0.5Fe2O4 nanoparticles

    International Nuclear Information System (INIS)

    Ebrahimi, Hamid Reza; Parish, Mohammad; Amiri, Gholam Reza; Bahraminejad, Behzad; Fatahian, Soheil

    2016-01-01

    Nickel zinc ferrite nanoparticles with diameters less than 20 nm were synthesized by co-precipitation method. The synthesized nanoparticles were annealed at 500 °C. Two types of samples (powder and disk) were prepared. The disk sample was prepared by pressing the powder sample. Magnetic and structural properties of the products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and alternating gradient-force magnetometer (AGFM). The X-ray analysis shows that the formation of the synthesized nickel zinc ferrite is spinell. The average crystalline size for nickel zinc ferrite powder was found around 19 nm (calculated by Debye-Scherer formula).The formation, size and the uniformity of the samples were determined by TEM. It was found that the size of nanoparticles should be around 18 nm from the SEM image. AGFM diagrams shows that the magnetization of the powder sample at the 9 kOe is 21.5 emu/g that of disk sample is 33 emu/g. Therefore, the magnetization was increased by pressing the nickel zinc ferrite nanoparticles. Sensor sensitivity of this disk ferrite is investigated in an isolated box. For this purpose, the samples are injected to this box and six gases (ethanol, methanol, chloroform, acetonitrile, acetone and methane) are exposed to the ferrite by a mechanical gate. The acetonitrile had the best sensitivity performance. - Highlights: • Powder and disk nickel zinc ferrite nanoparticles with diameters less than 20 nm were prepared. • Sensor sensitivity of six different gases was tested in an isolated box and acetonitrile had the best sensitivity performance. • The maximum sensor sensitivity was maximum at 350 °C for all tested gases except chloroform. • At 200 ppm concentration, the sensor capacity is reached to the saturation state.

  11. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation

    Science.gov (United States)

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-01-01

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties. PMID:25758292

  12. Assessment of blood gas parameters and the degree of inflammation in noninvasive positive pressure ventilation combined with aminophylline treatment of COPD complicated with type II respiratory failure

    Directory of Open Access Journals (Sweden)

    Jin-Ru Zhang

    2016-10-01

    Full Text Available Objective: To analyze the effect of noninvasive positive pressure ventilation combined with aminophylline therapy on blood gas parameters and the degree of inflammation in patients with COPD and type II respiratory failure. Methods: A total of 80 patients with COPD and type Ⅱ respiratory failure were randomly divided into observation group and control group (n=40, control group received symptomatic treatment + aminophylline treatment, observation group received symptomatic treatment + aminophylline + noninvasive positive pressure ventilation treatment, and then differences in blood gas parameters, pulmonary function parameters, hemorheology parameters and inflammatory factor levels were compared between two groups of patients after treatment. Results: Radial artery pH and PO2 values of observation group after treatment were higher than those of control group while PCO2, Cl- and CO2CP values were lower than those of control group; pulmonary function parameters FVC, FEV1, FEF25-75, MMF, PEF and FRC values of observation group after treatment were higher than those of control group; whole blood viscosity (150 s- and 10 s-, plasma viscosity, fibrinogen, erythrocyte aggregation index and erythrocyte rigidity index values in peripheral venous blood of observation group after treatment were lower than those of control group; serum IL-17, IL-33, TREM-1, sICAM-1 and PGE2 levels of observation group after treatment were lower than those of control group. Conclusion: Noninvasive positive pressure ventilation combined with aminophylline can optimize the respiratory function of patients with COPD and type II respiratory failure and improve blood gas parameters and the degree of inflammation.

  13. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.

    Science.gov (United States)

    Hong, Juree; Lee, Sanggeun; Seo, Jungmok; Pyo, Soonjae; Kim, Jongbaeg; Lee, Taeyoon

    2015-02-18

    A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.

  14. Effect of adjuvant noninvasive positive pressure ventilation on blood gas parameters, cardiac function and inflammatory state in patients with COPD and type II respiratory failure

    Directory of Open Access Journals (Sweden)

    You-Ming Zhu1

    2017-03-01

    Full Text Available Objective: T o analyze the effect of adjuvant noninvasive positive pressure ventilation on blood gas parameters, cardiac function and inflammatory state in patients with chronic obstructive pulmonary disease (COPD and type II respiratory failure. Methods: 90 patients with COPD and type II respiratory failure were randomly divided into observation group and control group (n=45. Control group received conventional therapy, observation group received conventional therapy + adjuvant noninvasive positive pressure ventilation, and differences in blood gas parameters, cardiac function, inflammatory state, etc., were compared between two groups of patients 2 weeks after treatment. Results: Arterial blood gas parameters pH and alveolar-arterial partial pressure of oxygen [P(A-aO2] levels of observation group were higher than those of control group while, potassium ion (K+, chloride ion (Cl﹣ and carbon dioxide combining power (CO2CP levels were lower than those of control group 2 weeks after treatment; echocardiography parameters Doppler-derived tricuspid lateral annular systolic velocity (DTIS and pulmonary arterial velocity (PAV levels were lower than those of control group (P<0.05 while pulmonary artery accelerating time (PAACT, left ventricular enddiastolic dimension (LVDd and right atrioventricular tricuspid annular plane systolic excursion (TAPSE levels were higher than those of control group (P<0.05; serum cardiac function indexes adiponectin (APN, Copeptin, N-terminal pro-B-type natriuretic peptide (NT-proBNP, cystatin C (CysC, growth differentiation factor-15 (GDF-15 and heart type fatty acid binding protein (H-FABP content were lower than those of control group (P<0.05; serum inflammatory factors hypersensitive C-reactive protein (hs-CRP, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, IL-8, IL-10, and transforming growth factor-β1 (TGF-β1 content were lower than those of control group (P<0.05. Conclusions: Adjuvant

  15. Real-Time Characterization of Electrospun PVP Nanofibers as Sensitive Layer of a Surface Acoustic Wave Device for Gas Detection

    Directory of Open Access Journals (Sweden)

    D. Matatagui

    2014-01-01

    Full Text Available The goal of this work has been to study the polyvinylpyrrolidone (PVP fibers deposited by means of the electrospinning technique for using as sensitive layer in surface acoustic wave (SAW sensors to detect volatile organic compounds (VOCs. The electrospinning process of the fibers has been monitored and RF characterized in real time, and it has been shown that the diameters of the fibers depend mainly on two variables: the applied voltage and the distance between the needle and the collector, since all the electrospun fibers have been characterized by a scanning electron microscopy (SEM. Real-time measurement during the fiber coating process has shown that the depth of penetration of mechanical perturbation in the fiber layer has a limit. It has been demonstrated that once this saturation has been reached, the increase of the thickness of the fibers coating does not improve the sensitivity of the sensor. Finally, the parameters used to deposit the electrospun fibers of smaller diameters have been used to deposit fibers on a SAW device to obtain a sensor to measure different concentrations of toluene at room temperature. The present sensor exhibited excellent sensitivity, good linearity and repeatability, and high and fast response to toluene at room temperature.

  16. Amorphous Pd-assisted H 2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability

    KAUST Repository

    Kim, Hyeonghun

    2018-02-05

    For monitoring H2 concentrations in air, diverse resistive gas sensors have been demonstrated. In particular, Pd-decorated metal oxides have shown remarkable selectivity and sensing response for H2 detection. In this work, H2 sensing behavior of amorphous Pd layer covering ZnO nanorods (am-Pd/ZnO NRs) is investigated. This is the first report on the enhanced gas sensing performance attained by using an amorphous metal layer. The amorphous Pd layer is generated by reduction reaction with a strong reducing agent (NaBH4), and it covers the ZnO nanorods completely with a thickness of 2 ∼ 5 nm. For comparison, crystalline Pd nanoparticles-decorated ZnO nanorods (c-Pd/ZnO NRs) are produced using a milder reducing agent like hydrazine. Comparing the c-Pd/ZnO NRs sensor and other previously reported hydrogen sensors based on the crystalline Pd and metal oxides, the am-Pd/ZnO NRs sensor exhibits a remarkable sensing response (12,400% at 2% H2). The enhancement is attributed to complete cover of the amorphous Pd layer on the ZnO NRs, inducing larger interfaces between the Pd and ZnO. In addition, the amorphous Pd layer prevents surface contamination of the ZnO NRs. Therefore, the am-Pd/ZnO NRs sensor maintains initial sensing performance even after 5 months.

  17. Amorphous Pd-assisted H 2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability

    KAUST Repository

    Kim, Hyeonghun; Pak, Yusin; Jeong, Yeonggyo; Kim, Woochul; Kim, Jeongnam; Jung, Gun Young

    2018-01-01

    For monitoring H2 concentrations in air, diverse resistive gas sensors have been demonstrated. In particular, Pd-decorated metal oxides have shown remarkable selectivity and sensing response for H2 detection. In this work, H2 sensing behavior of amorphous Pd layer covering ZnO nanorods (am-Pd/ZnO NRs) is investigated. This is the first report on the enhanced gas sensing performance attained by using an amorphous metal layer. The amorphous Pd layer is generated by reduction reaction with a strong reducing agent (NaBH4), and it covers the ZnO nanorods completely with a thickness of 2 ∼ 5 nm. For comparison, crystalline Pd nanoparticles-decorated ZnO nanorods (c-Pd/ZnO NRs) are produced using a milder reducing agent like hydrazine. Comparing the c-Pd/ZnO NRs sensor and other previously reported hydrogen sensors based on the crystalline Pd and metal oxides, the am-Pd/ZnO NRs sensor exhibits a remarkable sensing response (12,400% at 2% H2). The enhancement is attributed to complete cover of the amorphous Pd layer on the ZnO NRs, inducing larger interfaces between the Pd and ZnO. In addition, the amorphous Pd layer prevents surface contamination of the ZnO NRs. Therefore, the am-Pd/ZnO NRs sensor maintains initial sensing performance even after 5 months.

  18. Gas magnetometer

    Science.gov (United States)

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  19. State of gas exchange in recumbent and orthostatic positions and under physical load in healthy persons of varying age, sex and body build

    Science.gov (United States)

    Glezer, G. A.; Charyyev, M.; Zilbert, N. L.

    1980-01-01

    Age effect on gas exchange was studied in the recumbent and orthostatic positions and under physical load. In the case of the older age group and for normal as compared with hypersthenic persons, oxygen consumption during rest and during moderate physical overload diminishes. When the vertical position is assumed oxygen consumption in persons of various age groups is distinctly increased, particularly in the elderly group. There is a reduction in the amount of oxygen consumption, oxygen pulse, recovery coefficient, and work efficiency under moderate overload. In persons over 50, physical labor induces a large oxygen requirement and a sharp rise in the level of lactic acid and the blood's lactate/pyruvate ratio. No distinct difference was noted in the amount of oxygen consumed during rest and during physical overload in men and women of the same physical development and age.

  20. Generalized time evolution of the homogeneous cooling state of a granular gas with positive and negative coefficient of normal restitution

    Science.gov (United States)

    Khalil, Nagi

    2018-04-01

    The homogeneous cooling state (HCS) of a granular gas described by the inelastic Boltzmann equation is reconsidered. As usual, particles are taken as inelastic hard disks or spheres, but now the coefficient of normal restitution α is allowed to take negative values , which is a simple way of modeling more complicated inelastic interactions. The distribution function of the HCS is studied at the long-time limit, as well as intermediate times. At the long-time limit, the relevant information of the HCS is given by a scaling distribution function , where the time dependence occurs through a dimensionless velocity c. For , remains close to the Gaussian distribution in the thermal region, its cumulants and exponential tails being well described by the first Sonine approximation. In contrast, for , the distribution function becomes multimodal, its maxima located at , and its observable tails algebraic. The latter is a consequence of an unbalanced relaxation–dissipation competition, and is analytically demonstrated for , thanks to a reduction of the Boltzmann equation to a Fokker–Plank-like equation. Finally, a generalized scaling solution to the Boltzmann equation is also found . Apart from the time dependence occurring through the dimensionless velocity, depends on time through a new parameter β measuring the departure of the HCS from its long-time limit. It is shown that describes the time evolution of the HCS for almost all times. The relevance of the new scaling is also discussed.